このエントリーをはてなブックマークに追加
ID 48822
フルテキストURL
著者
Zong, Min School of Biomedical Sciences, The Chinese University of Hong Kong
Satoh, Ayano The Research Core for Interdisciplinary Science, Okayama University ORCID Kaken ID publons researchmap
Yu, Mei Kuen Epithelial Cell Biology Research Center, The Chinese University of Hong Kong,
Siu, Ka Yu School of Biomedical Sciences, The Chinese University of Hong Kong
Ng, Wing Yan School of Biomedical Sciences, The Chinese University of Hong Kong
Chan, Hsiao Chang School of Biomedical Sciences, The Chinese University of Hong Kong
Tanner, Julian A. Department of Biochemistry, The University of Hong Kong
Yu, Sidney School of Biomedical Sciences, The Chinese University of Hong Kong
抄録
Background: The transport of endoplasmic reticulum (ER)-derived COPII vesicles toward the ER-Golgi intermediate compartment (ERGIC) requires cytoplasmic dynein and is dependent on microtubules. p150Glued, a subunit of dynactin, has been implicated in the transport of COPII vesicles via its interaction with COPII coat components Sec23 and Sec24. However, whether and how COPII vesicle tether, TRAPP (Transport protein particle), plays a role in the interaction between COPII vesicles and microtubules is currently unknown. Principle Findings: We address the functional relationship between COPII tether TRAPP and dynactin. Overexpressed TRAPP subunits interfered with microtubule architecture by competing p150Glued away from the MTOC. TRAPP subunit TRAPPC9 bound directly to p150Glued via the same carboxyl terminal domain of p150Glued that binds Sec23 and Sec24. TRAPPC9 also inhibited the interaction between p150Glued and Sec23/Sec24 both in vitro and in vivo, suggesting that TRAPPC9 serves to uncouple p150Glued from the COPII coat, and to relay the vesicle-dynactin interaction at the target membrane. Conclusions: These findings provide a new perspective on the function of TRAPP as an adaptor between the ERGIC membrane and dynactin. By preserving the connection between dynactin and the tethered and/or fused vesicles, TRAPP allows nascent ERGIC to continue the movement along the microtubules as they mature into the cis-Golgi.
備考
記事番号:e29995
発行日
2012-01-18
出版物タイトル
PLoS ONE
7巻
1号
ISSN
1932-6203
資料タイプ
学術雑誌論文
オフィシャル URL
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0029995#top
言語
English
著作権者
© 2012 Zong et al.
論文のバージョン
publisher
査読
有り
DOI
PubMed ID
Web of Science KeyUT
Pages
12