検索結果 20682 件
JaLCDOI | 10.18926/AMO/68355 |
---|---|
フルテキストURL | 79_1_021.pdf |
著者 | Yamamoto, Yasuhiro| Haraguchi, Takafumi| Matsuda, Kaori| Okazaki, Yoshio| Kimoto, Shin| Tanji, Nozomu| Matsumoto, Atsushi| Kobayashi, Yasuyuki| Mimura, Hidefumi| Hiraki, Takao| |
抄録 | We developed a machine learning model for predicting prostate cancer (PCa) grades using radiomic features of magnetic resonance imaging. 112 patients diagnosed with PCa based on prostate biopsy between January 2014 and December 2021 were evaluated. Logistic regression was used to construct two prediction models, one using radiomic features and prostate-specific antigen (PSA) values (Radiomics model) and the other Prostate Imaging-Reporting and Data System (PI-RADS) scores and PSA values (PI-RADS model), to differentiate high-grade (Gleason score [GS] ≥ 8) from intermediate or low-grade (GS < 8) PCa. Five imaging features were selected for the Radiomics model using the Gini coefficient. Model performance was evaluated using AUC, sensitivity, and specificity. The models were compared by leave-one-out cross-validation with Ridge regularization. Furthermore, the Radiomics model was evaluated using the holdout method and represented by a nomogram. The AUC of the Radiomics and PI-RADS models differed significantly (0.799, 95% CI: 0.712-0.869; and 0.710, 95% CI: 0.617-0.792, respectively). Using holdout method, the Radiomics model yielded AUC of 0.778 (95% CI: 0.552-0.925), sensitivity of 0.769, and specificity of 0.778. It outperformed the PI-RADS model and could be useful in predicting PCa grades, potentially aiding in determining appropriate treatment approaches in PCa patients. |
キーワード | prostate cancer machine learning prostate Imaging-Reporting and Data System radiomics Gleason score |
Amo Type | Original Article |
出版物タイトル | Acta Medica Okayama |
発行日 | 2025-02 |
巻 | 79巻 |
号 | 1号 |
出版者 | Okayama University Medical School |
開始ページ | 21 |
終了ページ | 30 |
ISSN | 0386-300X |
NCID | AA00508441 |
資料タイプ | 学術雑誌論文 |
言語 | 英語 |
著作権者 | Copyright Ⓒ 2025 by Okayama University Medical School |
論文のバージョン | publisher |
査読 | 有り |
PubMed ID | 40012156 |
Web of Science KeyUT | 001440463800003 |
レファレンス | Taitt HE: Global Trends and Prostate Cancer: A Review of Incidence, Detection, and Mortality as Influenced by Race, Ethnicity, and Geographic Location. Am J Mens Health (2018) 12: 1807-1823.| Rawla P: Epidemiology of Prostate Cancer. World J Oncol (2019) 10: 63-89.| Gong L, Xu M, Fang M, Zou J, Yang S, Yu X, Xu D, Zhou L, Li H, He B, Wang Y, Fang X, Dong D and Tian J: Noninvasive Prediction of High-Grade Prostate Cancer via Biparametric MRI Radiomics. J Magn Reson Imaging (2020) 52: 1102-1109.| Epstein JI, Zelefsky MJ, Sjoberg DD, Nelson JB, Egevad L, Magi-Galluzzi C, Vickers AJ, Parwani AV, Reuter VE, Fine SW, Eastham JA, Wiklund P, Han M, Reddy CA, Ciezki JP, Nyberg T and Klein EA: A Contemporary Prostate Cancer Grading System: A Validated Alternative to the Gleason Score. Eur Urol (2016) 69: 428-435.| Carroll PH and Mohler JL: NCCN Guidelines Updates: Prostate Cancer and Prostate Cancer Early Detection. J Natl Compr Canc Netw (2018) 16: 620-623.| Miyake H, Sakai I, Inoue TA, Hara I and Fujisawa M: The limited significance of a longer duration of neoadjuvant hormonal therapy prior to radical prostatectomy for high-risk prostate cancer in Japanese men. Urol Int (2006) 77: 122-126.