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Abstract. We show, as our main theorem, that if a Lipschitz map from
a compact Riemannian manifold M to a connected compact Riemannian man-

ifold N , where dimM ≥ dimN , has no singular points on M in the sense of
Clarke, then the map admits a smooth approximation via Ehresmann fibra-
tions. We also show the Reeb sphere theorem for Lipschitz functions, i.e., if
a closed Riemannian manifold admits a Lipschitz function with exactly two

singular points in the sense of Clarke, then the manifold is homeomorphic to
the sphere.

1. Introduction.

1.1. Background: Grove–Shiohama theory for distance functions.

Armed with the Toponogov comparison theorem [45] (see also [6], [39]), Grove and

Shiohama [19] developed a theory for critical points of distance functions on complete

Riemannian manifolds that has played a fundamental role in the study of relationships

between curvature and topology. Denote by X a complete Riemannian manifold, d its

distance function, and TxX the tangent space at each x ∈ X. Fix p ∈ X, and set

dp(x) := d(p, x) for all x ∈ X. Note that dp is a 1-Lipschitz function and is smooth

on X \ ({p} ∪ Cut(p)) where Cut(p) indicates the cut locus of p. (For basic definitions

in Riemannian geometry see, for example, [6], [9], [39].) Grove and Shiohama gave the

following meaningful definition in order to do research into how dp behaves.

Definition 1.1 ([19]). A point q ∈ X \ {p} is said to be critical for dp (or a

critical point of dp) in the sense of Grove–Shiohama if for each v ∈ TqX \ {oq} there is

a unit speed minimal geodesic segment γ : [0, dp(q)] → X emanating from p = γ(0) to

q = γ(dp(q)) such that ∠(−(dγ/dt)(dp(q)), v) ≤ π/2 where ∠(−(dγ/dt)(dp(q)), v) denotes

the angle between two vectors −(dγ/dt)(dp(q)) and v in TqX. For convenience we also

call p a critical point of dp.

The origins of this definition can be found in the work of Berger [2]: The point of

maximal distance from a given point x ∈ X is a critical point of dx. See the survey
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articles by Cheeger [5] and by Grove [17] on critical points of distance functions. Note

that any critical point of dx is also a cut point of x.

Another major development, due to Gromov [15], was in the topology of regions

free of critical points.

Lemma 1.2 (Gromov’s isotopy lemma). If 0 < R1 < R2 ≤ ∞, and if dp has no

critical points on BR2(p) \BR1(p), then BR2(p) \BR1(p) is homeomorphic to ∂BR1(p)×
[R1, R2] where each BRi(p) denotes the metric open ball with center p and radius Ri, and

BRi(p) indicates the closure of BRi(p) (i = 1, 2).

The Toponogov comparison theorem [45] (see also [6], [39]) together with the isotopy

lemma yields the diameter sphere theorem:

Theorem 1.3 ([19]). If the sectional curvature of X is bounded from below by 1,

and if the diameter of X is greater than π/2, then X is homeomorphic to the sphere.

1.2. Critical points of Lipschitz functions.

The method of Grove and Shiohama has many applications (see [1], [15], [18], [24],

[25], and the survey articles [5], [17]). A natural question to ask is whether it can be

extended to general Lipshitz functions.

The purpose of this article is to tackle this question by employing Clarke’s non-

smooth analysis. That is, we will extend the notion of critical points of distance func-

tions on Riemannian manifolds to locally Lipschitz maps. In the absence of singular

points we will show the existence of a family of Ehresmann fibrations which approximate

an arbitrary Lipschitz map between compact manifolds without curvature assumption

(Theorem 1.4). Moreover we will show the Reeb sphere theorem for Lipschitz functions

on closed Riemannian manifolds (Theorem 1.7) which corresponds to that for smooth

ones [36], [31].

1.3. Main theorem.

Let M and N be smooth manifolds. A smooth map f : M → N is called an

Ehresmann fibration (or a locally trivial fibration) if for each x ∈ N there are an open

neighborhood Ux of x and a diffeomorphism g : f−1(Ux) → Ux × f−1(x) such that the

diagram

f−1(Ux)
g //

f |f−1(Ux) ##H
HH

HH
HH

HH
Ux × f−1(x)

π
yysss

sss
sss

ss

Ux

commutes where π : Ux × f−1(x) → Ux, π(p, q) := p, denotes the projection to the first

factor. Note that π is a smooth map. Our main theorem is stated as follows:

Theorem 1.4 (Main theorem). Let F : M → N be a Lipschitz map from a

compact Riemannian manifold M to a connected compact Riemannian manifold N where

dimM ≥ dimN . If F has no singular points on M in the sense of Clarke, then for any

η > 0 there is a constant κ(η) > 0 such that for each ε ∈ (0, κ(η)) there is an Ehresmann

fibration fε from M onto N satisfying maxx∈M dN (fε(x), F (x)) < η.
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Remark 1.5. Let us mention remarks on Theorem 1.4:

(i) The definition of a singular point of Lipschitz maps in the sense of Clarke will be

given in Section 2.2.

(ii) The author and Tanaka showed the existence of a family of immersions which ap-

proximate an arbitrary Lipschitz map between compact manifolds, see [26, Theorem

1.3]. Li [29] announced an another proof of [26, Theorem 1.3]. [26, Corollary 1.15]

guarantees that an assumption on [13, Proposition 22] is natural.

(iii) The related result is the Yamaguchi fibration theorem [50]: Let X and Y be com-

plete Riemannian manifolds of dimX = n and dimY = k, respectively, where

n ≥ k. Assume that both sectional curvatures are bounded from below by −1, and

that the injectivity radius of Y has a lower bound δ > 0. He then showed that

there is a constant ε(n, δ) > 0 such that if dGH(X,Y ) < ε(n, δ), then there is a

fibration f : X → Y which is an almost Riemannian submersion where dGH indi-

cates the Gromov–Hausdorff distance. He also gave this type of fibration theorem

for Alexandrov spaces [51]. Moreover Fujioka [12] showed a locally trivial fibration

theorem for Alexandrov spaces assuming a lower positive bound for the volume of

the space of directions.

1.4. Reeb’s sphere theorem for Lipschitz functions.

In the process of proving Theorem 1.4 we obtain the following corollary of a propo-

sition for Lipschitz maps between Riemannian manifolds:

Corollary 1.6 (Corollary 5.5 in Section 5). Let F be a Lipschitz function on a

compact Riemannian manifold M , and F̃ε : M → R the global smooth approximation of

F (see Definition 4.9 for ℓ = 1). If p ∈ M is nonsingular for F in the sense of Clarke,

then there are two constants λ(p) > 0 and ε0(p) > 0 such that if ε ∈ (0, ε0(p)), then

grad F̃ε ̸= 0 on the metric open ball Bλ(p)(p) with center p and radius λ(p) where grad F̃ε

denotes the gradient vector field of F̃ε. In particular F̃ε has no critical points on Bλ(p)(p)

for an ε > 0 sufficiently small.

Applying this corollary we show Reeb’s sphere theorem for Lipschitz functions:

Theorem 1.7. If a closed Riemannian manifold admits a Lipschitz function with

exactly two singular points in the sense of Clarke, then the manifold is homeomorphic to

the sphere.

Remark 1.8. We give two remarks on Theorem 1.7:

(i) Let X be a closed Riemannian manifold, p ∈ X, and dp the distance function of X

given by dp(x) := d(p, x) for all x ∈ X. We then see that a point x ∈ X is critical

for dp in the sense of Grove–Shiohama if and only if x ∈ X is singular for it in that

of Clarke (Proposition 2.19 and Lemma 2.20). Theorem 1.7 thus contains Reeb’s

sphere theorem for distance functions [39, Proposition 2.10], and hence Theorem 1.7

yields Theorem 1.3.
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(ii) Since the manifold in Theorem 1.7, denoted by M below, is a twisted sphere, we

see, by [4], [23], [32], [34], and [42], thatM is diffeomorphic to the standard sphere

when dimM ≤ 6. Moreover the Weinstein deformation technique for metrics ([47])

shows that M admits a metric such that there is a point whose cut locus consists

of a single point. It is the worthy of noting that every exotic sphere of dimension

greater than 4 admits such metrics by the Smale h-cobordism theorem [43], [44]

together with the deformation technique.

The article is organized as follows. In Section 2 we define a generalized differential

for Lipschitz maps between Riemannian manifolds (Definitions 2.4 and 2.6) and singular

points of them in the sense of Clarke (Definition 2.8). Giving intrinsic definitions to

them is another aim of this article. That is, although we had given the definitions

in [26], the identification, which has often been done in [26], of the set of all linear

mappings of tangent spaces and the vector space of matrices seems to have given not

only an impression that it is hard to read it, but also a misunderstanding that the

definitions depend on the choice of charts. To prevent them we thus employ parallel

transports along minimal geodesics in our definitions. This is the big difference between

our definitions and those in [26]. Moreover we also define the generalized gradient for

Lipschitz functions on Riemannian manifolds (Definition 2.13) and study the relationship

between the gradient and the generalized differential of them. As an example of singular

points of Lipschitz functions we show finally that critical points of distance functions in

the sense of Grove–Shiohama are singular ones of them in that of Clarke (Proposition 2.19

and Lemma 2.20).

In Section 3 we define the adjoint of the generalized differential of Lipschitz maps

between Riemannian manifolds (Definition 3.3), and discuss surjectivity and injectivity

of the generalized differential near a nonsingular point of a given Lipschitz map (Propo-

sitions 3.6 and 3.7, respectively). These propositions show that the set of all singular

points of the map is a closed set in its source space (Corollary 3.9).

In Section 4 we first define a local smooth approximation of an arbitrary Lipschitz

map between Riemannian manifolds on a strongly convex ball as the Riemannian con-

volution smoothing (Definiton 4.2), and next define the global smooth approximation of

the map via a smooth partition of unity (Definiton 4.9).

In Section 5 we give the proof of Theorem 1.4. For this we first show, broadly

speaking, that a global smooth approximation of a Lipschitz map F on a compact man-

ifold carries on surjectivity of the generalized differential of F (Proposition 5.4). As a

corollary of Proposition 5.4 we get Corollary 1.6. Using the proposition and the tubular

neighborhood theorem, we finally show the main theorem.

In Section 6, making use of Corollary 1.6 with Morse theory, we show Theorem 1.7.
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2. Nonsmooth analysis in Riemannian geometry.

2.1. From Rockafellar to Clarke.

Rockafellar [37] was the first to introduce the notion of the subdifferential of a con-

vex function. This was done on of Euclidean space in order to replace assumptions of

smoothness with convexity and led to many results. Clarke [7], [8] generalized Rock-

afellar’s work to Lipschitz maps between Euclidean spaces and the subdifferential to the

generalized differential (see Definition 2.6).

The two examples below show how Clarke’s generalized differential of Lipschitz maps

emerges from Rockafellar’s subdifferential of convex functions.

(i) We here recall Rockafellar’s ideas, that is the subdifferential of convex functions.

