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THE BEST CONSTANT OF
THE DISCRETE SOBOLEV INEQUALITIES ON
THE COMPLETE BIPARTITE GRAPH

HIROYUKI YAMAGISHI

ABSTRACT. We have the best constants of three kinds of discrete Sobolev
inequalities on the complete bipartite graph with 2N vertices, that is,
Kn,~n. We introduce a discrete Laplacian A on Ky n. Ais a 2N x 2N
real symmetric positive-semidefinite matrix whose eigenvector corre-
sponding to zero eigenvalue is 1 = t(l, 1,---,1) € C?N . A discrete heat
kernel, a Green’s matrix and a pseudo Green’s matrix play important
roles in giving the best constants.

1. DISCRETE LAPLACIAN

For any fixed N = 1,2, 3, -, we set the indices of vertices on the complete
bipartite graph Ky ny as Figure 1.

FIGURE 1. Complete bipartite graph Ky n-.

We introduce the edge set
e={@i2j+1)0<ij<N-1},

where the vertices 2 and 25 + 1 are connected to an edge. The discrete
Laplacian A is defined as

N (i=7)
A= < a(i, 7) ) ,oali,g) =9 -1 ((4,)) €e)
0<4,j<2N—1 0  (otherwise)
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A is rewritten as

N-1
(1.1) A_<N6(ij)25(ij+2k+1)> ,
k=0 0<i,j<2N—1

where the delta function

| 1 (Mod(i,2N) = 0) .
(1.2)  6(4) :{ 0 (Mod(r 2N} 2 0) (i € Z).

Here, we show the concrete form of A = Ay as
2 -1 0 -1
1 -1 -1 2 -1 0
'Al"<—1 il)’ A=l 1 2 1)
-1 0 -1 2

3 -1 0 -1 0 —1\
-1 3 -1 0 -1 0
0O -1 3 -1 0 -1
-1 0 -1 3 -1 0
o -1 0 -1 3 -1
-1 0 -1 0 -1 3

A is a 2N x 2N real symmetric positive-semidefinite matrix which has an
eigenvalue 0 and whose eigenvector is 1 = (1,1,--- ,1) € C?N. We intro-
duce the following three matrices

(1.3) Discrete heat kernel : H(t) = exp(—tA),

o0
(1.4) Green’s matrix : G(a) = (A+al)" ' = / e H (t)dt,
0
(1.5)  Pseudo Green’s matrix : G, = lim (G(a) —a 'Ey),
a——+0
where a is a positive number and

1
EO_(ZN)1ﬁ1_< 1 )
2N 0<4,j<2N—1

is a projection matrix to the eigenspace corresponding to the eigenvalue 0
of A. G, satisfies

AG, =G, A=1-E, G.Ey=FE)G, =0.

Here, I is the 2N x 2N identity matrix and O is the 2N x 2N zero matrix.
Thus, G(a) is an inverse matrix of A + al and G, is a Penrose-Moore
generalized inverse matrix of A.

This paper is composed of five sections. In section 2, we show Theorem
2.1~2.3 corresponding to H(t), G(a) and G.. In section 3, we prepare
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some basic matrices and explain the difference equations. In section 4, we
present a reproducing relation. Section 5 is devoted to the proof of Theorem
2.1~2.3.

2. DISCRETE SOBOLEV INEQUALITY

In this section, we state the best constants of three kinds of discrete
Sobolev inequalities on Ky . For uw,v € C2N | we introduce sesquilinear
forms

(w, v) =v*u,  |ul’=(u,u),
(u, v)g = (A+al)u, v) =v* (A + al)u, | u ||%I = (u,u)q,

where u* denotes u* = ‘u. For u,v € CZY := {u|u € C?" and ‘1u =0},
we introduce a sesquilinear form

(u, v)4 = (Au, v) = v* Au, |wl]|? = (u,u)a.

(-,-)g and (-,-)4 are proved to be an inner product afterwards. We rewrite
lu |7 and [Ju | as

2N—1
lullf =llulZ+a > [u@ P,  ulfi= > lu@)—u()*
i=0 (i.j)€e
The concrete forms of ||u ||% = || u ||%y are as

I[Py = |u(0) — (1),

%, =
[w(0) = u(1) [* +[w(0) = u(3) [* +[w(2) = u(1) |* +[u(2) — u(3) |,

%3 =

[ u(0) = u(1)[* + |u(0) — u(3) [ + [u(0) — u(5) >+
[u(2) = w(1) [+ [u(2) = u(3) >+ u(2) —u(5) [P+
| u(4) = u()[? + |u(4) = u3) * + [u(4) —u(5) .
) i

