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THE BEST CONSTANT OF

THE DISCRETE SOBOLEV INEQUALITIES ON

THE COMPLETE BIPARTITE GRAPH

Hiroyuki Yamagishi

Abstract. We have the best constants of three kinds of discrete Sobolev
inequalities on the complete bipartite graph with 2N vertices, that is,
KN,N . We introduce a discrete Laplacian A on KN,N . A is a 2N × 2N
real symmetric positive-semidefinite matrix whose eigenvector corre-
sponding to zero eigenvalue is 1 = t(1, 1, · · · , 1) ∈ C

2N . A discrete heat
kernel, a Green’s matrix and a pseudo Green’s matrix play important
roles in giving the best constants.

1. Discrete Laplacian

For any fixedN = 1, 2, 3, · · · , we set the indices of vertices on the complete
bipartite graph KN,N as Figure 1.

20 2N-24

31 2N-15

Figure 1. Complete bipartite graph KN,N .

We introduce the edge set

e =
{
(2i, 2j + 1) | 0 ≤ i, j ≤ N − 1

}
,

where the vertices 2i and 2j + 1 are connected to an edge. The discrete
Laplacian A is defined as

A =

(
a(i, j)

)

0≤i,j≤2N−1

, a(i, j) =





N (i = j)
−1 ((i, j) ∈ e)
0 (otherwise)

.
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A is rewritten as

A =

(
Nδ(i − j)−

N−1∑

k=0

δ(i− j + 2k + 1)

)

0≤i,j≤2N−1

,(1.1)

where the delta function

δ(i) =

{
1 (Mod(i, 2N) = 0)
0 (Mod(i, 2N) 6= 0)

(i ∈ Z).(1.2)

Here, we show the concrete form of A = AN as

A1 =

(
1 −1
−1 1

)
, A2 =




2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2


 ,

A3 =




3 −1 0 −1 0 −1
−1 3 −1 0 −1 0
0 −1 3 −1 0 −1
−1 0 −1 3 −1 0
0 −1 0 −1 3 −1
−1 0 −1 0 −1 3




.

A is a 2N × 2N real symmetric positive-semidefinite matrix which has an
eigenvalue 0 and whose eigenvector is 1 = t(1, 1, · · · , 1) ∈ C2N . We intro-
duce the following three matrices

Discrete heat kernel : H(t) = exp(−tA),(1.3)

Green’s matrix : G(a) = (A+ aI)−1 =

∫ ∞

0
e−atH(t)dt,(1.4)

Pseudo Green’s matrix : G∗ = lim
a→+0

(
G(a)− a−1E0

)
,(1.5)

where a is a positive number and

E0 = (2N)−11t1 =
1

2N

(
1

)

0≤i,j≤2N−1

is a projection matrix to the eigenspace corresponding to the eigenvalue 0
of A. G∗ satisfies

AG∗ = G∗A = I −E0, G∗E0 = E0G∗ = O.

Here, I is the 2N × 2N identity matrix and O is the 2N × 2N zero matrix.
Thus, G(a) is an inverse matrix of A + aI and G∗ is a Penrose-Moore
generalized inverse matrix of A.

This paper is composed of five sections. In section 2, we show Theorem
2.1∼2.3 corresponding to H(t), G(a) and G∗. In section 3, we prepare
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some basic matrices and explain the difference equations. In section 4, we
present a reproducing relation. Section 5 is devoted to the proof of Theorem
2.1∼2.3.

2. Discrete Sobolev inequality

In this section, we state the best constants of three kinds of discrete
Sobolev inequalities on KN,N . For u,v ∈ C2N , we introduce sesquilinear
forms

(u, v) = v∗u, ‖u ‖2 = (u,u),

(u, v)H = ((A+ aI)u, v) = v∗(A+ aI)u, ‖u ‖2H = (u,u)H ,

where u∗ denotes u∗ = tu. For u,v ∈ C2N
0 := {u |u ∈ C2N and t1u = 0 },

we introduce a sesquilinear form

(u, v)A = (Au, v) = v∗Au, ‖u ‖2A = (u,u)A.

