ID | 69293 |
フルテキストURL | |
著者 |
Ogura, Takuro
Graduate School of Education, Hyogo University of Teacher Education
Yamauchi, Hiroyuki
Art Research Center, Ritsumeikan University
Aoki, Tatsuto
Faculty of Regional Development Studies, Kanazawa University
Matta, Nobuhisa
Graduate School of Education, Okayama University
Iizuka, Kotaro
Center for Spatial Information Science, The University of Tokyo
Iwasa, Yoshiya
Faculty of Education, University of Teacher Education Fukuoka
Takahashi, Takayuki
International Research Institute of Disaster Science, Tohoku University
Hayashi, Kiyomi
Faculty of Regional Development Studies, Kanazawa University
Hattanji, Tsuyoshi
Institute of Life and Environmental Sciences, University of Tsukuba
Oguchi, Takashi
Center for Spatial Information Science, The University of Tokyo
|
抄録 | The 2024 Noto Peninsula earthquake (Mw 7.5) caused extensive damage in Ishikawa Prefecture, Japan, and surrounding areas, with considerable coastal uplift and tsunami flooding. Past 100 years’ records show no earthquake above Mw 7.0 in the Noto Peninsula, so for everyone alive today, this event is truly without precedent. Therefore, we aimed to support disaster prevention education by developing teaching materials using unmanned aerial vehicles (UAVs) based on digitally archived topographic changes. High-definition topographic data collected from multiple UAV surveys were processed into digital and analog formats, including 3D models, spherical panorama images, and 3D printings. These materials were designed to provide detailed and intuitive representations of post-disaster landforms and were used as educational tools in schools. The learning materials were introduced during a workshop for disaster-affected teachers, featuring hands-on activities to help participants familiarize themselves with the materials, and explore their integration into geography and science classes. Feedback from participants indicated that these tools were highly effective in enhancing classroom learning. The results of this study are expected to contribute to preserving disaster records while enhancing disaster awareness in educational settings and local communities.
|
キーワード | disaster risk-reduction education
uplift area
UAV
3D printing
|
発行日 | 2025-08-01
|
出版物タイトル |
Journal of Disaster Research
|
巻 | 20巻
|
号 | 4号
|
出版者 | Fuji Technology Press Ltd.
|
開始ページ | 401
|
終了ページ | 409
|
ISSN | 1883-8030
|
資料タイプ |
学術雑誌論文
|
言語 |
英語
|
OAI-PMH Set |
岡山大学
|
著作権者 | © Fuji Technology Press Ltd.
|
論文のバージョン | publisher
|
DOI | |
Web of Science KeyUT | |
関連URL | isVersionOf https://doi.org/10.20965/jdr.2025.p0401
|
ライセンス | https://creativecommons.org/licenses/by-nd/4.0/
|
Citation | T. Ogura, H. Yamauchi, T. Aoki, N. Matta, K. Iizuka, Y. Iwasa, T. Takahashi, K. Hayashi, T. Hattanji, and T. Oguchi, “High-Definition Topographic Archiving and Educational Applications in Regions Affected by the 2024 Noto Peninsula Earthquake,” J. Disaster Res., Vol.20 No.4, pp. 401-409, 2025.
|
助成情報 |
( 一般財団法人新技術振興渡辺記念会 / Watanabe Memorial Foundation for the Advancement of New Technology )
( 国立大学法人兵庫教育大学 / Hyogo University of Teacher Education )
22K13777:
地形プロセスの理解を促すための3Dプリントの活用と効果検証
( 独立行政法人日本学術振興会 / Japan Society for the Promotion of Science )
22H00750:
表層崩壊のライフサイクル―人為的インパクトの評価を含む時空間分析
( 独立行政法人日本学術振興会 / Japan Society for the Promotion of Science )
23K17482:
2023年5月5日の地震を含む能登半島北東部陸海域で継続する地震と災害の総合調査
( 独立行政法人日本学術振興会 / Japan Society for the Promotion of Science )
24K00171:
先端研究・技術と教育の連携によるデジタル防災地形学の構築
( 独立行政法人日本学術振興会 / Japan Society for the Promotion of Science )
|