Let f1(x) := |x| − 1 and f2(x) := (x − 2)2 − 1 for all x ∈ R. Define the convex

function f : R → R by f(x) := max{f1(x), f2(x)} (x ∈ R). Note that f is not

differentiable on {1, 4}. However one-sided limits of f ′ do exist, i.e., limx↑1 f
′(x) =

−2, limx↓1 f
′(x) = 1, limx↑4 f

′(x) = 1, and limx↓4 f
′(x) = 4. Rockafellar’s idea

is to draw vertical segments between disconnected points of the graph of f ′ using

convex combinations: between (1,−2) and (1, 1) and between (4, 1) and (4, 4). Put

differently, for each λ ∈ [0, 1] we have (1− λ) limx↑1 f
′(x) + λ limx↓1 f

′(x) = 3λ− 2

and (1− λ) limx↑4 f
′(x) + λ limx↓4 f

′(x) = 3λ+ 1, and hence ∂f(1) := {3λ− 2 |λ ∈
[0, 1]} = [−2, 1] and ∂f(4) := {3λ + 1 |λ ∈ [0, 1]} = [1, 4]. Since 0 ∈ ∂f(1), and

since f is not monotone near x = 1, we can regard x = 1 as a critical point of f . In

particular f has the minimum value 0 at x = 1. On the other hand we can regard

x = 4 as a noncritical point of f , as 0 ̸∈ ∂f(4), and f is increasing near x = 4. He

called ∂f(1) and ∂f(4) the subdifferentials of f at x = 1, 4, respectively.

(ii) Let g : R → R be the locally Lipschitz function defined by

g(x) =

 x2 sin
1

x
(x ̸= 0),

0 (x = 0).

Note that g is differentiable on R, but is not C1 at x = 0. Moreover we can

not directly apply Rockafellar’s idea as in example (i) to one-sided limits of g′ at

x = 0 due to the term cos(1/x) in g′(x). Clarke’s idea is to choose a sequence of

lines with the same slope tangent to the graph of g, or, more precisely, for each

α ∈ [−1, 1] we choose a sequence {x(α)i }i∈N ⊂ R which converges to 0 as i → ∞
such that limi→∞ g′(x

(α)
i ) = α, and take the convex hull, denoted by Conv(A), of

the (nonempty) set

A :=
{
α
∣∣∣ ∃{x(α)i }i∈N ⊂ R \ {0} such that lim

i→∞
x
(α)
i = 0, lim

i→∞
g′(x

(α)
i ) = α

}
.
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For instance, in the case of α = −1/2, set 1/x
(−1/2)
i := π/3 + 2(i − 1)π (i ∈ N).

We then have limi→∞ x
(−1/2)
i = 0 and limi→∞ g′(xi) = −1/2. So A = Conv(A) =

[−1, 1] (cf. [37, Theorem 2.1]). Since 0 ∈ Conv(A), we can regard x = 0 as a critical

point of g. Clarke called Conv(A) the generalized differential of g.

2.2. An intrinsic definition of the generalized differential of Lipschitz

maps.

The aim of this subsection is to intrinsically define the generalized differential for

Lipschitz maps between Riemannian manifolds and their singular points in the sense of

Clarke.

We first recall Whitehead’s convexity theorem. The theorem not only allows us to

intrinsically define the generalized differential for Lipschitz maps between Riemannian

manifolds, but also plays an important role in our smooth approximation method for such

maps. A proof of the theorem can be found in [49] or [9, Proposition 4.2, pp.76–77].

Theorem 2.1 (Whitehead’s convexity theorem). Let X be a Riemannian manifold

and dX the distance function on X. Then for each x ∈ X there is a constant α(x) > 0

such that

(a) the open ball Bα(x)(x) := {y ∈ X | dX(x, y) < α(x)} is strongly convex, i.e., for

any two points p, q ∈ X in the closure Bα(x)(x) there is a unique geodesic segment

γ : [0, 1] → X emanating from p = γ(0) to q = γ(1) such that γ(0, 1) ⊂ Bα(x)(x);

(b) the exponential map expx |Bα(x)(ox) : Bα(x)(ox) → Bα(x)(x) at x is a diffeomorphism

where Bα(x)(ox) := {v ∈ TxX | ∥v∥ < α(x)} and ox indicates the origin of the tangent

space TxX at x.

From now on let M and N be Riemannian manifolds of dimension m and n, re-

spectively, and F : M → N a locally Lipschitz map. The following lemma is a direct

consequence of Theorem 2.1.

Lemma 2.2. For each p ∈ M there are two open balls Br(p)(p) ⊂ M and

Bt(p)(F (p)) ⊂ N such that

(i) both Br(p)(p) and Bt(p)(F (p)) satisfy (a) and (b) of Theorem 2.1;

(ii) F (Br(p)(p)) ⊂ Bt(p)(F (p));

(iii) F |Br(p)(p) : Br(p)(p) → Bt(p)(F (p)) is Lipschitz continuous.

Using parallel transport we intrinsically define the generalized differential for F :

Definition 2.3. We will use the following notation. If there exists a unique

geodesic between x, y ∈ M , then denote parallel transport along that geodesic by τxy :

TxM → TyM .

For each x ∈ M let L(TxM,TF (x)N) be the set of all linear mappings of TxM

to TF (x)N . Since L(TxM,TF (x)N) is isomorphic to the vector space M(n,m;R) of

n × m-matrices with real entries, L(TxM,TF (x)N) is an nm-dimensional vector space.
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We topologize L(TxM,TF (x)N) with the operator norm ∥ · ∥, so that, throughout this

article, we regard L(TxM,TF (x)N) as a finite dimensional normed vector space.

Fix p ∈ M . Choose the two balls Br(p)(p) ⊂ M and Bt(p)(F (p)) ⊂ N satisfying

all three properties (i)–(iii) of Lemma 2.2. From Rademacher’s theorem [35] there is

a set EF ⊂ M of Lebesgue measure zero such that the differential dF of F exists on

Br(p)(p) \ EF . Since F is Lipschitz on Br(p)(p), and since for q ∈ Br(p)(p) parallel

transports τpq and τ
F (q)
F (p) are linear isometries on Br(p)(p) and Bt(p)(F (p)), respectively,

{τF (q)
F (p) ◦ dFq ◦ τpq }q∈Br(p)(p)\EF

is bounded in L(TpM,TF (p)N). Since Br(p)(p) \ EF is

dense in Br(p)(p), there is a sequence {xi}i∈N ⊂ Br(p)(p) \ EF such that limi→∞ xi = p

and {τF (xi)
F (p) ◦ dFxi ◦ τpxi

}i∈N converges in L(TpM,TF (p)N). Hence we can introduce the

notion of the “mixture” of the differential of F as follows:

Definition 2.4 (compare [26]). For each p ∈M we call the set

KF (p) :=

G ∈ L(TpM,TF (p)N)

∣∣∣∣∣∣
∃{xi}i∈N ⊂ Br(p)(p) \ EF such that

lim
i→∞

xi = p, lim
i→∞

τ
F (xi)
F (p) ◦ dFxi ◦ τpxi

= G

 (2.1)

the mixture of the differential of F at p. Note here that, from (ii) of Lemma 2.2, parallel

transport τ
F (xi)
F (p) : TF (xi)N → TF (p)N can be defined.

Remark 2.5. By Definition 2.4, for any p ∈ M , KF (p) is a nonempty bounded

set in L(TpM,TF (p)N).

The generalized differential for F :M → N is now intrinsically defined as follows:

Definition 2.6. For each p ∈ M we call the set ∂F (p) := Conv(KF (p)) the

generalized differential of F at p where again Conv(KF (p)) denotes the convex hull of

the mixture KF (p) of the differential of F at p.

Remark 2.7. We give remarks on Definition 2.6: Fix p ∈M .

(i) Clarke [8] originally called ∂F (p) the generalized Jacobian of F at p where M and

N are Euclidean spaces of the same dimension m. This is because we can use

the atlas {(Rm, idRm)} with a single chart on Rm where idRm : Rm → Rm is the

identity map, so without referring to independence of the choice of charts we can

define ∂F (p) as follows:

∂F (p) := Conv

({
A ∈ M(n,m;R)

∣∣∣∣∣ ∃{xi}i∈N ⊂ Rm \ EF such that

lim
i→∞

xi = p, lim
i→∞

(JF )xi = A

})
(2.2)

where (JF )xi indicates the Jacobian matrix of F at xi.

(ii) From [37, Theorem 17.2], ∂F (p) is a compact convex subset of L(TpM,TF (p)N).

(iii) Although the following fact was mentioned in Section 2.1 (ii), we will mention it

again: [37, Theorem 2.1] shows that ∂F (p) is the smallest convex set containing

KF (p), i.e.,
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∂F (p) = Conv(KF (p)) =
∩

{Z |Z is convex in L(TpM,TF (p)N) with KF (p) ⊂ Z}.

(iv) Since dimL(TpM,TF (p)N) = nm, it follows from Carathéodory’s theorem (cf. [40,

Theorem 1.1.4]) that for any g ∈ ∂F (p) there are G1, G2, . . . , Gnm+1 ∈ KF (p) such

that g =
∑nm+1

i=1 aiGi where
∑nm+1

i=1 ai = 1 and ai ≥ 0 (i = 1, 2, . . . , nm+ 1).

(v) If dFp exists, then dFp ∈ ∂F (p). Moreover, if F is of class C1 on Br(p)(p), then

∂F (p) is a singleton, which means ∂F (p) = {dFp}.

(vi) As a direct consequence of Definition 2.6 we observe that for any ε > 0 there

is a constant µ(p, ε) ∈ (0, r(p)) such that τ
F (x)
F (p) ◦ ∂F (x) ◦ τpx ⊂ Uε(∂F (p)) for all

x ∈ Bµ(p, ε)(p) where τ
F (x)
F (p) ◦∂F (x)◦τ

p
x := {τF (x)

F (p) ◦g◦τ
p
x | g ∈ ∂F (x)} and Uε(∂F (p))

denotes the ε-open neighborhood of ∂F (p) in L(TpM,TF (p)N).

Now that we have defined the generalized differential for Lipschitz maps between

Riemannian manifolds, it is time to intrinsically define their singular points:

Definition 2.8. A point p ∈M is said to be nonsingular for F (or a nonsingular

point of F ) in the sense of Clarke if every element in ∂F (p) is of maximal rank, i.e., for

any g ∈ ∂F (p), rank(g) = min{m,n}.

Remark 2.9. Clarke [8] first introduced the notion of singular points of Lipschitz

maps between Euclidean spaces of the same dimension. Using this notion he extended

the inverse function theorem for smooth maps between Euclidean spaces to Lipschitz

ones, see [8, Theorem 1].

2.3. The relationship between the generalized differential and the gen-

eralized gradient of Lipschitz functions.

In this subsection we define the generalized gradient of Lipschitz functions on Rie-

mannian manifolds and study the relationship between their generalized gradient and

their generalized differential. Throughout this subsection let M be a Riemannian man-

ifold of dimension m with Riemannian metric ⟨ · , · ⟩, F : M → R a locally Lipschitz

function, and t the standard coordinate on R.
Fix p ∈ M . By Theorem 2.1 there is a strongly convex open ball Br(p)(p) such

that expp |Br(p)(op) : Br(p)(op) → Br(p)(p) is a diffeomorphism. For each x ∈ Br(p)(p)

parallel transport τpx : TpM → TxM is defined as in Definition 2.3. Note that parallel

transport τxy : TxR → TyR is defined for all x, y ∈ R. Let KF (p) be the mixture of the

differential of F at p defined by Equation (2.1) for TF (p)N = TF (p)R, and EF a set of

Lebesgue measure zero such that dF exists on Br(p)(p)\EF . The gradient vector field of

F denoted by gradF can be defined on Br(p)(p) \ EF because F is differentiable there.

Note that

⟨(gradF )x, u⟩ ·
d

dt

∣∣∣∣
F (x)

= u(F ) · d
dt

∣∣∣∣
F (x)

= dFx(u) (2.3)

for all x ∈ Br(p)(p) \ EF and u ∈ TxM .
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Lemma 2.10. For any G ∈ KF (p) there is a sequence {xi}i∈N ⊂ Br(p)(p)\EF such

that limi→∞ xi = p, limi→∞ τ
F (xi)
F (p) ◦ dFxi ◦ τpxi

= G, and

G(v) = lim
i→∞

⟨(gradF )xi , τ
p
xi
(v)⟩ d

dt

∣∣∣∣
F (p)

(v ∈ TpM).

