start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=1 article-no= start-page=4175 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250505 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structure of a photosystem II-FCPII supercomplex from a haptophyte reveals a distinct antenna organization en-subtitle= kn-subtitle= en-abstract= kn-abstract=Haptophytes are unicellular algae that produce 30 to 50% of biomass in oceans. Among haptophytes, a subset named coccolithophores is characterized by calcified scales. Despite the importance of coccolithophores in global carbon fixation and CaCO3 production, their energy conversion system is still poorly known. Here we report a cryo-electron microscopic structure of photosystem II (PSII)-fucoxanthin chlorophyll c-binding protein (FCPII) supercomplex from Chyrostila roscoffensis, a representative of coccolithophores. This complex has two sets of six dimeric and monomeric FCPIIs, with distinct orientations. Interfaces of both FCPII/FCPII and FCPII/core differ from previously reported. We also determine the sequence of Psb36, a subunit previously found in diatoms and red algae. The principal excitation energy transfer (EET) pathways involve mainly 5 FCPIIs, where one FCPII monomer mediates EET to CP47. Our findings provide a solid structural basis for EET and energy dissipation pathways occurring in coccolithophores. en-copyright= kn-copyright= en-aut-name=La RoccaRomain en-aut-sei=La Rocca en-aut-mei=Romain kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KatoKoji en-aut-sei=Kato en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TsaiPi-Cheng en-aut-sei=Tsai en-aut-mei=Pi-Cheng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakajimaYoshiki en-aut-sei=Nakajima en-aut-mei=Yoshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AkitaFusamichi en-aut-sei=Akita en-aut-mei=Fusamichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, and Advanced Research Field, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, and Advanced Research Field, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, and Advanced Research Field, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, and Advanced Research Field, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Research Institute for Interdisciplinary Science, and Advanced Research Field, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science, and Advanced Research Field, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=3 article-no= start-page=185 end-page=195 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Emotional Changes among Young Patients with Breast Cancer to Foster Relationship-Building with Their Partners: A Qualitative Study en-subtitle= kn-subtitle= en-abstract= kn-abstract=We investigated the emotional changes that young patients with breast cancer need to undergo in order to foster relationship-building with their partners by conducting a qualitative descriptive study (March 1 to Nov. 26, 2021) and semi-structured interviews with eight postoperative patients (age 20-40 years) with breast cancer. The data were analyzed using the modified grounded theory approach (M-GTA), yielding five categories: (i) Awareness of being a breast cancer patient, (ii) Being at a loss, (iii) Support from significant others, (iv) The struggle to transition from being a patient with cancer to becoming “the person I want to be”, and (v) Reaching the “me” I want to be who can face building a relationship with a partner. These findings suggest that young breast cancer patients must feel that they can lead a normal life through activities such as work or acquiring qualifications before building relationships with their partners, and that getting closer to their desired selves is important. Nurses can provide information to young patients with breast cancer to assist them in building a solid relationship with their partners. We believe that this support may enhance the patients’ quality of life and help them achieve stronger relationships with their partners. en-copyright= kn-copyright= en-aut-name=YoshikawaAyumi en-aut-sei=Yoshikawa en-aut-mei=Ayumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TairaNaruto en-aut-sei=Taira en-aut-mei=Naruto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OkanagaMayumi en-aut-sei=Okanaga en-aut-mei=Mayumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SaitoShinya en-aut-sei=Saito en-aut-mei=Shinya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Faculty of Nursing, Osaka Dental University kn-affil= affil-num=2 en-affil=Kawasaki Medical School, Department of Breast and Thyroid Surgery kn-affil= affil-num=3 en-affil=Gifu College of Nursing, Nursing of Children and Child-Rearing Families kn-affil= affil-num=4 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= en-keyword=breast cancer patient kn-keyword=breast cancer patient en-keyword=young patient kn-keyword=young patient en-keyword=single kn-keyword=single en-keyword=partners kn-keyword=partners en-keyword=relationships kn-keyword=relationships END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=3 article-no= start-page=157 end-page=166 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Continuous Stimulation with Glycolaldehyde-derived Advanced Glycation End Product Reduces Aggrecan and COL2A1 Production via RAGE in Human OUMS-27 Chondrosarcoma Cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=Chondrocytes are responsible for the production of extracellular matrix (ECM) components such as collagen type II alpha-1 (COL2A1) and aggrecan, which are loosely distributed in articular cartilage. Chondrocyte dysfunction has been implicated in the pathogenesis of rheumatic diseases such as osteoarthritis (OA) and rheumatoid arthritis (RA). With age, advanced glycation end products (AGEs) accumulate in all tissues and body fluids, including cartilage and synovial fluid, causing and accelerating pathological changes associated with chronic diseases such as OA. Glycolaldehyde-derived AGE (AGE3), which is toxic to a variety of cell types, have a stronger effect on cartilage compared with other AGEs. To understand the long-term effects of AGE3 on cartilage, we stimulated a human chondrosarcoma cell line (OUMS-27), which exhibits a chondrocytic phenotype, with 10 μg/ml AGE3 for 4 weeks. As a result, the expressions of COL2A1 and aggrecan were significantly downregulated in the OUMS-27 cells without inducing cell death, but the expressions of proteases that play an important role in cartilage destruction were not affected. Inhibition of the receptor for advanced glycation end products (RAGE) suppressed the AGE3-induced reduction in cartilage component production, suggesting the involvement of RAGE in the action of AGE3. en-copyright= kn-copyright= en-aut-name=HatipogluOmer Faruk en-aut-sei=Hatipoglu en-aut-mei=Omer Faruk kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishinakaTakashi en-aut-sei=Nishinaka en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YaykasliKursat Oguz en-aut-sei=Yaykasli en-aut-mei=Kursat Oguz kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MoriShuji en-aut-sei=Mori en-aut-mei=Shuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WatanabeMasahiro en-aut-sei=Watanabe en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ToyomuraTakao en-aut-sei=Toyomura en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NishiboriMasahiro en-aut-sei=Nishibori en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HirohataSatoshi en-aut-sei=Hirohata en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TakahashiHideo en-aut-sei=Takahashi en-aut-mei=Hideo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=WakeHidenori en-aut-sei=Wake en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Pharmacology, Faculty of Medicine, Kindai University kn-affil= affil-num=2 en-affil=Department of Pharmacology, Faculty of Medicine, Kindai University kn-affil= affil-num=3 en-affil=Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen kn-affil= affil-num=4 en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University kn-affil= affil-num=5 en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University kn-affil= affil-num=6 en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University kn-affil= affil-num=7 en-affil=Department of Translational Research & Dug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Pharmacology, Faculty of Medicine, Kindai University kn-affil= affil-num=10 en-affil=Department of Pharmacology, Faculty of Medicine, Kindai University kn-affil= en-keyword=advanced glycation end product kn-keyword=advanced glycation end product en-keyword=aging kn-keyword=aging en-keyword=cartilage kn-keyword=cartilage en-keyword=collagen kn-keyword=collagen en-keyword=aggrecan kn-keyword=aggrecan END start-ver=1.4 cd-journal=joma no-vol=71 cd-vols= no-issue=1 article-no= start-page=19 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250419 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Quantitative assessment of adhesive effects on partial and full compressive strength of LVL in the edge-wise direction en-subtitle= kn-subtitle= en-abstract= kn-abstract=Laminated wood-based materials have been widely developed, and the laminating process and adhesive itself have been reported to enhance performance beyond the sum of the individual layers' performance. This phenomenon is particularly notable under loads applied in the "edge-wise direction", where each layer bears stress collectively. These combined effects are referred to as the "adhesive effect". Strength under partial compressive loads is critical in timber engineering, as partial compressive stress generates complex stress distributions influenced by boundary conditions. The adhesive effect may also be impacted by these conditions. The aim of this study was to quantitatively and directly evaluate the adhesive effect under partial and full compressive loads using various parameters. The strength of laminated veneer lumber (LVL) with adhesive was compared to that of simply layered veneers without adhesive to assess the adhesive effect. Three mechanisms contributing to the adhesive effect were proposed: Mechanism I, caused by the deformation of the adhesive layer independently from the veneers; Mechanism II, resulting from the adhesive impregnating the veneers; and Mechanism III, arising from the reinforcement provided by adjacent veneers. The results suggested the following: (i) Mechanism I had minimal impact, as the fiber direction and the presence of additional length showed strong and slight effects on the adhesive effect, respectively; (ii) Mechanism II contributed to preventing crack propagation and altering the relationships among mechanical properties, with its effectiveness increasing as the adhesive weight increased; and (iii) Mechanism III functioned as a crossband effect, reinforcing weaknesses caused by the slope of the grain and the angle of the annual rings. en-copyright= kn-copyright= en-aut-name=SudoRyutaro en-aut-sei=Sudo en-aut-mei=Ryutaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyamotoKohta en-aut-sei=Miyamoto en-aut-mei=Kohta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IdoHirofumi en-aut-sei=Ido en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Okayama University, Graduate School of Environmental, Life, Natural Science and Technology kn-affil= affil-num=2 en-affil=Forestry and Forest Products Research Institute kn-affil= affil-num=3 en-affil=Forestry and Forest Products Research Institute kn-affil= en-keyword=Laminated veneer lumber (LVL) kn-keyword=Laminated veneer lumber (LVL) en-keyword=Partial compressive load kn-keyword=Partial compressive load en-keyword=Bearing strength kn-keyword=Bearing strength en-keyword=Embedment strength kn-keyword=Embedment strength en-keyword=Partial compression perpendicular to grain (PCPG) kn-keyword=Partial compression perpendicular to grain (PCPG) en-keyword=Adhesive layer kn-keyword=Adhesive layer END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=2 article-no= start-page=139 end-page=144 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202504 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Safe Resection of Esophageal Cancer with a Non-Recurrent Inferior Laryngeal Nerve Associated with an Aberrant Right Subclavian Artery Using Intraoperative Nerve Monitoring en-subtitle= kn-subtitle= en-abstract= kn-abstract=In thoracic esophageal cancer, lymph node dissection around the recurrent laryngeal nerve is crucial but poses a risk of nerve palsy, affecting postoperative quality of life. In cases with an aberrant right subclavian artery (ARSA), the right recurrent laryngeal nerve is absent, and the non-recurrent inferior laryngeal nerve (NRILN) enters the larynx directly from the vagus nerve in the cervical region. Identifying the course of the NRILN is vital to avoid injury. A case of esophageal cancer with an ARSA, in which the course of the NRILN was preserved using the Nerve Integrity Monitoring (NIM) system during surgery, is described. en-copyright= kn-copyright= en-aut-name=TakedaYasushige en-aut-sei=Takeda en-aut-mei=Yasushige kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NomaKazuhiro en-aut-sei=Noma en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MaedaNaoaki en-aut-sei=Maeda en-aut-mei=Naoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MizusawaYohei en-aut-sei=Mizusawa en-aut-mei=Yohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MatsumotoHijiri en-aut-sei=Matsumoto en-aut-mei=Hijiri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KondoYuhei en-aut-sei=Kondo en-aut-mei=Yuhei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KunitomoTomoyoshi en-aut-sei=Kunitomo en-aut-mei=Tomoyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TanoueYukinori en-aut-sei=Tanoue en-aut-mei=Yukinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HashimotoMasashi en-aut-sei=Hashimoto en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TanabeShunsuke en-aut-sei=Tanabe en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Gastroenterological Surgery, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Gastroenterological Surgery, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Gastroenterological Surgery, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Gastroenterological Surgery, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Gastroenterological Surgery, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Gastroenterological Surgery, Okayama University Hospital kn-affil= affil-num=10 en-affil=Department of Gastroenterological Surgery, Okayama University Hospital kn-affil= affil-num=11 en-affil=Department of Gastroenterological Surgery, Okayama University Hospital kn-affil= en-keyword=esophageal cancer kn-keyword=esophageal cancer en-keyword=intraoperative nerve monitoring kn-keyword=intraoperative nerve monitoring en-keyword=aberrant right subclavian artery kn-keyword=aberrant right subclavian artery en-keyword=non-recurrent inferior laryngeal nerve kn-keyword=non-recurrent inferior laryngeal nerve en-keyword=thoracoscopic esophagectomy kn-keyword=thoracoscopic esophagectomy END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=2 article-no= start-page=101 end-page=107 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202504 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effectiveness of Postoperative Irradiation in Patients with cN0 Early Breast Cancer Treated with Sentinel Lymph Node Surgery en-subtitle= kn-subtitle= en-abstract= kn-abstract=To evaluate the effectiveness of postoperative irradiation (POI) for patients with cN0 early breast cancer, we retrospectively analyzed the cases of 650 consecutive breast cancer patients who underwent sentinel lymph node (SLN)-guided surgery (2005-2022) at our hospital. In this cohort, 53% (278/521) of the patients who underwent breast conservative surgery (BCS) and 96% (124/129) of those treated with mastectomy did not receive POI. The patients who underwent BCS were treated with POI using opposing tangential field irradiation. A false negative (FN) SLN was retrospectively defined as a negative metastasis in SLN plus positive recurrence in the axillary lymph nodes. Recurrence was detected in 83 patients. A logistic regression analysis revealed that the nuclear grade (odds ratio [OR] 1.69), POI (OR 0.41), and postoperative hormone therapy (OR 0.40) were each significantly related to recurrence. The 26.1% (12/46) FN rate of the non-POI patients decreased to 5.8% (1/17) compared to those treated with POI. The rate of axillary recurrence was significantly lower in the POI group (0.4%) versus the non-POI group (2.7%) (p=0.0355). The rate of locoregional recurrence was also significantly lower in the POI group (2.0%) versus the non-POI group (13.4%) (p<0.0001). No significant difference was observed in the rate of distant recurrence between the POI (4.0%) and non-POI (3.3%) (p=0.831) groups. These results indicated that the postoperative opposing tangential field irradiation of conserved breast tissue inhibited recurrence in the axillary lymph nodes. en-copyright= kn-copyright= en-aut-name=IsozakiHiroshi en-aut-sei=Isozaki en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsumotoSasau en-aut-sei=Matsumoto en-aut-mei=Sasau kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakamaTakehiro en-aut-sei=Takama en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IsozakiYuka en-aut-sei=Isozaki en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Surgery, Oomoto Hospital kn-affil= affil-num=2 en-affil=Department of Surgery, Oomoto Hospital kn-affil= affil-num=3 en-affil=Department of Surgery, Oomoto Hospital kn-affil= affil-num=4 en-affil=Department of Surgery, Oomoto Hospital kn-affil= en-keyword=breast cancer kn-keyword=breast cancer en-keyword=postoperative irradiation kn-keyword=postoperative irradiation en-keyword=radiation therapy kn-keyword=radiation therapy en-keyword=sentinel lymph nodes kn-keyword=sentinel lymph nodes en-keyword=recurrence kn-keyword=recurrence END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=2 article-no= start-page=93 end-page=100 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202504 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Lower Work Engagement Is Associated with Insomnia, Psychological Distress, and Neck Pain among Junior and Senior High School Teachers in Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=School teachers are subject to both physical and mental health problems. We examined cross-sectional relationships between work engagement and major health outcomes among junior and senior high school teachers in Japan via a nationwide survey in 2019-2020. A total of 3,160 respondents were included in the analyses (19.9% response rate). Work engagement was assessed with the Utrecht Work Engagement Scale-9 (UWES-9), and we thus divided the teachers into quartiles according to their UWES-9 scores. Based on validated questionnaires, we assessed insomnia, psychological distress, and neck pain as health outcomes. A binomial logistic regression adjusted for age, gender, school type, teacher’s roles, involvement in club activities, division of duties, employment status, and whether they lived with family demonstrated that the teachers with lower UWES-9 scores had higher burdens of insomnia, psychological distress, and neck pain (odds ratios [95% confidence intervals] in 4th vs. 1st quartile, 2.92 (2.34-3.65), 3.70 (2.81-4.88), and 2.12 (1.68-2.68), respectively; all trend p<0.001). There were no significant differences in these associations between full-time and part-time teachers. Our findings indicate that low work engagement may contribute to physical and mental health issues among junior and senior high school teachers, thus providing insights for preventing health problems in this profession. en-copyright= kn-copyright= en-aut-name=TsuchieRina en-aut-sei=Tsuchie en-aut-mei=Rina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FukudaMari en-aut-sei=Fukuda en-aut-mei=Mari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TsumuraHideki en-aut-sei=Tsumura en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KinutaMinako en-aut-sei=Kinuta en-aut-mei=Minako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HisamatsuTakashi en-aut-sei=Hisamatsu en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KandaHideyuki en-aut-sei=Kanda en-aut-mei=Hideyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Psychology, Graduate School of Technology, Industrial and Social Sciences, Tokushima University kn-affil= affil-num=4 en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=work engagement kn-keyword=work engagement en-keyword=school teachers kn-keyword=school teachers en-keyword=insomnia kn-keyword=insomnia en-keyword=psychological distress kn-keyword=psychological distress en-keyword=neck pain kn-keyword=neck pain END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=2 article-no= start-page=81 end-page=92 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202504 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Clinical Outcomes of Neoadjuvant Paclitaxel/Cisplatin/Gemcitabine Compared with Gemcitabine/Cisplatin for Muscle-Invasive Bladder Cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=We retrospectively evaluated the oncologic outcomes of paclitaxel, cisplatin, and gemcitabine (PCG) with those of gemcitabine and cisplatin (GC) as neoadjuvant chemotherapy in muscle-invasive bladder cancer (MIBC) patients. The primary outcome was efficacy: pathological complete response (pCR), ypT0N0; and pathological objective response (pOR), ypT0N0, ≤ ypT1N0, or ypT0N1. Secondary outcomes included overall survival (OS), recurrence-free survival (RFS), predictive factors for pOR, OS, and RFS, and hematologic adverse events (AEs). Among 113 patients treated (PCG, n=28; GC, n=85), similar pOR and pCR rates were achieved by the groups (pOR: PCG, 57.1% vs. GC, 49. 4%; p=0.52; pCR: PCG, 39.3% vs. GC, 29.4%; p=0.36). No significant differences were observed in OS (p=1.0) or RFS (p=0.20). Multivariate logistic regression analysis showed that hydronephrosis (odds ratio [OR] 0.32, 95%CI: 0.11-0.92) and clinical node-positive status (cN+) (OR 0.22, 95%CI: 0.050-0.99) were significantly associated with a decreased probability of pOR. On multivariate Cox regression analyses, pOR achievement was associated with improved OS (hazard ratio [HR] 0.23, 95%CI: 0.10-0.56) and RFS (HR 0.30, 95%CI: 0.13-0.67). There were no significant between-group differences in the incidence of grade ≥ 3 hematologic AEs or dose-reduction required, but the PCG group had a higher incidence of grade 4 neutropenia. en-copyright= kn-copyright= en-aut-name=KawadaTatsushi en-aut-sei=Kawada en-aut-mei=Tatsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KobayashiYasuyuki en-aut-sei=Kobayashi en-aut-mei=Yasuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TsugawaTakuji en-aut-sei=Tsugawa en-aut-mei=Takuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TsuboiKazuma en-aut-sei=Tsuboi en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KatayamaSatoshi en-aut-sei=Katayama en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IwataTakehiro en-aut-sei=Iwata en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=BekkuKensuke en-aut-sei=Bekku en-aut-mei=Kensuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KobayashiTomoko en-aut-sei=Kobayashi en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=EdamuraKohei en-aut-sei=Edamura en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=EbaraShin en-aut-sei=Ebara en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=ArakiMotoo en-aut-sei=Araki en-aut-mei=Motoo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Urology, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=5 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Urology, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=11 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=urothelial carcinoma kn-keyword=urothelial carcinoma en-keyword=paclitaxel kn-keyword=paclitaxel en-keyword=cisplatin kn-keyword=cisplatin en-keyword=gemcitabine kn-keyword=gemcitabine en-keyword=neoadjuvant kn-keyword=neoadjuvant END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=2 article-no= start-page=75 end-page=80 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202504 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Potential for Radiation Dose Reduction in Temporal Bone CT Imaging Using Photon-Counting Detector CT en-subtitle= kn-subtitle= en-abstract= kn-abstract=Temporal bone computed tomography (CT) is frequently performed for pediatric patients with ear diseases. Advances in CT technology have improved diagnostic imaging quality, but reduction of radiation exposure remains a goal. We evaluated the potential for radiation dose reduction in temporal bone CT examinations using porcine ear ossicles and a photon-counting detector CT system. Three scans of the bilateral temporal bone were performed on each of three pig cadaver heads. In each of seven successive imaging sessions, the radiation dose was reduced by an additional one-seventh of the recommended dose (RD). Two board-certified radiologists independently scored the resulting images on a scale of 1 to 5 points, where 5 represented the image quality at the RD. Images scoring ≥4.5 points were considered acceptable. Noise was assessed in a 2-cm-diameter region near the ear ossicles, and standard deviation was measured for each of the seven decrements from the RD. As the radiation dose decreased, the noise progressively increased, and visual assessment scores progressively decreased. Acceptable image scores were obtained at six-sevenths (4.9), five-sevenths (4.8), four-sevenths (4.7), and three-sevenths (4.6) of the RD. Thus, acceptable porcine temporal bone CT images were obtained with a radiation dose reduction of approximately 50%. en-copyright= kn-copyright= en-aut-name=HigakiFumiyo en-aut-sei=Higaki en-aut-mei=Fumiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MorimitsuYusuke en-aut-sei=Morimitsu en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IguchiToshihiro en-aut-sei=Iguchi en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HwangSung Il en-aut-sei=Hwang en-aut-mei=Sung Il kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KitayamaTakahiro en-aut-sei=Kitayama en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakahashiYuka en-aut-sei=Takahashi en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=UkaMayu en-aut-sei=Uka en-aut-mei=Mayu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AkagiNoriaki en-aut-sei=Akagi en-aut-mei=Noriaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SugayaAkiko en-aut-sei=Sugaya en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MitsuhashiToshiharu en-aut-sei=Mitsuhashi en-aut-mei=Toshiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MatsuiYusuke en-aut-sei=Matsui en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=HirakiTakao en-aut-sei=Hiraki en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Radiological Technology, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Radiology, Seoul National University Bundang Hospital kn-affil= affil-num=5 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Radiological Technology, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Otolaryngology-Head and Neck Surgery, Okayama University Hospital kn-affil= affil-num=10 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=11 en-affil=Department of Radiology, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Radiology, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=computed tomography kn-keyword=computed tomography en-keyword=photon-counting detector computed tomography kn-keyword=photon-counting detector computed tomography en-keyword=ear ossicle kn-keyword=ear ossicle en-keyword=energy-integrating detector computed tomography kn-keyword=energy-integrating detector computed tomography END start-ver=1.4 cd-journal=joma no-vol=67 cd-vols= no-issue=1 article-no= start-page=133 end-page=147 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Tsetlin library on p-colored permutations and q-analogue en-subtitle= kn-subtitle= en-abstract= kn-abstract=K. Brown [1] studied the random to top shuffle (the Tsetlin libary) by semigroup method. In this paper, (i) we extend his results to the colored permutation groups, and (ii) we consider a q-analogue of Tsetlin library which is different from what is studied in [1]. In (i), the results also extends those results for the top to random shuffle [4],[5], [6] to arbitrary distribution of choosing cards, but we still have derangement numbers in the multiplicity of each eigenvalues. In (ii), a version of q-analogue of derangement numbers by Chen-Rota [3] appears in the multiplicity of eigenvalues. en-copyright= kn-copyright= en-aut-name=NakagawaYuto en-aut-sei=Nakagawa en-aut-mei=Yuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakanoFumihiko en-aut-sei=Nakano en-aut-mei=Fumihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Mathematical Institute, Tohoku University kn-affil= affil-num=2 en-affil=Mathematical Institute, Tohoku University kn-affil= en-keyword=Tsetlin library kn-keyword=Tsetlin library en-keyword=Left Regular Band kn-keyword=Left Regular Band en-keyword=colored permutation group kn-keyword=colored permutation group END start-ver=1.4 cd-journal=joma no-vol=84 cd-vols= no-issue= article-no= start-page=165 end-page=177 dt-received= dt-revised= dt-accepted= dt-pub-year=1990 dt-pub=19900716 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Stages of Development in Canberra―Part II kn-title=キャンベラにおける開発の諸段階(Ⅱ) en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=NOBEMASAO en-aut-sei=NOBE en-aut-mei=MASAO kn-aut-name=野邊政雄 kn-aut-sei=野邊 kn-aut-mei=政雄 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil= END start-ver=1.4 cd-journal=joma no-vol=90 cd-vols= no-issue= article-no= start-page=9 end-page=15 dt-received= dt-revised= dt-accepted= dt-pub-year=1992 dt-pub=19920715 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=The First Report on the Changing Rural Community Survey――Part II kn-title=「混住化農村調査」第1次報告書(Ⅱ) en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=NOBEMASAO en-aut-sei=NOBE en-aut-mei=MASAO kn-aut-name=野邊政雄 kn-aut-sei=野邊 kn-aut-mei=政雄 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil= END start-ver=1.4 cd-journal=joma no-vol=93 cd-vols= no-issue= article-no= start-page=219 end-page=236 dt-received= dt-revised= dt-accepted= dt-pub-year=1993 dt-pub=19930715 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Some Features of Canberra――Part II kn-title=キャンベラの概説(2) en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=NOBEMASAO en-aut-sei=NOBE en-aut-mei=MASAO kn-aut-name=野邊政雄 kn-aut-sei=野邊 kn-aut-mei=政雄 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil= END start-ver=1.4 cd-journal=joma no-vol=2 cd-vols= no-issue= article-no= start-page=13 end-page=32 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250314 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Research on Factors Promoting Study in Japan : Cases of International Students from South-East Asia kn-title=日本への留学を促進する要因に関する研究 -東南アジアからの留学生を事例として- en-subtitle= kn-subtitle= en-abstract=In this study, international students from Southeast Asia were asked, 'Why did you decide to study in Japan?' and the information was collected through semi-structured interviews. The results showed that (i) international students' image of Japan, (ii) parents' image of Japan, (iii) the availability of scholarships, (iv) affordable tuition fees and living costs, and (v) the existence of a community of people from the country of origin., were found to be important. It was assumed that some of this information and image is formed by the international students' (1) satisfaction with their study destination, (2) opportunities to interact with Japanese people, (3) ease of living in Japan, (4) Japanese language level, (5) understanding of Japanese culture, etc., and is reinforced through word of mouth and the internet. Therefore, supporting the creation of these environments will create a positive image of studying in Japan and increase the number of students from Southeast Asia. kn-abstract= 本研究では、東南アジアから留学している留学生15人を対象として「なぜ日本に留学したのか?」、半構造化インタビューにより情報を収集した。その結果、(i) 留学生の日本に対するイメージ、(ii) 保護者の日本に対するイメージ、(iii) 奨学金の機会、(iv) 私費留学が可能な学費・生活費レベル、(v) 出身国コミュニティーの有無、が重要であることが分かった。これらの情報やイメージの一部は、(1) 留学先での満足度、(2) 日本人との交流機会、(3) 生活のしやすさ、(4) 留学生の日本語レベル、(5) 日本文化に対する理解等によって形成され、ロコミやインターネットを通じて強化されることが推測された。よって、上記の項目に着目し、留学生の満足度等を向上させるための環境づくりを支援していくことが、日本留学に対するプラスのイメージを作り、東南アジアからの留学生増につながっていくと考えられた。 en-copyright= kn-copyright= en-aut-name=INAMORITakao en-aut-sei=INAMORI en-aut-mei=Takao kn-aut-name=稲森岳央 kn-aut-sei=稲森 kn-aut-mei=岳央 aut-affil-num=1 ORCID= affil-num=1 en-affil=Institute of Global Human Resource Development, Okayama University kn-affil=岡山大学グローバル人材育成院 en-keyword=日本留学 kn-keyword=日本留学 en-keyword=留学生 kn-keyword=留学生 en-keyword=東南アジア kn-keyword=東南アジア en-keyword=ASEAN kn-keyword=ASEAN en-keyword=促進要因 kn-keyword=促進要因 END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=2 article-no= start-page=235 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250205 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Distinct Infection Mechanisms of Rhizoctonia solani AG-1 IA and AG-4 HG-I+II in Brachypodium distachyon and Barley en-subtitle= kn-subtitle= en-abstract= kn-abstract=Rhizoctonia solani is a basidiomycete phytopathogenic fungus that causes rapid necrosis in a wide range of crop species, leading to substantial agricultural losses worldwide. The species complex is divided into 13 anastomosis groups (AGs) based on hyphal fusion compatibility and further subdivided by culture morphology. While R. solani classifications were shown to be independent of host specificity, it remains unclear whether different R. solani isolates share similar virulence mechanisms. Here, we investigated the infectivity of Japanese R. solani isolates on Brachypodium distachyon and barley. Two isolates, AG-1 IA (from rice) and AG-4 HG-I+II (from cauliflower), infected leaves of both plants, but only AG-4 HG-I+II infected roots. B. distachyon accessions Bd3-1 and Gaz-4 and barley cultivar 'Morex' exhibited enhanced resistance to both isolates compared to B. distachyon Bd21 and barley cultivars 'Haruna Nijo' and 'Golden Promise'. During AG-1 IA infection, but not AG-4 HG-I+II infection, resistant Bd3-1 and Morex induced genes for salicylic acid (SA) and N-hydroxypipecolic acid (NHP) biosynthesis. Pretreatment with SA or NHP conferred resistance to AG-1 IA, but not AG-4 HG-I+II, in susceptible B. distachyon Bd21 and barley Haruna Nijo. On the leaves of susceptible Bd21 and Haruna Nijo, AG-1 IA developed extensive mycelial networks with numerous infection cushions, which are specialized infection structures well-characterized in rice sheath blight. In contrast, AG-4 HG-I+II formed dispersed mycelial masses associated with underlying necrosis. We propose that the R. solani species complex encompasses at least two distinct infection strategies: AG-1 IA exhibits a hemibiotrophic lifestyle, while AG-4 HG-I+II follows a predominantly necrotrophic strategy. en-copyright= kn-copyright= en-aut-name=MahadevanNiranjan en-aut-sei=Mahadevan en-aut-mei=Niranjan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FernandaRozi en-aut-sei=Fernanda en-aut-mei=Rozi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KouzaiYusuke en-aut-sei=Kouzai en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KohnoNatsuka en-aut-sei=Kohno en-aut-mei=Natsuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NagaoReiko en-aut-sei=Nagao en-aut-mei=Reiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NyeinKhin Thida en-aut-sei=Nyein en-aut-mei=Khin Thida kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=WatanabeMegumi en-aut-sei=Watanabe en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SakataNanami en-aut-sei=Sakata en-aut-mei=Nanami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MochidaKeiichi en-aut-sei=Mochida en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=HisanoHiroshi en-aut-sei=Hisano en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Crop Stress Management Group, Division of Plant Molecular Regulation Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO) kn-affil= affil-num=4 en-affil=Faculty of Agriculture, Okayama University kn-affil= affil-num=5 en-affil=Faculty of Agriculture, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=10 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=11 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=12 en-affil=RIKEN Center for Sustainable Resource Science kn-affil= affil-num=13 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=14 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Rhizoctonia solani species complex kn-keyword=Rhizoctonia solani species complex en-keyword=virulence mechanism kn-keyword=virulence mechanism en-keyword=infection behavior kn-keyword=infection behavior en-keyword=salicylic acid kn-keyword=salicylic acid en-keyword=N-hydroxypipecolic acid kn-keyword=N-hydroxypipecolic acid END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=1 article-no= start-page=31 end-page=37 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202502 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Retrospective Analysis of the Safety of High-Volume Dental Articaine Preparations for Japanese Patients en-subtitle= kn-subtitle= en-abstract= kn-abstract=We retrospectively analyzed the safety of the use of articaine, an amide-type local anesthetic, in Japanese dental patients (n=300) treated in Thailand in 2015-2017. The dosage, adverse events (AEs) caused by local anesthesia, and treatment efficacy were examined. Articaine, which is safe for patients with liver impairments due to its unique metabolism, has not been thoroughly tested in Japan for doses above 5.1 mL. Eighty of the present patients had undergone root canal treatment (RCT), 71 underwent tooth extraction, and 149 underwent implant-related surgery. More than three articaine cartridges were used in 41 patients, and no AEs occurred in these cases. The only AE occurred in a 52-year-old woman who was treated with three cartridges and presented with what appeared to be hyperventilation syndrome; she later recovered and received her dental treatment as scheduled. Most treatments were completed with three or fewer cartridges, suggesting that this number is generally sufficient. Our findings, particularly the low AE risk even with doses exceeding three cartridges, support the potential applicability of the overseas recommended maximum dose of articaine (7 mg/kg) in Japanese patients. This conclusion is significant for advancing dental anesthetic practices and ensuring patient safety and treatment efficacy in Japan. en-copyright= kn-copyright= en-aut-name=MaedaShigeru en-aut-sei=Maeda en-aut-mei=Shigeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=PimkhaokhamAtiphan en-aut-sei=Pimkhaokham en-aut-mei=Atiphan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YoshidaMichihiro en-aut-sei=Yoshida en-aut-mei=Michihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HosoiHiroki en-aut-sei=Hosoi en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OhshimaAyako en-aut-sei=Ohshima en-aut-mei=Ayako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KurisuRyoko en-aut-sei=Kurisu en-aut-mei=Ryoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=UtsumiNozomi en-aut-sei=Utsumi en-aut-mei=Nozomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HiguchiHitoshi en-aut-sei=Higuchi en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MiyawakiTakuya en-aut-sei=Miyawaki en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Dental Anesthesiology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo kn-affil= affil-num=2 en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University kn-affil= affil-num=3 en-affil=Data Science Division, Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=4 en-affil=Data Science Division, Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=5 en-affil=Data Science Division, Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Dental Anesthesiology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo kn-affil= affil-num=7 en-affil=Department of Dental Anesthesiology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo kn-affil= affil-num=8 en-affil=Department of Dental Anesthesiology and Special Care Dentistry, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Dental Anesthesiology and Special Care Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=dental anesthesia kn-keyword=dental anesthesia en-keyword=local anesthesia kn-keyword=local anesthesia en-keyword=drug-related side effect kn-keyword=drug-related side effect en-keyword=adverse reaction kn-keyword=adverse reaction END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=1 article-no= start-page=1 end-page=7 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202502 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Endothelial Cell Polarity in Health and Disease en-subtitle= kn-subtitle= en-abstract= kn-abstract=Endothelial cell polarity is fundamental to the organization and function of blood vessels, influencing processes such as angiogenesis, vascular stability, and response to shear stress. This review elaborates on the molecular mechanisms that regulate endothelial cell polarity, focusing on key players like the PAR polarity complex and Rho family GTPases. These pathways coordinate the front–rear, apical–basal and planar polarity of endothelial cells, which are essential for the proper formation and maintenance of vascular structures. In health, endothelial polarity ensures not only the orderly development of blood vessels, with tip cells adopting distinct polarities during angiogenesis, but also ensures proper vascular integrity and function. In disease states, however, disruptions in polarity contribute to pathologies such as coronary artery disease, where altered planar polarity exacerbates atherosclerosis, and cancer, where disrupted polarity in tumor vasculature leads to abnormal vessel growth and function. Understanding cell polarity and its disruption is fundamental not only to comprehending how cells interact with their microenvironment and organize themselves into complex, organ-specific tissues but also to developing novel, targeted, and therapeutic strategies for a range of diseases, from cardiovascular disorders to malignancies, ultimately improving patient outcomes. en-copyright= kn-copyright= en-aut-name=ThihaMoe en-aut-sei=Thiha en-aut-mei=Moe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HikitaTakao en-aut-sei=Hikita en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakayamaMasanori en-aut-sei=Nakayama en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Pathophysiology and Drug Discovery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Pathophysiology and Drug Discovery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Pathophysiology and Drug Discovery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=blood vessel kn-keyword=blood vessel en-keyword=endothelial cell kn-keyword=endothelial cell en-keyword=cell polarity kn-keyword=cell polarity en-keyword=atherosclerosis kn-keyword=atherosclerosis en-keyword=cancer kn-keyword=cancer END start-ver=1.4 cd-journal=joma no-vol=172 cd-vols= no-issue=2 article-no= start-page=471 end-page=479 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250122 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Identification of factors related to functional prognoses in craniopharyngiomas en-subtitle= kn-subtitle= en-abstract= kn-abstract=Purpose Craniopharyngiomas are histologically benign tumors, but their proximity to vital neurovascular structures can significantly deteriorate functional prognoses and severely restrict patients’ social interaction and activity. We retrospectively identified risk factors related to the functional prognoses in patients with craniopharyngioma treated at our center.
Methods A retrospective analysis was conducted on 40 patients who underwent surgery for craniopharyngioma and follow-up at our institution between 2003 and 2022. Functional prognoses were evaluated in terms of obesity (body mass index [BMI] ≥ 25 for adults, BMI-Z ≥ 1.65 for children), visual function, endocrine function, and social participation. We investigated whether patient characteristics, tumor size, tumor location, hypothalamic involvement, surgical hypothalamic damage, extent of resection, and recurrence rate correlated with these functional prognostic factors.
Results The median age at diagnosis was 28.0 years, with a median follow-up of 80.5 months. Postoperative obesity was present in 22 patients, and those with postoperative obesity had a significantly higher preoperative BMI or BMI-Z (preoperative BMI for adults: p = 0.074; preoperative BMI-Z for children: p = 0.020) and were significantly correlated with preoperative hypothalamic involvement grade 2 (p = 0.012) and surgical hypothalamic damage grade II (p = 0.0001). Deterioration in social participation was significantly associated with a larger tumor size (p = 0.023) and tumor recurrence (p = 0.0047).
Conclusions Patients with higher preoperative BMI or BMI-Z and hypothalamic involvement have a greater risk of postoperative obesity, and larger tumor size and recurrence can significantly deteriorate the rate of patients’ social participation. en-copyright= kn-copyright= en-aut-name=UmedaTsuyoshi en-aut-sei=Umeda en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OtaniYoshihiro en-aut-sei=Otani en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujiiKentaro en-aut-sei=Fujii en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IshidaJoji en-aut-sei=Ishida en-aut-mei=Joji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HiranoShuichiro en-aut-sei=Hirano en-aut-mei=Shuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SurugaYasuki en-aut-sei=Suruga en-aut-mei=Yasuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KemmotsuNaoya en-aut-sei=Kemmotsu en-aut-mei=Naoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ImotoRyoji en-aut-sei=Imoto en-aut-mei=Ryoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KegoyaYasuhito en-aut-sei=Kegoya en-aut-mei=Yasuhito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MizutaRyo en-aut-sei=Mizuta en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=InoueYohei en-aut-sei=Inoue en-aut-mei=Yohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=HokamaMadoka en-aut-sei=Hokama en-aut-mei=Madoka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MakiharaSeiichiro en-aut-sei=Makihara en-aut-mei=Seiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=HasegawaKosei en-aut-sei=Hasegawa en-aut-mei=Kosei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=InagakiKenichi en-aut-sei=Inagaki en-aut-mei=Kenichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=YasuharaTakao en-aut-sei=Yasuhara en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=TanakaShota en-aut-sei=Tanaka en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= affil-num=1 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil= kn-affil= affil-num=10 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Otolaryngology-Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= affil-num=15 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=17 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=18 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Craniopharyngioma kn-keyword=Craniopharyngioma en-keyword=Functional prognosis kn-keyword=Functional prognosis en-keyword=Obesity kn-keyword=Obesity en-keyword=Tumor size kn-keyword=Tumor size en-keyword=Social participation kn-keyword=Social participation en-keyword=Hypothalamic involvement kn-keyword=Hypothalamic involvement END start-ver=1.4 cd-journal=joma no-vol=125 cd-vols= no-issue= article-no= start-page=106672 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202502 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Resveratrol, a food-derived polyphenol, promotes Melanosomal degradation in skin fibroblasts through coordinated activation of autophagy, lysosomal, and antioxidant pathways en-subtitle= kn-subtitle= en-abstract= kn-abstract=Resveratrol, a polyphenol found in grapes and peanuts, is known for diverse biological activities, yet its effects on dermal hyperpigmentation (so-called dark spots) remain unexplored. We investigated resveratrol's ability to enhance melanosomal degradation in human dermal fibroblasts. At concentrations of 25-50 mu M, resveratrol increased autophagy as measured by microtubule-associated protein 1A/1B-light chain 3 (LC3)-II/LC3-I ratio and enhanced lysosomal activity as assessed by a lysosomal activity reporter system. RNA sequencing revealed upregulation of lysosomal and autophagy-related genes, including cathepsins. Furthermore, reporter assays showed resveratrol's activation of antioxidant response via nuclear factor erythroid 2-related factor 2 (NRF2)mediated, leading to upregulation of transcription factor EB/transcription factor E3 (TFEB/TFE3), master regulators of lysosomal function. In fibroblasts pre-loaded with melanosomes, resveratrol reduced melanosome content compared to control by day 3. The findings reveal the activation of interconnected autophagy, lysosomal, and antioxidant pathways by resveratrol, suggesting potential applications in functional foods targeting dermal hyperpigmentation. en-copyright= kn-copyright= en-aut-name=OkamotoSaki en-aut-sei=Okamoto en-aut-mei=Saki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KakimaruSaya en-aut-sei=Kakimaru en-aut-mei=Saya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KoreishiMayuko en-aut-sei=Koreishi en-aut-mei=Mayuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SakamotoMika en-aut-sei=Sakamoto en-aut-mei=Mika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakamuraYoshimasa en-aut-sei=Nakamura en-aut-mei=Yoshimasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AndoHideya en-aut-sei=Ando en-aut-mei=Hideya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TsujinoYoshio en-aut-sei=Tsujino en-aut-mei=Yoshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SatohAyano en-aut-sei=Satoh en-aut-mei=Ayano kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=4 en-affil=National Institute of Genetics, ROIS kn-affil= affil-num=5 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=6 en-affil=Department of Applied Chemistry and Biotechnology, Okayama University of Science kn-affil= affil-num=7 en-affil=Graduate School of Science, Technology, and Innovation, Kobe University kn-affil= affil-num=8 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=Antioxidant kn-keyword=Antioxidant en-keyword=Lysosomes kn-keyword=Lysosomes en-keyword=Autophagy kn-keyword=Autophagy en-keyword=Resveratrol kn-keyword=Resveratrol en-keyword=Skin fibroblasts kn-keyword=Skin fibroblasts en-keyword=Bioactive compounds kn-keyword=Bioactive compounds END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241224 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=コダマカワザンショウ属の八重山諸島産新種 (腹足綱: クビキレガイ上科: カワザンショウ科) — 同属で世界最北の現生種 kn-title=A new species of Ovassiminea Thiele, 1927 (Gastropoda: Truncatelloidea: Assimineidae) from the Yaeyama Islands, Okinawa, southern Japan — the northernmost record among recent species of the genus en-subtitle= kn-subtitle= en-abstract=沖縄県八重山諸島の西表島・石垣島から新種 Ovassiminea hayasei n. sp. ウラウチコダマカワザンショウを記載する。Ovassiminea Thiele, 1927 コダマカワザンショウ属は西太平洋の熱帯・亜熱帯に分布し, 本新種は同属中で世界最北の現生種である。本新種の産地は極端に狭い範囲に限られ, 沖縄県と環境省のレッドリストで絶滅危惧II類 (VU) とされている。なお文末の Appendix には, これまでに記載されたコダマカワザンショウ属全種 (現生5・化石5) の目録を, 異名表とともに挙げる。 kn-abstract=Ovassiminea hayasei n. sp. is described from mangrove swamps in Iriomote and Ishigaki Islands, of the Yaeyama Islands at the southwestern part of the Ryūkyū Archipelago, Okinawa, Japan. This is the northernmost record among recent species of the genus Ovassiminea Thiele, 1927, which is distributed in the tropical and subtropical regions of the Western Pacific. The new species is known to be restricted to extremely narrow ranges and is evaluated as vulnerable in red lists by the governments of Japan and Okinawa Prefecture. A list of all available (five recent and five fossil) species names of Ovassiminea hitherto described, with synonymies, is also given as an Appendix. en-copyright= kn-copyright= en-aut-name=FukudaHiroshi en-aut-sei=Fukuda en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KuboHirofumi en-aut-sei=Kubo en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Conservation of Aquatic Biodiversity, Faculty of Agriculture, Okayama University kn-affil= affil-num=2 en-affil=Okinawa Prefectural Institute of Health and Environment kn-affil= en-keyword=anatomy kn-keyword=anatomy en-keyword=conservation kn-keyword=conservation en-keyword=description kn-keyword=description en-keyword=endangered species kn-keyword=endangered species en-keyword=estuary kn-keyword=estuary en-keyword=Iriomote Island kn-keyword=Iriomote Island en-keyword=Ishigaki Island kn-keyword=Ishigaki Island en-keyword=mangrove swamp kn-keyword=mangrove swamp en-keyword=salt marsh kn-keyword=salt marsh en-keyword=taxonomy kn-keyword=taxonomy END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=1 article-no= start-page=74 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241215 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Case series showing the safety and changes in lipid profiles of hemodialysis patients with hypertriglyceridemia after pemafibrate administration en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Cardiovascular disease is a major cause of morbidity and mortality in patients with chronic kidney disease and end-stage renal disease (ESRD). Dyslipidemia is a key focus of cardiovascular therapy and is characterized by hypertriglyceridemia mainly caused by lipoprotein lipase-mediated metabolism of ApoC-III in patients with ESRD. Pemafbrate, a selective peroxisome proliferator-activated receptor alpha modulator, can be used regardless of renal function and inhibit ApoC-III expression in the liver.
Case presentation We reported the cases of four patients on hemodialysis who met at least 175 mg/dL of triglycerides on the consecutive three tests between September 2022 and November 2022 and took 0.1 mg pemafbrate twice a day from November 2022 to May 2023. They experienced no adverse events after pemafbrate treatment. Pemafbrate signifcantly reduced triglyceride (TG) (302±72 to 140±50 mg/dL, p=0.048), total cholesterol (187±34 to 156±48 mg/dL, p=0.025), and Apo C-III (15.9±8.2 to 12.6±7.1, p=0.030) levels. Apo A-II levels signifcantly increased after treatment (27.0±6.1 to 37.1±5.8, p=0.041).
Conclusions Pemafbrate decreased TG, total cholesterol, and Apo-CIII and increased Apo A-II without adverse events. Further study is needed to examine the favorable efects of pemafbrate on the risk of CVD. en-copyright= kn-copyright= en-aut-name=OkadaRino en-aut-sei=Okada en-aut-mei=Rino kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OnishiYasuhiro en-aut-sei=Onishi en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KobayashiNaoya en-aut-sei=Kobayashi en-aut-mei=Naoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IshiharaHiroyuki en-aut-sei=Ishihara en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YokoyamaTomohisa en-aut-sei=Yokoyama en-aut-mei=Tomohisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MifuneTomoyo en-aut-sei=Mifune en-aut-mei=Tomoyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SakurabuYoshimasa en-aut-sei=Sakurabu en-aut-mei=Yoshimasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NojimaIchiro en-aut-sei=Nojima en-aut-mei=Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MorinagaHiroshi en-aut-sei=Morinaga en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=UchidaHaruhito A. en-aut-sei=Uchida en-aut-mei=Haruhito A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Okayama Saidaiji Hospital kn-affil= affil-num=4 en-affil=Okayama Saidaiji Hospital kn-affil= affil-num=5 en-affil=Okayama Saidaiji Hospital kn-affil= affil-num=6 en-affil=Okayama Saidaiji Hospital kn-affil= affil-num=7 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Hemodialysis kn-keyword=Hemodialysis en-keyword=Dyslipidemia kn-keyword=Dyslipidemia en-keyword=Apolipoprotein kn-keyword=Apolipoprotein en-keyword=Pemafibrate kn-keyword=Pemafibrate END start-ver=1.4 cd-journal=joma no-vol=169 cd-vols= no-issue=1 article-no= start-page=e16291 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241222 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Exploring the Role of Ccn3 in Type III Cell of Mice Taste Buds en-subtitle= kn-subtitle= en-abstract= kn-abstract=Different taste cells express unique cell-type markers, enabling researchers to distinguish them and study their functional differentiation. Using single-cell RNA-Seq of taste cells in mouse fungiform papillae, we found that Cellular Communication Network Factor 3 (Ccn3) was highly expressed in Type III taste cells but not in Type II taste cells. Ccn3 is a protein-coding gene involved in various biological processes, such as cell proliferation, angiogenesis, tumorigenesis, and wound healing. Therefore, in this study, we aimed to explore the expression and function of Ccn3 in mouse taste bud cells. Using reverse transcription polymerase chain reaction (RT-PCR), in situ hybridization, and immunohistochemistry (IHC), we confirmed that Ccn3 was predominantly expressed in Type III taste cells. Through IHC, quantitative real-time RT-PCR, gustatory nerve recordings, and short-term lick tests, we observed that Ccn3 knockout (Ccn3-KO) mice did not exhibit any significant differences in the expression of taste cell markers and taste responses compared to wild-type controls. To explore the function of Ccn3 in taste cells, bioinformatics analyses were conducted and predicted possible roles of Ccn3 in tissue regeneration, perception of pain, protein secretion, and immune response. Among them, an immune function is the most plausible based on our experimental results. In summary, our study indicates that although Ccn3 is strongly expressed in Type III taste cells, its knockout did not influence the basic taste response, but bioinformatics provided valuable insights into the possible role of Ccn3 in taste buds and shed light on future research directions. en-copyright= kn-copyright= en-aut-name=WangKuanyu en-aut-sei=Wang en-aut-mei=Kuanyu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MitohYoshihiro en-aut-sei=Mitoh en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HorieKengo en-aut-sei=Horie en-aut-mei=Kengo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YoshidaRyusuke en-aut-sei=Yoshida en-aut-mei=Ryusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Oral Physiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Oral Physiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Oral Physiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Oral Physiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=bioinformatics kn-keyword=bioinformatics en-keyword=Ccn3 kn-keyword=Ccn3 en-keyword=Type III taste cell kn-keyword=Type III taste cell END start-ver=1.4 cd-journal=joma no-vol=228 cd-vols= no-issue= article-no= start-page=30 end-page=36 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241015 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Exogenous expression of PGC-1α during in vitro maturation impairs the developmental competence of porcine oocytes en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objectives of the current study were to examine the effects of exogenous expression of PGC-1α, which is a transcription factor responsive for controlling mitochondrial DNA (mtDNA) replication, mitochondria quantity control, mitochondrial biogenesis, and reactive oxygen species (ROS) maintenance, in porcine oocytes during in-vitro maturation (IVM) on the developmental competence, as well as mitochondrial quantity and function. Exogenous over-expression of PGC-1α by injection of the mRNA construct into oocytes 20 h after the start of IVM culture significantly increased the copy number of mtDNA in the oocytes, but reduced the incidences of oocytes matured to the metaphase-II stage after the IVM culture for totally 44 h and completely suppressed the early development in vitro to the blastocyst stage following parthenogenetic activation. The exogenous expression of PGC-1α also significantly induced spindle defects and chromosome misalignments. Furthermore, markedly higher ROS levels were observed in the PGC-1α-overexpressed mature oocytes, whereas mRNA level of SOD1, encoded for a ROS scavenging enzyme, was decreased. These results conclude that forced expression of PGC-1α successfully increase mtDNA copy number but led to increased ROS production, evidently by downregulation of SOD1 gene expression, inducement of spindle aberration/chromosomal misalignment, and consequently reduction in the meiotic and developmental competences of porcine oocytes. en-copyright= kn-copyright= en-aut-name=DoSon Quang en-aut-sei=Do en-aut-mei=Son Quang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NguyenHai Thanh en-aut-sei=Nguyen en-aut-mei=Hai Thanh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WakaiTakuya en-aut-sei=Wakai en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FunahashiHiroaki en-aut-sei=Funahashi en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=Porcine kn-keyword=Porcine en-keyword=Mitochondria kn-keyword=Mitochondria en-keyword=Oocytes kn-keyword=Oocytes en-keyword=PGC-1 alpha kn-keyword=PGC-1 alpha en-keyword=In vitro maturation kn-keyword=In vitro maturation END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=6 article-no= start-page=469 end-page=474 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202412 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Treatment of Tenosynovial Giant Cell Tumor of the Cervical Spine with Postoperative Anti-RANKL Antibody (Denosumab) Administration en-subtitle= kn-subtitle= en-abstract= kn-abstract=Tenosynovial giant cell tumor (TGCT) is a fibrous histiocytic tumor originating in the synovial membrane. While cervical TGCT may not be considered a common diagnosis preoperatively because it is relatively rare, it has a high recurrence rate and should be considered. Total resection is preferable, but it can be challenging due to the risk of damaging the vertebral artery. Denosumab has shown effectiveness as a postoperative treatment for osteolytic bone lesion. Denosumab administration coupled with close follow-up might offer an effective postoperative treatment option for unresectable TGCT with bone invasion. en-copyright= kn-copyright= en-aut-name=HirataYuichi en-aut-sei=Hirata en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NagaseTakayuki en-aut-sei=Nagase en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SasadaSusumu en-aut-sei=Sasada en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AyadaYoshiyuki en-aut-sei=Ayada en-aut-mei=Yoshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MiyakeHayato en-aut-sei=Miyake en-aut-mei=Hayato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SugaharaChiaki en-aut-sei=Sugahara en-aut-mei=Chiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamamotoHidetaka en-aut-sei=Yamamoto en-aut-mei=Hidetaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OdaYoshinao en-aut-sei=Oda en-aut-mei=Yoshinao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YasuharaTakao en-aut-sei=Yasuhara en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TanakaShota en-aut-sei=Tanaka en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Pathology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Pathology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University kn-affil= affil-num=9 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=tenosynovial giant cell tumor kn-keyword=tenosynovial giant cell tumor en-keyword=bone tumor kn-keyword=bone tumor en-keyword=spine kn-keyword=spine END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=50 article-no= start-page=50041 end-page=50048 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241205 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Conformational Flexibility of D1-Glu189: A Crucial Determinant in Substrate Water Selection, Positioning, and Stabilization within the Oxygen-Evolving Complex of Photosystem II en-subtitle= kn-subtitle= en-abstract= kn-abstract=Photosynthetic water oxidation is a vital process responsible for producing dioxygen and supplying the energy necessary to sustain life on Earth. This fundamental reaction is catalyzed by the oxygen-evolving complex (OEC) of photosystem II, which houses the Mn4CaO5 cluster as its catalytic core. In this study, we specifically focus on the D1-Glu189 amino acid residue, which serves as a direct ligand to the Mn4CaO5 cluster. Our primary goal is to explore, using density functional theory (DFT), how the conformational flexibility of the D1-Glu189 side chain influences crucial catalytic processes, particularly the selection, positioning, and stabilization of a substrate water molecule within the OEC. Our investigation is based on a hypothesis put forth by Li et al. (Nature, 2024, 626, 670), which suggests that during the transition from the S2 to S3 state, a specific water molecule temporarily coordinating with the Ca ion, referred to as O6*, may exist as a hydroxide ion (OH-). Our results demonstrate a key mechanism by which the detachment of the D1-Glu189 carboxylate group from its coordination with the Ca ion allows the creation of a specialized microenvironment within the OEC that enables the selective attraction of O6* in its deprotonated form (OH-) and stabilizes it at the catalytic metal (MnD) site. Our findings indicate that D1-Glu189 is not only a structural ligand for the Ca ion but may also play an active and dynamic role in the catalytic process, positioning O6* optimally for its subsequent participation in the oxidation sequence during the water-splitting cycle. en-copyright= kn-copyright= en-aut-name=IsobeHiroshi en-aut-sei=Isobe en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SuzukiTakayoshi en-aut-sei=Suzuki en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SugaMichihiro en-aut-sei=Suga en-aut-mei=Michihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamaguchiKizashi en-aut-sei=Yamaguchi en-aut-mei=Kizashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=5 en-affil=Center for Quantum Information and Quantum Biology, Osaka University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=306 cd-vols= no-issue= article-no= start-page=109175 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202412 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Regional-scale evaluation of tertiary irrigation system in Muda Irrigation Scheme from space en-subtitle= kn-subtitle= en-abstract= kn-abstract=A tertiary irrigation system is essential for efficient water management in large-scale irrigation scheme and requires regular evaluation to understand their effectiveness. The current water balance method for tertiary irrigation system evaluation requires extensive data, making continuous monitoring over vast areas unfeasible. A better approach using geospatial data from the Google Earth Engine (GEE) is introduces to evaluate the efficiency of tertiary irrigation systems on a regional scale, aiding water management strategies. This study aims to (1) define the rice cultivation boundary for accurate data collection and (2) quantitatively evaluate irrigation system performance using specific indicators. Remote sensing evapotranspiration (RS-ET) and yield derived from Normalized Difference Vegetation Index (NDVI) were collected within rice cultivation boundary across 60 irrigation blocks, including 14 blocks equipped with tertiary irrigation system in Region II of the Muda Irrigation Scheme. Three irrigation system performance indicators (equity, adequacy, and water productivity) were used as a key metric in over four rice-growing seasons to evaluate tertiary irrigation system. Results reveal that tertiary irrigation system performance varies with the current three-phase water management strategy. Equity performance was highest during the off-season, particularly in phase 1 (2–8 %). Adequacy was moderate across all phases and seasons (median: 0.6–0.67), while water productivity showed consistent strength in phases 1 and 3, with fluctuations in phase 2, across seasons. This study underscores the cost-effectiveness and efficiency of using geospatial data from space for continuous regional-scale monitoring, highlighting areas for improvement in the current water management strategy. en-copyright= kn-copyright= en-aut-name=ZahirAliya Mhd en-aut-sei=Zahir en-aut-mei=Aliya Mhd kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SomuraHiroaki en-aut-sei=Somura en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoroizumiToshitsugu en-aut-sei=Moroizumi en-aut-mei=Toshitsugu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=Water management kn-keyword=Water management en-keyword=Remote sensing kn-keyword=Remote sensing en-keyword=Irrigation performance kn-keyword=Irrigation performance en-keyword=Irrigation system kn-keyword=Irrigation system en-keyword=Earth observation data kn-keyword=Earth observation data en-keyword=Muda Irrigation Scheme kn-keyword=Muda Irrigation Scheme END start-ver=1.4 cd-journal=joma no-vol=110 cd-vols= no-issue=9 article-no= start-page=094420 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240911 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Ferrimagnetic structure in the high-pressure phase of 𝛼−Mn en-subtitle= kn-subtitle= en-abstract= kn-abstract=The 𝛼−Mn phase exhibits a large anomalous Hall effect (AHE) in its pressure-induced weak ferromagnetic (WFM) state, despite its relatively small spontaneous magnetization of ∼0.02𝜇B/Mn. To understand the underlying mechanism behind this AHE, we performed single crystal neutron diffraction measurements at 2.0 GPa to determine the magnetic structure of the WFM phase. Our investigation reveals a ferrimagnetic structure characterized by nearly collinear magnetic moments aligned along the [001] direction at sites I, II, III-1, and IV-1. In contrast, the small moments at sites III-2 and IV-2 lie within the (001) plane. The calculated net magnetization of this magnetic structure, (−0.08±0.10)⁢𝜇B/Mn atom, is in agreement with the experimentally determined spontaneous magnetization. The observation of a magnetic reflection at 𝒒=(0,0,0) satisfies a key condition for the emergence of the AHE. en-copyright= kn-copyright= en-aut-name=ArakiShingo en-aut-sei=Araki en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IwamotoKaisei en-aut-sei=Iwamoto en-aut-mei=Kaisei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AkibaKazuto en-aut-sei=Akiba en-aut-mei=Kazuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KobayashiTatsuo C. en-aut-sei=Kobayashi en-aut-mei=Tatsuo C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MunakataKoji en-aut-sei=Munakata en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KanekoKoji en-aut-sei=Kaneko en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OsakabeToyotaka en-aut-sei=Osakabe en-aut-mei=Toyotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Physics, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Department of Physics, Okayama University kn-affil= affil-num=4 en-affil=Department of Physics, Okayama University kn-affil= affil-num=5 en-affil=Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society kn-affil= affil-num=6 en-affil=Materials Sciences Research Center, Japan Atomic Energy Agency kn-affil= affil-num=7 en-affil=Materials Sciences Research Center, Japan Atomic Energy Agency kn-affil= END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=22 article-no= start-page=12063 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241110 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Efficient Production of Chondrocyte Particles from Human iPSC-Derived Chondroprogenitors Using a Plate-Based Cell Self-Aggregation Technique en-subtitle= kn-subtitle= en-abstract= kn-abstract=The limited capacity of articular cartilage for self-repair is a critical challenge in orthopedic medicine. Here, we aimed to develop a simplified method of generating chondrocyte particles from human-induced pluripotent stem cell-derived expandable limb-bud mesenchymal cells (ExpLBM) using a cell self-aggregation technique (CAT). ExpLBM cells were induced to form chondrocyte particles through a stepwise differentiation protocol performed on a CAT plate (prevelex-CAT (R)), which enables efficient and consistent production of an arbitrary number of uniformly sized particles. Histological and immunohistochemical analyses confirmed that the generated chondrocyte particles expressed key cartilage markers, such as type II collagen and aggrecan, but not hypertrophic markers, such as type X collagen. Additionally, when these particles were transplanted into osteochondral defects in rats with X-linked severe combined immunodeficiency, they demonstrated successful engraftment and extracellular matrix production, as evidenced by Safranin O and Toluidine Blue staining. These data suggest that the plate-based CAT system offers a robust and scalable approach to produce a large number of chondrocyte particles in a simplified and efficient manner, with potential application to cartilage regeneration. Future studies will focus on refining the system and exploring its clinical applications to the treatment of cartilage defects. en-copyright= kn-copyright= en-aut-name=HanakiShojiro en-aut-sei=Hanaki en-aut-mei=Shojiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamadaDaisuke en-aut-sei=Yamada en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakaoTomoka en-aut-sei=Takao en-aut-mei=Tomoka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IwaiRyosuke en-aut-sei=Iwai en-aut-mei=Ryosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakaradaTakeshi en-aut-sei=Takarada en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Regenerative Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=2 en-affil=Department of Regenerative Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=3 en-affil=Department of Regenerative Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=4 en-affil=Institute of Frontier Science and Technology, Okayama University of Science kn-affil= affil-num=5 en-affil=Department of Regenerative Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= en-keyword=tissue engineering kn-keyword=tissue engineering en-keyword=chondrocyte particles kn-keyword=chondrocyte particles en-keyword=cartilaginous particles kn-keyword=cartilaginous particles en-keyword=ExpLBM kn-keyword=ExpLBM en-keyword=hiPSC kn-keyword=hiPSC en-keyword=chondrocyte kn-keyword=chondrocyte END start-ver=1.4 cd-journal=joma no-vol=38 cd-vols= no-issue=1 article-no= start-page=2398895 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=2024 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Surrogate-Assisted Multi-Objective Optimization for Simultaneous Three-Dimensional Packing and Motion Planning Problems Using the Sequence-Triple Representation en-subtitle= kn-subtitle= en-abstract= kn-abstract=Packing problems are classical optimization problems with wide-ranging applications. With the advancement of robotic manipulation, there are growing demands for the automation of packing tasks. However, the simultaneous optimization of packing and the robot's motion planning is challenging because these two decisions are interconnected, and no previous study has addressed this optimization problem. This paper presents a framework to simultaneously determine the robot's motion planning and packing decision to minimize the robot's processing time and the container's volume. This framework comprises three key components: solution encoding, surrogate modeling, and evolutionary computation. The sequence-triple representation encodes complex packing solutions by a sequence of integers. A surrogate model is trained to predict the processing time for a given packing solution to reduce the computational burden. Training data is generated by solving the motion planning problem for a set of packing solutions using the rapidly exploring random tree algorithm. The Non-Dominated Sorting Genetic Algorithm II searches for the Pareto solutions. Experimental evaluations are conducted using a 6-DOF robot manipulator. The experimental results suggest that implementing the surrogate model can reduce the computational time by 91.1%. The proposed surrogate-assisted optimization method can obtain significantly better solutions than the joint angular velocity-based estimation method. en-copyright= kn-copyright= en-aut-name=LiuZiang en-aut-sei=Liu en-aut-mei=Ziang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawabeTomoya en-aut-sei=Kawabe en-aut-mei=Tomoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishiTatsushi en-aut-sei=Nishi en-aut-mei=Tatsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ItoShun en-aut-sei=Ito en-aut-mei=Shun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FujiwaraTomofumi en-aut-sei=Fujiwara en-aut-mei=Tomofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Packing problem kn-keyword=Packing problem en-keyword=sequence-triple kn-keyword=sequence-triple en-keyword=motion planning kn-keyword=motion planning en-keyword=surrogate model kn-keyword=surrogate model en-keyword=multi-objective optimization kn-keyword=multi-objective optimization END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=16 article-no= start-page=2266 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240809 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Long-Term Bonding Performance of One-Bottle vs. Two-Bottle Bonding Agents to Lithium Disilicate Ceramics en-subtitle= kn-subtitle= en-abstract= kn-abstract=The aim of this study was to compare the long-term bonding performance to lithium disilicate (LDS) ceramic between one-bottle and two-bottle bonding agents. Bonding performance was investigated under these LDS pretreatment conditions: with hydrofluoric acid (HF) only, without HF, with a two-bottle bonding agent (Tokuyama Universal Bond II) only. Shear bond strengths between LDS and nine resin cements (both self-adhesive and conventional adhesive types) were measured at three time periods: after one-day water storage (Base), and after 5000 and 20,000 thermocycles (TC 5k and TC 20k respectively). Difference in degradation between one- and two-bottle bonding agents containing the silane coupling agent was compared by high-performance liquid chromatography. With HF pretreatment, bond strengths were not significantly different among the three time periods for each resin cement. Without HF, ESTECEM II and Super-Bond Universal showed significantly higher values than others at TC 5k and TC 20k when treated with the recommended bonding agents, especially at TC 20k. Difference in degradation between one- and two-bottle bonding agents containing the silane coupling agent was compared by high-performance liquid chromatography (HPLC). For both cements, these values at TC 20k were also not significantly different from pretreatment with only Tokuyama Universal Bond II. For LDS, long-term bond durability could be maintained by pretreatment with Tokuyama Universal Bond II instead of the hazardous HF. en-copyright= kn-copyright= en-aut-name=IrieMasao en-aut-sei=Irie en-aut-mei=Masao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkadaMasahiro en-aut-sei=Okada en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MaruoYukinori en-aut-sei=Maruo en-aut-mei=Yukinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishigawaGoro en-aut-sei=Nishigawa en-aut-mei=Goro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MatsumotoTakuya en-aut-sei=Matsumoto en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Dental Biomaterials, Tohoku University Graduate School of Dentistry kn-affil= affil-num=3 en-affil=Department of Prosthodontics, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Prosthodontics, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=shear bond strength kn-keyword=shear bond strength en-keyword=bonding agent kn-keyword=bonding agent en-keyword=one- vs. two bottles kn-keyword=one- vs. two bottles en-keyword=resin luting materials kn-keyword=resin luting materials en-keyword=lithium disilicate ceramics kn-keyword=lithium disilicate ceramics en-keyword=durability kn-keyword=durability END start-ver=1.4 cd-journal=joma no-vol=62 cd-vols= no-issue=5 article-no= start-page=897 end-page=900 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202409 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A randomized, open-label phase II study on the preventive effect of goshajinkigan against peripheral neuropathy induced by paclitaxel-containing chemotherapy: The OLCSG2101 study protocol en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Paclitaxel (PTX) is an essential cytotoxic anticancer agent and a standard treatment regimen component for various malignant tumors, including advanced unresectable non-small cell lung cancer, thymic cancer, and primary unknown cancers. However, chemotherapy-induced peripheral neuropathy (CIPN) caused by PTX is a significant adverse event that may lead to chemotherapy discontinuation and deterioration of the quality of life (QOL). Although treatment modalities such as goshajinkigan (GJG), pregabalin, and duloxetine are empirically utilized for CIPN, there is no established evidence for an agent as a preventive measure. We designed a randomized phase II trial (OLCSG2101) to investigate whether prophylactic GJG administration can prevent the onset of CIPN induced by PTX.