To describe theorems, for any j (0 < j < 2N —1
dimensional vector

xed, we use the 2N-

8 ="(,6(i—4),  o<i<an—1,

where 6(7) is defined in (1.2).
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Theorem 2.1. For any u = "(u(0),u(1),--- ,u(2N — 1)) € C2N, there
exists a positive constant C which is independent of w, such that the discrete
Sobolev inequality

2
2.1 ' < 2
2 (,mpx uG)) <Clul?
holds. Among such C, for any jo (0 < jo < 2N — 1), the best constant is
4N — 3
_ ts. L ts -

Co= x| 0iGx0; =050G0jo = =~
If we replace C' by Cy in (2.1), the equality holds if and only if uw is parallel
to

1 . i
G*(SJO = W <4N5<Z — jo) —2— (—1)Z JO) |
0<i<2N-—1
Theorem 2.2. For any u = "(u(0),u(1),--- ,u(2N — 1)) € C?V, there
exists a positive constant C' which is independent of w, such that the discrete
Sobolev inequality

2
(2.2) ( i \u(ﬂl) <Clul

0<j<2N-1
holds. Among such C, for any jo (0 < jo < 2N — 1), the best constant is

N +2Na + a?
(N+a)(2N—|—a)'

If we replace C by Cy(a) in (2.2), the equality holds if and only if u is
parallel to

G(a)d; _ 1 5('_')+i_ﬂ
“ T N+a PTIUT 9 2(2N + a) 0<'<2N—1'

Theorem 2.3. For any u(t) = ‘(u(0,t),u(1,t),--- ,u(2N — 1,t)) € C?V,
there exists a positive constant C' which is independent of u(t), such that the
discrete Sobolev-type inequality
2
& d
(2.3) sup  |u(g,s)| ] < C/ H (— +A+ aI> u(t)

0<j<2N -1 oo ||\ T
—0o0<s<0o0

— ts. _ts. R
Co(a) = 03}2%1}\(7—1 0;G(a)d; ="0;,G(a)dj, = s

2
dt

holds. Among such C, the best constant is

C(a) = %C’o(a),
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where Co(a) is given in Theorem 2.2. If we replace C by Ci(a) in (2.3), for
any jo (0 < jo < 2N — 1), the equality holds if and only if w(t) is parallel to

(2.4) / %G_GUH(O')(stdO' =
I

: ) <€(N+“>t5(i o)+ N e L —vra

%N +a 2Na oN
(= o~ (NHa)li] (=1)" (N + a) —(@N+a)
IN SN(2N +a) |
0<i<2N-1

(—o0 <t < 00).

In our previous papers, we obtained the best constant of the discrete
Sobolev inequalities (2.1) and (2.2) on graphs such as the complete graph
Ky [10], N-sided polygons [4, 5, 9], regular polyhedra [2, 7, 8], and truncated
regular polyhedra [1, 3, 6].

3. DIFFERENCE EQUATIONS
Let us put w as w = exp(y/—17/N) which satisfies w?Y = 1 and put
normalized orthogonal vectors as

t( awik, -+ )0<i<2N—1 (0<k<2N-1),

which satisfies ]¢, = 6(k — ). Hereafter, we introduce some 2N x 2N
matrices. Q is defined as

o~ )=l )
=\ %o " PeN-1 | T o W :
2N 0<i,j<2N—1

E;. are orthogonal projection matrices defined as

1 o
E = ¢ppf = 5| wF (0<k<2N-1),
2N 0<4,j<2N—1

which satisfy ExE; = §(k — |)Ey and E; = Ej. Using Ej, we have the
spectral decomposition of I as

2N—-1 2N—-1

31) I=QQ" =) wpi= > Ek
k=0 k=0
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L is a rotate-left matrix defined as

0 1
_ 0 - A
L= —(5(z—j+1)) ,
o1 0<i,j<2N—1
1 0
which satisfies L* =!L = L' = L2V~ and
Lk:<5(i—j+k)> (0<k<2N-1), LN =1r.
0<i,j<2N—1

Thus L is a unitary matrix. L has eigenvalues w* (0 < k < 2N — 1)
corresponding to the normalized orthogonal eigenvectors ¢, (0 < k < 2N —
1). So L is diagonalized by the matrix Q as

L=QLQ", f}:(wié(i—j)) .
0<i,j<2N—1

Using Ey, we have the spectral decomposition of L as
2N—1 2N—1

(32) L=QLQ =) wppi= p By
k=0 k=0

Using (3.1) and (3.2), we rewrite A given in (1.1)