Proof. Fix G ∈ KF (p). The definition of KF (p) gives a sequence {xi}i∈N ⊂
Br(p)(p) \ EF satisfying limi→∞ xi = p and limi→∞ τ

F (xi)
F (p) ◦ dFxi ◦ τpxi

= G. For any

v ∈ TpM , Equation (2.3) gives

G(v) =
(

lim
i→∞

τ
F (xi)
F (p) ◦ dFxi ◦ τpxi

)
(v) = lim

i→∞
τ
F (xi)
F (p)

(
τpxi

(v)(F )
d

dt

∣∣∣∣
F (xi)

)
= lim

i→∞
τpxi

(v)(F )
d

dt

∣∣∣∣
F (p)

= lim
i→∞

⟨(gradF )xi
, τpxi

(v)⟩ d
dt

∣∣∣∣
F (p)

. (2.4)

□

Definition 2.11. Equation (2.4) defines limi→∞(gradF )xi , that is, for each G ∈
KF (p) let ⟨

lim
i→∞

(gradF )xi , v
⟩ d
dt

∣∣∣∣
F (p)

:= G(v) (v ∈ TpM).

The following lemma follows directly from Lemma 2.10 together with Definition 2.11.

Lemma 2.12. The set

⋇F (p) :=

{
w ∈ TpM

∣∣∣∣∣ ∃{xi}i∈N ⊂ Br(p)(p) \ EF such that

lim
i→∞

xi = p, lim
i→∞

(gradF )xi = w

}

is nonempty.

Definition 2.13. We call ⋇F (p) the mixture of the gradient of F at p, and the

convex set ⊛F (p) := Conv(⋇F (p)) the generalized gradient of F at p.

Remark 2.14. ⊛F (p) is compact in TpM by [37, Theorem 17.2]. Note that

Clarke [7] first defined the generalized gradient of Lipschitz functions on Rm.

Lemma 2.15. Let ∂F (p) be the generalized differential of F at p. Then for any

g ∈ ∂F (p) there is a vector X(g) ∈ ⊛F (p) such that g(v) = ⟨X(g), v⟩(d/dt)|F (p) for all

v ∈ TpM .

Proof. Fix g ∈ ∂F (p). By Carathéodory’s theorem (cf. [40, Theorem 1.1.4])

there are vectors G1, G2, . . . , Gm+1 ∈ KF (p) such that g =
∑m+1

k=1 akGk where∑m+1
k=1 ak = 1 and ak ≥ 0 (k = 1, 2, . . . ,m + 1). By Lemmas 2.10 and 2.12 for each

k = 1, 2, . . . ,m+1 there is a vector w(k) ∈ ⋇F (p) such that Gk(v) = ⟨w(k), v⟩(d/dt)|F (p)

for all v ∈ TpM , and hence
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g(v) =
m+1∑
k=1

akGk(v) =
m+1∑
k=1

ak⟨w(k), v⟩ d
dt

∣∣∣∣
F (p)

=

⟨
m+1∑
k=1

akw
(k), v

⟩
d

dt

∣∣∣∣
F (p)

.

Since
∑m+1

k=1 akw
(k) ∈ ⊛F (p), X

(g) :=
∑m+1

k=1 akw
(k) is the desired vector. □

Lemma 2.16. p is singular for F if and only if op ∈ ⊛F (p).

Proof. We first assume that p is singular for F . There is then a point g0 ∈
∂F (p) such that rank(g0) = 0. By Lemma 2.15 there is a vector X(0) ∈ ⊛F (p) such

that g0(v) = ⟨X(0), v⟩(d/dt)|F (p) holds for all v ∈ TpM . Since rank(g0) = 0, oF (p) =

⟨X(0), v⟩(d/dt)|F (p) for all v ∈ TpM where oF (p) indicates the origin of TF (p)R, hence
X(0) = op, and finally op = X(0) ∈ ⊛F (p).

We next assume op ∈ ⊛F (p). Carathéodory’s theorem shows that there are vec-

tors w1, w2, . . . , wm+1 ∈ ⋇F (p) such that op =
∑m+1

k=1 αkwk where
∑m+1

k=1 αk = 1

and αk ≥ 0 (k = 1, 2, . . . ,m + 1). Define the linear map f0 : TpM → TF (p)R by

f0(v) := ⟨
∑m+1

k=1 αkwk, v⟩(d/dt)|F (p) for all v ∈ TpM . We observe f0 ∈ ∂F (p). Since

f0(v) = oF (p) for all v ∈ TpM , rank(f0) = 0, and hence p is singular for F . □

Remark 2.17. In [7] and [26] a point p ∈ M is called noncritical for F if

op ̸∈ ⊛F (p).

2.4. Critical points of distance functions in the sense of Grove–Shiohama

are singular points of Clarke.

Throughout this subsection let M be a complete Riemannian manifold of dimension

m with Riemannian metric ⟨ · , · ⟩ and the distance function d. All geodesics will be

normal.

Fix p ∈M . Define the map dp :M → R by dp(x) := d(p, x) for all x ∈M . We then

have the following proposition. Note that the proposition appeared as [26, Example 1.9];

however we are sometimes asked the proof, so that we give the details here.

Proposition 2.18. q ∈ M is singular for dp in the sense of Clarke if and only if

q is critical for dp in that of Grove–Shiohama.

Proof. For each x ∈ M let Br(x)(x) be a strongly convex open ball, guaranteed

by Theorem 2.1, such that expx |Br(x)(ox) is a diffeomorphism, and Edp a set of Lebesgue

measure zero such that the differential of dp exists on M \Edp . This proposition follows

from Lemmas 2.19 and 2.20 below. □

Lemma 2.19. q ∈ M \ {p} is singular for dp in the sense of Clarke if and only if

q is critical for dp in that of Grove–Shiohama.

Proof. Assume that q ∈ M \ {p} is singular for dp in the sense of Clarke.

By Lemma 2.16, oq ∈ ⊛dp(q) holds where ⊛dp(q) indicates the generalized gradient

of dp at q. From Carathéodory’s theorem there are w1, w2, . . . , wm+1 ∈ ⋇dp(q) such

that oq =
∑m+1

k=1 αkwk where
∑m+1

k=1 αk = 1 and αk ≥ 0 (k = 1, 2, . . . ,m + 1), and

⋇dp(q) denotes the mixture of the gradient of dp at q. Fix v ∈ TqM \ {oq}. We then

have 0 = ⟨
∑m+1

k=1 αkwk, v⟩ =
∑m+1

k=1 αk⟨wk, v⟩. Since αk ≥ 0 (k = 1, 2, . . . ,m + 1),
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there is a number k0 ∈ {1, 2, . . . ,m + 1} such that ⟨wk0 , v⟩ ≤ 0. As wk0 ∈ ⋇dp(q),

there is a sequence {x(k0)
i }i∈N ⊂ Br(q)(q) \ Edp such that limi→∞ x

(k0)
i = q and

limi→∞(grad dp)x(k0)
i

= wk0 . Now M is complete, so for each i ∈ N there is a minimal

geodesic segment γi : [0, dp(x
(k0)
i )] →M emanating from p to x

(k0)
i , and hence we obtain

the sequence {γi}i∈N of such geodesics. The set Sm−1
p := {u ∈ TpM | ∥u∥ = 1} is compact,

so we can assume, by taking a subsequence of {(dγi/dt)(0)}i∈N ⊂ Sm−1
p if necessary, that

limi→∞(dγi/dt)(0) ∈ Sm−1
p exists. Set u := limi→∞(dγi/dt)(0). Since limi→∞ x

(k0)
i = q,

{γi}i∈N converges to a minimal geodesic segment γ∞ : [0, dp(q)] →M emanating from p

to q given by γ∞(t) = expp tu. Moreover, from [39, Proposition 4.8 of Chapter III] we

have (grad dp)x(k0)
i

= (dγi/dt)(dp(x
(k0)
i )) for all i ∈ N. Note that ∥(grad dp)x(k0)

i

∥ = 1 for

each i ∈ N. Since wk0 = limi→∞(grad dp)x(k0)
i

= (dγ∞/dt)(dp(q)) and ⟨wk0 , v⟩ ≤ 0, we see

that 0 ≥ ⟨wk0
, v⟩ = ∥v∥ cos∠((dγ∞/dt)(dp(q)), v), hence ∠(−(dγ∞/dt)(dp(q)), v) ≤ π/2

holds for all v ∈ TqM , and finally q is therefore critical for dp in the sense of Grove–

Shiohama.

We next assume that q is critical for dp in the sense of Grove–Shiohama. Fix v ∈
Sm−1
q := {u ∈ TqM | ∥u∥ = 1}. There is a minimal geodesic segment σ(v) : [0, dp(q)] →M

emanating from p to q such that ∠(−(dσ(v)/dt)(dp(q)), v) ≤ π/2. As expq |Br(q)(oq) is a

diffeomorphism onto Br(q)(q), we have a unique minimal geodesic cv : (−r(q), r(q)) →
Br(q)(q) given by cv(s) := expq sv for all s ∈ (−r(q), r(q)). Also (expq)

−1 is a diffeomor-

phism from Br(q)(q) onto Br(q)(oq), so it follows from [48, Lemma 6.5] that we can choose

a sequence {si}i∈N ⊂ (−r(q), r(q)) such that limi→∞ si = 0 and cv(si) ∈ Br(q)(q) \ Edp .

To simplify notation we set yi := cv(si) for each i ∈ N. Note that limi→∞ yi = q. Since

M is complete, for each i ∈ N there is a minimal geodesic segment ηi : [0, dp(yi)] → M

emanating from p to yi. By the same argument above we can assume that {ηi}i∈N con-

verges to a minimal geodesic segment η∞ : [0, dp(q)] → M emanating from p to q.

From [39, Proposition 4.8 of Chapter III], (grad dp)yi = (dηi/dt)(dp(yi)) holds for

each i ∈ N. Now limi→∞(grad dp)yi = (dη∞/dt)(dp(q)), set w
(v) := (dη∞/dt)(dp(q)),

and w(v) = limi→∞(grad dp)yi
∈ ⋇dp

(q). Since ∠(−(dσ(v)/dt)(dp(q)), v) ≤ π/2, [21,

Lemma 2.1] shows ∠(−w(v), v) = ∠(− limi→∞(grad dp)yi , v) ≤ π/2, and hence we get

∠(w(v), v) ≥ π/2. Since v ∈ Sm−1
q was arbitrary, for each v ∈ Sm−1

q we take w(v) ∈ ⋇dp(q)

satisfying ∠(w(v), v) ≥ π/2, and we set W := {w(v) ∈ ⋇dp(q) | v ∈ Sm−1
q }. Then W is

not contained in an open half space of TqM , which implies oq ∈ Conv(W ) ⊂ ⊛dp(q).

Lemma 2.16 gives that q is singular for dp. □

Lemma 2.20. p is also singular for dp in the sense of Clarke.

Proof. Note that dp is differentiable on Br(p)(p) \ {p}, for the set has no cut

points of p. We first show that ⋇F (p) = Sm−1
p . Indeed, since all the geodesics are

normalized, [39, Proposition 4.8 of Chapter III] gives ⋇dp(p) ⊂ Sm−1
p . Thus it is sufficient

to prove Sm−1
p ⊂ ⋇dp

(p). Fix v ∈ Sm−1
p . Let σv : (−r(p), r(p)) → Br(p)(p) be a

minimal geodesic defined by σv(t) := expp tv for all t ∈ (−r(p), r(p)). Let {ti}i∈N be

a sequence of constants ti ∈ (−r(p), r(p)) \ {0} converging to 0 by letting i → ∞. Set

xi := σv(ti) for each i ∈ N. Note that xi ∈ Br(p)(p) \ {p}. Combining the Gauss lemma

(cf. [39, (1) of Proposition 2.3 of Chapter III]) and [39, Proposition 4.8 of Chapter III]
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gives that (grad dp)σv(ti) = (dσv/dt)(ti) = (d expp)tivv. Since limi→∞(grad dp)σv(ti) =

limi→∞(d expp)tivv = (d expp)opv = v, we get v ∈ ⋇dp(p), i.e., Sm−1
p ⊂ ⋇dp(p) holds.

