検索条件

閉じる

検索結果 752 件

JaLCDOI 10.18926/AMO/68646
フルテキストURL 79_2_081.pdf
著者 Kawada, Tatsushi| Kobayashi, Yasuyuki| Tsugawa, Takuji| Tsuboi, Kazuma| Katayama, Satoshi| Iwata, Takehiro| Bekku, Kensuke| Kobayashi, Tomoko| Edamura, Kohei| Ebara, Shin| Araki, Motoo|
抄録 We retrospectively evaluated the oncologic outcomes of paclitaxel, cisplatin, and gemcitabine (PCG) with those of gemcitabine and cisplatin (GC) as neoadjuvant chemotherapy in muscle-invasive bladder cancer (MIBC) patients. The primary outcome was efficacy: pathological complete response (pCR), ypT0N0; and pathological objective response (pOR), ypT0N0, ≤ ypT1N0, or ypT0N1. Secondary outcomes included overall survival (OS), recurrence-free survival (RFS), predictive factors for pOR, OS, and RFS, and hematologic adverse events (AEs). Among 113 patients treated (PCG, n=28; GC, n=85), similar pOR and pCR rates were achieved by the groups (pOR: PCG, 57.1% vs. GC, 49. 4%; p=0.52; pCR: PCG, 39.3% vs. GC, 29.4%; p=0.36). No significant differences were observed in OS (p=1.0) or RFS (p=0.20). Multivariate logistic regression analysis showed that hydronephrosis (odds ratio [OR] 0.32, 95%CI: 0.11-0.92) and clinical node-positive status (cN+) (OR 0.22, 95%CI: 0.050-0.99) were significantly associated with a decreased probability of pOR. On multivariate Cox regression analyses, pOR achievement was associated with improved OS (hazard ratio [HR] 0.23, 95%CI: 0.10-0.56) and RFS (HR 0.30, 95%CI: 0.13-0.67). There were no significant between-group differences in the incidence of grade ≥ 3 hematologic AEs or dose-reduction required, but the PCG group had a higher incidence of grade 4 neutropenia.
キーワード urothelial carcinoma paclitaxel cisplatin gemcitabine neoadjuvant
Amo Type Original Article
出版物タイトル Acta Medica Okayama
発行日 2025-04
79巻
2号
出版者 Okayama University Medical School
開始ページ 81
終了ページ 92
ISSN 0386-300X
NCID AA00508441
資料タイプ 学術雑誌論文
言語 英語
著作権者 Copyright Ⓒ 2025 by Okayama University Medical School
論文のバージョン publisher
査読 有り
JaLCDOI 10.18926/AMO/68645
フルテキストURL 79_2_075.pdf
著者 Higaki, Fumiyo| Morimitsu, Yusuke| Iguchi, Toshihiro| Hwang, Sung Il| Kitayama, Takahiro| Takahashi, Yuka| Uka, Mayu| Akagi, Noriaki| Sugaya, Akiko| Mitsuhashi, Toshiharu| Matsui, Yusuke| Hiraki, Takao|
抄録 Temporal bone computed tomography (CT) is frequently performed for pediatric patients with ear diseases. Advances in CT technology have improved diagnostic imaging quality, but reduction of radiation exposure remains a goal. We evaluated the potential for radiation dose reduction in temporal bone CT examinations using porcine ear ossicles and a photon-counting detector CT system. Three scans of the bilateral temporal bone were performed on each of three pig cadaver heads. In each of seven successive imaging sessions, the radiation dose was reduced by an additional one-seventh of the recommended dose (RD). Two board-certified radiologists independently scored the resulting images on a scale of 1 to 5 points, where 5 represented the image quality at the RD. Images scoring ≥4.5 points were considered acceptable. Noise was assessed in a 2-cm-diameter region near the ear ossicles, and standard deviation was measured for each of the seven decrements from the RD. As the radiation dose decreased, the noise progressively increased, and visual assessment scores progressively decreased. Acceptable image scores were obtained at six-sevenths (4.9), five-sevenths (4.8), four-sevenths (4.7), and three-sevenths (4.6) of the RD. Thus, acceptable porcine temporal bone CT images were obtained with a radiation dose reduction of approximately 50%.