(·, ·)H and (·, ·)A are proved to be an inner product afterwards. We rewrite
‖u ‖2H and ‖u ‖2A as

‖u ‖2H = ‖u ‖2A + a
2N−1∑

i=0

|u(i) |2, ‖u ‖2A =
∑

(i,j)∈e
|u(i) − u(j) |2.

The concrete forms of ‖u ‖2A = ‖u ‖2AN are as

‖u ‖2A1 = |u(0)− u(1) |2,

‖u ‖2A2 =

|u(0) − u(1) |2 + |u(0) − u(3) |2 + |u(2) − u(1) |2 + |u(2)− u(3) |2,

‖u ‖2A3 =

|u(0) − u(1) |2 + |u(0) − u(3) |2 + |u(0) − u(5) |2+
|u(2) − u(1) |2 + |u(2) − u(3) |2 + |u(2) − u(5) |2+
|u(4) − u(1) |2 + |u(4) − u(3) |2 + |u(4) − u(5) |2.

To describe theorems, for any j (0 ≤ j ≤ 2N − 1) fixed, we use the 2N -
dimensional vector

δj =
t(· · · , δ(i − j), · · · )0≤i≤2N−1,

where δ(i) is defined in (1.2).
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Theorem 2.1. For any u = t(u(0), u(1), · · · , u(2N − 1)) ∈ C2N
0 , there

exists a positive constant C which is independent of u, such that the discrete

Sobolev inequality
(

max
0≤j≤2N−1

|u(j) |
)2

≤ C ‖u ‖2A(2.1)

holds. Among such C, for any j0 (0 ≤ j0 ≤ 2N − 1), the best constant is

C0 = max
0≤j≤2N−1

tδjG∗δj =
tδj0G∗δj0 =

4N − 3

4N2
.

If we replace C by C0 in (2.1), the equality holds if and only if u is parallel

to

G∗δj0 =
1

4N2

(
4Nδ(i − j0)− 2− (−1)i−j0

)

0≤i≤2N−1

.

Theorem 2.2. For any u = t(u(0), u(1), · · · , u(2N − 1)) ∈ C2N , there

exists a positive constant C which is independent of u, such that the discrete

Sobolev inequality
(

max
0≤j≤2N−1

|u(j) |
)2

≤ C ‖u ‖2H(2.2)

holds. Among such C, for any j0 (0 ≤ j0 ≤ 2N − 1), the best constant is

C0(a) = max
0≤j≤2N−1

tδjG(a)δj =
tδj0G(a)δj0 =

N + 2Na+ a2

a(N + a)(2N + a)
.

If we replace C by C0(a) in (2.2), the equality holds if and only if u is

parallel to

G(a)δj0 =
1

N + a

(
δ(i − j0) +

1

2a
− (−1)i−j0

2(2N + a)

)

0≤i≤2N−1

.

Theorem 2.3. For any u(t) = t(u(0, t), u(1, t), · · · , u(2N − 1, t)) ∈ C2N ,

there exists a positive constant C which is independent of u(t), such that the

discrete Sobolev-type inequality

 sup

0≤j≤2N−1
−∞<s<∞

|u(j, s) |




2

≤ C

∫ ∞

−∞

∥∥∥∥
(

d

dt
+A+ aI

)
u(t)

∥∥∥∥
2

dt(2.3)

holds. Among such C, the best constant is

C1(a) =
1

2
C0(a),
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where C0(a) is given in Theorem 2.2. If we replace C by C1(a) in (2.3), for
any j0 (0 ≤ j0 ≤ 2N − 1), the equality holds if and only if u(t) is parallel to

∫ ∞

|t|

1

2
e−aσH(σ)δj0dσ =(2.4)

1

2(N + a)

(
e−(N+a)|t|δ(i− j0) +

N + a

2Na
e−a|t| − 1

2N
e−(N+a)|t|

− (−1)i−j0

2N
e−(N+a)|t| +

(−1)i−j0(N + a)

2N(2N + a)
e−(2N+a)|t|

)

0≤i≤2N−1

(−∞ < t < ∞).