Therefore ⋇dp(p) = Sm−1
p .

Since ⋇dp(p) = Sm−1
p , ⊛dp(p) = Conv(Sm−1

p ) = {X ∈ TpM | ∥X∥ ≤ 1} holds, hence

op ∈ ⊛dp(p), and finally Lemma 2.16 shows that p is singular for dp in that sense. □

3. The adjoint of the generalized differential of Lipschitz maps.

In this section we define the adjoint of the generalized differential of Lipschitz maps

between Riemannian manifolds, study surjectivity and injectivity of the generalized dif-

ferential near their nonsingular points, and finally show that the set of all singular points

of the map is closed.

3.1. Definition of the adjoint of the generalized differential.

In this subsection we formulate the notion of the adjoint of the generalized differential

of Lipschitz maps between Riemannian manifolds. Throughout this subsection letM and

N be Riemannian manifolds with dimension m and n and Riemannian metrics ⟨ · , · ⟩M
and ⟨ · , · ⟩N , respectively, F : M → N a locally Lipschitz map, and KF (p) the mixture

of the differential of F at p ∈M .

Fix p ∈M . Choose two strongly convex open balls Br(p)(p) ⊂M and Bt(p)(F (p)) ⊂
N satisfying all three properties (i)–(iii) in Lemma 2.2. Let L(TF (p)N,TpM) be the mn-

dimensional vector space of all linear mappings of TF (p)N to TpM topologized with the

operator norm ∥ · ∥. Consider two nonempty sets

adj(KF (p)) := {G∗ ∈ L(TF (p)N,TpM) |G ∈ KF (p)}

where G∗ denotes the adjoint of G, and

{KF (p)}∗ :=

{
H∗ ∈ L(TF (p)N,TpM)

∣∣∣∣∣ ∃{xi}i∈N ⊂ Br(p)(p) \ EF such that

lim
i→∞

xi = p, lim
i→∞

τxi
p ◦ (dFxi)

∗ ◦ τF (p)
F (xi)

= H∗

}

where τxi
p and τ

F (p)
F (xi)

are parallel transports as in Definition 2.3, and (dFxi)
∗ denotes the

adjoint of dFxi at each xi. Note that, from (ii) of Lemma 2.2, each τ
F (p)
F (xi)

: TF (p)N →
TF (xi)N is defined in that sense.

Lemma 3.1. adj(KF (p)) = {KF (p)}∗.

Proof. Fix G∗ ∈ adj(KF (p)). Since (G∗)∗ = G ∈ KF (p) by definition of

adj(KF (p)), there is a sequence {xi}i∈N ⊂ Br(p)(p) \ EF such that limi→∞ xi = p and

limi→∞ τ
F (xi)
F (p) ◦dFxi ◦ τpxi

= G. Note that the adjoints of τpxi
and τ

F (xi)
F (p) are their inverses

τxi
p and τ

F (p)
F (xi)

since parallel transport is an isometry. Fix u ∈ TpM and v ∈ TF (p)N .

The Riesz representation theorem (cf. [38, Theorem 10.1]) then gives

⟨u,G∗(v)⟩M =
⟨(

lim
i→∞

τ
F (xi)
F (p) ◦ dFxi ◦ τpxi

)
(u), v

⟩
N

=
⟨
u,
(

lim
i→∞

τxi
p ◦ (dFxi)

∗ ◦ τF (p)
F (xi)

)
(v)
⟩
M
,
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which implies G∗ ∈ {KF (p)}∗, and hence adj(KF (p)) ⊂ {KF (p)}∗. Our next claim is

that {KF (p)}∗ ⊂ adj(KF (p)). Indeed, for any fixed H∗ ∈ {KF (p)}∗ there is a sequence

{xi}i∈N ⊂ Br(p)(p)\EF such that limi→∞ xi = p and that limi→∞ τxi
p ◦(dFxi)

∗ ◦τF (p)
F (xi)

=

H∗. For any u ∈ TpM and any v ∈ TF (p)N we have

⟨u,H∗(v)⟩M =
⟨
u,
(

lim
i→∞

τxi
p ◦ (dFxi)

∗ ◦ τF (p)
F (xi)

)
(v)
⟩
M

=
⟨
u,
(

lim
i→∞

τ
F (xi)
F (p) ◦ dFxi ◦ τpxi

)∗
(v)
⟩
M
,

which implies that H∗ = (limi→∞ τ
F (xi)
F (p) ◦ dFxi ◦ τpxi

)∗. Since the adjoint (H∗)∗ of H∗ is

unique by the Riesz representation theorem, limi→∞ τ
F (xi)
F (p) ◦dFxi ◦τpxi

= (H∗)∗ ∈ KF (p),

and hence {KF (p)}∗ ⊂ adj(KF (p)). Therefore adj(KF (p)) = {KF (p)}∗. □

Lemma 3.2. Let adj(∂F (p)) :=
{
g∗ ∈ L(TF (p)N,TpM) | g ∈ ∂F (p)

}
where ∂F (p)

is the generalized differential of F at p and g∗ denotes the adjoint of each g ∈ ∂F (p).

Then

(i) adj(∂F (p)) is a nonempty and compact subset of L(TF (p)N,TpM);

(ii) adj(∂F (p)) = Conv({KF (p)}∗).

Proof. We first show (i). Since ∂F (p) ̸= ∅, the Riesz representation theorem

guarantees adj(∂F (p)) ̸= ∅. Take any sequence {g∗i }i∈N ⊂ adj(∂F (p)) where each g∗i is

the adjoint of gi ∈ ∂F (p). Since ∂F (p) is compact, the sequence {gi}i∈N ⊂ ∂F (p) contains

a subsequence {gik}k∈N which converges to some point h ∈ ∂F (p) as k → ∞. For any u ∈
TpM and any v ∈ TF (p)N we have ⟨u, h∗(v)⟩M = ⟨h(u), v⟩N = ⟨(limk→∞ gik)(u), v⟩N =

⟨u, (limk→∞ g∗ik)(v)⟩M , hence limk→∞ g∗ik = h∗ ∈ adj(∂F (p)). Since {gik}k∈N ⊂ {gi}i∈N,

and since g∗ik is the adjoint of gik , {g∗i }i∈N contains {g∗ik}k∈N as a subsequence converging

to h∗ ∈ adj(∂F (p)), which implies that adj(∂F (p)) is compact.

Next we show (ii). Let g∗ ∈ adj(∂F (p)) where g ∈ ∂F (p). From Carathéodory’s

theorem there are g1, g2, . . . , gnm+1 ∈ KF (p) such that g∗ = (
∑nm+1

i=1 aigi)
∗ where∑nm+1

i=1 ai = 1 and ai ≥ 0 (i = 1, 2, . . . , nm + 1). Since g∗ =
∑nm+1

i=1 aig
∗
i , and

since Lemma 3.1 gives g∗i ∈ adj(KF (p)) = {KF (p)}∗ (i = 1, 2, . . . , nm + 1), g∗ ∈
Conv({KF (p)}∗), i.e., adj(∂F (p)) ⊂ Conv({KF (p)}∗). The similar discussion shows

Conv({KF (p)}∗) ⊂ adj(∂F (p)), and hence adj(∂F (p)) = Conv({KF (p)}∗). □

Lemma 3.2 justifies the following definition.

Definition 3.3. We call the set {∂F (p)}∗ := adj(∂F (p)) the adjoint of ∂F (p).

Lemma 3.4. {∂F (p)}∗ is a nonempty, compact, and convex subset of L(TF (p)N,

TpM).

Proof. This statement follows from Lemma 3.2 and [37, Theorem 17.2]. □



534(202)

534 K. Kondo

3.2. Surjectivity and injectivity of the generalized differential near a

nonsingular point.

All notation in this subsection is the same as defined in Section 3.1. First we show

surjectivity of the generalized differential of F near a nonsingular point when m ≥ n,

and next show injectivity when m ≤ n. Finally we see that the set of all singular points

of F is a closed set in M .

Lemma 3.5. For any p ∈ M and any ε > 0 there is a constant µ(p, ε) ∈
(0, r(p)) such that τxp ◦ {∂F (x)}∗ ◦ τF (p)

F (x) ⊂ Uε({∂F (p)}∗) for all F (x) ∈ Bt(p)(F (p))

(x ∈ Bµ(p, ε)(p)) where τxp ◦ {∂F (x)}∗ ◦ τF (p)
F (x) := {τxp ◦ g∗ ◦ τF (p)

F (x) | g
∗ ∈ {∂F (x)}∗} and

Uε({∂F (p)}∗) denotes the ε-open neighborhood of {∂F (p)}∗ in L(TF (p)N,TpM).

Proof. This is a direct consequence of Definition 3.3. □

Proposition 3.6. Assume m ≥ n. If a point p ∈ M is nonsingular for F , then

there are two constants λ(p) > 0 and δ(p) > 0 satisfying the following properties :

(i) B2λ(p)(p) satisfies (a) and (b) of Theorem 2.1;

(ii) F |B2λ(p)(p) is a Lipschitz map from B2λ(p)(p) into Bt(p)(F (p));

(iii) for any u ∈ Sn−1
F (p) := {w ∈ TF (p)N | ∥w∥ = 1} and any x ∈ B2λ(p)(p) there is a vector

V
(u)
x ∈ Sm−1

x := {v ∈ TxM | ∥v∥ = 1} such that ⟨V (u)
x , (g∗ ◦ τF (p)

F (x) )(u)⟩M ≥ δ(p)

holds for all g∗ ∈ {∂F (x)}∗. In particular ⟨V (u)
x , (dFx)

∗(τ
F (p)
F (x) (u))⟩M ≥ δ(p) for all

x ∈ B2λ(p)(p) \ EF ;

(iv) every x ∈ B2λ(p)(p) is nonsingular for F .

Proof. Fix p ∈M nonsingular for F . By Definition 2.8, rank(g) = n holds for all

g ∈ ∂F (p). Since rank(g∗) = rank(g) = n for all g∗ ∈ {∂F (p)}∗, {∂F (p)}∗ has maximal

rank. Every g∗ ∈ {∂F (p)}∗ is therefore injective.