| Hassan O, Han M, Zhou A, Paulk A, Sun Y, Al-Harbi A, Alrajjal A, Baptista Dos Santos F and Epstein JI: Incidence of Extraprostatic Extension at Radical Prostatectomy with Pure Gleason Score 3+3=6 (Grade Group 1) Cancer: Implications for Whether Gleason Score 6 Prostate Cancer Should be Renamed “Not Cancer” and for Selection Criteria for Active Surveillance. J Urol (2018) 199: 1482-1487.| Albers LF, Korving JC, van Elzakker EPM and Roshani H: Osteomyelitis of the Pubic Symphysis After Transrectal Biopsies of the Prostate. Urology (2018) 121: 29-32.| van der Leest M, Cornel E, Israël B, Hendriks R, Padhani AR, Hoogenboom M, Zamecnik P, Bakker D, Setiasti AY, Veltman J, van den Hout H, van der Lelij H, van Oort I, Klaver S, Debruyne F, Sedelaar M, Hannink G, Rovers M, Hulsbergen-van de Kaa C and Barentsz JO: Head-to-head Comparison of Transrectal Ultrasound-guided Prostate Biopsy Versus Multiparametric Prostate Resonance Imaging with Subsequent Magnetic Resonance-guided Biopsy in Biopsy-naïve Men with Elevated Prostate-specific Antigen: A Large Prospective Multicenter Clinical Study. Eur Urol (2019) 75: 570-578.| Borghesi M, Ahmed H, Nam R, Schaeffer E, Schiavina R, Taneja S, Weidner W and Loeb S: Complications After Systematic, Random, and Image-guided Prostate Biopsy. Eur Urol (2017) 71: 353-365.| Rajkomar A, Dean J and Kohane I: Machine Learning in Medicine. N Engl J Med (2019) 380: 1347-1358.| Cuocolo R, Cipullo MB, Stanzione A, Ugga L, Romeo V, Radice L, Brunetti A and Imbriaco M: Machine learning applications in prostate cancer magnetic resonance imaging. Eur Radiol Exp (2019) 3: 35.| Sun Y, Reynolds HM, Parameswaran B, Wraith D, Finnegan ME, Williams S and Haworth A: Multiparametric MRI and radiomics in prostate cancer: a review. Australas Phys Eng Sci Med (2019) 42: 3-25.| Schelb P, Kohl S, Radtke JP, Wiesenfarth M, Kickingereder P, Bickelhaupt S, Kuder TA, Stenzinger A, Hohenfellner M, Schlemmer HP, Maier-Hein KH and Bonekamp D: Classification of Cancer at Prostate MRI: Deep Learning versus Clinical PI-RADS Assessment. Radiology (2019) 293: 607-617.| Antonelli M, Johnston EW, Dikaios N, Cheung KK, Sidhu HS, Appayya MB, Giganti F, Simmons LAM, Freeman A, Allen C, Ahmed HU, Atkinson D, Ourselin S and Punwani S: Machine learning classifiers can predict Gleason pattern 4 prostate cancer with greater accuracy than experienced radiologists. Eur Radiol (2019) 29: 4754-4764.| Bleker J, Kwee TC, Dierckx RAJO, de Jong IJ, Huisman H and Yakar D: Multiparametric MRI and auto-fixed volume of interest-based radiomics signature for clinically significant peripheral zone prostate cancer. Eur Radiol (2020) 30: 1313-1324.| Bagher-Ebadian H, Janic B, Liu C, Pantelic M, Hearshen D, Elshaikh M, Movsas B, Chetty IJ and Wen N: Detection of Dominant Intra-prostatic Lesions in Patients With Prostate Cancer Using an Artificial Neural Network and MR Multi-modal Radiomics Analysis. Front Oncol (2019) 9: 1313.| Chaddad A, Kucharczyk M and Niazi T: Multimodal radiomic features for the predicting gleason score of prostate cancer. Cancers (Basel) (2018) 10: 249.| Monti S, Brancato V, Costanzo GD, Basso L, Puglia M, Ragozzino A, Salvatore M and Cavaliere C: Multiparametric MRI for prostate cancer detection: New insights into the combined use of a radiomic approach with advanced acquisition protocol. Cancers (2020) 12: 390.