
| ID | 62794 |
| フルテキストURL | |
| 著者 |
Yamagishi, Hiroyuki
Tokyo Metropolitan College of Industrial Technology
|
| 抄録 | We have the best constants of three kinds of discrete Sobolev inequalities on the complete bipartite graph with 2N vertices, that is, KN,N. We introduce a discrete Laplacian A on KN,N. A is a 2N ×2N real symmetric positive-semidefinite matrix whose eigenvector corresponding to zero eigenvalue is 1 = t(1, 1, … , 1)∈ C2N. A discrete heat kernel, a Green’s matrix and a pseudo Green’s matrix play important roles in giving the best constants.
|
| キーワード | Discrete Sobolev inequality
Discrete Laplacian
Green’s matrix
Reproducing relation
|
| 備考 | Mathematics Subject Classification. Primary 46E39; Secondary 35K08.
|
| 発行日 | 2022-01
|
| 出版物タイトル |
Mathematical Journal of Okayama University
|
| 巻 | 64巻
|
| 号 | 1号
|
| 出版者 | Department of Mathematics, Faculty of Science, Okayama University
|
| 開始ページ | 31
|
| 終了ページ | 45
|
| ISSN | 0030-1566
|
| NCID | AA00723502
|
| 資料タイプ |
学術雑誌論文
|
| 言語 |
英語
|
| 著作権者 | Copyright ©2022 by the Editorial Board of Mathematical Journal of Okayama University
|
| 論文のバージョン | publisher
|
| 査読 |
有り
|
| Submission Path | mjou/vol64/iss1/3
|