In our previous papers, we obtained the best constant of the discrete
Sobolev inequalities (2.1) and (2.2) on graphs such as the complete graph
KN [10], N -sided polygons [4, 5, 9], regular polyhedra [2, 7, 8], and truncated
regular polyhedra [1, 3, 6].

3. Difference equations

Let us put ω as ω = exp(
√
−1π/N) which satisfies ω2N = 1 and put

normalized orthogonal vectors as

ϕk =
1√
2N

t( · · · , ωik, · · · )0≤i≤2N−1 (0 ≤ k ≤ 2N − 1),

which satisfies ϕ∗
lϕk = δ(k − l). Hereafter, we introduce some 2N × 2N

matrices. Q is defined as

Q =

(
ϕ0 · · · ϕ2N−1

)
=

1√
2N

(
ωij

)

0≤i,j≤2N−1

.

Ek are orthogonal projection matrices defined as

Ek = ϕkϕ
∗
k =

1

2N

(
ω(i−j)k

)

0≤i,j≤2N−1

(0 ≤ k ≤ 2N − 1),

which satisfy EkEl = δ(k − l)Ek and E∗
k = Ek. Using Ek, we have the

spectral decomposition of I as

I = QQ∗ =
2N−1∑

k=0

ϕkϕ
∗
k =

2N−1∑

k=0

Ek.(3.1)
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L is a rotate-left matrix defined as

L =




0 1

0
. . .
. . . 1

1 0


 =

(
δ(i − j + 1)

)

0≤i,j≤2N−1

,

which satisfies L∗ = tL = L−1 = L2N−1 and

Lk =

(
δ(i− j + k)

)

0≤i,j≤2N−1

(0 ≤ k ≤ 2N − 1), L2N = I.

Thus L is a unitary matrix. L has eigenvalues ωk (0 ≤ k ≤ 2N − 1)
corresponding to the normalized orthogonal eigenvectors ϕk (0 ≤ k ≤ 2N −
1). So L is diagonalized by the matrix Q as

L = QL̂Q∗, L̂ =

(
ωiδ(i − j)

)

0≤i,j≤2N−1

.

Using Ek, we have the spectral decomposition of L as

L = QL̂Q∗ =
2N−1∑

k=0

ωkϕkϕ
∗
k =

2N−1∑

k=0

ωkEk.(3.2)

Using (3.1) and (3.2), we rewrite A given in (1.1) as

A = NI −
2N−1∑

k=0

L2k+1 = NQQ∗ −
N−1∑

k=0

QL̂
2k+1

Q∗ = QÂQ∗,

where

Â = NI −
N−1∑

k=0

L̂
2k+1

=

(
λiδ(i− j)

)

0≤i,j≤2N−1

,

λi = N −
N−1∑

k=0

ωi(2k+1) =





0 (i = 0)
N (i 6= 0 and i 6= N)
2N (i = N)

.

Hence A has eigenvalues λk (0 ≤ k ≤ 2N − 1) corresponding to the nor-
malized orthogonal eigenvectors ϕk (0 ≤ k ≤ 2N − 1). Then, the Jordan
canonical form of A is given as

A = QÂQ∗, Â =

(
λiδ(i− j)

)

0≤i,j≤2N−1

.

Using Ek, we have the spectral decomposition of A as

A = QÂQ∗ =
2N−1∑

k=0

λkϕkϕ
∗
k =

2N−1∑

k=0

λkEk = N(I −E0 +EN ).(3.3)
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First, we explain three difference equations concerning the discrete heat
kernel (1.3), the Green’s matrix (1.4) and the pseudo Green’s matrix (1.5).