| Turkbey B, Rosenkrantz AB, Haider MA, Padhani AR, Villeirs G, Macura KJ, Tempany CM, Choyke PL, Cornud F, Margolis DJ, Thoeny HC, Verma S, Barentsz J and Weinreb JC: Prostate Imaging Reporting and Data System Version 2.1: 2019 Update of Prostate Imaging Reporting and Data System Version 2. Eur Urol (2019) 76: 340-351.| Demšar J, Curk T, Erjavec A, Gorup Č, Hočevar T, Milutinovič M, Možina M, Polajnar M, Toplak M, Starič A and Štajdohar M: Orange: data mining toolbox in Python. J Mach Learn Res (2013) 14: 2349-2353.| Tilki D, van den Bergh RCN, Briers E, Van den Broeck T, Brunckhorst O, Darraugh J, Eberli D, De Meerleer G, De Santis M, Farolfi A, Gandaglia G, Gillessen S, Grivas N, Henry AM, Lardas M, JLH van Leenders G, Liew M, Linares Espinos E, Oldenburg J, van Oort IM, Oprea-Lager DE, Ploussard G, Roberts MJ, Rouvière O, Schoots IG, Schouten N, Smith EJ, Stranne J, Wiegel T, Willemse PM and Cornford P: EAU-EANM-ESTRO-ESUR-ISUP-SIOG Guidelines on Prostate Cancer-2024 Update. Part I: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur Urol (2024) 29: 02306-6.| Khalvati F, Wong A and Haider MA: Automated prostate cancer detection via comprehensive multi-parametric magnetic resonance imaging texture feature models. BMC Med Imaging (2015) 15: 27.| Kwak JT, Xu S, Wood BJ, Turkbey B, Choyke PL, Pinto PA, Wang S and Summers RM: Automated prostate cancer detection using T2-weighted and high-b-value diffusion-weighted magnetic resonance imaging. Med Phys (2015) 42: 2368-2378.| Zhao C, Gao G, Fang D, Li F, Yang X, Wang H, He Q and Wang X: The efficiency of multiparametric magnetic resonance imaging (mpMRI) using PI-RADS Version 2 in the diagnosis of clinically significant prostate cancer. Clin Imaging (2016) 40: 885-888.| Chen T, Li M, Gu Y, Zhang Y, Yang S, Wei C, Wu J, Li X, Zhao W and Shen J: Prostate Cancer Differentiation and Aggressiveness: Assessment With a Radiomic-Based Model vs. PI-RADS v2. J Magn Reson Imaging (2019) 49: 875-884.| Hegde JV, Mulkern RV, Panych LP, Fennessy FM, Fedorov A, Maier SE and Tempany CM: Multiparametric MRI of prostate cancer: an update on state-of-the-art techniques and their performance in detecting and localizing prostate cancer. J Magn Reson Imaging (2013) 37: 1035-1054.| Donati OF, Mazaheri Y, Afaq A, Vargas HA, Zheng J, Moskowitz CS, Hricak H and Akin O: Prostate cancer aggressiveness: assessment with whole-lesion histogram analysis of the apparent diffusion coefficient. Radiology (2014) 271: 143-152.| Chen T, Zhang Z, Tan S, Zhang Y, Wei C, Wang S, Zhao W, Qian X, Zhou Z, Shen J, Dai Y and Hu J: MRI Based Radiomics Compared With the PI-RADS V2.1 in the Prediction of Clinically Significant Prostate Cancer: Biparametric vs Multiparametric MRI. Front Oncol (2022) 11: 792456.| Zhang L, Zhe X, Tang M, Zhang J, Ren J, Zhang X and Li L: Predicting the Grade of Prostate Cancer Based on a Biparametric MRI Radiomics Signature. Contrast Media Mol Imaging (2021) 2021: 7830909.| Bagher-Ebadian H, Janic B, Liu C, Pantelic M, Hearshen D, Elshaikh M, Movsas B, Chetty IJ and Wen N: Detection of Dominant Intra-prostatic Lesions in Patients With Prostate Cancer Using an Artificial Neural Network and MR Multi-modal Radiomics Analysis. Front Oncol (2019) 9: 1313.| van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-Tan RGH, Fillion-Robin JC, Pieper S and Aerts HJWL: Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res (2017) 77: e104-e107.| |
JaLCDOI | 10.18926/AMO/68354 |
---|---|
フルテキストURL | 79_1_009.pdf |
