このエントリーをはてなブックマークに追加


ID 63507
フルテキストURL
著者
Kondo, Kei Department of Mathematics, Faculty of Science, Okayama University
抄録
We show, as our main theorem, that if a Lipschitz map from a compact Riemannian manifold M to a connected compact Riemannian manifold N, where dim M ≥ dim N, has no singular points on M in the sense of Clarke, then the map admits a smooth approximation via Ehresmann fibrations. We also show the Reeb sphere theorem for Lipschitz functions, i.e., if a closed Riemannian manifold admits a Lipschitz function with exactly two singular points in the sense of Clarke, then the manifold is homeomorphic to the sphere.
キーワード
convex analysis
Ehresmann fibration
Lipschitz map
nonsmooth analysis
Reeb’s sphere theorem
smooth approximation
備考
This article will be available in April 2025.
発行日
2022-4
出版物タイトル
Journal of the Mathematical Society of Japan
74巻
2号
出版者
Mathematical Society of Japan (Project Euclid)
開始ページ
521
終了ページ
548
ISSN
0025-5645
NCID
AA0070177X
資料タイプ
学術雑誌論文
言語
英語
OAI-PMH Set
岡山大学
著作権者
Copyright ©2022 Mathematical Society of Japan
論文のバージョン
publisher
DOI
Web of Science KeyUT
関連URL
isVersionOf https://doi.org/10.2969/jmsj/83448344
助成機関名
Japan Society for the Promotion of Science
助成番号
16K05133
17K05220
18K03280