Methods: This study was designed as a two-arm, prospective, randomized, multicenter phase II trial. The patients will be randomly assigned to either the GJG prophylaxis arm (Arm A) or the GJG non-prophylaxis arm (Arm B), using cancer type (lung cancer or not) and age (<70 years or not) as adjustment factors. A total of 66 patients (33 in each arm) will be enrolled.
Discussion: The results of this study may contribute to better management of CIPN, which can enable the continuation of chemotherapy and maintenance of the patient's QOL.
Ethics and dissemination: Ethical approval was obtained from the certified review board of Okayama University (approval no. CRB21-005) on September 28, 2021. Results will be published in peer-reviewed journals and presented at national and international conferences.
Trial registration: Japan Registry of Clinical Trials (registration number jRCTs061210047). en-copyright= kn-copyright= en-aut-name=NakamuraNaoki en-aut-sei=Nakamura en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MakimotoGo en-aut-sei=Makimoto en-aut-mei=Go kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanakaTakaaki en-aut-sei=Tanaka en-aut-mei=Takaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KatoYuka en-aut-sei=Kato en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OzeIsao en-aut-sei=Oze en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KozukiToshiyuki en-aut-sei=Kozuki en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YokoyamaToshihide en-aut-sei=Yokoyama en-aut-mei=Toshihide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IchikawaHirohisa en-aut-sei=Ichikawa en-aut-mei=Hirohisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KuyamaShoichi en-aut-sei=Kuyama en-aut-mei=Shoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HaraNaofumi en-aut-sei=Hara en-aut-mei=Naofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=HottaKatsuyuki en-aut-sei=Hotta en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Center of Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=5 en-affil=Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute kn-affil= affil-num=6 en-affil=Department of Respiratory Medicine, Shikoku Cancer Center kn-affil= affil-num=7 en-affil=Department of Respiratory Medicine, Kurashiki Central Hospital kn-affil= affil-num=8 en-affil=Department of Respiratory Medicine, KKR Takamatsu Hospital kn-affil= affil-num=9 en-affil=Department of Respiratory Medicine, Iwakuni Clinical Center kn-affil= affil-num=10 en-affil=Department of Respiratory Medicine, Okayama Rosai Hospital kn-affil= affil-num=11 en-affil=Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Center of Innovative Clinical Medicine, Okayama University Hospital kn-affil= en-keyword=Kampo kn-keyword=Kampo en-keyword=CIPN kn-keyword=CIPN en-keyword=prophylaxis kn-keyword=prophylaxis en-keyword=neuropathy kn-keyword=neuropathy en-keyword=taxane kn-keyword=taxane END start-ver=1.4 cd-journal=joma no-vol=136 cd-vols= no-issue=2 article-no= start-page=48 end-page=50 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=The 2023 Incentive Award of the Okayama Medical Association in General Medical Science (2023 Yuuki Prize) kn-title=令和5年度岡山医学会賞 総合研究奨励賞(結城賞) en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=NaitoHiromichi en-aut-sei=Naito en-aut-mei=Hiromichi kn-aut-name=内藤宏道 kn-aut-sei=内藤 kn-aut-mei=宏道 aut-affil-num=1 ORCID= affil-num=1 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil=岡山大学大学院医歯薬学総合研究科 救命救急・災害医学 END start-ver=1.4 cd-journal=joma no-vol=186 cd-vols= no-issue= article-no= start-page=43 end-page=50 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240830 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Basic Research on the Impact of Children's Creativity on Society II - Organising Issues through a Literature Review on Children's Work - kn-title=子どもの創造性が社会に与える影響についての基礎研究Ⅱ― 子どもの作品に関する文献調査による課題整理 ― en-subtitle= kn-subtitle= en-abstract= kn-abstract= 本研究の目的は,子どもの創造性と社会とを関連付ける活動を通して,大人が子どもの表現活動に対する新たな価値を獲得するよう促すことである。第一次研究の二つ目にあたる本論では,子どもの作品に関する先行研究から,美術教育における子どもの作品への捉え方について整理する。本調査では,先行研究の調査期間を2008 年から2023 年の16 年間と設定し,美術教育に関する学会誌の三誌に掲載されている研究論文を対象とした。その結果,本調査においては,小学生や未就学児の作品を取り上げる研究が多く,写実表現に向かう中学生や高校生の作品への言及がなされていないことと,子どもの作品自体の「価値を生産」する研究は散見されるものの,「価値を普及」する視点が不足していることがわかった。 en-copyright= kn-copyright= en-aut-name=MATSUURAAi en-aut-sei=MATSUURA en-aut-mei=Ai kn-aut-name=松浦藍 kn-aut-sei=松浦 kn-aut-mei=藍 aut-affil-num=1 ORCID= affil-num=1 en-affil=Faculty of Education, Okayama University kn-affil=岡山大学学術研究院教育学域 en-keyword=美術教育 kn-keyword=美術教育 en-keyword=子どもの絵 kn-keyword=子どもの絵 en-keyword=表現活動 kn-keyword=表現活動 en-keyword=創造性 kn-keyword=創造性 END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=4 article-no= start-page=349 end-page=355 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202408 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Middle-Ear Salivary Gland Choristoma with Congenital, Single-Sided Hearing Loss en-subtitle= kn-subtitle= en-abstract= kn-abstract=Middle-ear salivary gland choristoma (SGCh) is a rare, benign tumor that causes conductive hearing loss owing to middle-ear morphological abnormalities. Early diagnosis is challenging, and surgical resection is indispensable for a definitive diagnosis. We report the case of a 3-year-old boy diagnosed with middle-ear SGCh during the follow-up period for left-sided hearing loss discovered at newborn hearing screening (NHS). Long-term follow-up after the NHS result, subsequent computed tomography/magnetic resonance imaging, and surgical resection led to its relatively early diagnosis and treatment. en-copyright= kn-copyright= en-aut-name=TominagaYuichiro en-aut-sei=Tominaga en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SugayaAkiko en-aut-sei=Sugaya en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KariyaShin en-aut-sei=Kariya en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShimizuAiko en-aut-sei=Shimizu en-aut-mei=Aiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KataokaYuko en-aut-sei=Kataoka en-aut-mei=Yuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AndoMizuo en-aut-sei=Ando en-aut-mei=Mizuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Otolaryngology, Head and Neck Surgery, Hiroshima City, Hiroshima Citizens Hospital kn-affil= affil-num=2 en-affil=Department of Otolaryngology, Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Otolaryngology, Head and Neck Surgery, Kawasaki Medical School Hospital kn-affil= affil-num=4 en-affil=Department of Otolaryngology, Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Otolaryngology, Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Otolaryngology, Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=middle-ear salivary gland choristoma kn-keyword=middle-ear salivary gland choristoma en-keyword=middle-ear morphological abnormalities kn-keyword=middle-ear morphological abnormalities en-keyword=newborn hearing screening kn-keyword=newborn hearing screening en-keyword=unilateral hearing loss kn-keyword=unilateral hearing loss en-keyword=surgical resection kn-keyword=surgical resection END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=15 article-no= start-page=4324 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240724 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Evolution and Effects of Ad Hoc Multidisciplinary Team Meetings in the Emergency Intensive Care Unit: A Five-Year Analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Multidisciplinary team meetings (MDTMs) are crucial in the ICU. However, daily rounds may not address all sensitive issues due to time constraints and the complexity of cases. This study aimed to describe detailed information and characteristics of ad hoc MDTMs in the ICU. Methods: This single-center, retrospective study analyzed adult emergency ICU admissions at Okayama University Hospital from 1 January 2019 to 31 December 2023. During this period, weekly regular multidisciplinary team ICU rounds were introduced in June 2020, and regular weekday morning MDTMs began in April 2022. A multiple logistic regression analysis was applied to determine the impact of these changes on the frequency of ad hoc MDTMs, adjusting for variables including annual changes. Results: The study analyzed 2487 adult EICU patients, with a median age of 66, and 63.3% of them male. MDTMs were held for 168 patients (6.8%), typically those with severe conditions, including higher COVID-19 prevalence and APACHE II scores, and longer ICU stays. Despite a constant total number of MDTMs, the likelihood of conducting ad hoc MDTMs increased annually (adjusted OR 1.19; 95% CI, 1.04-1.35). Of the 329 MDTMs conducted for these patients, 59.0% addressed end-of-life care, involving an average of 11 participants, mainly nurses and emergency and critical-care physicians. Conclusions: Changes in ICU round and meeting structures might be associated with a higher frequency of conducting ad hoc MDTMs, highlighting their evolving role and importance in patient care management. en-copyright= kn-copyright= en-aut-name=YumotoTetsuya en-aut-sei=Yumoto en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HongoTakashi en-aut-sei=Hongo en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ObaraTakafumi en-aut-sei=Obara en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AgetaKohei en-aut-sei=Ageta en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AokageToshiyuki en-aut-sei=Aokage en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TsukaharaKohei en-aut-sei=Tsukahara en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakaoAtsunori en-aut-sei=Nakao en-aut-mei=Atsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NaitoHiromichi en-aut-sei=Naito en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=clinical conference kn-keyword=clinical conference en-keyword=end-of-life care kn-keyword=end-of-life care en-keyword=ICU rounds kn-keyword=ICU rounds en-keyword=multidisciplinary kn-keyword=multidisciplinary en-keyword=team meetings kn-keyword=team meetings END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=15 article-no= start-page=2114 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240730 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Light-Driven H2 Production in Chlamydomonas reinhardtii: Lessons from Engineering of Photosynthesis en-subtitle= kn-subtitle= en-abstract= kn-abstract=In the green alga Chlamydomonas reinhardtii, hydrogen production is catalyzed via the [FeFe]-hydrogenases HydA1 and HydA2. The electrons required for the catalysis are transferred from ferredoxin (FDX) towards the hydrogenases. In the light, ferredoxin receives its electrons from photosystem I (PSI) so that H-2 production becomes a fully light-driven process. HydA1 and HydA2 are highly O-2 sensitive; consequently, the formation of H-2 occurs mainly under anoxic conditions. Yet, photo-H-2 production is tightly coupled to the efficiency of photosynthetic electron transport and linked to the photosynthetic control via the Cyt b(6)f complex, the control of electron transfer at the level of photosystem II (PSII) and the structural remodeling of photosystem I (PSI). These processes also determine the efficiency of linear (LEF) and cyclic electron flow (CEF). The latter is competitive with H-2 photoproduction. Additionally, the CBB cycle competes with H-2 photoproduction. Consequently, an in-depth understanding of light-driven H-2 production via photosynthetic electron transfer and its competition with CO2 fixation is essential for improving photo-H-2 production. At the same time, the smart design of photo-H-2 production schemes and photo-H-2 bioreactors are challenges for efficient up-scaling of light-driven photo-H-2 production. en-copyright= kn-copyright= en-aut-name=HipplerMichael en-aut-sei=Hippler en-aut-mei=Michael kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KhosravitabarFatemeh en-aut-sei=Khosravitabar en-aut-mei=Fatemeh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Department of Biological and Environmental Sciences, University of Gothenburg kn-affil= en-keyword=H-2 production kn-keyword=H-2 production en-keyword=Chlamydomonas reinhardtii kn-keyword=Chlamydomonas reinhardtii en-keyword=electron transfer kn-keyword=electron transfer en-keyword=CBB cycle kn-keyword=CBB cycle END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=43 article-no= start-page=eadi8446 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structure of a diatom photosystem II supercomplex containing a member of Lhcx family and dimeric FCPII en-subtitle= kn-subtitle= en-abstract= kn-abstract=Diatoms rely on fucoxanthin chlorophyll a/c-binding proteins (FCPs) for their great success in oceans, which have a great diversity in their pigment, protein compositions, and subunit organizations. We report a unique structure of photosystem II (PSII)-FCPII supercomplex from Thalassiosira pseudonana at 2.68-angstrom resolution by cryo-electron microscopy. FCPIIs within this PSII-FCPII supercomplex exist in dimers and monomers, and a homodimer and a heterodimer were found to bind to a PSII core. The FCPII homodimer is formed by Lhcf7 and associates with PSII through an Lhcx family antenna Lhcx6_1, whereas the heterodimer is formed by Lhcf6 and Lhcf11 and connects to the core together with an Lhcf5 monomer through Lhca2 monomer. An extended pigment network consisting of diatoxanthins, diadinoxanthins, fucoxanthins, and chlorophylls a/c is revealed, which functions in efficient light harvesting, energy transfer, and dissipation. These results provide a structural basis for revealing the energy transfer and dissipation mechanisms and also for the structural diversity of FCP antennas in diatoms. en-copyright= kn-copyright= en-aut-name=FengYue en-aut-sei=Feng en-aut-mei=Yue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=LiZhenhua en-aut-sei=Li en-aut-mei=Zhenhua kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=LiXiaoyi en-aut-sei=Li en-aut-mei=Xiaoyi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShenLili en-aut-sei=Shen en-aut-mei=Lili kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=LiuXueyang en-aut-sei=Liu en-aut-mei=Xueyang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ZhouCuicui en-aut-sei=Zhou en-aut-mei=Cuicui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ZhangJinyang en-aut-sei=Zhang en-aut-mei=Jinyang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SangMin en-aut-sei=Sang en-aut-mei=Min kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HanGuangye en-aut-sei=Han en-aut-mei=Guangye kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YangWenqiang en-aut-sei=Yang en-aut-mei=Wenqiang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KuangTingyun en-aut-sei=Kuang en-aut-mei=Tingyun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=WangWenda en-aut-sei=Wang en-aut-mei=Wenda kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=2 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=3 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=4 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=5 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=6 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=7 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=8 en-affil=China National Botanical Garden kn-affil= affil-num=9 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=10 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=11 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=12 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=13 en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=208 cd-vols= no-issue= article-no= start-page=145- end-page=154 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240627 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Comparison of proportions and prognostic impact of pathological complete response between evaluations of representative specimen and total specimen in primary breast cancer after neoadjuvant chemoradiotherapy: an ancillary study of JCOG0306 en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background In JCOG0306 trial, a phase II study to examine the efficacy of neoadjuvant chemotherapy followed by radiation therapy (NAC-RT) to primary breast cancer, pathological complete response (pCR) was evaluated from specimens of the representative cross-section including the tumor center that had been accurately marked [representative specimen (RS) method]. In this ancillary study, we examined if the RS method was comparable to the conventional total specimen (TS) method, which is widely employed in Japan, to identify the pCR group showing excellent prognosis.
Methods We obtained long-term follow-up data of 103 patients enrolled in JCOG0306 trial. As histological therapeutic effect, pCR (ypT0 and ypT0/is) and quasi-pCR [QpCR, ypT0/is plus Grade 2b (only a few remaining invasive cancer cells)] were evaluated with RS and TS methods. Concordance of pCR between these two methods and associations of the pCR with prognosis were examined.
Results ypT0, ypT0/is, and QpCR were observed in 28 (27.2%), 39 (37.9%), and 45 (43.7%) patients with RS method, whereas these were 20 (19.4%), 25 (24.3%) and 40 (38.9%) with TS method, respectively. Between RS and TS methods, concordance proportions of ypT0 and ypTis were 92.2% and 86.4%, respectively. Risk of recurrence of ypT0/is group was lower than that of non-ypT0/is group (HR 0.408, 95% CI [0.175–0.946], P = 0.037) and risk of death of ypT0/is group was lower than that of non-ypT0/is group (HR 0.251, 95% CI [0.073–0.857], P = 0.027). The ypT0 and ypT0/is groups with RS method showed excellent prognosis similarly with those with TS method, and RS method was able to differentiate the OS and RFS between pCR and non-pCR than TS method significantly even if pCR was classified ypT0 or ypT0/is. With TS method, QpCR criteria stratified patients into the better and worse prognosis groupsmore clearly than pCR criteria of ypT0 or ypT0/is.
Conclusions RS method was comparable to TS method for the evaluation of pCR in the patients who received NAC-RT to primary breast cancer provided the tumor center was accurately marked. As pCR criteria with RS method, ypT0/is appeared more appropriate than ypT0. en-copyright= kn-copyright= en-aut-name=ShienTadahiko en-aut-sei=Shien en-aut-mei=Tadahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TsudaHitoshi en-aut-sei=Tsuda en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SasakiKeita en-aut-sei=Sasaki en-aut-mei=Keita kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MizusawaJunki en-aut-sei=Mizusawa en-aut-mei=Junki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AkiyamaFutoshi en-aut-sei=Akiyama en-aut-mei=Futoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KurosumiMasafumi en-aut-sei=Kurosumi en-aut-mei=Masafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SawakiMasataka en-aut-sei=Sawaki en-aut-mei=Masataka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TamuraNobuko en-aut-sei=Tamura en-aut-mei=Nobuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TanakaKiyo en-aut-sei=Tanaka en-aut-mei=Kiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KogawaTakahiro en-aut-sei=Kogawa en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TakahashiMina en-aut-sei=Takahashi en-aut-mei=Mina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=HayashiNaoki en-aut-sei=Hayashi en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MukaiHirofumi en-aut-sei=Mukai en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=MasudaNorikazu en-aut-sei=Masuda en-aut-mei=Norikazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=HaraFumikata en-aut-sei=Hara en-aut-mei=Fumikata kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=IwataHiroji en-aut-sei=Iwata en-aut-mei=Hiroji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= affil-num=1 en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Basic Pathology, National Defense Medical College kn-affil= affil-num=3 en-affil=JCOG Data Center/Operations Office, National Cancer Center Hospital kn-affil= affil-num=4 en-affil=JCOG Data Center/Operations Office, National Cancer Center Hospital kn-affil= affil-num=5 en-affil=Department of Pathology, Cancer Institute Hospital kn-affil= affil-num=6 en-affil=Department of Diagnostic Pathology, Kameda Kyobashi Clinic kn-affil= affil-num=7 en-affil=Department of Breast Oncology, Aichi Cancer Center Hospital kn-affil= affil-num=8 en-affil=Department of Breast Surgery, Toranomon Hospital kn-affil= affil-num=9 en-affil=Department of Breast Surgery, Toranomon Hospital kn-affil= affil-num=10 en-affil=Department of Breast Medical Oncology, Cancer Institute Hospital kn-affil= affil-num=11 en-affil=Department of Breast Oncology, National Hospital Organization Shikoku Cancer Center kn-affil= affil-num=12 en-affil=Department of Breast Surgery Oncology, St Lukes International Hospital kn-affil= affil-num=13 en-affil=Department of Breast and Medical Oncology, National Cancer Center Hospital East kn-affil= affil-num=14 en-affil=Department of Surgery, Breast Oncology, National Hospital Organization Osaka National Hospital kn-affil= affil-num=15 en-affil=Department of Breast Medical Oncology, Cancer Institute Hospital kn-affil= affil-num=16 en-affil=Department of Breast Oncology, Aichi Cancer Center Hospital kn-affil= en-keyword=Breast cancer kn-keyword=Breast cancer en-keyword=Neoadjuvant chemoradiotherapy kn-keyword=Neoadjuvant chemoradiotherapy en-keyword=Pathological therapeutic effect kn-keyword=Pathological therapeutic effect en-keyword=Specimen sampling method kn-keyword=Specimen sampling method END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=11 article-no= start-page=6269 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240606 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=SPRED2 Is a Novel Regulator of Autophagy in Hepatocellular Carcinoma Cells and Normal Hepatocytes en-subtitle= kn-subtitle= en-abstract= kn-abstract=Sprouty-related enabled/vasodilator-stimulated phosphoprotein homology 1 domain containing 2 (SPRED2) is an inhibitor of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway and has been shown to promote autophagy in several cancers. Here, we aimed to determine whether SPRED2 plays a role in autophagy in hepatocellular carcinoma (HCC) cells. The Cancer Genome Atlas (TCGA) Liver Cancer Database showed a negative association between the level of SPRED2 and p62, a ubiquitin-binding scaffold protein that accumulates when autophagy is inhibited. Immunohistochemically, accumulation of p62 was detected in human HCC tissues with low SPRED2 expression. Overexpression of SPRED2 in HCC cells increased the number of autophagosomes and autophagic vacuoles containing damaged mitochondria, decreased p62 levels, and increased levels of light-chain-3 (LC3)-II, an autophagy marker. In contrast, SPRED2 deficiency increased p62 levels and decreased LC3-II levels. SPRED2 expression levels were negatively correlated with translocase of outer mitochondrial membrane 20 (TOM20) expression levels, suggesting its role in mitophagy. Mechanistically, SPRED2 overexpression reduced ERK activation followed by the mechanistic or mammalian target of rapamycin complex 1 (mTORC1)-mediated signaling pathway, and SPRED2 deficiency showed the opposite pattern. Finally, hepatic autophagy was impaired in the liver of SPRED2-deficient mice with hepatic lipid droplet accumulation in response to starvation. These results indicate that SPRED2 is a critical regulator of autophagy not only in HCC cells, but also in hepatocytes, and thus the manipulation of this process may provide new insights into liver pathology. en-copyright= kn-copyright= en-aut-name=WangTianyi en-aut-sei=Wang en-aut-mei=Tianyi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=GaoTong en-aut-sei=Gao en-aut-mei=Tong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujisawaMasayoshi en-aut-sei=Fujisawa en-aut-mei=Masayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OharaToshiaki en-aut-sei=Ohara en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SakaguchiMasakiyo en-aut-sei=Sakaguchi en-aut-mei=Masakiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YoshimuraTeizo en-aut-sei=Yoshimura en-aut-mei=Teizo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsukawaAkihiro en-aut-sei=Matsukawa en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Cell Biology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=autophagy kn-keyword=autophagy en-keyword=mitophagy kn-keyword=mitophagy en-keyword=SPRED proteins kn-keyword=SPRED proteins en-keyword=MAPK/ERK kn-keyword=MAPK/ERK en-keyword=mTOR kn-keyword=mTOR en-keyword=hepatocellular carcinoma kn-keyword=hepatocellular carcinoma END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=3 article-no= start-page=271 end-page=279 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202406 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effect of Humidified High-Flow Nasal Cannula Oxygen Therapy with a Pulmonary Infection Control Window as a Ventilation Switching Indication in Combination with Atomizing Inhalation of Terbutaline on the Lung Function of Patients with Acute Exacerbation of COPD en-subtitle= kn-subtitle= en-abstract= kn-abstract=We investigated how humidified high-flow nasal cannula oxygen therapy (HFNC) with a pulmonary infection control (PIC) window as a ventilation switching indication in combination with atomizing inhalation of terbutaline affects the lung function of patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD). We examined 140 hospitalized AECOPD patients randomized to control and observation groups. Conventional supportive therapy and invasive mechanical ventilation with tracheal intubation were conducted in both groups, with a PIC window as the indication for ventilation switching. Noninvasive positive pressure ventilation (NIPPV) plus atomizing inhalation of terbutaline was used in the control group. In the observation group, HFNC combined with atomizing inhalation of terbutaline was used. Compared to the control group, after 48-hr treatment and treatment completion, the observation group had significantly increased levels of lung function indicators (maximal voluntary ventilation [MVV] plus forced vital capacity [FVC], p<0.05) and oxygen metabolism indicators (arterial oxygen partial pressure [PaO2], arterial oxygen content [CaO2], and oxygenation index, p<0.05). The comparison of the groups revealed that the levels of airway remodeling indicators (matrix metalloproteinase-2 [MMP-2], tissue inhibitor of metalloproteinase 2 [TIMP-2] plus MMP-9) and inflammatory indicators (interferon gamma [IFN-γ] together with interleukin-17 [IL-17], IL-10 and IL-4) were significantly lower after 48 h of treatment as well as after treatment completion (both p<0.05). These results demonstrate that HFNC with a PIC window as the indication for ventilation switching combined with atomizing inhalation of terbutaline can relieve the disorder of oxygen metabolism and correct airway hyper-reactivity. en-copyright= kn-copyright= en-aut-name=YeMengjiao en-aut-sei=Ye en-aut-mei=Mengjiao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ZhangRenwei en-aut-sei=Zhang en-aut-mei=Renwei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Respiratory and Critical Care Medicine, Tiantai Hospital of Traditional Chinese Medicine kn-affil= affil-num=2 en-affil=Department of Respiratory and Critical Care Medicine, Tiantai Hospital of Traditional Chinese Medicine kn-affil= en-keyword=chronic obstructive pulmonary disease kn-keyword=chronic obstructive pulmonary disease en-keyword=inhalation kn-keyword=inhalation en-keyword=oxygen therapy kn-keyword=oxygen therapy en-keyword=pulmonary function kn-keyword=pulmonary function en-keyword=ventilation kn-keyword=ventilation END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=3 article-no= start-page=205 end-page=213 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202406 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Thoughts on and Proposal for the Education, Training, and Recruitment of Infectious Disease Specialists en-subtitle= kn-subtitle= en-abstract= kn-abstract=The global pandemic of COVID-19 has underscored the significance of establishing and sustaining a practical and efficient infection control system for the benefit and welfare of society. Infectious disease (ID) specialists are expected to take on leadership roles in enhancing organizational infrastructures for infection prevention and control (IPC) at the hospital, community, and national levels. However, due to an absolute shortage and an uneven distribution, many core hospitals currently lack the ID specialists. Given the escalating global risk of emerging and re-emerging infectious diseases as well as antimicrobial resistance pathogens, the education and training of ID specialists constitutes an imperative concern. As demonstrated by historical changes in the healthcare reimbursement system, the establishment and enhancement of IPC measures is pivotal to ensuring medical safety. The existing structure of academic society-driven certification and training initiatives for ID specialists, contingent upon the discretionary decisions of individual physicians, possesses both quantitative and qualitative shortcomings. In this article, I first address the present situations and challenges related to ID specialists and then introduce my idea of securing ID specialists based on the new concepts and platforms; (i) ID Specialists as National Credentials, (ii) Establishment of the Department of Infectious Diseases in Medical and Graduate Schools, (iii) Endowed ID Educative Courses Funded by Local Government and Pharmaceutical Companies, and (iv) Recruitment of Young Physicians Engaged in Healthcare Services in Remote Areas. As clarified by the COVID-19 pandemic, ID specialists play a crucial role in safeguarding public health. Hopefully, this article will advance the discussion and organizational reform for the education and training of ID specialists. en-copyright= kn-copyright= en-aut-name=HagiyaHideharu en-aut-sei=Hagiya en-aut-mei=Hideharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Department of Infectious Diseases, Okayama University Hospital kn-affil= en-keyword=antimicrobial resistance kn-keyword=antimicrobial resistance en-keyword=emerging infectious diseases kn-keyword=emerging infectious diseases en-keyword=infection prevention and control kn-keyword=infection prevention and control en-keyword=medical education kn-keyword=medical education en-keyword=silent pandemic kn-keyword=silent pandemic END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=3 article-no= start-page=e004237 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202405 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Plasma angiotensin-converting enzyme 2 (ACE2) is a marker for renal outcome of diabetic kidney disease (DKD) (U-CARE study 3) en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction ACE cleaves angiotensin I (Ang I) to angiotensin II (Ang II) inducing vasoconstriction via Ang II type 1 (AT1) receptor, while ACE2 cleaves Ang II to Ang (1-7) causing vasodilatation by acting on the Mas receptor. In diabetic kidney disease (DKD), it is still unclear whether plasma or urine ACE2 levels predict renal outcomes or not.
Research design and methods Among 777 participants with diabetes enrolled in the Urinary biomarker for Continuous And Rapid progression of diabetic nEphropathy study, the 296 patients followed up for 9 years were investigated. Plasma and urinary ACE2 levels were measured by the ELISA. The primary end point was a composite of a decrease of estimated glomerular filtration rate (eGFR) by at least 30% from baseline or initiation of hemodialysis or peritoneal dialysis. The secondary end points were a 30% increase or a 30% decrease in albumin-to-creatinine ratio from baseline to 1 year.
Results The cumulative incidence of the renal composite outcome was significantly higher in group 1 with lowest tertile of plasma ACE2 (p=0.040). Group 2 with middle and highest tertile was associated with better renal outcomes in the crude Cox regression model adjusted by age and sex (HR 0.56, 95% CI 0.31 to 0.99, p=0.047). Plasma ACE2 levels demonstrated a significant association with 30% decrease in ACR (OR 1.46, 95% CI 1.044 to 2.035, p=0.027) after adjusting for age, sex, systolic blood pressure, hemoglobin A1c, and eGFR.
Conclusions Higher baseline plasma ACE2 levels in DKD were protective for development and progression of albuminuria and associated with fewer renal end points, suggesting plasma ACE2 may be used as a prognosis marker of DKD.Trial registration number UMIN000011525. en-copyright= kn-copyright= en-aut-name=UenoAsami en-aut-sei=Ueno en-aut-mei=Asami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OnishiYasuhiro en-aut-sei=Onishi en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MiseKoki en-aut-sei=Mise en-aut-mei=Koki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamaguchiSatoshi en-aut-sei=Yamaguchi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KannoAyaka en-aut-sei=Kanno en-aut-mei=Ayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NojimaIchiro en-aut-sei=Nojima en-aut-mei=Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HiguchiChigusa en-aut-sei=Higuchi en-aut-mei=Chigusa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=UchidaHaruhito A. en-aut-sei=Uchida en-aut-mei=Haruhito A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ShikataKenichi en-aut-sei=Shikata en-aut-mei=Kenichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MiyamotoSatoshi en-aut-sei=Miyamoto en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NakatsukaAtsuko en-aut-sei=Nakatsuka en-aut-mei=Atsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=EguchiJun en-aut-sei=Eguchi en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=HidaKazuyuki en-aut-sei=Hida en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KatayamaAkihiro en-aut-sei=Katayama en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=WatanabeMayu en-aut-sei=Watanabe en-aut-mei=Mayu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=NakatoTatsuaki en-aut-sei=Nakato en-aut-mei=Tatsuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=ToneAtsuhito en-aut-sei=Tone en-aut-mei=Atsuhito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=TeshigawaraSanae en-aut-sei=Teshigawara en-aut-mei=Sanae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=MatsuokaTakashi en-aut-sei=Matsuoka en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=KameiShinji en-aut-sei=Kamei en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=MurakamiKazutoshi en-aut-sei=Murakami en-aut-mei=Kazutoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=ShimizuIkki en-aut-sei=Shimizu en-aut-mei=Ikki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=MiyashitaKatsuhito en-aut-sei=Miyashita en-aut-mei=Katsuhito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=AndoShinichiro en-aut-sei=Ando en-aut-mei=Shinichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=NunoueTomokazu en-aut-sei=Nunoue en-aut-mei=Tomokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= affil-num=1 en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Diabetology and Metabolism, National Hospital Organization Okayama Medical Center kn-affil= affil-num=14 en-affil=Department of Diabetology and Metabolism, National Hospital Organization Okayama Medical Center kn-affil= affil-num=15 en-affil=Department of Diabetology and Metabolism, National Hospital Organization Okayama Medical Center kn-affil= affil-num=16 en-affil=Department of Internal Medicine, Okayama Saiseikai General Hospital kn-affil= affil-num=17 en-affil=Department of Internal Medicine, Okayama Saiseikai General Hospital kn-affil= affil-num=18 en-affil=Okayama Saiseikai General Hospital kn-affil= affil-num=19 en-affil=Department of Diabetic Medicine, Kurashiki Central Hospital kn-affil= affil-num=20 en-affil=Department of Diabetic Medicine, Kurashiki Central Hospital kn-affil= affil-num=21 en-affil=Department of Diabetic Medicine, Kurashiki Central Hospital kn-affil= affil-num=22 en-affil=Sakakibara Heart Institute of Okayama kn-affil= affil-num=23 en-affil=Japanese Red Cross Okayama Hospital kn-affil= affil-num=24 en-affil=Okayama City General Medical Center kn-affil= affil-num=25 en-affil=Nunoue Clinic kn-affil= affil-num=26 en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=4535 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240528 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structure and distinct supramolecular organization of a PSII-ACPII dimer from a cryptophyte alga Chroomonas placoidea en-subtitle= kn-subtitle= en-abstract= kn-abstract=Cryptophyte algae are an evolutionarily distinct and ecologically important group of photosynthetic unicellular eukaryotes. Photosystem II (PSII) of cryptophyte algae associates with alloxanthin chlorophyll a/c-binding proteins (ACPs) to act as the peripheral light-harvesting system, whose supramolecular organization is unknown. Here, we purify the PSII-ACPII supercomplex from a cryptophyte alga Chroomonas placoidea (C. placoidea), and analyze its structure at a resolution of 2.47 & Aring; using cryo-electron microscopy. This structure reveals a dimeric organization of PSII-ACPII containing two PSII core monomers flanked by six symmetrically arranged ACPII subunits. The PSII core is conserved whereas the organization of ACPII subunits exhibits a distinct pattern, different from those observed so far in PSII of other algae and higher plants. Furthermore, we find a Chl a-binding antenna subunit, CCPII-S, which mediates interaction of ACPII with the PSII core. These results provide a structural basis for the assembly of antennas within the supercomplex and possible excitation energy transfer pathways in cryptophyte algal PSII, shedding light on the diversity of supramolecular organization of photosynthetic machinery. en-copyright= kn-copyright= en-aut-name=MaoZhiyuan en-aut-sei=Mao en-aut-mei=Zhiyuan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=LiXingyue en-aut-sei=Li en-aut-mei=Xingyue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=LiZhenhua en-aut-sei=Li en-aut-mei=Zhenhua kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShenLiangliang en-aut-sei=Shen en-aut-mei=Liangliang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=LiXiaoyi en-aut-sei=Li en-aut-mei=Xiaoyi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YangYanyan en-aut-sei=Yang en-aut-mei=Yanyan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=WangWenda en-aut-sei=Wang en-aut-mei=Wenda kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KuangTingyun en-aut-sei=Kuang en-aut-mei=Tingyun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HanGuangye en-aut-sei=Han en-aut-mei=Guangye kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=2 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=3 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=4 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=5 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=6 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=7 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=8 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=9 en-affil=Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=10 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=ピリジル、イミダゾリル及びオキサゾリル基を有する非対称アジンの選択的合成と、それらを配位子として含む鉄(II)及びニッケル(II)錯体の構造及び性質に関する研究 kn-title=Studies on Selective Synthesis and Coordination Abilities of Unsymmetrical Azines with Pyridyl, Imidazolyl, and Oxazolyl Substituents and Structures and Properties of Their Iron(II) and Nickel(II) Complexes en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=KENNEDY MAWUNYA HAYIBOR en-aut-sei=KENNEDY MAWUNYA HAYIBOR en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=岡山大学大学院自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol=101 cd-vols= no-issue=4 article-no= start-page=431 end-page=447 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230304 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Novel extracellular role of REIC/Dkk-3 protein in PD-L1 regulation in cancer cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=The adenovirus-REIC/Dkk-3 expression vector (Ad-REIC) has been the focus of numerous clinical studies due to its potential for the quenching of cancers. The cancer-suppressing mechanisms of the REIC/DKK-3 gene depend on multiple pathways that exert both direct and indirect effects on cancers. The direct effect is triggered by REIC/Dkk-3-mediated ER stress that causes cancer-selective apoptosis, and the indirect effect can be classified in two ways: (i) induction, by Ad-REIC-mis-infected cancer-associated fibroblasts, of the production of IL-7, an important activator of T cells and NK cells, and (ii) promotion, by the secretory REIC/Dkk-3 protein, of dendritic cell polarization from monocytes. These unique features allow Ad-REIC to exert effective and selective cancer-preventative effects in the manner of an anticancer vaccine. However, the question of how the REIC/Dkk-3 protein leverages anticancer immunity has remained to be answered. We herein report a novel function of the extracellular REIC/Dkk-3—namely, regulation of an immune checkpoint via modulation of PD-L1 on the cancer-cell surface. First, we identified novel interactions of REIC/Dkk-3 with the membrane proteins C5aR, CXCR2, CXCR6, and CMTM6. These proteins all functioned to stabilize PD-L1 on the cell surface. Due to the dominant expression of CMTM6 among the proteins in cancer cells, we next focused on CMTM6 and observed that REIC/Dkk-3 competed with CMTM6 for PD-L1, thereby liberating PD-L1 from its complexation with CMTM6. The released PD-L1 immediately underwent endocytosis-mediated degradation. These results will enhance our understanding of not only the physiological nature of the extracellular REIC/Dkk-3 protein but also the Ad-REIC-mediated anticancer effects. en-copyright= kn-copyright= en-aut-name=GoharaYuma en-aut-sei=Gohara en-aut-mei=Yuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TomonobuNahoko en-aut-sei=Tomonobu en-aut-mei=Nahoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KinoshitaRie en-aut-sei=Kinoshita en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FutamiJunichiro en-aut-sei=Futami en-aut-mei=Junichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AudebertLéna en-aut-sei=Audebert en-aut-mei=Léna kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ChenYouyi en-aut-sei=Chen en-aut-mei=Youyi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KomalasariNi Luh Gede Yoni en-aut-sei=Komalasari en-aut-mei=Ni Luh Gede Yoni kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=JiangFan en-aut-sei=Jiang en-aut-mei=Fan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YoshizawaChikako en-aut-sei=Yoshizawa en-aut-mei=Chikako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MurataHitoshi en-aut-sei=Murata en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YamamotoKen-ichi en-aut-sei=Yamamoto en-aut-mei=Ken-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=WatanabeMasami en-aut-sei=Watanabe en-aut-mei=Masami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KumonHiromi en-aut-sei=Kumon en-aut-mei=Hiromi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=SakaguchiMasakiyo en-aut-sei=Sakaguchi en-aut-mei=Masakiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=2 en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=3 en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=4 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=5 en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=6 en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=7 en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=8 en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=9 en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=10 en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=11 en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=12 en-affil=Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=13 en-affil=Innovation Center Okayama for Nanobio-Targeted Therapy, Okayama University kn-affil= affil-num=14 en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= en-keyword=Breast cancer kn-keyword=Breast cancer en-keyword=REIC/Dkk-3 kn-keyword=REIC/Dkk-3 en-keyword=PD-L1 kn-keyword=PD-L1 en-keyword=Immune checkpoint kn-keyword=Immune checkpoint en-keyword=Cancer therapy kn-keyword=Cancer therapy END start-ver=1.4 cd-journal=joma no-vol=42 cd-vols= no-issue=4 article-no= start-page=398 end-page=405 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231122 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Time course of complications after small renal mass biopsy: evaluation of initial follow-up images en-subtitle= kn-subtitle= en-abstract= kn-abstract=Purpose To retrospectively assess the time course of complications after image-guided small renal mass biopsy using initial follow-up imaging.
Materials and methods A total of 190 masses (mean, 2.1 ± 0.70 cm; range, 0.6–3.8 cm) were assessed using initial computed tomography (43 non-enhanced and 141 enhanced) or magnetic resonance imaging (five non-enhanced and one enhanced) after biopsy. Initial follow-up imaging was classified into two groups (i.e., with or without hematoma) and various factors were compared.
Results The masses were histologically diagnosed in all patients except one. Post-procedural complications included 129 Grade I hematomas, 1 Grade I hemothorax, 9 Grade II hematomas, and 1 Grade IIIa pneumothorax. Residual 28 Grade I and 6 Grade II hematomas and 8 new complications (6 small hematomas, 1 pseudoaneurysm, and 1 arteriovenous fistula) were observed on the initial follow-up imaging obtained at a median of 21 days (3–90 days) after the biopsy. On the initial follow-up imaging, the groups with and without hematoma differed significantly in the following factors: age (P = 0.04), size (P = 0.02), guided images (P < 0.01), hematoma at the end of the procedure (P < 0.01), and days after biopsy (P < 0.01). Although three masses exhibited > 25% shrinkage, no significant change was observed in mass diameter on initial follow-up imaging (mean, 2.1 ± 0.71 cm; P = 0.90).
Conclusion Initial follow-up imaging after a biopsy revealed improvements in most of the complications, a few new complications, and an unchanged mass diameter. en-copyright= kn-copyright= en-aut-name=KajitaSoichiro en-aut-sei=Kajita en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IguchiToshihiro en-aut-sei=Iguchi en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsuiYusuke en-aut-sei=Matsui en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TomitaKoji en-aut-sei=Tomita en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=UkaMayu en-aut-sei=Uka en-aut-mei=Mayu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=UmakoshiNoriyuki en-aut-sei=Umakoshi en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KawabataTakahiro en-aut-sei=Kawabata en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MunetomoKazuaki en-aut-sei=Munetomo en-aut-mei=Kazuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HirakiTakao en-aut-sei=Hiraki en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Biopsy kn-keyword=Biopsy en-keyword=Imaging kn-keyword=Imaging en-keyword=Complication kn-keyword=Complication en-keyword=Renal neoplasms kn-keyword=Renal neoplasms END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=2 article-no= start-page=171 end-page=184 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202404 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Relationships among Internalized Stigma, Sense of Coherence, and Personal Recovery of Persons with Schizophrenia Living in the Community en-subtitle= kn-subtitle= en-abstract= kn-abstract=We investigated (i) the relationships among internalized stigma (IS), sense of coherence (SOC), and the personal recovery (PR) of persons with schizophrenia living in the community, and (ii) how to improve the support for these individuals. A questionnaire survey on IS, SOC, and PR was sent by mail to 270 persons with schizophrenia living in the community who were using psychiatric daycare services, of whom 149 responded and 140 were included in the analysis. We established a hypothetical model in which IS influences PR, and SOC influences IS and PR, and we used structural equation modeling to examine the relationships among these concepts. The goodness of fit was acceptable. Our findings suggest that rather than directly promoting PR, SOC promotes PR by mitigating the impact of IS. It is important for nurses/supporters to support individuals with schizophrenia living in the community so that they have opportunities to reflect on their own experiences through their activities and to share their experiences with peers. Nurses/supporters themselves should also reflect on their own support needs. Our findings suggest that this will lead to a reduction of IS and the improvement of SOC, which will in turn promote personal recovery. en-copyright= kn-copyright= en-aut-name=KuramotoAya en-aut-sei=Kuramoto en-aut-mei=Aya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SaitoShinya en-aut-sei=Saito en-aut-mei=Shinya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WatanabeKumi en-aut-sei=Watanabe en-aut-mei=Kumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=3 en-affil=School of Nursing, Faculty of Medicine, Kagawa University kn-affil= en-keyword=schizophrenia kn-keyword=schizophrenia en-keyword=internalized stigma kn-keyword=internalized stigma en-keyword=sense of coherence kn-keyword=sense of coherence en-keyword=personal recovery kn-keyword=personal recovery en-keyword=community kn-keyword=community END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=7 article-no= start-page=1298 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240327 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Copy Number Analysis of 9p24.1 in Classic Hodgkin Lymphoma Arising in Immune Deficiency/Dysregulation en-subtitle= kn-subtitle= en-abstract= kn-abstract=A subset of patients with rheumatoid arthritis receiving methotrexate develop immune deficiencies and dysregulation-associated lymphoproliferative disorders. Patients with these disorders often exhibit spontaneous regression after MTX withdrawal; however, chemotherapeutic intervention is frequently required in patients with classic Hodgkin lymphoma arising in immune deficiency/dysregulation. In this study, we examined PD-L1 expression levels and 9p24.1 copy number alterations in 27 patients with classic Hodgkin lymphoma arising from immune deficiency/dysregulation. All patients demonstrated PD-L1 protein expression and harbored 9p24.1 copy number alterations on the tumor cells. When comparing clinicopathological data and associations with 9p24.1 copy number features, the copy gain group showed a significantly higher incidence of extranodal lesions and clinical stages than the amplification group. Notably, all cases in the amplification group had latency type II, while 6/8 (75%) in the copy gain group had latency type II, and 2/8 (25%) had latency type I. Thus, a subset of the copy-gain group demonstrated more extensive extranodal lesions and higher clinical stages. This finding speculates the presence of a genetically distinct subgroup within the group of patients who develop immune deficiencies and dysregulation-associated lymphoproliferative disorders, which may explain certain characteristic features. en-copyright= kn-copyright= en-aut-name=OhsawaKumiko en-aut-sei=Ohsawa en-aut-mei=Kumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MomoseShuji en-aut-sei=Momose en-aut-mei=Shuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishikoriAsami en-aut-sei=Nishikori en-aut-mei=Asami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishimuraMidori Filiz en-aut-sei=Nishimura en-aut-mei=Midori Filiz kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=GionYuka en-aut-sei=Gion en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SawadaKeisuke en-aut-sei=Sawada en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HigashiMorihiro en-aut-sei=Higashi en-aut-mei=Morihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TokuhiraMichihide en-aut-sei=Tokuhira en-aut-mei=Michihide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TamaruJun-Ichi en-aut-sei=Tamaru en-aut-mei=Jun-Ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SatoYasuharu en-aut-sei=Sato en-aut-mei=Yasuharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=2 en-affil=Department of Pathology, Saitama Medical Center, Saitama Medical University kn-affil= affil-num=3 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=4 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=5 en-affil=Department of Medical Technology, Faculty of Health Sciences, Ehime Prefectural University of Health Sciences kn-affil= affil-num=6 en-affil=Department of Pathology, Saitama Medical Center, Saitama Medical University kn-affil= affil-num=7 en-affil=Department of Pathology, Saitama Medical Center, Saitama Medical University kn-affil= affil-num=8 en-affil=Department of Hematology, Japan Community Health Care Organization Saitama Medical Center kn-affil= affil-num=9 en-affil=Department of Pathology, Saitama Medical Center, Saitama Medical University kn-affil= affil-num=10 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= en-keyword=classic Hodgkin lymphoma kn-keyword=classic Hodgkin lymphoma en-keyword=methotrexate kn-keyword=methotrexate en-keyword=immunodeficiency kn-keyword=immunodeficiency en-keyword=programmed cell death-ligand 1 kn-keyword=programmed cell death-ligand 1 en-keyword=rheumatoid arthritis kn-keyword=rheumatoid arthritis END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=2 article-no= start-page=95 end-page=106 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202404 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Roles of Neuropeptide Y in Respiratory Disease Pathogenesis via the Airway Immune Response en-subtitle= kn-subtitle= en-abstract= kn-abstract=The lungs are very complex organs, and the respiratory system performs the dual roles of repairing tissue while protecting against infection from various environmental stimuli. Persistent external irritation disrupts the immune responses of tissues and cells in the respiratory system, ultimately leading to respiratory disease. Neuropeptide Y (NPY) is a 36-amino-acid polypeptide and a neurotransmitter that regulates homeostasis. The NPY receptor is a seven-transmembrane-domain G-protein-coupled receptor with six subtypes (Y1, Y2, Y3, Y4, Y5, and Y6). Of these receptors, Y1, Y2, Y4, and Y5 are functional in humans, and Y1 plays important roles in the immune responses of many organs, including the respiratory system. NPY and the Y1 receptor have critical roles in the pathogenesis of asthma, chronic obstructive pulmonary disease, and idiopathic pulmonary fibrosis. The effects of NPY on the airway immune response and pathogenesis differ among respiratory diseases. This review focuses on the involvement of NPY in the airway immune response and pathogenesis of various respiratory diseases. en-copyright= kn-copyright= en-aut-name=ItanoJunko en-aut-sei=Itano en-aut-mei=Junko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KiuraKatsuyuki en-aut-sei=Kiura en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MiyaharaNobuaki en-aut-sei=Miyahara en-aut-mei=Nobuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= en-keyword=neuropeptide y kn-keyword=neuropeptide y en-keyword=Y1 receptor kn-keyword=Y1 receptor en-keyword=airway immune response kn-keyword=airway immune response en-keyword=bronchial epithelial cells kn-keyword=bronchial epithelial cells en-keyword=respiratory disease kn-keyword=respiratory disease END start-ver=1.4 cd-journal=joma no-vol=626 cd-vols= no-issue=7999 article-no= start-page=670 end-page=677 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240131 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Oxygen-evolving photosystem II structures during S1–S2–S3 transitions en-subtitle= kn-subtitle= en-abstract= kn-abstract=Photosystem II (PSII) catalyses the oxidation of water through a four-step cycle of Si states (i = 0–4) at the Mn4CaO5 cluster1,2,3, during which an extra oxygen (O6) is incorporated at the S3 state to form a possible dioxygen4,5,6,7. Structural changes of the metal cluster and its environment during the S-state transitions have been studied on the microsecond timescale. Here we use pump-probe serial femtosecond crystallography to reveal the structural dynamics of PSII from nanoseconds to milliseconds after illumination with one flash (1F) or two flashes (2F). YZ, a tyrosine residue that connects the reaction centre P680 and the Mn4CaO5 cluster, showed structural changes on a nanosecond timescale, as did its surrounding amino acid residues and water molecules, reflecting the fast transfer of electrons and protons after flash illumination. Notably, one water molecule emerged in the vicinity of Glu189 of the D1 subunit of PSII (D1-E189), and was bound to the Ca2+ ion on a sub-microsecond timescale after 2F illumination. This water molecule disappeared later with the concomitant increase of O6, suggesting that it is the origin of O6. We also observed concerted movements of water molecules in the O1, O4 and Cl-1 channels and their surrounding amino acid residues to complete the sequence of electron transfer, proton release and substrate water delivery. These results provide crucial insights into the structural dynamics of PSII during S-state transitions as well as O–O bond formation. en-copyright= kn-copyright= en-aut-name=LiHongjie en-aut-sei=Li en-aut-mei=Hongjie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakajimaYoshiki en-aut-sei=Nakajima en-aut-mei=Yoshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NangoEriko en-aut-sei=Nango en-aut-mei=Eriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OwadaShigeki en-aut-sei=Owada en-aut-mei=Shigeki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamadaDaichi en-aut-sei=Yamada en-aut-mei=Daichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HashimotoKana en-aut-sei=Hashimoto en-aut-mei=Kana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=LuoFangjia en-aut-sei=Luo en-aut-mei=Fangjia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TanakaRie en-aut-sei=Tanaka en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=AkitaFusamichi en-aut-sei=Akita en-aut-mei=Fusamichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KatoKoji en-aut-sei=Kato en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KangJungmin en-aut-sei=Kang en-aut-mei=Jungmin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SaitohYasunori en-aut-sei=Saitoh en-aut-mei=Yasunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KishiShunpei en-aut-sei=Kishi en-aut-mei=Shunpei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=YuHuaxin en-aut-sei=Yu en-aut-mei=Huaxin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=MatsubaraNaoki en-aut-sei=Matsubara en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=FujiiHajime en-aut-sei=Fujii en-aut-mei=Hajime kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=SugaharaMichihiro en-aut-sei=Sugahara en-aut-mei=Michihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=SuzukiMamoru en-aut-sei=Suzuki en-aut-mei=Mamoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=MasudaTetsuya en-aut-sei=Masuda en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=KimuraTetsunari en-aut-sei=Kimura en-aut-mei=Tetsunari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=ThaoTran Nguyen en-aut-sei=Thao en-aut-mei=Tran Nguyen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=YonekuraShinichiro en-aut-sei=Yonekura en-aut-mei=Shinichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=YuLong-Jiang en-aut-sei=Yu en-aut-mei=Long-Jiang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=ToshaTakehiko en-aut-sei=Tosha en-aut-mei=Takehiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=TonoKensuke en-aut-sei=Tono en-aut-mei=Kensuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=JotiYasumasa en-aut-sei=Joti en-aut-mei=Yasumasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=HatsuiTakaki en-aut-sei=Hatsui en-aut-mei=Takaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=YabashiMakina en-aut-sei=Yabashi en-aut-mei=Makina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=KuboMinoru en-aut-sei=Kubo en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=IwataSo en-aut-sei=Iwata en-aut-mei=So kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= en-aut-name=IsobeHiroshi en-aut-sei=Isobe en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=31 ORCID= en-aut-name=YamaguchiKizashi en-aut-sei=Yamaguchi en-aut-mei=Kizashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=32 ORCID= en-aut-name=SugaMichihiro en-aut-sei=Suga en-aut-mei=Michihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=33 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=34 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Institute of Multidisciplinary Research for Advanced Materials, Tohoku University kn-affil= affil-num=4 en-affil=Japan Synchrotron Radiation Research Institute kn-affil= affil-num=5 en-affil=Department of Picobiology, Graduate School of Life Science, University of Hyogo kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Japan Synchrotron Radiation Research Institute kn-affil= affil-num=8 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=9 en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=10 en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=11 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=12 en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=13 en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=14 en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=15 en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=16 en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=17 en-affil=Japan Synchrotron Radiation Research Institute kn-affil= affil-num=18 en-affil=Institute for Protein Research, Osaka University kn-affil= affil-num=19 en-affil=Division of Food and Nutrition, Faculty of Agriculture, Ryukoku University kn-affil= affil-num=20 en-affil=Department of Chemistry, Graduate School of Science, Kobe University kn-affil= affil-num=21 en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=22 en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=23 en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=24 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=25 en-affil=Japan Synchrotron Radiation Research Institute kn-affil= affil-num=26 en-affil=Japan Synchrotron Radiation Research Institute kn-affil= affil-num=27 en-affil=Japan Synchrotron Radiation Research Institute kn-affil= affil-num=28 en-affil=Japan Synchrotron Radiation Research Institute kn-affil= affil-num=29 en-affil=Department of Picobiology, Graduate School of Life Science, University of Hyogo kn-affil= affil-num=30 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=31 en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=32 en-affil=Center for Quantum Information and Quantum Biology, Osaka University kn-affil= affil-num=33 en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=34 en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue= article-no= start-page=rbac088 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20221102 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Fabrication of initial trabecular bone-inspired three-dimensional structure with cell membrane nano fragments en-subtitle= kn-subtitle= en-abstract= kn-abstract=The extracellular matrix of trabecular bone has a large surface exposed to the bone marrow and plays important roles such as hematopoietic stem cell niche formation and maintenance. In vitro reproduction of trabecular bone microenvironment would be valuable not only for developing a functional scaffold for bone marrow tissue engineering but also for understanding its biological functions. Herein, we analyzed and reproduced the initial stages of trabecular bone formation in mouse femur epiphysis. We identified that the trabecular bone formation progressed through the following steps: (i) partial rupture of hypertrophic chondrocytes; (ii) calcospherite formation on cell membrane nano fragments (CNFs) derived from the ruptured cells; and (iii) calcospherite growth and fusion to form the initial three-dimensional (3D) structure of trabecular bones. For reproducing the initial trabecular bone formation in vitro, we collected CNFs from cultured cells and used as nucleation sites for biomimetic calcospherite formation. Strikingly, almost the same 3D structure of the initial trabecular bone could be obtained in vitro by using additional CNFs as a binder to fuse biomimetic calcospherites. en-copyright= kn-copyright= en-aut-name=KadoyaKoichi en-aut-sei=Kadoya en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HaraEmilio Satoshi en-aut-sei=Hara en-aut-mei=Emilio Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OkadaMasahiro en-aut-sei=Okada en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=JiaoYu Yang en-aut-sei=Jiao en-aut-mei=Yu Yang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakanoTakayoshi en-aut-sei=Nakano en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SasakiAkira en-aut-sei=Sasaki en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsumotoTakuya en-aut-sei=Matsumoto en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Division of Materials & Manufacturing Science, Osaka University kn-affil= affil-num=6 en-affil=Department of Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=trabecular bone kn-keyword=trabecular bone en-keyword=calcospherites kn-keyword=calcospherites en-keyword=cell membrane nano fragments kn-keyword=cell membrane nano fragments en-keyword=three dimensionalization kn-keyword=three dimensionalization en-keyword=bone tissue synthesis kn-keyword=bone tissue synthesis END start-ver=1.4 cd-journal=joma no-vol=87 cd-vols= no-issue=11 article-no= start-page=1323 end-page=1331 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230808 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The effect of exogenous dihydroxyacetone and methylglyoxal on growth, anthocyanin accumulation, and the glyoxalase system in Arabidopsis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Dihydroxyacetone (DHA) occurs in wide-ranging organisms, including plants, and can undergo spontaneous conversion to methylglyoxal (MG). While the toxicity of MG to plants is well-known, the toxicity of DHA to plants remains to be elucidated. We investigated the effects of DHA and MG on Arabidopsis. Exogenous DHA at up to 10 mM did not affect the radicle emergence, the expansion of green cotyledons, the seedling growth, or the activity of glyoxalase II, while DHA at 10 mM inhibited the root elongation and increased the activity of glyoxalase I. Exogenous MG at 1.0 mM inhibited these physiological responses and increased both activities. Dihydroxyacetone at 10 mM increased the MG content in the roots. These results indicate that DHA is not so toxic as MG in Arabidopsis seeds and seedlings and suggest that the toxic effect of DHA at high concentrations is attributed to MG accumulation by the conversion to MG. en-copyright= kn-copyright= en-aut-name=ZhaoMaoxiang en-aut-sei=Zhao en-aut-mei=Maoxiang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakamuraToshiyuki en-aut-sei=Nakamura en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakamuraYoshimasa en-aut-sei=Nakamura en-aut-mei=Yoshimasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MunemasaShintaro en-aut-sei=Munemasa en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MoriIzumi C en-aut-sei=Mori en-aut-mei=Izumi C kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MurataYoshiyuki en-aut-sei=Murata en-aut-mei=Yoshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=dihydroxyacetone kn-keyword=dihydroxyacetone en-keyword=methylglyoxal kn-keyword=methylglyoxal en-keyword=growth kn-keyword=growth en-keyword=anthocyanin kn-keyword=anthocyanin en-keyword=glyoxalase system kn-keyword=glyoxalase system END start-ver=1.4 cd-journal=joma no-vol=564 cd-vols= no-issue= article-no= start-page=121937 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Synthesis and characterization of iron(II) complex with unsymmetrical heterocyclic (2-pyridyl)(4-imidazolyl)azine en-subtitle= kn-subtitle= en-abstract= kn-abstract=A new iron(II) complex bearing unsymmetrical azine, [Fe(HLH)2](PF6)2·H2O·MeCN (HLH = 2-pyridylmethylidenehydrazono(4-imidazolyl)methane), was synthesized exclusively by a reaction of 2-pyridine carboxaldehyde, 1H-imidazole-4-carboxaldehyde, hydrazine monohydrate and FeCl2·4H2O (in a molar ratio of 2:2:2:1) in methanol, followed by the addition of an aqueous NH4PF6 solution. It was characterized using spectroscopic techniques, elemental analysis, magnetic measurement, and cyclic voltammetry. The molecular and crystal structure of the compound was revealed by X-ray analysis, where an iron(II) ion was surrounded by two HLH azines with a planar E(py),Z(im) conformation, and tridentate κ3N,N’,N” coordination mode, forming a monomeric six-coordinated and diamagnetic complex. The complex cations were linked by water molecules via intermolecular hydrogen-bonding interactions between the imidazole N−H and the neighboring uncoordinated azine-N atom, forming a 1D chain structure. The selective formation of this unsymmetrical azine (HLH) from a stoichiometric mixture of the components would result from the steric preference of the five- and six-membered chelate rings by the 2-pyridyl and 4-imidazolyl azine moieties, respectively, with the E(py),Z(im) configuration. en-copyright= kn-copyright= en-aut-name=HayiborKennedy Mawunya en-aut-sei=Hayibor en-aut-mei=Kennedy Mawunya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SunatsukiYukinari en-aut-sei=Sunatsuki en-aut-mei=Yukinari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SuzukiTakayoshi en-aut-sei=Suzuki en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil= kn-affil= affil-num=2 en-affil= kn-affil= affil-num=3 en-affil= kn-affil= en-keyword=(Pyridyl)(imidazolyl)azine kn-keyword=(Pyridyl)(imidazolyl)azine en-keyword=Aldazines kn-keyword=Aldazines en-keyword=Iron(II) complex kn-keyword=Iron(II) complex en-keyword=Crystal structure kn-keyword=Crystal structure END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue= article-no= start-page=191 end-page=205 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240329 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Proposal for Creativity-oriented Inquiry-based Classes for Liberal Arts Education in Universities Analysis of Practical Results of the Liberal Arts Education Class “Creativity in Life” at Okayama University II kn-title=大学教養教育に適した創造性を重視した探究型授業の提案 岡山大学教養教育科目「生活の中の創造性」の実践結果の分析Ⅱ en-subtitle= kn-subtitle= en-abstract= In anticipation of the academic year 2025, when high school students who have experienced inquiry-based learning under the new Courses of Study will be university students, we have developed a new class that combines knowledge of physics and clothing science on the subject of "color" and incorporates project-based activities as a university liberal arts education course. As in the previous year, the class encourages students to take initiative and stimulates creative thinking by incorporating devices that encourage them to perceive things with an awareness of various connections and to become aware of the characteristics of their own thinking and senses. As a result of the analysis of the students' descriptions on the shuttle cards, the webbing created in the process of discussion, and the CLASS survey paper that measures students' thoughts and attitudes toward physics and physics learning, it became clear that the class was highly effective in encouraging students to "become aware of their own existence to think, feel, and judge independently and interactively. This is an essential element in the cultivation of creativity, which is important as a foundation for inquiry-based learning. kn-abstract=新学習指導要領で探究的な学びを経験した高校生が大学で学び始める2025年度を控え,大学の教養教育科目として,「色」を主題にして物理学と被服学の知見を組み合わせ,プロジェクト型の活動も組み入れた新たな授業を開発し実践した。昨年度の実践と同様に,様々なつながりを意識してものごとを捉えたり,学生自身の思考や感覚の特徴を自覚させることを促す仕掛けを組み込むことで,学生の主体性を促して創造的な思考を刺激する授業になっている。受講生のシャトルカードの記述,考察過程で作成したウェビング,物理や物理学習に対する学生の思考や態度を測定するCLASS調査紙などの分析の結果,「主体的,対話的に考え,感じ,判断する自分自身の存在を意識すること」を促す効果が大きいことが明らかになった。これは,探究的な学びの土台として重要な創造性の涵養に欠かせない要素になる。 en-copyright= kn-copyright= en-aut-name=INADAYoshihiko en-aut-sei=INADA en-aut-mei=Yoshihiko kn-aut-name=稲田佳彦 kn-aut-sei=稲田 kn-aut-mei=佳彦 aut-affil-num=1 ORCID= en-aut-name=SHINOHARAYoko en-aut-sei=SHINOHARA en-aut-mei=Yoko kn-aut-name=篠原陽子 kn-aut-sei=篠原 kn-aut-mei=陽子 aut-affil-num=2 ORCID= affil-num=1 en-affil=Faculty of Education, Okayama University kn-affil=岡山大学学術研究院教育学域 affil-num=2 en-affil=Faculty of Education, Okayama University kn-affil=岡山大学学術研究院教育学域 en-keyword=探究型授業 kn-keyword=探究型授業 en-keyword=創造性 kn-keyword=創造性 en-keyword=物理学 kn-keyword=物理学 en-keyword=被服学 kn-keyword=被服学 en-keyword=ウェビング kn-keyword=ウェビング en-keyword=creativity kn-keyword=creativity en-keyword=physics kn-keyword=physics en-keyword=clothing science kn-keyword=clothing science END start-ver=1.4 cd-journal=joma no-vol=55 cd-vols= no-issue=3 article-no= start-page=25 end-page=31 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240321 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Adam Smith’s Support for Big Government: Evolution of his Views on Government from Lectures on Jurisprudence to The Wealth of Nations en-subtitle= kn-subtitle= en-abstract= kn-abstract=Adam Smith has advocated laissez-faire: however, many of Smith’s interpreters have pointed out that Smith discusses several exceptions to laissez-faire. Most of the important exceptions are not in Lectures on Jurisprudence (LJ); rather, they first appear in The Wealth of Nations (WN). These references seem to reflect a conscious shift in Smith’s policy principle from laissez-faire with small government to state intervention under big government. To compare small government with big, i.e. laissez-faire with government intervention, we must historically distinguish between two types of government intervention. The older type predated laissez-faire and included feudal governments, absolute governments and mercantilism, whereas the newer type includes various primitive forms of modern social or welfare states.
