ID | 66901 |
フルテキストURL | |
著者 |
Taniguchi, Masaharu
Research Institute for Interdisciplinary Science, Okayama University
ORCID
Kaken ID
publons
researchmap
|
抄録 | Let n ≥ 2 be a given integer. In this paper, we assert that an n-dimensional traveling front converges to an (n−1)-dimensional entire solution as the speed goes to infinity in a balanced bistable reaction–diffusion equation. As the speed of an n-dimensional axially symmetric or asymmetric traveling front goes to infinity, it converges to an (n−1)-dimensional radially symmetric or asymmetric entire solution in a balanced bistable reaction–diffusion equation, respectively. We conjecture that the radially asymmetric entire solutions obtained in this paper are associated with the ancient solutions called the Angenent ovals in the mean curvature flows.
|
備考 | The version of record of this article, first published in Mathematische Annalen, is available online at Publisher’s website: http://dx.doi.org/10.1007/s00208-024-02844-6
|
発行日 | 2024-04-05
|
出版物タイトル |
Mathematische Annalen
|
巻 | 390巻
|
号 | 3号
|
出版者 | Springer Science and Business Media LLC
|
開始ページ | 3931
|
終了ページ | 3967
|
ISSN | 0025-5831
|
NCID | AA00295941
|
資料タイプ |
学術雑誌論文
|
言語 |
英語
|
OAI-PMH Set |
岡山大学
|
著作権者 | © The Author(s) 2024
|
論文のバージョン | publisher
|
DOI | |
Web of Science KeyUT | |
関連URL | isVersionOf https://doi.org/10.1007/s00208-024-02844-6
|
ライセンス | http://creativecommons.org/licenses/by/4.0/
|
Citation | Taniguchi, M. Entire solutions with and without radial symmetry in balanced bistable reaction–diffusion equations. Math. Ann. 390, 3931–3967 (2024). https://doi.org/10.1007/s00208-024-02844-6
|
助成機関名 |
Japan Society for the Promotion of Science
|
助成番号 | 20K03702
20H01816
22K03288
|