著者 | Ikeya, Nanami| Okita, Atsushi| Hashida, Shinsuke| Yamamoto, Sumiharu| Ikeda, Hirokuni| Tsukuda, Kazunori| Toyooka, Shinichi| |
抄録 | Muscle loss negatively affects gastrectomy prognosis. However, muscle loss is recognized as a systemic change, and individual muscle function is often overlooked. We investigated changes in the muscle volume of individual muscles after gastrectomy to identify clues for prognostic factors and optimal rehabilitation programs. Patients who underwent R0 gastrectomy for Stage I gastric cancer at our hospital from 2015 to 2021 were retrospectively selected to minimize the effects of malignancy and chemotherapy. Trunk muscle volume was measured by computed tomography to analyze body composition changes. Statistical analysis was performed to identify risk factors related to body composition changes. We compared the preoperative and 6-month postoperative conditions of 59 patients after gastrectomy. There was no difference in the psoas major muscle, a conventional surrogate marker of sarcopenia. There were significant decreases in the erector spinae (p=0.01) and lateral abdominal (p=0.01) muscles, and a significant increase in the rectus abdominis muscle (p=0.02). No significant correlation was found between these muscle changes and nutritional status. Body composition imbalance may serve as a new indicator of the general condition of patients after gastrectomy. Rehabilitation to correct this imbalance may improve prognosis after gastrectomy. |
キーワード | sarcopenia skeletal muscle gastric cancer gastrectomy erector spinae muscle |
Amo Type | Original Article |
出版物タイトル | Acta Medica Okayama |
発行日 | 2025-02 |
巻 | 79巻 |
号 | 1号 |
出版者 | Okayama University Medical School |
開始ページ | 9 |
終了ページ | 19 |
ISSN | 0386-300X |
NCID | AA00508441 |
資料タイプ | 学術雑誌論文 |
言語 | 英語 |
著作権者 | Copyright Ⓒ 2025 by Okayama University Medical School |
論文のバージョン | publisher |
査読 | 有り |
PubMed ID | 40012155 |
Web of Science KeyUT | 001440463800002 |
JaLCDOI | 10.18926/AMO/68353 |
---|---|
フルテキストURL | 79_1_001.pdf |
著者 | Thiha, Moe| Hikita, Takao| Nakayama, Masanori| |
抄録 | Endothelial cell polarity is fundamental to the organization and function of blood vessels, influencing processes such as angiogenesis, vascular stability, and response to shear stress. This review elaborates on the molecular mechanisms that regulate endothelial cell polarity, focusing on key players like the PAR polarity complex and Rho family GTPases. These pathways coordinate the front–rear, apical–basal and planar polarity of endothelial cells, which are essential for the proper formation and maintenance of vascular structures. In health, endothelial polarity ensures not only the orderly development of blood vessels, with tip cells adopting distinct polarities during angiogenesis, but also ensures proper vascular integrity and function. In disease states, however, disruptions in polarity contribute to pathologies such as coronary artery disease, where altered planar polarity exacerbates atherosclerosis, and cancer, where disrupted polarity in tumor vasculature leads to abnormal vessel growth and function. Understanding cell polarity and its disruption is fundamental not only to comprehending how cells interact with their microenvironment and organize themselves into complex, organ-specific tissues but also to developing novel, targeted, and therapeutic strategies for a range of diseases, from cardiovascular disorders to malignancies, ultimately improving patient outcomes. |