Take u ∈ Sn−1
F (p). Set {∂F (p)}∗u := {g∗(u) | g∗ ∈ {∂F (p)}∗} ⊂ TpM . Lemma 3.4

implies that {∂F (p)}∗u is compact and convex in TpM . Since each g∗ ∈ {∂F (p)}∗ is

injective as we have seen above, op ̸∈ {∂F (p)}∗u holds where op indicates the origin of

TpM . Since {∂F (p)}∗u is compact and convex, there is a point a(u) in the boundary

Bd({∂F (p)}∗u) such that ∥a(u)∥ = dTpM (op, {∂F (p)}∗u) > 0 where dTpM denotes the

distance function of TpM , i.e., dTxM (a, b) := ∥a − b∥ for all a, b ∈ TxM (x ∈ M). Since

Sn−1
F (p) is compact, there is a constant δ(p) > 0 given by δ(p) := min{∥a(w)∥ |w ∈ Sn−1

F (p)}/2,
and hence dTpM (op, {∂F (p)}∗u) = ∥a(u)∥ ≥ 2δ(p). By this inequality there is a constant

ε(p) > 0 sufficiently small such that

dTpM

(
op,Uε(p)({∂F (p)}∗)u

)
≥ δ(p) (3.1)

where Uε(p)({∂F (p)}∗) is the closure of the ε(p)-open neighborhood Uε(p)({∂F (p)}∗) of

{∂F (p)}∗ in L(TF (p)N,TpM). Note that Uε(p)({∂F (p)}∗)u is a compact convex subset

of TpM . Indeed, let Bε(p)(õ) be a closed ball with centre the origin õ of L(TF (p)N,TpM)
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and radius ε(p). Since Bε(p)(õ) and {∂F (p)}∗ are convex in L(TF (p)N,TpM), and since

Uε(p)({∂F (p)}∗) = {∂F (p)}∗ + Bε(p)(õ), [37, Theorem 3.1] shows that Uε(p)({∂F (p)}∗)
is a compact convex subset in L(TF (p)N,TpM), and hence Uε(p)({∂F (p)}∗)u is also in

TpM .

Fix x ∈ Br(p)(p). Since ∥g∗(u)∥ ≥ δ(p) for all g∗ ∈ Uε(p)({∂F (p)}∗) by Equation

(3.1), and since τpx is an isometry, ∥τpx (g∗(u))∥ = ∥g∗(u)∥ ≥ δ(p) holds for all g∗ ∈
Uε(p)({∂F (p)}∗), and hence dTxM (ox, τ

p
x (Uε(p)({∂F (p)}∗)u)) ≥ δ(p). Since τpx is linear,

τpx (Uε(p)({∂F (p)}∗)u) is a compact convex subset of TxM . There is therefore a point

b(u, x) ∈ Bd(τpx (Uε(p)({∂F (p)}∗)u)) such that

∥b(u, x)∥ = dTxM

(
ox, τ

p
x (Uε(p)({∂F (p)}∗)u)

)
≥ δ(p). (3.2)

Define a unit tangent vector V
(u)
x at x by V

(u)
x := b(u, x)/∥b(u, x)∥ ∈ Sm−1

x . Lemma 3.5

shows that for ε(p) as above there is a constant λ(p) ∈ (0, r(p)/2) for µ(p, ε) = 2λ(p) :=

2λ(p, ε(p)) such that τxp ◦ {∂F (x)}∗ ◦ τF (p)
F (x) ⊂ Uε(p)({∂F (p)}∗) holds for all x ∈ B2λ(p)(p).

Lemma 2.2 gives assertions (i) and (ii). Since Uε(p)({∂F (p)}∗) ⊂ Uε(p)({∂F (p)}∗), for
any x ∈ B2λ(p)(p) we obtain

{∂F (x)}∗τF (p)
F (x) (u) ⊂ τpx

(
Uε(p)({∂F (p)}∗)u

)
⊂ TxM. (3.3)

Define the line ℓ : R → TxM by ℓ(t) := t V
(u)
x . Note that ℓ is passing through

τpx (Uε(p)({∂F (p)}∗)u). Fix g∗ ∈ {∂F (x)}∗. From Equation (3.3) there is a unique con-

stant t0 > 0 such that

t0 ≥ ∥b(u, x)∥ and ∠(
−−−−→
ox ℓ(t0),

−−−−−−−−−−−−→
ℓ(t0)g

∗(τ
F (p)
F (x) (u))) =

π

2
, (3.4)

i.e., ℓ(t0) is the foot of the perpendicular from g∗(τ
F (p)
F (x) (u)) to the line ℓ. Set θ :=

∠(
−−−−→
ox ℓ(t0),

−−−−−−−−−−→
ox g

∗(τ
F (p)
F (x) (u))). Note here that θ ∈ [0, π/2) because τpx (Uε(p)({∂F (p)}∗)u) is

convex in TxM and ox ̸∈ τpx (Uε(p)({∂F (p)}∗)u). It follows from Equations (3.2) and (3.4)

that

⟨V (u)
x , g∗(τ

F (p)
F (x) (u))⟩M = ∥g∗(τF (p)

F (x) (u))∥ cos θ = ∥ℓ(t0)∥ = t0 ≥ ∥b(u, x)∥ ≥ δ(p), (3.5)

which is assertion (iii).

Furthermore, Equation (3.5) gives δ(p) ≤ ⟨V (u)
x , (g∗ ◦ τF (p)

F (x) )(u)⟩M ≤ ∥g∗(τF (p)
F (x) (u))∥,

which shows that every g∗ ∈ {∂F (x)}∗ is injective for all x ∈ B2λ(p)(p). Since rank(g) =

rank(g∗) = n for all g ∈ ∂F (x) as x ∈ B2λ(p)(p), any point x ∈ B2λ(p)(p) is nonsingular

for F . Assertion (iv) thus holds. □

Proposition 3.7. Assume m ≤ n. If a point p ∈ M is nonsingular for F , then

there are two constants λ(p) > 0 and δ(p) > 0 satisfying the following properties :

(i) B2λ(p)(p) satisfies (a) and (b) of Theorem 2.1;

(ii) F |B2λ(p)(p) is a Lipschitz map from B2λ(p)(p) into Bt(p)(F (p));
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(iii) for any u ∈ Sm−1
p := {w ∈ TpM | ∥w∥ = 1} and any x ∈ B2λ(p)(p) there is a vector

V
(u)
F (x) ∈ Sn−1

F (x) := {v ∈ TF (x)N | ∥v∥ = 1} such that ⟨(g ◦ τpx )(u), V
(u)
F (x)⟩N ≥ δ(p)

holds for all g ∈ ∂F (x);

(iv) every x ∈ B2λ(p)(p) is nonsingular for F .

Proof. Fix p ∈ M nonsingular for F , and u ∈ Sm−1
p . Set ∂F (p)u := {g(u) | g ∈

∂F (p)}. Remark 2.7 (ii) shows that ∂F (p)u is compact and convex in TF (p)N . Since

p is nonsingular for F , ∂F (p) has maximal rank m, hence every g ∈ ∂F (p) is injective,

and oF (p) ̸∈ ∂F (p)u. Thanks to Remark 2.7 (vi), the same argument as in the proof of

Proposition 3.6 works for ∂F (p)u. Details are left to the reader. □

Remark 3.8. We give here three remarks on Propositions 3.6 and 3.7.

(i) Proposition 3.6 is a completely new result.

(ii) Clarke first showed the same statement as in Proposition 3.7 in the case both M

and N are Euclidean spaces of the same dimension, see [8, Lemma 3].

(iii) Without mentioning Proposition 3.7 we applied it in the proof of [26, Lemma 2.21].

We did not give the proof there. It is provided here.

Corollary 3.9. The set of all singular points of F is a closed set in M .

Proof. Let Sing(F ) be the set of all singular points of F . We will show that

M \Sing(F ) is open inM . Fix p ∈M \Sing(F ). We first assumem ≥ n. By the property

(iv) of Proposition 3.6 we can find a constant λ(p) > 0 such that any point x ∈ B2λ(p)(p)

is nonsingular for F , hence B2λ(p)(p) ⊂ M \ Sing(F ), and finally M \ Sing(F ) is open.

By applying that of Proposition 3.7 the same proof works for m ≤ n. □

4. Smooth approximation of Lipschitz maps between Riemannian man-

ifolds.

Working from results in [14], [16], [19], [20], [22], and [41], we define a smooth ap-

proximation of an arbitrary Lipschitz map between Riemannian manifolds. Throughout

this section let M be a compact Riemannian manifold of dimension m, N a Riemannian

manifold of dimension n, dM and dN the distance functions of M and N , respectively,

F : M → N a Lipschitz map, and inj(M) the injectivity radius of M . Note that

(0, inj(M)/2) ⊂ R is not empty because M is compact.

Lemma 4.1. There is a finite set {p1, p2, . . . , pk} ⊂M such that

(I) for each pi ∈ {p1, p2, . . . , pk} both Br(pi)(pi) ⊂ M and Bt(pi)(F (pi)) ⊂ N satisfy

the properties (i) and (ii) of Lemma 2.2 for p = pi ;

(II) r(pi) ∈ (0, inj(M)/2) for all pi ∈ {p1, p2, . . . , pk} ;

(III) M =
∪k

i=1Br(pi)(pi).

Proof. This follows immediately since M is compact. □
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By applying the Nash embedding theorem [33], N can be isometrically embedded

into the Euclidean space Rℓ with the canonical Riemannian metric ⟨ · , · ⟩ where ℓ ≥
max{m,n+1}. F can be regarded as a Lipschitz map from M into Rℓ, and hence we set

F̃ := F :M → N ⊂ Rℓ.

In the case where N = R, this is not done.
From now on we use the notation inj(M), {Br(pi)(pi)}ki=1, {Bt(pi)(F (pi))}ki=1, and

F̃ in the sense above.

4.1. The local smooth approximation of Lipschitz maps.

In this subsection we define the local smooth approximation of F̃ : M → N ⊂ Rℓ

on each strongly convex ball Br(pi)(pi) ⊂M with convolution smoothing.

Fix pi ∈ {p1, p2, . . . , pk}. Since exppi
|Binj(M)(opi )

: Binj(M)(opi
) → Binj(M)(pi) is a

diffeomorphism, we can define the map F (i) : Binj(M)(opi) → N ⊂ Rℓ by

F (i) := F̃ ◦ exppi
|Binj(M)(opi )

.

Choose an orthonormal basis e
(i)
1 , e

(i)
2 , . . . , e

(i)
m for Tpi

M . Using coordinates

(y
(i)
1 , y

(i)
2 , . . . , y

(i)
m ) with respect to e

(i)
1 , e

(i)
2 , . . . , e

(i)
m on TpiM , we identify TpiM with Rm.

Let (z1, z2, . . . , zℓ) be the standard coordinates of Rℓ. We then have the coordinate

representation F (i) = (F (i)
1 ,F (i)

2 , . . . ,F (i)
ℓ ) of F (i) defined by F (i)

j := zj ◦ F (i) for each

j ∈ {1, 2, . . . , ℓ}. Moreover let ρ(i) : TpiM → R be a smooth function given by

ρ(i)(y) =

{
α · e−1/(1−∥y∥2) (y ∈ B1(opi)),

0 (y ∈ TpiM \ B1(opi))

where the constant α is chosen so that
∫
y ∈Tpi

M
ρ(i)(y)dy = 1. For an ε ∈ (0, inj(M)/2)

the Riemannian mollifier ρ
(i)
ε is then defined by ρ

(i)
ε (y) := ρ(i)(y/ε)/εm for all y ∈ TpiM ,

which is a nonnegative smooth function on TpiM and satisfies

supp ρ(i)ε = Bε(opi) and

∫
Tpi

M

ρ(i)ε (y)dy = 1, (4.1)

see for instance [20], [28], or [52]. We now define the convolution smoothing of F̃ .

Definition 4.2. Fix pi ∈ {p1, p2, . . . , pk} and ε ∈ (0, inj(M)/2). The map F̃
(pi)
ε :

Br(pi)(pi) → Rℓ is defined as follows. For any q ∈ Br(pi)(pi),

F̃ (pi)
ε (q) :=

∫
y∈Tpi

M

ρ(i)ε (y)F (i)(exp−1
pi
q − y)dy

:=

(∫
Tpi

M

ρ(i)ε (y)F (i)
1 (exp−1

pi
q − y)dy, . . . ,

∫
Tpi

M

ρ(i)ε (y)F (i)
ℓ (exp−1

pi
q − y)dy

)
.

