検索結果 805 件
JaLCDOI | 10.18926/AMO/68645 |
---|---|
フルテキストURL | 79_2_075.pdf |
著者 | Higaki, Fumiyo| Morimitsu, Yusuke| Iguchi, Toshihiro| Hwang, Sung Il| Kitayama, Takahiro| Takahashi, Yuka| Uka, Mayu| Akagi, Noriaki| Sugaya, Akiko| Mitsuhashi, Toshiharu| Matsui, Yusuke| Hiraki, Takao| |
抄録 | Temporal bone computed tomography (CT) is frequently performed for pediatric patients with ear diseases. Advances in CT technology have improved diagnostic imaging quality, but reduction of radiation exposure remains a goal. We evaluated the potential for radiation dose reduction in temporal bone CT examinations using porcine ear ossicles and a photon-counting detector CT system. Three scans of the bilateral temporal bone were performed on each of three pig cadaver heads. In each of seven successive imaging sessions, the radiation dose was reduced by an additional one-seventh of the recommended dose (RD). Two board-certified radiologists independently scored the resulting images on a scale of 1 to 5 points, where 5 represented the image quality at the RD. Images scoring ≥4.5 points were considered acceptable. Noise was assessed in a 2-cm-diameter region near the ear ossicles, and standard deviation was measured for each of the seven decrements from the RD. As the radiation dose decreased, the noise progressively increased, and visual assessment scores progressively decreased. Acceptable image scores were obtained at six-sevenths (4.9), five-sevenths (4.8), four-sevenths (4.7), and three-sevenths (4.6) of the RD. Thus, acceptable porcine temporal bone CT images were obtained with a radiation dose reduction of approximately 50%. |
キーワード | computed tomography photon-counting detector computed tomography ear ossicle energy-integrating detector computed tomography |
Amo Type | Original Article |
出版物タイトル | Acta Medica Okayama |
発行日 | 2025-04 |
巻 | 79巻 |
号 | 2号 |
出版者 | Okayama University Medical School |
開始ページ | 75 |
終了ページ | 80 |
ISSN | 0386-300X |
NCID | AA00508441 |
資料タイプ | 学術雑誌論文 |
言語 | 英語 |
著作権者 | Copyright Ⓒ 2025 by Okayama University Medical School |
論文のバージョン | publisher |
査読 | 有り |
フルテキストURL | fulltext.pdf |
---|---|
著者 | Ohata, Miyu| Fukui, Ryohei| Morimitsu, Yusuke| Kobayashi, Daichi| Yamauchi, Takatsugu| Akagi, Noriaki| Honda, Mitsugi| Hayashi, Aiko| Hasegawa, Koshi| Kida, Katsuhiro| Goto, Sachiko| Hiraki, Takao| |
キーワード | Image quality photon-counting computed tomography quantum iterative reconstruction radiomics renal cell carcinoma |
発行日 | 2025-01 |
出版物タイトル | Journal of Medical Physics |
巻 | 50巻 |
号 | 1号 |
出版者 | Medknow Publications |
開始ページ | 100 |
終了ページ | 107 |
ISSN | 0971-6203 |
資料タイプ | 学術雑誌論文 |
言語 | 英語 |
OAI-PMH Set | 岡山大学 |
著作権者 | © 2025 Journal of Medical Physics |
論文のバージョン | publisher |
DOI | 10.4103/jmp.jmp_114_24 |
Web of Science KeyUT | 001452585400015 |
関連URL | isVersionOf https://doi.org/10.4103/jmp.jmp_114_24 |
JaLCDOI | 10.18926/AMO/68355 |
---|---|
フルテキストURL | 79_1_021.pdf |
著者 | Yamamoto, Yasuhiro| Haraguchi, Takafumi| Matsuda, Kaori| Okazaki, Yoshio| Kimoto, Shin| Tanji, Nozomu| Matsumoto, Atsushi| Kobayashi, Yasuyuki| Mimura, Hidefumi| Hiraki, Takao| |
抄録 | We developed a machine learning model for predicting prostate cancer (PCa) grades using radiomic features of magnetic resonance imaging. 112 patients diagnosed with PCa based on prostate biopsy between January 2014 and December 2021 were evaluated. Logistic regression was used to construct two prediction models, one using radiomic features and prostate-specific antigen (PSA) values (Radiomics model) and the other Prostate Imaging-Reporting and Data System (PI-RADS) scores and PSA values (PI-RADS model), to differentiate high-grade (Gleason score [GS] ≥ 8) from intermediate or low-grade (GS < 8) PCa. Five imaging features were selected for the Radiomics model using the Gini coefficient. Model performance was evaluated using AUC, sensitivity, and specificity. The