キーワード computed tomography photon-counting detector computed tomography ear ossicle energy-integrating detector computed tomography
Amo Type Original Article
出版物タイトル Acta Medica Okayama
発行日 2025-04
79巻
2号
出版者 Okayama University Medical School
開始ページ 75
終了ページ 80
ISSN 0386-300X
NCID AA00508441
資料タイプ 学術雑誌論文
言語 英語
著作権者 Copyright Ⓒ 2025 by Okayama University Medical School
論文のバージョン publisher
査読 有り
フルテキストURL fulltext.pdf
著者 Tanaka, Shin| Nakata, Eiji| Ryuko, Tsuyoshi| Itano, Takuto| Tomioka, Yasuaki| Shien, Kazuhiko| Suzawa, Ken| Miyoshi, Kentaroh| Okazaki, Mikio| Sugimoto, Seiichiro| Ozaki, Toshifumi| Toyooka, Shinichi|
キーワード Primary chest wall sarcomas Chest wall resection Chondrosarcoma Robust chest wall reconstruction
発行日 2025-04-01
出版物タイトル European Journal of Orthopaedic Surgery & Traumatology
35巻
1号
出版者 Springer Science and Business Media LLC
開始ページ 141
ISSN 1432-1068
資料タイプ 学術雑誌論文
言語 英語
OAI-PMH Set 岡山大学
著作権者 © The Author(s) 2025
論文のバージョン publisher
PubMed ID 40167819
DOI 10.1007/s00590-025-04260-1
Web of Science KeyUT 001459451400002
関連URL isVersionOf https://doi.org/10.1007/s00590-025-04260-1
JaLCDOI 10.18926/interdisciplinary/68625
タイトル(別表記) Practicing the Innovation Loop: 2024 Report on Advanced Hospital Practicums and Future Challenges
フルテキストURL interdisciplinary_5_39.pdf
著者 原田 奈穂子| 髙橋 智| 森 友明| 日笠 晴香| 宍戸 圭介| 曲 正樹| 渡邉 豊彦| Wang, Jin| 森田 瑞樹|
出版物タイトル 統合科学
発行日 2025-03-31
5巻
開始ページ 39
終了ページ 45
ISSN 2436-3227
言語 日本語
論文のバージョン publisher
フルテキストURL fulltext.pdf
著者 Nishii, Naoko| Kawai, Tomoko| Yasuoka, Hiroki| Abe, Tadashi| Tatsumi, Nanami| Harada, Yuika| Miyaji, Takaaki| Li, Shunai| Tsukano, Moemi| Watanabe, Masami| Ogawa, Daisuke| Wada, Jun| Takei, Kohji| Yamada, Hiroshi|
キーワード VGLUT3 glutamate podocyte glutamatergic transmission
発行日 2025-03-11
出版物タイトル International Journal of Molecular Sciences
26巻
6号
出版者 MDPI
開始ページ 2485
ISSN 1661-6596
資料タイプ 学術雑誌論文
言語 英語
OAI-PMH Set 岡山大学
著作権者 © 2025 by the authors.
論文のバージョン publisher
PubMed ID 40141129
DOI 10.3390/ijms26062485
Web of Science KeyUT 001452693900001
関連URL isVersionOf https://doi.org/10.3390/ijms26062485
フルテキストURL fulltext.pdf
著者 Fujii, Yuki| Matsumoto, Kazuyuki| Ochi, Kiyoaki| Himei, Hitomi| Sakakihara, Ichiro| Ueta, Eijiro| Toyokawa, Tatsuya| Harada, Ryo| Ogawa, Taiji| Tomoda, Takeshi| Kato, Hironari| Sato, Ryosuke| Obata, Taisuke| Matsumi, Akihiro| Miyamoto, Kazuya| Uchida, Daisuke| Horiguchi, Shigeru| Tsutsumi, Koichiro| Otsuka, Motoyuki|
キーワード clipping closure delayed bleeding endoscopic papillectomy
発行日 2025
出版物タイトル Therapeutic Advances in Gastroenterology
18巻
出版者 SAGE Publications
ISSN 1756-2848
資料タイプ 学術雑誌論文
言語 英語
OAI-PMH Set 岡山大学
著作権者 © The Author(s), 2025.