(4.2)
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Remark 4.3. (i) Since∫
Tpi

M

ρ(i)ε (y)F (i)
j (exp−1

pi
q − y)dy =

∫
Tpi

M

ρ(i)ε (exp−1
pi
q − y)F (i)

j (y)dy

for each j = 1, 2, . . . , ℓ (see for instance [20], [28], or [52]), we have, for any q ∈
Br(pi)(pi),

F̃ (pi)
ε (q) =

∫
Tpi

M

ρ(i)ε (y)F (i)(exp−1
pi
q − y)dy =

∫
Tpi

M

ρ(i)ε (exp−1
pi
q − y)F (i)(y)dy.

(ii) Fix q ∈ Br(pi)(pi) and y ∈ Bε(opi). We see, by Lemma 4.1 (II), that

∥ exp−1
pi
q − y∥ ≤ ∥ exp−1

pi
q∥+ ∥y∥ < r(pi) + ε < inj(M), (4.3)

and hence F (i)(exp−1
pi
q − y) exists. Moreover, since supp ρ

(i)
ε = Bε(opi

),

F̃ (pi)
ε (q) =

∫
y ∈Bε(opi )

ρ(i)ε (y)F (i)(exp−1
pi
q − y)dy (4.4)

holds, and hence F̃
(pi)
ε (q) exists.

(iii) Since each
∫
Tpi

M
ρ
(i)
ε (y)F (i)

j (exp−1
pi
q − y)dy is smooth (see for instance [20], [28],

or [52]), F̃
(pi)
ε is smooth.

(iv) In the case where N = R, the convolution smoothing (4.2) of the Lipschitz function

F :M → R is given by

F̃ (pi)
ε (q) :=

∫
y∈Tpi

M

ρ(i)ε (y)(F ◦ exppi
)(exp−1

pi
q − y)dy (4.5)

for all q ∈ Br(pi)(pi).

Definition 4.4. For each ε ∈ (0, inj(M)/2) let

Λ(ε) := max
{
Lip(exppi

|Br(pi)+ε(opi )
) | pi ∈ {p1, p2, . . . , pk}

}
(4.6)

where Lip(exppi
|Br(pi)+ε(opi )

) is the Lipschitz constant of exppi
|Br(pi)+ε(opi )

, i.e.,

Lip(exppi
|Br(pi)+ε(opi )

) := sup

{
dM (exppi

u, exppi
v)

∥u− v∥

∣∣∣∣u, v ∈ Br(pi)+ε(opi), u ̸= v

}
.

Remark 4.5. Since r(pi) + ε < inj(M) for each pi ∈ {p1, p2, . . . , pk},
exppi

|Br(pi)+ε(opi )
is a diffeomorphism, and hence Λ(ε) converges to a positive constant

as ε ↓ 0.

The next lemma tells us that F̃
(pi)
ε is a local smooth approximation of F̃ on

Br(pi)(pi).
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Lemma 4.6 ([26, Lemma 2.16]). For each ε ∈ (0, inj(M)/2) we have ∥F̃ (pi)
ε (q) −

F̃ (q)∥ ≤ ε · Λ(ε) · Lip(F ) for all q ∈ Br(pi)(pi) (i ∈ {1, 2, . . . , k}) where ∥ · ∥ is the

Euclidean norm of Rℓ, and Lip(F ) denotes the Lipschitz constant of F , i.e.,

Lip(F ) := sup

{
dN (F (x), F (y))

dM (x, y)

∣∣∣∣x, y ∈M,x ̸= y

}
.

Fix pi ∈ {p1, p2, . . . , pk} and ε ∈ (0, inj(M)/2). We now construct Jacobi fields on

Binj(M)(pi) from geodesic variations with the initial point pi. For each q ∈ Br(pi)(pi)

we set Sm−1
q := {v ∈ TqM | ∥v∥ = 1}. Fix v ∈ Sm−1

q . For δ > 0 sufficiently small let

cv : (−δ, δ) → Br(pi)(pi) be the minimal geodesic segment defined by cv(s) := expq sv.

Since cv(s) ∈ Br(pi)(pi) for all s ∈ (−δ, δ), we observe, by the same argument as in

Equation (4.3), that

exp−1
pi
cv(s)− y ∈ Binj(M)(opi) (4.7)

for all s ∈ (−δ, δ) and y ∈ Bε(opi). Since exppi
(exp−1

pi
cv(s)−y) ∈ Binj(M)(pi) holds for all

s ∈ (−δ, δ) and y ∈ Bε(opi) from Equation (4.7), for each y ∈ Bε(opi) we can define the

smooth map φ
(v)
y : [0, 1]× (−δ, δ) → Binj(M)(pi) by φ

(v)
y (t, s) := exppi

t[exp−1
pi
cv(s)− y].

The map φ
(v)
y is a geodesic variation with the initial point pi of the minimal geodesic

segment

φ(v)
y (t, 0) = exppi

t(exp−1
pi
q − y) (4.8)

emanating from φ
(v)
y (0, 0) = pi and ending at φ

(v)
y (1, 0) = exppi

(exp−1
pi
q − y). We get

the Jacobi field

J (v)
y (t) :=

∂φ
(v)
y

∂s
(t, 0) (4.9)

along φ
(v)
y (t, 0), which satisfies the initial conditions J

(v)
y (0) = opi and (DJ

(v)
y /dt)(0) =

(d[exp−1
pi
cv(s)− y]/ds)(0). For simplicity of notation we set

qi(y) := φ(v)
y (1, 0) = exppi

(exp−1
pi
q − y). (4.10)

Remark 4.7. The differential (dF̃
(pi)
ε )q(v) of F̃

(pi)
ε at q is given for any q ∈

Br(pi)(pi) and v ∈ Sm−1
q by (dF̃

(pi)
ε )q(v) =

∫
y∈Bε(opi )

ρ
(i)
ε (y)dF̃qi(y)(J

(v)
y (1))dy. Indeed,

fix q ∈ Br(pi)(pi) and v ∈ Sm−1
q . Since F̃ : M → N ⊂ Rℓ, it follows from the definition

of the differential of smooth maps (cf. [46]), Equations (4.4), and (4.10) that

(dF̃ (pi)
ε )q(v) =

d

ds

∣∣∣∣
0

(F̃ (pi)
ε ◦ cv)(s) =

d

ds

∣∣∣∣
0

∫
Bε(opi )

ρ(i)ε (y)F̃ (φ(v)
y (1, s))dy

=

∫
Bε(opi )

ρ(i)ε (y)dF̃qi(y)

(
∂φ

∂s
(1, 0)

)
dy =

∫
Bε(opi )

ρ(i)ε (y)dF̃qi(y)(J
(v)
y (1))dy.
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Lemma 4.8. There is a constant ω(M) ∈ (0, inj(M)/2) such that if ε ∈ (0, ω(M)),

then parallel transport τ qqi(y) : TqM → Tqi(y)M is defined as in Definition 2.3 for all

y ∈ Bε(opi) and q ∈ Br(pi)(pi) (i ∈ {1, 2, . . . , k}).

Proof. We see, by Remark 4.5, that for inj(M)/2 there is a constant ω(M) ∈
(0, inj(M)/2) such that ε · Λ(ε) < inj(M)/2 for all ε ∈ (0, ω(M)). Fix ε ∈ (0, ω(M)),

and let y ∈ Bε(opi) and q ∈ Br(pi)(pi). Since exp−1
pi
q − y ∈ Br(pi)+ε(opi) by Equation

(4.3), and since exp−1
pi
q ∈ Br(pi)+ε(opi), Equation (4.10) gives dM (q, qi(y)) ≤ Λ(ε) · ε <

inj(M)/2, and hence there is a unique minimal geodesic segment emanating from q to

qi(y). The map τ qqi(y) : TqM → Tqi(y)M is therefore defined as claimed. □

4.2. The global smooth approximation of Lipschitz maps.

In this subsection we define the global smooth approximation F̃ε of F̃ using local

smooth approximations and a partition of unity argument.

Since M is compact, there is a smooth partition of unity {ψi}ki=1 subordinate to

{Br(pi)(pi)}ki=1 (cf. [46]).

Definition 4.9. Fix ε ∈ (0, inj(M)/2). We define the smooth map F̃ε : M → Rℓ

by

F̃ε(q) :=
k∑

i=1

ψi(q)F̃
(pi)
ε (q) (q ∈M) (4.11)

where each F̃
(pi)
ε is the local smooth approximation of F̃ on Br(pi)(pi).

The following lemma says that F̃ε is the global smooth approximation of F̃ .

Lemma 4.10 ([26, Lemma 2.17]). For each ε ∈ (0, inj(M)/2),

∥F̃ε(q)− F̃ (q)∥ ≤ ε · Λ(ε) · Lip(F )

holds for all q ∈M where ∥ ·∥ denotes the Euclidean norm of Rℓ and Λ(ε) is the constant

given by Equation (4.6).

5. Proof of Main theorem (Theorem 1.4).

5.1. Preliminaries.

In this section it is shown that the smooth approximation of a Lipschitz map de-

fined in Section 4.2 is surjective near points that are nonsingular in the sense of Clarke.

Throughout this subsection let M be a compact Riemannian manifold of dimension m,

N a Riemannian manifold of dimension n with m ≥ n, and F :M → N a Lipschitz map.

Note here that we do not assume that N is connected or compact.

Via the Nash embedding theorem [33], we isometrically embed N into Euclidean

space Rℓ with the canonical Riemannian metric ⟨ · , · ⟩ where ℓ ≥ max{m,n + 1}. Let

F̃ := F : M → N ⊂ Rℓ, which is Lipschitz. Moreover we will use the same notation as

in Section 4, e.g.,
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• inj(M) is the injectivity radius of M ,

• {Br(pi)(pi)}ki=1, {Bt(pi)(F̃ (pi))}ki=1 are families of a finite number k of strongly

convex balls Br(pi)(pi) ⊂M , Bt(pi)(F̃ (pi)) ⊂ N satisfying (I)–(III) in Lemma 4.1,

• {ψi}ki=1 is the smooth partition of unity subordinate to {Br(pi)(pi)}ki=1,

• F̃
(pi)
ε : Br(pi)(pi) → F̃

(pi)
ε (Br(pi)(pi)) ⊂ Rℓ is the local smooth approximation of F̃ ,

defined by Equation (4.2),

• F̃ε : M → F̃ε(M) ⊂ Rℓ is the global smooth one of F̃ , done by Equation (4.11),

etc.

In what follows let p ∈M be nonsingular for F̃ , and let λ(p) be the positive constant

as in Proposition 3.6. Fix q ∈ Bλ(p)(p). We can then choose i ∈ {1, 2, . . . , k} satisfying

q ∈ suppψi. Note that suppψi ⊂ Br(pi)(pi).

Lemma 5.1. Set ε(i)(p) := min{r(pi), ω(M), λ(p)/Lip(exppi
|B2r(pi)

(opi )
)} where

ω(M) ∈ (0, inj(M)/2) denotes the constant as in Lemma 4.8. Then for any y ∈
Bε(i)(p)(opi) we have qi(y) ∈ B2λ(p)(p) where each qi(y) is the point defined by Equation

(4.10). In particular for any y ∈ Bε(i)(p)(opi) parallel transport τ
F̃ (p)

F̃ (qi(y))
: TF̃ (p)N →

TF̃ (qi(y))
N along a unique minimal geodesic of N emanating from F̃ (p) to F̃ (qi(y)) is

defined in the sense of Definition 2.3.

Note here that τ
F̃ (p)

F̃ (qi(y))
is not parallel translation along a line segment of Rℓ joining

the two points.