models were compared by leave-one-out cross-validation with Ridge regularization. Furthermore, the Radiomics model was evaluated using the holdout method and represented by a nomogram. The AUC of the Radiomics and PI-RADS models differed significantly (0.799, 95% CI: 0.712-0.869; and 0.710, 95% CI: 0.617-0.792, respectively). Using holdout method, the Radiomics model yielded AUC of 0.778 (95% CI: 0.552-0.925), sensitivity of 0.769, and specificity of 0.778. It outperformed the PI-RADS model and could be useful in predicting PCa grades, potentially aiding in determining appropriate treatment approaches in PCa patients. |
キーワード | prostate cancer machine learning prostate Imaging-Reporting and Data System radiomics Gleason score |
Amo Type | Original Article |
出版物タイトル | Acta Medica Okayama |
発行日 | 2025-02 |
巻 | 79巻 |
号 | 1号 |
出版者 | Okayama University Medical School |
開始ページ | 21 |
終了ページ | 30 |
ISSN | 0386-300X |
NCID | AA00508441 |
資料タイプ | 学術雑誌論文 |
言語 | 英語 |
著作権者 | Copyright Ⓒ 2025 by Okayama University Medical School |
論文のバージョン | publisher |
査読 | 有り |
PubMed ID | 40012156 |
Web of Science KeyUT | 001440463800003 |
レファレンス | Taitt HE: Global Trends and Prostate Cancer: A Review of Incidence, Detection, and Mortality as Influenced by Race, Ethnicity, and Geographic Location. Am J Mens Health (2018) 12: 1807-1823.| Rawla P: Epidemiology of Prostate Cancer. World J Oncol (2019) 10: 63-89.| Gong L, Xu M, Fang M, Zou J, Yang S, Yu X, Xu D, Zhou L, Li H, He B, Wang Y, Fang X, Dong D and Tian J: Noninvasive Prediction of High-Grade Prostate Cancer via Biparametric MRI Radiomics. J Magn Reson Imaging (2020) 52: 1102-1109.| Epstein JI, Zelefsky MJ, Sjoberg DD, Nelson JB, Egevad L, Magi-Galluzzi C, Vickers AJ, Parwani AV, Reuter VE, Fine SW, Eastham JA, Wiklund P, Han M, Reddy CA, Ciezki JP, Nyberg T and Klein EA: A Contemporary Prostate Cancer Grading System: A Validated Alternative to the Gleason Score. Eur Urol (2016) 69: 428-435.| Carroll PH and Mohler JL: NCCN Guidelines Updates: Prostate Cancer and Prostate Cancer Early Detection. J Natl Compr Canc Netw (2018) 16: 620-623.| Miyake H, Sakai I, Inoue TA, Hara I and Fujisawa M: The limited significance of a longer duration of neoadjuvant hormonal therapy prior to radical prostatectomy for high-risk prostate cancer in Japanese men. Urol Int (2006) 77: 122-126.| Hassan O, Han M, Zhou A, Paulk A, Sun Y, Al-Harbi A, Alrajjal A, Baptista Dos Santos F and Epstein JI: Incidence of Extraprostatic Extension at Radical Prostatectomy with Pure Gleason Score 3+3=6 (Grade Group 1) Cancer: Implications for Whether Gleason Score 6 Prostate Cancer Should be Renamed “Not Cancer” and for Selection Criteria for Active Surveillance. J Urol (2018) 199: 1482-1487.| Albers LF, Korving JC, van Elzakker EPM and Roshani H: Osteomyelitis of the Pubic Symphysis After Transrectal Biopsies of the Prostate. Urology (2018) 121: 29-32.| van der Leest M, Cornel E, Israël B, Hendriks R, Padhani AR, Hoogenboom M, Zamecnik P, Bakker D, Setiasti AY, Veltman J, van den Hout H, van der Lelij H, van Oort I, Klaver S, Debruyne F, Sedelaar M, Hannink G, Rovers M, Hulsbergen-van de Kaa C and Barentsz JO: Head-to-head Comparison of Transrectal Ultrasound-guided Prostate Biopsy Versus Multiparametric Prostate Resonance Imaging with Subsequent Magnetic Resonance-guided Biopsy in Biopsy-naïve Men with Elevated Prostate-specific Antigen: A Large Prospective Multicenter Clinical Study. Eur Urol (2019) 75: 570-578.| Borghesi M, Ahmed H, Nam R, Schaeffer E, Schiavina R, Taneja S, Weidner W and Loeb S: Complications After Systematic, Random, and Image-guided Prostate Biopsy. Eur Urol (2017) 71: 353-365.| Rajkomar A, Dean J and Kohane I: Machine Learning in Medicine. N Engl J Med (2019) 380: 1347-1358.| Cuocolo R, Cipullo MB, Stanzione A, Ugga L, Romeo V, Radice L, Brunetti A and Imbriaco M: Machine learning applications in prostate cancer magnetic resonance imaging. Eur Radiol Exp (2019) 3: 35.