2N-1
A=NI-Y L*'=NQQ' - Z o 'or = QAQ*,
k=0
where
~ VA
A:NI—ZL Z(Aﬁ(l—])) )
k=0 0<i,j<2N-1
Ai=N — Zw"(QkH)— N (i#0andi# N)
k=0 2N (i=N)

Hence A has eigenvalues \; (0 < k ) corresponding to the nor-
malized orthogonal eigenvectors ¢, (0 < k < 2N — 1). Then, the Jordan
canonical form of A is given as

A=QAQ*, sz(m(i—j)) .
0<i,j<2N—1

Using Ey, we have the spectral decomposition of A as
2N—1 2N-1
(33) A=QAQ" = ) Mprpi= > MEr=N{I-Ey+Ey).
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First, we explain three difference equations concerning the discrete heat
kernel (1.3), the Green’s matrix (1.4) and the pseudo Green’s matrix (1.5).

Proposition 3.1. For any f(t) € C?V, the discrete heat equation
(3.4) (%+A+aI)u:f(t) (—o0 <t < o0)

has the unique solution given as

(3.5 / H.(t—s)f(s)ds (—o0 <t < 0),

(3.6) H.,(t t)e " H(t) (—oo <t < o),

where Y (t) =1 (O <t <o), 0(—00<t<0)isthe Heaviside step function
and H (t) is the discrete heat kernel expressed as

(3.7)  H(t) = exp(—At) = e NI + (1 — e_Nt) E, - (e_Nt — 6_2Nt) Ey =

1 _ (=17 _
Nt5< )—I——(l—eNt)—i(e Nt€2Nt)> )
( 2N 2N 0<i,j<2N-1

The concrete forms of H(t) = Hy(t) (N = 1,2,3) are as follows:

. ho hy ho _1 1—|—€_2t
H1(t)—(h1 h0>7 (hl)—§<1_e—2t :

ho hi ha M ho ) (1 4 e~2t)2
o h1 ho h1 h2 _ —4t

H2 (t) - ) hl = I—e ’

ha hi ho M L 4 (1— 22

hi hs hi ho 2

ho hl h2 hl h2 hl\

Zl Zo Zl Zz 21 22 ho (1 de—3t 1 o6t
Hg(t) _ 2 1 0 1 2 1 hl — 1 — e—Gt

hi hy hy ho hi hg |’ 3 6 (1 — e31)2

h2 hl h2 h1 hO hl 2

Proof of Proposition 3.1 Using the Fourier transform
~ o0
u(t) —  aw)= / e VIt (t) dt,
—00

we transform (3.4) into

(V=TwI+ A+al)ti(w) = flw)  (—00 <w < ).
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Solving this relation, we have u(w) = H, (w) ?(w), where

—~

H,(w)=(V-1wI+A+ aI)‘1 = /oo e VItY ()9 H (¢) dt.

Using the inverse Fourier transform, we have (3.5) and (3.6). From
2N—1

H(t) = exp(—At) = Qexp(—At)Q* = Z e M, =
k=0

Ey+e ™M(BEi+ - +En1+Enp1+ -+ Eoy1)+e *NEy =
Eo+e N (I—-Ey— Eyn)+e 2N Ey,
we have (3.7). It should be noted that H ,(t) satisfies

<i + A+ aI) H.(t) =0,

dt
H,(t - —H.(t - =1 —00 < t < 00).
(t =) s=t—0 (t =) s=t+0 (=00 )
This completes the proof of Proposition 3.1. |

Proposition 3.2. For any f € C?V, the difference equation (A+al)u = f
has the unique solution given as uw = G(a)f, where G(a) is the Green’s
matriz expressed as

1 N N
= -1 = —_— — =
(38) Gla)=(A+al)™! = —— (I+ ~Ey 2N+aEN)

1 o 1 (—1)7
— | (7 — —_— .
N—i—a( ( ‘7)+2a 2(2N+a)> .
0<7,7<2N—-1

The concrete forms of G(a) = Gn(a) (N =1,2,3) are as follows:
G — 490 gl) :
1(a) <91 90

(6) = aea (1)

go 91 92 g1
Gz(a) _ g1 go g1 g2 :
g2 g1 go g1
g1 g2 g1 9o
90 1 a’® 4 4a + 2
g1 — a—+ 2 5
0 ala+2)(a+4) 9
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go g1 92 91 g2 g1
g1 9o 91 g2 91 92
Gg(a) g2 g1 9o 91 92 g1
g1 92 g1 go 91 92
g2 91 92 91 9o 491
g1 92 91 g2 g1 9o

90 1 a® 4 6a + 3
= a—i—3
g; a(a+3)(a+6)