Proof. Fix y ∈ Bε(i)(p)(opi). Since ε
(i)(p) ≤ r(pi), the triangle inequality gives

∥ exp−1
pi
q − y∥ ≤ ∥ exp−1

pi
q∥+ ∥y∥ < r(pi) + ε(i)(p) ≤ 2r(pi),

and hence exp−1
pi
q − y ∈ B2r(pi)(opi). Since q ∈ Br(pi)(pi), it is clear that exp−1

pi
q ∈

B2r(pi)(opi). Note that exppi
|B2r(pi)

(opi )
is a diffeomorphism, as 2r(pi) < inj(M), see

Lemma 4.1 (II). We then see, by the triangle inequality, that dM (p, qi(y)) ≤ dM (p, q) +

dM (q, qi(y)) < λ(p) + ε(i)(p) · Lip(exppi
|B2r(pi)

(opi )
) ≤ 2λ(p). Hence we get qi(y) ∈

B2λ(p)(p) as claimed. Moreover, since p, qi(y) ∈ B2λ(p)(p), it follows from Proposition 3.6

(ii) that F̃ (p), F̃ (qi(y)) ∈ Bt(p)(F̃ (p)) ⊂ N . Along the minimal geodesic of N emanating

from F̃ (p) to F̃ (qi(y)) parallel transport τ
F̃ (p)

F̃ (qi(y))
: TF̃ (p)N → TF̃ (qi(y))

N is defined as in

Definition 2.3. □

Remark 5.2. Since ε(i)(p) ≤ ω(M), and since q ∈ Br(pi)(pi), from Lemma 4.8

we have parallel transport τ
qi(y)
q : Tqi(y)M → TqM , as in Definition 2.3, for all y ∈

Bε(i)(p)(opi). We use this in the next lemma.

From now on δ(p) > 0 indicates the constant as in Proposition 3.6, and for each

x ∈M let Sm−1
x := {u ∈ TxM | ∥u∥ = 1} and Sn−1

F̃ (x)
:= {v ∈ TF̃ (x)N | ∥v∥ = 1}.
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Lemma 5.3 (Key lemma). Fix ε ∈ (0, ε(i)(p)). For any y ∈ Bε(opi) and any

ũ ∈ Sn−1

F̃ (q)
there is a vector V

(ũ)
qi(y)

∈ Sm−1
qi(y)

such that

⟨
(dF̃ (pi)

ε )q(τ
qi(y)
q (V

(ũ)
qi(y)

)), ũ
⟩

≥ δ(p)− Lip(F )

(
sup

y∈Bε(opi )

∥∥∥∥J (τ
qi(y)
q (V

(ũ)

qi(y)
))

y (1)− V
(ũ)
qi(y)

∥∥∥∥
+ sup

y∈Bε(opi )

∥ũ− (τ
F̃ (p)

F̃ (qi(y))
◦ τ F̃ (q)

F̃ (p)
)(ũ)∥

)
.

Here J
(τ

qi(y)
q (V

(ũ)

qi(y)
))

y is the Jacobi field, defined by Equation (4.9) for v = τ
qi(y)
q (V

(ũ)
qi(y)

) ∈

Sm−1
q , along the geodesic φ

(τ
qi(y)
q (V

(ũ)

qi(y)
))

y (t, 0) given by Equation (4.8) joining pi to qi(y).

Proof. By Lemma 5.1, qi(y) ∈ B2λ(p)(p) holds for all y ∈ Bε(opi). Fix ũ ∈ Sn−1

F̃ (q)
.

It follows from Proposition 3.6 (iii) for u = τ
F̃ (q)

F̃ (p)
(ũ) ∈ Sn−1

F̃ (p)
and x = qi(y) that for

almost all y ∈ Bε(opi) there is a vector V
(ũ)
qi(y)

:= V
(τ

F̃ (q)

F̃ (p)
(ũ))

qi(y)
∈ Sm−1

qi(y)
such that

⟨V (ũ)
qi(y)

, (dF̃qi(y))
∗(τ

F̃ (p)

F̃ (qi(y))
(τ

F̃ (q)

F̃ (p)
(ũ)))⟩M ≥ δ(p) (5.1)

where (dF̃qi(y))
∗ is the adjoint of the differential dF̃qi(y) : Tqi(y)M → TF̃ (qi(y))

N , and

⟨ · , · ⟩M denotes a Riemannian metric of M . Since N is isometrically embedded into Rℓ,

we see, by the Riesz representation theorem and Equation (5.1), that

⟨dF̃qi(y)(V
(ũ)
qi(y)

), (τ
F̃ (p)

F̃ (qi(y))
◦ τ F̃ (q)

F̃ (p)
)(ũ)⟩ = ⟨V (ũ)

qi(y)
, (dF̃qi(y))

∗(τ
F̃ (p)

F̃ (qi(y))
(τ

F̃ (q)

F̃ (p)
(ũ)))⟩M

≥ δ(p) (5.2)

for almost all y ∈ Bε(opi). For simplicity of notation we set v := τ
qi(y)
q (V

(ũ)
qi(y)

) ∈ Sm−1
q .

We then see, by Equation (4.1), Remark 4.7, and the Cauchy–Schwarz inequality, that⟨
(dF̃ (pi)

ε )q(v), ũ
⟩

≥ −Lip(F ) sup
y∈Bε(opi )

∥∥J (v)
y (1)− V

(ũ)
qi(y)

∥∥+ ∫
Bε(opi )

ρ(i)ε (y)
⟨
dF̃qi(y)(V

(ũ)
qi(y)

), ũ
⟩
dy. (5.3)

Moreover, we see, by Equations (4.1), (5.2), and the Cauchy–Schwarz inequality, that∫
Bε(opi )

ρ(i)ε (y)
⟨
dF̃qi(y)(V

(ũ)
qi(y)

), ũ
⟩
dy

≥ −
∫
Bε(opi )

ρ(i)ε (y)∥dF̃qi(y)(V
(ũ)
qi(y)

)∥ · ∥ũ− (τ
F̃ (p)

F̃ (qi(y))
◦ τ F̃ (q)

F̃ (p)
)(ũ)∥dy + δ(p)

≥ −Lip(F ) sup
y∈Bε(opi )

∥ũ− (τ
F̃ (p)

F̃ (qi(y))
◦ τ F̃ (q)

F̃ (p)
)(ũ)∥+ δ(p). (5.4)
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Substituting Equation (5.4) into Equation (5.3), we obtain the desired inequality. □

We can apply an argument almost identical to the proof of [26, Lemmas 2.23, 2.24]

and Lemma 5.3 to show the following. We omit the proof.

Proposition 5.4. There is a constant ε0(p) > 0 satisfying the following : For any

ũ ∈ Sn−1

F̃ (q)
there is a vector w(ũ) ∈ Sm−1

q such that for any ε ∈ (0, ε0(p)),

⟨
(dF̃ε)q(w

(ũ)), ũ
⟩
≥ 1

3
δ(p). (5.5)

Corollary 5.5. If N = R, and p ∈ M is nonsingular for the Lipschitz function

F : M → R, then there are two constants λ(p) > 0 and ε0(p) > 0 such that grad F̃ε ̸= 0

on Bλ(p)(p) for all ε ∈ (0, ε0(p)), hence F̃ε has no critical points on Bλ(p)(p).

Proof. Let λ(p) be the positive constant as in Proposition 3.6. Fix x ∈ Bλ(p)(p)

and u ∈ S0F (x). By Proposition 5.4 there is a constant ε0(p) > 0 such that there is a

vector w(u) ∈ Sm−1
x satisfying ⟨(dF̃ε)x(w

(u)), u⟩ ≥ δ(p)/3 for all ε ∈ (0, ε0(p)). Fix ε ∈
(0, ε0(p)). Since τ

F (x)

F̃ε(x)
(u) = (d/dt)|F̃ε(x)

, we have δ(p)/3 ≤ ⟨(dF̃ε)x(w
(u)), τ

F (x)

F̃ε(x)
(u)⟩ =

⟨w(u)(F̃ε)(d/dt)|F̃ε(x)
, (d/dt)|F̃ε(x)

⟩ = w(u)(F̃ε) · 1 = ⟨(grad F̃ε)x, w
(u)⟩M ≤ ∥(grad F̃ε)x∥,

which shows the first assertion. The second assertion follows from the first one. □

5.2. Proof of Theorem 1.4.

We follow assumptions and notation of Section 5.1. In addition we assume that N

is connected and compact, and that the Lipschitz map F̃ :M → N ⊂ Rℓ has no singular

points on M .

Since N can be isometrically embedded into Rℓ, it follows from the tubular neigh-

borhood theorem (cf. [20], [27]) via the normal exponential map exp⊥ : TN⊥ → Rℓ

that there is a constant µ0 > 0 such that exp⊥ is a diffeomorphism from an open neigh-

borhood Uµ0(O(TN⊥)) := {X ∈ TN⊥ | ∥X∥ < µ0} of the zero section O(TN⊥) =

{ox ∈ TxN
⊥ |x ∈ N} onto an open one Uµ0(N) := exp⊥[Uµ0(O(TN⊥))] of N in Rℓ,

which we will call the tubular neighborhood of N , where ox is the origin of TxN
⊥.

Since exp⊥ |Uµ0
(O(TN⊥)) is bijective, for any y ∈ Uµ0

(N) there is a unique point

(z, v) ∈ Uµ0(O(TN⊥)) such that y = exp⊥(z, v). For such a pair (y, (z, v)) we have

the smooth projection πN : Uµ0(N) → N given by πN (y) = πN (exp⊥(z, v)) := z. Note

that the first variation formula yields ∥y − πN (y)∥ = infx∈N ∥y − x∥ for all y ∈ Uµ0(N).

For any z ∈ N the definition of πN gives (TzN)⊥ = Ker(dπN )z.

Since every p ∈ M is nonsingular for F̃ , there are two positive constants δ(p) and

ε0(p) obtained in Propositions 3.6 and 5.4, which satisfy Equation (5.5). Set δ0 :=

min{δ(p) | p ∈ M} and ε0 := min{ε0(p) | p ∈ M}. Moreover Lemma 4.10 shows that for

µ0 above there is a constant ε(µ0) ∈ (0, inj(M)/2) such that if ε ∈ (0, ε(µ0)), then

F̃ε(M) ⊂ Uµ0(N). (5.6)

Set ε1 := min{ε0, ε(µ0)}. It then follows from Proposition 5.4 for q = p that for any

p ∈M and any ũ ∈ Sn−1

F̃ (p)
there is a vector w(ũ) ∈ Sm−1

p such that for any ε ∈ (0, ε1),
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⟨
(dF̃ε)p(w

(ũ)), ũ
⟩
≥ 1

3
δ0. (5.7)

For any x, y ∈ Rℓ let P x
y : TxRℓ → TyRℓ be the parallel translation along the line

segment in Rℓ joining x to y, and let P y
x := (P x

y )
−1.

Lemma 5.6. Fix p ∈ M and ε ∈ (0, ε1). For any û ∈ P
F̃ (p)

F̃ε(p)
(Sn−1

F̃ (p)
) there is a

vector ŵ ∈ Sm−1
p such that ∠((dF̃ε)p(ŵ), û) < π/2 holds where ∠((dF̃ε)p(ŵ), û) is the

angle between (dF̃ε)p(ŵ) and û at the origin oF̃ε(p)
of TF̃ε(p)

Rℓ.