| Sun Y, Reynolds HM, Parameswaran B, Wraith D, Finnegan ME, Williams S and Haworth A: Multiparametric MRI and radiomics in prostate cancer: a review. Australas Phys Eng Sci Med (2019) 42: 3-25.| Schelb P, Kohl S, Radtke JP, Wiesenfarth M, Kickingereder P, Bickelhaupt S, Kuder TA, Stenzinger A, Hohenfellner M, Schlemmer HP, Maier-Hein KH and Bonekamp D: Classification of Cancer at Prostate MRI: Deep Learning versus Clinical PI-RADS Assessment. Radiology (2019) 293: 607-617.| Antonelli M, Johnston EW, Dikaios N, Cheung KK, Sidhu HS, Appayya MB, Giganti F, Simmons LAM, Freeman A, Allen C, Ahmed HU, Atkinson D, Ourselin S and Punwani S: Machine learning classifiers can predict Gleason pattern 4 prostate cancer with greater accuracy than experienced radiologists. Eur Radiol (2019) 29: 4754-4764.| Bleker J, Kwee TC, Dierckx RAJO, de Jong IJ, Huisman H and Yakar D: Multiparametric MRI and auto-fixed volume of interest-based radiomics signature for clinically significant peripheral zone prostate cancer. Eur Radiol (2020) 30: 1313-1324.| Bagher-Ebadian H, Janic B, Liu C, Pantelic M, Hearshen D, Elshaikh M, Movsas B, Chetty IJ and Wen N: Detection of Dominant Intra-prostatic Lesions in Patients With Prostate Cancer Using an Artificial Neural Network and MR Multi-modal Radiomics Analysis. Front Oncol (2019) 9: 1313.| Chaddad A, Kucharczyk M and Niazi T: Multimodal radiomic features for the predicting gleason score of prostate cancer. Cancers (Basel) (2018) 10: 249.| Monti S, Brancato V, Costanzo GD, Basso L, Puglia M, Ragozzino A, Salvatore M and Cavaliere C: Multiparametric MRI for prostate cancer detection: New insights into the combined use of a radiomic approach with advanced acquisition protocol. Cancers (2020) 12: 390.| Turkbey B, Rosenkrantz AB, Haider MA, Padhani AR, Villeirs G, Macura KJ, Tempany CM, Choyke PL, Cornud F, Margolis DJ, Thoeny HC, Verma S, Barentsz J and Weinreb JC: Prostate Imaging Reporting and Data System Version 2.1: 2019 Update of Prostate Imaging Reporting and Data System Version 2. Eur Urol (2019) 76: 340-351.| Demšar J, Curk T, Erjavec A, Gorup Č, Hočevar T, Milutinovič M, Možina M, Polajnar M, Toplak M, Starič A and Štajdohar M: Orange: data mining toolbox in Python. J Mach Learn Res (2013) 14: 2349-2353.| Tilki D, van den Bergh RCN, Briers E, Van den Broeck T, Brunckhorst O, Darraugh J, Eberli D, De Meerleer G, De Santis M, Farolfi A, Gandaglia G, Gillessen S, Grivas N, Henry AM, Lardas M, JLH van Leenders G, Liew M, Linares Espinos E, Oldenburg J, van Oort IM, Oprea-Lager DE, Ploussard G, Roberts MJ, Rouvière O, Schoots IG, Schouten N, Smith EJ, Stranne J, Wiegel T, Willemse PM and Cornford P: EAU-EANM-ESTRO-ESUR-ISUP-SIOG Guidelines on Prostate Cancer-2024 Update. Part I: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur Urol (2024) 29: 02306-6.| Khalvati F, Wong A and Haider MA: Automated prostate cancer detection via comprehensive multi-parametric magnetic resonance imaging texture feature models. BMC Med Imaging (2015) 15: 27.| Kwak JT, Xu S, Wood BJ, Turkbey B, Choyke PL, Pinto PA, Wang S and Summers RM: Automated prostate cancer detection using T2-weighted and high-b-value diffusion-weighted magnetic resonance imaging. Med Phys (2015) 42: 2368-2378.| Zhao C, Gao G, Fang D, Li F, Yang X, Wang H, He Q and Wang X: The efficiency of multiparametric magnetic resonance imaging (mpMRI) using PI-RADS Version 2 in the diagnosis of clinically significant prostate cancer. Clin Imaging (2016) 40: 885-888.| Chen T, Li M, Gu Y, Zhang Y, Yang S, Wei C, Wu J, Li X, Zhao W and Shen J: Prostate Cancer Differentiation and Aggressiveness: Assessment With a Radiomic-Based Model vs. PI-RADS v2. J Magn Reson Imaging (2019) 49: 875-884.