 Smith’s primary purpose in LJ is to criticise the older type of big government. In WN, he criticises the older big government in Books I, III and IV and promotes a newer type of government intervention in Books II and V, particularly regarding three important fields. First, he proposes regulating banking and financial markets in Book II of WN. Second, in contrast to LJ, where he gave little attention to public works and institutions, he considers them among the government’s three major duties in Book V of WN. Third, Smith drastically changes his views on taxation. He argues that they should be as light as possible in LJ, but in Book V of WN, he insists on increasing land taxes and abolishing taxes on necessaries; he also recommends introducing progressive taxes and abolishing regressive ones to achieve income redistribution.
 This paper considers the shifts in Smith’s position from endorsing the laissez-faire role of government in LJ to promoting government intervention in WN, particularly regarding financial regulation, public works and institutions and taxation. en-copyright= kn-copyright= en-aut-name=NiimuraSatoshi en-aut-sei=Niimura en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil= END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=8164 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231209 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structural insights into photosystem II supercomplex and trimeric FCP antennae of a centric diatom Cyclotella meneghiniana en-subtitle= kn-subtitle= en-abstract= kn-abstract=Diatoms are dominant marine algae and contribute around a quarter of global primary productivity, the success of which is largely attributed to their photosynthetic capacity aided by specific fucoxanthin chlorophyll-binding proteins (FCPs) to enhance the blue-green light absorption under water. We purified a photosystem II (PSII)-FCPII supercomplex and a trimeric FCP from Cyclotella meneghiniana (Cm) and solved their structures by cryo-electron microscopy (cryo-EM). The structures reveal detailed organizations of monomeric, dimeric and trimeric FCP antennae, as well as distinct assemblies of Lhcx6_1 and dimeric FCPII-H in PSII core. Each Cm-PSII-FCPII monomer contains an Lhcx6_1, an FCP heterodimer and other three FCP monomers, which form an efficient pigment network for harvesting energy. More diadinoxanthins and diatoxanthins are found in FCPs, which may function to quench excess energy. The trimeric FCP contains more chlorophylls c and fucoxanthins. These diversified FCPs and PSII-FCPII provide a structural basis for efficient light energy harvesting, transfer, and dissipation in C. meneghiniana. en-copyright= kn-copyright= en-aut-name=ZhaoSonghao en-aut-sei=Zhao en-aut-mei=Songhao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShenLili en-aut-sei=Shen en-aut-mei=Lili kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=LiXiaoyi en-aut-sei=Li en-aut-mei=Xiaoyi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TaoQiushuang en-aut-sei=Tao en-aut-mei=Qiushuang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=LiZhenhua en-aut-sei=Li en-aut-mei=Zhenhua kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=XuCaizhe en-aut-sei=Xu en-aut-mei=Caizhe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ZhouCuicui en-aut-sei=Zhou en-aut-mei=Cuicui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YangYanyan en-aut-sei=Yang en-aut-mei=Yanyan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SangMin en-aut-sei=Sang en-aut-mei=Min kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HanGuangye en-aut-sei=Han en-aut-mei=Guangye kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YuLong-Jiang en-aut-sei=Yu en-aut-mei=Long-Jiang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KuangTingyun en-aut-sei=Kuang en-aut-mei=Tingyun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=WangWenda en-aut-sei=Wang en-aut-mei=Wenda kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=2 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=3 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=4 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=5 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=6 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=7 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=8 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=9 en-affil=China National Botanical Garden kn-affil= affil-num=10 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=11 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=12 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=13 en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=14 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=299 cd-vols= no-issue=7 article-no= start-page=104839 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202307 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structural insights into the action mechanisms of artificial electron acceptors in photosystem II en-subtitle= kn-subtitle= en-abstract= kn-abstract=Photosystem II (PSII) utilizes light energy to split water, and the electrons extracted from water are transferred to QB, a plastoquinone molecule bound to the D1 subunit of PSII. Many artificial electron acceptors (AEAs) with molecular structures similar to that of plastoquinone can accept electrons from PSII. However, the molecular mechanism by which AEAs act on PSII is unclear. Here, we solved the crystal structure of PSII treated with three different AEAs, 2,5-dibromo-1,4-benzoquinone, 2,6dichloro-1,4-benzoquinone, and 2-phenyl-1,4-benzoquinone, at 1.95 to 2.10 angstrom resolution. Our results show that all AEAs substitute for QB and are bound to the QB-binding site (QB site) to receive electrons, but their binding strengths are different, resulting in differences in their efficiencies to accept electrons. The acceptor 2-phenyl-1,4-benzoquinone binds most weakly to the QB site and showed the highest oxygen-evolving activity, implying a reverse relationship between the binding strength and oxygen-evolving activity. In addition, a novel quinonebinding site, designated the QD site, was discovered, which is located in the vicinity of QB site and close to QC site, a binding site reported previously. This QD site is expected to play a role as a channel or a storage site for quinones to be transported to the QB site. These results provide the structural basis for elucidating the actions of AEAs and exchange mechanism of QB in PSII and also provide information for the design of more efficient electron acceptors. en-copyright= kn-copyright= en-aut-name=KamadaShinji en-aut-sei=Kamada en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakajimaYoshiki en-aut-sei=Nakajima en-aut-mei=Yoshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Faculty of Science, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Photosystem II kn-keyword=Photosystem II en-keyword=photosynthesis kn-keyword=photosynthesis en-keyword=electron transfer kn-keyword=electron transfer en-keyword=structural biology kn-keyword=structural biology en-keyword=crystal structure kn-keyword=crystal structure en-keyword=electron acceptor kn-keyword=electron acceptor END start-ver=1.4 cd-journal=joma no-vol=43 cd-vols= no-issue=2 article-no= start-page=113797 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240227 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Stem-like progenitor and terminally differentiated TFH-like CD4+ T cell exhaustion in the tumor microenvironment en-subtitle= kn-subtitle= en-abstract= kn-abstract=Immune checkpoint inhibitors exert clinical efficacy against various types of cancer through reinvigoration of exhausted CD8+ T cells that attack cancer cells directly in the tumor microenvironment (TME). Using single-cell sequencing and mouse models, we show that CXCL13, highly expressed in tumor-infiltrating exhausted CD8+ T cells, induces CD4+ follicular helper T (TFH) cell infiltration, contributing to anti-tumor immunity. Furthermore, a part of the TFH cells in the TME exhibits cytotoxicity and directly attacks major histocompatibility complex-II-expressing tumors. TFH-like cytotoxic CD4+ T cells have high LAG-3/BLIMP1 and low TCF1 expression without self-renewal ability, whereas non-cytotoxic TFH cells express low LAG-3/BLIMP1 and high TCF1 with self-renewal ability, closely resembling the relationship between terminally differentiated and stem-like progenitor exhaustion in CD8+ T cells, respectively. Our findings provide deep insights into TFH-like CD4+ T cell exhaustion with helper progenitor and cytotoxic differentiated functions, mediating anti-tumor immunity orchestrally with CD8+ T cells. en-copyright= kn-copyright= en-aut-name=ZhouWenhao en-aut-sei=Zhou en-aut-mei=Wenhao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawashimaShusuke en-aut-sei=Kawashima en-aut-mei=Shusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IshinoTakamasa en-aut-sei=Ishino en-aut-mei=Takamasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KawaseKatsushige en-aut-sei=Kawase en-aut-mei=Katsushige kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=UedaYouki en-aut-sei=Ueda en-aut-mei=Youki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamashitaKazuo en-aut-sei=Yamashita en-aut-mei=Kazuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=WatanabeTomofumi en-aut-sei=Watanabe en-aut-mei=Tomofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KawazuMasahito en-aut-sei=Kawazu en-aut-mei=Masahito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=DansakoHiromichi en-aut-sei=Dansako en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SuzukiYutaka en-aut-sei=Suzuki en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NishikawaHiroyoshi en-aut-sei=Nishikawa en-aut-mei=Hiroyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=InozumeTakashi en-aut-sei=Inozume en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NagasakiJoji en-aut-sei=Nagasaki en-aut-mei=Joji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=TogashiYosuke en-aut-sei=Togashi en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Dermatology, Chiba University Graduate School of Medicine kn-affil= affil-num=3 en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Chiba Cancer Center, Research Institute kn-affil= affil-num=5 en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=KOTAI Biotechnologies, Inc. kn-affil= affil-num=7 en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Chiba Cancer Center, Research Institute, Division of Cell Therapy kn-affil= affil-num=9 en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo kn-affil= affil-num=11 en-affil=Department of Immunology, Nagoya University Graduate School of Medicine kn-affil= affil-num=12 en-affil=Department of Dermatology, Chiba University Graduate School of Medicine kn-affil= affil-num=13 en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=cancer immunology kn-keyword=cancer immunology en-keyword=follicular helper T cell kn-keyword=follicular helper T cell en-keyword=cytotoxic CD4+ T cell kn-keyword=cytotoxic CD4+ T cell en-keyword=CXCL13 kn-keyword=CXCL13 en-keyword=T cell exhaustion kn-keyword=T cell exhaustion en-keyword=stem-like progenitor exhaustion kn-keyword=stem-like progenitor exhaustion en-keyword=terminally differentiated exhaustion kn-keyword=terminally differentiated exhaustion en-keyword=PD-1 kn-keyword=PD-1 en-keyword=LAG-3 kn-keyword=LAG-3 en-keyword=TCF1 kn-keyword=TCF1 END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=3 article-no= start-page=1443 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240124 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Inhibitory Effect of a Tankyrase Inhibitor on Mechanical Stress-Induced Protease Expression in Human Articular Chondrocytes en-subtitle= kn-subtitle= en-abstract= kn-abstract=We investigated the effects of a Tankyrase (TNKS-1/2) inhibitor on mechanical stress-induced gene expression in human chondrocytes and examined TNKS-1/2 expression in human osteoarthritis (OA) cartilage. Cells were seeded onto stretch chambers and incubated with or without a TNKS-1/2 inhibitor (XAV939) for 12 h. Uni-axial cyclic tensile strain (CTS) (0.5 Hz, 8% elongation, 30 min) was applied and the gene expression of type II collagen a1 chain (COL2A1), aggrecan (ACAN), SRY-box9 (SOX9), TNKS-1/2, a disintegrin and metalloproteinase with thrombospondin motifs-5 (ADAMTS-5), and matrix metalloproteinase-13 (MMP-13) were examined by real-time PCR. The expression of ADAMTS-5, MMP-13, nuclear translocation of nuclear factor-κB (NF-κB), and β-catenin were examined by immunocytochemistry and Western blotting. The concentration of IL-1β in the supernatant was examined by enzyme-linked immunosorbent assay (ELISA). TNKS-1/2 expression was assessed by immunohistochemistry in human OA cartilage obtained at the total knee arthroplasty. TNKS-1/2 expression was increased after CTS. The expression of anabolic factors were decreased by CTS, however, these declines were abrogated by XAV939. XAV939 suppressed the CTS-induced expression of catabolic factors, the release of IL-1β, as well as the nuclear translocation of NF-κB and β-catenin. TNKS-1/2 expression increased in mild and moderate OA cartilage. Our results demonstrated that XAV939 suppressed mechanical stress-induced expression of catabolic proteases by the inhibition of NF-κB and activation of β-catenin, indicating that TNKS-1/2 expression might be associated with OA pathogenesis. en-copyright= kn-copyright= en-aut-name=HottaYoshifumi en-aut-sei=Hotta en-aut-mei=Yoshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishidaKeiichiro en-aut-sei=Nishida en-aut-mei=Keiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YoshidaAki en-aut-sei=Yoshida en-aut-mei=Aki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NasuYoshihisa en-aut-sei=Nasu en-aut-mei=Yoshihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakaharaRyuichi en-aut-sei=Nakahara en-aut-mei=Ryuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NaniwaShuichi en-aut-sei=Naniwa en-aut-mei=Shuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ShimizuNoriyuki en-aut-sei=Shimizu en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IchikawaChinatsu en-aut-sei=Ichikawa en-aut-mei=Chinatsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=LinDeting en-aut-sei=Lin en-aut-mei=Deting kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=FujiwaraTomohiro en-aut-sei=Fujiwara en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OzakiToshifumi en-aut-sei=Ozaki en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Locomotive Pain Center, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Orthopaedic Surgery, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Orthopaedic Surgery, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Orthopaedic Surgery, Okayama University Hospital kn-affil= affil-num=11 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=osteoarthritis kn-keyword=osteoarthritis en-keyword=chondrocyte kn-keyword=chondrocyte en-keyword=mechanical stress kn-keyword=mechanical stress en-keyword=tankyrases kn-keyword=tankyrases en-keyword=XAV939 kn-keyword=XAV939 en-keyword=SOX9 kn-keyword=SOX9 en-keyword=ADAMTS-5 kn-keyword=ADAMTS-5 en-keyword=MMP-13 kn-keyword=MMP-13 en-keyword=IL-1β kn-keyword=IL-1β en-keyword=NF-κB kn-keyword=NF-κB en-keyword=β-catenin kn-keyword=β-catenin END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=1 article-no= start-page=63 end-page=70 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202402 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Significance of Continuous Low-Dose Lenvatinib for the Treating of the Patients with Unresectable Thyroid Carcinoma en-subtitle= kn-subtitle= en-abstract= kn-abstract=The tyrosine kinase inhibitor lenvatinib has been confirmed as an effective treatment option for patients with unresectable thyroid carcinoma. We conducted a retrospective analysis of the significance of the effect of continued lenvatinib treatment for the longest duration possible at a reasonable daily dose and with a minimum discontinuation period in 42 patients with unresectable thyroid carcinoma treated with lenvatinib between 2015 and 2020. A Cox proportional hazard model-based analysis revealed that the overall survival of the patients treated with a <8 mg/day mean dose of lenvatinib was significantly better than that of the patients treated with 8-24 mg/day (hazard ratio [HR] 0.38 for 1.14-4.54 mg/day, and HR 0.01 for 4.56-7.97 mg/day) adjusted for various factors (e.g., sex, age, drug interruption period). The cumulative dose of lenvatinib administered tended to be higher in the patients treated with low doses (< 8 mg/day) than in the patients treated with relatively high doses (8-24 mg/day). Considering its adverse events, the continuation of lenvatinib treatment with an adequate daily dose and drug interruption may help prolong the survival of patients with unresectable thyroid carcinoma. en-copyright= kn-copyright= en-aut-name=MurakamiDaizo en-aut-sei=Murakami en-aut-mei=Daizo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishimotoKohei en-aut-sei=Nishimoto en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakaoSoshi en-aut-sei=Takao en-aut-mei=Soshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MiyamaruSatoru en-aut-sei=Miyamaru en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KadowakiTomoka en-aut-sei=Kadowaki en-aut-mei=Tomoka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SaitoHaruki en-aut-sei=Saito en-aut-mei=Haruki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakedaHiroki en-aut-sei=Takeda en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IseMomoko en-aut-sei=Ise en-aut-mei=Momoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SuyamaKoichi en-aut-sei=Suyama en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OritaYorihisa en-aut-sei=Orita en-aut-mei=Yorihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Otolaryngology-Head and Neck Surgery, Kumamoto University Graduate School of Medicine kn-affil= affil-num=2 en-affil=Department of Otolaryngology-Head and Neck Surgery, Kumamoto University Graduate School of Medicine kn-affil= affil-num=3 en-affil=Department of Epidemiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Otolaryngology-Head and Neck Surgery, Kumamoto University Graduate School of Medicine kn-affil= affil-num=5 en-affil=Department of Epidemiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Otolaryngology-Head and Neck Surgery, Kumamoto University Graduate School of Medicine kn-affil= affil-num=7 en-affil=Department of Otolaryngology-Head and Neck Surgery, Kumamoto University Graduate School of Medicine kn-affil= affil-num=8 en-affil=Department of Otolaryngology-Head and Neck Surgery, Kumamoto University Graduate School of Medicine kn-affil= affil-num=9 en-affil=Department of Medical Oncology, Toranomon Hospital kn-affil= affil-num=10 en-affil=Department of Otolaryngology-Head and Neck Surgery, Kumamoto University Graduate School of Medicine kn-affil= en-keyword=thyroid carcinoma kn-keyword=thyroid carcinoma en-keyword=lenvatinib kn-keyword=lenvatinib en-keyword=adverse effect kn-keyword=adverse effect en-keyword=survival kn-keyword=survival END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=1 article-no= start-page=47 end-page=52 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202402 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Long-Term Follow-up Data of a Multi-Institutional Phase-2 Study of S-1/oxaliplatin and Bevacizumab Therapy in Patients with Advanced Colorectal Cancer: The HiSCO-02 Study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Oral fluoropyrimidines (FUs) have certain advantages over intravenous FUs, such as longer intervals between outpatient visits, no requirement for central venous port (CVP) implantation, and lower incidence of neutropenia. We previously reported the efficacy of S-1/oxaliplatin (SOX) with bevacizumab therapy as a first-line treatment for advanced colorectal cancer (CRC) in a prospective phase-II multi-institutional clinical trial (HiSCO-02 study). However, our prognostic data at the time lacked a sufficient observation period. Herein, we analyze the longer-term follow-up data, focusing on the status of eventual CVP implantation via an open-label, non-randomized, multicenter study. This study enrolled 55 patients (mean age, 64 years), of whom 43 died (41 of primary cancer). The median overall survival was 22.7 months (95% CI: 20.1-34.7 months). Post-treatment regimens after failure of first-line treatment were initiated in 43 patients; CPT11-based regimens were selected in most cases, and other oral FU combinations in nine. CVP was implanted in 35 patients prior to first-line treatment; eleven of the remaining 20 patients did not require CVP implantation. In conclusion, we report here the final prognostic update of the Phase II clinical trial examining the efficacy of SOX plus bevacizumab therapy, the results of which confirm the clinical efficacy of this regimen. en-copyright= kn-copyright= en-aut-name=ShimomuraManabu en-aut-sei=Shimomura en-aut-mei=Manabu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShinozakiKatsunori en-aut-sei=Shinozaki en-aut-mei=Katsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YanoTakuya en-aut-sei=Yano en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AkabaneShintaro en-aut-sei=Akabane en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OhdanHideki en-aut-sei=Ohdan en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=Hiroshima Surgical study group of Clinical Oncology (HiSCO) en-aut-sei=Hiroshima Surgical study group of Clinical Oncology (HiSCO) en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University kn-affil= affil-num=2 en-affil=Division of Clinical Oncology, Hiroshima Prefectural Hospital kn-affil= affil-num=3 en-affil=Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University kn-affil= affil-num=4 en-affil=Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University kn-affil= affil-num=5 en-affil=Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University kn-affil= affil-num=6 en-affil= kn-affil= en-keyword=metastatic colorectal cancer kn-keyword=metastatic colorectal cancer en-keyword=chemotherapy kn-keyword=chemotherapy en-keyword=S-1 kn-keyword=S-1 en-keyword=prospective phase II study kn-keyword=prospective phase II study END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=1 article-no= start-page=37 end-page=46 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202402 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Is Proximal Triangular Fixation Better than the Conventional Method in Adult Spinal Deformity Surgery? en-subtitle= kn-subtitle= en-abstract= kn-abstract=In adult spinal deformity (ASD) surgery, one of the key factors working to prevent proximal junctional kyphosis is the proximal anchor. The aim of this study was to compare clinical and radiographic outcomes of triangular fixation with conventional fixation as proximal anchoring techniques in ASD surgery. We retrospectively evaluated 54 patients who underwent corrective spinal fusion for ASD. Fourteen patients underwent proximal triangular fixation (Group T; average 74.6 years), and 40 patients underwent the conventional method (Group C; average 70.5 years). Clinical and radiographic outcomes were assessed using visual analogue scale (VAS) values for back pain and the Oswestry disability index (ODI). Radiographic evaluation was also collected preoperatively and postoperatively. Surgical times and intraoperative blood loss of the two groups were not significantly different (493 vs 490 min, 1,260 vs 1,173 mL). Clinical outcomes such as VAS and ODI were comparable in the two groups. Proximal junctional kyphosis in group T was slightly lower than that of group C (28.5% vs 47.5%, p=0.491). However, based on radiology, proximal screw pullout occurred significantly less frequently in the triangular fixation group than the conventional group (0.0% vs 22.5%, p=0.049). Clinical outcomes in the two groups were not significantly different. en-copyright= kn-copyright= en-aut-name=TanakaMasato en-aut-sei=Tanaka en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MeenaUmesh en-aut-sei=Meena en-aut-mei=Umesh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TaokaTakuya en-aut-sei=Taoka en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FujiwaraYoshihiro en-aut-sei=Fujiwara en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YokomizoDaiichiro en-aut-sei=Yokomizo en-aut-mei=Daiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=BashyalSantosh Kumar en-aut-sei=Bashyal en-aut-mei=Santosh Kumar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SakeNaveen en-aut-sei=Sake en-aut-mei=Naveen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AratakiShinya en-aut-sei=Arataki en-aut-mei=Shinya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital kn-affil= affil-num=2 en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital kn-affil= affil-num=3 en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital kn-affil= affil-num=4 en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital kn-affil= affil-num=5 en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital kn-affil= affil-num=6 en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital kn-affil= affil-num=7 en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital kn-affil= affil-num=8 en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital kn-affil= en-keyword=adult spinal deformity kn-keyword=adult spinal deformity en-keyword=proximal junctional kyphosis kn-keyword=proximal junctional kyphosis en-keyword=triangular fixation kn-keyword=triangular fixation en-keyword=minimally invasive surgery kn-keyword=minimally invasive surgery en-keyword=C arm free kn-keyword=C arm free END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=3 article-no= start-page=1585 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240127 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Mutual Effects of Orexin and Bone Morphogenetic Proteins on Catecholamine Regulation Using Adrenomedullary Cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=Orexins are neuronal peptides that play a prominent role in sleep behavior and feeding behavior in the central nervous system, though their receptors also exist in peripheral organs, including the adrenal gland. In this study, the effects of orexins on catecholamine synthesis in the rat adrenomedullary cell line PC12 were investigated by focusing on their interaction with the adrenomedullary bone morphogenetic protein (BMP)-4. Orexin A treatment reduced the mRNA levels of key enzymes for catecholamine synthesis, including tyrosine hydroxylase (Th), 3,4-dihydroxyphenylalanie decarboxylase (Ddc) and dopamine beta-hydroxylase (Dbh), in a concentration-dependent manner. On the other hand, treatment with BMP-4 suppressed the expression of Th and Ddc but enhanced that of Dbh with or without co-treatment with orexin A. Of note, orexin A augmented BMP-receptor signaling detected by the phosphorylation of Smad1/5/9 through the suppression of inhibitory Smad6/7 and the upregulation of BMP type-II receptor (BMPRII). Furthermore, treatment with BMP-4 upregulated the mRNA levels of OX1R in PC12 cells. Collectively, the results indicate that orexin and BMP-4 suppress adrenomedullary catecholamine synthesis by mutually upregulating the pathway of each other in adrenomedullary cells. en-copyright= kn-copyright= en-aut-name=SoejimaYoshiaki en-aut-sei=Soejima en-aut-mei=Yoshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IwataNahoko en-aut-sei=Iwata en-aut-mei=Nahoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamamotoKoichiro en-aut-sei=Yamamoto en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SuyamaAtsuhito en-aut-sei=Suyama en-aut-mei=Atsuhito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakanoYasuhiro en-aut-sei=Nakano en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=bone morphogenetic protein (BMP) kn-keyword=bone morphogenetic protein (BMP) en-keyword=orexin kn-keyword=orexin en-keyword=catecholamine and adrenal kn-keyword=catecholamine and adrenal END start-ver=1.4 cd-journal=joma no-vol=42 cd-vols= no-issue= article-no= start-page=ii end-page=ii dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200401 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=目次 en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue= article-no= start-page=RP88822 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231121 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Characterization of tryptophan oxidation affecting D1 degradation by FtsH in the photosystem II quality control of chloroplasts en-subtitle= kn-subtitle= en-abstract= kn-abstract=Photosynthesis is one of the most important reactions for sustaining our environment. Photosystem II (PSII) is the initial site of photosynthetic electron transfer by water oxidation. Light in excess, however, causes the simultaneous production of reactive oxygen species (ROS), leading to photo-oxidative damage in PSII. To maintain photosynthetic activity, the PSII reaction center protein D1, which is the primary target of unavoidable photo-oxidative damage, is efficiently degraded by FtsH protease. In PSII subunits, photo-oxidative modifications of several amino acids such as Trp have been indeed documented, whereas the linkage between such modifications and D1 degradation remains elusive. Here, we show that an oxidative post-translational modification of Trp residue at the N-terminal tail of D1 is correlated with D1 degradation by FtsH during high-light stress. We revealed that Arabidopsis mutant lacking FtsH2 had increased levels of oxidative Trp residues in D1, among which an N-terminal Trp-14 was distinctively localized in the stromal side. Further characterization of Trp-14 using chloroplast transformation in Chlamydomonas indicated that substitution of D1 Trp-14 to Phe, mimicking Trp oxidation enhanced FtsH-mediated D1 degradation under high light, although the substitution did not affect protein stability and PSII activity. Molecular dynamics simulation of PSII implies that both Trp-14 oxidation and Phe substitution cause fluctuation of D1 N-terminal tail. Furthermore, Trp-14 to Phe modification appeared to have an additive effect in the interaction between FtsH and PSII core in vivo. Together, our results suggest that the Trp oxidation at its N-terminus of D1 may be one of the key oxidations in the PSII repair, leading to processive degradation by FtsH. en-copyright= kn-copyright= en-aut-name=KatoYusuke en-aut-sei=Kato en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KurodaHiroshi en-aut-sei=Kuroda en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OzawaShin-Ichiro en-aut-sei=Ozawa en-aut-mei=Shin-Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SaitoKeisuke en-aut-sei=Saito en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=DograVivek en-aut-sei=Dogra en-aut-mei=Vivek kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ScholzMartin en-aut-sei=Scholz en-aut-mei=Martin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ZhangGuoxian en-aut-sei=Zhang en-aut-mei=Guoxian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=de VitryCatherine en-aut-sei=de Vitry en-aut-mei=Catherine kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IshikitaHiroshi en-aut-sei=Ishikita en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KimChanhong en-aut-sei=Kim en-aut-mei=Chanhong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=HipplerMichael en-aut-sei=Hippler en-aut-mei=Michael kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TakahashiYuichiro en-aut-sei=Takahashi en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=SakamotoWataru en-aut-sei=Sakamoto en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=4 en-affil=Research Center for Advanced Science and Technology, The University of Tokyo kn-affil= affil-num=5 en-affil=Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences kn-affil= affil-num=6 en-affil=Institute of Plant Biology and Biotechnology, University of Münster kn-affil= affil-num=7 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=8 en-affil=Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique and Sorbonne Université Pierre et Marie Curie kn-affil= affil-num=9 en-affil=Research Center for Advanced Science and Technology, The University of Tokyo kn-affil= affil-num=10 en-affil=Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences kn-affil= affil-num=11 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=12 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=13 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= en-keyword=post-translational modification kn-keyword=post-translational modification en-keyword=Arabidopsis thaliana kn-keyword=Arabidopsis thaliana en-keyword=protein degradation kn-keyword=protein degradation en-keyword=photosystem II kn-keyword=photosystem II en-keyword=photo-oxidative damage kn-keyword=photo-oxidative damage en-keyword=tryptophan oxidation kn-keyword=tryptophan oxidation en-keyword=Chlamydomonas reinhardtii kn-keyword=Chlamydomonas reinhardtii END start-ver=1.4 cd-journal=joma no-vol=4 cd-vols= no-issue=10 article-no= start-page=100573 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202310 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Immunologic Significance of CD80/CD86 or Major Histocompatibility Complex-II Expression in Thymic Epithelial Tumors en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction: Unresectable or recurrent thymic epithelial tumors (TETs) have a poor prognosis, and treatment options are limited. This study aimed to investigate the immunologic significance of CD80/CD86 or major histocompatibility complex class II (MHC-II) expression in TETs, as potential predictive biomarkers for immune checkpoint inhibitors (ICIs).
Methods: We analyzed CD80, CD86, MHC class I (MHC-I), and MHC-II expression in TETs using immunohistochemistry and investigated their association with T-cell infiltration or ICI efficacy. In addition, we generated CD80- or MHC-II–expressing mouse tumors, evaluated the effects of ICIs, and analyzed tumor-infiltrating lymphocytes. We also performed tumor-rechallenge experiments in vivo.
Results: We found that approximately 50% and 30% of TETs had high expression of CD80/CD86 and MHC-II in tumor cells, respectively, and that this expression was related to T-cell infiltration in clinical samples. In mouse models, both CD80 and MHC-II increase the effects of ICIs. In addition, senescent T cells and long-lived memory precursor effector T cells were significantly decreased and increased, respectively, in tumor-infiltrating lymphocytes from CD80-expressing tumors, and rechallenged tumors were completely rejected after the initial eradication of CD80-expressing tumors by programmed cell death protein 1 blockade. Indeed, patients with CD80-high thymic carcinoma had longer progression-free survival with anti–programmed cell death protein 1 monoclonal antibody.
Conclusions: Half of the TETs had high expression of CD80/CD86 or MHC-II with high T-cell infiltration. These molecules could potentially increase the effects of ICIs, particularly inducing a durable response. CD80/CD86 and MHC-II can be predictive biomarkers of ICIs in TETs, promoting the development of drugs for such TETs. en-copyright= kn-copyright= en-aut-name=IkedaHideki en-aut-sei=Ikeda en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NagasakiJoji en-aut-sei=Nagasaki en-aut-mei=Joji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShimizuDaiki en-aut-sei=Shimizu en-aut-mei=Daiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KatsuyaYuki en-aut-sei=Katsuya en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HorinouchiHidehito en-aut-sei=Horinouchi en-aut-mei=Hidehito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HosomiYukio en-aut-sei=Hosomi en-aut-mei=Yukio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TanjiEtsuko en-aut-sei=Tanji en-aut-mei=Etsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IwataTakekazu en-aut-sei=Iwata en-aut-mei=Takekazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ItamiMakiko en-aut-sei=Itami en-aut-mei=Makiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KawazuMasahito en-aut-sei=Kawazu en-aut-mei=Masahito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OheYuichiro en-aut-sei=Ohe en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SuzukiTakuji en-aut-sei=Suzuki en-aut-mei=Takuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TogashiYosuke en-aut-sei=Togashi en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Chiba Cancer Center, Research Institute kn-affil= affil-num=2 en-affil=Chiba Cancer Center, Research Institute kn-affil= affil-num=3 en-affil=Division of Thoracic Surgery, Chiba Cancer Center kn-affil= affil-num=4 en-affil=Department of Experimental Therapeutics, National Cancer Center Hospital kn-affil= affil-num=5 en-affil=Department of Thoracic Oncology, National Cancer Center Hospital kn-affil= affil-num=6 en-affil=Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital kn-affil= affil-num=7 en-affil=Chiba Cancer Center, Research Institute kn-affil= affil-num=8 en-affil=Division of Thoracic Surgery, Chiba Cancer Center kn-affil= affil-num=9 en-affil=Department of Surgical Pathology, Chiba Cancer Center kn-affil= affil-num=10 en-affil=Chiba Cancer Center, Research Institute kn-affil= affil-num=11 en-affil=Department of Thoracic Oncology, National Cancer Center Hospital kn-affil= affil-num=12 en-affil=Department of Respirology, Graduate School of Medicine, Chiba University kn-affil= affil-num=13 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Thymic epithelial tumor kn-keyword=Thymic epithelial tumor en-keyword=Cancer immunotherapy kn-keyword=Cancer immunotherapy en-keyword=CD80/CD86 kn-keyword=CD80/CD86 en-keyword=MHC kn-keyword=MHC en-keyword=Memory precursor effector T cell kn-keyword=Memory precursor effector T cell END start-ver=1.4 cd-journal=joma no-vol=24 cd-vols= no-issue=24 article-no= start-page=17294 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231209 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Positive Regulation of S-Adenosylmethionine on Chondrocytic Differentiation via Stimulation of Polyamine Production and the Gene Expression of Chondrogenic Differentiation Factors en-subtitle= kn-subtitle= en-abstract= kn-abstract=S-adenosylmethionine (SAM) is considered to be a useful therapeutic agent for degenerative cartilage diseases, although its mechanism is not clear. We previously found that polyamines stimulate the expression of differentiated phenotype of chondrocytes. We also found that the cellular communication network factor 2 (CCN2) played a huge role in the proliferation and differentiation of chondrocytes. Therefore, we hypothesized that polyamines and CCN2 could be involved in the chondroprotective action of SAM. In this study, we initially found that exogenous SAM enhanced proteoglycan production but not cell proliferation in human chondrocyte-like cell line-2/8 (HCS-2/8) cells. Moreover, SAM enhanced gene expression of cartilage-specific matrix (aggrecan and type II collagen), Sry-Box transcription factor 9 (SOX9), CCN2, and chondroitin sulfate biosynthetic enzymes. The blockade of the methionine adenosyltransferase 2A (MAT2A) enzyme catalyzing intracellular SAM biosynthesis restrained the effect of SAM on chondrocytes. The polyamine level in chondrocytes was higher in SAM-treated culture than control culture. Additionally, Alcian blue staining and RT-qPCR indicated that the effects of SAM on the production and gene expression of aggrecan were reduced by the inhibition of polyamine synthesis. These results suggest that the stimulation of polyamine synthesis and gene expression of chondrogenic differentiation factors, such as CCN2, account for the mechanism underlying the action of SAM on chondrocytes. en-copyright= kn-copyright= en-aut-name=HoangLoc Dinh en-aut-sei=Hoang en-aut-mei=Loc Dinh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AoyamaEriko en-aut-sei=Aoyama en-aut-mei=Eriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HiasaMiki en-aut-sei=Hiasa en-aut-mei=Miki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OmoteHiroshi en-aut-sei=Omote en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KubotaSatoshi en-aut-sei=Kubota en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KubokiTakuo en-aut-sei=Kuboki en-aut-mei=Takuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakigawaMasaharu en-aut-sei=Takigawa en-aut-mei=Masaharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Advanced Research Center for Oral and Craniofacial Sciences (ARCOCS), Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Advanced Research Center for Oral and Craniofacial Sciences (ARCOCS), Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Laboratory of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Laboratory of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Advanced Research Center for Oral and Craniofacial Sciences (ARCOCS), Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=S-adenosylmethionine kn-keyword=S-adenosylmethionine en-keyword=chondrocyte differentiation kn-keyword=chondrocyte differentiation en-keyword=CCN2 kn-keyword=CCN2 en-keyword=polyamine kn-keyword=polyamine en-keyword=ODC kn-keyword=ODC en-keyword=gene expression kn-keyword=gene expression END start-ver=1.4 cd-journal=joma no-vol=18 cd-vols= no-issue=10 article-no= start-page=e0291677 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231020 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Shortage and unequal distribution of infectious disease specialists in Japan: How can we refine the current situation? en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background
This study aimed to assess the distribution of board-certified infectious disease (ID) specialists at medical schools and Designated Medical Institutions (DMIs) in Japan.
Methods
Data on the number of board-certified ID specialists was extracted by gender, prefecture, and hospital from the Japanese Association for Infectious Diseases database. The numbers and types of Japanese university hospitals that have a Faculty of Medicine, as well as the DMIs legally determined by the Infectious Diseases Control Law, were collected from the database of the Ministry of Health, Labour, and Welfare of Japan.
Results
As of November 2022, there were 1,688 board-certified ID specialists in Japan, with 510 employed at 82 university hospitals. Two medical schools had no ID specialists, and six had only one ID specialist. There was no ID specialists in 14.3% of Class I DMIs and 66.7% of Class II DMIs. Additionally, 14.9% of prefectures had no ID specialists at all in their Class II DMIs. The percentage of female doctors among ID specialists was 12.7%, approximately half of the overall male-to-female ratio of medical doctors in Japan.
Conclusion
The allocation of Japanese ID specialists to medical schools and legally designated healthcare institutes is inadequate and skewed. Female physicians are expected to play a more active role in this increasing demand. en-copyright= kn-copyright= en-aut-name=HagiyaHideharu en-aut-sei=Hagiya en-aut-mei=Hideharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Department of Infectious Diseases, Okayama University Hospital kn-affil= END start-ver=1.4 cd-journal=joma no-vol=32 cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=2023 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Safety and Clinical Effects of a Muse Cell-Based Product in Patients With Amyotrophic Lateral Sclerosis: Results of a Phase 2 Clinical Trial en-subtitle= kn-subtitle= en-abstract= kn-abstract=Amyotrophic lateral sclerosis (ALS) is characterized by progressive loss of motor neurons. Multilineage-differentiating stress-enduring (Muse) cells are unique endogenous stem cells that show therapeutic effects on motor function in ALS mouse models. We conducted a single-center open phase II clinical trial to evaluate the safety and clinical effects of repeated intravenous injections of an allogenic Muse cell-based product, CL2020, in patients with ALS. Five patients with ALS received CL2020 intravenously once a month for a total of six doses. The primary endpoints were safety and tolerability, and the secondary endpoint was the rate of change in the Revised Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R) score. In addition, serum tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), sphingosine-1-phosphate (S1P), cerebrospinal fluid chitotriosidase-1 (CHIT-1), and neurofilament light chain (NfL) levels were evaluated. The CL2020 treatment was highly tolerated without serious side effects. The ALSFRS-R score change trended upward at 12 months post-CL2020 treatment compared with that at 3 months pre-administration, but the difference was not statistically significant. Among five patients diagnosed with ALS, three exhibited a decrease in the rate of ALSFRS-R score change, one demonstrated an increase, and another showed no change. In addition, the patients’ serum IL-6 and TNF-α levels and cerebrospinal fluid CHIT-1 and NfL levels increased for up to 6 months post-treatment; however, their serum S1P levels continuously decreased over 12 months. These findings indicate a favorable safety profile of CL2020 therapy. In the near future, a double-blind study of a larger number of ALS patients should be conducted to confirm the efficacy of ALS treatment with CL2020. en-copyright= kn-copyright= en-aut-name=YamashitaToru en-aut-sei=Yamashita en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakanoYumiko en-aut-sei=Nakano en-aut-mei=Yumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SasakiRyo en-aut-sei=Sasaki en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TadokoroKoh en-aut-sei=Tadokoro en-aut-mei=Koh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OmoteYoshio en-aut-sei=Omote en-aut-mei=Yoshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YunokiTaijun en-aut-sei=Yunoki en-aut-mei=Taijun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KawaharaYuko en-aut-sei=Kawahara en-aut-mei=Yuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MatsumotoNamiko en-aut-sei=Matsumoto en-aut-mei=Namiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TairaYuki en-aut-sei=Taira en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MatsuokaChika en-aut-sei=Matsuoka en-aut-mei=Chika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MoriharaRyuta en-aut-sei=Morihara en-aut-mei=Ryuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=AbeKoji en-aut-sei=Abe en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=amyotrophic lateral sclerosis kn-keyword=amyotrophic lateral sclerosis en-keyword=clinical trial kn-keyword=clinical trial en-keyword=CL2020 kn-keyword=CL2020 en-keyword=multilineage-differentiating stress-enduring (Muse) cells kn-keyword=multilineage-differentiating stress-enduring (Muse) cells en-keyword=intravenous administration kn-keyword=intravenous administration END start-ver=1.4 cd-journal=joma no-vol=77 cd-vols= no-issue=6 article-no= start-page=635 end-page=645 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202312 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effects of Nutritional Support Combined with Neuromuscular Electrical Stimulation on Muscle Strength and Thickness: A Randomized Controlled Trial in Healthy Young Adult Males en-subtitle= kn-subtitle= en-abstract= kn-abstract=In the management of post-injury patients with activity limitations, methods to prevent musculoskeletal disorders and hasten recovery are important. This randomized controlled, single-blinded study was a preliminary investigation of the combined effect of nutritional support with neuromuscular electrical stimulation (NMES) on muscle strength and thickness. Healthy young adult males (median age, 21 years) were enrolled; each of their hands was randomly assigned to one of the following four groups: Placebo, Nutrition, NMES, and Nutrition + NMES. All participants received whey protein or placebo (3x/week for 6 weeks) and NMES training (3x/week for 6 weeks) on the abductor digiti minimi (ADM) muscle of either the left or right hand. ADM muscle strength and thickness were analyzed at baseline and at week 7. We analyzed 38 hands (9 Placebo, 10 Nutrition, 9 NMES, 10 Nutrition + NMES). There was significantly greater muscle strengthening in the Nutrition + NMES group compared to the Placebo group or the NMES group, but no significant difference in gain of muscle thickness. The combined intervention may be effective in improving muscle strength. Future clinical trials targeting various muscles after sports-related injuries are warranted. en-copyright= kn-copyright= en-aut-name=IkedaTomohiro en-aut-sei=Ikeda en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkamuraKazunori en-aut-sei=Okamura en-aut-mei=Kazunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HasegawaMasaki en-aut-sei=Hasegawa en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TanakaSatoshi en-aut-sei=Tanaka en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KanaiShusaku en-aut-sei=Kanai en-aut-mei=Shusaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Rehabilitation Medicine, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Physical Therapy, Faculty of Health and Welfare, Prefectural University of Hiroshima kn-affil= affil-num=3 en-affil=Department of Physical Therapy, Faculty of Health and Welfare, Prefectural University of Hiroshima kn-affil= affil-num=4 en-affil=Department of Physical Therapy, Faculty of Health and Welfare, Prefectural University of Hiroshima kn-affil= affil-num=5 en-affil=Department of Physical Therapy, Faculty of Health and Welfare, Prefectural University of Hiroshima kn-affil= en-keyword=whey protein kn-keyword=whey protein en-keyword=electrical stimulation kn-keyword=electrical stimulation en-keyword=muscle strength kn-keyword=muscle strength en-keyword=healthy volunteers kn-keyword=healthy volunteers END start-ver=1.4 cd-journal=joma no-vol=66 cd-vols= no-issue=1 article-no= start-page=135 end-page=157 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202401 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Several homotopy fixed point spectral sequences in telescopically localized algebraic K-theory en-subtitle= kn-subtitle= en-abstract= kn-abstract=Let n ≥ 1, p a prime, and T(n) any representative of the Bousfield class of the telescope v−1n F(n) of a finite type n complex. Also, let En be the Lubin-Tate spectrum, K(En) its algebraic K-theory spectrum, and Gn the extended Morava stabilizer group, a profinite group. Motivated by an Ausoni-Rognes conjecture, we show that there are two spectral sequences
IEs,t2 ⇒ πt−s((LT(n+1)K(En))hGn) ⇐ IIEs,t2
with common abutment π∗(−) of the continuous homotopy fixed points of LT(n+1)K(En), where IEs,t2 is continuous cohomology with coefficients in a certain tower of discrete Gn-modules. If the tower satisfies the Mittag-Leffler condition, then there are isomorphisms with continuous cochain cohomology groups:
IE∗,∗2 ≅ H∗cts(Gn, π∗(LT(n+1)K(En))) ≅ IIE∗,∗2.
We isolate two hypotheses, the first of which is true when (n, p) = (1, 2), that imply (LT(n+1)K(En))hGn ≃ LT(n+1)K(LK(n)S0). Also, we show that there is a spectral sequence
Hscts(Gn, πt(K(En) ⊗ T(n + 1))) ⇒ πt−s((K(En) ⊗ T(n + 1))hGn). en-copyright= kn-copyright= en-aut-name=DavisDaniel G. en-aut-sei=Davis en-aut-mei=Daniel G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Department of Mathematics, University of Louisiana at Lafayette kn-affil= en-keyword=Algebraic K-theory spectrum kn-keyword=Algebraic K-theory spectrum en-keyword=continuous homotopy fixed point spectrum kn-keyword=continuous homotopy fixed point spectrum en-keyword=Lubin-Tate spectrum kn-keyword=Lubin-Tate spectrum en-keyword=Morava stabilizer group kn-keyword=Morava stabilizer group en-keyword=homotopy fixed point spectral sequence kn-keyword=homotopy fixed point spectral sequence en-keyword=telescopic localization kn-keyword=telescopic localization END start-ver=1.4 cd-journal=joma no-vol=40 cd-vols= no-issue=10 article-no= start-page=1035 end-page=1045 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220913 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Evidence on percutaneous radiofrequency and microwave ablation for liver metastases over the last decade en-subtitle= kn-subtitle= en-abstract= kn-abstract=Purpose This review aimed to summarize the treatment outcomes of percutaneous radiofrequency ablation (RFA) and microwave ablation (MWA) for metastatic liver tumors based on the findings of published studies over the last decade.
Materials and methods Literature describing the survival outcomes of ablation therapy for liver metastases was explored using the PubMed database on April 26, 2022, and articles published in 2012 or later were selected. The included studies met the following criteria: (i) English literature, (ii) original clinical studies, and (iii) literature describing overall survival (OS) of thermal ablation for metastatic liver tumors. All case reports and cohort studies with fewer than 20 patients and those that evaluated ablation for palliative purposes were excluded.
Results RFA was the most commonly used method for ablation, while MWA was used in several recent studies. RFA and MWA for liver metastases from various primary tumors have been reported; however, majority of the studies focused on colorectal cancer. The local control rate by RFA and MWA varied widely among the studies, ranging approximately 50–90%. Five-year survival rates of 20–60% have been reported following ablation for colorectal liver metastases by a number of studies, and several reports of 10-year survival rates were also noted.
Conclusion Comparative studies of local therapies for colorectal liver metastases demonstrated that RFA provides comparable survival outcomes to surgical metastasectomy and stereotactic body radiation therapy. en-copyright= kn-copyright= en-aut-name=TomitaKoji en-aut-sei=Tomita en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsuiYusuke en-aut-sei=Matsui en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UkaMayu en-aut-sei=Uka en-aut-mei=Mayu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=UmakoshiNoriyuki en-aut-sei=Umakoshi en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KawabataTakahiro en-aut-sei=Kawabata en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MunetomoKazuaki en-aut-sei=Munetomo en-aut-mei=Kazuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NagataShoma en-aut-sei=Nagata en-aut-mei=Shoma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IguchiToshihiro en-aut-sei=Iguchi en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HirakiTakao en-aut-sei=Hiraki en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Ablation kn-keyword=Ablation en-keyword=Liver kn-keyword=Liver en-keyword=Metastasis kn-keyword=Metastasis END start-ver=1.4 cd-journal=joma no-vol=24 cd-vols= no-issue=1 article-no= start-page=727 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230912 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Increased quadriceps muscle strength after medial meniscus posterior root repair is associated with decreased medial meniscus extrusion progression en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background This study aimed to assess quadriceps muscle strength after medial meniscus (MM) posterior root repair and determine its relationship with clinical scores and MM extrusion (MME).
Methods Thirty patients who underwent pullout repair for MM posterior root tear and were evaluated for quadriceps muscle strength preoperatively and at 1 year postoperatively were included in this study. Quadriceps muscle strength was measured using the Locomo Scan-II instrument (ALCARE, Tokyo, Japan). MME and clinical scores (i.e., Knee Injury and Osteoarthritis Outcome Score [KOOS], International Knee Documentation Committee score, Lysholm score, Tegner score, and visual analog scale pain score) were evaluated preoperatively and at 1 year postoperatively, and second-look arthroscopy was performed at 1 year postoperatively. Wilcoxon ' s signed-rank test was used to compare each measure pre-and postoperatively. Pearson ' s correlation coefficient was used to assess the correlation with quadriceps muscle strength values. Multiple regression analysis was performed to identify factors associated with the change in MME (.MME).
Results Second-look arthroscopy confirmed continuity of the posterior root in all patients. The quadriceps muscle strength measured at 1 year postoperatively (355.1 +/- 116.2 N) indicated significant improvement relative to the quadriceps muscle strength measured preoperatively (271.9 +/- 97.4 N, p < 0.001). The MME at 1 year postoperatively (4.59 +/- 1.24 mm) had progressed significantly relative to the MME preoperatively (3.63 +/- 1.01 mm, p < 0.001). The clinical scores at 1 year postoperatively were improved significantly relative to the scores preoperatively (p < 0.001). The postoperative quadriceps muscle strength was correlated with.MME (correlation coefficient = -0.398, p = 0.030), and the change in quadriceps muscle strength was correlated with the KOOS-Quality of Life (correlation coefficient = 0.430, p = 0.018). Multiple regression analysis showed that the postoperative quadriceps muscle strength had a significant effect on.MME even when the body mass index and time from injury to surgery were included.
Conclusions After MM posterior root repair, patients with greater quadriceps muscle strength showed less MME progression. In addition, patients with greater improvement in quadriceps muscle strength had better clinical scores; therefore, continued rehabilitation aimed at improving quadriceps muscle strength after MM posterior root repair is recommended. en-copyright= kn-copyright= en-aut-name=KawadaKoki en-aut-sei=Kawada en-aut-mei=Koki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FurumatsuTakayuki en-aut-sei=Furumatsu en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FukubaMikao en-aut-sei=Fukuba en-aut-mei=Mikao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TamuraMasanori en-aut-sei=Tamura en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HigashiharaNaohiro en-aut-sei=Higashihara en-aut-mei=Naohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OkazakiYuki en-aut-sei=Okazaki en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YokoyamaYusuke en-aut-sei=Yokoyama en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KatayamaYoshimi en-aut-sei=Katayama en-aut-mei=Yoshimi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HamadaMasanori en-aut-sei=Hamada en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OzakiToshifumi en-aut-sei=Ozaki en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=Clinical score kn-keyword=Clinical score en-keyword=Medial meniscus kn-keyword=Medial meniscus en-keyword=Medial meniscus extrusion kn-keyword=Medial meniscus extrusion en-keyword=Muscle strength kn-keyword=Muscle strength en-keyword=Posterior root tear kn-keyword=Posterior root tear en-keyword=Quadriceps kn-keyword=Quadriceps END start-ver=1.4 cd-journal=joma no-vol=24 cd-vols= no-issue=5 article-no= start-page=382 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220913 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Investigation of bone invasion and underlying mechanisms of oral cancer using a cell line‑derived xenograft model en-subtitle= kn-subtitle= en-abstract= kn-abstract=The cancer stroma regulates bone invasion in oral squamous cell carcinoma (OSCC). However, data on normal stroma are limited. In the present study, the effects of gingival and periodontal ligament tissue‑derived stromal cells (G‑SCs and P‑SCs, respectively) and human dermal fibroblasts (HDFs) on bone resorption and osteoclast activation were assessed using hematoxylin and eosin and tartrate‑resistant acid phosphatase staining in a cell line‑derived xenograft model. The results demonstrated that G‑SCs promoted bone invasion and osteoclast activation and inhibited osteoclast proliferation following crosstalk with the human OSCC HSC‑3 cell line, whereas P‑SCs inhibited bone resorption and promoted osteoclast proliferation in vitro but had a minimal effect on osteoclast activation both in vitro and in vivo following crosstalk with HSC‑3 cells. Furthermore, the effects of G‑SCs, P‑SCs and HDFs on protein expression levels of matrix metalloproteinase (MMP)‑9, membrane type 1 MMP (MT1‑MMP), Snail, parathyroid hormone‑related peptide (PTHrP) and receptor activator of NF‑κB ligand (RANKL) in HSC‑3 cells in OSCC bone invasion regions were assessed using immunohistochemistry. The results demonstrated that G‑SCs had a more prominent effect on the expression of MMP‑9, MT1‑MMP, Snail, PTHrP, and RANKL, whereas P‑SCs only promoted RANKL and PTHrP expression and exerted a minimal effect on MMP‑9, MT1‑MMP and Snail expression. The potential genes underlying the differential effects of G‑SCs and P‑SCs on bone invasion in OSCC were evaluated using a microarray, which indicated that cyclin‑dependent kinase 1, insulin, aurora kinase A, cyclin B1 and DNA topoisomerase II alpha underlaid these differential effects. Therefore, these results demonstrated that G‑SCs promoted bone invasion in OSCC by activating osteoclasts on the bone surface, whereas P‑SCs exerted an inhibitory effect. These findings could indicate a potential regulatory mechanism for bone invasion in OSCC. en-copyright= kn-copyright= en-aut-name=ShanQiusheng en-aut-sei=Shan en-aut-mei=Qiusheng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakabatakeKiyofumi en-aut-sei=Takabatake en-aut-mei=Kiyofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OmoriHaruka en-aut-sei=Omori en-aut-mei=Haruka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KawaiHotaka en-aut-sei=Kawai en-aut-mei=Hotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OoMay Wathone en-aut-sei=Oo en-aut-mei=May Wathone kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SukegawaShintaro en-aut-sei=Sukegawa en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=FujiiMasae en-aut-sei=Fujii en-aut-mei=Masae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=InadaYasunori en-aut-sei=Inada en-aut-mei=Yasunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SanoSho en-aut-sei=Sano en-aut-mei=Sho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NakanoKeisuke en-aut-sei=Nakano en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NagatsukaHitoshi en-aut-sei=Nagatsuka en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=oral squamous cell carcinoma kn-keyword=oral squamous cell carcinoma en-keyword=bone invasion kn-keyword=bone invasion en-keyword=gingival ligament tissue‑derived stromal cell kn-keyword=gingival ligament tissue‑derived stromal cell en-keyword=periodontal ligament tissue‑derived stromal cell kn-keyword=periodontal ligament tissue‑derived stromal cell en-keyword=xenograft model kn-keyword=xenograft model en-keyword=microarray kn-keyword=microarray END start-ver=1.4 cd-journal=joma no-vol=77 cd-vols= no-issue=5 article-no= start-page=517 end-page=525 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202310 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Association between BRCA Gene Variants and the Response to Modified FOLFIRINOX in Patients with Unresectable Pancreatic Cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=We investigated the effect of modified FOLFIRINOX (mFFX) in unresectable pancreatic cancer by retrospectively analyzing the cases of 43 patients who underwent BRCA testing (germline, n=11; somatic, n=26; both germline and somatic, n=6). The association between BRCA mutations and therapeutic effect was clarified. Six patients tested positive for germline pathogenic variants. Familial pancreatic cancer (33% vs. 3%, p=0.006) and peritoneal disseminated lesions (66% vs. 8%, p<0.001) were significantly more common in patients with germline pathogenic variants. The partial response (PR) rate was 100% in the germline BRCA-positive patients, and 27% in the germline BRCA-negative patients (p<0.001). The median progression-free survival (PFS) was not reached for any germline BRCA-positive patients but was 9.0 months for the germline BRCA-negative patients (p=0.042). Patients with stage IV BRCA-associated pancreatic cancer had better overall survival than those with non-BRCA-associated pancreatic cancer, although the difference was nonsignificant (not reached vs. 655 days, p=0.061). Our results demonstrate that a PR and prolonged PFS can be expected in germline BRCA-positive patients after treatment with mFFX. Our findings also suggest that germline BRCA pathogenic variants may be useful as biomarkers for the therapeutic effect of mFFX in patients with pancreatic cancer. en-copyright= kn-copyright= en-aut-name=HoriguchiShigeru en-aut-sei=Horiguchi en-aut-mei=Shigeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsumotoKazuyuki en-aut-sei=Matsumoto en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MorimotoKosaku en-aut-sei=Morimoto en-aut-mei=Kosaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MatsumiAkihiro en-aut-sei=Matsumi en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TerasawaHiroyuki en-aut-sei=Terasawa en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FujiiYuki en-aut-sei=Fujii en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamazakiTatsuhiro en-aut-sei=Yamazaki en-aut-mei=Tatsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TsutsumiKoichiro en-aut-sei=Tsutsumi en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KatoHironari en-aut-sei=Kato en-aut-mei=Hironari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= en-keyword=BRCA kn-keyword=BRCA en-keyword=FOLFIRINOX kn-keyword=FOLFIRINOX en-keyword=pancreatic cancer kn-keyword=pancreatic cancer en-keyword=progression-free survival kn-keyword=progression-free survival en-keyword=pathogenic variant kn-keyword=pathogenic variant END start-ver=1.4 cd-journal=joma no-vol=77 cd-vols= no-issue=5 article-no= start-page=479 end-page=490 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202310 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Childcare and Child Development in Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=For decades, the notion has persisted in developed countries that exclusive care by the mothers is best for the development of children up to 3 years of age. To examine the veracity of this “myth of the first three years” in Japan, we examined the effects of childcare facility use for children younger than 3 years on their development using the cohorts of the Longitudinal Survey of Newborns in the 21st Century conducted in Japan. Of the 47,015 respondents to the survey, we studied the children of 5,508 mothers with university/professional education to evaluate the relationships between primary early (< 2.5 years) childcare providers during weekday daytime hours and specific development indices for the ages of 2.5, 5.5, and 8 years. At the age of 2.5 and 5.5 years, children attending childcare facilities were judged as having more advanced developmental behaviors by their parents, such as being able to compose a two-word sentence (adjusted odds ratio [aOR]: 0.22) or to express emotions (aOR: 0.81), compared with those cared for by mothers. However, at the age of 8 years, children who attended childcare facilities as infants < 2.5 years showed more aggressive behavior in interrupting people (aOR: 1.20) and causing disturbances in public (aOR: 1.26) than those cared for by mothers (after adjustment for numerous child and parental factors). Although these results are generally consistent with previous studies, issues potentially involved with problem behavior such as quality of childcare require further investigation, as does the case of children of mothers with more modest educational attainment. en-copyright= kn-copyright= en-aut-name=MurataAkiko en-aut-sei=Murata en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsumotoNaomi en-aut-sei=Matsumoto en-aut-mei=Naomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MiyajiChikara en-aut-sei=Miyaji en-aut-mei=Chikara kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakaoSoshi en-aut-sei=Takao en-aut-mei=Soshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YorifujiTakashi en-aut-sei=Yorifuji en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Epidemiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Epidemiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=“myth of the first three years” kn-keyword=“myth of the first three years” en-keyword=childcare kn-keyword=childcare en-keyword=child development kn-keyword=child development en-keyword=problem behavior kn-keyword=problem behavior en-keyword=educational attainment kn-keyword=educational attainment END start-ver=1.4 cd-journal=joma no-vol=71 cd-vols= no-issue=2 article-no= start-page=154 end-page=164 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230201 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Identification of a Functionally Efficient and Thermally Stable Outward Sodium-Pumping Rhodopsin (BeNaR) from a Thermophilic Bacterium en-subtitle= kn-subtitle= en-abstract= kn-abstract=Rhodopsins are transmembrane proteins with retinal chromophores that are involved in photo-energy conversion and photo-signal transduction in diverse organisms. In this study, we newly identified and characterized a rhodopsin from a thermophilic bacterium, Bellilinea sp. Recombinant Escherichia coli cells expressing the rhodopsin showed light-induced alkalization of the medium only in the presence of sodium ions (Na+), and the alkalization signal was enhanced by addition of a protonophore, indicating an outward Na+ pump function across the cellular membrane. Thus, we named the protein Bellilinea Na+-pumping rhodopsin, BeNaR. Of note, its Na+-pumping activity is significantly greater than that of the known Na+-pumping rhodopsin, KR2. We further characterized its photochemical properties as follows: (i) Visible spectroscopy and HPLC revealed that BeNaR has an absorption maximum at 524 nm with predominantly (>96%) the all-trans retinal conformer. (ii) Time-dependent thermal denaturation experiments revealed that BeNaR showed high thermal stability. (iii) The time-resolved flash-photolysis in the nanosecond to millisecond time domains revealed the presence of four kinetically distinctive photointermediates, K, L, M and O. (iv) Mutational analysis revealed that Asp101, which acts as a counterion, and Asp230 around the retinal were essential for the Na+-pumping activity. From the results, we propose a model for the outward Na+-pumping mechanism of BeNaR. The efficient Na+-pumping activity of BeNaR and its high stability make it a useful model both for ion transporters and optogenetics tools. en-copyright= kn-copyright= en-aut-name=KuriharaMarie en-aut-sei=Kurihara en-aut-mei=Marie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ThielVera en-aut-sei=Thiel en-aut-mei=Vera kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakahashiHirona en-aut-sei=Takahashi en-aut-mei=Hirona kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KojimaKeiichi en-aut-sei=Kojima en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WardDavid M. en-aut-sei=Ward en-aut-mei=David M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=BryantDonald A. en-aut-sei=Bryant en-aut-mei=Donald A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SakaiMakoto en-aut-sei=Sakai en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YoshizawaSusumu en-aut-sei=Yoshizawa en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SudoYuki en-aut-sei=Sudo en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Biological Sciences, Tokyo Metropolitan University kn-affil= affil-num=3 en-affil=Department of Chemistry, Graduate School of Science, Okayama University of Science kn-affil= affil-num=4 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Land Resources and Environmental Sciences, Montana State University kn-affil= affil-num=6 en-affil=Department of Biochemistry and Molecular Biology, The Pennsylvania State University kn-affil= affil-num=7 en-affil=Department of Chemistry, Graduate School of Science, Okayama University of Science kn-affil= affil-num=8 en-affil=Atmosphere and Ocean Research Institute, The University of Tokyo kn-affil= affil-num=9 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=rhodopsin kn-keyword=rhodopsin en-keyword=ion transport kn-keyword=ion transport en-keyword=retinal kn-keyword=retinal en-keyword=isomerization kn-keyword=isomerization en-keyword=optogenetics kn-keyword=optogenetics END start-ver=1.4 cd-journal=joma no-vol=183 cd-vols= no-issue= article-no= start-page=61 end-page=72 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230920 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Development of Career Education that Made Use of the “Work Experience” of Junior High School (II) -Development of Career Planning Ability Taking Look at the Future from the Present- kn-title=中学校の「職場体験」を生かした複数教科横断的な キャリア教育の開発(Ⅱ) ― 現在から未来を見つめるキャリアプランニング能力の育成 ― en-subtitle= kn-subtitle= en-abstract= kn-abstract= 職場体験はほぼすべての中学校で実施されているキャリア教育である。本稿は,青木・杉田・山崎(2021)で報告した実践について,「キャリアプランニング能力」の育成にかかわる部分について紹介する。具体的には,中学校2年生の職場体験の「事前指導(1時間目)」として,インタビュー内容を考える活動を取り入れ,生徒たち一人ひとりが職場体験の目的や意義を見出せるようにした。「事後指導Ⅱ(4,5時間目)」では,独自に開発した「ジブン×イマ×ミライシート」を使用し,未来と今の自分と職場体験で生徒が学習した仕事のつながりを意識する活動を行った。これらの活動の成果は,生徒が記入したワークシートの記述や実践後のアンケートを分析することで確認した。その結果,本実践によって,生徒たちが現在と未来のつながりを考えるようになったとの記述が多く見られた。 en-copyright= kn-copyright= en-aut-name=AOKITazuko en-aut-sei=AOKI en-aut-mei=Tazuko kn-aut-name=青木多寿子 kn-aut-sei=青木 kn-aut-mei=多寿子 aut-affil-num=1 ORCID= en-aut-name=HAYASHIDAKei en-aut-sei=HAYASHIDA en-aut-mei=Kei kn-aut-name=林田圭 kn-aut-sei=林田 kn-aut-mei=圭 aut-affil-num=2 ORCID= en-aut-name=ITOKeisuke en-aut-sei=ITO en-aut-mei=Keisuke kn-aut-name=伊藤圭祐 kn-aut-sei=伊藤 kn-aut-mei=圭祐 aut-affil-num=3 ORCID= en-aut-name=TAKEUCHISeon en-aut-sei=TAKEUCHI en-aut-mei=Seon kn-aut-name=武内志穏 kn-aut-sei=武内 kn-aut-mei=志穏 aut-affil-num=4 ORCID= en-aut-name=HAYASHIDaichi en-aut-sei=HAYASHI en-aut-mei=Daichi kn-aut-name=林大智 kn-aut-sei=林 kn-aut-mei=大智 aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Education, Okayama University kn-affil=岡山大学学術研究院教育学域 affil-num=2 en-affil=Benesse Style Care Co. kn-affil=㈱ベネッセスタイルケア affil-num=3 en-affil=Hirose Elementary School in Yasugi City, Shimane. kn-affil=島根県公立学校教員 affil-num=4 en-affil=a public employee kn-affil=地方公共団体職員 affil-num=5 en-affil=Minato Elementary School in Arita City, Wakayama. kn-affil=和歌山県公立学校教員 en-keyword=キャリア教育 kn-keyword=キャリア教育 en-keyword=職場体験活動 kn-keyword=職場体験活動 en-keyword=キャリアプランニング能力 kn-keyword=キャリアプランニング能力 en-keyword=米国のガイドライン kn-keyword=米国のガイドライン END start-ver=1.4 cd-journal=joma no-vol=18 cd-vols= no-issue=5 article-no= start-page=e0285273 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230519 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Randomized phase II study of daily versus alternate-day administrations of S-1 for the elderly patients with completely resected pathological stage IA (tumor diameter > 2 cm)-IIIA of non-small cell lung cancer: Setouchi Lung Cancer Group Study 1201 en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background
It is shown that the postoperative adjuvant chemotherapy for non-small cell lung cancer (NSCLC) was associated with survival benefit in an elderly population. We aimed to analyze the feasibility and efficacy of alternate-day S-1, an oral fluoropyrimidine, for adjuvant chemotherapy in elderly patients with completely resected pathological stage IA (tumor diameter > 2 cm) to IIIA (UICC TNM Classification of Malignant Tumours, 7th edition) NSCLC.