Proof. Fix û ∈ P
F̃ (p)

F̃ε(p)
(Sn−1

F̃ (p)
). By Proposition 5.4, for ũ := P

F̃ε(p)

F̃ (p)
(û)(∈ Sn−1

F̃ (p)
)

there is a vector ŵ := w(ũ) ∈ Sm−1
p with Equation (5.7). Since ⟨(dF̃ε)p(ŵ), ũ⟩ =

⟨(dF̃ε)p(ŵ), P
F̃ (p)

F̃ε(p)
(ũ)⟩, we see 0 < δ0/3 ≤ ⟨(dF̃ε)p(ŵ), ũ⟩ = ⟨(dF̃ε)p(ŵ), û⟩ =

∥(dF̃ε)p(ŵ)∥ cos(∠((dF̃ε)p(ŵ), û)), and finally ∠((dF̃ε)p(ŵ), û) < π/2. □

Since every p ∈ M is nonsingular for F̃ , rank(g) = n holds for all g ∈ ∂F̃ (p), and

hence for each ε ∈ (0, ε1) we see, by Lemma 4.10 and Equation (5.7), that

Im(dF̃ε)p ∩ P F̃ (p)

F̃ε(p)
(Ker(dπN )F̃ (p)) = {oF̃ε(p)

} (p ∈M). (5.8)

Moreover, by virtue of Equation (5.6), for each ε ∈ (0, ε1) we can define the smooth map

fε :M → N by

fε(p) := (πN ◦ F̃ε)(p) (p ∈M).

Lemma 5.7. For any η > 0 there is a constant κ(η) ∈ (0, ε1) such that if ε ∈
(0, κ(η)), then dN (fε(p), F̃ (p)) < η and Im(dF̃ε)p ∩Ker(dπN )F̃ε(p)

= {oF̃ε(p)
} hold for all

p ∈M .

Proof. Fix p ∈ M . By Lemma 4.10, limε↓0 ∥F̃ε(p) − F̃ (p)∥ = 0, and since

πN (F̃ (p)) = F̃ (p), we have limε↓0 ∥fε(p)− F̃ (p)∥ = 0. From this for any η > 0 there is a

constant α1(p, η) ∈ (0, ε1) such that if ε ∈ (0, α1(p, η)), then

∥fε(p)− F̃ (p)∥ < η

η + 1
. (5.9)

Fix η > 0. Since N is isometrically embedded into Rℓ, limε↓0 ∥fε(p) − F̃ (p)∥ = 0 also

implies that there is a constant α2(p, η) ∈ (0, ε1) such that if ε ∈ (0, α2(p, η)), then∣∣∣∣∣dN (fε(p)− F̃ (p))

∥fε(p)− F̃ (p)∥
− 1

∣∣∣∣∣ < η. (5.10)

Let β1(p, η) := min{α1(p, η), α2(p, η)}. Equations (5.9) and (5.10) show that if ε ∈
(0, β1(p, η)), then

dN (fε(p), F̃ (p)) < η. (5.11)
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For each ε ∈ (0, β1(p, η)) let γε : [0, µ0) → Uµ0(N) be a unit speed minimal geodesic

emanating perpendicularly from fε(p) and passing through F̃ε(p). Equation (5.11) shows

that by letting ε ↓ 0, γε converges to a unit speed minimal geodesic γ0 : [0, µ0) →
Uµ0(N) emanating perpendicularly from F̃ (p). Since limε↓0 ∥F̃ε(p) − F̃ (p)∥ = 0, we see

limε↓0 Ker(dπN )F̃ε(p)
= Ker(dπN )F̃ (p). Since Im(dF̃ε)p∩P F̃ (p)

F̃ε(p)
(Ker(dπN )F̃ (p)) = {oF̃ε(p)

}
by Equation(5.8), we see that for η there is a constant β2(p, η) ∈ (0, β1(p, η) such that if

ε ∈ (0, β2(p, η)), then

Im(dF̃ε)p ∩Ker(dπN )F̃ε(p)
= {oF̃ε(p)

}. (5.12)

By setting κ(η) := min{β2(p, η) | p ∈ M}, Equations (5.11) and (5.12) complete the

proof. □

Fix ε ∈ (0, κ(η)). Lemma 5.7 shows rank(dπN |Im(dF̃ε)p
) = n for all p ∈ M , and

hence rank((dfε)p) = n for all p ∈M , which proves that fε is a smooth submersion from

M to N . Note that fε is an open map, because fε is locally equivalent to the canonical

projection on some coordinate neighborhood of each point of M , see [46]. Since fε is

continuous, and since M is compact, fε(M) is compact in N . fε(M) is thus closed in

N , for N is Hausdorff. Since M is open in M , fε(M) is open in N . Connectedness of N

shows that fε is surjective. Let K be any compact set in N . By virtue of the compactness

of N , K is closed in N . From the continuity of fε on M , f−1
ε (K) is closed in M . Since

M is compact, f−1
ε (K) is also, and hence fε is proper. Since fε is a proper and surjective

submersion between compact, smooth manifolds, Ehresmann’s lemma [11] shows that fε
is a locally trivial fibration, i.e., an Ehresmann fibration. □

6. Proof of Reeb’s sphere theorem for Lipschitz functions (Theorem 1.7).

Throughout this section let M be a closed Riemannian manifold of dimension m,

and we assume thatM admits a Lipschitz function F :M → R with exactly two singular

points in the sense of Clarke, denoted by z1, z2 ∈M .

Since z1, z2 ∈ M are singular for F , we see, by Lemma 2.16, that ozi ∈ ⊛F (zi)

(i = 1, 2) where ⊛F (zi) indicates the generalized gradient of F at zi (see Definition 2.13).

From the maximum and minimum values theorem we can therefore assume, without loss

of generality, that F (z1) = minx∈M F (x) and F (z2) = maxy∈M F (y). For simplicity of

notation let ai := F (zi) for i = 1, 2. Note that a1 < a2.

Lemma 6.1. For any r > 0 with Br(z1) ∩ Br(z2) = ∅ there is a constant bi(r) ∈
(a1, a2) such that F−1(bi(r)) ⊂ Br(zi) for each i = 1, 2.

Proof. We prove this lemma only in the case of i = 1. Suppose not. There is

then r0 > 0 such that for any λ ∈ (a1, a2), F
−1(λ) ⊈ Br0(z1) holds. For each n ∈ N

there is xn ∈ F−1(a1 + (a2 − a1)/2n) such that xn ̸∈ Br0(z1), and hence we get a

sequence {xn}n∈N of such points xn. Since M is compact, {xn}n∈N has a convergent

subsequence {xnj}j∈N. Let x̄ := limj→∞ xnj . Since F is continuous on M , we see that

F (x̄) = limj→∞ F (xnj
) = limj→∞{a1+(a2−a1)/2nj} = a1. Now x̄ ̸= z1, and F (x̄) = a1,

hence x̄ is a critical point of F , which is a contradiction. □
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Fix r > 0 with Br(z1) ∩ Br(z2) = ∅. For ε ∈ (0, inj(M)/2) let F̃ε : M → R be the

global smooth approximation of F defined by Equation (4.11).

Lemma 6.2. There is an open set V of M and a constant ε0 ∈ (0, inj(M)/2) such

that if ε ∈ (0, ε0), then F
−1([b1(r), b2(r)]) ⊂ V , and F̃ε has no critical points on V .

Proof. For simplicity of notation let M ′ := F−1([b1(r), b2(r)]). We first show

M ′ ⊂ V . Since z1 and z2 are the only two critical points of F , and since a1 < b1(r) <

b2(r) < a2, F has no critical points onM ′. It follows from Lemma 2.16 and Corollary 5.5

that for each p ∈ M ′ there are two constants λ(p) > 0 and ε̄(p) > 0 such that for

each ε ∈ (0, ε̄(p)), grad F̃ε ̸= 0 on Bλ(p)(p). Since M ′ is compact, there is a finite set

{p1, p2, . . . , pk} ⊂ M ′ such that M ′ ⊂
∪k

i=1Bλ(pi)(pi). Since
∪k

i=1Bλ(pi)(pi) is open in

M , setting V :=
∪k

i=1Bλ(pi)(pi), we get the first assertion.

We next show the second assertion. Set ε0 := min{ε̄(p1), ε̄(p2), . . . , ε̄(pk)}. Since

F−1([b1(r), b2(r)]) ⊂ V =
∪k

i=1Bλ(pi)(pi) and grad F̃ε ̸= 0 on V , F̃ε has no critical points

on V for all ε ∈ (0, ε0). □

Lemma 6.3. There is a constant ε1 ∈ (0, ε0] such that if ε ∈ (0, ε1), then for any

c ∈ (b1(r), b2(r)), F̃
−1
ε ([b1(r), b2(r)]) is diffeomorphic to F̃−1

ε (c)× [b1(r), b2(r)].

Proof. Fix i ∈ {1, 2}. Since Br(zi)∩V is an open neighborhood of F−1(bi(r)), we

see, by Lemma 4.10, that there is a constant ε̂i ∈ (0, inj(M)/2) such that if ε ∈ (0, ε̂i),

then F̃−1
ε (bi(r)) ⊂ Br(zi) ∩ V . Let ε1 := min{ε0, ε̂1, ε̂2}, and fix ε ∈ (0, ε1). Since

F̃−1
ε (bi(r)) ⊂ Br(zi)∩V , F̃−1

ε ([b1(r), b2(r)]) ⊂ V holds, and hence we see, by Lemma 6.2,

that F̃ε has no critical points on F̃−1
ε ([b1(r), b2(r)]). From this, for each t ∈ [b1(r), b2(r)],

F̃−1
ε (t) is an (m− 1)-dimensional compact regular submanifold of M . F̃−1

ε ([b1(r), b2(r)])

is therefore diffeomorphic to F̃−1
ε (b1) × [b1(r), b2(r)] by a well-known theorem in Morse

theory ([30, Theorem 2.31], or [31, Theorem 3.1]). Fix c ∈ (b1(r), b2(r)). Since F̃−1
ε (s)

and F̃−1
ε (t) are diffeomorphic for all s, t ∈ [b1(r), b2(r)], F̃

−1
ε (b1) is diffeomorphic to

F̃−1
ε (c), which yields our assertion. □

Now we give the proof of Theorem 1.7. From Lemma 6.1 we observe limr↓0 bi(r) = ai
(i = 1, 2). Fix c ∈ (b1(r), b2(r)) ⊆ (a1, a2). Let r ↓ 0. Lemma 6.3 then shows that M

is homeomorphic to the suspension, denoted by Σ, of the compact regular submanifold

F̃−1
ε (c) of M for a sufficiently small ε > 0. It follows easily from a result of Brown [3]

(see also [10, Introduction]) that Σ is homeomorphic to the m-sphere for a sufficiently

small ε > 0, and M is also. □
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[35] H. Rademacher, Über partielle und totale differenzierbarkeit von Funktionen mehrerer Variabeln

und über die Transformation der Doppelintegrale, Math. Ann., 79 (1919), 340–359.

[36] G. Reeb, Sur certaines propriétés topologiques des variétés feuilletées, Publ. Inst. Math. Univ.

Strasbourg, 11, 5–89, 155–156. Actualités Sci. Ind., 1183, Hermann & Cie., Paris, 1952.

[37] R. T. Rockafellar, Convex Analysis, Princeton Landmarks Math., Princeton Univ. Press, Prince-

ton, NJ, 1997. Reprint of the 1970 original.

[38] S. Roman, Advanced Linear Algebra, third edition, Grad. Texts in Math., 135, Springer-Verlag,

New York, 2008.

[39] T. Sakai, Riemannian Geometry, Transl. Math. Monogr., 149, Amer. Math. Soc., Providence, RI,

1996. Translated from the 1992 Japanese original by the author.

[40] R. Schneider, Convex Bodies: The Brunn–Minkowski Theory, Encyclopedia Math. Appl., 44,

Cambridge Univ. Press, Cambridge, 1993.

[41] Y. Shikata, On a distance function on the set of differentiable structures, Osaka Math. J., 3 (1966),

65–79.

[42] S. Smale, Diffeomorphisms of the 2-sphere, Proc. Amer. Math. Soc., 10 (1959), 621–626.
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