Proposition 3.1. For any f(t) ∈ C2N , the discrete heat equation
(

d

dt
+A+ aI

)
u = f(t) (−∞ < t < ∞)(3.4)

has the unique solution given as

u(t) =

∫ ∞

−∞
H∗(t− s)f(s)ds (−∞ < t < ∞),(3.5)

H∗(t) = Y (t)e−atH(t) (−∞ < t < ∞),(3.6)

where Y (t) = 1 (0 ≤ t < ∞), 0 (−∞ < t < 0) is the Heaviside step function

and H(t) is the discrete heat kernel expressed as

H(t) = exp(−At) = e−NtI +
(
1− e−Nt

)
E0 −

(
e−Nt − e−2Nt

)
EN =(3.7)

(
e−Ntδ(i − j) +

1

2N

(
1− e−Nt

)
− (−1)i−j

2N

(
e−Nt − e−2Nt

)
)

0≤i,j≤2N−1

.

The concrete forms of H(t) = HN (t) (N = 1, 2, 3) are as follows:

H1(t) =

(
h0 h1
h1 h0

)
,

(
h0
h1

)
=

1

2

(
1 + e−2t

1− e−2t

)
,

H2(t) =




h0 h1 h2 h1
h1 h0 h1 h2
h2 h1 h0 h1
h1 h2 h1 h0


 ,



h0
h1
h2


 =

1

4



(1 + e−2t)2

1− e−4t

(1− e−2t)2


 ,

H3(t) =




h0 h1 h2 h1 h2 h1
h1 h0 h1 h2 h1 h2
h2 h1 h0 h1 h2 h1
h1 h2 h1 h0 h1 h2
h2 h1 h2 h1 h0 h1
h1 h2 h1 h2 h1 h0




,



h0
h1
h2


 =

1

6



1 + 4e−3t + e−6t

1− e−6t

(1− e−3t)2


 .

Proof of Proposition 3.1 Using the Fourier transform

u(t) −̂→ û(ω) =

∫ ∞

−∞
e−

√
−1ωtu(t) dt,

we transform (3.4) into
(√

−1ωI +A+ aI
)
û(ω) = f̂(ω) (−∞ < ω < ∞).
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Solving this relation, we have û(ω) = Ĥ∗(ω) f̂ (ω), where

Ĥ∗(ω) =
(√

−1ωI +A+ aI
)−1

=

∫ ∞

−∞
e−

√
−1ωtY (t)e−atH(t) dt.

Using the inverse Fourier transform, we have (3.5) and (3.6). From

H(t) = exp(−At) = Q exp(−Ât)Q∗ =
2N−1∑

k=0

e−λktEk =

E0 + e−Nt (E1 + · · ·+EN−1 +EN+1 + · · ·+E2N−1) + e−2NtEN =

E0 + e−Nt (I −E0 −EN ) + e−2NtEN ,

we have (3.7). It should be noted that H∗(t) satisfies(
d

dt
+A+ aI

)
H∗(t) = O,

H∗(t− s)
∣∣∣
s=t−0

−H∗(t− s)
∣∣∣
s=t+0

= I (−∞ < t < ∞).

This completes the proof of Proposition 3.1. �

Proposition 3.2. For any f ∈ C2N , the difference equation (A+aI)u = f

has the unique solution given as u = G(a)f , where G(a) is the Green’s

matrix expressed as

G(a) = (A+ aI)−1 =
1

N + a

(
I +

N

a
E0 −

N

2N + a
EN

)
=(3.8)

1

N + a

(
δ(i− j) +

1

2a
− (−1)i−j

2(2N + a)

)

0≤i,j≤2N−1

.

The concrete forms of G(a) = GN (a) (N = 1, 2, 3) are as follows:

G1(a) =

(
g0 g1
g1 g0

)
,

(
g0
g1

)
=

1

a(a+ 2)

(
a+ 1
1

)
,

G2(a) =




g0 g1 g2 g1
g1 g0 g1 g2
g2 g1 g0 g1
g1 g2 g1 g0


 ,



g0
g1
g2


 =

1

a(a+ 2)(a+ 4)



a2 + 4a+ 2

a+ 2
2


 ,
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G3(a) =




g0 g1 g2 g1 g2 g1
g1 g0 g1 g2 g1 g2
g2 g1 g0 g1 g2 g1
g1 g2 g1 g0 g1 g2
g2 g1 g2 g1 g0 g1
g1 g2 g1 g2 g1 g0




,



g0
g1
g2


 =

1

a(a+ 3)(a+ 6)



a2 + 6a+ 3

a+ 3
3


 .