Methods
Elderly patients were randomly assigned to receive adjuvant chemotherapy for one year consisting of either alternate-day oral administration of S-1 (80 mg/m2/day) for 4 days a week (Arm A) or a daily oral administration of S-1 (80 mg/m2/day) for 14 consecutive days followed by 7-day rest (Arm B). The primary endpoint was feasibility (treatment completion rate), which was defined as the proportion of patients who completed the allocated intervention for 6 months with a relative dose intensity (RDI) of 70% or more.

Results
We enrolled 101 patients in which 97 patients received S-1 treatment. The treatment completion rate at 6 months was 69.4% in Arm A and 64.6% in Arm B (p = 0.67). Treatment completion rate in Arm B tended to be lower compared to Arm A, as the treatment period becomes longer (at 9 and 12 months). RDI of S-1 at 12 months and completion of S-1 administration without dose reduction or postponement at 12 months was significantly better in Arm A than in Arm B (p = 0.026 and p < 0.001, respectively). Among adverse events, anorexia, skin symptoms and lacrimation of any grade were significantly more frequent in Arm B compared with Arm A (p = 0.0036, 0.023 and 0.031, respectively). The 5-year recurrence-free survival rates were 56.9% and 65.7% for Arm A and B, respectively (p = 0.22). The 5-year overall survival rates were 68.6% and 82.0% for Arm A and B, respectively (p = 0.11).

Conclusion
Although several adverse effects were less frequent in Arm A, both alternate-day and daily oral administrations of S-1 were demonstrated to be feasible in elderly patients with completely resected NSCLC. en-copyright= kn-copyright= en-aut-name=YamamotoHiromasa en-aut-sei=Yamamoto en-aut-mei=Hiromasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SohJunichi en-aut-sei=Soh en-aut-mei=Junichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OkumuraNorihito en-aut-sei=Okumura en-aut-mei=Norihito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SuzukiHiroyuki en-aut-sei=Suzuki en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakataMasao en-aut-sei=Nakata en-aut-mei=Masao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FujiwaraToshiya en-aut-sei=Fujiwara en-aut-mei=Toshiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=GembaKenichi en-aut-sei=Gemba en-aut-mei=Kenichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SanoIsao en-aut-sei=Sano en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=FujinagaTakuji en-aut-sei=Fujinaga en-aut-mei=Takuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KataokaMasafumi en-aut-sei=Kataoka en-aut-mei=Masafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TerazakiYasuhiro en-aut-sei=Terazaki en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=FujimotoNobukazu en-aut-sei=Fujimoto en-aut-mei=Nobukazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KataokaKazuhiko en-aut-sei=Kataoka en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KosakaShinji en-aut-sei=Kosaka en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=YamashitaMotohiro en-aut-sei=Yamashita en-aut-mei=Motohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=InokawaHidetoshi en-aut-sei=Inokawa en-aut-mei=Hidetoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=InoueMasaaki en-aut-sei=Inoue en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=NakamuraHiroshige en-aut-sei=Nakamura en-aut-mei=Hiroshige kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=YamashitaYoshinori en-aut-sei=Yamashita en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=HottaKatsuyuki en-aut-sei=Hotta en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=YoshiokaHiroshige en-aut-sei=Yoshioka en-aut-mei=Hiroshige kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=MoritaSatoshi en-aut-sei=Morita en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=MatsuoKeitaro en-aut-sei=Matsuo en-aut-mei=Keitaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=SakamotoJunichi en-aut-sei=Sakamoto en-aut-mei=Junichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=DateHiroshi en-aut-sei=Date en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= affil-num=1 en-affil=Department of Thoracic Surgery, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Surgery, Division of Thoracic Surgery, Kindai University Faculty of Medicine kn-affil= affil-num=3 en-affil=Department of Thoracic Surgery, Kurashiki Central Hospital kn-affil= affil-num=4 en-affil=Department of Chest Surgery, Fukushima Medical University Hospital kn-affil= affil-num=5 en-affil=Department of General Thoracic Surgery, Kawasaki Medical School Hospital kn-affil= affil-num=6 en-affil=Department of Thoracic Surgery, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=7 en-affil=Department of Respiratory Medicine, Chugoku Central Hospital kn-affil= affil-num=8 en-affil=Department of Respiratory Surgery, Japanese Red Cross Nagasaki Genbaku Hospital kn-affil= affil-num=9 en-affil=Department of General Thoracic Surgery, National Hospital Organization Nagara Medical Center kn-affil= affil-num=10 en-affil=Department of Surgery and Respiratory Center, Okayama Saiseikai General Hospital kn-affil= affil-num=11 en-affil=Department of Respiratory S0urgery, Saga-Ken Medical Centre Koseikan kn-affil= affil-num=12 en-affil=Department of Medical Oncology and Respiratory Medicine, Okayama Rosai Hospital kn-affil= affil-num=13 en-affil=Department of Thoracic Surgery, National Hospital Organization Iwakuni Clinical Center kn-affil= affil-num=14 en-affil=Department of Thoracic Surgery, Shimane Prefectural Central Hospital kn-affil= affil-num=15 en-affil=Department of Thoracic Surgery, National Hospital Organization Shikoku Cancer Center kn-affil= affil-num=16 en-affil=Department of Thoracic Surgery, National Hospital Organization Yamaguchi-Ube Medical Center kn-affil= affil-num=17 en-affil=Department of Chest Surgery, Shimonoseki City Hospital kn-affil= affil-num=18 en-affil=Division of General Thoracic Surgery, Tottori University Hospital kn-affil= affil-num=19 en-affil=Department of Thoracic Surgery, National Hospital Organization Kure Medical Center and Chugoku Cancer Center kn-affil= affil-num=20 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=21 en-affil=Department of Thoracic Oncology, Kansai Medical University Hospital kn-affil= affil-num=22 en-affil=Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine kn-affil= affil-num=23 en-affil=Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute kn-affil= affil-num=24 en-affil=Tokai Central Hospital kn-affil= affil-num=25 en-affil=Department of Thoracic Surgery, Kyoto University Hospital kn-affil= affil-num=26 en-affil=Department of Thoracic Surgery, Okayama University Hospital kn-affil= END start-ver=1.4 cd-journal=joma no-vol=24 cd-vols= no-issue=16 article-no= start-page=12559 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230808 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Interaction of Orexin and Bone Morphogenetic Proteins in Steroidogenesis by Human Adrenocortical Cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=Orexins are neuropeptides that play important roles in sleep-wake regulation and food intake in the central nervous system, but their receptors are also expressed in peripheral tissues, including the endocrine system. In the present study, we investigated the functions of orexin in adrenal steroidogenesis using human adrenocortical H295R cells by focusing on its interaction with adrenocortical bone morphogenetic proteins (BMPs) that induce adrenocortical steroidogenesis. Treatment with orexin A increased the mRNA levels of steroidogenic enzymes including StAR, CYP11B2, CYP17, and HSD3B1, and these effects of orexin A were further enhanced in the presence of forskolin. Interestingly, orexin A treatment suppressed the BMP-receptor signaling detected by Smad1/5/9 phosphorylation and Id-1 expression through upregulation of inhibitory Smad7. Orexin A also suppressed endogenous BMP-6 expression but increased the expression of the type-II receptor of ActRII in H295R cells. Moreover, treatment with BMP-6 downregulated the mRNA level of OX1R, but not that of OX2R, expressed in H295R cells. In conclusion, the results indicate that both orexin and BMP-6 accelerate adrenocortical steroidogenesis in human adrenocortical cells; both pathways mutually inhibit each other, thereby leading to a fine-tuning of adrenocortical steroidogenesis. en-copyright= kn-copyright= en-aut-name=SoejimaYoshiaki en-aut-sei=Soejima en-aut-mei=Yoshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IwataNahoko en-aut-sei=Iwata en-aut-mei=Nahoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishiokaRan en-aut-sei=Nishioka en-aut-mei=Ran kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HondaMako en-aut-sei=Honda en-aut-mei=Mako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakanoYasuhiro en-aut-sei=Nakano en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamamotoKoichiro en-aut-sei=Yamamoto en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SuyamaAtsuhito en-aut-sei=Suyama en-aut-mei=Atsuhito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=bone morphogenetic protein (BMP) kn-keyword=bone morphogenetic protein (BMP) en-keyword=orexin kn-keyword=orexin en-keyword=steroidogenesis and adrenal kn-keyword=steroidogenesis and adrenal END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2005 dt-pub=20050930 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=新規な酸性バイオアイソスターを有するアンジオテンシンII受容体拮抗薬に関する研究 en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name= en-aut-sei= en-aut-mei= kn-aut-name=小原康久 kn-aut-sei=小原 kn-aut-mei=康久 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2005 dt-pub=20050930 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=アンジオテンシンIIの持続注入は血管新生関連因子の制御を介して抗Thy-1.1腎炎早期の糸球体係蹄領域の減少を抑制する kn-title=Infusion of angiotensin II reduces loss of glomerular capillary area in the early phase of anti-Thy-1.1 nephritis possibly via regulating angiogenesis-associated factors en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=TakazawaYuki en-aut-sei=Takazawa en-aut-mei=Yuki kn-aut-name=高沢有紀 kn-aut-sei=高沢 kn-aut-mei=有紀 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2005 dt-pub=20051231 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=ATX-S10・Na(II)を用いた新しい経皮的光線力学療法は滑膜線維芽細胞のアポトーシスを誘導しコラーゲン関節炎モデルマウスの関節炎を改善した kn-title=Novel transdermal photodynamic therapy using ATX-S10・Na(II) induces apoptosis of synovial fibroblasts and ameliorates collagen antibody-induced arthritis in mice en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=MiyazawaS en-aut-sei=Miyazawa en-aut-mei=S kn-aut-name=宮澤慎一 kn-aut-sei=宮澤 kn-aut-mei=慎一 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 END start-ver=1.4 cd-journal=joma no-vol=77 cd-vols= no-issue=4 article-no= start-page=423 end-page=427 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202308 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Acute Coronary Spasm Following Pelvic Fracture, Bleeding, and Shock in a Trauma Patient en-subtitle= kn-subtitle= en-abstract= kn-abstract=We report a case of a patient with severe pelvic fracture who showed concurrent ST elevation on electrocardiogram. A 70-year-old man incurred an unstable pelvic fracture from a motorcycle accident. On admission, he was hemodynamically unstable, and massive transfusion and noradrenaline were administered immediately. Although ST elevation was present in leads II, III, aVF, V5, and V6, cardiac function was preserved; thus, trans-arterial embolization and external fixation for pelvic fracture were given priority. Four days after the injury, he suffered a cardiac arrest, and coronary angiography revealed that the cause of ST elevation and cardiac arrest was coronary vasospasm. Physicians should be aware that pain-related stress and platelet activation as well as use of noradrenaline in severe trauma cases can induce coronary vasospasm. en-copyright= kn-copyright= en-aut-name=YamakawaYasuaki en-aut-sei=Yamakawa en-aut-mei=Yasuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyashitaKohei en-aut-sei=Miyashita en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MorizaneAtsushi en-aut-sei=Morizane en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakeuchiMasato en-aut-sei=Takeuchi en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KawashimaYuta en-aut-sei=Kawashima en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SugimuraTomoko en-aut-sei=Sugimura en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SaisakaYuichi en-aut-sei=Saisaka en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Emergency and Critical Care Center, Kochi Health Sciences Center kn-affil= affil-num=2 en-affil=Emergency and Critical Care Center, Kochi Health Sciences Center kn-affil= affil-num=3 en-affil=Emergency and Critical Care Center, Kochi Health Sciences Center kn-affil= affil-num=4 en-affil=Department of Cardiology, Kochi Health Sciences Center kn-affil= affil-num=5 en-affil=Department of Radiology, Kochi Health Sciences Center kn-affil= affil-num=6 en-affil=Emergency and Critical Care Center, Kochi Health Sciences Center kn-affil= affil-num=7 en-affil=Emergency and Critical Care Center, Kochi Health Sciences Center kn-affil= en-keyword=coronary spasm angina kn-keyword=coronary spasm angina en-keyword=noradrenaline kn-keyword=noradrenaline en-keyword=severe trauma kn-keyword=severe trauma en-keyword=ST elevation kn-keyword=ST elevation en-keyword=treatment strategy kn-keyword=treatment strategy END start-ver=1.4 cd-journal=joma no-vol=77 cd-vols= no-issue=4 article-no= start-page=407 end-page=414 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202308 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Usefulness of Force-Controlled Pelvic Stress Radiograph in the Evaluation and Treatment of Fragility Fractures of the Pelvis in Geriatric Patients: A Pilot Study en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study aimed to investigate the usefulness of force-controlled pelvic stress radiographs in the evaluation and treatment of fragility fractures of the pelvis (FFP) using a functional treatment strategy. We conducted a retrospective study of 55 geriatric patients with FFP who underwent pelvic stress radiographs on admission. The differences in the sacral width, pelvic ring width, and medial femoral head width between the radiographs with and without the Sam Sling II M size were defined as Δ sacral width, Δ pelvic ring width, and Δ medial femoral head width, respectively. We used Pearson’s correlation test to assess the relationship between the degree of radiographic instability and the Johns Hopkins highest level of mobility scale (JH-HLM) at 10-days postadmission. Conventional receiver-operating-characteristic curve analysis was used to identify cases requiring surgery using the best cutoff value for radiographic instability. The JH-HLM was significantly correlated with Δ sacral width (r=−0.401, p=0.017), but not with Δ pelvic ring width (r=−0.298, p=0.080) nor with Δ medial femoral head width (r= −0.261, p=0.128). The best cutoff value of Δ sacral width in identifying surgical cases was 10.7 mm (sensitivity 75.0%, specificity 98.0%). Force-controlled pelvic stress radiographs could be helpful in assessing the need for surgery on admission. en-copyright= kn-copyright= en-aut-name=HottaKensuke en-aut-sei=Hotta en-aut-mei=Kensuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KobayashiTakaomi en-aut-sei=Kobayashi en-aut-mei=Takaomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Orthopaedic Surgery, Amagi Chuo Hospital kn-affil= affil-num=2 en-affil=Department of Orthopaedic Surgery, Karatsu Red Cross Hospital kn-affil= en-keyword=fragility fracture of the pelvis kn-keyword=fragility fracture of the pelvis en-keyword=functional treatment strategy kn-keyword=functional treatment strategy en-keyword=Sam Sling kn-keyword=Sam Sling en-keyword=stress radiograph kn-keyword=stress radiograph en-keyword=Johns Hopkins highest level of mobility scale kn-keyword=Johns Hopkins highest level of mobility scale END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=7 article-no= start-page=e18241 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202307 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Expression and clinicopathological characteristics of PDX1, PTF1A, and SALL4 in large and small ducts of ectopic pancreas located in gastro-duodenum and jejunum en-subtitle= kn-subtitle= en-abstract= kn-abstract=An ectopic pancreas is defined as pancreatic tissue outside its normal location, anatomically separated from the pancreas.
 The transcription factor pancreas/duodenum homeobox protein 1 (PDX1) is involved in maintaining the pancreas and functions in early pancreatic development, beta cell differentiation, and endocrine non beta cells. Pancreatic transcription factor 1 subunit alpha (PTF1A) affects exocrine cell formation and regulation of acinar cell identity, and is expressed in exocrine cells as a transcription factor. The depletion of SALL4 disrupts self-renewal and induces differentiation.
 To clarify which of PDX1, PTF1A, or SALL4 determines the difference in Heinrich's classification, we examined the localization and number of positive cells. We analyzed the differential expression of PDX1, PTF1A, and SALL4 in large and small ducts in ectopic pancreas by immunohistochemistry. Results showed that the number of PTF1A-positive cells in large ducts was more widespread in type I than in type II in the gastro-duodenum, and more SALL4-positive cells were noticed in large ducts than in small ducts in the gastro-duodenum of type II. Our results revealed that PTF1A might promote exocrine differentiation in developing the pancreatic tissues, and that those with widespread expression differentiate into exocrine cells. en-copyright= kn-copyright= en-aut-name=ChenMengxi en-aut-sei=Chen en-aut-mei=Mengxi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TanakaTakehiro en-aut-sei=Tanaka en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IgawaTakuro en-aut-sei=Igawa en-aut-mei=Takuro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HanYanyan en-aut-sei=Han en-aut-mei=Yanyan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=PengFangli en-aut-sei=Peng en-aut-mei=Fangli kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=JinZaishun en-aut-sei=Jin en-aut-mei=Zaishun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YoshinoTadashi en-aut-sei=Yoshino en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Pathology, Mudanjiang Medical University kn-affil= affil-num=7 en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=PDX1 kn-keyword=PDX1 en-keyword=PTF1A kn-keyword=PTF1A en-keyword=SALL4 kn-keyword=SALL4 en-keyword=Ectopic pancreas kn-keyword=Ectopic pancreas en-keyword=Gastro-duodenum kn-keyword=Gastro-duodenum en-keyword=Jejunum kn-keyword=Jejunum END start-ver=1.4 cd-journal=joma no-vol=77 cd-vols= no-issue=4 article-no= start-page=341 end-page=345 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202308 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Biological Roles of Hepatitis B Viral X Protein in the Viral Replication and Hepatocarcinogenesis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Hepatitis B virus is a pathogenic virus that infects 300 million people worldwide and causes chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Hepatitis B virus encodes four proteins. Among them, the HBx protein plays a central role in the HBV pathogenesis. Because the HBx protein is considered to play a central role in the induction of viral replication and hepatocarcinogenesis, the regulation of its function could be a key factor in the development of new interventions against hepatitis B. In this review, HBx protein-related viral replication and hepatocarcinogenesis mechanisms are described, with a focus on the recently reported viral replication mechanisms related to degradation of the Smc5/6 protein complex. We also discuss our recent discovery of a compound that inhibits HBx protein-induced degradation of the Smc5/6 protein complex, and that exerts inhibitory effects on both viral replication and hepatocarcinogenesis. Finally, prospects for future research on the HBx protein are described. en-copyright= kn-copyright= en-aut-name=OtsukaMotoyuki en-aut-sei=Otsuka en-aut-mei=Motoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Academic Field of Medicine, Density and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=HBx kn-keyword=HBx en-keyword=Smc5/6 kn-keyword=Smc5/6 en-keyword=DDB1 kn-keyword=DDB1 en-keyword=nitazoxianide kn-keyword=nitazoxianide en-keyword=DNA repair kn-keyword=DNA repair END start-ver=1.4 cd-journal=joma no-vol=71 cd-vols= no-issue=3 article-no= start-page=1067 end-page=1083 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230723 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Analysis of genetic diversity and population structure in Cambodian melon landraces using molecular markers en-subtitle= kn-subtitle= en-abstract= kn-abstract=Genetic diversity of Cambodian melons was evaluated by the analysis of 12 random amplified polymorphic DNA (RAPD) and 7 simple sequence repeat (SSR) markers using 62 accessions of melon landraces and compared with 231 accessions from other areas for genetic characterization of Cambodian melons. Among 62 accessions, 56 accessions were morphologically classified as small-seed type with seed lengths shorter than 9 mm, as in the horticultural groups Conomon and Makuwa. Gene diversity of Cambodian melons was 0.228, which was equivalent to those of the groups Conomon and Makuwa and smaller than those of Vietnamese and Central Asian landraces. A phylogenetic tree constructed from a genetic distance matrix classified 293 accessions into three major clusters. Small-seed type accessions from East and Southeast Asia formed clusters I and II, which were distantly related with cluster III consisting of large-seed type melon from other areas. All Cambodian melons belonged to cluster I (except three accessions) along with those from Thailand, Myanmar, Yunnan (China), and Vietnam (“Dua thom” in the northwest), thus indicating genetic similarity in these areas. In addition, the Cambodian melons were not differentiated among geographical populations. Conomon and Makuwa were classified into cluster II, together with melon groups from the plains of Vietnam. The presence of two groups of melons in Southeast Asia was also indicated by population structure and principal coordinate analysis. These results indicated a close genetic relationship between Cambodia and the neighboring countries, thus suggesting that Cambodian melons are not directly related to the establishment of Conomon and Makuwa. en-copyright= kn-copyright= en-aut-name=NazninPervin Mst en-aut-sei=Naznin en-aut-mei=Pervin Mst kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ImohOdirichi Nnennaya en-aut-sei=Imoh en-aut-mei=Odirichi Nnennaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanakaKatsunori en-aut-sei=Tanaka en-aut-mei=Katsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SreynechOuch en-aut-sei=Sreynech en-aut-mei=Ouch kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShigitaGentaro en-aut-sei=Shigita en-aut-mei=Gentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SopheaYon en-aut-sei=Sophea en-aut-mei=Yon kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SophanySakhan en-aut-sei=Sophany en-aut-mei=Sakhan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MakaraOuk en-aut-sei=Makara en-aut-mei=Ouk kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TomookaNorihiko en-aut-sei=Tomooka en-aut-mei=Norihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MondenYuki en-aut-sei=Monden en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NishidaHidetaka en-aut-sei=Nishida en-aut-mei=Hidetaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KatoKenji en-aut-sei=Kato en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Agriculture and Life Science, Hirosaki University kn-affil= affil-num=4 en-affil=Cambodian Agricultural Research and Development Institute kn-affil= affil-num=5 en-affil=Department of Life Science Systems, Technical University of Munich kn-affil= affil-num=6 en-affil=Cambodian Agricultural Research and Development Institute kn-affil= affil-num=7 en-affil=Cambodian Agricultural Research and Development Institute kn-affil= affil-num=8 en-affil=Plant Breeder, Retired Director of the Cambodian Agricultural Research and Development Institute kn-affil= affil-num=9 en-affil=Research Center of Genetic Resources, National Agriculture and Food Research Organization (NARO) kn-affil= affil-num=10 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=11 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=12 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=Cambodia kn-keyword=Cambodia en-keyword=Conomon kn-keyword=Conomon en-keyword=Cucumis melo kn-keyword=Cucumis melo en-keyword=Genetic diversity kn-keyword=Genetic diversity en-keyword=Landraces kn-keyword=Landraces en-keyword=RAPD kn-keyword=RAPD en-keyword=SSR kn-keyword=SSR END start-ver=1.4 cd-journal=joma no-vol=27 cd-vols= no-issue=1 article-no= start-page=252 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230627 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Prevalence, reasons, and timing of decisions to withhold/withdraw life-sustaining therapy for out-of-hospital cardiac arrest patients with extracorporeal cardiopulmonary resuscitation en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Extracorporeal cardiopulmonary resuscitation (ECPR) is rapidly becoming a common treatment strategy for patients with refractory cardiac arrest. Despite its benefits, ECPR raises a variety of ethical concerns when the treatment is discontinued. There is little information about the decision to withhold/withdraw life-sustaining therapy (WLST) for out-of-hospital cardiac arrest (OHCA) patients after ECPR.
Methods We conducted a secondary analysis of data from the SAVE-J II study, a retrospective, multicenter study of ECPR in Japan. Adult patients who underwent ECPR for OHCA with medical causes were included. The prevalence, reasons, and timing of WLST decisions were recorded. Outcomes of patients with or without WLST decisions were compared. Further, factors associated with WLST decisions were examined.
Results We included 1660 patients in the analysis; 510 (30.7%) had WLST decisions. The number of WLST decisions was the highest on the first day and WSLT decisions were made a median of two days after ICU admission. Reasons for WLST were perceived unfavorable neurological prognosis (300/510 [58.8%]), perceived unfavorable cardiac/pulmonary prognosis (105/510 [20.5%]), inability to maintain extracorporeal cardiopulmonary support (71/510 [13.9%]), complications (10/510 [1.9%]), exacerbation of comorbidity before cardiac arrest (7/510 [1.3%]), and others. Patients with WLST had lower 30-day survival (WLST vs. no-WLST: 36/506 [7.1%] vs. 386/1140 [33.8%], p < 0.001). Primary cerebral disorders as cause of cardiac arrest and higher severity of illness at intensive care unit admission were associated with WLST decisions.
ConclusionFor approximately one-third of ECPR/OHCA patients, WLST was decided during admission, mainly because of perceived unfavorable neurological prognoses. Decisions and neurological assessments for ECPR/OHCA patients need further analysis. en-copyright= kn-copyright= en-aut-name=NaitoHiromichi en-aut-sei=Naito en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SakurayaMasaaki en-aut-sei=Sakuraya en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HongoTakashi en-aut-sei=Hongo en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakadaHiroaki en-aut-sei=Takada en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YumotoTetsuya en-aut-sei=Yumoto en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YorifujiTakashi en-aut-sei=Yorifuji en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HifumiToru en-aut-sei=Hifumi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=InoueAkihiko en-aut-sei=Inoue en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SakamotoTetsuya en-aut-sei=Sakamoto en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KurodaYasuhiro en-aut-sei=Kuroda en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NakaoAtsunori en-aut-sei=Nakao en-aut-mei=Atsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SAVE-J II Study Group en-aut-sei=SAVE-J II Study Group en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Faculty of Medicine, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Emergency and Intensive Care Medicine, JA Hiroshima General Hospital kn-affil= affil-num=3 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Faculty of Medicine, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Critical Care Medicine and Trauma, National Hospital Organization Disaster Medical Center kn-affil= affil-num=5 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Faculty of Medicine, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Epidemiology, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Science kn-affil= affil-num=7 en-affil=Department of Emergency and Critical Care Medicine, St. Luke’s International Hospital kn-affil= affil-num=8 en-affil=Department of Emergency and Critical Care Medicine, Hyogo Emergency Medical Center kn-affil= affil-num=9 en-affil=Department of Emergency Medicine, Teikyo University School of Medicine kn-affil= affil-num=10 en-affil=Department of Emergency, Disaster, and Critical Care Medicine, Faculty of Medicine, Kagawa University kn-affil= affil-num=11 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Faculty of Medicine, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil= kn-affil= en-keyword=Clinical decision-making kn-keyword=Clinical decision-making en-keyword=Treatment limitation kn-keyword=Treatment limitation en-keyword=Futility kn-keyword=Futility en-keyword=Post-cardiac arrest syndrome kn-keyword=Post-cardiac arrest syndrome en-keyword=ECPR kn-keyword=ECPR END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=1 article-no= start-page=5756 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230408 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Social aspects of collision avoidance: a detailed analysis of two-person groups and individual pedestrians en-subtitle= kn-subtitle= en-abstract= kn-abstract=Pedestrian groups are commonly found in crowds but research on their social aspects is comparatively lacking. To fill that void in literature, we study the dynamics of collision avoidance between pedestrian groups (in particular dyads) and individual pedestrians in an ecological environment, focusing in particular on (i) how such avoidance depends on the group's social relation (e.g. colleagues, couples, friends or families) and (ii) its intensity of social interaction (indicated by conversation, gaze exchange, gestures etc). By analyzing relative collision avoidance in the "center of mass" frame, we were able to quantify how much groups and individuals avoid each other with respect to the aforementioned properties of the group. A mathematical representation using a potential energy function is proposed to model avoidance and it is shown to provide a fair approximation to the empirical observations. We also studied the probability that the individuals disrupt the group by "passing through it" (termed as intrusion). We analyzed the dependence of the parameters of the avoidance model and of the probability of intrusion on groups' social relation and intensity of interaction. We confirmed that the stronger social bonding or interaction intensity is, the more prominent collision avoidance turns out. We also confirmed that the probability of intrusion is a decreasing function of interaction intensity and strength of social bonding. Our results suggest that such variability should be accounted for in models and crowd management in general. Namely, public spaces with strongly bonded groups (e.g. a family-oriented amusement park) may require a different approach compared to public spaces with loosely bonded groups (e.g. a business-oriented trade fair). en-copyright= kn-copyright= en-aut-name=GregorjAdrien en-aut-sei=Gregorj en-aut-mei=Adrien kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YucelZeynep en-aut-sei=Yucel en-aut-mei=Zeynep kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ZanlungoFrancesco en-aut-sei=Zanlungo en-aut-mei=Francesco kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FelicianiClaudio en-aut-sei=Feliciani en-aut-mei=Claudio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KandaTakayuki en-aut-sei=Kanda en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Okayama University kn-affil= affil-num=2 en-affil=Okayama University kn-affil= affil-num=3 en-affil=Okayama University kn-affil= affil-num=4 en-affil=The University of Tokyo kn-affil= affil-num=5 en-affil=ATR International kn-affil= END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=10 article-no= start-page=1148 end-page=1156 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230713 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Role of glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 in hypertriglyceridemia and diabetes en-subtitle= kn-subtitle= en-abstract= kn-abstract=In diabetes, the impairment of insulin secretion and insulin resistance contribute to hypertriglyceridemia, as the enzymatic activity of lipoprotein lipase (LPL) depends on insulin action. The transport of LPL to endothelial cells and its enzymatic activity are maintained by the formation of lipolytic complex depending on the multiple positive (glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 [GPIHBP1], apolipoprotein C-II [APOC2], APOA5, heparan sulfate proteoglycan [HSPG], lipase maturation factor 1 [LFM1] and sel-1 suppressor of lin-12-like [SEL1L]) and negative regulators (APOC1, APOC3, angiopoietin-like proteins [ANGPTL]3, ANGPTL4 and ANGPTL8). Among the regulators, GPIHBP1 is a crucial molecule for the translocation of LPL from parenchymal cells to the luminal surface of capillary endothelial cells, and maintenance of lipolytic activity; that is, hydrolyzation of triglyceride into free fatty acids and monoglyceride, and conversion from chylomicron to chylomicron remnant in the exogenous pathway and from very low-density lipoprotein to low-density lipoprotein in the endogenous pathway. The null mutation of GPIHBP1 causes severe hypertriglyceridemia and pancreatitis, and GPIGBP1 autoantibody syndrome also causes severe hypertriglyceridemia and recurrent episodes of acute pancreatitis. In patients with type 2 diabetes, the elevated serum triglyceride levels negatively correlate with circulating LPL levels, and positively with circulating APOC1, APOC3, ANGPTL3, ANGPTL4 and ANGPTL8 levels. In contrast, circulating GPIHBP1 levels are not altered in type 2 diabetes patients with higher serum triglyceride levels, whereas they are elevated in type 2 diabetes patients with diabetic retinopathy and nephropathy. The circulating regulators of lipolytic complex might be new biomarkers for lipid and glucose metabolism, and diabetic vascular complications. en-copyright= kn-copyright= en-aut-name=KurookaNaoko en-aut-sei=Kurooka en-aut-mei=Naoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=EguchiJun en-aut-sei=Eguchi en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Dibaetes kn-keyword=Dibaetes en-keyword=GPIHBP1 kn-keyword=GPIHBP1 en-keyword=Lipoprotein lipase kn-keyword=Lipoprotein lipase END start-ver=1.4 cd-journal=joma no-vol=107 cd-vols= no-issue=24 article-no= start-page=245117 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230609 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Phonon-mediated superconductivity in the Sb square-net compound LaCuSb2 en-subtitle= kn-subtitle= en-abstract= kn-abstract=We investigated the electronic structure and superconducting properties of single-crystalline LaCuSb2. The resistivity, magnetization, and specific heat measurements showed that LaCuSb2 is a bulk superconductor. The observed Shubnikov–de Haas oscillation and magnetic field dependence of the Hall resistivity can be reasonably understood assuming a slightly hole-doped Fermi surface. An electron-phonon coupling calculation clarified the difference from the isostructural compound LaAgSb2, indicating that (i) low-frequency vibration modes related to the interstitial layer sandwiched between the Sb square nets significantly contribute to the superconductivity and (ii) carriers with sizable electron-phonon coupling distribute isotropically on the Fermi surface. These are assumed to be the origin of the higher superconducting transition temperature compared with LaAgSb2. We conclude that the superconducting properties of LaCuSb2 can be understood within the framework of the conventional phonon-mediated mechanism. en-copyright= kn-copyright= en-aut-name=AkibaKazuto en-aut-sei=Akiba en-aut-mei=Kazuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KobayashiTatsuo C. en-aut-sei=Kobayashi en-aut-mei=Tatsuo C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=58 cd-vols= no-issue=9 article-no= start-page=848 end-page=855 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230621 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Endoscopic evaluation by the Kyoto classification of gastritis combined with serum anti-Helicobacter pylori antibody testing reliably risk-stratifies subjects in a population-based gastric cancer screening program en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background We previously demonstrated that the Kyoto classification of gastritis was useful for judging the status of Helicobacter pylori infection in a population-based screening program, and that adding H. pylori antibody test improved its accuracy (UMIN000028629). Here, we tested whether our endoscopic diagnosis of H. pylori infection status reliably estimated gastric cancer risk in the program.
Methods Data were collected from1345 subjects who underwent endoscopic follow-up 4 years after the end of the registration. We analyzed the association of three diagnostic methods of H. pylori infection with gastric cancer detection: (1) endoscopic diagnosis based on the Kyoto classification of gastritis; (2) serum diagnosis according to the ABC method (H. pylori antibody and pepsinogen I and II); and (3) endoscopic diagnosis together with H. pylori antibody test.
Results During the follow-up, 19 cases of gastric cancer were detected. By Kaplan–Meier analysis, the detection rates of cancer were significantly higher in the past or current H. pylori infection groups than in the never-infected group with all 3 methods. By the Cox proportional hazards model, the hazard ratio for cancer detection was highest in evaluation with the combined endoscopic diagnosis and the antibody test (method 3; hazard ratio 22.6, 95% confidence interval 2.99–171) among the three methods (the endoscopic diagnosis (method 1); 11.3, 2.58–49.8, and the ABC method (method 2); 7.52, 2.49–22.7).
Conclusions Endoscopic evaluation of H. pylori status with the Kyoto classification of gastritis, especially combined with serum anti-Helicobacter pylori antibody testing, reliably risk-stratified subjects in a population-based gastric cancer screening program. en-copyright= kn-copyright= en-aut-name=HiraiRyosuke en-aut-sei=Hirai en-aut-mei=Ryosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HiraiMami en-aut-sei=Hirai en-aut-mei=Mami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OtsukaMotoyuki en-aut-sei=Otsuka en-aut-mei=Motoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MitsuhashiToshiharu en-aut-sei=Mitsuhashi en-aut-mei=Toshiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShimodateYuichi en-aut-sei=Shimodate en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MouriHirokazu en-aut-sei=Mouri en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsuedaKazuhiro en-aut-sei=Matsueda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamamotoHiroshi en-aut-sei=Yamamoto en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MizunoMotowo en-aut-sei=Mizuno en-aut-mei=Motowo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Gastroenterology and Hepatology, Kurashiki Central Hospital kn-affil= affil-num=6 en-affil=Department of Gastroenterology and Hepatology, Kurashiki Central Hospital kn-affil= affil-num=7 en-affil=Department of Gastroenterology and Hepatology, Kurashiki Central Hospital kn-affil= affil-num=8 en-affil=Department of Gastroenterology and Hepatology, Kurashiki Central Hospital kn-affil= affil-num=9 en-affil=Department of Gastroenterology and Hepatology, Kurashiki Central Hospital kn-affil= en-keyword=Cancer screening kn-keyword=Cancer screening en-keyword=Gastric cancer kn-keyword=Gastric cancer en-keyword=Helicobacter pylori kn-keyword=Helicobacter pylori en-keyword=Gastrointestinal endoscopy kn-keyword=Gastrointestinal endoscopy en-keyword=Atrophic gastritis kn-keyword=Atrophic gastritis END start-ver=1.4 cd-journal=joma no-vol=299 cd-vols= no-issue=4 article-no= start-page=104587 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202304 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=ATP and its metabolite adenosine cooperatively upregulate the antigen-presenting molecules on dendritic cells leading to IFN-gamma production by T cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=Dendritic cells (DCs) present foreign antigens to T cells via the major histocompatibility complex (MHC), thereby inducing acquired immune responses. ATP accumulates at sites of inflammation or in tumor tissues, which triggers local inflammatory responses. However, it remains to be clarified how ATP modulates the functions of DCs. In this study, we investigated the effects of extracellular ATP on mouse bone marrow- derived dendritic cells (BMDCs) as well as the potential for subsequent T cell activation. We found that high concentrations of ATP (1 mM) upregulated the cell surface expression levels of MHC-I, MHC-II, and co-stimulatory molecules CD80 and CD86 but not those of co-inhibitory molecules PD-L1 and PD-L2 in BMDCs. Increased surface expression of MHC-I, MHC-II, CD80, and CD86 was inhibited by a pan-P2 receptor antagonist. In addition, the upregulation of MHC-I and MHC-II expression was inhibited by an adenosine P1 receptor antagonist and by inhibitors of CD39 and CD73, which metabolize ATP to adenosine. These results suggest that adenosine is required for the ATP-induced upregulation of MHC-I and MHC-II. In the mixed leukocyte reaction assay, ATP-stimulated BMDCs activated CD4 and CD8T cells and induced interferon-gamma (IFN-gamma) production by these T cells. Collectively, these results suggest that high concentrations of extracellular ATP upregulate the expression of antigenpresenting and co-stimulatory molecules but not that of coinhibitory molecules in BMDCs. Cooperative stimulation of ATP and its metabolite adenosine was required for the upregulation of MHC-I and MHC-II. These ATP-stimulated BMDCs induced the activation of IFN-gamma-producing T cells upon antigen presentation. en-copyright= kn-copyright= en-aut-name=FurutaKazuyuki en-aut-sei=Furuta en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OnishiHiroka en-aut-sei=Onishi en-aut-mei=Hiroka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IkadaYuki en-aut-sei=Ikada en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MasakiKento en-aut-sei=Masaki en-aut-mei=Kento kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TanakaSatoshi en-aut-sei=Tanaka en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KaitoChikara en-aut-sei=Kaito en-aut-mei=Chikara kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University kn-affil= affil-num=6 en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=77 cd-vols= no-issue=3 article-no= start-page=335 end-page=340 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202306 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Case of High-Grade Glioma in an Eloquent Area Treated with Awake Craniotomy in an 85-year-old Patient en-subtitle= kn-subtitle= en-abstract= kn-abstract=An 85-year-old woman presented with aphasia due to an occupying lesion in the left frontal lobe near the language area. Complete resection of the contrast-enhancing lesion was performed under awake conditions. The pathological diagnosis was anaplastic astrocytoma, and postoperative radiochemotherapy was administered. Awake surgery is a useful technique to reduce postoperative neurological sequelae and to maximize surgical resection. Although the patient was elderly, which is generally considered high risk, she did not have any severe neurological deficits and had a good outcome. Even in the extreme elderly, awake surgery can be useful for gliomas in language cortices. en-copyright= kn-copyright= en-aut-name=FujiiKentaro en-aut-sei=Fujii en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HiranoShuichiro en-aut-sei=Hirano en-aut-mei=Shuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KurozumiKazuhiko en-aut-sei=Kurozumi en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=DateIsao en-aut-sei=Date en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Neurological Surgery, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Neurological Surgery, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Neurological Surgery, Hamamatsu University School of Medicine, University Hospital kn-affil= affil-num=4 en-affil=Department of Neurological Surgery, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=awake surgery kn-keyword=awake surgery en-keyword=high-grade glioma kn-keyword=high-grade glioma en-keyword=eloquent area kn-keyword=eloquent area en-keyword=elderly patient kn-keyword=elderly patient END start-ver=1.4 cd-journal=joma no-vol=77 cd-vols= no-issue=3 article-no= start-page=263 end-page=272 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202306 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Early Fluid Balance Is Associated with 90-Day Mortality in Patients Receiving Continuous Renal Replacement Therapy en-subtitle= kn-subtitle= en-abstract= kn-abstract=Continuous renal replacement therapy (CRRT) is widely used to control fluid balance, but the optimal fluid balance to improve the prognosis of patients remains debated. Appropriate fluid management may depend on hemodynamic status. We investigated the association between 90-day mortality and fluid balance/mean arterial pressure (MAP) in patients receiving CRRT. This single-center retrospective study was conducted between May 2018 and March 2021. Based on the cumulative fluid balance at 72 h after initiation of CRRT, the cases were divided into negative (< 0 mL) and positive (> 0 mL) fluid balance groups. Ninety-day mortality was higher in the positive fluid balance group (p=0.009). At 4 h before and after CRRT initiation, the mean MAP was lower in the positive fluid balance group (p<0.05). After multivariate cox adjustment, 72-h positive fluid balance was independently associated with 90-day mortality (p=0.004). In addition, the cumulative fluid balance was associated with 90-day mortality (p<0.05) in cases without shock, high APACHE II score, sepsis, dialysis dependence, or vasopressor use. A 72-h positive fluid balance was associated with 90-day mortality in patients receiving CRRT. en-copyright= kn-copyright= en-aut-name=GuoYusheng en-aut-sei=Guo en-aut-mei=Yusheng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KosakaJunko en-aut-sei=Kosaka en-aut-mei=Junko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MorimatsuHiroshi en-aut-sei=Morimatsu en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=fluid management kn-keyword=fluid management en-keyword=continuous renal replacement therapy kn-keyword=continuous renal replacement therapy en-keyword=mortality kn-keyword=mortality en-keyword=mean arterial pressure kn-keyword=mean arterial pressure en-keyword=daily cumulative fluid balance kn-keyword=daily cumulative fluid balance END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue= article-no= start-page=39466 end-page=39483 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230413 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Artificial Neural Network Based Audio Reinforcement for Computer Assisted Rote Learning en-subtitle= kn-subtitle= en-abstract= kn-abstract=The dual-channel assumption of the cognitive theory of multimedia learning suggests that importing a large amount of information through a single (visual or audio) channel overloads that channel, causing partial loss of information, while importing it simultaneously through multiple channels relieves the burden on them and leads to the registration of a larger amount of information. In light of such knowledge, this study investigates the possibility of reinforcing visual stimuli with audio for supporting e-learners in memorization tasks. Specifically, we consider three kinds of learning material and two kinds of audio stimuli and partially reinforce each kind of material with each kind of stimuli in an arbitrary way. In a series of experiments, we determine the particular type of audio, which offers the highest improvement for each kind of material. Our work stands out as being the first study investigating the differences in memory performance in relation to different combinations of learning content and stimulus. Our key findings from the experiments are: (i) E-learning is more effective in refreshing memory rather than studying from scratch, (ii) Non-informative audio is more suited to verbal content, whereas informative audio is better for numerical content, (iii) Constant audio triggering degrades learning performance and thus audio triggering should be handled with care. Based on these findings, we develop an ANN-based estimator to determine the proper moment for triggering audio (i.e. when memory performance is estimated to be declining) and carry out follow-up experiments for testing the integrated framework. Our contributions involve (i) determination of the most effective audio for each content type, (ii) estimation of memory deterioration based on learners' interaction logs, and (iii) the proposal of improvement of memory registration through auditory reinforcement. We believe that such findings constitute encouraging evidence the memory registration of e-learners can be enhanced with content-aware audio incorporation. en-copyright= kn-copyright= en-aut-name=SupitayakulParisa en-aut-sei=Supitayakul en-aut-mei=Parisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YücelZeynep en-aut-sei=Yücel en-aut-mei=Zeynep kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MondenAkito en-aut-sei=Monden en-aut-mei=Akito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Visualization kn-keyword=Visualization en-keyword=Electronic learning kn-keyword=Electronic learning en-keyword=Task analysis kn-keyword=Task analysis en-keyword=Estimation kn-keyword=Estimation en-keyword=Vocabulary kn-keyword=Vocabulary en-keyword=Memory management kn-keyword=Memory management en-keyword=Learning (artificial intelligence) kn-keyword=Learning (artificial intelligence) en-keyword=E-learning kn-keyword=E-learning en-keyword=neural networks kn-keyword=neural networks en-keyword=artificial intelligence kn-keyword=artificial intelligence en-keyword=cognitive theory of multimedia learning kn-keyword=cognitive theory of multimedia learning en-keyword=cognitive load kn-keyword=cognitive load en-keyword=distinctiveness account kn-keyword=distinctiveness account en-keyword=perceptual decoupling kn-keyword=perceptual decoupling en-keyword=adaptability kn-keyword=adaptability en-keyword=educational data mining kn-keyword=educational data mining END start-ver=1.4 cd-journal=joma no-vol=4 cd-vols= no-issue=2 article-no= start-page=e12948 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230411 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Association between prehospital advanced life support by emergency medical services personnel and neurological outcomes among adult out-of-hospital cardiac arrest patients treated with extracorporeal cardiopulmonary resuscitation: A secondary analysis of the SAVE-J II study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Study Objective: Early deployment of extracorporeal cardiopulmonary resuscitation (ECPR) is critical in treating refractory out-of-hospital cardiac arrest (OHCA) patients who are potential candidates for ECPR. The effect of prehospital advanced life support (ALS), including epinephrine administration or advanced airway, compared with no ALS in this setting remains unclear. This study's objective was to determine the association between any prehospital ALS care and outcomes of patients who received ECPR with emergency medical services-treated OHCA.
Methods: This was a secondary analysis of data from the Study of Advanced Cardiac Life Support for Ventricular Fibrillation with Extracorporeal Circulation in Japan (SAVE-J) II study. Patients were separated into 2 groups-those who received prehospital ALS (ALS group) and those did not receive prehospital ALS (no ALS group). Multiple logistic regression analysis was used to investigate the association between prehospital ALS and favorable neurological outcomes (defined as Cerebral Performance Category scores 1-2) at hospital discharge.
Results: A total of 1289 patients were included, with 644 patients in the ALS group and 645 patients in the no ALS group. There were fewer favorable neurological outcomes at hospital discharge in the ALS group compared with the no ALS group (10.4 vs 19.8%, p <0.001). A multiple logistic regression analysis revealed that any prehospital ALS care (adjusted odds ratios 0.47; 95% confidence interval 0.34-0.66; p <0.001) was associated with unfavorable neurological outcomes at hospital discharge.