Proof of Proposition 3.2 Using (3.1) and (3.3), we have

2N—-1 2N—-1

Y Ef=If=f=(A+au= Y _ (M+a)Eu.
k=0 k=0

Multiplying E; on both sides of the above relation from the left and using
the relation EyE; = 6(k — ) E}, we obtain Eyu = (A\; +a) ' E;f. Then, we
see that

2N-1 2N—1

1
=TIu= Eu= E G
u=1Iu= lz;zu Z)\l—{—alf (a)f,
2N-1
1 1
— E
0+2N—|—a Nt
1
E Exv 4+ E ciid Bon 1) =
N+(1—I— -+ENy 1+ ENng1+--+ Ean)
1E+ 1E+1(I—E—E)
o ""oNta YT Nta 0 NI
This completes the proof of Proposition 3.2. |

Proposition 3.3. For any f € C?V with the solvability condition *1f =0,
the difference equation Au = f with the orthogonality condition ‘1u = 0
has the unique solution given as uw = G, f, where G is the pseudo Green’s
matriz expressed as

1 1
= 1 —a ! = — — — — =
(3.9) G.= al_lgrlo (G(a) —a™ " Ey) N (I E 2EN)

ﬁ ( ANGS(i —j) — 2 — (—1)"7 )

0<4,j<2N -1
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The concrete forms of G, = G,y (N = 1,2,3) are as follows:
5 -1 -3 -1

1/1 -1 1|-1 5 -1 -3
G*l__( > Ge=15l3 -1 5 -1

-1 -3 -1 5

Proof of Proposition 3.3 Using (3.1), (3.3) and Eof = N"'1'1f = 0,
where 0 is zero vector, we have

2N-1 2N—1 IN—1
Y Ewf=)> Ef=If=f=Au= ) M\Eu.
k=1 k=0 k=1

Multiplying E; on both sides of the above relation from the left and using
the relation E,E; = §(k—1)E}, we obtain Eju =\, 'E;f (1 <1 <2N-1).
Then, using Eou = (2N)111u = 0, we see that

N-1 N-1 N-1
u=Iu= ZElu: ZElu: Z)\flElf:G*f,
1=0 =1 =1

where
N-1
=1
1(E+ +Ey 1+Eny+-+E )+1E =
N 1 N—-1 N+1 2N -1 SN N =
1 1 1 1
— I —-Ey—FE —FEn=—|I1—-Ey—=-EyN].
v 0~ Bx)+ o B N( 0 2N)
On the otherhand, taking the limit as a — +0 on both sides of
1 N
Gla)—a'Eg=—— (I - E— E
(a) —a 0 N—I—a( 0T SN 1 4 N>>
we have the same G,. This completes the proof of Proposition 3.3. |

Next, we show that the diagonalvalues of G, and G(a) are equal to the
best constants of the discrete Sobolev inequalities (2.1) and (2.2), respec-
tively. The most important fact is that the diagonal elements of G, and
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G(a) are the same. Using the diagonalvalues of G(a), we have the square
of L? norm of || H . (t)d;].

Lemma 3.1. For any fized j (0 < j < 2N — 1), we have the following
relations:

4N —
(3.10) '6,G.4; = ;

4N2

N +2Na + a?
ts _
(B11) 70,G(@)9; = T SN T o)

& 1
(3.12) / 1BL(1)3,1° dt = 5'6,G(a)5;.

— 00

Proof of Lemma 3.1 (3.10) and (3.11) follows from (3.9) and (3.8), re-
spectively. Noting ‘H(t) = H(t), (H(t))> = H(2t) and (3.6), we have
(3.12) as

[ s = [ (H08,) (H08, ) =

0 1 00
/ t(st*(Qt)(sjdt = §t5j H*(T)dT 5j =

1 e 1
§t5j/0 e_aTH(T)dT 5]' = §t(st(a)5j.
This completes the proof of Lemma 3.1. |

4. REPRODUCING RELATION

We show that G(a) and G, are a reproducing matrix for the inner prod-
ucts (+,)m and (+,-)4, respectively.

Lemma 4.1. For any u € C3V and fived j (0 < j < 2N — 1), we have the
following reproducing relations:

(4.1)  u(j) = (u, Gidj)a.
(42) '8,G.8; = |G, %,
Proof of Lemma 4.1 Noting G; = G, we have (4.1) as

1
(u, G*éj)A = t(‘ijG*Au = téj(I — Eo)’u, = téju — Nltlu = u(])

Putting u = G4, in (4.1), we obtain (4.2). |

Lemma 4.2. For any u € C? and fired j (0 < j < 2N — 1), we have the
following reproducing relations:

(4.3)  u(j) = (u, G(a)d;)n.
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(44) '8;G(a)d; = || G(a)d; [7-
The proof of Lemma 4.2 Noting (G(a))* = G(a), we have (4.3) as
(w, G(a)d;)g ="6;G(a)(A + al)u ="§;ITu = u(j).
Putting u = G(a)d; in (4.3), we obtain (4.4). |

5. PROOF OF THEOREMS

This section is devoted to the proof of main theorems.