Proof of Proposition 3.2 Using (3.1) and (3.3), we have

2N−1∑

k=0

Ekf = If = f = (A+ aI)u =

2N−1∑

k=0

(λk + a)Eku.

Multiplying El on both sides of the above relation from the left and using
the relation EkEl = δ(k− l)Ek, we obtain Elu = (λl + a)−1Elf . Then, we
see that

u = Iu =
2N−1∑

l=0

Elu =
2N−1∑

l=0

1

λl + a
Elf = G(a)f ,

G(a) =

2N−1∑

l=0

1

λl + a
El =

1

a
E0 +

1

2N + a
EN+

1

N + a
(E1 + · · ·+EN−1 +EN+1 + · · ·+E2N−1) =

1

a
E0 +

1

2N + a
EN +

1

N + a
(I −E0 −EN ) .

This completes the proof of Proposition 3.2. �

Proposition 3.3. For any f ∈ C2N with the solvability condition t1f = 0,
the difference equation Au = f with the orthogonality condition t1u = 0
has the unique solution given as u = G∗f , where G∗ is the pseudo Green’s

matrix expressed as

G∗ = lim
a→+0

(
G(a)− a−1E0

)
=

1

N

(
I −E0 −

1

2
EN

)
=(3.9)

1

4N2

(
4Nδ(i − j)− 2− (−1)i−j

)

0≤i,j≤2N−1

.
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The concrete forms of G∗ = G∗N (N = 1, 2, 3) are as follows:

G∗1 =
1

4

(
1 −1
−1 1

)
, G∗2 =

1

16




5 −1 −3 −1
−1 5 −1 −3
−3 −1 5 −1
−1 −3 −1 5


 ,

G∗3=
1

36




9 −1 −3 −1 −3 −1
−1 9 −1 −3 −1 −3
−3 −1 9 −1 −3 −1
−1 −3 −1 9 −1 −3
−3 −1 −3 −1 9 −1
−1 −3 −1 −3 −1 9




.

Proof of Proposition 3.3 Using (3.1), (3.3) and E0f = N−11t1f = 0,
where 0 is zero vector, we have

2N−1∑

k=1

Ekf =

2N−1∑

k=0

Ekf = If = f = Au =

2N−1∑

k=1

λkEku.

Multiplying El on both sides of the above relation from the left and using
the relation EkEl = δ(k− l)Ek, we obtain Elu = λ−1

l Elf (1 ≤ l ≤ 2N−1).

Then, using E0u = (2N)−11t1u = 0, we see that

u = Iu =

N−1∑

l=0

Elu =

N−1∑

l=1

Elu =

N−1∑

l=1

λ−1
l Elf = G∗f ,

where

G∗ =
N−1∑

l=1

λ−1
l El =

1

N
(E1 + · · · +EN−1 +EN+1 + · · ·+E2N−1) +

1

2N
EN =

1

N
(I −E0 −EN ) +

1

2N
EN =

1

N

(
I −E0 −

1

2
EN

)
.