論文のバージョン publisher
PubMed ID 40104325
DOI 10.1177/17562848251326450
Web of Science KeyUT 001447404800001
関連URL isVersionOf https://doi.org/10.1177/17562848251326450
フルテキストURL fulltext.pdf
著者 Ohashi, Ayaka| Sakamoto, Hirotaka| Kuroda, Junpei| Kondo, Yohei| Kamei, Yasuhiro| Nonaka, Shigenori| Furukawa, Saya| Yamamoto, Sakiya| Satoh, Akira|
発行日 2025-02-24
出版物タイトル Nature Communications
16巻
1号
出版者 Nature Portfolio
開始ページ 1757
ISSN 2041-1723
資料タイプ 学術雑誌論文
言語 英語
OAI-PMH Set 岡山大学
著作権者 © The Author(s) 2025
論文のバージョン publisher
PubMed ID 39994199
DOI 10.1038/s41467-025-57055-7
Web of Science KeyUT 001430168800025
関連URL isVersionOf https://doi.org/10.1038/s41467-025-57055-7
フルテキストURL fulltext.pdf
著者 Hisano, Hiroshi| Sakai, Hiroaki| Hamaoka, Mika| Munemori, Hiromi| Abe, Fumitaka| Meints, Brigid| Sato, Kazuhiro| Hayes, Patrick M.|
キーワード Hordeum vulgare Covered (hulled) Naked (hull-less) Genome editing CRISPR/Cas9 Transformation amenability
発行日 2025-03-07
出版物タイトル Molecular Breeding
45巻
3号
出版者 Springer Science and Business Media LLC
開始ページ 32
ISSN 1380-3743
NCID AA1104032X
資料タイプ 学術雑誌論文
言語 英語
OAI-PMH Set 岡山大学
著作権者 © The Author(s) 2025
論文のバージョン publisher
PubMed ID 40061124
DOI 10.1007/s11032-025-01553-5
Web of Science KeyUT 001439388700001
関連URL isVersionOf https://doi.org/10.1007/s11032-025-01553-5
フルテキストURL fulltext.pdf
著者 Kato, Kosuke| Akamatsu, Miki| Kakimaru, Saya| Koreishi, Mayuko| Takagi, Masahiro| Miyashita, Masahiro| Murata, Yoshiyuki| Nakamura, Yoshimasa| Satoh, Ayano| Tsujino, Yoshio|
キーワード AhR Xenobiotic responsive element StemRegenin 1 ARNT Atopic dermatitis Artemin
発行日 2025-03
出版物タイトル Food and Chemical Toxicology
197巻
出版者 Elsevier BV
開始ページ 115301
ISSN 0278-6915
NCID AA10627174
資料タイプ 学術雑誌論文
言語 英語
OAI-PMH Set 岡山大学
著作権者 © 2025 The Authors.
論文のバージョン publisher
PubMed ID 39923831
DOI 10.1016/j.fct.2025.115301
Web of Science KeyUT 001427591400001
関連URL isVersionOf https://doi.org/10.1016/j.fct.2025.115301
フルテキストURL fulltext.pdf
著者 Ooba, Hikaru| Maki, Jota| Masuyama, Hisashi|
キーワード Perinatal mental disorders Voice analysis Machine learning Screening Pregnant women
発行日 2025-02-08
出版物タイトル Discover Mental Health
5巻
1号
出版者 Springer Nature
開始ページ 12
ISSN 2731-4383
資料タイプ 学術雑誌論文
言語 英語
OAI-PMH Set 岡山大学
著作権者 © The Author(s) 2025
論文のバージョン publisher
PubMed ID 39920468
DOI 10.1007/s44192-025-00138-0
Web of Science KeyUT 001415532800001
関連URL isVersionOf https://doi.org/10.1007/s44192-025-00138-0
JaLCDOI 10.18926/AMO/68356
フルテキストURL 79_1_031.pdf
著者 Maeda, Shigeru| Pimkhaokham, Atiphan| Yoshida, Michihiro| Hosoi, Hiroki| Ohshima, Ayako| Kurisu, Ryoko| Utsumi, Nozomi| Higuchi, Hitoshi| Miyawaki, Takuya|
抄録 We retrospectively analyzed the safety of the use of articaine, an amide-type local anesthetic, in Japanese dental patients (n=300) treated in Thailand in 2015-2017. The dosage, adverse events (AEs) caused by local anesthesia, and treatment efficacy were examined. Articaine, which is safe for patients with liver impairments due to its unique metabolism, has not been thoroughly tested in Japan for doses above 5.1 mL. Eighty of the present patients had undergone root canal treatment (RCT), 71 underwent tooth extraction, and 149 underwent implant-related surgery. More than three articaine cartridges were used in 41 patients, and no AEs occurred in these cases. The only AE occurred in a 52-year-old woman who was treated with three cartridges and presented with what appeared to be hyperventilation syndrome; she later recovered and received her dental treatment as scheduled. Most treatments were completed with three or fewer cartridges, suggesting that this number is generally sufficient. Our findings, particularly the low AE risk even with doses exceeding three cartridges, support the potential applicability of the overseas recommended maximum dose of articaine (7 mg/kg) in Japanese patients. This conclusion is significant for advancing dental anesthetic practices and ensuring patient safety and treatment efficacy in Japan.