Conclusion: Prehospital ALS was associated with worse neurological outcomes at hospital discharge in patients treated with ECPR for OHCA. Further prospective studies are required to determine the clinical implications of these findings. en-copyright= kn-copyright= en-aut-name=YumotoTetsuya en-aut-sei=Yumoto en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HongoTakashi en-aut-sei=Hongo en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HifumiToru en-aut-sei=Hifumi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=InoueAkihiko en-aut-sei=Inoue en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SakamotoTetsuya en-aut-sei=Sakamoto en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KurodaYasuhiro en-aut-sei=Kuroda en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YorifujiTakashi en-aut-sei=Yorifuji en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakaoAtsunori en-aut-sei=Nakao en-aut-mei=Atsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NaitoHiromichi en-aut-sei=Naito en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SAVE-J II study group en-aut-sei=SAVE-J II study group en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Emergency and Critical Care Medicine, St. Luke’s International Hospital kn-affil= affil-num=4 en-affil=Department of Emergency, Disaster and Critical Care Medicine, Hyogo Emergency Medical Center kn-affil= affil-num=5 en-affil=Department of Emergency Medicine, Teikyo University School of Medicine kn-affil= affil-num=6 en-affil=Department of Emergency, Disaster, and Critical Care Medicine, Kagawa University Hospital kn-affil= affil-num=7 en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil= kn-affil= END start-ver=1.4 cd-journal=joma no-vol=77 cd-vols= no-issue=2 article-no= start-page=209 end-page=213 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202304 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Locally Advanced Rectal Cancer Invading the Gluteus Maximus Muscle Completely Responded to Total Neoadjuvant Therapy en-subtitle= kn-subtitle= en-abstract= kn-abstract=A 70-year-old male with anal pain and fever was diagnosed with rectal cancer perforation and abscess in the right gluteus maximus (GM) muscle. He underwent a transverse colon colostomy followed by preoperative capecitabine+oxaliplatin. Some local control was achieved but a residual abscess was observed in the right GM muscle. To secure circumferential resection margin by tumor reduction, he received chemoradiotherapy as total neoadjuvant therapy (TNT) and underwent laparoscopic abdominoperineal resection, D3 lymph node dissection, combined coccyx resection, and partial resection of the right GM muscle. The skin defect and pelvic dead space were filled with a right lateral vastus lateral great muscle flap. Histopathologically, the resected specimen showed no tumor cells in the primary tumor or lymph nodes, indicating a pathological complete response (pCR). This case suggests that TNT might improve the R0 resection and pCR rates and overall survival. en-copyright= kn-copyright= en-aut-name=SakamotoMasaki en-aut-sei=Sakamoto en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TeraishiFuminori en-aut-sei=Teraishi en-aut-mei=Fuminori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name= en-aut-sei= en-aut-mei= kn-aut-name=ShigeyasuKunitoshi kn-aut-sei=Shigeyasu kn-aut-mei=Kunitoshi aut-affil-num=3 ORCID= en-aut-name=KagawaShunsuke en-aut-sei=Kagawa en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=locally advanced rectal cancer kn-keyword=locally advanced rectal cancer en-keyword=total neoadjuvant therapy kn-keyword=total neoadjuvant therapy en-keyword=lateral vastus lateral great muscle flap kn-keyword=lateral vastus lateral great muscle flap END start-ver=1.4 cd-journal=joma no-vol=77 cd-vols= no-issue=2 article-no= start-page=121 end-page=129 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202304 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Complications of Percutaneous Cryoablation for Renal Tumors and Methods for Avoiding Them en-subtitle= kn-subtitle= en-abstract= kn-abstract=Percutaneous cryoablation of renal tumors is widely used because of its high efficacy and safety. This high safety can be attributed, at least in part, to the visibility of the ablated area as an “ice ball”. This therapy has fewer complications (incidence, 0-7.2%) and is less invasive than surgery. Minor bleeding is inevitable in most kidney-related procedures, and indeed the most common complication of this therapy is bleeding (hematoma and hematuria). However, patients require treatment such as transfusion or transarterial embolization in only 0-4% of bleeding cases. Various other complications such as ureteral or collecting system injury, bowel injury, nerve injury, skin injury, infection, pneumothorax, and tract seeding also occur, but they are usually minor and asymptomatic. However, operators should know and avoid the various complications associated with this therapy. This study aimed to summarize the complications of percutaneous cryoablation for renal tumors and provide some techniques for achieving safe procedures. en-copyright= kn-copyright= en-aut-name=IguchiToshihiro en-aut-sei=Iguchi en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsuiYusuke en-aut-sei=Matsui en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TomitaKoji en-aut-sei=Tomita en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=UkaMayu en-aut-sei=Uka en-aut-mei=Mayu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=UmakoshiNoriyuki en-aut-sei=Umakoshi en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KawabataTakahiro en-aut-sei=Kawabata en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MunetomoKazuaki en-aut-sei=Munetomo en-aut-mei=Kazuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NagataShoma en-aut-sei=Nagata en-aut-mei=Shoma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ArakiMotoo en-aut-sei=Araki en-aut-mei=Motoo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HirakiTakao en-aut-sei=Hiraki en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Radiology, Okayama University Hospital kn-affil= en-keyword=cryosurgery kn-keyword=cryosurgery en-keyword=kidney neoplasms kn-keyword=kidney neoplasms en-keyword=carcinoma kn-keyword=carcinoma en-keyword=renal cell kn-keyword=renal cell en-keyword=complication kn-keyword=complication END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=2023217 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Preparation of crystalline polyimide nanofibers via solution crystallization en-subtitle= kn-subtitle= en-abstract= kn-abstract=Two crystalline polyimide nanofibers (PINFs) with different morphologies were prepared. The crystalline unit cells of the aromatic PI crystals and the crystal morphologies of the fabricated PINFs were examined. PINF-I (lengths = 305 ± 152 nm and diameters = 12 ± 2 nm) was crystallized from crystalline PI dissolved in a concentrated sulfuric acid solution. The resulting PINF-I was isolated from this solution, and it did not aggregate in water. PINF-II with diameters of 105 ± 99 nm was prepared by dispersing PINF-I in a mixed water and t-butanol (TBA) solution (water:TBA = 4:1), followed by freeze-drying. Then, the PINF-II was heated to enhance its crystallinity. X-ray diffraction and transmission electron microscopy studies of the heat-treated PINF-II revealed a PI crystalline unit cell [orthorhombic, a = 1.21 nm, b = 0.88 nm, and c = 2.23 nm (molecular chain axis direction)]. The crystal structure of the heat-treated PINF-II suggested that highly crystalline PINFs were fabricated in which the PI molecular chains were oriented along the direction of the fiber lengths. en-copyright= kn-copyright= en-aut-name=KumanoShota en-aut-sei=Kumano en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakakiTomoyasu en-aut-sei=Takaki en-aut-mei=Tomoyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UchidaTetsuya en-aut-sei=Uchida en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230123 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Enzyme-Cleaved Bone Marrow Transplantation Improves the Engraftment of Bone Marrow Mesenchymal Stem Cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=Mesenchymal stem cell (MSC) therapy is a promising approach to curing bone diseases and disorders. In treating genetic bone dis-orders, MSC therapy is local or systemic transplantation of isolated and in vitro proliferated MSC rather than bone marrow transplan-tation. Recent evidence showed that bone marrow MSC engraftment to bone regeneration has been controversial in animal and human studies. Here, our modified bone marrow transplantation (BMT) method solved this problem. Like routine BMT, our modified method involves three steps: (i) isolation of bone marrow cells from the donor, (ii) whole-body lethal irradiation to the recipient, and (iii) injection of isolated bone marrow cells into irradiated recipient mice via the tail vein. The significant modification is imported at the bone marrow isolation step. While the bone marrow cells are flushed out from the bone marrow with the medium in routine BMT, we applied the enzymes' (collagenase type 4 and dispase) integrated medium to wash out the bone marrow cells. Then, cells were incubated in enzyme integrated solution at 37 degrees C for 10 minutes. This modification designated BMT as collagenase-integrated BMT (c-BMT). Notably, successful engraftment of bone marrow MSC to the new bone formation, such as osteoblasts and chondrocytes, occurs in c-BMT mice, whereas routine BMT mice do not recruit bone marrow MSC. Indeed, flow cytometry data showed that c-BMT includes a higher proportion of LepR(+), CD51(+), or RUNX2(+) non-hematopoietic cells than BMT. These findings suggested that c-BMT is a time-efficient and more reliable technique that ensures the disaggregation and collection of bone marrow stem cells and engraftment of bone marrow MSC to the recipient. Hence, we proposed that c-BMT might be a promising approach to curing genetic bone disorders. (c) 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research. en-copyright= kn-copyright= en-aut-name=KawaiHotaka en-aut-sei=Kawai en-aut-mei=Hotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OoMay Wathone en-aut-sei=Oo en-aut-mei=May Wathone kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakabatakeKiyofumi en-aut-sei=Takabatake en-aut-mei=Kiyofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TosaIkue en-aut-sei=Tosa en-aut-mei=Ikue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SoeYamin en-aut-sei=Soe en-aut-mei=Yamin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=EainHtoo Shwe en-aut-sei=Eain en-aut-mei=Htoo Shwe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SanouSho en-aut-sei=Sanou en-aut-mei=Sho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=FushimiShigeko en-aut-sei=Fushimi en-aut-mei=Shigeko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SukegawaShintaro en-aut-sei=Sukegawa en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NakanoKeisuke en-aut-sei=Nakano en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TakeshiTakarada en-aut-sei=Takeshi en-aut-mei=Takarada kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NagatsukaHitoshi en-aut-sei=Nagatsuka en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Regenerative Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Regenerative Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=BONE FORMATION kn-keyword=BONE FORMATION en-keyword=BONE MARROW MESENCHYMAL STEM CELLS kn-keyword=BONE MARROW MESENCHYMAL STEM CELLS en-keyword=BONE MARROW TRANSPLANTATION MODEL kn-keyword=BONE MARROW TRANSPLANTATION MODEL en-keyword=OSTEOBLASTS kn-keyword=OSTEOBLASTS en-keyword=SYSTEM BIOLOGY-BONE INTERACTOR kn-keyword=SYSTEM BIOLOGY-BONE INTERACTOR END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=11 article-no= start-page=e31713 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20221120 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Increased CCR4+ and Decreased Central Memory CD4+ T Lymphocytes in the Background Gastric Mucosa of Patients Developing Gastric Cancer After Helicobacter pylori Eradication: An Exploratory Study en-subtitle= kn-subtitle= en-abstract= kn-abstract=The composition of lymphocytes in the gastric mucosa following the eradication of Helicobacter pylori (H. pylori) in patients with and without gastric cancer has not been compared. This study performed a single spot analysis of gastric mucosal lymphocytes after H. pylori eradication in patients with (n = 13) and without (n = 20) gastric cancer. Our comprehensive analysis of lymphocyte composition in the gastric mucosa revealed that: i) the proportion of CD8+/CD3+ cells was relatively higher in the peri-tumor mucosa than in the background mucosa; ii) the proportion of CCR4+/CD3+ cells was higher, and the ratio of CD62L+/CD3+CD4+ cells was relatively lower in the gastric mucosa of cancer patients than in non-cancer patients; and iii) the proportion of CD45RA-CD62L+/CD3+CD4+ cells, namely, the central memory CD4+ T -cell fraction, was lower in the gastric mucosa of cancer patients than in non-cancer patients. Although the exact mechanism of the altered proportions of CCR4+/CD3+ and central memory CD4+ cells in the gastric mucosa of patients with cancer is unknown, focusing on lymphocytes in the gastric mucosa might help improve our understanding of gastric cancer development after H. pylori eradication. en-copyright= kn-copyright= en-aut-name=IwamuroMasaya en-aut-sei=Iwamuro en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakahashiTakahide en-aut-sei=Takahashi en-aut-mei=Takahide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HirabataAraki en-aut-sei=Hirabata en-aut-mei=Araki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TanakaTakehiro en-aut-sei=Tanaka en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OkadaHoroyuki en-aut-sei=Okada en-aut-mei=Horoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=2 en-affil=Division of Medical Support, Okayama University Hospital kn-affil= affil-num=3 en-affil=Division of Medical Support, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Pathology, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=carcinogenesis kn-keyword=carcinogenesis en-keyword=lymphocytes kn-keyword=lymphocytes en-keyword=helicobacter pylori kn-keyword=helicobacter pylori en-keyword=gastric adenocarcinoma kn-keyword=gastric adenocarcinoma en-keyword=flow cytometry kn-keyword=flow cytometry END start-ver=1.4 cd-journal=joma no-vol=77 cd-vols= no-issue=1 article-no= start-page=111 end-page=116 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202302 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Osteonecrosis of the Jaw in Two Rheumatoid Arthritis Patients Not Treated with a Bisphosphonate en-subtitle= kn-subtitle= en-abstract= kn-abstract=Medication-related osteonecrosis of the jaw (MRONJ) is a side effect in patients taking bone-modifying agents (BMAs), which are highly beneficial for treating osteoporosis and cancer. Bisphosphonates are prescribed to treat secondary osteoporosis in patients with rheumatoid arthritis (RA). We recently encountered two unusual cases of intraoral ONJ in RA patients who had not been treated with a BMA and did not have features of methotrexate- associated lymphoproliferative disorder. Their ONJ stage II bone exposures were treated by conservative therapy, providing good prognoses. These cases indicate that ONJ can occur in RA patients not treated with bisphosphonates. Several risk factors are discussed. en-copyright= kn-copyright= en-aut-name=AmanoKatsuhiko en-aut-sei=Amano en-aut-mei=Katsuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SugauchiAkinari en-aut-sei=Sugauchi en-aut-mei=Akinari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamadaChiaki en-aut-sei=Yamada en-aut-mei=Chiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KogoMikihiko en-aut-sei=Kogo en-aut-mei=Mikihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IidaSeiji en-aut-sei=Iida en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=The first department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry kn-affil= affil-num=3 en-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=The first department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry kn-affil= affil-num=5 en-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=osteonecrosis of the jaw kn-keyword=osteonecrosis of the jaw en-keyword=rheumatoid arthritis kn-keyword=rheumatoid arthritis en-keyword=risk factor kn-keyword=risk factor en-keyword=bisphosphonate kn-keyword=bisphosphonate END start-ver=1.4 cd-journal=joma no-vol=77 cd-vols= no-issue=1 article-no= start-page=97 end-page=104 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202302 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Treatment of Severe Open Bite Malocclusion with Four-Piece Segmental Horseshoe Le Fort I Osteotomy en-subtitle= kn-subtitle= en-abstract= kn-abstract=Appropriate operations in severe anterior open bite (AOB) cases are extremely complicated to perform because of the multiple surgical procedures involved, the difficulty of predicting posttreatment aesthetics, and the high relapse rate. We herein report a 16-year-old girl with skeletal Class II, severe AOB malocclusion, and crowding with short roots, and aesthetic and functional problems. Four-piece segmental Le Fort I osteotomy with horseshoe osteotomy was performed for maxillary intrusion, and bilateral sagittal split ramus osteotomy (SSRO) and genioplasty were performed for mandibular advancement. The malocclusion and skeletal deformity were significantly improved by the surgical orthodontic treatment. Functional and aesthetic occlusion with an improved facial profile was established, and no further root shortening was observed. Acceptable occlusion and dentition were maintained after a two-year retention period. This strategy of surgical orthodontic treatment with a complicated operative procedure might be effective for correcting certain severe AOB malocclusion cases. en-copyright= kn-copyright= en-aut-name=HoshijimaMitsuhiro en-aut-sei=Hoshijima en-aut-mei=Mitsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkaNaoki en-aut-sei=Oka en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsumuraTatsushi en-aut-sei=Matsumura en-aut-mei=Tatsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IidaSeiji en-aut-sei=Iida en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KamiokaHiroshi en-aut-sei=Kamioka en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Oral and Maxillofacial Surgery, Wakayama Medical University kn-affil= affil-num=4 en-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=anterior open bite kn-keyword=anterior open bite en-keyword=short roots kn-keyword=short roots en-keyword=severe crowding kn-keyword=severe crowding en-keyword=four-piece segmental horseshoe Le Fort I osteotomy kn-keyword=four-piece segmental horseshoe Le Fort I osteotomy END start-ver=1.4 cd-journal=joma no-vol=77 cd-vols= no-issue=1 article-no= start-page=65 end-page=70 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202302 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effect of a Cyclooxygenase-2 Inhibitor in Combination with (−)-Epigallocatechin Gallate or Polyphenon E on Cisplatin-Induced Lung Tumorigenesis in A/J Mice en-subtitle= kn-subtitle= en-abstract= kn-abstract=We investigated the effects of celecoxib combined with (−)-epigallocatechin-3-gallate (EGCG) or polyphenon E in a cisplatin-induced lung tumorigenesis model. Four-week-old female A/J mice were divided into seven groups: (i) Control, (ii) 150 mg/kg celecoxib (150Cel), (iii) 1,500 mg/kg celecoxib (1500Cel), (iv) EGCG+150 mg/kg celecoxib (EGCG+150Cel), (v) EGCG+1,500 mg/kg celecoxib (EGCG+1500Cel), (vi) polyphenon E+150 mg/kg celecoxib (PolyE+150Cel), and (vii) polyphenon E+1,500 mg/kg celecoxib (PolyE+1500Cel). All mice were administered cisplatin (1.62 mg/kg of body weight, i.p.) 1×/week for 10 weeks and sacrificed at week 30; the numbers of tumors on the lung surface were then determined. The tumor incidence and multiplicity (no. of tumors/mouse, mean±SD) were respectively 95% and 2.15±1.50 in Control, 95% and 2.10±1.29 in 150Cel, 86% and 1.67±1.20 in 1500Cel, 71% and 1.38±1.24 in EGCG+150Cel, 67% and 1.29±1.38 in EGCG+1500Cel, 80% and 1.95±1.36 in PolyE+150Cel, and 65% and 1.05±0.10 in PolyE+1500Cel. The combination of high-dose celecoxib with EGCG or polyphenon E significantly reduced multiplicity in cisplatin-induced lung tumors. en-copyright= kn-copyright= en-aut-name=SatoKen en-aut-sei=Sato en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakigawaNagio en-aut-sei=Takigawa en-aut-mei=Nagio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KuboToshio en-aut-sei=Kubo en-aut-mei=Toshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KatayamaHideki en-aut-sei=Katayama en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KishinoDaizo en-aut-sei=Kishino en-aut-mei=Daizo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OkadaToshiaki en-aut-sei=Okada en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HisamotoAkiko en-aut-sei=Hisamoto en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MimotoJunko en-aut-sei=Mimoto en-aut-mei=Junko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OchiNobuaki en-aut-sei=Ochi en-aut-mei=Nobuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YoshinoTadashi en-aut-sei=Yoshino en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=UeokaHiroshi en-aut-sei=Ueoka en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TanimotoMitsune en-aut-sei=Tanimoto en-aut-mei=Mitsune kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MaedaYoshionobu en-aut-sei=Maeda en-aut-mei=Yoshionobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KiuraKatsuyuki en-aut-sei=Kiura en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of General Internal Medicine 4, Kawasaki Medical School kn-affil= affil-num=3 en-affil=Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Medicine, Yamaguchi-Ube Medical Center kn-affil= affil-num=5 en-affil=Department of Medicine, Yamaguchi-Ube Medical Center kn-affil= affil-num=6 en-affil=Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of General Internal Medicine 4, Kawasaki Medical School kn-affil= affil-num=10 en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Medicine, Yamaguchi-Ube Medical Center kn-affil= affil-num=12 en-affil=Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=celecoxib kn-keyword=celecoxib en-keyword=cisplatin kn-keyword=cisplatin en-keyword=EGCG kn-keyword=EGCG en-keyword=lung tumor kn-keyword=lung tumor en-keyword=polyphenon E kn-keyword=polyphenon E END start-ver=1.4 cd-journal=joma no-vol=77 cd-vols= no-issue=1 article-no= start-page=57 end-page=64 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202302 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Development, Disappearance, and Clinical Course of Melanosis Coli: Sex Differences in the Progression of Severity en-subtitle= kn-subtitle= en-abstract= kn-abstract=Melanosis coli (MC) is an acquired colorectal disorder visualized as colonic mucosa pigmentation. Disease severity is confirmed based on MC depth, shape, and coloration, although the clinical course is not fully understood. This study sought to clarify characteristics of MC development and disappearance and to investigate its clinical course and severity. Contributors to MC grade progression were explored. This study reviewed MC cases discovered via colonoscopy at a single institution over a 10-year period. Of all 216 MC cases, 17 developing and 10 disappearing cases were detected. Anthranoid laxative use was a key factor: 29.4% of the developing cases had used such agents before the initial MC diagnosis, whereas 40% of disappearing cases had discontinued anthranoids prior to detection of MC disappearance. Among 70 grade I cases, progression to grade II occurred in 16 cases during a mean follow-up of 3.67±2.1 years (rate of progression=22.8%). Males more commonly showed progressive than stable grade I cases, and the probability of progression was higher for male than for female cases. An association between anthranoid administration and MC presence was presumed, and grade I MC was found to progress in severity over 5 years. en-copyright= kn-copyright= en-aut-name=KatsumataRyo en-aut-sei=Katsumata en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ManabeNoriaki en-aut-sei=Manabe en-aut-mei=Noriaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MonobeYasumasa en-aut-sei=Monobe en-aut-mei=Yasumasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AyakiMaki en-aut-sei=Ayaki en-aut-mei=Maki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SuehiroMitsuhiko en-aut-sei=Suehiro en-aut-mei=Mitsuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FujitaMinoru en-aut-sei=Fujita en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KamadaTomoari en-aut-sei=Kamada en-aut-mei=Tomoari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KawamotoHirofumi en-aut-sei=Kawamoto en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HarumaKen en-aut-sei=Haruma en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of General Internal Medicine 2, Kawasaki Medical School General Medical Center kn-affil= affil-num=2 en-affil=Division of Endoscopy and Ultrasonography, Department of Clinical Pathology and Laboratory Medicine, Kawasaki Medical School General Medical Center kn-affil= affil-num=3 en-affil=Pathology, Kawasaki Medical School General Medical Center kn-affil= affil-num=4 en-affil=Division of Endoscopy and Ultrasonography, Department of Clinical Pathology and Laboratory Medicine, Kawasaki Medical School General Medical Center kn-affil= affil-num=5 en-affil=Department of General Internal Medicine 2, Kawasaki Medical School General Medical Center kn-affil= affil-num=6 en-affil=Division of Endoscopy and Ultrasonography, Department of Clinical Pathology and Laboratory Medicine, Kawasaki Medical School General Medical Center kn-affil= affil-num=7 en-affil=Health Care Medicine, Kawasaki Medical School General Medical Center kn-affil= affil-num=8 en-affil=Department of General Internal Medicine 2, Kawasaki Medical School General Medical Center kn-affil= affil-num=9 en-affil=Department of General Internal Medicine 2, Kawasaki Medical School General Medical Center kn-affil= en-keyword=melanosis kn-keyword=melanosis en-keyword=sex characteristics kn-keyword=sex characteristics en-keyword=laxatives kn-keyword=laxatives en-keyword=colorectal neoplasms kn-keyword=colorectal neoplasms en-keyword=colonoscopy kn-keyword=colonoscopy END start-ver=1.4 cd-journal=joma no-vol=77 cd-vols= no-issue=1 article-no= start-page=37 end-page=43 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202302 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Efficacy of Inflammatory and Immune Markers for Predicting the Prognosis of Patients with Stage IV Breast Cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=Systemic therapy for stage IV breast cancer is usually an initial treatment and is based on findings regarding biomarkers (e.g., hormone receptors and human epidermal growth factor receptor-2 [HER2]). However, the response to therapy and outcomes sometime differ among patients with similar prognostic factors including grade, hormone receptor, HER2, and more. We conducted retrospective analyses to evaluate the correlations between the overall survival (OS) of 46 stage IV breast cancer patients and (i) the peripheral absolute lymphocyte count (ALC) and (ii) composite blood cell markers. The peripheral blood cell markers included the neutrophil- to-lymphocyte ratio (NLR), the monocyte-to-lymphocyte ratio (MLR), the systemic immune-inflammation index (SII), the systemic inflammation response index (SIRI), and the most recently introduced indicator, the pan-immune-inflammatory value (PIV). The SIRI and PIV showed prognostic impacts on the patients: those with a low SIRI or a low PIV showed significantly better OS than those with a high SIRI (5-year, 66.0% vs. 35.0%, p<0.05) or high PIV (5-year, 68.1% vs. 38.5%, p<0.05), respectively. This is the first report indicating the possible prognostic value of the PIV for OS in patients with stage IV breast cancer. Further studies with larger numbers of patients are necessary for further clarification. en-copyright= kn-copyright= en-aut-name=YamanouchiKosho en-aut-sei=Yamanouchi en-aut-mei=Kosho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MaedaShigeto en-aut-sei=Maeda en-aut-mei=Shigeto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Surgery, National Hospital Organization, Nagasaki Medical Center kn-affil= affil-num=2 en-affil=Department of Surgery, National Hospital Organization, Nagasaki Medical Center kn-affil= en-keyword=breast cancer kn-keyword=breast cancer en-keyword=pan-immune-inflammatory value kn-keyword=pan-immune-inflammatory value en-keyword=prognosis kn-keyword=prognosis END start-ver=1.4 cd-journal=joma no-vol=298 cd-vols= no-issue=12 article-no= start-page=102668 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202212 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Crystal structures of photosystem II from a cyanobacterium expressing psbA2 in comparison to psbA3 reveal differences in the D1 subunit en-subtitle= kn-subtitle= en-abstract= kn-abstract=Three psbA genes (psbA1, psbA2, and psbA3) encoding the D1 subunit of photosystem II (PSII) are present in the ther-mophilic cyanobacterium Thermosynechococcus elongatus and are expressed differently in response to changes in the growth environment. To clarify the functional differences of the D1 protein expressed from these psbA genes, PSII dimers from two strains, each expressing only one psbA gene (psbA2 or psbA3), were crystallized, and we analyzed their structures at resolu-tions comparable to previously studied PsbA1-PSII. Our results showed that the hydrogen bond between pheophytin/D1 (PheoD1) and D1-130 became stronger in PsbA2-and PsbA3-PSII due to change of Gln to Glu, which partially explains the increase in the redox potential of PheoD1 observed in PsbA3. In PsbA2, one hydrogen bond was lost in PheoD1 due to the change of D1-Y147F, which may explain the decrease in stability of PheoD1 in PsbA2. Two water molecules in the Cl-1 channel were lost in PsbA2 due to the change of D1-P173M, leading to the narrowing of the channel, which may explain the lower efficiency of the S-state transition beyond S2 in PsbA2-PSII. In PsbA3-PSII, a hydrogen bond between D1-Ser270 and a sulfoquinovosyl-diacylglycerol molecule near QB dis-appeared due to the change of D1-Ser270 in PsbA1 and PsbA2 to D1-Ala270. This may result in an easier exchange of bound QB with free plastoquinone, hence an enhancement of oxygen evolution in PsbA3-PSII due to its high QB exchange efficiency. These results provide a structural basis for further functional examination of the three PsbA variants. en-copyright= kn-copyright= en-aut-name=NakajimaYoshiki en-aut-sei=Nakajima en-aut-mei=Yoshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=Ugai-AmoNatsumi en-aut-sei=Ugai-Amo en-aut-mei=Natsumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ToneNaoki en-aut-sei=Tone en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakagawaAkiko en-aut-sei=Nakagawa en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IwaiMasako en-aut-sei=Iwai en-aut-mei=Masako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IkeuchiMasahiko en-aut-sei=Ikeuchi en-aut-mei=Masahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SugiuraMiwa en-aut-sei=Sugiura en-aut-mei=Miwa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SugaMichihiro en-aut-sei=Suga en-aut-mei=Michihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=Jian-RenShen en-aut-sei=Jian-Ren en-aut-mei=Shen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Proteo-Science Research Center, Ehime University kn-affil= affil-num=5 en-affil=Graduate School and College of Arts and Sciences, The University of Tokyo kn-affil= affil-num=6 en-affil=Graduate School and College of Arts and Sciences, The University of Tokyo kn-affil= affil-num=7 en-affil=Proteo-Science Research Center, Ehime University kn-affil= affil-num=8 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=9 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=471 cd-vols= no-issue= article-no= start-page=214742 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202211 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Geometric, electronic and spin structures of the CaMn4O5 catalyst for water oxidation in oxygen-evolving photosystem II. Interplay between experiments and theoretical computations en-subtitle= kn-subtitle= en-abstract= kn-abstract=The aim of this review is to elucidate geometric structures of the catalytic CaMn4Ox (x = 5, 6) cluster in the Kok cycle for water oxidation in the oxygen evolving complex (OEC) of photosystem II (PSII) based on the high-resolution (HR) X-ray diffraction (XRD) and serial femtosecond crystallography (SFX) experiments using the X-ray free-electron laser (XFEL). Quantum mechanics (QM) and QM/molecular mechanics (MM) computations are performed to elucidate the electronic and spin structures of the CaMn4Ox (x = 5, 6) cluster in five states S-i (i = 0 similar to 4) on the basis of the X-ray spectroscopy, electron paramagnetic resonance (EPR) and related experiments. Interplay between the experiments and theoretical computations has been effective to elucidate the coordination structures of the CaMn4Ox (x = 5, 6) cluster ligated by amino acid residues of the protein matrix of PSII, valence states of the four Mn ions and total spin states by their exchange-couplings, and proton-shifted isomers of the CaMn4Ox (x = 5, 6) cluster. The HR XRD and SFX XFEL experiments have also elucidated the biomolecular systems structure of OEC of PSII and the hydrogen bonding networks consisting of water molecules, chloride anions, etc., for water inlet and proton release pathways in PSII. Large-scale QM/MM computations have been performed for elucidation of the hydrogen bonding distances and angles by adding invisible hydrogen atoms to the HR XRD structure. Full geometry optimizations by the QM and QM/MM methods have been effective for elucidation of the molecular systems structure around the CaMn4Ox (x = 5, 6) cluster in OEC. DLPNO-CCSD(T-0) method has been applied to elucidate relative energies of possible intermediates in each state of the Kok cycle for water oxidation. Implications of these results are discussed in relation to the blueprint for developments of artificial catalysts for water oxidation. en-copyright= kn-copyright= en-aut-name=YamaguchiKizashi en-aut-sei=Yamaguchi en-aut-mei=Kizashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShojiMitsuo en-aut-sei=Shoji en-aut-mei=Mitsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IsobeHiroshi en-aut-sei=Isobe en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KawakamiTakashi en-aut-sei=Kawakami en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MiyagawaKoichi en-aut-sei=Miyagawa en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SugaMichihiro en-aut-sei=Suga en-aut-mei=Michihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AkitaFusamichi en-aut-sei=Akita en-aut-mei=Fusamichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Center for Quantum Information and Quantum Biology, Osaka University kn-affil= affil-num=2 en-affil=Center of Computational Sciences, Tsukuba University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=RIKEN Center for Computational Science kn-affil= affil-num=5 en-affil=Center of Computational Sciences, Tsukuba University kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Water oxidation kn-keyword=Water oxidation en-keyword=Oxygen evolution kn-keyword=Oxygen evolution en-keyword=Photosystem II kn-keyword=Photosystem II en-keyword=HR XRD kn-keyword=HR XRD en-keyword=SFX XFEL kn-keyword=SFX XFEL en-keyword=QM/MM calculation kn-keyword=QM/MM calculation en-keyword=DLPNO CCSD(T-0) computations, Oxyl radical character kn-keyword=DLPNO CCSD(T-0) computations, Oxyl radical character END start-ver=1.4 cd-journal=joma no-vol=126 cd-vols= no-issue=38 article-no= start-page=7212 end-page=7228 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220915 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Roles of the Flexible Primary Coordination Sphere of the Mn4CaOx Cluster: What Are the Immediate Decay Products of the S-3 State? en-subtitle= kn-subtitle= en-abstract= kn-abstract=The primary coordination sphere of the multinuclear cofactor (Mn4CaOx) in the oxygen-evolving complex (OEC) of photosystem II is absolutely conserved to maintain its structure and function. Recent time-resolved serial femtosecond crystallography identified large reorganization of the primary coordination sphere in the S-2 to S-3 transition, which elicits a cascade of events involving Mn oxidation and water molecule binding to a putative catalytic Mn site. We examined how the crystallographic fields, created by transient conformational states of the OEC at various time points, affect the thermodynamics of various isomers of the Mn cluster using DFT calculations, with an aim of comprehending the functional roles of the flexible primary coordination sphere in the S-2 to S-3 transition and in the recovery of the S-2 state. The results show that the relative movements of surrounding residues change the size and shape of the cavity of the cluster and thereby affect the thermodynamics of various catalytic intermediates as well as the ability to capture a new water molecule at a coordinatively unsaturated site. The implication of these findings is that the protein dynamics may serve to gate the catalytic reaction efficiently by controlling the sequence of Mn oxidation/reduction and water binding/release. This interpretation is consistent with EPR experiments; g similar to 5 and g similar to 3 signals obtained after near-infrared (NIR) excitation of the S-3 state at 4 K and a g similar to 5 only signal produced after prolonged incubation of the S-3 state at 77 K can be best explained as originating from water-bound S-2 clusters (S-total = 7/2) under a S-3 ligand field, i.e., the immediate one-electron reduction products of the oxyl-oxo (S-total = 6) and hydroxo-oxo (S-total = 3) species in the S-3 state. en-copyright= kn-copyright= en-aut-name=IsobeHiroshi en-aut-sei=Isobe en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShojiMitsuo en-aut-sei=Shoji en-aut-mei=Mitsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SuzukiTakayoshi en-aut-sei=Suzuki en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamaguchiKizashi en-aut-sei=Yamaguchi en-aut-mei=Kizashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Center for Computational Science, University of Tsukuba, kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=5 en-affil=Institute for NanoScience Design, Osaka University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=76 cd-vols= no-issue=6 article-no= start-page=737 end-page=742 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202212 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Case of Paraplegia Treated with Cerebrospinal Fluid Drainage and Permissive Hypertension after Graft Replacement of the Ascending Aorta and the Total Aortic Arch for Acute Aortic Dissection Stanford Type A en-subtitle= kn-subtitle= en-abstract= kn-abstract=Paraplegia after an operation for acute aortic dissection Stanford type A (AADA) is fairly uncommon, and there is no consensus about optimal treatment. We present a case in which cerebrospinal fluid drainage (CSFD) and permissive hypertension were used for treatment of paraplegia. When the patient showed complete bilateral paraplegia after operation for AADA, we immediately began CSFD and maintained mean arterial blood pressure at over 90 mmHg. His neurological deficit gradually recovered, and he was eventually able to walk without support. The combination of CSFD and permissive hypertension could be a first-line emergent treatment for postoperative paraplegia after AADA surgery. en-copyright= kn-copyright= en-aut-name=YamaokaMasakazu en-aut-sei=Yamaoka en-aut-mei=Masakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamamotoYumi en-aut-sei=Yamamoto en-aut-mei=Yumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MinamiEriko en-aut-sei=Minami en-aut-mei=Eriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Anesthesiology, Japanese Red Cross Society Himeji Hospital kn-affil= affil-num=2 en-affil=Department of Anesthesiology and Critical Care Medicine, Hiroshima Citizens Hospital kn-affil= affil-num=3 en-affil=Department of Anesthesiology, Japanese Red Cross Society Himeji Hospital kn-affil= en-keyword=paraplegia kn-keyword=paraplegia en-keyword=acute aortic dissection kn-keyword=acute aortic dissection en-keyword=cerebrospinal drainage kn-keyword=cerebrospinal drainage en-keyword=permissive hypertension kn-keyword=permissive hypertension END start-ver=1.4 cd-journal=joma no-vol=76 cd-vols= no-issue=6 article-no= start-page=695 end-page=703 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202212 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=History of Transcatheter Arterial Chemoembolization Predicts the Efficacy of Hepatic Arterial Infusion Chemotherapy in Hepatocellular Carcinoma Patients en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study sought to identify factors that are predictive of a therapeutic response to hepatic arterial infusion chemotherapy (HAIC) by focusing on the number of prior transcatheter arterial chemoembolization (TACE) sessions. To determine the parameters predicting a good response to HAIC, we retrospectively analyzed 170 patients with hepatocellular carcinoma (HCC) who received HAIC regimens comprising low-dose cisplatin combined with 5-fluorouracil (LFP) or cisplatin (CDDP) for the first time. In both the LFP and CDDP regimens, the response rates were significantly lower in patients with three or more prior TACE sessions than in those with two or fewer prior TACE sessions (LFP 57% versus 28%; p=0.01, CDDP 27% versus 6%; p=0.01). Multivariable logistic regression analysis revealed that the number of prior TACE sessions (≥ 3) was significantly associated with non-responder status (odds ratio 4.17, 95% Confidence Interval (CI) 1.76-9.86) in addition to the HAIC regimen. Multivariable analysis using the Cox proportional hazards model revealed that a larger number of prior TACE sessions (≥ 3) was a significant risk factor for survival (hazard ratio 1.60, 95% CI 1.12-2.29) in addition to Child-Pugh class, serum alpha-fetoprotein concentration, and maximum diameter of HCC. HCC patients who receive fewer prior TACE sessions (≤ 2) were found to be better responders to HAIC. en-copyright= kn-copyright= en-aut-name=OnishiHideki en-aut-sei=Onishi en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NousoKazuhiro en-aut-sei=Nouso en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakakiAkinobu en-aut-sei=Takaki en-aut-mei=Akinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OyamaAtsushi en-aut-sei=Oyama en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AdachiTakuya en-aut-sei=Adachi en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=WadaNozomu en-aut-sei=Wada en-aut-mei=Nozomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakeuchiYasuto en-aut-sei=Takeuchi en-aut-mei=Yasuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShirahaHidenori en-aut-sei=Shiraha en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OkadaHiroyuki en-aut-sei=Okada en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=hepatic arterial infusion chemotherapy kn-keyword=hepatic arterial infusion chemotherapy en-keyword=hepatocellular carcinoma kn-keyword=hepatocellular carcinoma en-keyword=refractory kn-keyword=refractory en-keyword=transcatheter arterial chemoembolization kn-keyword=transcatheter arterial chemoembolization END start-ver=1.4 cd-journal=joma no-vol=76 cd-vols= no-issue=6 article-no= start-page=689 end-page=694 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202212 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=An Evaluation of the Efficacy of Compression Therapy Using Sleeves and Stockings to Prevent Docetaxel-induced Peripheral Neuropathy in Breast Cancer Patients en-subtitle= kn-subtitle= en-abstract= kn-abstract=Taxanes are key drugs for patients with breast cancer. A major adverse effect of taxanes is peripheral neuropathy (PN). To investigate the ability of compression therapy using sleeves and stockings to prevent PN due to the taxane docetaxel, we conducted a single-center historical control trial. Patients receiving docetaxel at 75 mg/m2 every 3 weeks for 4 cycles as first-line chemotherapy for breast cancer were eligible. PN was evaluated using the common terminology criteria for adverse events version 4.0. The primary endpoint was the incidence of allgrade PN until 3 weeks after the fourth docetaxel administration. We evaluated 26 patients in the intervention group and compared their data to those collected retrospectively from 52 patients treated with docetaxel without compression. Neither the incidence of all-grade PN until 3 weeks after the fourth docetaxel administration (63.5% in the control group vs. 76.9% in the intervention group, p=0.31) nor that of PN grade ≥ 2 (13.5% vs. 15.4%, p=0.99) differed between the groups. In this study, the efficacy of compression therapy using sleeves and stockings to prevent PN induced by docetaxel was not demonstrated. Further clinical studies including medications or intervention are needed to reduce the incidence and severity of PN induced by chemotherapy. en-copyright= kn-copyright= en-aut-name=YamanouchiKosho en-aut-sei=Yamanouchi en-aut-mei=Kosho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KubaSayaka en-aut-sei=Kuba en-aut-mei=Sayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsumotoMegumi en-aut-sei=Matsumoto en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YanoHiroshi en-aut-sei=Yano en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MoritaMichi en-aut-sei=Morita en-aut-mei=Michi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SakimuraChika en-aut-sei=Sakimura en-aut-mei=Chika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OtsuboRyota en-aut-sei=Otsubo en-aut-mei=Ryota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HidakaMasaaki en-aut-sei=Hidaka en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NagayasuTakeshi en-aut-sei=Nagayasu en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=EguchiSusumu en-aut-sei=Eguchi en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Surgery, Nagasaki University Graduate School of Biomedical Science kn-affil= affil-num=2 en-affil=Department of Surgery, Nagasaki University Graduate School of Biomedical Science kn-affil= affil-num=3 en-affil=Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Science kn-affil= affil-num=4 en-affil=Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Science kn-affil= affil-num=5 en-affil=Department of Surgery, Nagasaki University Graduate School of Biomedical Science kn-affil= affil-num=6 en-affil=Department of Surgery, Nagasaki University Graduate School of Biomedical Science kn-affil= affil-num=7 en-affil=Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Science kn-affil= affil-num=8 en-affil=Department of Surgery, Nagasaki University Graduate School of Biomedical Science kn-affil= affil-num=9 en-affil=Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Science kn-affil= affil-num=10 en-affil=Department of Surgery, Nagasaki University Graduate School of Biomedical Science kn-affil= en-keyword=breast cancer kn-keyword=breast cancer en-keyword=docetaxel kn-keyword=docetaxel en-keyword=neuropathy kn-keyword=neuropathy en-keyword=compression kn-keyword=compression END start-ver=1.4 cd-journal=joma no-vol=76 cd-vols= no-issue=6 article-no= start-page=661 end-page=671 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202212 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Association of Genetic Polymorphism with Taxane-induced Peripheral Neuropathy: Sub-analysis of a Randomized Phase II Study to Determine the Optimal Dose of 3-week Cycle Nab-Paclitaxel in Metastatic Breast Cancer Patients en-subtitle= kn-subtitle= en-abstract= kn-abstract=Chemotherapy-induced peripheral neuropathy (CIPN) is an important clinical challenge that threatens patients’ quality of life. This sub-study of the ABROAD trial investigated the influence of single nucleotide polymorphisms (SNPs) on CIPN, using genotype data from a randomized study to determine the optimal dose of a 3-week-cycle regimen of nab-paclitaxel (q3w nab-PTX) in patients with metastatic breast cancer (MBC). Patients with HER2-negative MBC were randomly assigned to three doses of q3w nab-PTX (SD: 260 mg/m2 vs. MD: 220 mg/m2 vs. LD: 180 mg/m2). Five SNPs (EPHA4-rs17348202, EPHA5-rs7349683, EPHA6-rs301927, LIMK2-rs5749248, and XKR4-rs4737264) were analyzed based on the results of a previous genome-wide association study. Per-allele SNP associations were assessed by a Cox regression to model the cumulative dose of nab-PTX up to the onset of severe or worsening sensory neuropathy. A total of 141 patients were enrolled in the parent study; 91(65%) were included in this sub-study. Worsening of CIPN was significantly greater in the cases with XKR4 AC compared to those with a homozygote AA (HR 1.86, 95%CI: 1.00001−3.46, p=0.049). There was no significant correlation of CIPN with any other SNP. A multivariate analysis showed that the cumulative dose of nab-PTX was most strongly correlated with CIPN (p<0.01). en-copyright= kn-copyright= en-aut-name=AbeYuko en-aut-sei=Abe en-aut-mei=Yuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TairaNaruto en-aut-sei=Taira en-aut-mei=Naruto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KashiwabaraKosuke en-aut-sei=Kashiwabara en-aut-mei=Kosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TsurutaniJunji en-aut-sei=Tsurutani en-aut-mei=Junji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KitadaMasahiro en-aut-sei=Kitada en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakahashiMasato en-aut-sei=Takahashi en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KatoHiroaki en-aut-sei=Kato en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KikawaYuichiro en-aut-sei=Kikawa en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SakataEiko en-aut-sei=Sakata en-aut-mei=Eiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NaitoYoichi en-aut-sei=Naito en-aut-mei=Yoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=HasegawaYoshie en-aut-sei=Hasegawa en-aut-mei=Yoshie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SaitoTsuyoshi en-aut-sei=Saito en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=IwasaTsutomu en-aut-sei=Iwasa en-aut-mei=Tsutomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=TakashimaTsutomu en-aut-sei=Takashima en-aut-mei=Tsutomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=AiharaTomohiko en-aut-sei=Aihara en-aut-mei=Tomohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=MukaiHirofumi en-aut-sei=Mukai en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=HaraFumikata en-aut-sei=Hara en-aut-mei=Fumikata kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=ShienTadahiko en-aut-sei=Shien en-aut-mei=Tadahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=DoiharaHiroyoshi en-aut-sei=Doihara en-aut-mei=Hiroyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= affil-num=1 en-affil=Department of Thoracic, Breast, and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Breast and Endocrine surgery, Kawasaki Medical School Hospital kn-affil= affil-num=3 en-affil=Clinical Research Promotion Center, University of Tokyo Hospital kn-affil= affil-num=4 en-affil=Advanced Cancer Translational Research Institute, Showa University kn-affil= affil-num=5 en-affil=Breast Disease Center, Asahikawa Medical University Hospital kn-affil= affil-num=6 en-affil=Department of Breast Surgery, National Hospital Organization Hokkaido Cancer Center kn-affil= affil-num=7 en-affil=Department of Breast Surgery, Teine Keijinkai Hospital kn-affil= affil-num=8 en-affil=Department of Breast Surgery, Kansai Medical University Hospital kn-affil= affil-num=9 en-affil=Department of Breast Surgery, Niigata City General Hospital kn-affil= affil-num=10 en-affil=Department of Medical Oncology, National Cancer Center Hospital East kn-affil= affil-num=11 en-affil=Department of Breast Surgery, Hachinohe City Hospital kn-affil= affil-num=12 en-affil=Department of Breast Surgery, Japanese Red Cross Saitama Hospital kn-affil= affil-num=13 en-affil=Department of Medical Oncology, Kindai University Faculty of Medicine kn-affil= affil-num=14 en-affil=Department of Breast and Endocrine Surgery, Osaka City University Graduate School of Medicine kn-affil= affil-num=15 en-affil=Breast Center, Aihara Hospital kn-affil= affil-num=16 en-affil=Department of Medical Oncology, National Cancer Center Hospital East kn-affil= affil-num=17 en-affil=Breast Oncology Center, Cancer Institute Hospital of Japanese Foundation for Cancer Research kn-affil= affil-num=18 en-affil=Department of Breast and Endocrine surgery, Okayama University Hospital kn-affil= affil-num=19 en-affil=Department of Breast surgery, Kawasaki Medical School General Medical Center kn-affil= affil-num=20 en-affil=Department of Thoracic, Breast, and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=metastatic breast cancer kn-keyword=metastatic breast cancer en-keyword=taxane-induced peripheral neuropathy kn-keyword=taxane-induced peripheral neuropathy en-keyword=chemotherapy-induced peripheral neuropathy kn-keyword=chemotherapy-induced peripheral neuropathy en-keyword=nab-paclitaxel kn-keyword=nab-paclitaxel en-keyword=single nucleotide polymorphism kn-keyword=single nucleotide polymorphism END start-ver=1.4 cd-journal=joma no-vol=76 cd-vols= no-issue=6 article-no= start-page=617 end-page=624 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202212 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Artificial Intelligence-based Detection of Epileptic Discharges from Pediatric Scalp Electroencephalograms: A Pilot Study en-subtitle= kn-subtitle= en-abstract= kn-abstract=We developed an artificial intelligence (AI) technique to identify epileptic discharges (spikes) in pediatric scalp electroencephalograms (EEGs). We built a convolutional neural network (CNN) model to automatically classify steep potential images into spikes and background activity. For the CNN model’ training and validation, we examined 100 children with spikes in EEGs and another 100 without spikes. A different group of 20 children with spikes and 20 without spikes were the actual test subjects. All subjects were ≥ 3 to < 18 years old. The accuracy, sensitivity, and specificity of the analysis were >0.97 when referential and combination EEG montages were used, and < 0.97 with a bipolar montage. The correct classification of background activity in individual patients was significantly better with a referential montage than with a bipolar montage (p=0.0107). Receiver operating characteristic curves yielded an area under the curve > 0.99, indicating high performance of the classification method. EEG patterns that interfered with correct classification included vertex sharp transients, sleep spindles, alpha rhythm, and low-amplitude ill-formed spikes in a run. Our results demonstrate that AI is a promising tool for automatically interpreting pediatric EEGs. Some avenues for improving the technique were also indicated by our findings. en-copyright= kn-copyright= en-aut-name=KobayashiKatsuhiro en-aut-sei=Kobayashi en-aut-mei=Katsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShibataTakashi en-aut-sei=Shibata en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TsuchiyaHiroki en-aut-sei=Tsuchiya en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AkiyamaTomoyuki en-aut-sei=Akiyama en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=neural network kn-keyword=neural network en-keyword=deep learning kn-keyword=deep learning en-keyword=electroencephalogram kn-keyword=electroencephalogram en-keyword=children kn-keyword=children en-keyword=spike kn-keyword=spike END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220922 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=タキサン起因性末梢神経障害と遺伝子多型に関する検討:ABROAD試験付随研究結果 kn-title=Association of Genetic Polymorphism with Taxane-induced Peripheral Neuropathy: a Sub-analysis of a Randomized Phase II Study to Determine the Optimal Dose of 3-week Cycle Nab-Paclitaxel in Metastatic Breast Cancer Patients en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=ABEYuko en-aut-sei=ABE en-aut-mei=Yuko kn-aut-name=安部優子 kn-aut-sei=安部 kn-aut-mei=優子 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学大学院医歯薬学総合研究科 END start-ver=1.4 cd-journal=joma no-vol=27 cd-vols= no-issue=20 article-no= start-page=6788 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20221011 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Selective Formation of Unsymmetric Multidentate Azine-Based Ligands in Nickel(II) Complexes en-subtitle= kn-subtitle= en-abstract= kn-abstract=A mixture of 2-pyridine carboxaldehyde, 4-formylimidazole (or 2-methyl-4-formylimidazole), and NiCl2 center dot 6H(2)O in a molar ratio of 2:2:1 was reacted with two equivalents of hydrazine monohydrate in methanol, followed by the addition of aqueous NH4PF6 solution, afforded a Ni-II complex with two unsymmetric azine-based ligands, [Ni(HLH)(2)](PF6)(2) (1) or [Ni(HLMe)(2)](PF6)(2) (2), in a high yield, where HLH denotes 2-pyridylmethylidenehydrazono-(4-imidazolyl)methane and HLMe is its 2-methyl-4-imidazolyl derivative. The spectroscopic measurements and elemental analysis confirmed the phase purity of the bulk products, and the single-crystal X-ray analysis revealed the molecular and crystal structures of the Ni-II complexes bearing an unsymmetric HLH or HLMe azines in a tridentate kappa(3) N, N', N" coordination mode. The HLH complex with a methanol solvent, 1 center dot MeOH, crystallizes in the orthorhombic non-centrosymmetric space group P2(1)2(1)2(1) with Z = 4, affording conglomerate crystals, while the HLMe complex, 2 center dot H2O center dot Et2O, crystallizes in the monoclinic and centrosymmetric space group P2(1)/n with Z = 4. In the crystal of 2 center dot H2O center dot Et2O, there is intermolecular hydrogen-bonding interaction between the imidazole N-H and the neighboring uncoordinated azine-N atom, forming a one-dimensional polymeric structure, but there is no obvious magnetic interaction among the intra- and interchain paramagnetic Ni-II ions. en-copyright= kn-copyright= en-aut-name=HayiborKennedy Mawunya en-aut-sei=Hayibor en-aut-mei=Kennedy Mawunya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SunatsukiYukinari en-aut-sei=Sunatsuki en-aut-mei=Yukinari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SuzukiTakayoshi en-aut-sei=Suzuki en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Advanced Science Research Center, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=(pyridyl)(imidazolyl)azines kn-keyword=(pyridyl)(imidazolyl)azines en-keyword=aldazines kn-keyword=aldazines en-keyword=kryptoracemate kn-keyword=kryptoracemate en-keyword=crystal structure kn-keyword=crystal structure END start-ver=1.4 cd-journal=joma no-vol=76 cd-vols= no-issue=4 article-no= start-page=415 end-page=421 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202208 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=5-Nitro-2-(3-phenylpropylamino) Benzoic Acid Inhibits the Proliferation and Migration of Lens Epithelial Cells by Blocking CaMKII Signaling en-subtitle= kn-subtitle= en-abstract= kn-abstract=Posterior capsule opacification (PCO) is a post-surgery complication of cataract surgery, and lens epithelial cells (LECs) are involved in its development. A suppressive effect on LECs is exerted by the non specific chloride channel inhibitor 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) exerts. Herein, the growth and migration inhibitory effects of NPPB on LECs were assessed, and the mechanism underlying the effects were investigated by focusing on Ca2+/CaMKII signaling. LECs were treated with different concentrations of NPPB, and the changes in cell viability, cell-cycle distribution, anchorage-dependent growth, migration, Ca2+ level, and CaMKII expression were evaluated. NPPB inhibited LECs’ proliferation and induced G1 cell-cycle arrest in the cells. Regarding LECs’ mobility, NPPB suppressed the cells’ anchorage-dependent growth ability and inhibited their migration. Changes in cell phenotypes were associated with an increased intracellular Ca2+ level and down-regulation of CaMKII. Together these results confirmed the inhibitory effect of NPPB on the proliferation and migration of LECs, and the effect was shown to be associated with the induced level of Ca2+ and the inhibition of CaMKII signaling transduction. en-copyright= kn-copyright= en-aut-name=KangHaijun en-aut-sei=Kang en-aut-mei=Haijun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HuangDongmei en-aut-sei=Huang en-aut-mei=Dongmei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KangGangjin en-aut-sei=Kang en-aut-mei=Gangjin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YangXu en-aut-sei=Yang en-aut-mei=Xu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=LiHeng en-aut-sei=Li en-aut-mei=Heng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=LiuSiyuan en-aut-sei=Liu en-aut-mei=Siyuan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=GouWenjun en-aut-sei=Gou en-aut-mei=Wenjun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=LiuLinglin en-aut-sei=Liu en-aut-mei=Linglin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=QiuYuyan en-aut-sei=Qiu en-aut-mei=Yuyan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Ophthalmology, Suining Central Hospital kn-affil= affil-num=2 en-affil=Department of Cardiovascular, Suining Central Hospital kn-affil= affil-num=3 en-affil=Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University kn-affil= affil-num=4 en-affil=Department of Ophthalmology, Suining Central Hospital kn-affil= affil-num=5 en-affil=Department of Ophthalmology, Suining Central Hospital kn-affil= affil-num=6 en-affil=Department of Ophthalmology, Suining Central Hospital kn-affil= affil-num=7 en-affil=Department of Ophthalmology, Suining Central Hospital kn-affil= affil-num=8 en-affil=Department of Ophthalmology, Suining Central Hospital kn-affil= affil-num=9 en-affil=Department of Ophthalmology, Suining Central Hospital kn-affil= en-keyword=5-nitro-2-(3-phenylpropylamino) benzoic acid kn-keyword=5-nitro-2-(3-phenylpropylamino) benzoic acid en-keyword=CaMKII kn-keyword=CaMKII en-keyword=lens epithelial cell kn-keyword=lens epithelial cell en-keyword=migration kn-keyword=migration en-keyword=proliferation kn-keyword=proliferation END start-ver=1.4 cd-journal=joma no-vol=23 cd-vols= no-issue=5 article-no= start-page=239 end-page=242 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220505 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Gap between self-evaluation and actual hand hygiene compliance among health-care workers en-subtitle= kn-subtitle= en-abstract= kn-abstract=Hand hygiene (HH) compliance among health-care workers has not satisfactorily improved despite multiple educative approaches. Between October 2019 and February 2020, we performed a self-evaluation test and a direct observation for the compliance of the 5 Moments for Hand Hygiene program advocated by the World Health Organization at two Japanese hospitals. Average percentages of self-evaluated HH compliance were as follows: (i) 76.9% for “Before touching a patient,” (ii) 85.8% for “Before clean/aseptic procedures,” (iii) 95.9% for “After body fluid exposure/risk,” (iv) 84.0% for “After touching a patient,” and (v) 69.2% for “After touching patient surroundings.” On the other hand, actual HH compliance was 11.7% for “Before touching a patient” and 18.0% for “After touching a patient or patient surroundings.” The present study demonstrated a big gap between self-evaluation and actual HH compliance among nurses working at hospitals, indicating the need of further providing the education in infection prevention. en-copyright= kn-copyright= en-aut-name=HagiyaHideharu en-aut-sei=Hagiya en-aut-mei=Hideharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakaseRyosuke en-aut-sei=Takase en-aut-mei=Ryosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SazumiYosuke en-aut-sei=Sazumi en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishimuraYoshito en-aut-sei=Nishimura en-aut-mei=Yoshito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HondaHiroyuki en-aut-sei=Honda en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan kn-affil= affil-num=2 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan kn-affil= affil-num=3 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan kn-affil= affil-num=4 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan kn-affil= affil-num=5 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan kn-affil= affil-num=6 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan kn-affil= END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=8 article-no= start-page=1117 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220814 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Edaravone Attenuated Angiotensin II-Induced Atherosclerosis and Abdominal Aortic Aneurysms in Apolipoprotein E-Deficient Mice en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: The aim of the study was to define whether edaravone, a free-radical scavenger, influenced angiotensin II (AngII)-induced atherosclerosis and abdominal aortic aneurysms (AAAs) formation. Methods: Male apolipoprotein E-deficient mice (8-12 weeks old) were fed with a normal diet for 5 weeks. Either edaravone (10 mg/kg/day) or vehicle was injected intraperitoneally for 5 weeks. After 1 week of injections, mice were infused subcutaneously with either AngII (1000 ng/kg/min, n = 16-17 per group) or saline (n = 5 per group) by osmotic minipumps for 4 weeks. Results: AngII increased systolic blood pressure equivalently in mice administered with either edaravone or saline. Edaravone had no effect on plasma total cholesterol concentrations and body weights. AngII infusion significantly increased ex vivo maximal diameters of abdominal aortas and en face atherosclerosis but was significantly attenuated by edaravone administration. Edaravone also reduced the incidence of AngII-induced AAAs. In addition, edaravone diminished AngII-induced aortic MMP-2 activation. Quantitative RT-PCR revealed that edaravone ameliorated mRNA abundance of aortic MCP-1 and IL-1 beta. Immunostaining demonstrated that edaravone attenuated oxidative stress and macrophage accumulation in the aorta. Furthermore, edaravone administration suppressed thioglycolate-induced mice peritoneal macrophages (MPMs) accumulation and mRNA abundance of MCP-1 in MPMs in male apolipoprotein E-deficient mice. In vitro, edaravone reduced LPS-induced mRNA abundance of MCP-1 in MPMs. Conclusions: Edaravone attenuated AngII-induced AAAs and atherosclerosis in male apolipoprotein E-deficient mice via anti-oxidative action and anti-inflammatory effect. en-copyright= kn-copyright= en-aut-name=UchidaHaruhito A. en-aut-sei=Uchida en-aut-mei=Haruhito A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakatsukaTetsuharu en-aut-sei=Takatsuka en-aut-mei=Tetsuharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HadaYoshiko en-aut-sei=Hada en-aut-mei=Yoshiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=UmebayashiRyoko en-aut-sei=Umebayashi en-aut-mei=Ryoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakeuchiHidemi en-aut-sei=Takeuchi en-aut-mei=Hidemi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShikataKenichi en-aut-sei=Shikata en-aut-mei=Kenichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SubramanianVenkateswaran en-aut-sei=Subramanian en-aut-mei=Venkateswaran kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=DaughertyAlan en-aut-sei=Daugherty en-aut-mei=Alan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=7 en-affil=Saha Cardiovascular Research Center, University of Kentucky kn-affil= affil-num=8 en-affil=Saha Cardiovascular Research Center, University of Kentucky kn-affil= affil-num=9 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=edaravone kn-keyword=edaravone en-keyword=angiotensin II kn-keyword=angiotensin II en-keyword=abdominal aortic aneurysm kn-keyword=abdominal aortic aneurysm en-keyword=atherosclerosis kn-keyword=atherosclerosis END start-ver=1.4 cd-journal=joma no-vol=23 cd-vols= no-issue=16 article-no= start-page=9065 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220813 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Cilostazol Attenuates AngII-Induced Cardiac Fibrosis in apoE Deficient Mice en-subtitle= kn-subtitle= en-abstract= kn-abstract=Cardiac fibrosis is characterized by the net accumulation of extracellular matrix in the myocardium and is an integral component of most pathological cardiac conditions. Cilostazol, a selective inhibitor of phosphodiesterase type III with anti-platelet, anti-mitogenic, and vasodilating properties, is widely used to treat the ischemic symptoms of peripheral vascular disease. Here, we investigated whether cilostazol has a protective effect against Angiotensin II (AngII)-induced cardiac fibrosis. Male apolipoprotein E-deficient mice were fed either a normal diet or a diet containing cilostazol (0.1% wt/wt). After 1 week of diet consumption, the mice were infused with saline or AngII (1000 ng kg(-1) min(-1)) for 28 days. AngII infusion increased heart/body weight ratio (p < 0.05), perivascular fibrosis (p < 0.05), and interstitial cardiac fibrosis (p < 0.0001), but were significantly attenuated by cilostazol treatment (p < 0.05, respectively). Cilostazol also reduced AngII-induced increases in fibrotic and inflammatory gene expression (p < 0.05, respectively). Furthermore, cilostazol attenuated both protein and mRNA abundance of osteopontin induced by AngII in vivo. In cultured human cardiac myocytes, cilostazol reduced mRNA expression of AngII-induced osteopontin in dose-dependent manner. This reduction was mimicked by forskolin treatment but was cancelled by co-treatment of H-89. Cilostazol attenuates AngII-induced cardiac fibrosis in mice through activation of the cAMP-PKA pathway. en-copyright= kn-copyright= en-aut-name=HadaYoshiko en-aut-sei=Hada en-aut-mei=Yoshiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UchidaHaruhito A. en-aut-sei=Uchida en-aut-mei=Haruhito A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UmebayashiRyoko en-aut-sei=Umebayashi en-aut-mei=Ryoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YoshidaMasashi en-aut-sei=Yoshida en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=cilostazol kn-keyword=cilostazol en-keyword=angiotensin II kn-keyword=angiotensin II en-keyword=fibrosis kn-keyword=fibrosis en-keyword=osteopontin kn-keyword=osteopontin en-keyword=cAMP-PKA kn-keyword=cAMP-PKA END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=11 article-no= start-page=2095 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20211113 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Cholera Rapid Diagnostic Tests for the Detection of Vibrio cholerae O1: An Updated Meta-Analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=The rapid diagnosis of cholera contributes to adequate outbreak management. This meta-analysis assesses the diagnostic accuracy of cholera rapid tests (RDTs) to detect Vibrio cholerae O1. Methods: Systematic review and meta-analysis. We searched four databases (Medline, EMBASE, Google Scholar, and Web of Science up to 8 September 2021) for studies that evaluated cholera RDTs for the detection of V. cholerae O1 compared with either stool culture or polymerase chain reaction (PCR). We assessed the studies' quality using the QUADAS-2 criteria. In addition, in this update, GRADE approach was used to rate the overall certainty of the evidence. We performed a bivariate random-effects meta-analysis to calculate the pooled sensitivity and specificity of cholera RDTs. Results: Overall, 20 studies were included in this meta-analysis. Studies were from Africa (n = 11), Asia (n = 7), and America (Haiti; n = 2). They evaluated eight RDTs (Crystal VC-O1, Crystal VC, Cholkit, Institut Pasteur cholera dipstick, SD Bioline, Artron, Cholera Smart O1, and Smart II Cholera O1). Using direct specimen testing, sensitivity and specificity of RDTs were 90% (95% CI, 86 to 93) and 86% (95% CI, 81 to 90), respectively. Cholera Sensitivity was higher in studies conducted in Africa [92% (95% CI, 89 to 94)] compared with Asia [82% (95% CI, 77 to 87)]. However, specificity [83% (95% CI, 71 to 91)] was lower in Africa compared with Asia [90% (95% CI, 84 to 94)]. GRADE quality of evidence was estimated as moderate. Conclusions: Against culture or PCR, current cholera RDTs have moderate sensitivity and specificity for detecting Vibrio cholerae O1. en-copyright= kn-copyright= en-aut-name=MuzemboBasilua Andre en-aut-sei=Muzembo en-aut-mei=Basilua Andre kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KitaharaKei en-aut-sei=Kitahara en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OhnoAyumu en-aut-sei=Ohno en-aut-mei=Ayumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=DebnathAnusuya en-aut-sei=Debnath en-aut-mei=Anusuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OkamotoKeinosuke en-aut-sei=Okamoto en-aut-mei=Keinosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MiyoshiShin-Ichi en-aut-sei=Miyoshi en-aut-mei=Shin-Ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=rapid test kn-keyword=rapid test en-keyword=cholera kn-keyword=cholera en-keyword=Vibrio cholera O1 kn-keyword=Vibrio cholera O1 en-keyword=sensitivity kn-keyword=sensitivity en-keyword=specificity kn-keyword=specificity en-keyword=accuracy kn-keyword=accuracy en-keyword=update kn-keyword=update END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue= article-no= start-page=918226 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220713 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Examining the Role of Low Temperature in Satsuma Mandarin Fruit Peel Degreening via Comparative Physiological and Transcriptomic Analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Peel degreening is the most conspicuous aspect of fruit ripening in many citrus fruits because of its importance for marketability. In this study, peel degreening in response to propylene (an ethylene analog) and at varying storage temperatures was characterized in Satsuma mandarin (Citrus unshiu Marc.) fruit. Propylene treatment triggered rapid peel degreening (within 4-6 days), indicated by an increase in the citrus color index (CCI) and chlorophyll loss. Peel degreening was also observed in fruit at 10 degrees C and 15 degrees C after 28-42 days, with gradual CCI increase and chlorophyll reduction. However, fruit at 5 degrees C, 20 degrees C, and 25 degrees C remained green, and no substantial changes in peel CCI and chlorophyll content were recorded during the 42-day storage duration. The transcriptomes of peels of fruit treated with propylene for 4 days and those stored at varying temperatures for 28 days were then analyzed by RNA-Seq. We identified three categories of differentially expressed genes that were regulated by (i) propylene (and by analogy, ethylene) alone, (ii) low temperature (5 degrees C, 10 degrees C, or 15 degrees C vs. 25 degrees C) alone, and (iii) either propylene or low temperature. Gene-encoding proteins associated with chlorophyll degradation (such as CuSGR1, CuNOL, CuACD2, CuCAB2, and CuLHCB2) and a transcription factor (CuERF114) were differentially expressed by propylene or low temperature. To further examine temperature-induced pathways, we also monitored gene expression during on-tree fruit maturation vs. postharvest. The onset of on-tree peel degreening coincided with autumnal drops in field temperatures, and it was accompanied by differential expression of low temperature-regulated genes. On the contrary, genes that were exclusively regulated by propylene (such as CuCOPT1 and CuPOX-A2) displayed insignificant expression changes during on-tree peel degreening. These findings indicate that low temperatures could be involved in the fruit ripening-related peel degreening independently of ethylene. en-copyright= kn-copyright= en-aut-name=MitaloOscar W. en-aut-sei=Mitalo en-aut-mei=Oscar W. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AsicheWilliam O. en-aut-sei=Asiche en-aut-mei=William O. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KangSeung W. en-aut-sei=Kang en-aut-mei=Seung W. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=EzuraHiroshi en-aut-sei=Ezura en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AkagiTakashi en-aut-sei=Akagi en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KuboYasutaka en-aut-sei=Kubo en-aut-mei=Yasutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=UshijimaKoichiro en-aut-sei=Ushijima en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Research and Development, Del Monte Kenya Ltd kn-affil= affil-num=3 en-affil=Graduate School of Life and Environmental Sciences, University of Tsukuba kn-affil= affil-num=4 en-affil=Graduate School of Life and Environmental Sciences, University of Tsukuba kn-affil= affil-num=5 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=chlorophyll kn-keyword=chlorophyll en-keyword=citrus kn-keyword=citrus en-keyword=degreening kn-keyword=degreening en-keyword=ethylene kn-keyword=ethylene en-keyword=RNA-Seq kn-keyword=RNA-Seq en-keyword=on-tree kn-keyword=on-tree en-keyword=storage kn-keyword=storage END start-ver=1.4 cd-journal=joma no-vol=7 cd-vols= no-issue=4 article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202208 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Gefitinib induction followed by chemoradiotherapy in EGFR-mutant, locally advanced non-small-cell lung cancer: LOGIK0902/OLCSG0905 phase II study (vol 6, 100191, 2021) en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=HottaK. en-aut-sei=Hotta en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SaekiS. en-aut-sei=Saeki en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamaguchiM. en-aut-sei=Yamaguchi en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HaradaD. en-aut-sei=Harada en-aut-mei=D. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=BesshoA. en-aut-sei=Bessho en-aut-mei=A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TanakaK. en-aut-sei=Tanaka en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=InoueK. en-aut-sei=Inoue en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=GembaK. en-aut-sei=Gemba en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ShiojiriM. en-aut-sei=Shiojiri en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KatoY. en-aut-sei=Kato en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NinomiyaT. en-aut-sei=Ninomiya en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KuboT. en-aut-sei=Kubo en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KishimotoJ. en-aut-sei=Kishimoto en-aut-mei=J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=ShioyamaY. en-aut-sei=Shioyama en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=KatsuiK. en-aut-sei=Katsui en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=SasakiJ. en-aut-sei=Sasaki en-aut-mei=J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=KiuraK. en-aut-sei=Kiura en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=SugioK. en-aut-sei=Sugio en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= affil-num=1 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Respiratory Medicine, Kumamoto University Hospital kn-affil= affil-num=3 en-affil=Department of Thoracic Oncology, National Hospital Organization Kyushu Cancer Center kn-affil= affil-num=4 en-affil=Department of Thoracic Oncology, National Hospital Organization Shikoku Cancer Center kn-affil= affil-num=5 en-affil=Department of Respiratory Medicine, Japanese Red Cross Okayama Hospital kn-affil= affil-num=6 en-affil=Department of Respiratory Medicine, Kyushu University Hospital kn-affil= affil-num=7 en-affil=Department of Respiratory Medicine, Kitakyushu Municipal Medical Center kn-affil= affil-num=8 en-affil=Department of Respiratory Medicine, Chugoku Central Hospital kn-affil= affil-num=9 en-affil=Department of Respiratory Medicine, Japanese Red Cross Okayama Hospital kn-affil= affil-num=10 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=11 en-affil=Department of Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=12 en-affil=Department of Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=13 en-affil=Center for Clinical and Translational Research, Kyushu University Hospital kn-affil= affil-num=14 en-affil=Clinical Radiology, Radiology Informatics and Network, Graduate School of Medical Sciences, Kyushu University kn-affil= affil-num=15 en-affil=Department of Proton Beam Therapy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine kn-affil= affil-num=17 en-affil=Department of Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=18 en-affil=Department of Thoracic and Breast Surgery, Oita University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=22 cd-vols= no-issue=1 article-no= start-page=232 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220720 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Histidine-rich glycoprotein as a novel predictive biomarker of postoperative complications in intensive care unit patients: a prospective observational study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Decrease in histidine-rich glycoprotein (HRG) was reported as a cause of dysregulation of the coagulation-fibrinolysis and immune systems, leading to multi-organ failure, and it may be a biomarker for sepsis, ventilator-associated pneumonia, preeclampsia, and coronavirus disease 2019. However, the usefulness of HRG in perioperative management remains unclear. This study aimed to assess the usefulness of HRG as a biomarker for predicting postoperative complications.
Methods This was a single-center, prospective, observational study of 150 adult patients who were admitted to the intensive care unit after surgery. Postoperative complications were defined as those having a grade II or higher in the Clavien-Dindo classification, occurring within 7 days after surgery. The primary outcome was HRG levels in the patients with and without postoperative complications. The secondary outcome was the ability of HRG, white blood cell, C-reactive protein, procalcitonin, and presepsin to predict postoperative complications. Data are presented as number and median (interquartile range).
Results The incidence of postoperative complications was 40%. The HRG levels on postoperative day 1 were significantly lower in patients who developed postoperative complications (n = 60; 21.50 [18.12-25.74] mu g/mL) than in those who did not develop postoperative complications (n = 90; 25.46 [21.05-31.63] mu g/mL). The Harrell C-index scores for postoperative complications were HRG, 0.65; white blood cell, 0.50; C-reactive protein, 0.59; procalcitonin, 0.73; and presepsin, 0.73. HRG was independent predictor of postoperative complications when adjusted for age, the presence of preoperative cardiovascular comorbidities, American Society of Anesthesiologists Physical Status Classification, operative time, and the volume of intraoperative bleeding (adjusted hazard ratio = 0.94; 95% confidence interval, 0.90-0.99).
Conclusions The HRG levels on postoperative day 1 could predict postoperative complications. Hence, HRG may be a useful biomarker for predicting postoperative complications. en-copyright= kn-copyright= en-aut-name=OiwaMasahiko en-aut-sei=Oiwa en-aut-mei=Masahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KurodaKosuke en-aut-sei=Kuroda en-aut-mei=Kosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KawanoueNaoya en-aut-sei=Kawanoue en-aut-mei=Naoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MorimatsuHiroshi en-aut-sei=Morimatsu en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Biomarker kn-keyword=Biomarker en-keyword=Clavien-Dindo classification kn-keyword=Clavien-Dindo classification en-keyword=Histidine-rich glycoprotein kn-keyword=Histidine-rich glycoprotein en-keyword=Intensive care unit kn-keyword=Intensive care unit en-keyword=Perioperative management kn-keyword=Perioperative management en-keyword=Postoperative complication kn-keyword=Postoperative complication en-keyword=Predictor kn-keyword=Predictor END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue= article-no= start-page=904215 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220630 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Pemafibrate Prevents Rupture of Angiotensin II-Induced Abdominal Aortic Aneurysms en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Abdominal aortic aneurysm (AAA) is a life-threatening disease that lacks effective preventive therapies. This study aimed to evaluate the effect of pemafibrate, a selective peroxisome proliferator-activated receptor alpha (PPAR alpha) agonist, on AAA formation and rupture.
Methods: Experimental AAA was induced by subcutaneous angiotensin II (AngII) infusion in ApoE(-)(/)(-) mice for 4 weeks. Pemafibrate (0.1 mg/kg/day) was administered orally. Dihydroethidium staining was used to evaluate the reactive oxygen species (ROS).
Results: The size of the AngII-induced AAA did not differ between pemafibrate- and vehicle-treated groups. However, a decreased mortality rate due to AAA rupture was observed in pemafibrate-treated mice. Pemafibrate ameliorated AngII-induced ROS and reduced the mRNA expression of interleukin-6 and tumor necrosis factor-alpha in the aortic wall. Gelatin zymography analysis demonstrated significant inhibition of matrix metalloproteinase-2 activity by pemafibrate. AngII-induced ROS production in human vascular smooth muscle cells was inhibited by pre-treatment with pemafibrate and was accompanied by an increase in catalase activity. Small interfering RNA-mediated knockdown of catalase or PPAR alpha significantly attenuated the anti-oxidative effect of pemafibrate.