On the otherhand, taking the limit as a → +0 on both sides of

G(a)− a−1E0 =
1

N + a

(
I −E0 −

N

2N + a
EN

)
,

we have the same G∗. This completes the proof of Proposition 3.3. �

Next, we show that the diagonalvalues of G∗ and G(a) are equal to the
best constants of the discrete Sobolev inequalities (2.1) and (2.2), respec-
tively. The most important fact is that the diagonal elements of G∗ and
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G(a) are the same. Using the diagonalvalues of G(a), we have the square
of L2 norm of ‖H∗(t)δj‖.
Lemma 3.1. For any fixed j (0 ≤ j ≤ 2N − 1), we have the following

relations:

tδjG∗δj =
4N − 3

4N2
,(3.10)

tδjG(a)δj =
N + 2Na+ a2

a(N + a)(2N + a)
,(3.11)

∫ ∞

−∞
‖H∗(t)δj‖2 dt =

1

2
tδjG(a)δj .(3.12)

Proof of Lemma 3.1 (3.10) and (3.11) follows from (3.9) and (3.8), re-
spectively. Noting tH(t) = H(t), (H(t))2 = H(2t) and (3.6), we have
(3.12) as

∫ ∞

−∞
‖H∗(t)δj‖2 dt =

∫ ∞

−∞
t
(
H∗(t)δj

)(
H∗(t)δj

)
dt =

∫ ∞

−∞
tδjH∗(2t)δjdt =

1

2
tδj

∫ ∞

−∞
H∗(τ)dτ δj =

1

2
tδj

∫ ∞

0
e−aτH(τ)dτ δj =

1

2
tδjG(a)δj.

This completes the proof of Lemma 3.1. �

4. Reproducing relation

We show that G(a) and G∗ are a reproducing matrix for the inner prod-
ucts (·, ·)H and (·, ·)A, respectively.
Lemma 4.1. For any u ∈ C2N

0 and fixed j (0 ≤ j ≤ 2N − 1), we have the

following reproducing relations:

u(j) = (u, G∗δj)A.(4.1)

tδjG∗δj = ‖G∗δj ‖2A.(4.2)

Proof of Lemma 4.1 Noting G∗
∗ = G∗, we have (4.1) as

(u, G∗δj)A = tδjG∗Au = tδj(I −E0)u = tδju− 1

N
1t1u = u(j).

Putting u = G∗δj in (4.1), we obtain (4.2). �

Lemma 4.2. For any u ∈ C2N and fixed j (0 ≤ j ≤ 2N − 1), we have the

following reproducing relations:

u(j) = (u, G(a)δj)H .(4.3)
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tδjG(a)δj = ‖G(a)δj ‖2H .(4.4)

The proof of Lemma 4.2 Noting (G(a))∗ = G(a), we have (4.3) as

(u, G(a)δj)H = tδjG(a)(A+ aI)u = tδjIu = u(j).

Putting u = G(a)δj in (4.3), we obtain (4.4). �

5. Proof of Theorems

This section is devoted to the proof of main theorems.

Proof of Theorem 2.1 For any u ∈ C2N
0 , applying the Schwarz inequal-

ity to (4.1) and using (4.2), we have

|u(j) |2 ≤ ‖u ‖2A‖G∗δj ‖2A = tδjG∗δj‖u ‖2A.
Taking the maximum with respect to j on both sides, we obtain the discrete
Sobolev inequality

(
max

0≤j≤2N−1
|u(j) |

)2

≤ C0 ‖u ‖2A,(5.1)

where for any j0 (0 ≤ j0 ≤ 2N − 1), we put

C0 = max
0≤j≤2N−1

tδjG∗δj =
tδj0G∗δj0 .

From the above inequality (5.1), ‖u ‖2A = 0 holds if and only if u = 0. This
shows that the sesquilinear form (u,v)A is an inner product of vector space
CN

0 . If we take u = G∗δj0 in (5.1), then we have
(

max
0≤j≤2N−1

| tδjG∗δj0 |
)2

≤ C0 ‖G∗δj0 ‖2A = (C0)
2.

Combining this with the trivial inequality

(C0)
2 = | tδj0G∗δj0 |2 ≤

(
max

0≤j≤2N−1
| tδjG∗δj0 |

)2

,

we have
(

max
0≤j≤2N−1

| tδjG∗δj0 |
)2

= C0 ‖G∗δj0 ‖2A.