| Hegde JV, Mulkern RV, Panych LP, Fennessy FM, Fedorov A, Maier SE and Tempany CM: Multiparametric MRI of prostate cancer: an update on state-of-the-art techniques and their performance in detecting and localizing prostate cancer. J Magn Reson Imaging (2013) 37: 1035-1054.| Donati OF, Mazaheri Y, Afaq A, Vargas HA, Zheng J, Moskowitz CS, Hricak H and Akin O: Prostate cancer aggressiveness: assessment with whole-lesion histogram analysis of the apparent diffusion coefficient. Radiology (2014) 271: 143-152.| Chen T, Zhang Z, Tan S, Zhang Y, Wei C, Wang S, Zhao W, Qian X, Zhou Z, Shen J, Dai Y and Hu J: MRI Based Radiomics Compared With the PI-RADS V2.1 in the Prediction of Clinically Significant Prostate Cancer: Biparametric vs Multiparametric MRI. Front Oncol (2022) 11: 792456.| Zhang L, Zhe X, Tang M, Zhang J, Ren J, Zhang X and Li L: Predicting the Grade of Prostate Cancer Based on a Biparametric MRI Radiomics Signature. Contrast Media Mol Imaging (2021) 2021: 7830909.| Bagher-Ebadian H, Janic B, Liu C, Pantelic M, Hearshen D, Elshaikh M, Movsas B, Chetty IJ and Wen N: Detection of Dominant Intra-prostatic Lesions in Patients With Prostate Cancer Using an Artificial Neural Network and MR Multi-modal Radiomics Analysis. Front Oncol (2019) 9: 1313.| van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-Tan RGH, Fillion-Robin JC, Pieper S and Aerts HJWL: Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res (2017) 77: e104-e107.| |
フルテキストURL | fulltext.pdf |
---|---|
著者 | Ihara, Hiroki| Yoshio, Kotaro| Tanabe, Shunsuke| Sugiyama, Soichi| Hashimoto, Masashi| Maeda, Naoaki| Akagi, Shinsuke| Takao, Soshi| Noma, Kazuhiro| Hiraki, Takao| |
キーワード | Radiation therapy Esophageal squamous cell carcinoma Recurrence 18F-fluorodeoxyglucose positron emission tomography Survival |
備考 | The version of record of this article, first published in Esophagus, is available online at Publisher’s website: http://dx.doi.org/10.1007/s10388-023-01000-4| |
発行日 | 2023-04-07 |
出版物タイトル | Esophagus |
巻 | 20巻 |
号 | 3号 |
出版者 | Springer Science and Business Media LLC |
開始ページ | 548 |
終了ページ | 556 |
ISSN | 1612-9059 |
NCID | AA11885266 |
資料タイプ | 学術雑誌論文 |
言語 | 英語 |
OAI-PMH Set | 岡山大学 |
著作権者 | © The Author(s) 2023 |
論文のバージョン | publisher |
PubMed ID | 37027045 |
DOI | 10.1007/s10388-023-01000-4 |
Web of Science KeyUT | 000964113700001 |
関連URL | isVersionOf https://doi.org/10.1007/s10388-023-01000-4 |
フルテキストURL | fulltext.pdf |
---|---|
著者 | Kajita, Soichiro| Iguchi, Toshihiro| Matsui, Yusuke| Tomita, Koji| Uka, Mayu| Umakoshi, Noriyuki| Kawabata, Takahiro| Munetomo, Kazuaki| Hiraki, Takao| |
キーワード | Biopsy Imaging Complication Renal neoplasms |
備考 | The version of record of this article, first published in Japanese Journal of Radiology, is available online at Publisher’s website: http://dx.doi.org/10.1007/s11604-023-01509-9| |
発行日 | 2023-11-22 |
出版物タイトル | Japanese Journal of Radiology |
巻 | 42巻 |
号 | 4号 |
出版者 | Springer Science and Business Media LLC |
開始ページ | 398 |
終了ページ | 405 |
ISSN | 1867-1071 |
NCID | AA12375935 |
資料タイプ | 学術雑誌論文 |
言語 | 英語 |
OAI-PMH Set | 岡山大学 |
著作権者 | © The Author(s) 2023 |
論文のバージョン | publisher |
PubMed ID | 37991654 |
DOI | 10.1007/s11604-023-01509-9 |
Web of Science KeyUT | 001106454600001 |
関連URL | isVersionOf https://doi.org/10.1007/s11604-023-01509-9 |
フルテキストURL | fulltext.pdf |
---|---|
著者 | Iguchi, Toshihiro| Matsui, Yusuke| Toji, Tomohiro| Sakurai, Jun| Tomita, Koji| Uka, Mayu| Umakoshi, Noriyuki| Kawabata, Takahiro| Munetomo, Kazuaki| Mitsuhashi, Toshiharu| Hiraki, Takao| |
キーワード | Biopsy Kidney Tumor Computed tomography Ultrasound |
備考 | The version of record of this article, first published in Japanese Journal of Radiology, is available online at Publisher’s website: http://dx.doi.org/10.1007/s11604-023-01496-x| |
発行日 | 2023-10-14 |
出版物タイトル | Japanese Journal of Radiology |
巻 | 42巻 |
号 | 3号 |
出版者 | Springer Science and Business Media LLC |
開始ページ | 319 |
終了ページ | 325 |
ISSN | 1867-1071 |
NCID | AA12375935 |
資料タイプ | 学術雑誌論文 |
言語 | 英語 |
OAI-PMH Set | 岡山大学 |