Proof of Theorem 2.1 For any u € C%N , applying the Schwarz inequal-
ity to (4.1) and using (4.2), we have

[u() [ < [l 3] Gd; 3 = "8;G.8;] w |14

Taking the maximum with respect to 7 on both sides, we obtain the discrete
Sobolev inequality

2
5.1 ' < C 2
5 (o 106)) < Collull,
where for any jo (0 < jo < 2N — 1), we put

Co= max '0:G.0;,="1;G.0,;.
0<joan_q1 O30 Jo 0o

From the above inequality (5.1), ||« ]|% = 0 holds if and only if w = 0. This
shows that the sesquilinear form (u,v) 4 is an inner product of vector space
Cl'. If we take u = G.4;, in (5.1), then we have

2
(s 196285 1) < CollGud 4 = (Co”
Combining this with the trivial inequality
2

(€0 = 118,68, < (_max 1'6,6.051)

we have
2
(oo ,1'9:6-051) = CollGud

This shows that Cpy is the best constant of (5.1) and the equality holds
for any column of G.. The concrete form of Cy is given in (3.10). This
completes the proof of Theorem 2.1. |

Proof of Theorem 2.2 We can show Theorem 2.2 in the same way as
Theorem 2.1. So we omit the proof of Theorem 2.2. |
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Proof of Theorem 2.3 Replacing ¢ by s in (3.5), we have

u(s) = /_OO H.(s—t)f(t)dt,
or equivalently
(5.2)  u(js) = "8;uls) =

/_Z 'S H.(s — 1) f(t)dt = / (s - 08 F0)a

—00
Applying the Schwarz inequality to (5.2), we have

o) P < [ I =08 [ 1)

—00 —

/_Z | (6)8,|2 dt /_Z H (% LA+ aI) u(?)

where we use (3.4). Taking the supremum with respect to j and s, we obtain
the discrete Sobolev-type inequality

2
dt,

2

00 2
(5.3) sup  |u(j,s)] | < Ci(a) / H (i + A+ aI) u(t)|| dt,
0<j<2N-—1 oo ||\ 2
—oo<s<0o0
where for any jp (0 < jo < 2N — 1), we put
_ OO w2 [ 2
Cia) = max [ IHL@8Pa = [ IHL08,
Here, we introduce the vector U (t) defined as
(54) U(t) = / H,(t —s)H,.(—s)d,,ds,
U(j,t) ='6;U(t) = / 16, H . (t — s)H,.(—s)d;,ds.
Then we have
2
00 d 2
sup  |U(j4,9)] SC’l(a)/ H<——I—A—|—aI) Ut)|| dt =
0<j<2N—1 oo ||\ T
—00<s5< 00

Cita) [ T HL(—1)85, |12 dt = (Cy(a))>

— o0
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Combining this with the trivial inequality

(C1(a)? =1UGo,0)>< | sup UG s)]|] ,

0<j<2N-1
—00<s<oO
we have
2
. | /d 2
sup  |U(4,8)|| = Ci(a) d——i—A—i—aI U(t)| dt.
0<j<2N-1 —o0 t

—00<8s<00

This shows that Cj(a) is the best constant of (5.3) and the equality holds
for u(t) = U(t). The concrete form of C(a) is given in (3.12). From (5.4),
we have

(5.5) U(t) = /_OO H,(t—s)H,(—s)d;,ds =

/ Yt —s)e U H(t — 5)Y (—s)e ") H(—5)8,ds =
ONt

/ e~ =29 [ (¢ — 25)d,ds,

where x V y = max{z,y} and x Ay = min{z, y} satisfies the relation

1
{az\/y-i—x/\ya:—i—y 93\/y:§(x—|—y+]:c—y!)
&

_ 1
VY -z Ay =|z—y Ay =g(@+y—|z—yl)
From this relation, we have

1 1
ONt=3(0+t—[0—t]) = S(t— |t]).

For (5.5), if we replace o =t — 2s

_ 1
8‘ oo — O0At ds = —~do,
ol o — i 2
then we have (2.4). This completes the proof of Theorem 2.3. [
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