キーワード | blood vessel endothelial cell cell polarity atherosclerosis cancer |
Amo Type | Review |
出版物タイトル | Acta Medica Okayama |
発行日 | 2025-02 |
巻 | 79巻 |
号 | 1号 |
出版者 | Okayama University Medical School |
開始ページ | 1 |
終了ページ | 7 |
ISSN | 0386-300X |
NCID | AA00508441 |
資料タイプ | 学術雑誌論文 |
言語 | 英語 |
著作権者 | Copyright Ⓒ 2025 by Okayama University Medical School |
論文のバージョン | publisher |
査読 | 有り |
PubMed ID | 40012154 |
Web of Science KeyUT | 001440463800001 |
フルテキストURL | fulltext.pdf |
---|---|
著者 | Kono, Reika| Hamasaki, Ichiro| Kishimoto, Fumiko| Shibata, Kiyo| Morisawa, Shin| Morizane, Yuki| |
キーワード | Orbital pulley Sagging eye syndrome Distance esotropia Cyclovertical strabismus Aging |
備考 | The version of record of this article, first published in Japanese Journal of Ophthalmology, is available online at Publisher’s website: http://dx.doi.org/10.1007/s10384-024-01141-8| |
発行日 | 2025-02-04 |
出版物タイトル | Japanese Journal of Ophthalmology |
巻 | 69巻 |
号 | 1号 |
出版者 | Springer Science and Business Media LLC |
開始ページ | 1 |
終了ページ | 9 |
ISSN | 0021-5155 |
NCID | AA00691177 |
資料タイプ | 学術雑誌論文 |
言語 | 英語 |
OAI-PMH Set | 岡山大学 |
著作権者 | © The Author(s) 2024 |
論文のバージョン | publisher |
PubMed ID | 39903417 |
DOI | 10.1007/s10384-024-01141-8 |
Web of Science KeyUT | 001412688900001 |
関連URL | isVersionOf https://doi.org/10.1007/s10384-024-01141-8 |
フルテキストURL | fulltext20250213-02.pdf suppl20250213-02.pdf |
---|---|
著者 | Mukohara, Fumiaki| Iwata, Kazuma| Ishino, Takamasa| Inozume, Takashi| Nagasaki, Joji| Ueda, Youki| Suzawa, Ken| Ueno, Toshihide| Ikeda, Hideki| Kawase, Katsushige| Saeki, Yuka| Kawashima, Shusuke| Yamashita, Kazuo| Kawahara, Yu| Nakamura, Yasuhiro| Honobe-Tabuchi, Akiko| Watanabe, Hiroko| Dansako, Hiromichi| Kawamura, Tatsuyoshi| Suzuki, Yutaka| Honda, Hiroaki| Mano, Hiroyuki| Toyooka, Shinichi| Kawazu, Masahito| Togashi, Yosuke| |
キーワード | cancer immunology somatic mutation T cell tumor-infiltrating lymphocytes |
備考 | This is an Accepted Manuscript of an article published by Proceedings of the National Academy of Sciences.| This fulltext file will be available in Feb. 2025.| |
発行日 | 2024-08-21 |
出版物タイトル | Proceedings of the National Academy of Sciences |
巻 | 121巻 |
号 | 35号 |
出版者 | Proceedings of the National Academy of Sciences |
開始ページ | e2320189121 |
ISSN | 0027-8424 |
資料タイプ | 学術雑誌論文 |
言語 | 英語 |
OAI-PMH Set | 岡山大学 |
著作権者 | © 2024 the Author(s). |
論文のバージョン | author |
PubMed ID | 39167601 |
DOI | 10.1073/pnas.2320189121 |
Web of Science KeyUT | 001408603100001 |
関連URL | isVersionOf https://doi.org/10.1073/pnas.2320189121 |
フルテキストURL | fulltext.pdf |
---|---|
著者 | Matsumoto, Naomi| Mitsui, Takashi| Tamai, Kei| Hirota, Tomoya| Masuyama, Hisashi| Yorifuji, Takashi| |
キーワード | Cesarean delivery Delivery methods Long-term outcome Child development Outcome-wide approach |
発行日 | 2025-01-20 |
出版物タイトル | Scientific Reports |
巻 | 15巻 |
号 | 1号 |
出版者 | Nature Portfolio |
開始ページ | 2485 |
ISSN | 2045-2322 |
資料タイプ | 学術雑誌論文 |
言語 | 英語 |
OAI-PMH Set | 岡山大学 |
著作権者 | © The Author(s) 2025 |
論文のバージョン | publisher |
PubMed ID | 39833288 |
DOI | 10.1038/s41598-025-87043-2 |
Web of Science KeyUT | 001402008500024 |
関連URL | isVersionOf https://doi.org/10.1038/s41598-025-87043-2 |
フルテキストURL | fulltext.pdf |
---|---|
著者 | Yamada, Yuto| Fujiwara, Masaki| Nakaya, Naoki| Otsuki, Koji| Shimazu, Taichi| Fujimori, Maiko| Hinotsu, Shiro| Nagoshi, Kiwamu| Uchitomi, Yosuke| Inagaki, Masatoshi| |