キーワード dental anesthesia local anesthesia drug-related side effect adverse reaction
Amo Type Original Article
出版物タイトル Acta Medica Okayama
発行日 2025-02
79巻
1号
出版者 Okayama University Medical School
開始ページ 31
終了ページ 37
ISSN 0386-300X
NCID AA00508441
資料タイプ 学術雑誌論文
言語 英語
著作権者 Copyright Ⓒ 2025 by Okayama University Medical School
論文のバージョン publisher
査読 有り
PubMed ID 40012157
Web of Science KeyUT 001440463800004
JaLCDOI 10.18926/AMO/68355
フルテキストURL 79_1_021.pdf
著者 Yamamoto, Yasuhiro| Haraguchi, Takafumi| Matsuda, Kaori| Okazaki, Yoshio| Kimoto, Shin| Tanji, Nozomu| Matsumoto, Atsushi| Kobayashi, Yasuyuki| Mimura, Hidefumi| Hiraki, Takao|
抄録 We developed a machine learning model for predicting prostate cancer (PCa) grades using radiomic features of magnetic resonance imaging. 112 patients diagnosed with PCa based on prostate biopsy between January 2014 and December 2021 were evaluated. Logistic regression was used to construct two prediction models, one using radiomic features and prostate-specific antigen (PSA) values (Radiomics model) and the other Prostate Imaging-Reporting and Data System (PI-RADS) scores and PSA values (PI-RADS model), to differentiate high-grade (Gleason score [GS] ≥ 8) from intermediate or low-grade (GS < 8) PCa. Five imaging features were selected for the Radiomics model using the Gini coefficient. Model performance was evaluated using AUC, sensitivity, and specificity. The models were compared by leave-one-out cross-validation with Ridge regularization. Furthermore, the Radiomics model was evaluated using the holdout method and represented by a nomogram. The AUC of the Radiomics and PI-RADS models differed significantly (0.799, 95% CI: 0.712-0.869; and 0.710, 95% CI: 0.617-0.792, respectively). Using holdout method, the Radiomics model yielded AUC of 0.778 (95% CI: 0.552-0.925), sensitivity of 0.769, and specificity of 0.778. It outperformed the PI-RADS model and could be useful in predicting PCa grades, potentially aiding in determining appropriate treatment approaches in PCa patients.
キーワード prostate cancer machine learning prostate Imaging-Reporting and Data System radiomics Gleason score
Amo Type Original Article
出版物タイトル Acta Medica Okayama
発行日 2025-02
79巻
1号
出版者 Okayama University Medical School
開始ページ 21
終了ページ 30
ISSN 0386-300X
NCID AA00508441
資料タイプ 学術雑誌論文
言語 英語
著作権者 Copyright Ⓒ 2025 by Okayama University Medical School
論文のバージョン publisher
査読 有り
PubMed ID 40012156
Web of Science KeyUT 001440463800003
レファレンス Taitt HE: Global Trends and Prostate Cancer: A Review of Incidence, Detection, and Mortality as Influenced by Race, Ethnicity, and Geographic Location. Am J Mens Health (2018) 12: 1807-1823.| Rawla P: Epidemiology of Prostate Cancer. World J Oncol (2019) 10: 63-89.| Gong L, Xu M, Fang M, Zou J, Yang S, Yu X, Xu D, Zhou L, Li H, He B, Wang Y, Fang X, Dong D and Tian J: Noninvasive Prediction of High-Grade Prostate Cancer via Biparametric MRI Radiomics. J Magn Reson Imaging (2020) 52: 1102-1109.| Epstein JI, Zelefsky MJ, Sjoberg DD, Nelson JB, Egevad L, Magi-Galluzzi C, Vickers AJ, Parwani AV, Reuter VE, Fine SW, Eastham JA, Wiklund P, Han M, Reddy CA, Ciezki JP, Nyberg T and Klein EA: A Contemporary Prostate Cancer Grading System: A Validated Alternative to the Gleason Score. Eur Urol (2016) 69: 428-435.| Carroll PH and Mohler JL: NCCN Guidelines Updates: Prostate Cancer and Prostate Cancer Early Detection. J Natl Compr Canc Netw (2018) 16: 620-623.