This shows that C0 is the best constant of (5.1) and the equality holds
for any column of G∗. The concrete form of C0 is given in (3.10). This
completes the proof of Theorem 2.1. �

Proof of Theorem 2.2 We can show Theorem 2.2 in the same way as
Theorem 2.1. So we omit the proof of Theorem 2.2. �
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Proof of Theorem 2.3 Replacing t by s in (3.5), we have

u(s) =

∫ ∞

−∞
H∗(s− t)f(t)dt,

or equivalently

u(j, s) = tδju(s) =(5.2)
∫ ∞

−∞
tδjH∗(s− t)f(t)dt =

∫ ∞

−∞
t
(
H∗(s− t)δj

)
f(t)dt.

Applying the Schwarz inequality to (5.2), we have

|u(j, s) |2 ≤
∫ ∞

−∞
‖H∗(s− t)δj‖2 dt

∫ ∞

−∞
‖f(t)‖2 dt =

∫ ∞

−∞
‖H∗(t)δj‖2 dt

∫ ∞

−∞

∥∥∥∥
(

d

dt
+A+ aI

)
u(t)

∥∥∥∥
2

dt,

where we use (3.4). Taking the supremum with respect to j and s, we obtain
the discrete Sobolev-type inequality


 sup

0≤j≤2N−1
−∞<s<∞

|u(j, s) |




2

≤ C1(a)

∫ ∞

−∞

∥∥∥∥
(

d

dt
+A+ aI

)
u(t)

∥∥∥∥
2

dt,(5.3)

where for any j0 (0 ≤ j0 ≤ 2N − 1), we put

C1(a) = max
0≤j≤2N−1

∫ ∞

−∞
‖H∗(t)δj‖2 dt =

∫ ∞

−∞
‖H∗(t)δj0‖2 dt.

Here, we introduce the vector U(t) defined as

U(t) =

∫ ∞

−∞
H∗(t− s)H∗(−s)δj0ds,(5.4)

U(j, t) = tδjU(t) =

∫ ∞

−∞
tδjH∗(t− s)H∗(−s)δj0ds.

Then we have

 sup

0≤j≤2N−1
−∞<s<∞

|U(j, s) |




2

≤ C1(a)

∫ ∞

−∞

∥∥∥∥
(

d

dt
+A+ aI

)
U(t)

∥∥∥∥
2

dt =

C1(a)

∫ ∞

−∞
‖H∗(−t)δj0‖2 dt = (C1(a))

2.
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Combining this with the trivial inequality

(C1(a))
2 = |U(j0, 0) |2 ≤


 sup

0≤j≤2N−1
−∞<s<∞

|U(j, s) |




2

,

we have

 sup

0≤j≤2N−1
−∞<s<∞

|U(j, s) |




2

= C1(a)

∫ ∞

−∞

∥∥∥∥
(

d

dt
+A+ aI

)
U(t)

∥∥∥∥
2

dt.

This shows that C1(a) is the best constant of (5.3) and the equality holds
for u(t) = U(t). The concrete form of C1(a) is given in (3.12). From (5.4),
we have

U(t) =

∫ ∞

−∞
H∗(t− s)H∗(−s)δj0ds =(5.5)

∫ ∞

−∞
Y (t− s)e−a(t−s)H(t− s)Y (−s)e−a(−s)H(−s)δj0ds =

∫ 0∧t

−∞
e−a(t−2s)H(t− 2s)δj0ds,

where x ∨ y = max{x, y} and x ∧ y = min{x, y} satisfies the relation

{
x ∨ y + x ∧ y = x+ y

x ∨ y − x ∧ y = |x− y|
⇔





x ∨ y =
1

2
(x+ y + |x− y|)

x ∧ y =
1

2
(x+ y − |x− y|)

.

From this relation, we have

0 ∧ t =
1

2
(0 + t− |0− t|) = 1

2
(t− |t|).

For (5.5), if we replace σ = t− 2s

s −∞ → 0 ∧ t
σ ∞ → |t| ds = −1

2
dσ,

then we have (2.4). This completes the proof of Theorem 2.3. �
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