ID | 53043 |
フルテキストURL | |
著者 |
Qi, Yan
Department of Mathematics Graduate School of Natural Science and Technology Okayama University
|
抄録 | A generator of the reduced KO-group of the real projective space of dimension n is related to the canonical line bundle γ. In
the present paper, we will prove that for a finite group G of odd order and a real G-representation U of dimension 2n, in the reduced G-equivariant KO-group of the real projective space associated with the
G-representation R ⊕ U, the element 2n+2[γ] is equal to zero.
|
キーワード | equivariant real vector bundle
group action
real projective space
canonical line bundle
product bundle
|
発行日 | 2015-01
|
出版物タイトル |
Mathematical Journal of Okayama University
|
巻 | 57巻
|
号 | 1号
|
出版者 | Department of Mathematics, Faculty of Science, Okayama University
|
開始ページ | 111
|
終了ページ | 122
|
ISSN | 0030-1566
|
NCID | AA00723502
|
資料タイプ |
学術雑誌論文
|
言語 |
英語
|
著作権者 | Copyright©2015 by the Editorial Board of Mathematical Journal of Okayama University
|
論文のバージョン | publisher
|
査読 |
有り
|
Submission Path | mjou/vol57/iss1/6
|
JaLCDOI |