著作権者 | © The Author(s) 2023 |
論文のバージョン | publisher |
PubMed ID | 37833443 |
DOI | 10.1007/s11604-023-01496-x |
Web of Science KeyUT | 001086535200001 |
関連URL | isVersionOf https://doi.org/10.1007/s11604-023-01496-x |
JaLCDOI | 10.18926/AMO/66916 |
---|---|
フルテキストURL | 78_2_135.pdf |
著者 | Higaki, Fumiyo| Morimitsu, Yusuke| Iguchi, Toshihiro| Saito, Hayato| Takaki, Haruhiko| Nakagoshi, Ayako| Wada, Maki| Uka, Mayu| Akagi, Noriaki| Mitsuhashi, Toshiharu| Matsui, Yusuke| Hiraki, Takao| |
抄録 | This study aimed to evaluate the potential reduction in contrast medium utilization using photon-counting detector computed tomography (PCD-CT). One PCD-CT scan (CT1) and three conventional (non-PCD-CT) CT scans (CT2-CT4) were performed using a multi-energy CT phantom that contained eight rods with different iodine concentrations (0.2, 0.5, 1, 2, 5, 10, 15, and 20 mg/ml). The CT values of the seven groups (CT1 for 40, 50, 60, and 70 keV; and CT2-4) were measured. Noise and contrast-to-noise ratio (CNR) were assessed for the eight rods at various iodine concentrations. CT2 and CT1 (40 keV) respectively required 20 mg/ml and 5 mg/ml of iodine, indicating that a comparable contrast effect could be obtained with approximately one-fourth of the contrast medium amount. The standard deviation values increased at lower energy levels irrespective of the iodine concentration. The CNR exhibited a decreasing trend with lower iodine concentrations, while it remained relatively stable across all iodine levels (40-70 keV). This study demonstrated that virtual monochromatic 40 keV images offer a similar contrast effect with a reduced contrast medium amount when compared to conventional CT systems at 120 kV. |
キーワード | photon-counting detector CT energy integrating detector CT computed tomography contrast medium amount reduction |
Amo Type | Original Article |
出版物タイトル | Acta Medica Okayama |
発行日 | 2024-04 |
巻 | 78巻 |
号 | 2号 |
出版者 | Okayama University Medical School |
開始ページ | 135 |
終了ページ | 142 |
ISSN | 0386-300X |
NCID | AA00508441 |
資料タイプ | 学術雑誌論文 |
言語 | 英語 |
著作権者 | Copyright Ⓒ 2024 by Okayama University Medical School |
論文のバージョン | publisher |
査読 | 有り |
PubMed ID | 38688831 |
Web of Science KeyUT | 001229151800005 |
フルテキストURL | fulltext.pdf |
---|---|
著者 | Takahashi, Yuka| Higaki, Fumiyo| Sugaya, Akiko| Asano, Yudai| Kojima, Katsuhide| Morimitsu, Yusuke| Akagi, Noriaki| Itoh, Toshihide| Matsui, Yusuke| Hiraki, Takao| |
キーワード | Photon-counting detector computed tomography Energy-integrating detectors Ear ossicles High-resolution imaging 3D |
備考 | The version of record of this article, first published in Japanese Journal of Radiology, is available online at Publisher’s website: http://dx.doi.org/10.1007/s11604-023-01485-0| |
発行日 | 2023-08-27 |
出版物タイトル | Japanese Journal of Radiology |
巻 | 42巻 |
号 | 2号 |
出版者 | Springer Science and Business Media LLC |
開始ページ | 158 |
終了ページ | 164 |
ISSN | 1867-1071 |
NCID | AA12375935 |
資料タイプ | 学術雑誌論文 |
言語 | 英語 |
OAI-PMH Set | 岡山大学 |
著作権者 | © The Author(s) 2023 |
論文のバージョン | publisher |
PubMed ID | 37633874 |
DOI | 10.1007/s11604-023-01485-0 |
Web of Science KeyUT | 001060337800001 |
関連URL | isVersionOf https://doi.org/10.1007/s11604-023-01485-0 |
JaLCDOI | 10.18926/AMO/66668 |
---|---|
フルテキストURL | 78_1_029.pdf |
著者 | Kitayama, Takahiro| Tanaka, Takashi| Kanie, Yuichiro| Marukawa, Yohei| Kojima, Katsuhide| Tanaka, Takehiro| Takao, Soshi| Hiraki, Takao| |