キーワード | bipolar disorder cancer screening COVID-19 healthcare disparities schizophrenia |
発行日 | 2025-02-02 |
出版物タイトル | Psychiatry and Clinical Neurosciences Reports |
巻 | 4巻 |
号 | 1号 |
出版者 | Wiley |
開始ページ | e70062 |
ISSN | 2769-2558 |
資料タイプ | 学術雑誌論文 |
言語 | 英語 |
OAI-PMH Set | 岡山大学 |
著作権者 | © 2025 The Author(s). |
論文のバージョン | publisher |
PubMed ID | 39902101 |
DOI | 10.1002/pcn5.70062 |
Web of Science KeyUT | 001410823100001 |
関連URL | isVersionOf https://doi.org/10.1002/pcn5.70062 |
フルテキストURL | fulltext.pdf |
---|---|
著者 | Matsumoto, Kazuyuki| Uchida, Daisuke| Takeuchi, Yasuto| Kato, Hironari| Fujii, Yuki| Harada, Kei| Hattori, Nao| Sato, Ryosuke| Obata, Taisuke| Matsumi, Akihiro| Miyamoto, Kazuya| Horiguchi, Shigeru| Tsutsumi, Koichiro| Yasui, Kazuya| Harada, Ryo| Fujii, Masakuni| Otsuka, Motoyuki| |
キーワード | ablation techniques endosonography neuroendocrine tumors pancreatic neoplasms pilot projects |
発行日 | 2025-01-29 |
出版物タイトル | DEN Open |
巻 | 5巻 |
号 | 1号 |
出版者 | Wiley |
開始ページ | e70073 |
ISSN | 2692-4609 |
資料タイプ | 学術雑誌論文 |
言語 | 英語 |
OAI-PMH Set | 岡山大学 |
著作権者 | © 2025 The Author(s). |
論文のバージョン | publisher |
PubMed ID | 39885893 |
DOI | 10.1002/deo2.70073 |
Web of Science KeyUT | 001408662000001 |
関連URL | isVersionOf https://doi.org/10.1002/deo2.70073 |
フルテキストURL | srfa_114_001_010.pdf |
---|---|
著者 | Saitoh, Kuniyuki| Murakami, Tomohiro| Nakamura, Yumi| Nishibori, Misa| Takagoshi, Yuki| Hirai, Yoshihiko| |
抄録 | Eleven crops were cultivated: maize, sunflower, soybean, groundnuts, sesame, kenaf, barley, wheat, rice, potato, and sweet potato. The crop growth rate (CGR) and specific dark-respiration rate (Rs) were measured, and growth efficiency GE =CGR/(CGR+R) (R, respiratory loss) was calculated. In each crop, whole-plant Rs reached a maximum in the earlier stages of growth, declined rapidly until the early reproductive growth, and remained almost constant during the ripening period. The Rs of leaves was higher than that of stems during the reproductive growth period, except for maize and potato. The Rs of storage organs was highest in the earlier stages, followed by a rapid decline to similar or lower values than those of leaves and stems during the ripening period. The GE in whole plant was higher than 60% in wheat, maize, barley, sunflower, rice, kenaf, sesame, but lower in soybean, sweet potato and groundnuts, and lowest in potato, which was affected by the higher respiratory loss. The GE in whole plant during the reproductive growth period was significantly lower, which we attributed to increased maintenance costs due to the increase of non-assimilative organs, and decrease in the dry weight of vegetative organs. A positive correlation was observed between the carbohydrate content of storage organs and GE, indicating that a crop with higher carbohydrate content in storage organs tended to have a higher GE. Crops with higher protein and crude fat content in storage organs tended to have lower GE. The GE over the growing season was low for kenaf, a fiber crop which contains high molecular weight compounds such as lignin and cellulose, and lower for sesame, groundnuts, and soybean, which contain high oil and protein and have high respiration costs for the synthesis of storage materials, suggesting that these higher respiration costs are related to lower dry matter production and hence lower yields. |