Conclusion: Pemafibrate prevented AAA rupture in a murine model, concomitant with reduced ROS, inflammation, and extracellular matrix degradation in the aortic wall. The protective effect against AAA rupture was partly mediated by the anti-oxidative effect of catalase induced by pemafibrate in the smooth muscle cells. en-copyright= kn-copyright= en-aut-name=AmiokaNaofumi en-aut-sei=Amioka en-aut-mei=Naofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YonezawaTomoko en-aut-sei=Yonezawa en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KondoMegumi en-aut-sei=Kondo en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AkagiSatoshi en-aut-sei=Akagi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YoshidaMasashi en-aut-sei=Yoshida en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SaitoYukihiro en-aut-sei=Saito en-aut-mei=Yukihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Molecular Biology and Biochemistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=pemafibrate kn-keyword=pemafibrate en-keyword=angiotensin II kn-keyword=angiotensin II en-keyword=abdominal aortic aneurysm kn-keyword=abdominal aortic aneurysm en-keyword=oxidative stress kn-keyword=oxidative stress en-keyword=catalase kn-keyword=catalase END start-ver=1.4 cd-journal=joma no-vol=76 cd-vols= no-issue=3 article-no= start-page=343 end-page=347 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202206 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Case of Mediastinal Localized Malignant Pleural Mesothelioma Successfully Treated by Chemotherapy and Conversion Surgery en-subtitle= kn-subtitle= en-abstract= kn-abstract=Localized malignant mesothelioma is a rare disease and little is known about its treatment strategy. We herein report a case of localized malignant pleural mesothelioma that had infiltrated into the anterior mediastinum, which was successfully treated using chemotherapy and conversion surgery. A 63-year-old man with a mediastinal tumor was referred to our hospital. Pathologic analysis of the biopsy specimen showed malignant mesothelioma. Significant tumor shrinkage by cisplatin and pemetrexed was observed and he underwent radical surgery via a median sternotomy. The patient has been disease free for 12 months. en-copyright= kn-copyright= en-aut-name=MakiYuho en-aut-sei=Maki en-aut-mei=Yuho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KiriyamaYosuke en-aut-sei=Kiriyama en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UenoTsuyoshi en-aut-sei=Ueno en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SuehisaHiroshi en-aut-sei=Suehisa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShigematsuHisayuki en-aut-sei=Shigematsu en-aut-mei=Hisayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SaekiKazuhiko en-aut-sei=Saeki en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HaradaDaijiro en-aut-sei=Harada en-aut-mei=Daijiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KozukiToshiyuki en-aut-sei=Kozuki en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TeramotoNorihiro en-aut-sei=Teramoto en-aut-mei=Norihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YamashitaMotohiro en-aut-sei=Yamashita en-aut-mei=Motohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Thoracic Surgery, National Hospital Organization Shikoku Cancer Center kn-affil= affil-num=2 en-affil=Department of Thoracic Surgery, National Hospital Organization Shikoku Cancer Center kn-affil= affil-num=3 en-affil=Department of Thoracic Surgery, National Hospital Organization Shikoku Cancer Center kn-affil= affil-num=4 en-affil=Department of Thoracic Surgery, National Hospital Organization Shikoku Cancer Center kn-affil= affil-num=5 en-affil=Department of Thoracic Surgery, National Hospital Organization Shikoku Cancer Center kn-affil= affil-num=6 en-affil=Department of Thoracic Oncology and Medicine, National Hospital Organization Shikoku Cancer Center kn-affil= affil-num=7 en-affil=Department of Thoracic Oncology and Medicine, National Hospital Organization Shikoku Cancer Center kn-affil= affil-num=8 en-affil=Department of Thoracic Oncology and Medicine, National Hospital Organization Shikoku Cancer Center kn-affil= affil-num=9 en-affil=Department of Pathology, National Hospital Organization Shikoku Cancer Center kn-affil= affil-num=10 en-affil=Department of Thoracic Surgery, National Hospital Organization Shikoku Cancer Center kn-affil= en-keyword=localized mesothelioma kn-keyword=localized mesothelioma en-keyword=mediastinum kn-keyword=mediastinum en-keyword=cisplatin kn-keyword=cisplatin en-keyword=pemetrexed kn-keyword=pemetrexed en-keyword=conversion surgery kn-keyword=conversion surgery END start-ver=1.4 cd-journal=joma no-vol=76 cd-vols= no-issue=3 article-no= start-page=323 end-page=328 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202206 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Case of a Solitary Cortical Tuber with No Other Manifestations of Tuberous Sclerosis Complex Mimicking Focal Cortical Dysplasia Type II with Calcification en-subtitle= kn-subtitle= en-abstract= kn-abstract=Cortical tubers are one of the typical intracranial manifestations of tuberous sclerosis complex (TSC). Multiple cortical tubers are easy to diagnose as TSC; however, a solitary cortical tuber without any other cutaneous or visceral organ manifestations can be confused with other conditions, particularly focal cortical dysplasia. We report a surgical case of refractory epilepsy caused by a solitary cortical tuber mimicking focal cortical dysplasia type II, and describe the radiological, electrophysiological, and histopathological findings of our case. en-copyright= kn-copyright= en-aut-name=HosomotoKakeru en-aut-sei=Hosomoto en-aut-mei=Kakeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SasakiTatsuya en-aut-sei=Sasaki en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KawaiKoji en-aut-sei=Kawai en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OkazakiYosuke en-aut-sei=Okazaki en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HyodoYuki en-aut-sei=Hyodo en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShibataTakashi en-aut-sei=Shibata en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SasadaSusumu en-aut-sei=Sasada en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YasuharaTakao en-aut-sei=Yasuhara en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KobayashiKatsuhiro en-aut-sei=Kobayashi en-aut-mei=Katsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YanaiHiroyuki en-aut-sei=Yanai en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=DateIsao en-aut-sei=Date en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Diagnostic Pathology,Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=cortical tuber kn-keyword=cortical tuber en-keyword=epilepsy kn-keyword=epilepsy en-keyword=focal cortical dysplasia kn-keyword=focal cortical dysplasia en-keyword=transmantle sign kn-keyword=transmantle sign en-keyword=tuberous sclerosis complex kn-keyword=tuberous sclerosis complex END start-ver=1.4 cd-journal=joma no-vol=76 cd-vols= no-issue=3 article-no= start-page=255 end-page=263 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202206 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Intrathecal Administration of the α1 Adrenergic Antagonist Phentolamine Upregulates Spinal GLT-1 and Improves Mirror Image Pain in SNI Model Rats en-subtitle= kn-subtitle= en-abstract= kn-abstract=Mirror image pain (MIP) is a type of extraterritorial pain that results in contralateral pain or allodynia. Glutamate transporter-1 (GLT-1) is expressed in astrocytes and plays a role in maintaining low glutamate levels in the synaptic cleft. Previous studies have shown that GLT-1 dysfunction induces neuropathic pain. Our previous study revealed bilateral GLT-1 downregulation in the spinal cord of a spared nerve injury (SNI) rat. We hypothesized that spinal GLT-1 is involved in the mechanism of MIP. We also previously demonstrated noradrenergic GLT-1 regulation. Therefore, this study aimed to investigate the effect of an α1 adrenergic antagonist on the development of MIP. Rats were subjected to SNI. Changes in pain behavior and GLT-1 protein levels in the SNI rat spinal cords were then examined by intrathecal administration of the α1 adrenergic antagonist phentolamine, followed by von Frey test and western blotting. SNI resulted in the development of MIP and bilateral downregulation of GLT-1 protein in the rat spinal cord. Intrathecal phentolamine increased contralateral GLT-1 protein levels and partially ameliorated the 50% paw withdrawal threshold in the contralateral hind paw. Spinal GLT-1 upregulation by intrathecal phentolamine ameliorates MIP. GLT-1 plays a role in the development of MIPs. en-copyright= kn-copyright= en-aut-name=NakatsukaKosuke en-aut-sei=Nakatsuka en-aut-mei=Kosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsuokaYoshikazu en-aut-sei=Matsuoka en-aut-mei=Yoshikazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KuritaMasako en-aut-sei=Kurita en-aut-mei=Masako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WangRuilin en-aut-sei=Wang en-aut-mei=Ruilin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TsuboiChika en-aut-sei=Tsuboi en-aut-mei=Chika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SueNobutaka en-aut-sei=Sue en-aut-mei=Nobutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KakuRyuji en-aut-sei=Kaku en-aut-mei=Ryuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MorimatsuHiroshi en-aut-sei=Morimatsu en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Kinoshita Pain Clinic kn-affil= affil-num=4 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=alpha adrenergic receptor kn-keyword=alpha adrenergic receptor en-keyword=glutamate transporter-1 kn-keyword=glutamate transporter-1 en-keyword=mirror image pain kn-keyword=mirror image pain en-keyword=neuropathic pain kn-keyword=neuropathic pain en-keyword=spared nerve injury kn-keyword=spared nerve injury END start-ver=1.4 cd-journal=joma no-vol=813 cd-vols= no-issue= article-no= start-page=17 end-page=29 dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=響きあう声 : オーラル・ヒストリーの可能性 : 「事実」確定と歴史文書 : タイメン鉄道におけるコレラ患者‘射殺’事件を例証に en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=NakaoTomoyo en-aut-sei=Nakao en-aut-mei=Tomoyo kn-aut-name=中尾知代 kn-aut-sei=中尾 kn-aut-mei=知代 aut-affil-num=1 ORCID= affil-num=1 en-affil=Okayama University kn-affil=岡山大学 END start-ver=1.4 cd-journal=joma no-vol=22 cd-vols= no-issue=1 article-no= start-page=294 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220612 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Endoscopic features of oxyntic gland adenoma and gastric adenocarcinoma of the fundic gland type differ between patients with and without Helicobacter pylori infection: a retrospective observational study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background The endoscopic features of oxyntic gland adenoma and gastric adenocarcinoma of the fundic gland type have not been fully investigated in relation to Helicobacter pylori infection status. We compared the morphology, color, and location of these lesions between patients with and without H. pylori infection. Methods We retrospectively enrolled 165 patients (180 lesions) from 10 institutions. We divided the patients into the (i) Hp group (patients with current H. pylori infection [active gastritis, n = 13] and those with past infection [inactive gastritis, n = 76]) and (ii) uninfected group (H. pylori-uninfected patients, n = 52). We compared the clinical and endoscopic features of the two groups. We also performed an analysis between (i) lesions with atrophy of the surrounding gastric mucosa (atrophy group) and (ii) lesions without atrophy of the surrounding gastric mucosa (non-atrophy group). Results The average age was older in the Hp group than in the uninfected group (68.1 +/- 8.1 vs. 63.4 +/- 8.7 years, p < 0.01). Although the difference was not statistically significant (p = 0.09), multiple lesions were observed in 9 of 89 patients (10.1%) in the Hp group and in only 1 of 52 patients (1.9%) in the uninfected group. Meanwhile, significant differences were observed in the prevalence of lesions located in the gastric fornix or cardia (uninfected group: 67.3% vs. Hp group: 38.0%, p < 0.01), with an elevated morphology (80.0% vs. 56.0%, p < 0.01), with a subepithelial-like appearance (78.2% vs. 42.0%, p < 0.01), and with a color similar to that of the peripheral mucosa (43.6% vs. 25.0%, p = 0.02). The male-to-female ratio, lesion size, and presence or absence of vascular dilatation or black pigmentation on the surface were not different between the two groups. In the analysis comparing lesions with and without mucosal atrophy, the prevalence of multiple lesions was significantly higher (p = 0.02) in the atrophy group (5/25 patients, 20.0%) than in the non-atrophy group (7/141 patients, 5.0%). Conclusions The endoscopic features of oxyntic gland adenoma and gastric adenocarcinoma of the fundic gland type differ between patients with and without H. pylori infection. en-copyright= kn-copyright= en-aut-name=IwamuroMasaya en-aut-sei=Iwamuro en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KusumotoChiaki en-aut-sei=Kusumoto en-aut-mei=Chiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakagawaMasahiro en-aut-sei=Nakagawa en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MatsuedaKazuhiro en-aut-sei=Matsueda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KobayashiSayo en-aut-sei=Kobayashi en-aut-mei=Sayo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YoshiokaMasao en-aut-sei=Yoshioka en-aut-mei=Masao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=InabaTomoki en-aut-sei=Inaba en-aut-mei=Tomoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ToyokawaTatsuya en-aut-sei=Toyokawa en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SakaguchiChihiro en-aut-sei=Sakaguchi en-aut-mei=Chihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TanakaShouichi en-aut-sei=Tanaka en-aut-mei=Shouichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TanakaTakehiro en-aut-sei=Tanaka en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=OkadaHiroyuki en-aut-sei=Okada en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterology, Nippon Kokan Fukuyama Hospital kn-affil= affil-num=3 en-affil=Department of Endoscopy, Hiroshima City Hospital kn-affil= affil-num=4 en-affil=Department of Gastroenterology and Hepatology, Kurashiki Central Hospital kn-affil= affil-num=5 en-affil=Department of Internal Medicine, Fukuyama City Hospital kn-affil= affil-num=6 en-affil=Department of Internal Medicine, Okayama Saiseikai General Hospital kn-affil= affil-num=7 en-affil=Department of Gastroenterology, Kagawa Prefectural Central Hospital kn-affil= affil-num=8 en-affil=Department of Gastroenterology, Fukuyama Medical Center kn-affil= affil-num=9 en-affil=Department of Endoscopy, National Hospital Organization Shikoku Cancer Center kn-affil= affil-num=10 en-affil=Department of Gastroenterology, Iwakuni Clinical Center kn-affil= affil-num=11 en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=Gastric neoplasms kn-keyword=Gastric neoplasms en-keyword=Oxyntic gland adenoma kn-keyword=Oxyntic gland adenoma en-keyword=Gastric adenocarcinoma of the fundic gland type kn-keyword=Gastric adenocarcinoma of the fundic gland type END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=2021 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Microfluidic Paper-based Analytical Devices Coupled with Coprecipitation Enrichment Show Improved Trace Analysis of Copper Ions in Water Samples en-subtitle= kn-subtitle= en-abstract= kn-abstract=The present study was focused on improving sensitivity to trace levels of Cu(II) by subjecting microfluidic paper based analytical devices (μ PADs) to a preconcentration process via coprecipitation using aluminum hydroxide. The experimental conditions were optimized for the pH of the coprecipitation, centrifugation, and amounts of reagents that were deposited onto µ PADs for Cu(II) assay. The resultant limit of detection reached as low as 0.003 mg L 1 with a linear range of 0.01 2.00 mg L 1 . The relative standard deviations for intra and inter day precision were 3.2 and 4.6%, respectively (n = 9). Spiked water samples were analyzed using the μ PADs after coprecipitation preconcentration. The results were verified by comparing them with thos e of inductively coupled plasma optical emission spectrometry (ICP OES). Recoveries ranged from 97.1 104% and from 98.7 105% using the present method and ICP OES, respectively. These results suggest that the simple, highly sensitive, and inexpensive propos ed method would be helpful for analyzing trace levels of Cu(II) in water samples in poorly equipped laboratories. en-copyright= kn-copyright= en-aut-name=MUHAMMEDAbdellah en-aut-sei=MUHAMMED en-aut-mei=Abdellah kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HUSSENAhmed en-aut-sei=HUSSEN en-aut-mei=Ahmed kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KanetaTakashi en-aut-sei=Kaneta en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Center for Environmental Science, College of Natural and Computational Sciences, Addis Ababa University kn-affil= affil-num=2 en-affil=Center for Environmental Science, College of Natural and Computational Sciences, Addis Ababa University kn-affil= affil-num=3 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Microfluidic paper based analytical device kn-keyword=Microfluidic paper based analytical device en-keyword=Coprecipitation kn-keyword=Coprecipitation en-keyword=Preconcentration kn-keyword=Preconcentration en-keyword=Aluminum hydroxide kn-keyword=Aluminum hydroxide en-keyword=Copperion kn-keyword=Copperion en-keyword=bathocuproine kn-keyword=bathocuproine END start-ver=1.4 cd-journal=joma no-vol=289 cd-vols= no-issue=19 article-no= start-page=5971 end-page=5984 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220517 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Substrate recognition by Arg/Pro‐rich insert domain in calcium/calmodulin‐dependent protein kinase kinase for target protein kinases en-subtitle= kn-subtitle= en-abstract= kn-abstract=Calcium/calmodulin-dependent protein kinase kinases (CaMKKs) activate CaMKI, CaMKIV, protein kinase B/Akt, and AMP-activated protein kinase (AMPK) by phosphorylating Thr residues in activation loops to mediate various Ca2+-signaling pathways. Mammalian cells expressing CaMKK alpha and CaMKK beta lacking Arg/Pro-rich insert domain (RP-domain) sequences showed impaired phosphorylation of AMPK alpha, CaMKI alpha, and CaMKIV, whereas the autophosphorylation activities of CaMKK mutants remained intact and were similar to those of wild-type CaMKKs. Liver kinase B1 (LKB1, an AMPK kinase) complexed with STRAD and MO25 and was unable to phosphorylate CaMKI alpha and CaMKIV; however, mutant LKB1 with the RP-domain sequences of CaMKK alpha and CaMKK beta inserted between kinase subdomains II and III acquired CaMKI alpha and CaMKIV phosphorylating activity in vitro and in transfected cultured cells. Furthermore, ionomycin-induced phosphorylation of hemagglutinin (HA)-CaMKI alpha at Thr177, HA-CaMKIV at Thr196, and HA-AMPK alpha at Thr172 in transfected cells was significantly suppressed by cotransfection of kinase-dead mutants of CaMKK isoforms, but these dominant-negative effects were abrogated with RP-deletion mutants, suggesting that sequestration of substrate kinases by loss-of-function CaMKK mutants requires the RP-domain. This was confirmed by pulldown experiments that showed that dominant-negative mutants of CaMKK alpha and CaMKK beta interact with target kinases but not RP-deletion mutants. Taken together, these results clearly indicate that both CaMKK isoforms require the RP-domain to recognize downstream kinases to interact with and phosphorylate Thr residues in their activation loops. Thus, the RP-domain may be a promising target for specific CaMKK inhibitors. en-copyright= kn-copyright= en-aut-name=KaneshigeRiku en-aut-sei=Kaneshige en-aut-mei=Riku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OhtsukaSatomi en-aut-sei=Ohtsuka en-aut-mei=Satomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HaradaYuhei en-aut-sei=Harada en-aut-mei=Yuhei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KawamataIssei en-aut-sei=Kawamata en-aut-mei=Issei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MagariMasaki en-aut-sei=Magari en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KanayamaNaoki en-aut-sei=Kanayama en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HatanoNaoya en-aut-sei=Hatano en-aut-mei=Naoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SakagamiHiroyuki en-aut-sei=Sakagami en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TokumitsuHiroshi en-aut-sei=Tokumitsu en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=3 en-affil=Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=4 en-affil=Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Okayama University kn-affil= affil-num=5 en-affil=Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=6 en-affil=Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=7 en-affil=Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=8 en-affil=Department of Anatomy, Kitasato University School of Medicine kn-affil= affil-num=9 en-affil=Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=AMP-activated protein kinase kn-keyword=AMP-activated protein kinase en-keyword=Arg/Pro-rich insert domain (RP-domain) kn-keyword=Arg/Pro-rich insert domain (RP-domain) en-keyword=calcium/calmodulin-dependent protein kinase kn-keyword=calcium/calmodulin-dependent protein kinase en-keyword=calcium/calmodulin-dependent protein kinase kinase kn-keyword=calcium/calmodulin-dependent protein kinase kinase en-keyword=substrate recognition kn-keyword=substrate recognition END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=1 article-no= start-page=1764 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220401 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structural basis for different types of hetero-tetrameric light-harvesting complexes in a diatom PSII-FCPII supercomplex en-subtitle= kn-subtitle= en-abstract= kn-abstract=Fucoxanthin chlorophyll (Chl) a/c-binding proteins (FCPs) function as light harvesters in diatoms. The structure of a diatom photosystem II-FCPII (PSII-FCPII) supercomplex have been solved by cryo-electron microscopy (cryo-EM) previously; however, the FCPII subunits that constitute the FCPII tetramers and monomers are not identified individually due to their low resolutions. Here, we report a 2.5 angstrom resolution structure of the PSII-FCPII supercomplex using cryo-EM. Two types of tetrameric FCPs, S-tetramer, and M-tetramer, are identified as different types of hetero-tetrameric complexes. In addition, three FCP monomers, m1, m2, and m3, are assigned to different gene products of FCP. The present structure also identifies the positions of most Chls c and diadinoxanthins, which form a complicated pigment network. Excitation-energy transfer from FCPII to PSII is revealed by time-resolved fluorescence spectroscopy. These structural and spectroscopic findings provide insights into an assembly model of FCPII and its excitation-energy transfer and quenching processes. Fucoxanthin chlorophyll a/c-binding proteins (FCPs) harvest light energy in diatoms. The authors analyzed a structure of PSII-FCPII supercomplex at high resolution by cryo-EM, which identified each FCP subunit and pigment network in the supercomplex. en-copyright= kn-copyright= en-aut-name=NagaoRyo en-aut-sei=Nagao en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KatoKoji en-aut-sei=Kato en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KumazawaMinoru en-aut-sei=Kumazawa en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IfukuKentaro en-aut-sei=Ifuku en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YokonoMakio en-aut-sei=Yokono en-aut-mei=Makio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SuzukiTakehiro en-aut-sei=Suzuki en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=DohmaeNaoshi en-aut-sei=Dohmae en-aut-mei=Naoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AkitaFusamichi en-aut-sei=Akita en-aut-mei=Fusamichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=AkimotoSeiji en-aut-sei=Akimoto en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MiyazakiNaoyuki en-aut-sei=Miyazaki en-aut-mei=Naoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Biostudies, Kyoto University kn-affil= affil-num=4 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=5 en-affil=Institute of Low Temperature Science, Hokkaido University kn-affil= affil-num=6 en-affil=Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science kn-affil= affil-num=7 en-affil=Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science kn-affil= affil-num=8 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Science, Kobe University kn-affil= affil-num=10 en-affil=Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba kn-affil= affil-num=11 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=76 cd-vols= no-issue=2 article-no= start-page=167 end-page=172 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202204 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Retrospective Cohort Study of Clinical Efficacy and Safety of Cefozopran for Treating Febrile Neutropenia during Chemotherapy in Patients with Lung Cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=Febrile neutropenia (FN) is a serious side effect in patients undergoing cancer chemotherapy and frequently proves fatal. Since infection control is crucial in the management of FN, the antimicrobial agent cefozopran (CZOP) has been recommended but not approved for routine use in clinical care of FN in Japan. However, few studies of CZOP in the management of FN have used a thrice daily dose schedule. The aim of this study was to retrospectively compare the efficacy and safety of CZOP at a dose of 1 g three times daily to those of cefepime (CFPM) in the treatment of FN in our lung cancer patients. The response rates of the CZOP and CFPM groups were 89.5% (17/19 cases) and 83.0% (39/47 cases), respectively, with no significant difference between the two groups. The median duration of antimicrobial treatment was 6 days (4-10 days) in the CZOP group and 7 days (3-13 days) in the CFPM group, with no significant difference between groups. The incidence rates of adverse events were 21.1% (4/19 cases) in the CZOP group and 19.1% (9/47 cases) in the CFPM group. No adverse events of Grade 3 or higher were observed in either group. The findings of the present study suggest that CZOP administration at a dose of 1 g three times per day as an antimicrobial treatment alternative against FN. en-copyright= kn-copyright= en-aut-name=HigashionnaTsukasa en-aut-sei=Higashionna en-aut-mei=Tsukasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UshioSoichiro en-aut-sei=Ushio en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=EsumiSatoru en-aut-sei=Esumi en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MurakawaKiminaka en-aut-sei=Murakawa en-aut-mei=Kiminaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KitamuraYoshihisa en-aut-sei=Kitamura en-aut-mei=Yoshihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SendoToshiaki en-aut-sei=Sendo en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil= en-keyword=febrile neutropenia kn-keyword=febrile neutropenia en-keyword=cefozopran kn-keyword=cefozopran en-keyword=cefepime kn-keyword=cefepime en-keyword=lung cancer kn-keyword=lung cancer en-keyword=retrospective kn-keyword=retrospective END start-ver=1.4 cd-journal=joma no-vol=53 cd-vols= no-issue= article-no= start-page=37 end-page=56 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220330 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=The Modality of Sentences with “Sureba Ii” as the Predicate kn-title=「すればいい」を述語にする文のモーダルな意味 en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=MiyagiSeiryu en-aut-sei=Miyagi en-aut-mei=Seiryu kn-aut-name=宮城星留 kn-aut-sei=宮城 kn-aut-mei=星留 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学大学院社会文化科学研究科 END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=1 article-no= start-page=4819 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220321 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Thioredoxin interacting protein protects mice from fasting induced liver steatosis by activating ER stress and its downstream signaling pathways en-subtitle= kn-subtitle= en-abstract= kn-abstract=Under normal conditions, fasting results in decreased protein disulfide isomerase (PDI) activity and accumulation of unfolded proteins, leading to the subsequent activation of the unfolded protein response (UPR)/autophagy signaling pathway to eliminate damaged mitochondria. Fasting also induces upregulation of thioredoxin-interacting protein (TXNIP) expression and mice deficient of this protein (TXNIP-KO mice) was shown to develop severe hypoglycemia, hyperlipidemia and liver steatosis (LS). In the present study, we aimed to determine the role of TXNIP in fasting-induced LS by using male TXNIP-KO mice that developed LS without severe hypoglycemia. In TXNIP-KO mice, fasting induced severe microvesicular LS. Examinations by transmission electron microscopy revealed mitochondria with smaller size and deformities and the presence of few autophagosomes. The expression of beta-oxidation-associated genes remained at the same level and the level of LC3-II was low. PDI activity level stayed at the original level and the levels of p-IRE1 and X-box binding protein 1 spliced form (sXBP1) were lower. Interestingly, treatment of TXNIP-KO mice with bacitracin, a PDI inhibitor, restored the level of LC3-II after fasting. These results suggest that TXNIP regulates PDI activity and subsequent activation of the UPR/autophagy pathway and plays a protective role in fasting-induced LS. en-copyright= kn-copyright= en-aut-name=MiyaharaHiroyuki en-aut-sei=Miyahara en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HasegawaKosei en-aut-sei=Hasegawa en-aut-mei=Kosei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YashiroMasato en-aut-sei=Yashiro en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OharaToshiaki en-aut-sei=Ohara en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FujisawaMasayoshi en-aut-sei=Fujisawa en-aut-mei=Masayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YoshimuraTeizo en-aut-sei=Yoshimura en-aut-mei=Teizo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsukawaAkihiro en-aut-sei=Matsukawa en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TsukaharaHirokazu en-aut-sei=Tsukahara en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue= article-no= start-page=329 end-page=341 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220330 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Practical report of “Technical subject Teaching Methodology (Advanced I, Advanced II)” in Reiwa 3 kn-title=令和3年度「工業科教育法(応用Ⅰ,応用Ⅱ)」の実践報告 en-subtitle= kn-subtitle= en-abstract=The "Technical subject Teaching Methodology (Advanced Ⅰ , Advanced II)" had students for the first time in the 3rd year of Reiwa, and two teachers gave classes. The purpose of this class is to equip students with the ability to teach subjects and to cultivate a wide range of knowledge about industry. For this reason, "what can be done", "what to learn", "how to learn", "how to support the development of each person", "what has been learned", and "implementation". We aimed to develop the ability to create lessons from the six perspectives of "what is needed for this". I would like to clarify the results and issues through the practice report and make improvements to imp rove the les sons from next year onwards. kn-abstract=「工業科教育法(応用Ⅰ,応用Ⅱ)」は令和3年度に初めて受講生があり,2名の教員で授業を行った。この授業では,学生に教科指導力を身に付けさせるとともに,幅広く工業に関する知識を養うことを目的としている。このため,「何ができるようになるのか」「何を学ぶのか」「どのように学ぶのか」「一人一人の発達をどのように支援するのか」「何が身に付いたのか」「実施するために何が必要か」の6つの観点で,授業をつくり上げる力の育成を目指した。実践報告を通じて成果と課題を明確にし,改善を図ることで来年度以降の授業の充実に繋げたい。 en-copyright= kn-copyright= en-aut-name=KobayashiSeitaro en-aut-sei=Kobayashi en-aut-mei=Seitaro kn-aut-name=小林清太郎 kn-aut-sei=小林 kn-aut-mei=清太郎 aut-affil-num=1 ORCID= en-aut-name=AkagiKyogo en-aut-sei=Akagi en-aut-mei=Kyogo kn-aut-name=赤木恭吾 kn-aut-sei=赤木 kn-aut-mei=恭吾 aut-affil-num=2 ORCID= affil-num=1 en-affil=Center for Teacher Education and Development, Okayama University kn-affil=岡山大学教師教育開発センター affil-num=2 en-affil=Okayama University Academic Research Institute Education Department (Practice of teaching profession) kn-affil=岡山大学学術研究院教育学域(教職実践) en-keyword=何ができるようになるのか(What you will be able to do) kn-keyword=何ができるようになるのか(What you will be able to do) en-keyword=何を学ぶのか(what you will learn) kn-keyword=何を学ぶのか(what you will learn) en-keyword=どのように学ぶのか(how you will learn) kn-keyword=どのように学ぶのか(how you will learn) en-keyword=一人一人の発達をどのように支援するのか(how you will support the development of each student) kn-keyword=一人一人の発達をどのように支援するのか(how you will support the development of each student) en-keyword=何が身に付いたのか(what you have learned) kn-keyword=何が身に付いたのか(what you have learned) END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue= article-no= start-page=47 end-page=57 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220330 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Historical Study on the Development Process of the Education for Students with Health Impairments in Japan: Focusing on the Trend of Compulsory Education in Special Schools kn-title=日本における病弱教育の発展経緯とその背景 ―養護学校教育義務制の実施をめぐる動向を中心に― en-subtitle= kn-subtitle= en-abstract=Efforts to educate the sick and the weak that occurred to prevent tuberculosis were declining due to the effects of World War II. After the war, the number of schools for the Handicapped and special classes for the sick and the weak education also showed an increasing trend due to the reform of the new education system. In particular, the compulsory education system for schools for the handicapped in 1979 established an institutional foundation for the sick and the weak education, and in the process, various educational venues including welfare facilities and home-visit education were developed. However, it was necessary to solve various problems in the process of development of the sick and the weak education up to the compulsory system. On the basis of introducing the compulsory education system, the financial problems of the national and local governments were the main factors behind the delay in the legal status of sick children as targets of special schools. In addition, it was clarified that the specific mechanism of schools and classes for the sick and the weak education, the degree of disability of the target children and students, the specialty of teachers, and the lack of establishment of teaching policies and methods were also factors. kn-abstract=結核予防を目的として発生した病弱教育の取り組みは,第二次世界大戦の影響により衰退しつつあった。戦後,新たな教育制度の改革により,病弱教育のための養護学校や特殊学級の数も増加傾向を示した。とくに,1979年の養護学校義務教育制により,病弱教育の制度的基盤が確立することになるが,その過程では福祉施設や訪問教育を含む多様な教育の場が展開された。しかし,義務制に至るまでの病弱教育の発展の経緯には,様々な課題の解決が必要であった。義務教育制度の導入はもちろんのこと,養護学校の対象としての病弱児の法的位置づけが遅れた要因として,主に国や地方公共団体の財政上の問題があった。加えて,病弱教育のための学校・学級の具体的な仕組みづくり,対象となる児童生徒の障害の程度,教師の専門性,指導方針・方法が確立されてこなかったことも影響したことが明らかになった。 en-copyright= kn-copyright= en-aut-name=LiuWenhao en-aut-sei=Liu en-aut-mei=Wenhao kn-aut-name=劉文浩 kn-aut-sei=劉 kn-aut-mei=文浩 aut-affil-num=1 ORCID= en-aut-name=YoshitoshiMunehisa en-aut-sei=Yoshitoshi en-aut-mei=Munehisa kn-aut-name=吉利宗久 kn-aut-sei=吉利 kn-aut-mei=宗久 aut-affil-num=2 ORCID= affil-num=1 en-affil=Shanghai Ouqiao Food Co., Ltd. (Graduated from Okayama University Graduate School of Education) kn-affil=上海欧巧食品株式会社(岡山大学大学院教育学研究科修了生) affil-num=2 en-affil=Graduate School of Education, Okayama University kn-affil=岡山大学学術研究院教育学域 en-keyword=病弱教育(the education for the sick and the weak) kn-keyword=病弱教育(the education for the sick and the weak) en-keyword=養護学校教育義務制(the educational compulsory system in schools for t he handicapped) kn-keyword=養護学校教育義務制(the educational compulsory system in schools for t he handicapped) en-keyword=発展経緯(development process) kn-keyword=発展経緯(development process) END start-ver=1.4 cd-journal=joma no-vol=44 cd-vols= no-issue=4 article-no= start-page=716 end-page=726 dt-received= dt-revised= dt-accepted= dt-pub-year=2003 dt-pub=200304 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Circulating oxidized LDL forms complexes with β(2)-glycoprotein I: implication as an atherogenic autoantigen en-subtitle= kn-subtitle= en-abstract= kn-abstract=beta(2)-glycoprotein I (beta(2)-GPI) is a major antigen for antiphospholipid antibodies (Abs, aPL) present in patients with antiphospholipid syndrome (APS). We recently reported (I. Lipid Res., 42: 697, 200 1; J Lipid Res., 43: 1486, 2002) that beta(2)-GPI specifically binds to Cu2+-oxidized LDL (oxLDL) and that the beta(2)-GPI ligands are omega-carboxylated 7-ketocholesteryl esters. In the present study, we demonstrate that oxLDL forms stable and nondissociable complexes with beta(2)-GPI in serum, and that high serum levels of the complexes are associated with arterial thrombosis in APS. A conjugated ketone function at the 7-position of cholesterol as well as the omega-carboxyl function of the beta(2)-GPI ligands was necessary for beta(2)-GPI binding. The ligand-mediated noncovalent interaction of beta(2)-GPI and oxLDL undergoes a temperature- and time-dependent conversion to much more stable but readily dissociable complexes in vitro at neutral pH. In contrast, stable and nondissociable beta(2)-GPI-oxLDL complexes were frequently detected in sera from patients with APS and/or systemic lupus erythematodes. Both the presence Of beta(2)-GPI-oxLDL complexes and IgG Abs recognizing these complexes were strongly associated with arterial thrombosis. Further, these same Abs correlated with IgG immune complexes containing beta(2)-GPI or LDL.jlr Thus, the beta(2)-GPI-oxLDL complexes acting as an autoantigen are closely associated with autoimmune-mediated atherogenesis. en-copyright= kn-copyright= en-aut-name=KobayashiKazuko en-aut-sei=Kobayashi en-aut-mei=Kazuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KishiMakoto en-aut-sei=Kishi en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AtsumiTatsuya en-aut-sei=Atsumi en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=BertolacciniMaria L. en-aut-sei=Bertolaccini en-aut-mei=Maria L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MakinoHirofumi en-aut-sei=Makino en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SakairiNobuo en-aut-sei=Sakairi en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamamotoItaru en-aut-sei=Yamamoto en-aut-mei=Itaru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YasudaTatsuji en-aut-sei=Yasuda en-aut-mei=Tatsuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KhamashtaMunther A. en-aut-sei=Khamashta en-aut-mei=Munther A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HughesGraham R. V. en-aut-sei=Hughes en-aut-mei=Graham R. V. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KoikeTakao en-aut-sei=Koike en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=VoelkerDennis R. en-aut-sei=Voelker en-aut-mei=Dennis R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MatsuuraEiji en-aut-sei=Matsuura en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Cell Chemistry, Okayama University Graduate School of Medicine and Dentistry kn-affil= affil-num=2 en-affil=Department of Cell Chemistry, Okayama University Graduate School of Medicine and Dentistry kn-affil= affil-num=3 en-affil=Department of Medicine II, Hokkaido University Graduate School of Medicine kn-affil= affil-num=4 en-affil=Lupus Research Unit, The Rayne Institute, St. Thomas' Hospital London kn-affil= affil-num=5 en-affil=Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine and Dentistry kn-affil= affil-num=6 en-affil=Division of Bioscience, Graduate School of Environment Earth Science, Hokkaido University kn-affil= affil-num=7 en-affil=Department of Immunochemistry, Faculty of Pharmaceutical Science, Okayama University kn-affil= affil-num=8 en-affil=Department of Cell Chemistry, Okayama University Graduate School of Medicine and Dentistry kn-affil= affil-num=9 en-affil=Lupus Research Unit, The Rayne Institute, St. Thomas' Hospital London kn-affil= affil-num=10 en-affil=Lupus Research Unit, The Rayne Institute, St. Thomas' Hospital London kn-affil= affil-num=11 en-affil=Department of Medicine II, Hokkaido University Graduate School of Medicine kn-affil= affil-num=12 en-affil=Program in Cell Biology, Department of Medicine, National Jewish Medical and Research Center kn-affil= affil-num=13 en-affil=Department of Cell Chemistry, Okayama University Graduate School of Medicine and Dentistry kn-affil= en-keyword=antiphospholipid syndrome kn-keyword=antiphospholipid syndrome en-keyword=arterial thrombosis kn-keyword=arterial thrombosis en-keyword=autoantibody kn-keyword=autoantibody END start-ver=1.4 cd-journal=joma no-vol=43 cd-vols= no-issue=9 article-no= start-page=1486 end-page=1495 dt-received= dt-revised= dt-accepted= dt-pub-year=2002 dt-pub=200209 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=ω-Carboxyl variants of 7-ketocholesteryl esters are ligands for β2-glycoprotein I and mediate antibody-dependent uptake of oxidized LDL by macrophages en-subtitle= kn-subtitle= en-abstract= kn-abstract=beta(2)-Glycoprotein I (beta(2)-GPI) is a major antigen for anticardiolipin antibodies (aCL, Abs) present in patients with antiphospholipid syndrome. We recently reported that beta(2)-GPI specifically binds to oxidized LDL (oxLDL) and that the beta(2)-GPI's major ligand, oxLig-1 is 7-ketocholesteryl-9-carboxynonanoate (Kobayashi, K, E. Matsuura, Q. P. Liu, J. Furukawa, K. Kaihara, J. Inagaki, T. Atsumi, N. Sakairi, T. Yasuda, D. R. Welker, and T. Koike. 2001. A specific ligand for beta(2)-glycoprotein I mediates autoantibody-dependent uptake of oxidized low density lipoprotein by macrophages. J Lipid Res. 42: 697-709). In the present study, we demonstrate that omega-carboxylated 7-ketocholesteryl esters are critical for beta(2)-GPI binding. A positive ion mass spectrum of a novel ligand, designated oxLig-2, showed fragmented ions at m/z 383 and 441 in the presence of acetone, which share features of oxLig-1 and 7-ketocholesterol. In the negative ion mode, ions at m/z 627, 625, and 243 were observed. oxLig-2 was most likely 7-ketocholesteryl-12-carboxy (keto) dodecanoate. These ligands were recognized by beta(2)-GPI. Liposome binding to macrophages was significantly increased depending on the ligand's concentration, in the presence of beta(2)-GPI and an anti-beta(2)-GPI Ab. Synthesized variant, 7-ketocholesteryl-13-carboxytxidecanoate (13-COOH-7KC), also showed a significant interaction with beta(2)-GPI and a similar binding profile with macrophages. Methylation of the carboxyl function diminished all of the specific ligand interactions with beta(2)-GPI. Thus, omega-carboxyl variants of 7-ketocholesteryl esters can mediate anti-beta(2)-GPI Ab-dependent uptake of oxLDL by macrophages, and autoimmune atherogenesis linked to beta(2)-GPI interaction with oxLDL. en-copyright= kn-copyright= en-aut-name=LiuQingping en-aut-sei=Liu en-aut-mei=Qingping kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KobayashiKazuko en-aut-sei=Kobayashi en-aut-mei=Kazuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FurukawaJun-ichi en-aut-sei=Furukawa en-aut-mei=Jun-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=InagakiJunko en-aut-sei=Inagaki en-aut-mei=Junko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SakairiNobuo en-aut-sei=Sakairi en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IwadoAkimasa en-aut-sei=Iwado en-aut-mei=Akimasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YasudaTatsuji en-aut-sei=Yasuda en-aut-mei=Tatsuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KoikeTakao en-aut-sei=Koike en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=VoelkerDennis R. en-aut-sei=Voelker en-aut-mei=Dennis R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MatsuuraEiji en-aut-sei=Matsuura en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Cell Chemistry, Okayama University Graduate School of Medicine and Dentistry kn-affil= affil-num=2 en-affil=Department of Cell Chemistry, Okayama University Graduate School of Medicine and Dentistry kn-affil= affil-num=3 en-affil=Division of Bioscience, Graduate School of Environment Earth Science, Hokkaido University kn-affil= affil-num=4 en-affil=Department of Cell Chemistry, Okayama University Graduate School of Medicine and Dentistry kn-affil= affil-num=5 en-affil=Division of Bioscience, Graduate School of Environment Earth Science, Hokkaido University kn-affil= affil-num=6 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Department of Cell Chemistry, Okayama University Graduate School of Medicine and Dentistry kn-affil= affil-num=8 en-affil=Department of Medicine II, Hokkaido University Graduate School of Medicine kn-affil= affil-num=9 en-affil=Program in Cell Biology, Department of Medicine, National Jewish Medical and Research Center kn-affil= affil-num=10 en-affil=Department of Cell Chemistry, Okayama University Graduate School of Medicine and Dentistry kn-affil= en-keyword=antiphospholipid syndrome kn-keyword=antiphospholipid syndrome en-keyword=atherosclerosis kn-keyword=atherosclerosis en-keyword=autoantibody kn-keyword=autoantibody en-keyword=beta(2)-glycoprotein I kn-keyword=beta(2)-glycoprotein I en-keyword=oxidized LDL kn-keyword=oxidized LDL en-keyword=omega-oxidation kn-keyword=omega-oxidation END start-ver=1.4 cd-journal=joma no-vol=76 cd-vols= no-issue=1 article-no= start-page=79 end-page=84 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202202 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Fixed Partial Denture Designed by Combining the Whole 3D Digital Surface Morphology of the Provisional Restoration and Abutment Teeth Surfaces en-subtitle= kn-subtitle= en-abstract= kn-abstract=We introduce a new digital workflow to fabricate a fixed partial denture (FPD) utilizing the three-dimensional surface morphology of provisional restoration (PR) and abutment teeth. Scanned images of the full maxilla with abutment teeth, full maxilla with PR, and PR alone were superimposed. The surfaces of the final FPD were designed based on the entire morphology of the PR and abutment teeth surfaces. The inner and outer surfaces converged at the margin lines of the abutment teeth. Fine modifications to the final FPD design were performed manually, and the final FPD was fabricated and successfully installed in the patient. en-copyright= kn-copyright= en-aut-name=TokumotoKana en-aut-sei=Tokumoto en-aut-mei=Kana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MinoTakuya en-aut-sei=Mino en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KurosakiYoko en-aut-sei=Kurosaki en-aut-mei=Yoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IzumiKoji en-aut-sei=Izumi en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MaekawaKenji en-aut-sei=Maekawa en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakanoTomohito en-aut-sei=Nakano en-aut-mei=Tomohito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SejimaJunichi en-aut-sei=Sejima en-aut-mei=Junichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=UedaAkihiro en-aut-sei=Ueda en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=Kimura-OnoAya en-aut-sei=Kimura-Ono en-aut-mei=Aya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=Hyung KimTae en-aut-sei=Hyung Kim en-aut-mei=Tae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KubokiTakuo en-aut-sei=Kuboki en-aut-mei=Takuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Oral Rehabilitation and Implantology, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Oral Rehabilitation and Implantology, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Oral Rehabilitation and Implantology, Okayama University Hospital kn-affil= affil-num=4 en-affil=SHIKEN Corporation kn-affil= affil-num=5 en-affil=Department of Oral Rehabilitation and Implantology, Okayama University Hospital kn-affil= affil-num=6 en-affil=Dental Technician Laboratory, Okayama University Hospital kn-affil= affil-num=7 en-affil=Dental Technician Laboratory, Okayama University Hospital kn-affil= affil-num=8 en-affil=Dental Technician Laboratory, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Oral Rehabilitation and Implantology, Okayama University Hospital kn-affil= affil-num=10 en-affil=Dental Technician Laboratory, Okayama University Hospital kn-affil= affil-num=11 en-affil=Department of Oral Rehabilitation and Implantology, Okayama University Hospital kn-affil= en-keyword=prosthodontics kn-keyword=prosthodontics en-keyword=computer-aided design kn-keyword=computer-aided design en-keyword=digital dentistry kn-keyword=digital dentistry en-keyword=fixed partial denture kn-keyword=fixed partial denture en-keyword=dental restoration kn-keyword=dental restoration END start-ver=1.4 cd-journal=joma no-vol=76 cd-vols= no-issue=1 article-no= start-page=63 end-page=70 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202202 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Chidamide and Decitabine in Combination with a HAG Priming Regimen for Acute Myeloid Leukemia with TP53 Mutation en-subtitle= kn-subtitle= en-abstract= kn-abstract=We analyzed the treatment effects of chidamide and decitabine in combination with a HAG (homoharringtonine, cytarabine, G-CSF) priming regimen (CDHAG) in acute myeloid leukemia (AML) patients with TP53 mutation. Seven TP53 mutated AML patients were treated with CDHAG. The treatment effects were assessed using hemogram detection and bone marrow aspirate. The possible side effects were evaluated based on both hematological and non-hematological toxicity. Four of the seven patients were classified as having achieved complete remission after CDHAG treatment; one patient was considered to have achieved partial remission, and the remaining two patients were considered in non-remission. The overall response rate (ORR) to CDHAG was 71.4%. Regarding the side effects, the hematological toxicity level of the seven patients ranged from level III to level IV, and infections that occurred at lung, blood, and skin were recorded. Nausea, vomiting, liver injury, and kidney injury were also detected. However, all side effects were attenuated by proper management. The CDHAG regimen clearly improved the ORR (71.4%) of TP53-mutated AML patients, with no severe side effects. en-copyright= kn-copyright= en-aut-name=ZhangBei en-aut-sei=Zhang en-aut-mei=Bei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=PeiZhixin en-aut-sei=Pei en-aut-mei=Zhixin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WangHongxia en-aut-sei=Wang en-aut-mei=Hongxia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WuHuimin en-aut-sei=Wu en-aut-mei=Huimin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WangJunjie en-aut-sei=Wang en-aut-mei=Junjie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=BaiJunjun en-aut-sei=Bai en-aut-mei=Junjun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SongQinglin en-aut-sei=Song en-aut-mei=Qinglin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Hematology, Jiaozuo People’s Hospital kn-affil= affil-num=2 en-affil=Department of Hematology, Jiaozuo People’s Hospital kn-affil= affil-num=3 en-affil=Department of Hematology, Jiaozuo People’s Hospital kn-affil= affil-num=4 en-affil=Department of Hematology, Jiaozuo People’s Hospital kn-affil= affil-num=5 en-affil=Department of Hematology, Jiaozuo People’s Hospital kn-affil= affil-num=6 en-affil=Department of Hematology, Jiaozuo People’s Hospital kn-affil= affil-num=7 en-affil=Department of Hematology, Jiaozuo People’s Hospital kn-affil= en-keyword=acute myeloid leukemia kn-keyword=acute myeloid leukemia en-keyword=chidamide kn-keyword=chidamide en-keyword=decitabine kn-keyword=decitabine en-keyword=HAG kn-keyword=HAG en-keyword=TP53 mutation kn-keyword=TP53 mutation END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue= article-no= start-page=111651 end-page=111665 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=2021 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Mitigation of Kernel Memory Corruption Using Multiple Kernel Memory Mechanism en-subtitle= kn-subtitle= en-abstract= kn-abstract=Operating systems adopt kernel protection methods (e.g., mandatory access control, kernel address space layout randomization, control flow integrity, and kernel page table isolation) as essential countermeasures to reduce the likelihood of kernel vulnerability attacks. However, kernel memory corruption can still occur via the execution of malicious kernel code at the kernel layer. This is because the vulnerable kernel code and the attack target kernel code or kernel data are located in the same kernel address space. To gain complete control of a host, adversaries focus on kernel code invocations, such as function pointers that rely on the starting points of the kernel protection methods. To mitigate such subversion attacks, this paper presents multiple kernel memory (MKM), which employs an alternative design for kernel address space separation. The MKM mechanism focuses on the isolation granularity of the kernel address space during each execution of the kernel code. MKM provides two kernel address spaces, namely, i) the trampoline kernel address space, which acts as the gateway feature between user and kernel modes and ii) the security kernel address space, which utilizes the localization of the kernel protection methods (i.e., kernel observation). Additionally, MKM achieves the encapsulation of the vulnerable kernel code to prevent access to the kernel code invocations of the separated kernel address space. The evaluation results demonstrated that MKM can protect the kernel code and kernel data from a proof-of-concept kernel vulnerability that could lead to kernel memory corruption. In addition, the performance results of MKM indicate that the system call overhead latency ranges from 0.020 μs to 0.5445 μs, while the web application benchmark ranges from 196.27 μs to 6, 685.73 μs for each download access of 100,000 Hypertext Transfer Protocol sessions. MKM attained a 97.65% system benchmark score and a 99.76% kernel compilation time. en-copyright= kn-copyright= en-aut-name=KuzunoHiroki en-aut-sei=Kuzuno en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamauchiToshihiro en-aut-sei=Yamauchi en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=1Intelligent Systems Laboratory, SECOM Company Ltd. kn-affil= affil-num=2 en-affil=2Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Memory corruption kn-keyword=Memory corruption en-keyword=kernel vulnerability kn-keyword=kernel vulnerability en-keyword=system security kn-keyword=system security en-keyword=operating system kn-keyword=operating system END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=11 article-no= start-page=e00424 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202111 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Impact of KRAS Mutation in Patients With Sporadic Nonampullary Duodenal Epithelial Tumors en-subtitle= kn-subtitle= en-abstract= kn-abstract=INTRODUCTION: The genomic characterization of primary nonampullary duodenal adenocarcinoma indicates a genetic resemblance to gastric and colorectal cancers. However, a correlation between the clinical and molecular characteristics of these cancers has not been established. This study aimed to elucidate the clinicopathological features of sporadic nonampullary duodenal epithelial tumors, including their molecular characteristics and prognostic factors.
METHODS: One hundred forty-eight patients with sporadic nonampullary duodenal epithelial tumors were examined in this study. Patient sex, age, TNM stage, tumor location, treatment methods, histology, KRAS mutation, BRAF mutation, Fusobacterium nucleatum, mucin phenotype, and programmed death-ligand 1 (PD-L1) status were evaluated. KRAS and BRAF mutations, Fusobacterium nucleatum, mucin phenotype, and PD-L1 status were analyzed by direct sequencing, quantitative polymerase chain reaction, and immunochemical staining.
RESULTS: The median follow-up duration was 119.4 months. There were no deaths from duodenal adenoma (the primary disease). Kaplan-Meier analysis for duodenal adenocarcinoma showed a significant effect of TNM stage (P < 0.01). In univariate analysis of primary deaths from duodenal adenocarcinoma, TNM stage II or higher, undifferentiated, KRAS mutations, gastric phenotype, intestinal phenotype, and PD-L1 status were significant factors. In multivariate analysis, TNM stage II or higher (hazard ratio: 1.63 x 10(10), 95% confidence interval: 18.66-6.69 x 10(36)) and KRAS mutation (hazard ratio: 3.49, confidence interval: 1.52-7.91) were significant factors.
DISCUSSION: Only KRAS mutation was a significant prognostic factor in primary sporadic nonampullary duodenal adenocarcinoma in cases in which TNM stage was considered. en-copyright= kn-copyright= en-aut-name=KinugasaHideaki en-aut-sei=Kinugasa en-aut-mei=Hideaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KanzakiHiromitsu en-aut-sei=Kanzaki en-aut-mei=Hiromitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanakaTakehiro en-aut-sei=Tanaka en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamamotoShumpei en-aut-sei=Yamamoto en-aut-mei=Shumpei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamasakiYasushi en-aut-sei=Yamasaki en-aut-mei=Yasushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NousoKazuhiro en-aut-sei=Nouso en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IchimuraKouichi en-aut-sei=Ichimura en-aut-mei=Kouichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakagawaMasahiro en-aut-sei=Nakagawa en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MitsuhashiToshiharu en-aut-sei=Mitsuhashi en-aut-mei=Toshiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OkadaHiroyuki en-aut-sei=Okada en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Pathology, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=8 en-affil=Department of Endoscopy, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=9 en-affil=Center for Innovative Clinical Medicine, OkayamaUniversity Hospital kn-affil= affil-num=10 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=75 cd-vols= no-issue=6 article-no= start-page=705 end-page=711 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202112 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Testosterone Recovery after Neoadjuvant Gonadotropin-Releasing Hormone Antagonist versus Agonist on Permanent Iodine-125 Seed Brachytherapy in Prostate Cancer Patients: A Propensity Score Analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Optimal neoadjuvant hormone therapy (NHT) for reducing prostate cancer (PC) patients’ prostate volume pre-brachytherapy is controversial. We evaluated the differential impact of neoadjuvant gonadotropin-releasing hormone (GnRH) antagonist versus agonist on post-brachytherapy testosterone recovery in 112 patients treated pre-brachytherapy with NHT (GnRH antagonist, n=32; GnRH agonists, n=80) (Jan. 2007-June 2019). We assessed the effects of patient characteristics and a GnRH analogue on testosterone recovery with logistic regression and a propensity score analysis (PSA). There was no significant difference in the rate of testosterone recovery to normal levels (> 300 ng/dL) between the GnRH antagonist and agonists (p=0.07). The GnRH agonists induced a significantly more rapid testosterone recovery rate at 3 months post-brachytherapy versus the GnRH antagonist (p<0.0001); there was no difference in testosterone recovery at 12 months between the GnRH antagonist/agonists (p=0.8). In the multivariate analysis, no actor was associated with testosterone recovery. In the PSA, older age and higher body mass index (BMI) were significantly associated with longer testosterone recovery. Post-brachytherapy testosterone recovery was quicker with the neoadjuvant GnRH agonists than the antagonist, and the testosterone recovery rate was significantly associated with older age and higher BMI. Long-term follow-ups are needed to determine any differential effects of GnRH analogues on the quality of life of brachytherapy-treated PC patients. en-copyright= kn-copyright= en-aut-name=IwataTakehiro en-aut-sei=Iwata en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MaruyamaYuki en-aut-sei=Maruyama en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KawadaTatsushi en-aut-sei=Kawada en-aut-mei=Tatsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SadahiraTakuya en-aut-sei=Sadahira en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KatayamaSatoshi en-aut-sei=Katayama en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakamotoAtsushi en-aut-sei=Takamoto en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SakoTomoko en-aut-sei=Sako en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=WadaKoichiro en-aut-sei=Wada en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=EdamuraKohei en-aut-sei=Edamura en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KobayashiYasuyuki en-aut-sei=Kobayashi en-aut-mei=Yasuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=ArakiMotoo en-aut-sei=Araki en-aut-mei=Motoo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=WatanabeMasami en-aut-sei=Watanabe en-aut-mei=Masami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=WatanabeToyohiko en-aut-sei=Watanabe en-aut-mei=Toyohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=NasuYasutomo en-aut-sei=Nasu en-aut-mei=Yasutomo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=testosterone recovery kn-keyword=testosterone recovery en-keyword=GnRH antagonist kn-keyword=GnRH antagonist en-keyword=GnRH agonist kn-keyword=GnRH agonist en-keyword=brachytherapy kn-keyword=brachytherapy en-keyword=prostate cancer kn-keyword=prostate cancer END start-ver=1.4 cd-journal=joma no-vol=75 cd-vols= no-issue=6 article-no= start-page=671 end-page=675 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202112 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Multiple Roles of Histidine-Rich Glycoprotein in Vascular Homeostasis and Angiogenesis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Histidine-rich glycoprotein (HRG) is a 75 kDa plasma protein that is synthesized in the liver of many verte-brates and present in their plasma at relatively high concentrations of 100-150 μg/mL. HRG is an abundant and well-characterized protein having a multidomain structure that enable it to interact with many ligands, func-tion as an adaptor molecule, and participate in numerous physiological and pathological processes. As a plasma protein, HRG has been reported to regulate vascular biology, including coagulation, fibrinolysis and angiogenesis, through its binding with several ligands (heparin, FXII, fibrinogen, thrombospondin, and plas-minogen) and interaction with many types of cells (endothelial cells, erythrocytes, neutrophils and platelets). This review aims to summarize the roles of HRG in maintaining vascular homeostasis and regulating angiogen-esis in various pathological conditions. en-copyright= kn-copyright= en-aut-name=GaoShangze en-aut-sei=Gao en-aut-mei=Shangze kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishiboriMasahiro en-aut-sei=Nishibori en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=histidine-rich glycoprotein kn-keyword=histidine-rich glycoprotein en-keyword=vascular biology kn-keyword=vascular biology en-keyword=coagulation kn-keyword=coagulation en-keyword=angiogenesis kn-keyword=angiogenesis END start-ver=1.4 cd-journal=joma no-vol=75 cd-vols= no-issue=5 article-no= start-page=557 end-page=565 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202110 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Relationship between Pressure Ulcers in Elderly People and Physiological Indices of the Skin en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study examined the relationship between skin physiological indices and pressure ulcers in elderly people. The subjects were 55 bedridden elderly Japanese patients with a median age of 85 years. The following parame-ters were measured using non-invasive devices: skin surface temperature, moisture content in the stratum corneum, moisture content in the dermis, transepidermal water loss as an index of skin barrier function, skin erythema and skin elasticity. The sacral and 2 heel areas were observed as sites predisposed to pressure ulcers. Within one month after measuring the skin physiological indices, we confirmed pressure ulcers of National Pressure Ulcer Advisory Panel classification Stage II or worse based on medical records. Among the 55 patients, 4 (7.3%) prospectively developed a total of 5 pressure ulcers within 16 days. Only the skin erythema score was significantly higher with than without pressure ulcers (p < 0.001). We performed a binary logistic regression analysis and confirmed a significant relationship between pressure-ulcer development and the level of erythema (odds ratio = 1.026; 95% confidence interval: 1.011-1.042). Skin erythema increased before the development of pressure ulcers. Taken together, our results show that the high skin erythema score can be a predictive indicator of pressure ulcers. en-copyright= kn-copyright= en-aut-name=Takeshima KoharaHiroko en-aut-sei=Takeshima Kohara en-aut-mei=Hiroko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IkedaMitsunori en-aut-sei=Ikeda en-aut-mei=Mitsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OkawaMasami en-aut-sei=Okawa en-aut-mei=Masami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Nursing, University of Kochi kn-affil= affil-num=2 en-affil=Department of Nursing, University of Kochi kn-affil= affil-num=3 en-affil=Shiragikuen Hospital kn-affil= en-keyword=elderly people kn-keyword=elderly people en-keyword=erythema kn-keyword=erythema en-keyword=pressure ulcer kn-keyword=pressure ulcer en-keyword=skin kn-keyword=skin END start-ver=1.4 cd-journal=joma no-vol=75 cd-vols= no-issue=5 article-no= start-page=549 end-page=556 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202110 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Glial Cells as Possible Targets of Neuroprotection through Neurotrophic and Antioxidative Molecules in the Central and Enteric Nervous Systems in Parkinson’s Disease en-subtitle= kn-subtitle= en-abstract= kn-abstract=Parkinson’s disease (PD) is the second most common neurodegenerative disease worldwide. The loss of nigrostriatal dopaminergic neurons produces its characteristic motor symptoms, but PD patients also have non-motor symptoms such as constipation and orthostatic hypotension. The pathological hallmark of PD is the presence of α-synuclein-containing Lewy bodies and neurites in the brain. However, the PD pathology is observed in not only the central nervous system (CNS) but also in parts of the peripheral nervous system such as the enteric nervous system (ENS). Since constipation is a typical prodromal non-motor symptom in PD, often preceding motor symptoms by 10-20 years, it has been hypothesized that PD pathology propagates from the ENS to the CNS via the vagal nerve. Discovery of pharmacological and other methods to halt this progression of neurodegeneration in PD has the potential to improve millions of lives. Astrocytes protect neurons in the CNS by secretion of neurotrophic and antioxidative factors. Similarly, astrocyte-like enteric glial cells (EGCs) are known to secrete neuroprotective factors in the ENS. In this article, we summarize the neuroprotective function of astrocytes and EGCs and discuss therapeutic strategies for the prevention of neurodegeneration in PD targeting neurotrophic and antioxidative molecules in glial cells. en-copyright= kn-copyright= en-aut-name=IsookaNami en-aut-sei=Isooka en-aut-mei=Nami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyazakiIkuko en-aut-sei=Miyazaki en-aut-mei=Ikuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AsanumaMasato en-aut-sei=Asanuma en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Parkinson’s disease kn-keyword=Parkinson’s disease en-keyword=astrocyte kn-keyword=astrocyte en-keyword=enteric glial cell kn-keyword=enteric glial cell en-keyword=neurotrophic factor kn-keyword=neurotrophic factor en-keyword=antioxidative molecule kn-keyword=antioxidative molecule END start-ver=1.4 cd-journal=joma no-vol=6 cd-vols= no-issue=4 article-no= start-page=100191 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202108 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Gefitinib induction followed by chemoradiotherapy in EGFR-mutant, locally advanced non-small-cell lung cancer: LOGIK0902/OLCSG0905 phase II study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: The role of epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) induction coupled with standard concurrent chemoradiotherapy (CRT) is unclear in unresectable, stage III, EGFR-mutant non-small-cell lung cancer (NSCLC). Therefore, a phase II trial was conducted to evaluate the efficacy and safety of gefitinib induction followed by CRT in this disease setting.
Patients and methods: Patients with unresectable, EGFR-mutant, stage III NSCLC were administered gefitinib monotherapy (250 mg/day) for 8 weeks. Subsequently, patients without disease progression during induction therapy were administered cisplatin and docetaxel (40 mg/m(2) each) on days 1, 8, 29, and 36 with concurrent radiotherapy at a total dose of 60 Gy. The primary endpoint was the 2-year overall survival (OS) rate, which was hypothesized to reach 85%, with a threshold of the lower limit of 60%.
Results: Twenty patients (median age: 66 years; male/female: 9/11; histology: 20 adenocarcinoma; stage IIIA/IIIB: 9/11; and exon 19/21: 10/10) were enrolled. The 2-year OS rate was 90% (90% confidence interval: 71.4% to 96.8%), indicating that this trial met the primary objective. The overall response rate and 1- and 2-year progression-free survival rates were 85.0%, 58.1%, and 36.9%, respectively. Grade >= 3 adverse events (>10%) included hepatic toxicity during the induction phase and neutropenia and febrile neutropenia in the CRT phase. Radiation pneumonitis grade >= 3 or treatment-related death did not occur.