抄録 | This retrospective study investigated whether necrotic lesions detected on a computed tomography (CT) scan are more regressive than non-necrotic lesions after methotrexate withdrawal in patients pathologically diagnosed with methotrexate-associated lymphoproliferative disorders (MTX-LPD). In total, 89 lesions extracted from 24 patients on CT scans were included in the analysis. All patients had been evaluated for the presence of necrosis within lesions via CT scan upon first suspicion of MTX-LPD (baseline CT scan). The percentage lesion size reduction between the baseline and initial follow-up CT scan was calculated. The association between necrosis within lesions and size changes was estimated via linear regression analyses using both crude and adjusted models. Necrosis was significantly more common in extranodal lesions (27 out of 30 lesions, 90%) than in nodal lesions (9 out of 59 lesions, 15%, p<0.001). In the crude model, the regression of necrotic lesions was 58.5% greater than that of non-necrotic lesions; the difference was statistically significant (p<0.001). Additionally, the longest diameter of necrotic lesions at the baseline CT scan was significantly greater than that of non-necrotic lesions (p<0.001). Based on the adjusted model, necrotic lesions showed 49.3% greater regression than non-necrotic lesions (p=0.017). Necrosis detected on a CT scan was found to be an independent predictor of regression after MTX withdrawal in patients with MTX-LPD. |
キーワード | methotrexate lymphoproliferative disorder computed tomography necrosis |
Amo Type | Original Article |
出版物タイトル | Acta Medica Okayama |
発行日 | 2024-02 |
巻 | 78巻 |
号 | 1号 |
出版者 | Okayama University Medical School |
開始ページ | 29 |
終了ページ | 36 |
ISSN | 0386-300X |
NCID | AA00508441 |
資料タイプ | 学術雑誌論文 |
言語 | 英語 |
著作権者 | Copyright Ⓒ 2024 by Okayama University Medical School |
論文のバージョン | publisher |
査読 | 有り |
PubMed ID | 38419312 |
Web of Science KeyUT | 001203658200001 |
JaLCDOI | 10.18926/AMO/66160 |
---|---|
フルテキストURL | 77_6_665.pdf |
著者 | Sakurai, Atsunobu| Uka, Mayu| Iguchi, Toshihiro| Tomita, Koji| Matsui, Yusuke| Kakiuchi, Yoshihiko| Kuroda, Shinji| Fujiwara, Toshiyoshi| Hiraki, Takao| |
抄録 | We report the case details of a 65-year-old Japanese man with an omental abscess that was discovered 43 days after he underwent a laparoscopic proximal gastrectomy for gastric cancer. His chief complaint was mild abdominal pain that had persisted for several days. The abscess was diagnosed as a rare postoperative complication. We hesitated to perform a reoperation given the invasiveness of general anesthesia and surgery, plus the possibility of postoperative adhesions and because the patient’s general condition was stable and he had only mild abdominal pain. Percutaneous drainage using a 10.2-F catheter was performed with the patient under conscious sedation and computed tomography–fluoroscopy guidance, with no complications. After the procedure, the size of the abscess cavity was remarkably reduced, and 23 days later the catheter was withdrawn. |
キーワード | drainage omental abscess omental infarction proximal gastrectomy |
Amo Type | Case Report |
出版物タイトル | Acta Medica Okayama |
発行日 | 2023-12 |
巻 | 77巻 |
号 | 6号 |
出版者 | Okayama University Medical School |
開始ページ | 665 |
終了ページ | 669 |
ISSN | 0386-300X |
NCID | AA00508441 |
資料タイプ | 学術雑誌論文 |
言語 | 英語 |
著作権者 | Copyright Ⓒ 2023 by Okayama University Medical School |
論文のバージョン | publisher |
査読 | 有り |
PubMed ID | 38145942 |
Web of Science KeyUT | 001164631200013 |
JaLCDOI | 10.18926/AMO/66157 |
---|---|
フルテキストURL | 77_6_647.pdf |
著者 | Kojima, Katsuhide| Takahashi, Yuka| Sugiyama, Soichi| Asano, Yudai| Okawa, Nanako| Makimoto, Satoko| Higaki, Fumiyo| Iguchi, Toshihiro| Hiraki, Takao| |
抄録 | A 67-year-old man was referred to our hospital for the diagnosis and treatment of prostate cancer. Multidisciplinary discussion led to intensity-modulated radiotherapy preceded by hormone therapy. Before radiotherapy, a biodegradable hydrogel spacer (HS) was placed between the prostate and rectum to reduce radiation injury risk. Three weeks postplacement, pelvic magnetic resonance imaging revealed HS migration into the pelvic vein. Subsequent whole-body contrast-enhanced computed tomography (CECT) revealed HS migration into the pulmonary artery. The patient showed no symptoms or clinical signs. Radiotherapy was completed uneventfully. Complete absorption of the migrated HS was confirmed using CECT images 5 months postplacement. |