キーワード | Cereal crops Oil crops Crop growth rate Dark-respiration Growth efficiency Leguminous crops Nutrients composition Respiratory loss Root and tuber crops |
出版物タイトル | 岡山大学農学部学術報告 |
発行日 | 2025-02-01 |
巻 | 114巻 |
開始ページ | 1 |
終了ページ | 10 |
ISSN | 2186-7755 |
言語 | 英語 |
論文のバージョン | publisher |
フルテキストURL | srfa_114_cover.pdf |
---|---|
出版物タイトル | 岡山大学農学部学術報告 |
発行日 | 2025-02-01 |
巻 | 114巻 |
ISSN | 2186-7755 |
言語 | 日本語 |
論文のバージョン | publisher |
フルテキストURL | fulltext.pdf |
---|---|
著者 | Seki, Aiko| Kajiwara, Koichiro| Teramachi, Jumpei| Egusa, Masahiko| Miyawaki, Takuya| Sawa, Yoshihiko| |
キーワード | F. Nucleatum Diabetic exacerbation Diabetic nephropathy SGLT2 |
発行日 | 2025-01-24 |
出版物タイトル | BMC Nephrology |
巻 | 26巻 |
号 | 1号 |
出版者 | BMC |
開始ページ | 38 |
ISSN | 1471-2369 |
資料タイプ | 学術雑誌論文 |
言語 | 英語 |
OAI-PMH Set | 岡山大学 |
著作権者 | © The Author(s) 2025. |
論文のバージョン | publisher |
PubMed ID | 39856606 |
DOI | 10.1186/s12882-025-03965-z |
Web of Science KeyUT | 001406224900002 |
関連URL | isVersionOf https://doi.org/10.1186/s12882-025-03965-z |
フルテキストURL | fulltext.pdf |
---|---|
著者 | Mitsui, Ema| Kikuchi, Satoru| Okura, Tomohiro| Tazawa, Hiroshi| Une, Yuta| Nishiwaki, Noriyuki| Kuroda, Shinji| Noma, Kazuhiro| Kagawa, Shunsuke| Ohara, Toshiaki| Ohtsuka, Junko| Ohki, Rieko| Fujiwara, Toshiyoshi| |
キーワード | Peritoneal metastasis Gastric cancer Interleukin-6 Cancer-associated fibroblasts Interleukin-6 receptor antibody |
発行日 | 2025-01-25 |
出版物タイトル | Scientific Reports |
巻 | 15巻 |
号 | 1号 |
出版者 | Nature Portfolio |
開始ページ | 3267 |
ISSN | 2045-2322 |
資料タイプ | 学術雑誌論文 |
言語 | 英語 |
OAI-PMH Set | 岡山大学 |
著作権者 | © The Author(s) 2025 |
論文のバージョン | publisher |
PubMed ID | 39863722 |
DOI | 10.1038/s41598-025-88033-0 |
Web of Science KeyUT | 001406498300020 |
関連URL | isVersionOf https://doi.org/10.1038/s41598-025-88033-0 |
フルテキストURL | fulltext.pdf |
---|---|
著者 | Jin, Shui| Ye, Xuemei| Ye, Ting| Chen, Xinyu| Ji, Jianfeng| Wang, Jinyu| Zhu, Xin| Mao, Xiaochun| Higuchi, Takahiro| Yi, Heqing| |
キーワード | 131iodine Activity Distant metastasis Iodine radioisotopes Thyroid cancer |
発行日 | 2025-01-20 |
出版物タイトル | Scientific Reports |
巻 | 15巻 |
号 | 1号 |
出版者 | Nature Portfolio |
開始ページ | 2486 |
ISSN | 2045-2322 |
資料タイプ | 学術雑誌論文 |
言語 | 英語 |
OAI-PMH Set | 岡山大学 |
著作権者 | © The Author(s) 2025 |
論文のバージョン | publisher |
PubMed ID | 39833265 |
DOI | 10.1038/s41598-025-86169-7 |
Web of Science KeyUT | 001401998100012 |
関連URL | isVersionOf https://doi.org/10.1038/s41598-025-86169-7 |
フルテキストURL | fulltext.pdf |
---|---|
著者 | Gao, Binyue| Yu, Yinghua| Ejima, Yoshimichi| Wu, Jinglong| Yang, Jiajia| |
キーワード | pleasantness softness touch strategy task context psychophysics |
発行日 | 2025-01-13 |
出版物タイトル | Behavioral Sciences |
巻 | 15巻 |
号 | 1号 |
出版者 | MDPI |
開始ページ | 63 |
ISSN | 2076-328X |
資料タイプ | 学術雑誌論文 |
言語 | 英語 |
OAI-PMH Set | 岡山大学 |
著作権者 | © 2025 by the authors. |
論文のバージョン | publisher |
PubMed ID | 39851867 |
DOI | 10.3390/bs15010063 |
Web of Science KeyUT | 001404542900001 |
関連URL | isVersionOf https://doi.org/10.3390/bs15010063 |
フルテキストURL | fulltext.pdf |
---|---|
著者 | Morita, Kosei| Mitsuda, Yuta| Yoshida, Sota| Kiwa, Toshihiko| Wang, Jin| |
キーワード | terahertz chemical microscope surface potential DNA aptamer-neurochemical complexes membrane-ion interactions SOS substrate artificial cerebrospinal fluid |
発行日 | 2025-01-13 |
出版物タイトル | Biosensors |
巻 | 15巻 |
号 | 1号 |
出版者 | MDPI |
開始ページ | 46 |
ISSN | 2079-6374 |
資料タイプ | 学術雑誌論文 |
言語 | 英語 |
OAI-PMH Set | 岡山大学 |
著作権者 | © 2025 by the authors. |