Conclusions: This is the first prospective study to demonstrate the favorable efficacy and safety of EGFR-TKI induction followed by standard CRT in EGFR-mutant, stage III NSCLC. Further confirmatory studies are needed. en-copyright= kn-copyright= en-aut-name=HottaK. en-aut-sei=Hotta en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SaekiS. en-aut-sei=Saeki en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamaguchiM. en-aut-sei=Yamaguchi en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HaradaD. en-aut-sei=Harada en-aut-mei=D. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=BesshoA. en-aut-sei=Bessho en-aut-mei=A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TanakaK. en-aut-sei=Tanaka en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=InoueK. en-aut-sei=Inoue en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=GembaK. en-aut-sei=Gemba en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ShiojiriM. en-aut-sei=Shiojiri en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KatoY. en-aut-sei=Kato en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NinomiyaT. en-aut-sei=Ninomiya en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KuboT. en-aut-sei=Kubo en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KishimotoJ. en-aut-sei=Kishimoto en-aut-mei=J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=ShioyamaY. en-aut-sei=Shioyama en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=KatsuiK. en-aut-sei=Katsui en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=SasakiJ. en-aut-sei=Sasaki en-aut-mei=J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=KiuraK. en-aut-sei=Kiura en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=SugioK. en-aut-sei=Sugio en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= affil-num=1 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Respiratory Medicine, Kumamoto University Hospital kn-affil= affil-num=3 en-affil=Department of Thoracic Oncology, National Hospital Organization Kyushu Cancer Center kn-affil= affil-num=4 en-affil=Department of Thoracic Oncology, National Hospital Organization Shikoku Cancer Center kn-affil= affil-num=5 en-affil=Department of Respiratory Medicine, Japanese Red Cross Okayama Hospital kn-affil= affil-num=6 en-affil=Department of Respiratory Medicine, Kyushu University Hospital kn-affil= affil-num=7 en-affil=Department of Respiratory Medicine, Kitakyushu Municipal Medical Center kn-affil= affil-num=8 en-affil=Department of Respiratory Medicine, Chugoku Central Hospital kn-affil= affil-num=9 en-affil=Department of Respiratory Medicine, Japanese Red Cross Okayama Hospital kn-affil= affil-num=10 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=11 en-affil=Department of Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=12 en-affil=Department of Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=13 en-affil=Center for Clinical and Translational Research, Kyushu University Hospital kn-affil= affil-num=14 en-affil=Clinical Radiology, Radiology Informatics and Network, Graduate School of Medical Sciences, Kyushu University kn-affil= affil-num=15 en-affil=Department of Proton Beam Therapy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine kn-affil= affil-num=17 en-affil=Department of Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=18 en-affil=Department of Thoracic and Breast Surgery, Oita University kn-affil= en-keyword=non-small-cell lung cancer kn-keyword=non-small-cell lung cancer en-keyword=locally advanced setting kn-keyword=locally advanced setting en-keyword=chemoradiation kn-keyword=chemoradiation en-keyword=epidermal growth factor receptor kn-keyword=epidermal growth factor receptor END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue= article-no= start-page=726273 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210820 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Virulence of Cholera Toxin Gene-Positive Vibrio cholerae Non-O1/non-O139 Strains Isolated From Environmental Water in Kolkata, India en-subtitle= kn-subtitle= en-abstract= kn-abstract=Cholera toxin (CT)-producing Vibrio cholerae O1 and O139 cause acute diarrheal disease and are proven etiological agents of cholera epidemics and pandemics. On the other hand, V. cholerae non-O1/non-O139 are designated as non-agglutinable (NAG) vibrios and are not associated with epidemic cholera. The majority of NAG vibrios do not possess the gene for CT (ctx). In this study, we isolated three NAG strains (strains No. 1, 2, and 3) with ctx from pond water in Kolkata, India, and examined their pathogenic properties. The enterotoxicity of the three NAG strains in vivo was examined using the rabbit ileal intestinal loop test. Strain No. 1 induced the accumulation of fluid in the loop, and the volume of fluid was reduced by simultaneous administration of anti-CT antiserum into the loop. The volume of fluid in the loop caused by strains No. 2 and 3 was small and undetectable, respectively. Then, we cultured these three strains in liquid medium in vitro at two temperatures, 25 degrees C and 37 degrees C, and examined the amount of CT accumulated in the culture supernatant. CT was accumulated in the culture supernatant of strain No.1 when the strain was cultured at 25 degrees C, but that was low when cultured at 37 degrees C. The CT amount accumulated in the culture supernatants of the No. 2 and No. 3 strains was extremely low at both temperature under culture conditions examined. In order to clarify the virulence properties of these strains, genome sequences of the three strains were analyzed. The analysis showed that there was no noticeable difference among three isolates both in the genes for virulence factors and regulatory genes of ctx. However, vibrio seventh pandemic island-II (VSP-II) was retained in strain No. 1, but not in strains No. 2 or 3. Furthermore, it was revealed that the genotype of the B subunit of CT in strain No. 1 was type 1 and those of strains No. 2 and 3 were type 8. Histopathological examination showed the disappearance of villi in intestinal tissue exposed to strain No. 1. In addition, fluid accumulated in the loop due to the action of strain No. 1 had hemolytic activity. This indicated that strain No. 1 may possesses virulence factors to induce severe syndrome when the strain infects humans, and that some strains of NAG vibrio inhabiting pond water in Kolkata have already acquired virulence, which can cause illness in humans. There is a possibility that these virulent NAG vibrios, which have acquired genes encoding factors involved in virulence of V. cholerae O1, may emerge in various parts of the world and cause epidemics in the future. en-copyright= kn-copyright= en-aut-name=TakahashiEizo en-aut-sei=Takahashi en-aut-mei=Eizo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OchiSadayuki en-aut-sei=Ochi en-aut-mei=Sadayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MizunoTamaki en-aut-sei=Mizuno en-aut-mei=Tamaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MoritaDaichi en-aut-sei=Morita en-aut-mei=Daichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MoritaMasatomo en-aut-sei=Morita en-aut-mei=Masatomo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OhnishiMakoto en-aut-sei=Ohnishi en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KoleyHemanta en-aut-sei=Koley en-aut-mei=Hemanta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=DuttaMoumita en-aut-sei=Dutta en-aut-mei=Moumita kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ChowdhuryGoutam en-aut-sei=Chowdhury en-aut-mei=Goutam kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MukhopadhyayAsish K. en-aut-sei=Mukhopadhyay en-aut-mei=Asish K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=DuttaShanta en-aut-sei=Dutta en-aut-mei=Shanta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MiyoshiShin-Ichi en-aut-sei=Miyoshi en-aut-mei=Shin-Ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=OkamotoKeinosuke en-aut-sei=Okamoto en-aut-mei=Keinosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Collaborative Research Center of Okayama University for Infectious Diseases in India kn-affil= affil-num=2 en-affil=Department of Health Pharmacy, Yokohama University of Pharmacy kn-affil= affil-num=3 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences of Okayama University kn-affil= affil-num=4 en-affil=Collaborative Research Center of Okayama University for Infectious Diseases in India kn-affil= affil-num=5 en-affil=Department of Bacteriology I, National Institute of Infectious Diseases kn-affil= affil-num=6 en-affil=Department of Bacteriology I, National Institute of Infectious Diseases kn-affil= affil-num=7 en-affil=National Institute of Cholera and Enteric Diseases kn-affil= affil-num=8 en-affil=National Institute of Cholera and Enteric Diseases kn-affil= affil-num=9 en-affil=National Institute of Cholera and Enteric Diseases kn-affil= affil-num=10 en-affil=National Institute of Cholera and Enteric Diseases kn-affil= affil-num=11 en-affil=National Institute of Cholera and Enteric Diseases kn-affil= affil-num=12 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences of Okayama University kn-affil= affil-num=13 en-affil=Collaborative Research Center of Okayama University for Infectious Diseases in India kn-affil= en-keyword=Vibrio cholerae kn-keyword=Vibrio cholerae en-keyword=NAG Vibrio kn-keyword=NAG Vibrio en-keyword=cholera toxin kn-keyword=cholera toxin en-keyword=virulence kn-keyword=virulence en-keyword=environmental water kn-keyword=environmental water en-keyword=gene analysis kn-keyword=gene analysis END start-ver=1.4 cd-journal=joma no-vol=22 cd-vols= no-issue=17 article-no= start-page=9204 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210825 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effect of Angiotensin II on Chondrocyte Degeneration and Protection via Differential Usage of Angiotensin II Receptors en-subtitle= kn-subtitle= en-abstract= kn-abstract=The renin-angiotensin system (RAS) controls not only systemic functions, such as blood pressure, but also local tissue-specific events. Previous studies have shown that angiotensin II receptor type 1 (AT(1)R) and type 2 (AT(2)R), two RAS components, are expressed in chondrocytes. However, the angiotensin II (ANG II) effects exerted through these receptors on chondrocyte metabolism are not fully understood. In this study, we investigated the effects of ANG II and AT(1)R blockade on chondrocyte proliferation and differentiation. Firstly, we observed that ANG II significantly suppressed cell proliferation and glycosaminoglycan content in rat chondrocytic RCS cells. Additionally, ANG II decreased CCN2, which is an anabolic factor for chondrocytes, via increased MMP9. In Agtr1a-deficient RCS cells generated by the CRISPR-Cas9 system, Ccn2 and Aggrecan (Acan) expression increased. Losartan, an AT(1)R antagonist, blocked the ANG II-induced decrease in CCN2 production and Acan expression in RCS cells. These findings suggest that AT(1)R blockade reduces ANG II-induced chondrocyte degeneration. Interestingly, AT(1)R-positive cells, which were localized on the surface of the articular cartilage of 7-month-old mice expanded throughout the articular cartilage with aging. These findings suggest that ANG II regulates age-related cartilage degeneration through the ANG II-AT(1)R axis. en-copyright= kn-copyright= en-aut-name=NishidaTakashi en-aut-sei=Nishida en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AkashiSho en-aut-sei=Akashi en-aut-mei=Sho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakigawaMasaharu en-aut-sei=Takigawa en-aut-mei=Masaharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KubotaSatoshi en-aut-sei=Kubota en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil=岡山大学大学院医歯薬学総合研究科 en-keyword=angiotensin II kn-keyword=angiotensin II en-keyword=cellular communication network factor 2 (CCN2) kn-keyword=cellular communication network factor 2 (CCN2) en-keyword=renin-angiotensin system (RAS) kn-keyword=renin-angiotensin system (RAS) en-keyword=losartan kn-keyword=losartan en-keyword=angiotensin II type I receptor (AT(1)R) kn-keyword=angiotensin II type I receptor (AT(1)R) END start-ver=1.4 cd-journal=joma no-vol=75 cd-vols= no-issue=4 article-no= start-page=539 end-page=542 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202108 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=An Elderly Male with Primary Sjögren’s Syndrome Presenting Pleuritis as the Initial Manifestation en-subtitle= kn-subtitle= en-abstract= kn-abstract=Primary Sjögren’s syndrome (SS) is an autoimmune disease that usually affects the exocrine glands in mid-dle-aged women. Fifteen percent of SS patients experience severe systemic extraglandular complications, and pleuritis is one of the rare complications of SS. We report the case of an elderly Japanese man who initially pre-sented with a prolonged fever and chest pain and was finally diagnosed with primary SS-associated pleuritis. Of the nine reported cases of primary SS that initially presented with pleuritis, up to six cases were elderly males. This case highlights the complication of pleuritis among elderly males with primary SS. en-copyright= kn-copyright= en-aut-name=YamamotoYukichika en-aut-sei=Yamamoto en-aut-mei=Yukichika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OtsukaYuki en-aut-sei=Otsuka en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KatsuyamaTakayuki en-aut-sei=Katsuyama en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishimuraYoshito en-aut-sei=Nishimura en-aut-mei=Yoshito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OkaKosuke en-aut-sei=Oka en-aut-mei=Kosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HasegawaKou en-aut-sei=Hasegawa en-aut-mei=Kou kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HagiyaHideharu en-aut-sei=Hagiya en-aut-mei=Hideharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Sjögren’s syndrome kn-keyword=Sjögren’s syndrome en-keyword=pleuritis kn-keyword=pleuritis en-keyword=elderly male kn-keyword=elderly male END start-ver=1.4 cd-journal=joma no-vol=75 cd-vols= no-issue=4 article-no= start-page=471 end-page=477 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202108 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Two Types of Polyp Shape Observed in the Stomach of Patients with Peutz-Jeghers Syndrome en-subtitle= kn-subtitle= en-abstract= kn-abstract=The characteristics of gastric polyps in patients with Peutz-Jeghers (PJ) syndrome (PJS) have not been fully investigated. The objective of this study was to reveal the endoscopic and pathologic findings of gastric polyps in patients with PJS. We reviewed 11 patients with PJS treated at 6 institutions, and summarized the endo-scopic and pathologic features of their gastric polyps. The polyps were mainly classified into 2 types: (i) soli-tary or sporadic polyps > 5 mm, reddish in color with a sessile or semi-pedunculated morphology (n = 9); and (ii) multiple sessile polyps ≤ 5 mm with the same color tone as the peripheral mucosa (n = 9). Patients who underwent endoscopic mucosal resection for polyps > 5 mm were diagnosed with PJ polyps (n = 2), whereas those who underwent biopsy were diagnosed with hyperplastic polyps. Polyps ≤ 5 mm were pathologically diagnosed as fundic gland polyps or hyperplastic polyps. This study revealed that patients with PJS present with 2 types of polyps in the stomach. Endoscopic mucosal resection of polyps > 5 mm seems necessary for the pathologic diagnosis of PJ polyps. en-copyright= kn-copyright= en-aut-name=IwamuroMasaya en-aut-sei=Iwamuro en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ToyokawaTatsuya en-aut-sei=Toyokawa en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsuedaKazuhiro en-aut-sei=Matsueda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HoriShinichiro en-aut-sei=Hori en-aut-mei=Shinichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YoshiokaMasao en-aut-sei=Yoshioka en-aut-mei=Masao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MoritouYuki en-aut-sei=Moritou en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TanakaTakehiro en-aut-sei=Tanaka en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MizunoMotowo en-aut-sei=Mizuno en-aut-mei=Motowo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OkadaHiroyuki en-aut-sei=Okada en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterology, Fukuyama Medical Center kn-affil= affil-num=3 en-affil=Department of Gastroenterology and Hepatology, Kurashiki Central Hospital kn-affil= affil-num=4 en-affil=Department of Endoscopy, Shikoku Cancer Center kn-affil= affil-num=5 en-affil=Department of Internal Medicine, Okayama Saiseikai General Hospital kn-affil= affil-num=6 en-affil=Department of Internal Medicine, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=7 en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Gastroenterology and Hepatology, Kurashiki Central Hospital kn-affil= affil-num=9 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Peutz-Jeghers syndrome kn-keyword=Peutz-Jeghers syndrome en-keyword= esophagogastroduodenoscopy kn-keyword= esophagogastroduodenoscopy en-keyword=gastric polyps kn-keyword=gastric polyps END start-ver=1.4 cd-journal=joma no-vol=75 cd-vols= no-issue=4 article-no= start-page=461 end-page=469 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202108 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Bendamustine Plus Rituximab as Salvage Treatment for Patients with Relapsed or Refractory Low-grade B-cell Lymphoma and Mantle Cell Lymphoma: A Single-Center Retrospective Study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Bendamustine plus rituximab (B-R) is an effective therapy for relapsed or refractory (r/r) low-grade B-cell lymphoma (LGBCL) and mantle cell lymphoma (MCL); however, clinical data from Japanese patients treated with B-R therapy are limited. We retrospectively evaluated the efficacy and safety of B-R therapy in 42 patients who received B-R therapy at our hospital for r/r LGBCL and MCL. All patients received intravenous (IV) ritux-imab 375 mg/m2 on day 1 and IV bendamustine 90 mg/m2 on days 2 and 3 every 28 days for up to 6 cycles. The common histologic subtypes were follicular lymphoma (n = 29, 70%), marginal zone lymphoma (n = 6, 14%), and MCL (n = 5, 12%). The overall response rate was 93%, with 62% complete response and complete response unconfirmed. The median progression-free survival (PFS) was 38 months (95% confidence interval [CI], 24.6 to not reached [NR]), and the median overall survival (OS) was 80 months (95% CI, 60.7 to NR). Patients receiving a cumulative dose of bendamustine ≥ 720 mg/m2 showed a significantly longer PFS and OS. Grade 3/4 adverse events (≥ 10%) included neutropenia (55%), lymphopenia (69%), and nausea (24%). B-R therapy was effective and well tolerated, and the cumulative dose of bendamustine was associated with a favorable outcome. en-copyright= kn-copyright= en-aut-name=MurakamiHiroyuki en-aut-sei=Murakami en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YoshiokaTakanori en-aut-sei=Yoshioka en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoriyamaTakashi en-aut-sei=Moriyama en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IshikawaTatsunori en-aut-sei=Ishikawa en-aut-mei=Tatsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MakitaMasanori en-aut-sei=Makita en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SunamiKazutaka en-aut-sei=Sunami en-aut-mei=Kazutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Hematology, National Hospital Organization Okayama Medical Center kn-affil= affil-num=2 en-affil=Department of Hematology, National Hospital Organization Okayama Medical Center kn-affil= affil-num=3 en-affil=Department of Hematology, National Hospital Organization Okayama Medical Center kn-affil= affil-num=4 en-affil=Department of Hematology, National Hospital Organization Okayama Medical Center kn-affil= affil-num=5 en-affil=Department of Hematology, National Hospital Organization Okayama Medical Center kn-affil= affil-num=6 en-affil=Department of Hematology, National Hospital Organization Okayama Medical Center kn-affil= en-keyword=bendamustine kn-keyword=bendamustine en-keyword=low grade B-cell lymphoma kn-keyword=low grade B-cell lymphoma en-keyword=mantle cell lymphoma kn-keyword=mantle cell lymphoma END start-ver=1.4 cd-journal=joma no-vol=22 cd-vols= no-issue=16 article-no= start-page=8689 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210813 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Glutathione and Related Molecules in Parkinsonism en-subtitle= kn-subtitle= en-abstract= kn-abstract=Glutathione (GSH) is the most abundant intrinsic antioxidant in the central nervous system, and its substrate cysteine readily becomes the oxidized dimeric cystine. Since neurons lack a cystine transport system, neuronal GSH synthesis depends on cystine uptake via the cystine/glutamate exchange transporter (xCT), GSH synthesis, and release in/from surrounding astrocytes. Transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), a detoxifying master transcription factor, is expressed mainly in astrocytes and activates the gene expression of various phase II drug-metabolizing enzymes or antioxidants including GSH-related molecules and metallothionein by binding to the antioxidant response element (ARE) of these genes. Accumulating evidence has shown the involvement of dysfunction of antioxidative molecules including GSH and its related molecules in the pathogenesis of Parkinson's disease (PD) or parkinsonian models. Furthermore, we found several agents targeting GSH synthesis in the astrocytes that protect nigrostriatal dopaminergic neuronal loss in PD models. In this article, the neuroprotective effects of supplementation and enhancement of GSH and its related molecules in PD pathology are reviewed, along with introducing new experimental findings, especially targeting of the xCT-GSH synthetic system and Nrf2-ARE pathway in astrocytes. en-copyright= kn-copyright= en-aut-name=AsanumaMasato en-aut-sei=Asanuma en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyazakiIkuko en-aut-sei=Miyazaki en-aut-mei=Ikuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medical, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medical, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=glutathione kn-keyword=glutathione en-keyword=neuroprotection kn-keyword=neuroprotection en-keyword=parkinsonism kn-keyword=parkinsonism en-keyword=astrocyte kn-keyword=astrocyte en-keyword=region specificity kn-keyword=region specificity en-keyword=striatum kn-keyword=striatum en-keyword=mesencephalon kn-keyword=mesencephalon en-keyword=oxidative stress kn-keyword=oxidative stress en-keyword=Nrf2 kn-keyword=Nrf2 en-keyword=metallothionein kn-keyword=metallothionein en-keyword=serotonin 5-HT1A receptor kn-keyword=serotonin 5-HT1A receptor END start-ver=1.4 cd-journal=joma no-vol=75 cd-vols= no-issue=4 article-no= start-page=403 end-page=413 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202108 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Surgical Treatment of Epiretinal Membrane en-subtitle= kn-subtitle= en-abstract= kn-abstract=Epiretinal membrane (ERM) is a common retinal disease characterized by cellular proliferation and metaplasia that lead to the formation of a pathological fibrocellular membrane immediately superjacent to the inner retinal surface. The vast majority of ERMs are considered idiopathic. However, ERM formation can result from various primary intraocular diseases, including retinal breaks and detachment, retinal vascular diseases, and vitreoretinal inflammatory conditions. Although ERMs are generally asymptomatic or cause mild metamorphopsia and/or a modest decrease in visual acuity, some can cause severe macular distortion and macular edema, resulting in significantly impaired function. Surgical removal of ERM is the only treatment, and improvements in vitrectomy systems have enabled less invasive treatment. However, there are currently no standardized criteria for ERM surgery, and the indications for surgery are determined from the patient’s subjective symptoms. Another problem with ERM surgery is that not all patients show satisfactory postoperative recovery of visual function. Thus, further research is needed to determine the criteria for ERM surgery and methods to improve the postoperative prognosis. en-copyright= kn-copyright= en-aut-name=MatobaRyo en-aut-sei=Matoba en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MorizaneYuki en-aut-sei=Morizane en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=epiretinal membrane kn-keyword=epiretinal membrane en-keyword=vitrectomy kn-keyword=vitrectomy en-keyword=optical coherence tomography kn-keyword=optical coherence tomography en-keyword=internal limiting membrane kn-keyword=internal limiting membrane en-keyword=lamellar macular hole kn-keyword=lamellar macular hole END start-ver=1.4 cd-journal=joma no-vol=153 cd-vols= no-issue= article-no= start-page=98 end-page=108 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20218 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Phase I dose-escalation study of endoscopic intratumoral injection of OBP-301 (Telomelysin) with radiotherapy in oesophageal cancer patients unfit for standard treatments en-subtitle= kn-subtitle= en-abstract= kn-abstract=Purpose: OBP-301 (Telomelysin) is an attenuated type-5 adenovirus that contains the human telomerase reverse transcriptase promoter to regulate viral replication. OBP-301 sensitises human cancer cells to ionising radiation by inhibiting DNA repair, and radiation enhances coxsackievirus and adenovirus receptor-mediated OBP-301 infection on the contrary. We assessed OBP-301 with radiotherapy in oesophageal cancer patients unfit for standard chemoradiation treatments.

Methods: A phase I dose-escalation study of OBP-301 with radiotherapy was conducted in 13 histologically confirmed oesophageal cancer patients deemed unfit to undergo surgery or chemotherapy. Study treatment consisted of OBP-301 administration by intratumoural needle injection using a flexible endoscope on days 1, 18 and 32. Radiotherapy was administered concurrently over 6 weeks, beginning on day 4, to a total of 60 Gy.

Results: Of the 13 patients, 7, 3 and 3 patients were treated with 10(10), 10(11) and 10(12) virus particles, respectively. Study group comprised 10 males and 3 females, with a median age of 82 years (range, 53-91 years). All patients developed a transient, self-limited lymphopenia. Distribution studies revealed transient virus shedding in the plasma. Eight patients had local complete response (CR); all of them exhibited no pathologically viable malignant cells in biopsy specimens, and 3 patients had a partial response. The objective response rate was 91.7%. The clinical CR rate was 83.3% in stage I and 60.0% in stage II/III. Histopathological examination revealed massive infiltration of CD8 thorn cells and increased PD-L1 expression.

Conclusion: Multiple courses of endoscopic intratumoural OBP-301 injection with radiotherapy are feasible and provide clinical benefits in patients with oesophageal cancer unfit for standard treatments. (C) 2021 Elsevier Ltd. All rights reserved. en-copyright= kn-copyright= en-aut-name=ShirakawaYasuhiro en-aut-sei=Shirakawa en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TazawaHiroshi en-aut-sei=Tazawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanabeShunsuke en-aut-sei=Tanabe en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KanayaNobuhiko en-aut-sei=Kanaya en-aut-mei=Nobuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NomaKazuhiro en-aut-sei=Noma en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KoujimaTakeshi en-aut-sei=Koujima en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KashimaHajime en-aut-sei=Kashima en-aut-mei=Hajime kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KatoTakuya en-aut-sei=Kato en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KurodaShinji en-aut-sei=Kuroda en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KikuchiSatoru en-aut-sei=Kikuchi en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KagawaShunsuke en-aut-sei=Kagawa en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KatsuiKuniaki en-aut-sei=Katsui en-aut-mei=Kuniaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KanazawaSusumu en-aut-sei=Kanazawa en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=UrataYasuo en-aut-sei=Urata en-aut-mei=Yasuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Radiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Radiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Oncolys BioPharma, Inc. kn-affil= affil-num=15 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Telomerase kn-keyword=Telomerase en-keyword=adenovirus kn-keyword=adenovirus en-keyword=radiotherapy kn-keyword=radiotherapy en-keyword=esophageal cancer kn-keyword=esophageal cancer en-keyword=immunotherapy kn-keyword=immunotherapy END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202103 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=磯間岩陰遺跡の研究 : 分析・考察編 en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name= en-aut-sei= en-aut-mei= kn-aut-name=田辺市教育委員会 kn-aut-sei=田辺市教育委員会 kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name= en-aut-sei= en-aut-mei= kn-aut-name=科学研究費磯間岩陰遺跡研究班 kn-aut-sei=科学研究費磯間岩陰遺跡研究班 kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name= en-aut-sei= en-aut-mei= kn-aut-name=清家章 kn-aut-sei=清家 kn-aut-mei=章 aut-affil-num=3 ORCID= affil-num=1 en-affil= kn-affil= affil-num=2 en-affil= kn-affil= affil-num=3 en-affil= kn-affil=岡山大学大学院社会文化科学研究科 END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=6 article-no= start-page=1328 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210527 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Exosome-Based Molecular Transfer Activity of Macrophage-Like Cells Involves Viability of Oral Carcinoma Cells: Size Exclusion Chromatography and Concentration Filter Method en-subtitle= kn-subtitle= en-abstract= kn-abstract=Extracellular vesicles (EV) heterogeneity is a crucial issue in biology and medicine. In addition, tumor-associated macrophages are key components in cancer microenvironment and immunology. We developed a combination method of size exclusion chromatography and concentration filters (SEC-CF) and aimed to characterize different EV types by their size, cargo types, and functions. A human monocytic leukemia cell line THP-1 was differentiated to CD14-positive macrophage-like cells by stimulation with PMA (phorbol 12-myristate 13-acetate) but not M1 or M2 types. Using the SEC-CF method, the following five EV types were fractionated from the culture supernatant of macrophage-like cells: (i) rare large EVs (500-3000 nm) reminiscent of apoptosomes, (ii) EVs (100-500 nm) reminiscent of microvesicles (or microparticles), (iii) EVs (80-300 nm) containing CD9-positive large exosomes (EXO-L), (iv) EVs (20-200 nm) containing unidentified vesicles/particles, and (v) EVs (10-70 nm) containing CD63/HSP90-positive small exosomes (EXO-S) and particles. For a molecular transfer assay, we developed a THP-1-based stable cell line producing a GFP-fused palmitoylation signal (palmGFP) associated with the membrane. The THP1/palmGFP cells were differentiated into macrophages producing palmGFP-contained EVs. The macrophage/palmGFP-secreted EXO-S and EXO-L efficiently transferred the palmGFP to receiver human oral carcinoma cells (HSC-3/palmTomato), as compared to other EV types. In addition, the macrophage-secreted EXO-S and EXO-L significantly reduced the cell viability (ATP content) in oral carcinoma cells. Taken together, the SEC-CF method is useful for the purification of large and small exosomes with higher molecular transfer activities, enabling efficient molecular delivery to target cells. en-copyright= kn-copyright= en-aut-name=LuYanyin en-aut-sei=Lu en-aut-mei=Yanyin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=EguchiTakanori en-aut-sei=Eguchi en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SogawaChiharu en-aut-sei=Sogawa en-aut-mei=Chiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TahaEman A. en-aut-sei=Taha en-aut-mei=Eman A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TranManh Tien en-aut-sei=Tran en-aut-mei=Manh Tien kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NaraToshiki en-aut-sei=Nara en-aut-mei=Toshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=WeiPenggong en-aut-sei=Wei en-aut-mei=Penggong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=FukuokaShiro en-aut-sei=Fukuoka en-aut-mei=Shiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MiyawakiTakuya en-aut-sei=Miyawaki en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OkamotoKuniaki en-aut-sei=Okamoto en-aut-mei=Kuniaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Dental Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Dental Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Dental Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Dental Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Dental Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Research Program for Undergraduate Students, Okayama University Dental School kn-affil= affil-num=7 en-affil=Department of Dental Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Dental Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Dental Anesthesiology and Special Care Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Dental Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=macrophage kn-keyword=macrophage en-keyword=exosomes kn-keyword=exosomes en-keyword=extracellular vesicles kn-keyword=extracellular vesicles en-keyword=molecular transfer kn-keyword=molecular transfer en-keyword=size exclusion chromatography and concentration filter (SEC-CF) method kn-keyword=size exclusion chromatography and concentration filter (SEC-CF) method en-keyword=heat shock proteins kn-keyword=heat shock proteins en-keyword=oral carcinoma kn-keyword=oral carcinoma END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue= article-no= start-page=674366 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210608 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Fungal Metabolite (+)-Terrein Abrogates Ovariectomy-Induced Bone Loss and Receptor Activator of Nuclear Factor-kappa B Ligand-Induced Osteoclastogenesis by Suppressing Protein Kinase-C alpha/beta II Phosphorylation en-subtitle= kn-subtitle= en-abstract= kn-abstract=Osteoporosis is a common disease characterized by a systemic impairment of bone mass and microarchitecture that results in fragility fractures. Severe bone loss due to osteoporosis triggers pathological fractures and consequently decreases the daily life activity and quality of life. Therefore, prevention of osteoporosis has become an important issue to be addressed. We have reported that the fungal secondary metabolite (+)-terrein (TER), a natural compound derived from Aspergillus terreus, has shown receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclast differentiation by suppressing nuclear factor of activated T-cell 1 (NFATc1) expression, a master regulator of osteoclastogenesis. TER has been shown to possess extensive biological and pharmacological benefits; however, its effects on bone metabolism remain unclear. In this study, we investigated the effects of TER on the femoral bone metabolism using a mouse-ovariectomized osteoporosis model (OVX mice) and then on RANKL signal transduction using mouse bone marrow macrophages (mBMMs). In vivo administration of TER significantly improved bone density, bone mass, and trabecular number in OVX mice (p < 0.01). In addition, TER suppressed TRAP and cathepsin-K expression in the tissue sections of OVX mice (p < 0.01). In an in vitro study, TER suppressed RANKL-induced phosphorylation of PKC alpha/beta II, which is involved in the expression of NFATc1 (p < 0.05). The PKC inhibitor, GF109203X, also inhibited RANKL-induced osteoclastogenesis in mBMMs as well as TER. In addition, TER suppressed the expression of osteoclastogenesis-related genes, such as Ocstamp, Dcstamp, Calcr, Atp6v0d2, Oscar, and Itgb3 (p < 0.01). These results provide promising evidence for the potential therapeutic application of TER as a novel treatment compound against osteoporosis. en-copyright= kn-copyright= en-aut-name=SakaidaKyosuke en-aut-sei=Sakaida en-aut-mei=Kyosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OmoriKazuhiro en-aut-sei=Omori en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakayamaMasaaki en-aut-sei=Nakayama en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MandaiHiroki en-aut-sei=Mandai en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakagawaSaki en-aut-sei=Nakagawa en-aut-mei=Saki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SakoHidefumi en-aut-sei=Sako en-aut-mei=Hidefumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KameiChiaki en-aut-sei=Kamei en-aut-mei=Chiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamamotoSatoshi en-aut-sei=Yamamoto en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KobayashiHiroya en-aut-sei=Kobayashi en-aut-mei=Hiroya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=IshiiSatoki en-aut-sei=Ishii en-aut-mei=Satoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OnoMitsuaki en-aut-sei=Ono en-aut-mei=Mitsuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=IbaragiSoichiro en-aut-sei=Ibaragi en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YamashiroKeisuke en-aut-sei=Yamashiro en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=YamamotoTadashi en-aut-sei=Yamamoto en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=SugaSeiji en-aut-sei=Suga en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=TakashibaShogo en-aut-sei=Takashiba en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= affil-num=1 en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Periodontics and Endodontics, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Oral Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science kn-affil= affil-num=5 en-affil=Department of Periodontics and Endodontics, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Periodontics and Endodontics, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Periodontics and Endodontics, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Division of Applied Chemistry, Graduate School of Natural Sciences and Technology, Okayama University kn-affil= affil-num=11 en-affil=Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Oral Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Department of Periodontics and Endodontics, Okayama University Hospital, Okayama, Japan, 3Department of Oral Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=14 en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=15 en-affil=Division of Applied Chemistry, Graduate School of Natural Sciences and Technology, Okayama University kn-affil= affil-num=16 en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=(+)-terrein kn-keyword=(+)-terrein en-keyword=ovariectomy kn-keyword=ovariectomy en-keyword=osteoporosis kn-keyword=osteoporosis en-keyword=RANKL kn-keyword=RANKL en-keyword=PKC kn-keyword=PKC END start-ver=1.4 cd-journal=joma no-vol=75 cd-vols= no-issue=3 article-no= start-page=357 end-page=362 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202106 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Optimizing the timing of 3.6 mg Pegfilgrastim Administration for Dose-Dense Chemotherapy in Japanese Patients with Breast Cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=Perioperative dose-dense chemotherapy (DDCT) with pegfilgrastim (Peg) prophylaxis is a standard treatment for high-risk breast cancer. We explored the optimal timing of administration of 3.6 mg Peg, the dose approved in Japan. In the phase II feasibility study of DDCT (adriamycin+cyclophosphamide or epirubicin+cyclophosphamide followed by paclitaxel) for breast cancer, we investigated the feasibility, safety, neutrophil transition, and optimal timing of Peg treatment by administering Peg at days 2, 3, and 4 post-chemotherapy (P2, P3, and P4 groups, respectively). Among the 52 women enrolled, 13 were aged > 60 years. The anthracycline sequence was administered to P2 (n=33), P3 (n=5), and P4 (n=14) patients, and the taxane sequence to P2 (n=38) and P3 (n=6) patients. Both sequences showed no interaction between Peg administration timing and treatment discontinuation, treatment delay, or dose reduction. However, the relative dose intensity (RDI) was significantly different among the groups. The neutrophil count transition differed significantly among the groups receiving the anthracycline sequence. However, the neutrophil count remained in the appropriate range for both sequences in the P2 group. The timing of Peg administration did not substantially affect the feasibility or safety of DDCT. Postoperative day 2 might be the optimal timing for DDCT. en-copyright= kn-copyright= en-aut-name=TakabatakeDaisuke en-aut-sei=Takabatake en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KajiwaraYukiko en-aut-sei=Kajiwara en-aut-mei=Yukiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OhtaniShoichiro en-aut-sei=Ohtani en-aut-mei=Shoichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SuzukiYoko en-aut-sei=Suzuki en-aut-mei=Yoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamamotoMari en-aut-sei=Yamamoto en-aut-mei=Mari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KuboShinichiro en-aut-sei=Kubo en-aut-mei=Shinichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IkedaMasahiko en-aut-sei=Ikeda en-aut-mei=Masahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakahashiMina en-aut-sei=Takahashi en-aut-mei=Mina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HaraFumikata en-aut-sei=Hara en-aut-mei=Fumikata kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=AogiKenjiro en-aut-sei=Aogi en-aut-mei=Kenjiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OhsumiShozo en-aut-sei=Ohsumi en-aut-mei=Shozo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=OgasawaraYutaka en-aut-sei=Ogasawara en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NishiyamaYoshitaka en-aut-sei=Nishiyama en-aut-mei=Yoshitaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=HikinoHajime en-aut-sei=Hikino en-aut-mei=Hajime kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=MatsuokaKinya en-aut-sei=Matsuoka en-aut-mei=Kinya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=ShienTadahiko en-aut-sei=Shien en-aut-mei=Tadahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=TairaNaruto en-aut-sei=Taira en-aut-mei=Naruto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=DoiharaHiroyoshi en-aut-sei=Doihara en-aut-mei=Hiroyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= affil-num=1 en-affil=Kochi Health Science Center kn-affil= affil-num=2 en-affil=Okayama University Hospital kn-affil= affil-num=3 en-affil=Hiroshima Citizens Hospital kn-affil= affil-num=4 en-affil=Okayama University Hospital kn-affil= affil-num=5 en-affil=Fukuyama Citizens Hospital kn-affil= affil-num=6 en-affil=Fukuyama Citizens Hospital kn-affil= affil-num=7 en-affil=Fukuyama Citizens Hospital kn-affil= affil-num=8 en-affil=Shikoku Cancer Center kn-affil= affil-num=9 en-affil=Cancer Institute Hospital kn-affil= affil-num=10 en-affil=Shikoku Cancer Center kn-affil= affil-num=11 en-affil=Shikoku Cancer Center kn-affil= affil-num=12 en-affil=Kagawa Prefectural Center Hospital kn-affil= affil-num=13 en-affil=Okayama Saiseikai General Hospital kn-affil= affil-num=14 en-affil=Matsue Red Cross General Hospital kn-affil= affil-num=15 en-affil=Ehime Prefectural Central Hospital kn-affil= affil-num=16 en-affil=Okayama University Hospital kn-affil= affil-num=17 en-affil=Okayama University Hospital kn-affil= affil-num=18 en-affil=Okayama University Hospital kn-affil= en-keyword=dose-dense chemotherapy kn-keyword=dose-dense chemotherapy en-keyword=breast cancer kn-keyword=breast cancer en-keyword=pegfilgrastim kn-keyword=pegfilgrastim END start-ver=1.4 cd-journal=joma no-vol=75 cd-vols= no-issue=3 article-no= start-page=315 end-page=322 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202106 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Validity and Reliability of the Japanese Version of the 12-item Self-administered World Health Organization Disability Assessment Schedule (WHODAS) 2.0 in Patients with Schizophrenia en-subtitle= kn-subtitle= en-abstract= kn-abstract=It is necessary to assess functional impairment when treating schizophrenia. The World Health Organization Disability Assessment Schedule 2.0 (WHODAS 2.0) has been adopted as a measure of functional disability in the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. This study was a secondary analysis from a cross-sectional study of health-related behaviors among patients with schizophrenia. We examined the validity and reliability of the Japanese version of the 12-item WHODAS 2.0 when self-administered by such patients. Participants were 350 outpatients with schizophrenia from a psychiatric hospital. The standard six-factor structure of the WHODAS 2.0 showed a good fit for these participants. The Cronbach’s alpha coefficient was 0.858, showing good internal consistency. The WHODAS 2.0 showed moderate correlations with the modified Global Assessment of Functioning and Kessler 6 scales (r=−0.434 and 0.555, respectively). The results of this study show that the Japanese version of the 12-item self-administered WHODAS 2.0 has good internal consistency and convergent validity among patients with schizophrenia. Further exploration of the usefulness of WHODAS 2.0 in clinical settings is needed. en-copyright= kn-copyright= en-aut-name=WadaRiho en-aut-sei=Wada en-aut-mei=Riho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujiwaraMasaki en-aut-sei=Fujiwara en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamadaYuto en-aut-sei=Yamada en-aut-mei=Yuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakayaNaoki en-aut-sei=Nakaya en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FujimoriMaiko en-aut-sei=Fujimori en-aut-mei=Maiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SoRyuhei en-aut-sei=So en-aut-mei=Ryuhei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KodamaMasafumi en-aut-sei=Kodama en-aut-mei=Masafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HiguchiYuji en-aut-sei=Higuchi en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KakedaKyoko en-aut-sei=Kakeda en-aut-mei=Kyoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=UchitomiYosuke en-aut-sei=Uchitomi en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YamadaNorihito en-aut-sei=Yamada en-aut-mei=Norihito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=InagakiMasatoshi en-aut-sei=Inagaki en-aut-mei=Masatoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Neuropsychiatry, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Health Sciences, Saitama Prefectural University kn-affil= affil-num=5 en-affil=Division of Health Care Research, Behavioral Sciences and Survivorship Research Group, National Cancer Center kn-affil= affil-num=6 en-affil=Okayama Psychiatric Medical Center kn-affil= affil-num=7 en-affil=Okayama Psychiatric Medical Center kn-affil= affil-num=8 en-affil=Care of Your Mind, Taiyo Hills Hospital kn-affil= affil-num=9 en-affil=Department of Neuropsychiatry, Kochi Medical School, Kochi University kn-affil= affil-num=10 en-affil=Innovation Center for Supportive, Palliative and Psychosocial Care, National Cancer Center Hospital kn-affil= affil-num=11 en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Psychiatry, Faculty of Medicine, Shimane University kn-affil= en-keyword=disability kn-keyword=disability en-keyword=schizophrenia kn-keyword=schizophrenia en-keyword=validity kn-keyword=validity en-keyword=reliability kn-keyword=reliability en-keyword=WHODAS 2.0 kn-keyword=WHODAS 2.0 END start-ver=1.4 cd-journal=joma no-vol=75 cd-vols= no-issue=3 article-no= start-page=279 end-page=287 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202106 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effects of Gram-negative Rod Blood Stream Infection on Acute GVHD in Allogeneic Hematopoietic Stem Cell Transplantation: A Single-institute Analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=A bloodstream infection (BSI) is the most common serious infectious complication of hematopoietic stem cell transplantation (HSCT). BSI promotes an inflammatory state, which exacerbates acute graft-versus-host disease (GVHD). We investigated whether a Gram-negative rod bloodstream infection (GNR-BSI), which develops early after allo-HSCT, affected the onset or exacerbated acute GVHD in 465 patients who underwent allo-HSCT from 1995 through 2015 at a single institution. Eighty-eight patients (19%) developed BSI during the study period. Among the cultures, 50 (57%) were Gram-positive cocci (GPC) and 31 (35%) were GNR. Of the 465 patients, 187 (40%) developed acute GVHD of grade II or higher within the first 100 days post-allogeneic HSCT: 124 (27%) had acute GVHD grade II, 47 (10%) had grade III, and 16 (3%) had grade IV. Multivariate analysis revealed that GNR-BSI was a significant risk factor for grade II-IV acute GVHD (grade II-IV: hazard ratio [HR] 1.75, 95% confidence interval [CI] 1.03-2.97; grade III-IV: HR 2.37, 95% CI 1.03-5.43). These results suggest that GNR-BSI may predict the onset and exacerbation of acute GVHD. en-copyright= kn-copyright= en-aut-name=NishinoharaMasa-aki en-aut-sei=Nishinohara en-aut-mei=Masa-aki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishimoriHisakazu en-aut-sei=Nishimori en-aut-mei=Hisakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujiwaraHideaki en-aut-sei=Fujiwara en-aut-mei=Hideaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AsadaNoboru en-aut-sei=Asada en-aut-mei=Noboru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=EnnishiDaisuke en-aut-sei=Ennishi en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MatsuokaKen-ichi en-aut-sei=Matsuoka en-aut-mei=Ken-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=FujiiKeiko en-aut-sei=Fujii en-aut-mei=Keiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=FujiiNobuharu en-aut-sei=Fujii en-aut-mei=Nobuharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=blood stream infection kn-keyword=blood stream infection en-keyword=graft-versus-host disease kn-keyword=graft-versus-host disease en-keyword=gram negative rods kn-keyword=gram negative rods END start-ver=1.4 cd-journal=joma no-vol=75 cd-vols= no-issue=3 article-no= start-page=269 end-page=277 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202106 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Clinical Outcome of Palliative Concurrent Chemoradiotherapy with Cisplatin/Docetaxel for Stage III Non-small Cell Lung Cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=Palliative concurrent chemoradiotherapy (CCRT) is often administered to patients with stage III non-small cell lung cancer (NSCLC). We investigated the clinical outcomes of patients receiving palliative CCRT for NSCLC. Data of patients with NSCLC who underwent palliative CCRT (n=16), preoperative CCRT plus surgery (n=97), or definitive CCRT (n=48) were evaluated. In all groups, the concurrent chemotherapy regimens consisted of cisplatin and docetaxel. Rates of local control (LC), distant metastasis-free survival (DMFS), progression-free survival (PFS), overall survival (OS), and prognosis were compared. The 2-year rates of LC, DMFS, PFS, and OS in 16 patients who underwent palliative CCRT were 44.4%, 12.5%, 12.5%, and 18.8%, respectively. Univariate analysis showed that palliative CCRT was associated with poor LC (p<0.001), DMFS (p<0.001), PFS (p<0.001), and OS (p<0.001) outcomes in patients who completed CCRT as a preoperative treatment and poor LC (p=0.01), DMFS (p=0.003), PFS (p=0.04), and OS (p=0.004) outcomes in patients who were considered for definitive CCRT. Although there were some long-term survivors, the clinical outcomes of palliative CCRT were significantly inferior to those of the ideal treatments. Therefore, careful determination of the appropriate treatment indications and further studies are warranted. en-copyright= kn-copyright= en-aut-name=KatsuiKuniaki en-aut-sei=Katsui en-aut-mei=Kuniaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OgataTakeshi en-aut-sei=Ogata en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WatanabeKenta en-aut-sei=Watanabe en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YoshioKotaro en-aut-sei=Yoshio en-aut-mei=Kotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KurodaMasahiro en-aut-sei=Kuroda en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HirakiTakao en-aut-sei=Hiraki en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KiuraKatsuyuki en-aut-sei=Kiura en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KanazawaSusumu en-aut-sei=Kanazawa en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Proton Beam Therapy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Radiology, Iwakuni Clinical Center kn-affil= affil-num=3 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Radiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Radiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=palliative concurrent chemoradiotherapy kn-keyword=palliative concurrent chemoradiotherapy en-keyword= cisplatin/docetaxel kn-keyword= cisplatin/docetaxel en-keyword=stage III non-small cell lung cancer kn-keyword=stage III non-small cell lung cancer END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=2021 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Hole doping and chemical pressure effects on the strong coupling superconductor PdTe en-subtitle= kn-subtitle= en-abstract= kn-abstract=Chemical doping of known superconductors is a probate strategy to test and enhance our understanding of which parameters control the critical temperature T-c and the critical magnetic fields. The transition metal chalcogenide PdTe is considered a conventional type II superconductor but its resilience to magnetic Fe doping is noteworthy. Isoelectronic Ni doping has been performed, but the effects of doping charges into PdTe have been so far unexplored. We follow two strategies to introduce holes into PdTe and to exert chemical pressure on it: by pnictogen doping on the chalcogen site PdTe1-xSbx and by systematically introducing a Pd deficiency in Pd1-yTe. We find that the superconducting T-c is very sensitive to both kinds of doping. We employ density functional theory to rationalize the observations. We conclude that in PdTe, the effects of charge doping take the lead but we can also identify a structural parameter that correlates with T-c. en-copyright= kn-copyright= en-aut-name=ChenLi en-aut-sei=Chen en-aut-mei=Li kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IdeAndo en-aut-sei=Ide en-aut-mei=Ando kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=JeschkeHarald O. en-aut-sei=Jeschke en-aut-mei=Harald O. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KobayashiKaya en-aut-sei=Kobayashi en-aut-mei=Kaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Science and Technology kn-affil= affil-num=2 en-affil=Graduate School of Science and Technology kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Science and Technology kn-affil= END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=5 article-no= start-page=803 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210505 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Asymmetry of Authority or Information Underlying Insufficient Communication Associated with a Risk of Crashes or Incidents in Passenger Railway Transportation en-subtitle= kn-subtitle= en-abstract= kn-abstract=Similar crashes or incidents may recur as a result of insufficient communication in uncertain and risky situations that potentially threaten safety. The common root causes of insufficient communication across a series of incidents and crashes must be explored in detail to prevent a vicious circle of similar incidents or crashes from occurring. This study summarizes a series of incidents and crashes (derailment due to excessive train speed) at JR West at the West Japan Railway Company (JR West) that are considered to have arisen from insufficient communication. The incidents included (i) resuming train service without confirming the number of passengers on board and leaving passengers behind the station at Higashi-Hiroshima station, (ii) continuing train service in spite of an apparent risk of a crash detected at Okayama station, and (iii) leaving the crack of the train hood as it was at Kokura station. We discuss the causes of insufficient communication (particularly in relation to the sharing of information) among the three branches of staff-the station staff, the conductor and train driver, and the train operation management center-that led to the incidents or crashes. Two factors contributed to the insufficient communication in the series of incidents and crashes: (a) Asymmetry of authority, which hinders the discussion of issues openly and equally among the branches concerned. (b) An unacceptable level of knowledge or information for all branches concerned. en-copyright= kn-copyright= en-aut-name=MurataAtsuo en-aut-sei=Murata en-aut-mei=Atsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KarwowskiWaldemar en-aut-sei=Karwowski en-aut-mei=Waldemar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Intelligent Mechanical Systems, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Industrial Engineering and Management Systems, University of Central Florida kn-affil= en-keyword=passenger railway transportation kn-keyword=passenger railway transportation en-keyword=crash kn-keyword=crash en-keyword=incident kn-keyword=incident en-keyword=insufficient communication kn-keyword=insufficient communication en-keyword=risk kn-keyword=risk en-keyword=asymmetry of authority kn-keyword=asymmetry of authority END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=子宮頸部液状化細胞診におけるヒトパピローマウイルス検出に対するカルボキシフルオレセイン標識したプライマーを 用いたPCR を基にしたスクリーニング法とHC II 法との比較 kn-title=Comparison of the Hybrid Capture II Method with a PCR-Based Screening Method Using a Carboxyfluorescein-Labeled Primer for Detecting Human Papillomavirus in Cervicovaginal Liquid-Based Cytology en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=SaikiYusuke en-aut-sei=Saiki en-aut-mei=Yusuke kn-aut-name=佐伯勇輔 kn-aut-sei=佐伯 kn-aut-mei=勇輔 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Health Sciences, Okayama University kn-affil=岡山大学大学院保健学研究科 END start-ver=1.4 cd-journal=joma no-vol=22 cd-vols= no-issue=9 article-no= start-page=4553 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210427 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Orexin A Enhances Pro-Opiomelanocortin Transcription Regulated by BMP-4 in Mouse Corticotrope AtT20 Cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=Orexin is expressed mainly in the hypothalamus and is known to activate the hypothalamic-pituitary-adrenal (HPA) axis that is involved in various stress responses and its resilience. However, the effects of orexin on the endocrine function of pituitary corticotrope cells remain unclear. In this study, we investigated the roles of orexin A in pro-opiomelanocortin (POMC) transcription using mouse corticotrope AtT20 cells, focusing on the bone morphogenetic protein (BMP) system expressed in the pituitary. Regarding the receptors for orexin, type 2 (OXR2) rather than type 1 (OX1R) receptor mRNA was predominantly expressed in AtT20 cells. It was found that orexin A treatment enhanced POMC expression, induced by corticotropin-releasing hormone (CRH) stimulation through upregulation of CRH receptor type-1 (CRHR1). Orexin A had no direct effect on the POMC transcription suppressed by BMP-4 treatment, whereas it suppressed Smad1/5/9 phosphorylation and Id-1 mRNA expression induced by BMP-4. It was further revealed that orexin A had no significant effect on the expression levels of type I and II BMP receptors but upregulated inhibitory Smad6/7 mRNA and protein levels in AtT20 cells. The results demonstrated that orexin A upregulated CRHR signaling and downregulated BMP-Smad signaling, leading to an enhancement of POMC transcription by corticotrope cells. en-copyright= kn-copyright= en-aut-name=FujisawaSatoshi en-aut-sei=Fujisawa en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KomatsubaraMotoshi en-aut-sei=Komatsubara en-aut-mei=Motoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Tsukamoto-YamauchiNaoko en-aut-sei=Tsukamoto-Yamauchi en-aut-mei=Naoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IwataNahoko en-aut-sei=Iwata en-aut-mei=Nahoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NadaTakahiro en-aut-sei=Nada en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=anterior pituitary kn-keyword=anterior pituitary en-keyword=bone morphogenetic protein (BMP) kn-keyword=bone morphogenetic protein (BMP) en-keyword=corticotrope kn-keyword=corticotrope en-keyword=orexin kn-keyword=orexin en-keyword=pro-opiomelanocortin (POMC) kn-keyword=pro-opiomelanocortin (POMC) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=2021511 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Comparison of posterior root remnant cells and horn cells of the medial meniscus en-subtitle= kn-subtitle= en-abstract= kn-abstract=Purpose/Aim of the study: Previous studies have noted distinctions between medial meniscus posterior root and horn cells. However, the characteristics of root remnant cells have not been explored in detail. The purpose of this study was to evaluate the gene expression levels, proliferation, and resistance to mechanical stress of remnant and horn cells. Materials and Methods: Medial meniscus tissue samples were obtained from patients who underwent total or uni-compartmental knee arthroplasty. Cellular morphology, sry-type HMG box 9, type II collagen, and chondromodulin-I gene expression levels were analyzed. Collagen synthesis was assessed by immunofluorescence staining. Proliferation analysis after 4 h-cyclic tensile strain was performed. Results: Horn cells displayed triangular morphology, whereas root remnant cells appeared fibroblast-like. sry-type HMG box 9 mRNA expression levels were similar in both cells, but type II collagen and chondromodulin-I mRNA expressions were observed only in horn cells. The ratio of type II collagen-positive cells in horn cells was about 10-fold higher than that in root remnant cells, whereas the ratio of sry-type HMG box 9-positive cells was similar. A significant increase in proliferation was observed in root remnant cells compared to that in horn cells. Further, under cyclic tensile strain, the survival rate was higher in root remnant cells than in horn cells. Conclusions: Medial meniscus root remnant cells showed higher proliferation and resistant properties to cyclic tensile strain than horn cells and showed no chondromodulin-I expression. Preserving the medial meniscus posterior root remnant during pullout repair surgery might maintain mechanical stress-resistant tissue and support healing. en-copyright= kn-copyright= en-aut-name=ZhangXiming en-aut-sei=Zhang en-aut-mei=Ximing kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FurumatsuTakayuki en-aut-sei=Furumatsu en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OkazakiYuki en-aut-sei=Okazaki en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HiranakaTakaaki en-aut-sei=Hiranaka en-aut-mei=Takaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=XueHaowei en-aut-sei=Xue en-aut-mei=Haowei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KintakaKeisuke en-aut-sei=Kintaka en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MiyazawaShinichi en-aut-sei=Miyazawa en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OzakiToshifumi en-aut-sei=Ozaki en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Medial meniscus kn-keyword=Medial meniscus en-keyword=posterior root remnant cells kn-keyword=posterior root remnant cells en-keyword=posterior horn cells kn-keyword=posterior horn cells en-keyword=collagen synthesis kn-keyword=collagen synthesis en-keyword=anti-angiogenic gene kn-keyword=anti-angiogenic gene END start-ver=1.4 cd-journal=joma no-vol=8 cd-vols= no-issue= article-no= start-page=431 end-page=443 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202105 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Capturing structural changes of the S-1 to S-2 transition of photosystem II using time-resolved serial femtosecond crystallography en-subtitle= kn-subtitle= en-abstract= kn-abstract=Photosystem II (PSII) catalyzes light-induced water oxidation through an S-i-state cycle, leading to the generation of di-oxygen, protons and electrons. Pumpprobe time-resolved serial femtosecond crystallography (TR-SFX) has been used to capture structural dynamics of light-sensitive proteins. In this approach, it is crucial to avoid light contamination in the samples when analyzing a particular reaction intermediate. Here, a method for determining a condition that avoids light contamination of the PSII microcrystals while minimizing sample consumption in TR-SFX is described. By swapping the pump and probe pulses with a very short delay between them, the structural changes that occur during the S-1-to-S-2 transition were examined and a boundary of the excitation region was accurately determined. With the sample flow rate and concomitant illumination conditions determined, the S-2-state structure of PSII could be analyzed at room temperature, revealing the structural changes that occur during the S-1-to-S-2 transition at ambient temperature. Though the structure of the manganese cluster was similar to previous studies, the behaviors of the water molecules in the two channels (O1 and O4 channels) were found to be different. By comparing with the previous studies performed at low temperature or with a different delay time, the possible channels for water inlet and structural changes important for the water-splitting reaction were revealed. en-copyright= kn-copyright= en-aut-name=LiHongjie en-aut-sei=Li en-aut-mei=Hongjie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakajimaYoshiki en-aut-sei=Nakajima en-aut-mei=Yoshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NomuraTakashi en-aut-sei=Nomura en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SugaharaMichihiro en-aut-sei=Sugahara en-aut-mei=Michihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YonekuraShinichiro en-aut-sei=Yonekura en-aut-mei=Shinichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ChanSiu Kit en-aut-sei=Chan en-aut-mei=Siu Kit kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakaneTakanori en-aut-sei=Nakane en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamaneTakahiro en-aut-sei=Yamane en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=UmenaYasufumi en-aut-sei=Umena en-aut-mei=Yasufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SuzukiMamoru en-aut-sei=Suzuki en-aut-mei=Mamoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MasudaTetsuya en-aut-sei=Masuda en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MotomuraTaiki en-aut-sei=Motomura en-aut-mei=Taiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NaitowHisashi en-aut-sei=Naitow en-aut-mei=Hisashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=MatsuuraYoshinori en-aut-sei=Matsuura en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=KimuraTetsunari en-aut-sei=Kimura en-aut-mei=Tetsunari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=TonoKensuke en-aut-sei=Tono en-aut-mei=Kensuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=OwadaShigeki en-aut-sei=Owada en-aut-mei=Shigeki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=JotiYasumasa en-aut-sei=Joti en-aut-mei=Yasumasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=TanakaRie en-aut-sei=Tanaka en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=NangoEriko en-aut-sei=Nango en-aut-mei=Eriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=AkitaFusamichi en-aut-sei=Akita en-aut-mei=Fusamichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=KuboMinoru en-aut-sei=Kubo en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=IwataSo en-aut-sei=Iwata en-aut-mei=So kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=SugaMichihiro en-aut-sei=Suga en-aut-mei=Michihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Life Science, University of Hyogo kn-affil= affil-num=4 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=5 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Department of Biological Science, Graduate School of Science, The University of Tokyo kn-affil= affil-num=8 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=9 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=10 en-affil=Institute for Protein Research, Osaka University kn-affil= affil-num=11 en-affil=Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University kn-affil= affil-num=12 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=13 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=14 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=15 en-affil=Department of Chemistry, Graduate School of Science, Kobe University kn-affil= affil-num=16 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=17 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=18 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=19 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=20 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=21 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=22 en-affil=Graduate School of Life Science, University of Hyogo kn-affil= affil-num=23 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=24 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=25 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=time-resolved serial crystallography kn-keyword=time-resolved serial crystallography en-keyword=X-ray free-electron lasers kn-keyword=X-ray free-electron lasers en-keyword=membrane proteins kn-keyword=membrane proteins en-keyword=photosystem II kn-keyword=photosystem II en-keyword=serial crystallography kn-keyword=serial crystallography en-keyword=molecular movies kn-keyword=molecular movies en-keyword=protein structures kn-keyword=protein structures END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=1 article-no= start-page=1914499 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210101 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Efficacy of FimA antibody and clindamycin in silkworm larvae stimulated with Porphyromonas gulae en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objective: Porphyromonas gulae, a major periodontal pathogen in animals, possesses fimbriae that have been classified into three genotypes (A, B, C) based on the diversity of fimA genes encoding fimbrillin protein (FimA). P. gulae strains with type C fimbriae were previously shown to be more virulent than other types. In this study, we further examined the host toxicity mediated by P. gulae fimbriae by constructing recombinant FimA (rFimA) expression vectors for each genotype and raised antibodies to the purified proteins. Methods and Results: All larvae died within 204 h following infection with P. gulae type C at the low-dose infection, whereas type A and B did not. Among fimA types, the survival rates of the larvae injected with rFimA type C were remarkably decreased, while the survival rates of the larvae injected with rFimA type A and type B were greater than 50%. Clindamycin treatment inhibited the growth of type C strains in a dose-dependent manner, resulting in an increased rate of silkworm survival. Finally, type C rFimA-speci?c antiserum prolonged the survival of silkworm larvae stimulated by infection with P. gulae type C strain or injection of rFimA type C protein. Conclusion: These results suggested that type C fimbriae have high potential for enhancement of bacterial pathogenesis, and that both clindamycin and anti-type C rFimA-specific antibodies are potent inhibitors of type C fimbriae-induced toxicity. This is the first report to establish a silkworm infection model using P. gulae for toxicity assessment. en-copyright= kn-copyright= en-aut-name=YoshidaSho en-aut-sei=Yoshida en-aut-mei=Sho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=InabaHiroaki en-aut-sei=Inaba en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NomuraRyota en-aut-sei=Nomura en-aut-mei=Ryota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MurakamiMasaru en-aut-sei=Murakami en-aut-mei=Masaru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YasudaHidemi en-aut-sei=Yasuda en-aut-mei=Hidemi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakanoKazuhiko en-aut-sei=Nakano en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=Matsumoto-NakanoMichiyo en-aut-sei=Matsumoto-Nakano en-aut-mei=Michiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry kn-affil= affil-num=4 en-affil=Departments of Pharmacology, Veterinary Public Health II and Molecular Biology, School of Veterinary Medicine, Azabu University kn-affil= affil-num=5 en-affil=Yasuda Veterinary Clinic kn-affil= affil-num=6 en-affil=Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry kn-affil= affil-num=7 en-affil=Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Fimbriae kn-keyword=Fimbriae en-keyword=genotypes kn-keyword=genotypes en-keyword=Porphyromonas gulae kn-keyword=Porphyromonas gulae en-keyword=silkworm larvae kn-keyword=silkworm larvae END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=8 article-no= start-page=1823 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210411 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Liquid Biopsy Targeting Monocarboxylate Transporter 1 on the Surface Membrane of Tumor-Derived Extracellular Vesicles from Synovial Sarcoma en-subtitle= kn-subtitle= en-abstract= kn-abstract=Simple Summary Synovial sarcoma (SS) is associated with a high risk of recurrence and poor prognosis, and no biomarker useful in monitoring tumor burden exists. We identified monocarboxylate transporter 1 (MCT1) expressed in extracellular vesicles (EVs) derived from synovial sarcoma as a potential such marker. Circulating levels of MCT1(+)CD9(+) EVs were significantly correlated with tumor volume in a SS mouse model. Serum levels of MCT1(+)CD9(+) EVs reflected tumor burden and treatment response in SS patients. Patients with MCT1 expression on the plasma membrane have significantly worse overall survival than those with nuclear expression. Silencing of MCT1 reduced the malignant phenotype including cellular viability, migration, and invasion of SS cells. MCT1 may thus be a promising novel target for liquid biopsies and a novel therapeutic target. The lack of noninvasive biomarkers that can be used for tumor monitoring is a major problem for soft-tissue sarcomas. Here we describe a sensitive analytical technique for tumor monitoring by detecting circulating extracellular vesicles (EVs) of patients with synovial sarcoma (SS). The proteomic analysis of purified EVs from SYO-1, HS-SY-II, and YaFuSS identified 199 common proteins. DAVID GO analysis identified monocarboxylate transporter 1 (MCT1) as a surface marker of SS-derived EVs, which was also highly expressed in SS patient-derived EVs compared with healthy individuals. MCT1(+)CD9(+) EVs were also detected from SS-bearing mice and their expression levels were significantly correlated with tumor volume (p = 0.003). Furthermore, serum levels of MCT1(+)CD9(+) EVs reflected tumor burden in SS patients. Immunohistochemistry revealed that MCT1 was positive in 96.7% of SS specimens and its expression on the cytoplasm/plasma membrane was significantly associated with worse overall survival (p = 0.002). Silencing of MCT1 reduced the cellular viability, and migration and invasion capability of SS cells. This work describes a new liquid biopsy technique to sensitively monitor SS using circulating MCT1(+)CD9(+) EVs and indicates the therapeutic potential of MCT1 in SS. en-copyright= kn-copyright= en-aut-name=YokooSuguru en-aut-sei=Yokoo en-aut-mei=Suguru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujiwaraTomohiro en-aut-sei=Fujiwara en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YoshidaAki en-aut-sei=Yoshida en-aut-mei=Aki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=UotaniKoji en-aut-sei=Uotani en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MoritaTakuya en-aut-sei=Morita en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KiyonoMasahiro en-aut-sei=Kiyono en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HaseiJoe en-aut-sei=Hasei en-aut-mei=Joe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakataEiji en-aut-sei=Nakata en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KunisadaToshiyuki en-aut-sei=Kunisada en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=IwataShintaro en-aut-sei=Iwata en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YonemotoTsukasa en-aut-sei=Yonemoto en-aut-mei=Tsukasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=UedaKoji en-aut-sei=Ueda en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=OzakiToshifumi en-aut-sei=Ozaki en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital kn-affil= affil-num=5 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Orthopaedic Surgery, Chiba Cancer Center kn-affil= affil-num=11 en-affil=Department of Orthopaedic Surgery, Chiba Cancer Center kn-affil= affil-num=12 en-affil=Cancer Precision Medicine Center, Japanese Foundation for Cancer Research kn-affil= affil-num=13 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=liquid biopsy kn-keyword=liquid biopsy en-keyword=synovial sarcoma kn-keyword=synovial sarcoma en-keyword=monocarboxylate transporter 1 kn-keyword=monocarboxylate transporter 1 en-keyword=extracellular vesicles kn-keyword=extracellular vesicles en-keyword=non-invasive biomarker kn-keyword=non-invasive biomarker END start-ver=1.4 cd-journal=joma no-vol=75 cd-vols= no-issue=2 article-no= start-page=225 end-page=230 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202104 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Histological Analysis of Repaired Tissue after Pullout Repair of a Medial Meniscus Posterior Root Tear en-subtitle= kn-subtitle= en-abstract= kn-abstract=A 65-year-old man presented with a left medial meniscus (MM) posterior root tear (PRT). Unicompartmental knee arthroplasty was performed 12 months after transtibial pullout repair of the MMPRT. Repaired MM posterior root tissue was subjected to histological analysis. Immunostaining and picrosirius red staining showed sufficient deposition of type I collagen, and hematoxylin-eosin staining using a polarized microscope showed well-aligned fiber orientation in the repaired tissue. The repaired posterior root (post-transtibial pullout repair) showed mature and well-aligned ligament-like tissue. Preserving the MM posterior root remnant to mimic the original posterior root tissue might be useful when performing pullout repair. en-copyright= kn-copyright= en-aut-name=XueHaowei en-aut-sei=Xue en-aut-mei=Haowei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FurumatsuTakayuki en-aut-sei=Furumatsu en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OkazakiYuki en-aut-sei=Okazaki en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HiranakaTakaaki en-aut-sei=Hiranaka en-aut-mei=Takaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KintakaKeisuke en-aut-sei=Kintaka en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ZhangXiming en-aut-sei=Zhang en-aut-mei=Ximing kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YoshidaAki en-aut-sei=Yoshida en-aut-mei=Aki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OzakiToshifumi en-aut-sei=Ozaki en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=medial meniscus kn-keyword=medial meniscus en-keyword=posterior root tear kn-keyword=posterior root tear en-keyword=unicompartmental knee arthroplasty kn-keyword=unicompartmental knee arthroplasty en-keyword=histological analysis kn-keyword=histological analysis en-keyword=case report kn-keyword=case report END start-ver=1.4 cd-journal=joma no-vol=75 cd-vols= no-issue=2 article-no= start-page=205 end-page=212 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202104 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Camouflage Treatment for Skeletal Maxillary Protrusion and Lateral Deviation with Classic-Type Ehlers-Danlos Syndrome en-subtitle= kn-subtitle= en-abstract= kn-abstract=We herein report the case of a 19-year-old female with a transverse discrepancy, skeletal Class II malocclusion, severe crowding with concerns of classic-type Ehlers-Danlos syndrome (EDS), aesthetics problems and functional problems. The main characteristics of classic EDS are loose-jointedness and fragile, easily bruised skin that heals with peculiar “cigarette-paper” scars. The anteroposterior and transverse skeletal discrepancies can generally be resolved by maxilla repositioning and mandibular advancement surgery following pre-surgical orthodontic treatment. However, this patient was treated with orthodontic camouflage but not orthognathic surgery because of the risks of skin bruising, poor healing and a temporomandibular disorder. A satisfactory dental appearance and occlusion were achieved after camouflage treatment with orthodontic anchor screws and the use of Class II elastics, including the preservation of the stomatognathic functions. Acceptable occlusion and dentition were maintained after a two-year retention period. This treatment strategy of orthodontic camouflage using temporary anchorage, such as anchor screws and Class II elastics, may be a viable treatment option for skeletal malocclusion patients with EDS. en-copyright= kn-copyright= en-aut-name=HoshijimaMitsuhiro en-aut-sei=Hoshijima en-aut-mei=Mitsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawanabeNoriaki en-aut-sei=Kawanabe en-aut-mei=Noriaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IidaSeiji en-aut-sei=Iida en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamashiroTakashi en-aut-sei=Yamashiro en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KamiokaHiroshi en-aut-sei=Kamioka en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University kn-affil= affil-num=5 en-affil=Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=asymmetry