| Miyake H, Sakai I, Inoue TA, Hara I and Fujisawa M: The limited significance of a longer duration of neoadjuvant hormonal therapy prior to radical prostatectomy for high-risk prostate cancer in Japanese men. Urol Int (2006) 77: 122-126.| Hassan O, Han M, Zhou A, Paulk A, Sun Y, Al-Harbi A, Alrajjal A, Baptista Dos Santos F and Epstein JI: Incidence of Extraprostatic Extension at Radical Prostatectomy with Pure Gleason Score 3+3=6 (Grade Group 1) Cancer: Implications for Whether Gleason Score 6 Prostate Cancer Should be Renamed “Not Cancer” and for Selection Criteria for Active Surveillance. J Urol (2018) 199: 1482-1487.| Albers LF, Korving JC, van Elzakker EPM and Roshani H: Osteomyelitis of the Pubic Symphysis After Transrectal Biopsies of the Prostate. Urology (2018) 121: 29-32.| van der Leest M, Cornel E, Israël B, Hendriks R, Padhani AR, Hoogenboom M, Zamecnik P, Bakker D, Setiasti AY, Veltman J, van den Hout H, van der Lelij H, van Oort I, Klaver S, Debruyne F, Sedelaar M, Hannink G, Rovers M, Hulsbergen-van de Kaa C and Barentsz JO: Head-to-head Comparison of Transrectal Ultrasound-guided Prostate Biopsy Versus Multiparametric Prostate Resonance Imaging with Subsequent Magnetic Resonance-guided Biopsy in Biopsy-naïve Men with Elevated Prostate-specific Antigen: A Large Prospective Multicenter Clinical Study. Eur Urol (2019) 75: 570-578.| Borghesi M, Ahmed H, Nam R, Schaeffer E, Schiavina R, Taneja S, Weidner W and Loeb S: Complications After Systematic, Random, and Image-guided Prostate Biopsy. Eur Urol (2017) 71: 353-365.| Rajkomar A, Dean J and Kohane I: Machine Learning in Medicine. N Engl J Med (2019) 380: 1347-1358.| Cuocolo R, Cipullo MB, Stanzione A, Ugga L, Romeo V, Radice L, Brunetti A and Imbriaco M: Machine learning applications in prostate cancer magnetic resonance imaging. Eur Radiol Exp (2019) 3: 35.| Sun Y, Reynolds HM, Parameswaran B, Wraith D, Finnegan ME, Williams S and Haworth A: Multiparametric MRI and radiomics in prostate cancer: a review. Australas Phys Eng Sci Med (2019) 42: 3-25.| Schelb P, Kohl S, Radtke JP, Wiesenfarth M, Kickingereder P, Bickelhaupt S, Kuder TA, Stenzinger A, Hohenfellner M, Schlemmer HP, Maier-Hein KH and Bonekamp D: Classification of Cancer at Prostate MRI: Deep Learning versus Clinical PI-RADS Assessment. Radiology (2019) 293: 607-617.| Antonelli M, Johnston EW, Dikaios N, Cheung KK, Sidhu HS, Appayya MB, Giganti F, Simmons LAM, Freeman A, Allen C, Ahmed HU, Atkinson D, Ourselin S and Punwani S: Machine learning classifiers can predict Gleason pattern 4 prostate cancer with greater accuracy than experienced radiologists. Eur Radiol (2019) 29: 4754-4764.| Bleker J, Kwee TC, Dierckx RAJO, de Jong IJ, Huisman H and Yakar D: Multiparametric MRI and auto-fixed volume of interest-based radiomics signature for clinically significant peripheral zone prostate cancer. Eur Radiol (2020) 30: 1313-1324.| Bagher-Ebadian H, Janic B, Liu C, Pantelic M, Hearshen D, Elshaikh M, Movsas B, Chetty IJ and Wen N: Detection of Dominant Intra-prostatic Lesions in Patients With Prostate Cancer Using an Artificial Neural Network and MR Multi-modal Radiomics Analysis. Front Oncol (2019) 9: 1313.| Chaddad A, Kucharczyk M and Niazi T: Multimodal radiomic features for the predicting gleason score of prostate cancer. Cancers (Basel) (2018) 10: 249.