キーワード | hydrogel spacer prostate cancer radiotherapy pulmonary embolism |
Amo Type | Case Report |
出版物タイトル | Acta Medica Okayama |
発行日 | 2023-12 |
巻 | 77巻 |
号 | 6号 |
出版者 | Okayama University Medical School |
開始ページ | 647 |
終了ページ | 650 |
ISSN | 0386-300X |
NCID | AA00508441 |
資料タイプ | 学術雑誌論文 |
言語 | 英語 |
著作権者 | Copyright Ⓒ 2023 by Okayama University Medical School |
論文のバージョン | publisher |
査読 | 有り |
PubMed ID | 38145939 |
Web of Science KeyUT | 001164631200010 |
フルテキストURL | fulltext.pdf |
---|---|
著者 | Uka, Mayu| Iguchi, Toshihiro| Okawa, Nanako| Matsui, Yusuke| Tomita, Koji| Umakoshi, Noriyuki| Munetomo, Kazuaki| Gobara, Hideo| Araki, Motoo| Hiraki, Takao| |
キーワード | Kidney neoplasms Cryosurgery Image-guided |
備考 | The version of record of this article, first published in Japanese Journal of Radiology, is available online at Publisher’s website: http://dx.doi.org/10.1007/s11604-022-01297-8| |
発行日 | 2022-06-21 |
出版物タイトル | Japanese Journal of Radiology |
巻 | 40巻 |
号 | 11号 |
出版者 | Springer Science and Business Media LLC |
開始ページ | 1201 |
終了ページ | 1209 |
ISSN | 1867-1071 |
NCID | AA12375935 |
資料タイプ | 学術雑誌論文 |
言語 | 英語 |
OAI-PMH Set | 岡山大学 |
著作権者 | © The Author(s) 2022 |
論文のバージョン | publisher |
PubMed ID | 35727459 |
DOI | 10.1007/s11604-022-01297-8 |
Web of Science KeyUT | 000814035800002 |
関連URL | isVersionOf https://doi.org/10.1007/s11604-022-01297-8 |
フルテキストURL | fulltext.pdf |
---|---|
著者 | Tomita, Koji| Matsui, Yusuke| Uka, Mayu| Umakoshi, Noriyuki| Kawabata, Takahiro| Munetomo, Kazuaki| Nagata, Shoma| Iguchi, Toshihiro| Hiraki, Takao| |
キーワード | Ablation Liver Metastasis |
備考 | The version of record of this article, first published in Japanese Journal of Radiology, is available online at Publisher’s website: http://dx.doi.org/10.1007/s11604-022-01335-5| |
発行日 | 2022-09-13 |
出版物タイトル | Japanese Journal of Radiology |
巻 | 40巻 |
号 | 10号 |
出版者 | Springer Science and Business Media LLC |
開始ページ | 1035 |
終了ページ | 1045 |
ISSN | 1867-1071 |
資料タイプ | 学術雑誌論文 |
言語 | 英語 |
OAI-PMH Set | 岡山大学 |
著作権者 | © The Author(s) 2022 |
論文のバージョン | publisher |
PubMed ID | 36097234 |
DOI | 10.1007/s11604-022-01335-5 |
Web of Science KeyUT | 000852956100003 |
関連URL | isVersionOf https://doi.org/10.1007/s11604-022-01335-5 |
フルテキストURL | fulltext.pdf |
---|---|
著者 | Matsui, Yusuke| Tomita, Koji| Uka, Mayu| Umakoshi, Noriyuki| Kawabata, Takahiro| Munetomo, Kazuaki| Nagata, Shoma| Iguchi, Toshihiro| Hiraki, Takao| |
キーワード | Ablation Lung Pulmonary Metastasis |
備考 | The version of record of this article, first published in Japanese Journal of Radiology, is available online at Publisher’s website: http://dx.doi.org/10.1007/s11604-022-01302-0| |
発行日 | 2022-07-02 |
出版物タイトル | Japanese Journal of Radiology |
巻 | 40巻 |
号 | 10号 |
出版者 | Springer Science and Business Media LLC |
開始ページ | 1024 |
終了ページ | 1034 |
ISSN | 1867-1071 |
NCID | AA12375935 |
資料タイプ | 学術雑誌論文 |
言語 | 英語 |
OAI-PMH Set | 岡山大学 |
著作権者 | © The Author(s) 2022 |
論文のバージョン | publisher |
PubMed ID | 35778630 |
DOI | 10.1007/s11604-022-01302-0 |
Web of Science KeyUT | 000819687400001 |
関連URL | isVersionOf https://doi.org/10.1007/s11604-022-01302-0 |
フルテキストURL | fulltext.pdf |
---|---|
著者 | Umakoshi, Noriyuki| Matsui, Yusuke| Tomita, Koji| Uka, Mayu| Kawabata, Takahiro| Iguchi, Toshihiro| Hiraki, Takao| |
キーワード | hepatocellular carcinoma extrahepatic metastases ablation therapy radiofrequency ablation microwave ablation cryoablation percutaneous ethanol injection |
発行日 | 2023-07-18 |
出版物タイトル | Cancers |
巻 | 15巻 |
号 | 14号 |
出版者 | MDPI |
開始ページ | 3665 |
ISSN | 2072-6694 |
資料タイプ | 学術雑誌論文 |
言語 | 英語 |
OAI-PMH Set | 岡山大学 |
著作権者 | © 2023 by the authors. |
論文のバージョン | publisher |
PubMed ID | 37509326 |
DOI | 10.3390/cancers15143665 |
Web of Science KeyUT | 001035192500001 |
関連URL | isVersionOf https://doi.org/10.3390/cancers15143665 |