論文のバージョン | publisher |
PubMed ID | 39852097 |
DOI | 10.3390/bios15010046 |
Web of Science KeyUT | 001404546800001 |
関連URL | isVersionOf https://doi.org/10.3390/bios15010046 |
フルテキストURL | fulltext.pdf |
---|---|
著者 | Nakamura, Kazufumi| Akagi, Satoshi| Ejiri, Kentaro| Taya, Satoshi| Saito, Yukihiro| Kuroda, Kazuhiro| Takaya, Yoichi| Toh, Norihisa| Nakayama, Rie| Katanosaka, Yuki| Yuasa, Shinsuke| |
キーワード | group 3 pulmonary hypertension hypoxic pulmonary vasoconstriction pulmonary vascular remodeling |
発行日 | 2025-01-20 |
出版物タイトル | International Journal of Molecular Sciences |
巻 | 26巻 |
号 | 2号 |
出版者 | MDPI |
開始ページ | 835 |
ISSN | 1661-6596 |
資料タイプ | 学術雑誌論文 |
言語 | 英語 |
OAI-PMH Set | 岡山大学 |
著作権者 | © 2025 by the authors. |
論文のバージョン | publisher |
PubMed ID | 39859549 |
DOI | 10.3390/ijms26020835 |
Web of Science KeyUT | 001404516000001 |
関連URL | isVersionOf https://doi.org/10.3390/ijms26020835 |
フルテキストURL | fulltext.pdf |
---|---|
著者 | Hino, Y.| Abe, K.| Asaka, R.| Han, S.| Harada, M.| Ishitsuka, M.| Ito, H.| Izumiyama, S.| Kanemura, Y.| Koshio, Y.| Nakanishi, F.| Sekiya, H.| Yano, T.| |
発行日 | 2024-12-26 |
出版物タイトル | Progress of Theoretical and Experimental Physics |
巻 | 2025巻 |
号 | 1号 |
出版者 | Oxford University Press |
開始ページ | 013C01 |
ISSN | 2050-3911 |
資料タイプ | 学術雑誌論文 |
言語 | 英語 |
OAI-PMH Set | 岡山大学 |
著作権者 | © The Author(s) 2024. |
論文のバージョン | publisher |
DOI | 10.1093/ptep/ptae193 |
Web of Science KeyUT | 001401960500001 |
関連URL | isVersionOf https://doi.org/10.1093/ptep/ptae193 |
フルテキストURL | fulltext.pdf |
---|---|
著者 | Husna, Radhiatul| Brata, Komang Candra| Anggraini, Irin Tri| Funabiki, Nobuo| Rahmadani, Alfiandi Aulia| Fan, Chih-Peng| |
キーワード | hand gesture application control exergame SUS UEQ python mediapipe |
発行日 | 2025-01-15 |
出版物タイトル | Computers |
巻 | 14巻 |
号 | 1号 |
出版者 | MDPI |
開始ページ | 25 |
ISSN | 2073-431X |
資料タイプ | 学術雑誌論文 |
言語 | 英語 |
OAI-PMH Set | 岡山大学 |
著作権者 | © 2025 by the authors. |
論文のバージョン | publisher |
DOI | 10.3390/computers14010025 |
Web of Science KeyUT | 001403707200001 |
関連URL | isVersionOf https://doi.org/10.3390/computers14010025 |
フルテキストURL | fulltext.pdf |
---|---|
著者 | Tang, Xiaoyu| Zhang, Xi| Wang, Tingting| Yu, Hongtao| Wang, Aijun| Zhang, Ming| |
キーワード | cognitive control congruency sequence effect cross-modal conflict adaptation visual dominance |
発行日 | 2024-12-18 |
出版物タイトル | Frontiers in Psychology |
巻 | 15巻 |
出版者 | Frontiers Media |
開始ページ | 1504068 |
ISSN | 1664-1078 |
資料タイプ | 学術雑誌論文 |
言語 | 英語 |
OAI-PMH Set | 岡山大学 |
著作権者 | © 2024 Tang, Zhang, Wang, Yu, Wang and Zhang. |
論文のバージョン | publisher |
PubMed ID | 39744030 |
DOI | 10.3389/fpsyg.2024.1504068 |
Web of Science KeyUT | 001390014600001 |
関連URL | isVersionOf https://doi.org/10.3389/fpsyg.2024.1504068 |
フルテキストURL | fulltext.pdf |
---|---|
著者 | Brata, Komang Candra| Funabiki, Nobuo| Panduman, Yohanes Yohanie Fridelin| Mentari, Mustika| Syaifudin, Yan Watequlis| Rahmadani, Alfiandi Aulia| |
キーワード | location-based augmented reality (LAR) authoring tool outdoor VSLAM Google Street View (GSV) handheld augmented reality usability scale (HARUS) |
発行日 | 2025-01-17 |
出版物タイトル | Electronics |
巻 | 14巻 |
号 | 2号 |
出版者 | MDPI AG |
開始ページ | 342 |
ISSN | 2079-9292 |
資料タイプ | 学術雑誌論文 |
言語 | 英語 |
OAI-PMH Set | 岡山大学 |
著作権者 | © 2025 by the authors. |
論文のバージョン | publisher |
DOI | 10.3390/electronics14020342 |
Web of Science KeyUT | 001405206500001 |
関連URL | isVersionOf https://doi.org/10.3390/electronics14020342 |