| Monti S, Brancato V, Costanzo GD, Basso L, Puglia M, Ragozzino A, Salvatore M and Cavaliere C: Multiparametric MRI for prostate cancer detection: New insights into the combined use of a radiomic approach with advanced acquisition protocol. Cancers (2020) 12: 390.| Turkbey B, Rosenkrantz AB, Haider MA, Padhani AR, Villeirs G, Macura KJ, Tempany CM, Choyke PL, Cornud F, Margolis DJ, Thoeny HC, Verma S, Barentsz J and Weinreb JC: Prostate Imaging Reporting and Data System Version 2.1: 2019 Update of Prostate Imaging Reporting and Data System Version 2. Eur Urol (2019) 76: 340-351.| Demšar J, Curk T, Erjavec A, Gorup Č, Hočevar T, Milutinovič M, Možina M, Polajnar M, Toplak M, Starič A and Štajdohar M: Orange: data mining toolbox in Python. J Mach Learn Res (2013) 14: 2349-2353.| Tilki D, van den Bergh RCN, Briers E, Van den Broeck T, Brunckhorst O, Darraugh J, Eberli D, De Meerleer G, De Santis M, Farolfi A, Gandaglia G, Gillessen S, Grivas N, Henry AM, Lardas M, JLH van Leenders G, Liew M, Linares Espinos E, Oldenburg J, van Oort IM, Oprea-Lager DE, Ploussard G, Roberts MJ, Rouvière O, Schoots IG, Schouten N, Smith EJ, Stranne J, Wiegel T, Willemse PM and Cornford P: EAU-EANM-ESTRO-ESUR-ISUP-SIOG Guidelines on Prostate Cancer-2024 Update. Part I: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur Urol (2024) 29: 02306-6.| Khalvati F, Wong A and Haider MA: Automated prostate cancer detection via comprehensive multi-parametric magnetic resonance imaging texture feature models. BMC Med Imaging (2015) 15: 27.| Kwak JT, Xu S, Wood BJ, Turkbey B, Choyke PL, Pinto PA, Wang S and Summers RM: Automated prostate cancer detection using T2-weighted and high-b-value diffusion-weighted magnetic resonance imaging. Med Phys (2015) 42: 2368-2378.| Zhao C, Gao G, Fang D, Li F, Yang X, Wang H, He Q and Wang X: The efficiency of multiparametric magnetic resonance imaging (mpMRI) using PI-RADS Version 2 in the diagnosis of clinically significant prostate cancer. Clin Imaging (2016) 40: 885-888.| Chen T, Li M, Gu Y, Zhang Y, Yang S, Wei C, Wu J, Li X, Zhao W and Shen J: Prostate Cancer Differentiation and Aggressiveness: Assessment With a Radiomic-Based Model vs. PI-RADS v2. J Magn Reson Imaging (2019) 49: 875-884.| Hegde JV, Mulkern RV, Panych LP, Fennessy FM, Fedorov A, Maier SE and Tempany CM: Multiparametric MRI of prostate cancer: an update on state-of-the-art techniques and their performance in detecting and localizing prostate cancer. J Magn Reson Imaging (2013) 37: 1035-1054.| Donati OF, Mazaheri Y, Afaq A, Vargas HA, Zheng J, Moskowitz CS, Hricak H and Akin O: Prostate cancer aggressiveness: assessment with whole-lesion histogram analysis of the apparent diffusion coefficient. Radiology (2014) 271: 143-152.| Chen T, Zhang Z, Tan S, Zhang Y, Wei C, Wang S, Zhao W, Qian X, Zhou Z, Shen J, Dai Y and Hu J: MRI Based Radiomics Compared With the PI-RADS V2.1 in the Prediction of Clinically Significant Prostate Cancer: Biparametric vs Multiparametric MRI. Front Oncol (2022) 11: 792456.| Zhang L, Zhe X, Tang M, Zhang J, Ren J, Zhang X and Li L: Predicting the Grade of Prostate Cancer Based on a Biparametric MRI Radiomics Signature. Contrast Media Mol Imaging (2021) 2021: 7830909.| Bagher-Ebadian H, Janic B, Liu C, Pantelic M, Hearshen D, Elshaikh M, Movsas B, Chetty IJ and Wen N: Detection of Dominant Intra-prostatic Lesions in Patients With Prostate Cancer Using an Artificial Neural Network and MR Multi-modal Radiomics Analysis. Front Oncol (2019) 9: 1313.| van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-Tan RGH, Fillion-Robin JC, Pieper S and Aerts HJWL: Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res (2017) 77: e104-e107.|