タイトル(別表記) | Non-vascular interventional radiology for lung cancer |
---|---|
著者 | 平木 隆夫| |
キーワード | 肺癌(lung cancer) インターベンショナルラジオロジー(interventional radiology) 非血管系(non-vascular) |
出版物タイトル | 岡山医学会雑誌 |
発行日 | 2022-12-01 |
巻 | 134巻 |
号 | 3号 |
開始ページ | 145 |
終了ページ | 151 |
ISSN | 0030-1558 |
関連URL | isVersionOf https://doi.org/10.4044/joma.134.145 |
言語 | 日本語 |
著作権者 | Copyright (c) 2022 岡山医学会 |
論文のバージョン | publisher |
DOI | 10.4044/joma.134.145 |
フルテキストURL | fulltext20230418-06.pdf |
---|---|
著者 | Umakoshi, Noriyuki| Iguchi, Toshihiro| Matsui, Yusuke| Tomita, Koji| Uka, Mayu| Kawabata, Takahiro| Munetomo, Kazuaki| Nagata, Shoma| Gobara, Hideo| Araki, Motoo| Hiraki, Takao| |
キーワード | Renal cryoablation Transcatheter arterial embolization Chronic kidney disease |
備考 | The version of record of this article, first published in Japanese Journal of Radiology, is available online at Publisher’s website: http://dx.doi.org/10.1007/s11604-023-01416-z| |
発行日 | 2023-04-01 |
出版物タイトル | Japanese Journal of Radiology |
出版者 | Springer Science and Business Media LLC |
ISSN | 1867-1071 |
資料タイプ | 学術雑誌論文 |
言語 | 英語 |
OAI-PMH Set | 岡山大学 |
著作権者 | © The Author(s) 2023 |
論文のバージョン | publisher |
PubMed ID | 37002430 |
DOI | 10.1007/s11604-023-01416-z |
Web of Science KeyUT | 000961195900001 |
関連URL | isVersionOf https://doi.org/10.1007/s11604-023-01416-z |
JaLCDOI | 10.18926/AMO/64366 |
---|---|
フルテキストURL | 77_1_81.pdf |
著者 | Tomita, Koji| Iguchi, Toshihiro| Matsui, Yusuke| Uka, Mayu| Nakata, Eiji| Hiraki, Takao| |
抄録 | Osteoid osteoma (OO) is a benign bone tumor that presents with nocturnal pain. Computed tomography (CT)- guided radiofrequency ablation (RFA) has been widely performed for OO, and major adverse events post-RFA are rare. We report a case of OO in the left navicular bone of a 15-year-old male. He underwent RFA for OO, and the pain improved temporarily. At the 1-month follow-up, the patient complained of left foot pain, and a CT examination revealed a fracture of the ablated navicular bone. Fractures are rare but must be taken into account after bone RFA. |
キーワード | osteoid osteoma radiofrequency ablation navicular bone fracture |
Amo Type | Case Report |
出版物タイトル | Acta Medica Okayama |
発行日 | 2023-02 |
巻 | 77巻 |
号 | 1号 |
出版者 | Okayama University Medical School |
開始ページ | 81 |
終了ページ | 84 |
ISSN | 0386-300X |
NCID | AA00508441 |
資料タイプ | 学術雑誌論文 |
言語 | 英語 |
著作権者 | Copyright Ⓒ 2023 by Okayama University Medical School |
論文のバージョン | publisher |
査読 | 有り |
PubMed ID | 36849150 |
Web of Science KeyUT | 000952973200002 |
フルテキストURL | fulltext.pdf |
---|---|
著者 | Yoshio, Kotaro| Ihara, Hiroki| Okamoto, Kazuhiro| Suzuki, Etsuji| Ogata, Takeshi| Sugiyama, Soichi| Nakamura, Keiichiro| Nagao, Shoji| Masuyama, Hisashi| Hiraki, Takao| |
キーワード | cervical cancer tumor size squamous cell carcinoma image-guided brachytherapy (IGBT) central shielding (CS) |
発行日 | 2022-07-05 |
出版物タイトル | Journal Of Radiation Research |
出版者 | Oxford University Press on behalf of The Japanese Radiation Research Society and Japanese Society for Radiation Oncology |
ISSN | 0449-3060 |
資料タイプ | 学術雑誌論文 |
言語 | 英語 |
OAI-PMH Set | 岡山大学 |
著作権者 | © The Author(s) 2022. |
論文のバージョン | publisher |
PubMed ID | 35791439 |
DOI | 10.1093/jrr/rrac040 |
Web of Science KeyUT | 000820941900001 |
関連URL | isVersionOf https://doi.org/10.1093/jrr/rrac040 |
フルテキストURL | fulltext.pdf |
---|---|
著者 | Iwamuro, Masaya| Kawai, Yusuke| Uka, Mayu| Matsui, Yusuke| Hiraki, Takao| Kawahara, Yoshiro| Okada, Hiroyuki| |
発行日 | 2022-04-07 |
出版物タイトル | Case Reports In Gastrointestinal Medicine |
巻 | 2022巻 |
出版者 | Hindawi Ltd. |
開始ページ | 9988216 |
ISSN | 2090-6528 |
資料タイプ | 学術雑誌論文 |
言語 | 英語 |
OAI-PMH Set | 岡山大学 |
著作権者 | © 2022 Masaya Iwamuro et al. |
論文のバージョン | publisher |
PubMed ID | 35433061 |
DOI | 10.1155/2022/9988216 |
Web of Science KeyUT | 000791234100001 |
関連URL | isVersionOf https://doi.org/10.1155/2022/9988216 |