kn-keyword=asymmetry en-keyword=Class II kn-keyword=Class II en-keyword=camouflage kn-keyword=camouflage en-keyword=orthodontic anchor screw kn-keyword=orthodontic anchor screw en-keyword=Ehlers-Danlos syndrome kn-keyword=Ehlers-Danlos syndrome END start-ver=1.4 cd-journal=joma no-vol=75 cd-vols= no-issue=2 article-no= start-page=199 end-page=204 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202104 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Laparoscopic Hepatectomy for the Patient with Hemophilia A with High Titer Factor VIII Inhibitor en-subtitle= kn-subtitle= en-abstract= kn-abstract=We present the first case of laparoscopic left lateral segmentectomy for hepatocellular carcinoma (HCC) in a patient with hemophilia A, acquired hepatitis C, and high-titer factor VIII inhibitor, which was confirmed by preoperative diagnosis. He underwent laparoscopic left lateral segmentectomy with the administration of recombinant activated factor VII. Surgery could be performed with reduced intraoperative hemorrhage. He experienced postoperative intra-abdominal wall hemorrhage, which was successfully managed with red cell concentrates transfusion and administration of recombinant activated factor VII. Laparoscopic hepatectomy can be applied for hemophilia patients with high titer inhibitors. en-copyright= kn-copyright= en-aut-name=MatsudaTatsuo en-aut-sei=Matsuda en-aut-mei=Tatsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UmedaYuzo en-aut-sei=Umeda en-aut-mei=Yuzo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YoshidaKazuhiro en-aut-sei=Yoshida en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MatsudaTadakazu en-aut-sei=Matsuda en-aut-mei=Tadakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=UnoMasatoshi en-aut-sei=Uno en-aut-mei=Masatoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AbeMasaya en-aut-sei=Abe en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AsadaNoboru en-aut-sei=Asada en-aut-mei=Noboru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YagiTakahito en-aut-sei=Yagi en-aut-mei=Takahito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery,Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterological Surgery,Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery,Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Surgery, Matsuda Hospital kn-affil= affil-num=5 en-affil=Department of Internal Medicine, Kaneda Hospital kn-affil= affil-num=6 en-affil=Department of Hematology and Oncology,Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Hematology and Oncology,Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Hematology and Oncology,Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Gastroenterological Surgery,Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Gastroenterological Surgery,Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=hemophilia A kn-keyword=hemophilia A en-keyword=hepatectomy kn-keyword=hepatectomy en-keyword=inhibitor kn-keyword=inhibitor en-keyword=laparoscopy kn-keyword=laparoscopy en-keyword=hepatocellular carcinoma kn-keyword=hepatocellular carcinoma END start-ver=1.4 cd-journal=joma no-vol=75 cd-vols= no-issue=2 article-no= start-page=169 end-page=175 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202104 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Effects of Low-Dose-Rate γ-irradiation on Forced Swim Test-Induced Immobility and Oxidative Stress in Mice en-subtitle= kn-subtitle= en-abstract= kn-abstract=The forced swim test (FST) induces immobility in mice. Low-dose (high-dose-rate) X-irradiation inhibits FSTinduced immobility in mice due to its antioxidative function. We evaluated the effects of low-dose γ-irradiation at a low-dose-rate on the FST-induced depletion of antioxidants in mouse organs. Mice received whole-body low-dose-rate (0.6 or 3.0 mGy/h) of low-dose γ-irradiation for 1 week, followed by daily FSTs (5 days). The immobility rate on day 2 compared to day 1 was significantly lower in the 3.0 mGy/h irradiated mice than in sham irradiated mice. The FST significantly decreased the catalase (CAT) activity and total glutathione (t-GSH) content in the brain and kidney, respectively. The superoxide dismutase (SOD) activity and t-GSH content in the liver of the 3.0 mGy/h irradiated mice were significantly lower than those of the non-FST-treated mice. The CAT activity in the lungs of mice exposed to 3.0 mGy/h γ-irradiation was higher than that of non-FST treated mice and mice treated with FST. However, no significant differences were observed in the levels of these antioxidant markers between the sham and irradiated groups except for the CAT activity in lungs. These findings suggest that the effects of low-dose-rate and low-dose γ-irradiation on FST are highly organ-dependent. en-copyright= kn-copyright= en-aut-name=NakadaTetsuya en-aut-sei=Nakada en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KataokaTakahiro en-aut-sei=Kataoka en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NomuraTakaharu en-aut-sei=Nomura en-aut-mei=Takaharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShutoHina en-aut-sei=Shuto en-aut-mei=Hina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YanoJunki en-aut-sei=Yano en-aut-mei=Junki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NaoeShota en-aut-sei=Naoe en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HanamotoKatsumi en-aut-sei=Hanamoto en-aut-mei=Katsumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamaokaKiyonori en-aut-sei=Yamaoka en-aut-mei=Kiyonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=3 en-affil=Central Research Institute of Electric Power Industry kn-affil= affil-num=4 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= en-keyword=low-dose-rate γ-irradiation kn-keyword=low-dose-rate γ-irradiation en-keyword=forced swim test kn-keyword=forced swim test en-keyword=antioxidant kn-keyword=antioxidant en-keyword=oxidative stress kn-keyword=oxidative stress END start-ver=1.4 cd-journal=joma no-vol=75 cd-vols= no-issue=2 article-no= start-page=133 end-page=138 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202104 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Efficacy and Safety of Ramucirumab/nab-paclitaxel for Previously Treated Advanced Gastric Cancer in Community Hospitals en-subtitle= kn-subtitle= en-abstract= kn-abstract=As the nanoparticle albumin-bound paclitaxel (nab-PTX) is free of ethanol and premedication, the duration of administration is shorter and patients can drive themselves to and from the hospital. In the 2018 Japanese gastric cancer treatment guidelines, ramucirumab (RAM) plus weekly nab-PTX is conditionally recommended for previously treated patients with advanced gastric cancer. Here, we retrospectively analysed the efficacy and safety of RAM+nab-PTX for such patients in community hospitals. From January 2018 to December 2019, 43 patients with metastatic and recurrent gastric cancer received RAM+nab-PTX treatment. Six patients (13.9%) were older than 80 years and 9 patients (20.9%) showed ECOG-PS 2. Progression-free survival (PFS), overall survival (OS), overall response rate (ORR), disease control rate (DCR), and adverse events (AEs) were reviewed retrospectively. Median PFS was 114 days (95% confidence interval [CI]: 84-190) and median OS was 297 days (95% CI: 180-398). ORR and DCR were 32.4% and 72.2%, respectively. The incidence rates of ≥grade 3 neutropenia and febrile neutropenia were 53.5% and 2.3%, respectively. No treatment-related deaths occurred. RAM plus nab-PTX combination therapy demonstrated manageable toxicity even patients who were elderly or had an ECOG-PS 2. This treatment is useful in community hospital settings. en-copyright= kn-copyright= en-aut-name=HashidaShinsuke en-aut-sei=Hashida en-aut-mei=Shinsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TanakaNorimitsu en-aut-sei=Tanaka en-aut-mei=Norimitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakahashiYuta en-aut-sei=Takahashi en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OnodaYuji en-aut-sei=Onoda en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ColvinHugh Shunsuke en-aut-sei=Colvin en-aut-mei=Hugh Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OhashiRyuichiro en-aut-sei=Ohashi en-aut-mei=Ryuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OkamotoKunio en-aut-sei=Okamoto en-aut-mei=Kunio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Kagawa Prefectural Central Hospital kn-affil= affil-num=2 en-affil=Department of Gastroenterological Surgery, Kagawa Prefectural Central Hospital kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery, Kagawa Prefectural Central Hospital kn-affil= affil-num=4 en-affil=Department of Gastroenterological Surgery, Kagawa Prefectural Central Hospital kn-affil= affil-num=5 en-affil=Department of Gastroenterological Surgery, Kagawa Prefectural Central Hospital kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Kagawa Prefectural Central Hospital kn-affil= affil-num=7 en-affil=Department of Medical Oncology, Kagawa Prefectural Central Hospital kn-affil= en-keyword=gastric cancer kn-keyword=gastric cancer en-keyword=ramucirumab kn-keyword=ramucirumab en-keyword=nab-paclitaxel kn-keyword=nab-paclitaxel END start-ver=1.4 cd-journal=joma no-vol=21 cd-vols= no-issue=1 article-no= start-page=45 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Photodynamic diagnostic ureteroscopy using the VISERA ELITE video system for diagnosis of upper-urinary tract urothelial carcinoma: a prospective cohort pilot study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background The advantages of photodynamic diagnostic technology using 5-aminolevulinic acid (ALA-PDD) have been established. The aim of this prospective cohort study was to evaluate the usefulness of ALA-PDD to diagnose upper tract urothelial carcinoma (UT-UC) using the Olympus VISERA ELITE video system. Methods We carried out a prospective, interventional, non-randomized, non-contrast and open label cohort pilot study that involved patients who underwent ureterorenoscopy (URS) to detect UT-UC. 5-aminolevulinic acid hydrochloride was orally administered before URS. The observational results and pathological diagnosis with ALA-PDD and traditional white light methods were compared, and the proportion of positive subjects and specimens were calculated. Results A total of 20 patients were enrolled and one patient who had multiple bladder tumors did not undergo URS. Fifteen of 19 patients were pathologically diagnosed with UT-UC and of these 11 (73.3%) were ALA-PDD positive. Fourteen of 19 patients were ALA-PDD positive and of these 11 were pathologically diagnosed with UC. For the 92 biopsy specimens that were malignant or benign, the sensitivity for both traditional white light observation and ALA-PDD was the same at 62.5%, whereas the specificities were 73.1% and 67.3%, respectively. Of the 38 specimens that were randomly biopsied without any abnormality under examination by both white light and ALA-PDD, 11 specimens (28.9%) from 5 patients were diagnosed with high grade UC. In contrast, four specimens from 4 patients, which were negative in traditional white light observation but positive in ALA-PDD, were diagnosed with carcinoma in situ (CIS). Conclusions Our results suggest that ALA-PDD using VISERA ELITE is not sufficiently applicable for UT-UC. Nevertheless, it might be better particularly for CIS than white light and superior results would be obtained using VISERA ELITE II video system. Trial registration: The present clinical study was approved by the Okayama University Institutional Review Board prior to study initiation (Application no.: RIN 1803-002) and was registered with the UMIN Clinical Trials Registry (UMIN-CTR), Japan (Accession no.: UMIN000031205). en-copyright= kn-copyright= en-aut-name=WadaKoichiro en-aut-sei=Wada en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ArakiMotoo en-aut-sei=Araki en-aut-mei=Motoo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanimotoRyuta en-aut-sei=Tanimoto en-aut-mei=Ryuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SadahiraTakuya en-aut-sei=Sadahira en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WatariShogo en-aut-sei=Watari en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MaruyamaYuki en-aut-sei=Maruyama en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MitsuiYosuke en-aut-sei=Mitsui en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakajimaHirochika en-aut-sei=Nakajima en-aut-mei=Hirochika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=AcostaHerik en-aut-sei=Acosta en-aut-mei=Herik kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KatayamaSatoshi en-aut-sei=Katayama en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=IwataTakehiro en-aut-sei=Iwata en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NishimuraShingo en-aut-sei=Nishimura en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TakamotoAtsushi en-aut-sei=Takamoto en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=SakoTomoko en-aut-sei=Sako en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=EdamuraKohei en-aut-sei=Edamura en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=KobayashiYasuyuki en-aut-sei=Kobayashi en-aut-mei=Yasuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=WatanabeMasami en-aut-sei=Watanabe en-aut-mei=Masami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=WatanabeToyohiko en-aut-sei=Watanabe en-aut-mei=Toyohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=NasuYasutomo en-aut-sei=Nasu en-aut-mei=Yasutomo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= affil-num=1 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Urology, Kagawa Prefectural Central Hospital kn-affil= affil-num=4 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Urology, Fukuyama City Hospital kn-affil= affil-num=9 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=15 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=17 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=18 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=19 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Photodynamic diagnosis kn-keyword=Photodynamic diagnosis en-keyword=5-Aminolevulinic acid kn-keyword=5-Aminolevulinic acid en-keyword=ALA-PDD kn-keyword=ALA-PDD en-keyword=Upper urinary tract urothelial carcinoma kn-keyword=Upper urinary tract urothelial carcinoma en-keyword=VISERA ELITE video system kn-keyword=VISERA ELITE video system END start-ver=1.4 cd-journal=joma no-vol=154 cd-vols= no-issue=9 article-no= start-page=094502 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210301 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Formation of hot ice caused by carbon nanobrushes. II. Dependency on the radius of nanotubes en-subtitle= kn-subtitle= en-abstract= kn-abstract=Stable crystalline structures of confined water can be different from bulk ice. In Paper I [T. Yagasaki et al., J. Chem. Phys. 151, 064702 (2019)] of this study, it was shown, using molecular dynamics (MD) simulations, that a zeolite-like ice structure forms in nanobrushes consisting of (6,6) carbon nanotubes (CNTs) when the CNTs are located in a triangle arrangement. The melting temperature of the zeolite-like ice structure is much higher than the melting temperature of ice Ih when the distance between the surfaces of CNTs is ∼0.94 nm, which is the best spacing for the bilayer structure of water. In this paper, we perform MD simulations of nanobrushes of CNTs that are different from (6,6) CNTs in radius. Several new porous ice structures form spontaneously in the MD simulations. A stable porous ice forms when the radius of its cavities matches the radius of the CNTs well. All cylindrical porous ice structures found in this study can be decomposed into a small number of structural blocks. We provide a new protocol to classify cylindrical porous ice crystals on the basis of this decomposition. en-copyright= kn-copyright= en-aut-name=MatsumotoMasakazu en-aut-sei=Matsumoto en-aut-mei=Masakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YagasakiTakuma en-aut-sei=Yagasaki en-aut-mei=Takuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanakaHideki en-aut-sei=Tanaka en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue= article-no= start-page=225 end-page=236 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210322 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Guidance Content Handled in the Compulsory Subjects ”Introduction to Industry”,”Technical Subject Teaching Methodology”and ”Topics of Vocational Guidance”for Obtaining an Industrial License Based on the Department Structure of Industrial High Schools and High School Course of Study kn-title=工業の免許状取得の必修科目「工業概論」「工業科教育法」「職業指導概説」で取り扱う指導内容―工業系高校の学科構成と高等学校学習指導要領を踏まえて― en-subtitle= kn-subtitle= en-abstract=The high school industrial department was established in response to the demands of the local industry, and has trained and produced many practical mid-career engineers. Content related to local industries is actively incorporated into education, and it is divided into specialized fields such as mechanical, electrical, chemical, architectural, civil engineering, and information systems. For this reason, faculty members in industrial departments are required to have human resources in various specialized fields. In this paper, while clarifying the knowledge and skills required of teachers in the industrial department. Describe the guidance content that should be surely held in "Introduction to Industry", "Technical Subject Teaching Methodology (Basic I,Basic II,Applied I,Applied II)" and "Topics of Vocational Guidance ". kn-abstract=高等学校の工業系学科は地域の産業界の要請に応えて設置され,これまで多くの実践的な中堅技術者を育成し輩出してきた。教育には地域産業に関連した内容が積極的に取り入れられており,機械系・電気系・化学系・建築系・土木系・情報系等の専門分野に分かれている。このようなことから,工業系学科の教員には多様な専門分野の人材が必要とされる。本著では,工業系学科の教員に求められる知識・技術を明確にするとともに,「工業概論」「工業科教育法(基礎Ⅰ,基礎Ⅱ,応用Ⅰ,応用Ⅱ)」「職業指導概説」で確実に押さえておくべき指導内容について述べる。 en-copyright= kn-copyright= en-aut-name=KOBAYASHISeitaro en-aut-sei=KOBAYASHI en-aut-mei=Seitaro kn-aut-name=小林清太郎 kn-aut-sei=小林 kn-aut-mei=清太郎 aut-affil-num=1 ORCID= affil-num=1 en-affil=Center for Teacher Education and Development, Okayama University kn-affil=岡山大学教師教育開発センター en-keyword=工業概論 (Introduction to Industry) kn-keyword=工業概論 (Introduction to Industry) en-keyword=工業科教育法(基礎Ⅰ,基礎Ⅱ,応用Ⅰ,応用Ⅱ)(Technical Subject Teaching Methodology (Basic I, Basic II, Applied I, Applied II)) kn-keyword=工業科教育法(基礎Ⅰ,基礎Ⅱ,応用Ⅰ,応用Ⅱ)(Technical Subject Teaching Methodology (Basic I, Basic II, Applied I, Applied II)) en-keyword=職業指導概説 (Topics of Vocational Guidance) kn-keyword=職業指導概説 (Topics of Vocational Guidance) en-keyword=基幹学科別にみた主な学科別学級数 (Number of Classes by Major Departments by Core Department) kn-keyword=基幹学科別にみた主な学科別学級数 (Number of Classes by Major Departments by Core Department) en-keyword=高等学校学習指導要領 (High School Course of Study) kn-keyword=高等学校学習指導要領 (High School Course of Study) END start-ver=1.4 cd-journal=joma no-vol=4 cd-vols= no-issue=1 article-no= start-page=382 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210322 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=High-resolution cryo-EM structure of photosystem II reveals damage from high-dose electron beams en-subtitle= kn-subtitle= en-abstract= kn-abstract=Photosystem II (PSII) plays a key role in water-splitting and oxygen evolution. X-ray crystallography has revealed its atomic structure and some intermediate structures. However, these structures are in the crystalline state and its final state structure has not been solved. Here we analyzed the structure of PSII in solution at 1.95 Å resolution by single-particle cryo-electron microscopy (cryo-EM). The structure obtained is similar to the crystal structure, but a PsbY subunit was visible in the cryo-EM structure, indicating that it represents its physiological state more closely. Electron beam damage was observed at a high-dose in the regions that were easily affected by redox states, and reducing the beam dosage by reducing frames from 50 to 2 yielded a similar resolution but reduced the damage remarkably. This study will serve as a good indicator for determining damage-free cryo-EM structures of not only PSII but also all biological samples, especially redox-active metalloproteins. en-copyright= kn-copyright= en-aut-name=KatoKoji en-aut-sei=Kato en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyazakiNaoyuki en-aut-sei=Miyazaki en-aut-mei=Naoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HamaguchiTasuku en-aut-sei=Hamaguchi en-aut-mei=Tasuku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakajimaYoshiki en-aut-sei=Nakajima en-aut-mei=Yoshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AkitaFusamichi en-aut-sei=Akita en-aut-mei=Fusamichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YonekuraKoji en-aut-sei=Yonekura en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba kn-affil= affil-num=3 en-affil=Biostructural Mechanism Laboratory, RIKEN Spring-8 Center kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Institute of Multidisciplinary Research for Advanced Materials, Tohoku University kn-affil= affil-num=7 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=1 article-no= start-page=1100 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210217 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structure of photosystem I-LHCI-LHCII from the green alga Chlamydomonas reinhardtii in State 2 en-subtitle= kn-subtitle= en-abstract= kn-abstract=Photosystem I (PSI) and II (PSII) balance their light energy distribution absorbed by their light-harvesting complexes (LHCs) through state transition to maintain the maximum photosynthetic performance and to avoid photodamage. In state 2, a part of LHCII moves to PSI, forming a PSI-LHCI-LHCII supercomplex. The green alga Chlamydomonas reinhardtii exhibits state transition to a far larger extent than higher plants. Here we report the cryo-electron microscopy structure of a PSI-LHCI-LHCII supercomplex in state 2 from C. reinhardtii at 3.42 Å resolution. The result reveals that the PSI-LHCI-LHCII of C. reinhardtii binds two LHCII trimers in addition to ten LHCI subunits. The PSI core subunits PsaO and PsaH, which were missed or not well-resolved in previous Cr-PSI-LHCI structures, are observed. The present results reveal the organization and assembly of PSI core subunits, LHCI and LHCII, pigment arrangement, and possible pathways of energy transfer from peripheral antennae to the PSI core. en-copyright= kn-copyright= en-aut-name=HuangZihui en-aut-sei=Huang en-aut-mei=Zihui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShenLiangliang en-aut-sei=Shen en-aut-mei=Liangliang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WangWenda en-aut-sei=Wang en-aut-mei=Wenda kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MaoZhiyuan en-aut-sei=Mao en-aut-mei=Zhiyuan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YiXiaohan en-aut-sei=Yi en-aut-mei=Xiaohan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KuangTingyun en-aut-sei=Kuang en-aut-mei=Tingyun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ZhangXing en-aut-sei=Zhang en-aut-mei=Xing kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HanGuangye en-aut-sei=Han en-aut-mei=Guangye kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine kn-affil= affil-num=2 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=3 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=4 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=5 en-affil=Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine kn-affil= affil-num=6 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=7 en-affil=Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine kn-affil= affil-num=9 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=21 cd-vols= no-issue= article-no= start-page=093056 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190924 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Superconductivity in a new layered triangular-lattice system Li2IrSi2 en-subtitle= kn-subtitle= en-abstract= kn-abstract=We report on the crystal structure and superconducting properties of a novel iridium-silicide, namely Li2IrSi2. It has a Ag2NiO2-type structure (space group R-3m) with the lattice parameters a = 4.028 30(6) Å and c = 13.161 80(15) Å. The crystal structure comprises IrSi2 and double Li layers stacked alternately along the c-axis. The IrSi2 layer includes a two-dimensional Ir equilateral-triangular lattice. Electrical resistivity and static magnetic measurements revealed that Li2IrSi2 is a type-II superconductor with critical temperature (Tc) of 3.3 K. We estimated the following superconducting parameters: lower critical field Hc1(0) ~ 42 Oe, upper critical field Hc2(0) ~ 1.7 kOe, penetration depth λ0 ~ 265 nm, coherence length ξ0 ~ 44 nm, and Ginzburg–Landau parameter κGL ~ 6.02. The specific-heat data suggested that superconductivity in Li2IrSi2 could be attributed to weak-coupling Cooper pairs. en-copyright= kn-copyright= en-aut-name=HoriganeK en-aut-sei=Horigane en-aut-mei=K kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakeuchiK en-aut-sei=Takeuchi en-aut-mei=K kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HyakumuraD en-aut-sei=Hyakumura en-aut-mei=D kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HorieR en-aut-sei=Horie en-aut-mei=R kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SatoT en-aut-sei=Sato en-aut-mei=T kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MuranakaT en-aut-sei=Muranaka en-aut-mei=T kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KawashimaK en-aut-sei=Kawashima en-aut-mei=K kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IshiiH en-aut-sei=Ishii en-aut-mei=H kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KubozonoY en-aut-sei=Kubozono en-aut-mei=Y kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OrimoS en-aut-sei=Orimo en-aut-mei=S kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=IsobeM en-aut-sei=Isobe en-aut-mei=M kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=AkimitsuJ en-aut-sei=Akimitsu en-aut-mei=J kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University, kn-affil= affil-num=2 en-affil=Graduate School of natural science and technology, Okayama University kn-affil= affil-num=3 en-affil=Department of Physics and Mathematics, Aoyama Gakuin University kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=5 en-affil=Institute for Materials Research, Tohoku University kn-affil= affil-num=6 en-affil=Department of Engineering Science, University of Electro-Communications kn-affil= affil-num=7 en-affil=Department of Physics and Mathematics, Aoyama Gakuin University kn-affil= affil-num=8 en-affil=National Synchrotron Radiation Research Center kn-affil= affil-num=9 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=10 en-affil=Institute for Materials Research, Tohoku University kn-affil= affil-num=11 en-affil=National Institute for Materials Science (NIMS) kn-affil= affil-num=12 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= en-keyword=supreconductivity kn-keyword=supreconductivity en-keyword=iridium-silicide kn-keyword=iridium-silicide en-keyword=spin–orbit coupling kn-keyword=spin–orbit coupling END start-ver=1.4 cd-journal=joma no-vol=20 cd-vols= no-issue=3 article-no= start-page=598 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190130 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Region-Specific Neuroprotective Features of Astrocytes against Oxidative Stress Induced by 6-Hydroxydopamine en-subtitle= kn-subtitle= en-abstract= kn-abstract=In previous studies, we found regional differences in the induction of antioxidative molecules in astrocytes against oxidative stress, postulating that region-specific features of astrocytes lead region-specific vulnerability of neurons. We examined region-specific astrocytic features against dopaminergic neurotoxin 6-hydroxydopamine (6-OHDA) as an oxidative stress using co-culture of mesencephalic neurons and mesencephalic or striatal astrocytes in the present study. The 6-OHDA-induced reduction of mesencephalic dopamine neurons was inhibited by co-culturing with astrocytes. The co-culture of midbrain neurons with striatal astrocytes was more resistant to 6-OHDA than that with mesencephalic astrocytes. Furthermore, glia conditioned medium from 6-OHDA-treated striatal astrocytes showed a greater protective effect on the 6-OHDA-induced neurotoxicity and oxidative stress than that from mesencephalic astrocytes. The cDNA microarray analysis showed that the number of altered genes in both mesencephalic and striatal astrocytes was fewer than that changed in either astrocyte. The 6-OHDA treatment, apparently up-regulated expressions of Nrf2 and some anti-oxidative or Nrf2-regulating phase II, III detoxifying molecules related to glutathione synthesis and export in the striatal astrocytes but not mesencephalic astrocytes. There is a profound regional difference of gene expression in astrocytes induced by 6-OHDA. These results suggest that protective features of astrocytes against oxidative stress are more prominent in striatal astrocytes, possibly by secreting humoral factors in striatal astrocytes. en-copyright= kn-copyright= en-aut-name=AsanumaMasato en-aut-sei=Asanuma en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=Okumura-TorigoeNao en-aut-sei=Okumura-Torigoe en-aut-mei=Nao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MiyazakiIkuko en-aut-sei=Miyazaki en-aut-mei=Ikuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MurakamiShinki en-aut-sei=Murakami en-aut-mei=Shinki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KitamuraYoshihisa en-aut-sei=Kitamura en-aut-mei=Yoshihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SendoToshiaki en-aut-sei=Sendo en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medical, Dental and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Clinical Pharmacy, Okayama University Graduate School of Medical, Dental and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medical, Dental and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medical, Dental and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Clinical Pharmacy, Okayama University Graduate School of Medical, Dental and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Clinical Pharmacy, Okayama University Graduate School of Medical, Dental and Pharmaceutical Sciences kn-affil= en-keyword=astrocyte kn-keyword=astrocyte en-keyword=neuroprotection kn-keyword=neuroprotection en-keyword=region-specificity kn-keyword=region-specificity en-keyword=striatum kn-keyword=striatum en-keyword=mesencephalon kn-keyword=mesencephalon en-keyword=oxidative stress kn-keyword=oxidative stress en-keyword=6-hydroxydopamine kn-keyword=6-hydroxydopamine en-keyword=Nrf2 kn-keyword=Nrf2 en-keyword=phase II detoxifying molecules kn-keyword=phase II detoxifying molecules END start-ver=1.4 cd-journal=joma no-vol=E76 cd-vols= no-issue= article-no= start-page=1813 end-page=1817 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=2020 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Comparison of mol­ecular structures of cis-bis­[8-(di­methyl­phosphan­yl)quinoline]­nickel(II) and -platinum(II) complex cations en-subtitle= kn-subtitle= en-abstract= kn-abstract=The crystal structures of the complexes (SP-4-2)-cis-bis[8-(dimethylphosphanyl)quinoline-κ2 N,P]nickel(II) bis(perchlorate) nitromethane monosolvate, [Ni(C11H12NP)2](ClO4)2·CH3NO2 (1), and (SP-4-2)-cis-bis[8-(dimethylphosphanyl)quinoline-κ2 N,P]platinum(II) bis(tetrafluoroborate) acetonitrile monosolvate, [Pt(C11H12NP)2](BF4)2·C2H3N (2), are reported. In both complex cations, two phosphanylquinolines act as bidentate P,N-donating chelate ligands and form the mutually cis configuration in the square-planar coordination geometry. The strong trans influence of the dimethylphosphanyl donor group is confirmed by the Ni—N bond lengths in 1, 1.970 (2) and 1.982 (2) Å and, the Pt—N bond lengths of 2, 2.123 (4) and 2.132 (4) Å, which are relatively long as compared to those in the analogous 8-(diphenylphosphanyl)quinoline complexes. Mutually cis-positioned quinoline donor groups would give a severe steric hindrance between their ortho-H atoms. In order to reduce such a steric congestion, the NiII complex in 1 shows a tetrahedral distortion of the coordination geometry, as parameterized by τ4 = 0.199 (1)°, while the PtII complex in 2 exhibits a typical square-planar coordination geometry [τ4 = 0.014 (1)°] with a large bending deformation of the ideally planar Me2Pqn chelate planes. In the crystal structure of 2, three F atoms of one of the BF4 anions are disordered over two sets of positions with refined occupancies of 0.573 (10) and 0.427 (10). en-copyright= kn-copyright= en-aut-name=MoriMasatoshi en-aut-sei=Mori en-aut-mei=Masatoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SuzukiTakayoshi en-aut-sei=Suzuki en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= en-keyword=8-quinolylphosphane kn-keyword=8-quinolylphosphane en-keyword=asymmetrical bidentate ligand kn-keyword=asymmetrical bidentate ligand en-keyword=square-planar coordination kn-keyword=square-planar coordination en-keyword=tetra­hedral distortion kn-keyword=tetra­hedral distortion en-keyword=trans influence kn-keyword=trans influence en-keyword=trans influence kn-keyword=trans influence END start-ver=1.4 cd-journal=joma no-vol=7 cd-vols= no-issue=1 article-no= start-page=10 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210216 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Antenna arrangement and energy-transfer pathways of PSI-LHCI from the moss Physcomitrella patens en-subtitle= kn-subtitle= en-abstract= kn-abstract=Plants harvest light energy utilized for photosynthesis by light-harvesting complex I and II (LHCI and LHCII) surrounding photosystem I and II (PSI and PSII), respectively. During the evolution of green plants, moss is at an evolutionarily intermediate position from aquatic photosynthetic organisms to land plants, being the first photosynthetic organisms that landed. Here, we report the structure of the PSI-LHCI supercomplex from the moss Physcomitrella patens (Pp) at 3.23 angstrom resolution solved by cryo-electron microscopy. Our structure revealed that four Lhca subunits are associated with the PSI core in an order of Lhca1-Lhca5-Lhca2-Lhca3. This number is much decreased from 8 to 10, the number of subunits in most green algal PSI-LHCI, but the same as those of land plants. Although Pp PSI-LHCI has a similar structure as PSI-LHCI of land plants, it has Lhca5, instead of Lhca4, in the second position of Lhca, and several differences were found in the arrangement of chlorophylls among green algal, moss, and land plant PSI-LHCI. One chlorophyll, PsaF-Chl 305, which is found in the moss PSI-LHCI, is located at the gap region between the two middle Lhca subunits and the PSI core, and therefore may make the excitation energy transfer from LHCI to the core more efficient than that of land plants. On the other hand, energy-transfer paths at the two side Lhca subunits are relatively conserved. These results provide a structural basis for unravelling the mechanisms of light-energy harvesting and transfer in the moss PSI-LHCI, as well as important clues on the changes of PSI-LHCI after landing. en-copyright= kn-copyright= en-aut-name=YanQiujing en-aut-sei=Yan en-aut-mei=Qiujing kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ZhaoLiang en-aut-sei=Zhao en-aut-mei=Liang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WangWenda en-aut-sei=Wang en-aut-mei=Wenda kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=PiXiong en-aut-sei=Pi en-aut-mei=Xiong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HanGuangye en-aut-sei=Han en-aut-mei=Guangye kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=WangJie en-aut-sei=Wang en-aut-mei=Jie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ChengLingpeng en-aut-sei=Cheng en-aut-mei=Lingpeng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HeYi-Kun en-aut-sei=He en-aut-mei=Yi-Kun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KuangTingyun en-aut-sei=Kuang en-aut-mei=Tingyun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=QinXiaochun en-aut-sei=Qin en-aut-mei=Xiaochun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SuiSen-Fang en-aut-sei=Sui en-aut-mei=Sen-Fang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=2 en-affil=State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University kn-affil= affil-num=3 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=4 en-affil=State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University kn-affil= affil-num=5 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=6 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=7 en-affil=State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University kn-affil= affil-num=8 en-affil=College of Life Sciences, Department of Chemistry, Capital Normal University, kn-affil= affil-num=9 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=10 en-affil=School of Biological Science and Technology, University of Jinan kn-affil= affil-num=11 en-affil=State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University kn-affil= affil-num=12 en-affil=Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, kn-affil= END start-ver=1.4 cd-journal=joma no-vol=75 cd-vols= no-issue=1 article-no= start-page=79 end-page=85 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202102 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Local Control of Squamous Cell Carcinoma of the Cervix Treated with CT-based Three-dimensional Image-Guided Brachytherapy with or without Central Shielding en-subtitle= kn-subtitle= en-abstract= kn-abstract=The purposes of this retrospective study were to analyze local control of squamous cell carcinoma of the cervix treated with computed tomography (CT)-based image-guided brachytherapy (IGBT), as well as the factors affecting local control. A total of 39 patients were analyzed. The prescribed dose to the pelvis was 45-50 Gy with or without central shielding (CS). IGBT was delivered in 1-5 fractions. The total dose for high-risk clinical target volume (HR-CTV) was calculated as the biologically equivalent dose in 2-Gy fractions. The median follow-up period was 29.3 months. The 2-year overall survival and local control rates were 97% and 91%, respectively. In univariate analysis, the dose covering 90% of the HR-CTV (D90) and tumor size were found to be significant factors for local control. The cutoff values of tumor size and D90 for local control were 4.3 cm (area under the curve [AUC] 0.75) and 67.7 Gy (AUC 0.84) in the CS group and 5.3 cm (AUC 0.75) and 73.7 Gy (AUC 0.78) in the group without CS, respectively. However, though the local control of CT-based IGBT was favorable, the results suggested that the dose required for tumor control may differ depending on the presence of CS. en-copyright= kn-copyright= en-aut-name=YoshioKotaro en-aut-sei=Yoshio en-aut-mei=Kotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NagasakaHisako en-aut-sei=Nagasaka en-aut-mei=Hisako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HisazumiKento en-aut-sei=Hisazumi en-aut-mei=Kento kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OkawaHiro en-aut-sei=Okawa en-aut-mei=Hiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TajiriNobuhisa en-aut-sei=Tajiri en-aut-mei=Nobuhisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShiodeTsuyoki en-aut-sei=Shiode en-aut-mei=Tsuyoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AkakiShiro en-aut-sei=Akaki en-aut-mei=Shiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KanazawaSusumu en-aut-sei=Kanazawa en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MitomaTomohiro en-aut-sei=Mitoma en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YanoYuri en-aut-sei=Yano en-aut-mei=Yuri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KobayashiEmiko en-aut-sei=Kobayashi en-aut-mei=Emiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=HoriguchiIkuyo en-aut-sei=Horiguchi en-aut-mei=Ikuyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TakataMasayo en-aut-sei=Takata en-aut-mei=Masayo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=HongoAtsushi en-aut-sei=Hongo en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=YonezawaMasaru en-aut-sei=Yonezawa en-aut-mei=Masaru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=NakanishiYoshie en-aut-sei=Nakanishi en-aut-mei=Yoshie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= affil-num=1 en-affil=Department of Radiology, Kagawa Prefectural Central Hospital kn-affil= affil-num=2 en-affil=Department of Obstetrics and Gynecology, Kagawa Prefectural Central Hospital kn-affil= affil-num=3 en-affil=Department of Radiology, Kagawa Prefectural Central Hospital kn-affil= affil-num=4 en-affil=Department of Radiology, Kagawa Prefectural Central Hospital kn-affil= affil-num=5 en-affil=Department of Radiology, Kagawa Prefectural Central Hospital kn-affil= affil-num=6 en-affil=Department of Radiology, Kagawa Prefectural Central Hospital kn-affil= affil-num=7 en-affil=Department of Radiology, Kagawa Prefectural Central Hospital kn-affil= affil-num=8 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Obstetrics and Gynecology, Kagawa Prefectural Central Hospital kn-affil= affil-num=10 en-affil=Department of Obstetrics and Gynecology, Kagawa Prefectural Central Hospital kn-affil= affil-num=11 en-affil=Department of Obstetrics and Gynecology, Kagawa Prefectural Central Hospital kn-affil= affil-num=12 en-affil=Department of Obstetrics and Gynecology, Kagawa Prefectural Central Hospital kn-affil= affil-num=13 en-affil=Department of Obstetrics and Gynecology, Kagawa Prefectural Central Hospital kn-affil= affil-num=14 en-affil=Department of Obstetrics and Gynecology 2, Kawasaki Medical School, General medical Center kn-affil= affil-num=15 en-affil=Department of Obstetrics and Gynecology, Kagawa Prefectural Central Hospital kn-affil= affil-num=16 en-affil=Department of Obstetrics and Gynecology, Kagawa Prefectural Central Hospital kn-affil= en-keyword=cervical cancer kn-keyword=cervical cancer en-keyword=squamous cell cancer kn-keyword=squamous cell cancer en-keyword=brachytherapy kn-keyword=brachytherapy en-keyword=central shielding kn-keyword=central shielding END start-ver=1.4 cd-journal=joma no-vol=75 cd-vols= no-issue=1 article-no= start-page=63 end-page=69 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202102 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Optimal Prepregnancy Body Mass Index for Lactation in Japanese Women with Neonatal Separation as Analyzed by a Differential Equation en-subtitle= kn-subtitle= en-abstract= kn-abstract=We used a differential equation to identify the biological relationship between the maternal prepregnancy body mass index (BMI) and lactation on postpartum day 4 in Japanese women with neonatal separation. This retro-spective observational study included 252 mothers (135 primiparas, 117 multiparas) whose singleton neonates were admitted to a neonatal ICU. We formulated hypotheses based on breast anatomy to analyze the relation-ship between the expressed milk obtained on postpartum day 4 and the maternal prepregnancy BMI with the following differential equation: y’(x) = k y(x)/x, where k is the constant, x is the prepregnancy BMI, and y is the expressed milk volume. The formula was then obtained as y(x) = axk, where a is the constant. The Akaike information criterion (AIC) was used to estimate the regression equation with the maximum likelihood for primiparas and multiparas. The best criteria for BMI determined by the AIC were 20.89 kg/m2 in primiparas and 20.19 kg/m2 in multiparas. These were the optimal BMI values for lactation, coinciding with the median prepregnancy BMI in the study population (20.78 kg/m2 in primiparas and 20.06 kg/m2 in multiparas). The formula based on biomathematics might help establish the biological relationship between prepregnancy BMI and breastmilk volume. en-copyright= kn-copyright= en-aut-name=TadaKatsuhiko en-aut-sei=Tada en-aut-mei=Katsuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyagiYasunari en-aut-sei=Miyagi en-aut-mei=Yasunari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakamuraKazue en-aut-sei=Nakamura en-aut-mei=Kazue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YorozuMoe en-aut-sei=Yorozu en-aut-mei=Moe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FukushimaEmi en-aut-sei=Fukushima en-aut-mei=Emi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KumazawaKazumasa en-aut-sei=Kumazawa en-aut-mei=Kazumasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakamuraMakoto en-aut-sei=Nakamura en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KageyamaMisao en-aut-sei=Kageyama en-aut-mei=Misao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Obstetrics and Gynecology, National Hospital Organization, Okayama Medical Center kn-affil= affil-num=2 en-affil=Miyake Ofuku Clinic kn-affil= affil-num=3 en-affil=Department of Neonatology, National Hospital Organization, Okayama Medical Center kn-affil= affil-num=4 en-affil=Department of Obstetrics and Gynecology, National Hospital Organization, Okayama Medical Center kn-affil= affil-num=5 en-affil=Department of Nursing, National Hospital Organization, Okayama Medical Center kn-affil= affil-num=6 en-affil=Department of Obstetrics and Gynecology, National Hospital Organization, Okayama Medical Center kn-affil= affil-num=7 en-affil=Department of Neonatology, National Hospital Organization, Okayama Medical Center kn-affil= affil-num=8 en-affil=Department of Neonatology, National Hospital Organization, Okayama Medical Center kn-affil= en-keyword=biomathematics kn-keyword=biomathematics en-keyword=body mass index kn-keyword=body mass index en-keyword=expressed milk kn-keyword=expressed milk en-keyword=lactation kn-keyword=lactation END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=5 article-no= start-page=643 end-page=649 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210120 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Crizotinib for recurring non-small-cell lung cancer with EML4-ALK fusion genes previously treated with alectinib: A phase II trial en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background
The efficacy of crizotinib treatment for recurring EML4‐ALK‐positive non‐small cell lung cancer (NSCLC) previously treated with alectinib is unclear. Based on our preclinical findings regarding hepatocyte growth factor/mesenchymal epithelial transition (MET) pathway activation as a potential mechanism of acquired resistance to alectinib, we conducted a phase II trial of the anaplastic lymphoma kinase/MET inhibitor, crizotinib, in patients with alectinib‐refractory, EML4‐ALK‐positive NSCLC.
Methods
Patients with ALK‐rearranged tumors treated with alectinib immediately before enrolling in the trial received crizotinib monotherapy. The objective response rate was the primary outcome of interest.
Results
Nine (100%) patients achieved a partial response with alectinib therapy with a median treatment duration of 6.7 months. Crizotinib was administered with a median treatment interval of 50 (range, 20–433) days. The overall response rate was 33.3% (90% confidence interval [CI]: 9.8–65.5 and 95% CI: 7.5–70.1), which did not reach the predefined criteria of 50%. Two (22%) patients who achieved a partial response had brain metastases at baseline. Progression‐free survival (median, 2.2 months) was not affected by the duration of treatment with alectinib. The median survival time was 24.1 months. The most common adverse events were an increased aspartate transaminase/alanine transaminase (AST/ALT) ratio (44%) and appetite loss (33%); one patient developed transient grade 4 AST/ALT elevation, resulting in treatment discontinuation. Other adverse events were consistent with those previously reported; no treatment‐related deaths occurred.
Conclusions
Although the desired response rate was not achieved, crizotinib monotherapy following treatment with alectinib showed efficacy alongside previously described adverse events. en-copyright= kn-copyright= en-aut-name=HaradaDaijiro en-aut-sei=Harada en-aut-mei=Daijiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IsozakiHideko en-aut-sei=Isozaki en-aut-mei=Hideko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KozukiToshiyuki en-aut-sei=Kozuki en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YokoyamaToshihide en-aut-sei=Yokoyama en-aut-mei=Toshihide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YoshiokaHiroshige en-aut-sei=Yoshioka en-aut-mei=Hiroshige kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=BesshoAkihiro en-aut-sei=Bessho en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HosokawaShinobu en-aut-sei=Hosokawa en-aut-mei=Shinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakataIchiro en-aut-sei=Takata en-aut-mei=Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TakigawaNagio en-aut-sei=Takigawa en-aut-mei=Nagio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HottaKatsuyuki en-aut-sei=Hotta en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KiuraKatsuyuki en-aut-sei=Kiura en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=Okayama Lung Cancer Study Group en-aut-sei=Okayama Lung Cancer Study Group en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Thoracic Oncology, National Hospital Organization Shikoku Cancer Center kn-affil= affil-num=2 en-affil=Department of Clinical Pharmaceutics, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Thoracic Oncology, National Hospital Organization Shikoku Cancer Center kn-affil= affil-num=4 en-affil=Department of Respiratory Medicine, Kurashiki Central Hospital kn-affil= affil-num=5 en-affil=Department of Respiratory Medicine, Kurashiki Central Hospital kn-affil= affil-num=6 en-affil=Department of Respiratory Medicine, Japanese Red Cross Okayama Hospital kn-affil= affil-num=7 en-affil=Department of Respiratory Medicine, Japanese Red Cross Okayama Hospital kn-affil= affil-num=8 en-affil=Department of Internal Medicine, Fukuyama City Hospital kn-affil= affil-num=9 en-affil= kn-affil= affil-num=10 en-affil=Department of Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=11 en-affil=Department of Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=12 en-affil= kn-affil= en-keyword=Alectinib kn-keyword=Alectinib en-keyword=anaplastic lymphoma kinase kn-keyword=anaplastic lymphoma kinase en-keyword=crizotinib kn-keyword=crizotinib en-keyword=drug therapy kn-keyword=drug therapy en-keyword=non-small cell lung carcinoma kn-keyword=non-small cell lung carcinoma END start-ver=1.4 cd-journal=joma no-vol=30 cd-vols= no-issue=4 article-no= start-page=811 end-page=830 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200415 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Factors associated with development and distribution of granular/fuzzy astrocytes in neurodegenerative diseases en-subtitle= kn-subtitle= en-abstract= kn-abstract=Granular/fuzzy astrocytes (GFAs), a subtype of “aging‐related tau astrogliopathy,” are noted in cases bearing various neurodegenerative diseases. However, the pathogenic significance of GFAs remains unclear. We immunohistochemically examined the frontal cortex, caudate nucleus, putamen and amygdala in 105 cases composed of argyrophilic grain disease cases (AGD, N = 26), and progressive supranuclear palsy (PSP, N = 10), Alzheimer’s disease (AD, N = 20) and primary age‐related tauopathy cases (PART, N = 18) lacking AGD, as well as 31 cases bearing other various neurodegenerative diseases to clarify (i) the distribution patterns of GFAs in AGD, and PSP, AD and PART lacking AGD, (ii) the impacts of major pathological factors and age on GFA formation and (iii) immunohistochemical features useful to understand the formation process of GFAs. In AGD cases, GFAs consistently occurred in the amygdala (100%), followed by the putamen (69.2%) and caudate nucleus and frontal cortex (57.7%, respectively). In PSP cases without AGD, GFAs were almost consistently noted in all regions examined (90–100%). In AD cases without AGD, GFAs were less frequent, developing preferably in the putamen (35.0%) and caudate nucleus (30.0%). PART cases without AGD had GFAs most frequently in the amygdala (35.3%), being more similar to AGD than to AD cases. Ordered logistic regression analyses using all cases demonstrated that the strongest independent factor of GFA formation in the frontal cortex and striatum was the diagnosis of PSP, while that in the amygdala was AGD. The age was not significantly associated with GFA formation in any region. In GFAs in AGD cases, phosphorylation and conformational change of tau, Gallyas‐positive glial threads indistinguishable from those in tufted astrocytes, and the activation of autophagy occurred sequentially. Given these findings, AGD, PSP, AD and PART cases may show distinct distributions of GFAs, which may provide clues to predict the underlying processes of primary tauopathies. en-copyright= kn-copyright= en-aut-name=MikiTomoko en-aut-sei=Miki en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YokotaOsamu en-aut-sei=Yokota en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HaraguchiTakashi en-aut-sei=Haraguchi en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IshizuHideki en-aut-sei=Ishizu en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HasegawaMasato en-aut-sei=Hasegawa en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IshiharaTakeshi en-aut-sei=Ishihara en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=UenoShu‐ichi en-aut-sei=Ueno en-aut-mei=Shu‐ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakenoshitaShintaro en-aut-sei=Takenoshita en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TeradaSeishi en-aut-sei=Terada en-aut-mei=Seishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YamadaNorihito en-aut-sei=Yamada en-aut-mei=Norihito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Neurology, National Hospital Organization Minami‐Okayama Medical Center kn-affil= affil-num=4 en-affil=Department of Laboratory Medicine and Pathology, Zikei Institute of Psychiatry kn-affil= affil-num=5 en-affil=Dementia Research Project, Tokyo Metropolitan Institute of Medical Science kn-affil= affil-num=6 en-affil=Department of Psychiatry, Kawasaki Medical School kn-affil= affil-num=7 en-affil=Department of Neuropsychiatry, Ehime University Graduate School of Medicine kn-affil= affil-num=8 en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=aging‐related tau astrogliopathy kn-keyword=aging‐related tau astrogliopathy en-keyword=argyrophilic grain kn-keyword=argyrophilic grain en-keyword=granular/fuzzy astrocyte kn-keyword=granular/fuzzy astrocyte en-keyword=primary age‐related tauopathy kn-keyword=primary age‐related tauopathy en-keyword=tau kn-keyword=tau en-keyword=tufted astrocyte kn-keyword=tufted astrocyte END start-ver=1.4 cd-journal=joma no-vol=21 cd-vols= no-issue=1 article-no= start-page=28 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210113 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effectiveness, safety, and factors associated with the clinical success of endoscopic biliary drainage for patients with hepatocellular carcinoma: a retrospective multicenter study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background
Only a few reports have assessed the effectiveness of endoscopic biliary drainage (EBD) in hepatocellular carcinoma (HCC) patients with obstructive jaundice and liver dysfunction.
Methods
This was a retrospective study based on the clinical databases from the Okayama University Hospital and 10 affiliated hospitals. All patients received EBD for jaundice or liver dysfunction. The indication for EBD was aggravation of jaundice or liver dysfunction with intrahepatic bile duct (IHBD) dilation. The technical and clinical success rate, complications, factors associated with clinical failure, and survival duration were evaluated.
Results
A total of 107 patients were enrolled in this study. Technical success was achieved in 105 of 107 patients (98.1%). Clinical success was achieved in 85 of 105 patients (81%). Complications related to endoscopic retrograde cholangiography (ERC) occurred in 3 (2.8%) patients. Child–Pugh class C (odds ratio 3.90, 95% confidence interval [CI] 1.47–10.4, p = 0.0046) was the only factor associated with clinical failure, irrespective of successful drainage. The median survival duration was significantly longer in patients with clinical success than in those without clinical success (5.0 months vs. 0.93 months; hazard ratio [HR] 3.2, 95% CI 1.87–5.37). HCC Stage I/II/III (HR 0.57, CI 0.34–0.95, p = 0.032), absence of portal thrombosis (HR 0.52, CI 0.32–0.85, p = 0.0099), and clinical success (HR 0.39, CI 0.21–0.70, p = 0.0018) were significant factors associated with a long survival.
Conclusions
EBD for obstructive jaundice and liver dysfunction in patients with HCC can be performed safely with a high technical success rate. Clinical success can improve the survival duration, even in patients expected to have a poor prognosis. en-copyright= kn-copyright= en-aut-name=MatsumiAkihiro en-aut-sei=Matsumi en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KatoHironari en-aut-sei=Kato en-aut-mei=Hironari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UekiToru en-aut-sei=Ueki en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IshidaEtsuji en-aut-sei=Ishida en-aut-mei=Etsuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakataniMasahiro en-aut-sei=Takatani en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FujiiMasakuni en-aut-sei=Fujii en-aut-mei=Masakuni kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=WatoMasaki en-aut-sei=Wato en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ToyokawaTatsuya en-aut-sei=Toyokawa en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HaradaRyo en-aut-sei=Harada en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TsugenoHirofumi en-aut-sei=Tsugeno en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MatsubaraMinoru en-aut-sei=Matsubara en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MatsushitaHiroshi en-aut-sei=Matsushita en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=OkadaHiroyuki en-aut-sei=Okada en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Internal Medicine, Fukuyama City Hospital kn-affil= affil-num=4 en-affil=Department of Gastroenterology, Kurashiki Central Hospital kn-affil= affil-num=5 en-affil=Department of Internal Medicine, Japanese Red Cross Society Himeji Hospital kn-affil= affil-num=6 en-affil=Department of Internal Medicine, Okayama Saiseikai General Hospital kn-affil= affil-num=7 en-affil=Department of Gastroenterology, Kagawa Prefectural Central Hospital kn-affil= affil-num=8 en-affil=Department of Gastroenterology, National Hospital Organization Fukuyama Medical Center kn-affil= affil-num=9 en-affil=Department of Gastroenterology, Japanese Red Cross Okayama Hospital kn-affil= affil-num=10 en-affil=Department of Internal Medicine, Tsuyama Central Hospital kn-affil= affil-num=11 en-affil=Department of Internal Medicine, Sumitomo Besshi Hospital kn-affil= affil-num=12 en-affil=Department of Gastroenterology, Okayama City Hospital kn-affil= affil-num=13 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=Endoscopic retrograde cholangiopancreatography kn-keyword=Endoscopic retrograde cholangiopancreatography en-keyword=Jaundice kn-keyword=Jaundice en-keyword=Hepatocellular carcinoma kn-keyword=Hepatocellular carcinoma en-keyword=Liver dysfunction kn-keyword=Liver dysfunction END start-ver=1.4 cd-journal=joma no-vol=32 cd-vols= no-issue=8 article-no= start-page=e12875 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200523 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Vasopressin gene products are colocalised with corticotrophin‐releasing factor within neurosecretory vesicles in the external zone of the median eminence of the Japanese macaque monkey (Macaca fuscata) en-subtitle= kn-subtitle= en-abstract= kn-abstract=Arginine vasopressin (AVP), when released into portal capillaries with corticotrophin‐releasing factor (CRF) from terminals of parvocellular neurones of the hypothalamic paraventricular nucleus (PVH), facilitates the secretion of adrenocorticotrophic hormone (ACTH) in stressed rodents. The AVP gene encodes a propeptide precursor containing AVP, AVP‐associated neurophysin II (NPII), and a glycopeptide copeptin, although it is currently unclear whether copeptin is always cleaved from the neurophysin and whether the NPII and/or copeptin have any functional role in the pituitary. Furthermore, for primates, it is unknown whether CRF, AVP, NPII and copeptin are all colocalised in neurosecretory vesicles in the terminal region of the paraventricular CRF neurone axons. Therefore, we investigated, by fluorescence and immunogold immunocytochemistry, the cellular and subcellular relationships of these peptides in the CRF‐ and AVP‐producing cells in unstressed Japanese macaque monkeys (Macaca fuscata). Reverse transcription‐polymerase chain reaction analysis showed the expression of both CRF and AVP mRNAs in the monkey PVH. As expected, in the magnocellular neurones of the PVH and supraoptic nucleus, essentially no CRF immunoreactivity could be detected in NPII‐immunoreactive (AVP‐producing) neurones. Immunofluorescence showed that, in the parvocellular part of the PVH, NPII was detectable in a subpopulation (approximately 39%) of the numerous CRF‐immunoreactive neuronal perikarya, whereas, in the outer median eminence, NPII was more prominent (approximately 52%) in the CRF varicosities. Triple immunoelectron microscopy in the median eminence demonstrated the presence of both NPII and copeptin immunoreactivity in dense‐cored vesicles of CRF‐containing axons. The results are consistent with an idea that the AVP propeptide is processed and NPII and copeptin are colocalised in hypothalamic‐pituitary CRF axons in the median eminence of a primate. The CRF, AVP and copeptin are all co‐packaged in neurosecretory vesicles in monkeys and are thus likely to be co‐released into the portal capillary blood to amplify ACTH release from the primate anterior pituitary. en-copyright= kn-copyright= en-aut-name=OtuboAkito en-aut-sei=Otubo en-aut-mei=Akito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawakamiNatsuko en-aut-sei=Kawakami en-aut-mei=Natsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MaejimaSho en-aut-sei=Maejima en-aut-mei=Sho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=UedaYasumasa en-aut-sei=Ueda en-aut-mei=Yasumasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MorrisJohn F. en-aut-sei=Morris en-aut-mei=John F. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SakamotoTatsuya en-aut-sei=Sakamoto en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SakamotoHirotaka en-aut-sei=Sakamoto en-aut-mei=Hirotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Department of Physiology, Kyoto Prefectural University of Medicine kn-affil= affil-num=5 en-affil=Department of Physiology, Anatomy & Genetics, University of Oxford kn-affil= affil-num=6 en-affil=Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=corticotrophin‐releasing factor kn-keyword=corticotrophin‐releasing factor en-keyword=Japanese macaque monkey (Macaca fuscata) kn-keyword=Japanese macaque monkey (Macaca fuscata) en-keyword=median eminence kn-keyword=median eminence en-keyword=paraventricular nucleus of the hypothalamus kn-keyword=paraventricular nucleus of the hypothalamus en-keyword=vasopressin kn-keyword=vasopressin END start-ver=1.4 cd-journal=joma no-vol=89 cd-vols= no-issue=1 article-no= start-page=012001 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20191212 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Sparse Modeling in Quantum Many-Body Problems en-subtitle= kn-subtitle= en-abstract= kn-abstract=This review paper describes the basic concept and technical details of sparse modeling and its applications to quantum many-body problems. Sparse modeling refers to methodologies for finding a small number of relevant parameters that well explain a given dataset. This concept reminds us physics, where the goal is to find a small number of physical laws that are hidden behind complicated phenomena. Sparse modeling extends the target of physics from natural phenomena to data, and may be interpreted as “physics for data”. The first half of this review introduces sparse modeling for physicists. It is assumed that readers have physics background but no expertise in data science. The second half reviews applications. Matsubara Green’s function, which plays a central role in descriptions of correlated systems, has been found to be sparse, meaning that it contains little information. This leads to (i) a new method for solving the ill-conditioned inverse problem for analytical continuation, and (ii) a highly compact representation of Matsubara Green’s function, which enables efficient calculations for quantum many-body systems. en-copyright= kn-copyright= en-aut-name=OtsukiJunya en-aut-sei=Otsuki en-aut-mei=Junya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OhzekiMasayuki en-aut-sei=Ohzeki en-aut-mei=Masayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShinaokaHiroshi en-aut-sei=Shinaoka en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YoshimiKazuyoshi en-aut-sei=Yoshimi en-aut-mei=Kazuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Information Sciences, Tohoku University kn-affil= affil-num=3 en-affil=Department of Physics, Saitama University kn-affil= affil-num=4 en-affil=4Institute for Solid State Physics, University of Tokyo kn-affil= END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=45 article-no= start-page=26686 end-page=26692 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200716 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A new protocol for the preparation of superconducting KBi2 en-subtitle= kn-subtitle= en-abstract= kn-abstract=A superconducting KBi2 sample was successfully prepared using a liquid ammonia (NH3) technique. The temperature dependence of the magnetic susceptibility (M/H) showed a superconducting transition temperature (Tc) as high as 3.6 K. In addition, the shielding fraction at 2.0 K was evaluated to be 87%, i.e., a bulk superconductor was realized using the above method. The Tc value was the same as that reported for the KBi2 sample prepared using a high-temperature annealing method. An X-ray diffraction pattern measured based on the synchrotron X-ray radiation was analyzed using the Rietveld method, with a lattice constant, a, of 9.5010(1) Å under the space group of Fd[3 with combining macron]m (face-centered cubic, no. 227). The lattice constant and space group found for the KBi2 sample using a liquid NH3 technique were the same as those reported for KBi2 through a high-temperature annealing method. Thus, the superconducting behavior and crystal structure of the KBi2 sample obtained in this study are almost the same as those for the KBi2 sample reported previously. Strictly speaking, the magnetic behavior of the superconductivity was different from that of a KBi2 sample reported previously, i.e., the KBi2 sample prepared using a liquid NH3 technique was a type-II like superconductor, contrary to that prepared using a high-temperature annealing method, the reason for which is fully discussed. These results indicate that the liquid NH3 technique is effective and simple for the preparation of a superconducting KBi2. In addition, the topological nature of the superconductivity for KBi2 was not confirmed. en-copyright= kn-copyright= en-aut-name=LiHuan en-aut-sei=Li en-aut-mei=Huan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WangYanan en-aut-sei=Wang en-aut-mei=Yanan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishiyamaSaki en-aut-sei=Nishiyama en-aut-mei=Saki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YangXiaofan en-aut-sei=Yang en-aut-mei=Xiaofan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TaguchiTomoya en-aut-sei=Taguchi en-aut-mei=Tomoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MiuraAkari en-aut-sei=Miura en-aut-mei=Akari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SuzukiAi en-aut-sei=Suzuki en-aut-mei=Ai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ZhiLei en-aut-sei=Zhi en-aut-mei=Lei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=GotoHidenori en-aut-sei=Goto en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=EguchiRitsuko en-aut-sei=Eguchi en-aut-mei=Ritsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KambeTakashi en-aut-sei=Kambe en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=LiaoYen-Fa en-aut-sei=Liao en-aut-mei=Yen-Fa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=IshiiHirofumi en-aut-sei=Ishii en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KubozonoYoshihiro en-aut-sei=Kubozono en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=5 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=7 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=8 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=9 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=10 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=11 en-affil=Department of Physics, Okayama University kn-affil= affil-num=12 en-affil=National Synchrotron Radiation Research Center kn-affil= affil-num=13 en-affil=National Synchrotron Radiation Research Center kn-affil= affil-num=14 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=147 cd-vols= no-issue=1 article-no= start-page=107 end-page=124 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202101 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Phos-tag-based approach to study protein phosphorylation in the thylakoid membrane en-subtitle= kn-subtitle= en-abstract= kn-abstract=Protein phosphorylation is a fundamental post-translational modification in all organisms. In photoautotrophic organisms, protein phosphorylation is essential for the fine-tuning of photosynthesis. The reversible phosphorylation of the photosystem II (PSII) core and the light-harvesting complex of PSII (LHCII) contribute to the regulation of photosynthetic activities. Besides the phosphorylation of these major proteins, recent phosphoproteomic analyses have revealed that several proteins are phosphorylated in the thylakoid membrane. In this study, we utilized the Phos-tag technology for a comprehensive assessment of protein phosphorylation in the thylakoid membrane of Arabidopsis. Phos-tag SDS-PAGE enables the mobility shift of phosphorylated proteins compared with their non-phosphorylated isoform, thus differentiating phosphorylated proteins from their non-phosphorylated isoforms. We extrapolated this technique to two-dimensional (2D) SDS-PAGE for detecting protein phosphorylation in the thylakoid membrane. Thylakoid proteins were separated in the first dimension by conventional SDS-PAGE and in the second dimension by Phos-tag SDS-PAGE. In addition to the isolation of major phosphorylated photosynthesis-related proteins, 2D Phos-tag SDS-PAGE enabled the detection of several minor phosphorylated proteins in the thylakoid membrane. The analysis of the thylakoid kinase mutants demonstrated that light-dependent protein phosphorylation was mainly restricted to the phosphorylation of the PSII core and LHCII proteins. Furthermore, we assessed the phosphorylation states of the structural domains of the thylakoid membrane, grana core, grana margin, and stroma lamella. Overall, these results demonstrated that Phos-tag SDS-PAGE is a useful biochemical tool for studying in vivo protein phosphorylation in the thylakoid membrane protein. en-copyright= kn-copyright= en-aut-name=NishiokaKeiji en-aut-sei=Nishioka en-aut-mei=Keiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KatoYusuke en-aut-sei=Kato en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OzawaShin-ichiro en-aut-sei=Ozawa en-aut-mei=Shin-ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakahashiYuichiro en-aut-sei=Takahashi en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SakamotoWataru en-aut-sei=Sakamoto en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= en-keyword=Chloroplast kn-keyword=Chloroplast en-keyword=Phos-tag kn-keyword=Phos-tag en-keyword=Protein phosphorylation kn-keyword=Protein phosphorylation en-keyword=Thylakoid membrane kn-keyword=Thylakoid membrane en-keyword=STN7 kn-keyword=STN7 en-keyword=STN8 kn-keyword=STN8 END start-ver=1.4 cd-journal=joma no-vol=296 cd-vols= no-issue= article-no= start-page=299 end-page=312 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210102 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Cluster II che genes of Pseudomonas syringae pv. tabaci 6605, orthologs of cluster I in Pseudomonas aeruginosa, are required for chemotaxis and virulence en-subtitle= kn-subtitle= en-abstract= kn-abstract=Pseudomonas syringae pv. tabaci 6605 (Pta6605) is a causal agent of wildfire disease in host tobacco plants and is highly motile. Pta6605 has multiple clusters of chemotaxis genes including cheA, a gene encoding a histidine kinase, cheY, a gene encoding a response regulator, mcp, a gene for a methyl-accepting chemotaxis protein, as well as flagellar and pili biogenesis genes. However, only two major chemotaxis gene clusters, cluster I and cluster II, possess cheA and cheY. Deletion mutants of cheA or cheY were constructed to evaluate their possible role in Pta6605 chemotaxis and virulence. Motility tests and a chemotaxis assay to known attractant demonstrated that cheA2 and cheY2 mutants were unable to swarm and to perform chemotaxis, whereas cheA1 and cheY1 mutants retained chemotaxis ability almost equal to that of the wild-type (WT) strain. Although WT and cheY1 mutants of Pta6605 caused severe disease symptoms on host tobacco leaves, the cheA2 and cheY2 mutants did not, and symptom development with cheA1 depended on the inoculation method. These results indicate that chemotaxis genes located in cluster II are required for optimal chemotaxis and host plant infection by Pta6605 and that cluster I may partially contribute to these phenotypes. en-copyright= kn-copyright= en-aut-name=TumewuStephany Angelia en-aut-sei=Tumewu en-aut-mei=Stephany Angelia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OgawaYujiro en-aut-sei=Ogawa en-aut-mei=Yujiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OkamotoTakumi en-aut-sei=Okamoto en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SugiharaYuka en-aut-sei=Sugihara en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamadaHajime en-aut-sei=Yamada en-aut-mei=Hajime kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TaguchiFumiko en-aut-sei=Taguchi en-aut-mei=Fumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamamotoMikihiro en-aut-sei=Yamamoto en-aut-mei=Mikihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Agriculture, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Agriculture, Okayama University kn-affil= affil-num=4 en-affil=Faculty of Agriculture, Okayama University kn-affil= affil-num=5 en-affil=Faculty of Agriculture, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=10 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=11 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=Bacterial virulence kn-keyword=Bacterial virulence en-keyword=cheA kn-keyword=cheA en-keyword=Chemotaxis kn-keyword=Chemotaxis en-keyword=cheY kn-keyword=cheY en-keyword=Flagellar motility kn-keyword=Flagellar motility en-keyword=Pseudomonas kn-keyword=Pseudomonas END start-ver=1.4 cd-journal=joma no-vol=76 cd-vols= no-issue=11 article-no= start-page=1701 end-page=1707 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=202011 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Crystal structures of four isomeric hydrogen-bonded co-crystals of 6-methyl­quinoline with 2-chloro-4-nitro­benzoic acid, 2-chloro-5-nitro­benzoic acid, 3-chloro-2-nitro­benzoic acid and 4-chloro-2-nitro­benzoic acid en-subtitle= kn-subtitle= en-abstract= kn-abstract=The structures of the four isomeric compounds of 6-methyl­quinoline with chloro- and nitro-substituted benzoic acids, C7H4ClNO4·C10H9N, namely, 2-chloro-4-nitro­benzoic acid–6-methyl­quinoline (1/1), (I), 2-chloro-5-nitro­benzoic acid–6-methyl­quinoline (1/1), (II), 3-chloro-2-nitro­benzoic acid–6-methyl­quinoline (1/1), (III), and 4-chloro-2-nitro­benzoic acid–6-methyl­quinoline (1/1), (IV), have been determined at 185–190 K. In each compound, the acid and base mol­ecules are linked by a short hydrogen bond between a carboxyl O atom and an N atom of the base. The O⋯N distances are 2.5452 (12), 2.6569 (13), 2.5640 (17) and 2.514 (2) Å, respectively, for compounds (I)–(IV). In the hydrogen-bonded acid–base units of (I), (III) and (IV), the H atoms are each disordered over two positions with O site:N site occupancies of 0.65 (3):0.35 (3), 0.59 (4):0.41 (4) and 0.48 (5):0.52 (5), respectively, for (I), (III) and (IV). The H atom in the hydrogen-bonded unit of (II) is located at the O-atom site. In all of the crystals of (I)–(IV), π–π inter­actions between the quinoline ring system and the benzene ring of the acid mol­ecule are observed. In addition, a π–π inter­action between the benzene rings of adjacent acid mol­ecules and a C—H⋯O hydrogen bond are observed in the crystal of (I), and C—H⋯O hydrogen bonds and O⋯Cl contacts occur in the crystals of (III) and (IV). These inter­molecular inter­actions connect the acid and base mol­ecules, forming a layer structure parallel to the bc plane in (I), a column along the a-axis direction in (II), a layer parallel to the ab plane in (III) and a three-dimensional network in (IV). Hirshfeld surfaces for the title compounds mapped over dnorm and shape index were generated to visualize the weak inter­molecular inter­actions. en-copyright= kn-copyright= en-aut-name=GotohKazuma en-aut-sei=Gotoh en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IshidaHiroyuki en-aut-sei=Ishida en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Chemistry, Faculty of Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemistry, Faculty of Science, Okayama University kn-affil= en-keyword=crystal structure kn-keyword=crystal structure en-keyword=2-chloro-4-nitro­benzoic acid kn-keyword=2-chloro-4-nitro­benzoic acid en-keyword=2-chloro-5-nitro­benzoic acid kn-keyword=2-chloro-5-nitro­benzoic acid en-keyword=3-chloro-2-nitro­benzoic acid kn-keyword=3-chloro-2-nitro­benzoic acid en-keyword=4-chloro-2-nitro­benzoic acid kn-keyword=4-chloro-2-nitro­benzoic acid en-keyword=6-methyl­quinoline kn-keyword=6-methyl­quinoline en-keyword=hydrogen bond kn-keyword=hydrogen bond en-keyword=disorder kn-keyword=disorder en-keyword=Hirshfeld surface kn-keyword=Hirshfeld surface END start-ver=1.4 cd-journal=joma no-vol=21 cd-vols= no-issue=24 article-no= start-page=9352 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20201208 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Inhibitory Role of Rab11b in Osteoclastogenesis through Triggering Lysosome-Induced Degradation of c-Fms and RANK Surface Receptors en-subtitle= kn-subtitle= en-abstract= kn-abstract=Rab11b, abundantly enriched in endocytic recycling compartments, is required for the establishment of the machinery of vesicle trafficking. Yet, no report has so far characterized the biological function of Rab11b in osteoclastogenesis. Using in vitro model of osteoclasts differentiated from murine macrophages like RAW-D cells or bone marrow-derived macrophages, we elucidated that Rab11b served as an inhibitory regulator of osteoclast differentiation sequentially via (i) abolishing surface abundance of RANK and c-Fms receptors; and (ii) attenuating nuclear factor of activated T-cells c1 (NFATc-1) upstream signaling cascades, following RANKL stimulation. Rab11b was localized in early and late endosomes, Golgi complex, and endoplasmic reticulum; moreover, its overexpression enlarged early and late endosomes. Upon inhibition of lysosomal function by a specific blocker, chloroquine (CLQ), we comprehensively clarified a novel function of lysosomes on mediating proteolytic degradation of c-Fms and RANK surface receptors, drastically ameliorated by Rab11b overexpression in RAW-D cell-derived osteoclasts. These findings highlight the key role of Rab11b as an inhibitor of osteoclastogenesis by directing the transport of c-Fms and RANK surface receptors to lysosomes for degradation via the axis of early endosomes-late endosomes-lysosomes, thereby contributing towards the systemic equilibrium of the bone resorption phase. en-copyright= kn-copyright= en-aut-name=TranManh Tien en-aut-sei=Tran en-aut-mei=Manh Tien kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkushaYuka en-aut-sei=Okusha en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FengYunxia en-aut-sei=Feng en-aut-mei=Yunxia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MorimatsuMasatoshi en-aut-sei=Morimatsu en-aut-mei=Masatoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WeiPenggong en-aut-sei=Wei en-aut-mei=Penggong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SogawaChiharu en-aut-sei=Sogawa en-aut-mei=Chiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=EguchiTakanori en-aut-sei=Eguchi en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KadowakiTomoko en-aut-sei=Kadowaki en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SakaiEiko en-aut-sei=Sakai en-aut-mei=Eiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OkamuraHirohiko en-aut-sei=Okamura en-aut-mei=Hirohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NaruseKeiji en-aut-sei=Naruse en-aut-mei=Keiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TsukubaTakayuki en-aut-sei=Tsukuba en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=OkamotoKuniaki en-aut-sei=Okamoto en-aut-mei=Kuniaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Frontier Oral Science, Graduate School of Biomedical Sciences, Nagasaki University kn-affil= affil-num=9 en-affil=Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University kn-affil= affil-num=10 en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University kn-affil= affil-num=13 en-affil=Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Rab11b kn-keyword=Rab11b en-keyword=c-Fms kn-keyword=c-Fms en-keyword=RANK kn-keyword=RANK en-keyword=NFATc-1 kn-keyword=NFATc-1 en-keyword=osteoclasts kn-keyword=osteoclasts en-keyword=vesicular transport kn-keyword=vesicular transport END