フルテキストURL fulltext.pdf
著者 Matsumoto, Naomi| Mitsui, Takashi| Tamai, Kei| Hirota, Tomoya| Masuyama, Hisashi| Yorifuji, Takashi|
キーワード Cesarean delivery Delivery methods Long-term outcome Child development Outcome-wide approach
発行日 2025-01-20
出版物タイトル Scientific Reports
15巻
1号
出版者 Nature Portfolio
開始ページ 2485
ISSN 2045-2322
資料タイプ 学術雑誌論文
言語 英語
OAI-PMH Set 岡山大学
著作権者 © The Author(s) 2025
論文のバージョン publisher
PubMed ID 39833288
DOI 10.1038/s41598-025-87043-2
Web of Science KeyUT 001402008500024
関連URL isVersionOf https://doi.org/10.1038/s41598-025-87043-2
タイトル(別表記) Elucidation of plant-bacterial pathogen interactions for the control of bacterial blight on cruciferous crops
フルテキストURL srfa_114_021_025.pdf
著者 坂田 七海|
抄録  Pseudomonas cannabina pv. alisalensis (Pcal), the causative agent of bacterial blight on cruciferous crops, is an economically important pathogen worldwide. We have conducted several studies on the interactions between plants and pathogenic bacteria to develop effective control strategies for this disease. Using forward and reverse genetics, we identified several virulence factors, including the type III secretion system, membrane transporters, transcriptional factors, and amino acid metabolism. Additionally, we emphasized the role of coronatine, a toxin produced by Pcal, which promotes stomatal reopening and suppresses salicylic acid accumulation in plants. We also examined plant defense mechanisms activated by one of the plant defense activators, acibenzolar-S-methyl (ASM). ASM enhanced stomatal-based defense, resulting in reduction of bacterial entry and disease development. Moreover, we explored innovative control strategies for bacterial disease and demonstrated that amino acids and cellulose nanofiber are efficient and environmentally friendly control strategies. These studies advance our understanding of plant-pathogen dynamics and offer promising, sustainable approaches for managing bacterial blight disease in cruciferous crops.
キーワード Plant pathogenic bacteria Pseudomonas Cruciferous Plant protection Stomata
出版物タイトル 岡山大学農学部学術報告
発行日 2025-02-01
114巻
開始ページ 21
終了ページ 25
ISSN 2186-7755
言語 日本語
論文のバージョン publisher
フルテキストURL fulltext.pdf
著者 Izumi, Mahiro| Hagiya, Hideharu| Otsuka, Yuki| Soejima, Yoshiaki| Fukushima, Shinnosuke| Shibata, Mitsunobu| Hirota, Satoshi| Koyama, Toshihiro| Otsuka, Fumio| Gofuku, Akio|
キーワード Infection prevention and control Medical-engineering collaboration
発行日 2025-01
出版物タイトル American Journal of Infection Control
53巻
1号
出版者 Elsevier BV
開始ページ 65
終了ページ 69
ISSN 0196-6553
NCID AA10617749
資料タイプ 学術雑誌論文
言語 英語
OAI-PMH Set 岡山大学
著作権者 © 2024 The Author(s).
論文のバージョン publisher
PubMed ID 39127185
DOI 10.1016/j.ajic.2024.08.003
Web of Science KeyUT 001402079000001
関連URL isVersionOf https://doi.org/10.1016/j.ajic.2024.08.003
著者 Nakaoka, Minori| Fukuchi, Hibiki| Ogoshi, Maho| Aizawa, Sayaka| Takeuchi, Sakae|
キーワード Feather Barbule Branching Chicken Yolk sac membrane Notochord
備考 © 2025 Elsevier B.V. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/| This fulltext file will be available in Jan. 2026.|
発行日 2025-03-15
出版物タイトル Gene
941巻
出版者 Elsevier BV
開始ページ 149244
ISSN 0378-1119
NCID AA00654385
資料タイプ 学術雑誌論文
言語 英語
OAI-PMH Set 岡山大学
著作権者 © 2025 Elsevier B.V.
論文のバージョン author
PubMed ID 39800195
DOI 10.1016/j.gene.2025.149244
Web of Science KeyUT 001398894500001
関連URL isVersionOf https://doi.org/10.1016/j.gene.2025.149244
タイトル(別表記) Precision Medicine for Patients with Renal Cell Carcinoma Based on Drug-metabolizing Enzyme Expression Levels
フルテキストURL fulltext.pdf
著者 松本 准|
キーワード renal cell carcinoma (RCC) kidney CYP uridine diphosphate glucose (UDP)-glucuronosyltransferase metabolism
発行日 2025-01-01
出版物タイトル YAKUGAKU ZASSHI
145巻
1号
出版者 Pharmaceutical Society of Japan
開始ページ 7
終了ページ 14
ISSN 0031-6903
NCID AN00284903
資料タイプ 学術雑誌論文
言語 日本語
OAI-PMH Set 岡山大学
著作権者 © 2025 公益社団法人日本薬学会
論文のバージョン publisher
PubMed ID 39756928
DOI 10.1248/yakushi.24-00166
Web of Science KeyUT 001392549800002
関連URL isVersionOf https://doi.org/10.1248/yakushi.24-00166
フルテキストURL fulltext.pdf
著者 Kuribayashi, Tadahiro| Kinoshita, Rie| Ninomiya, Kiichiro| Makimoto, Go| Kubo, Toshio| Rai, Kammei| Ichihara, Eiki| Hotta, Katsuyuki| Tabata, Masahiro| Maeda, Yoshinobu| Kiura, Katsuyuki| Toyooka, Shinichi| Sakaguchi, Masakiyo| Ohashi, Kadoaki|
キーワード S100A8/A9 Lung cancer Immune checkpoint inhibitors
備考 The version of record of this article, first published in Scientific Reports, is available online at Publisher’s website: http://dx.doi.org/10.1038/s41598-025-87232-z|
発行日 2025-01-20
出版物タイトル Scientific Reports
15巻
1号
出版者 Nature Portfolio
開始ページ 2577
ISSN 2045-2322
資料タイプ 学術雑誌論文
言語 英語
OAI-PMH Set 岡山大学
著作権者 © The Author(s) 2025
論文のバージョン publisher
PubMed ID 39833332
DOI 10.1038/s41598-025-87232-z
Web of Science KeyUT 001400880600002
関連URL isVersionOf https://doi.org/10.1038/s41598-025-87232-z
著者 Kondo, Shinya| Okamoto, Kazuki| Sakata, Osami| Teranishi, Takashi| Kishimoto, Akira| Nagasaki, Takanori| Yamada, Tomoaki|
備考 This fulltext file will be available in Jan. 2026.|
発行日 2025-01-02
出版物タイトル Applied Physics Letters
126巻
1号
出版者 AIP Publishing
開始ページ 012901
ISSN 0003-6951
NCID AA00543431
資料タイプ 学術雑誌論文
言語 英語
OAI-PMH Set 岡山大学
著作権者 © 2025 Author(s).
論文のバージョン publisher
DOI 10.1063/5.0244707
Web of Science KeyUT 001390832500001
関連URL isVersionOf https://doi.org/10.1063/5.0244707
フルテキストURL fulltext.pdf
著者 Denno, Satoshi| Sugimoto, Takumi| Matoba, Koki| Hou, Yafei|
キーワード overloaded MIMO spatial multiplexing QR-decomposition precoding overloading ratio
発行日 2024-08-01
出版物タイトル IEICE Transactions on Communications
E108-B巻
1号
出版者 Institute of Electrical and Electronics Engineers (IEEE)
開始ページ 1
終了ページ 13
ISSN 1745-1345
資料タイプ 学術雑誌論文
言語 英語
OAI-PMH Set 岡山大学
著作権者 © 2025 The Institute of Electronics, Information and Communication Engineers
論文のバージョン publisher
DOI 10.23919/transcom.2023ebn0001
Web of Science KeyUT 001390221500001
関連URL isVersionOf https://doi.org/10.23919/transcom.2023ebn0001