このエントリーをはてなブックマークに追加


ID 66901
フルテキストURL
著者
Taniguchi, Masaharu Research Institute for Interdisciplinary Science, Okayama University ORCID Kaken ID publons researchmap
抄録
Let n ≥ 2 be a given integer. In this paper, we assert that an n-dimensional traveling front converges to an (n−1)-dimensional entire solution as the speed goes to infinity in a balanced bistable reaction–diffusion equation. As the speed of an n-dimensional axially symmetric or asymmetric traveling front goes to infinity, it converges to an (n−1)-dimensional radially symmetric or asymmetric entire solution in a balanced bistable reaction–diffusion equation, respectively. We conjecture that the radially asymmetric entire solutions obtained in this paper are associated with the ancient solutions called the Angenent ovals in the mean curvature flows.
備考
The version of record of this article, first published in Mathematische Annalen, is available online at Publisher’s website: http://dx.doi.org/10.1007/s00208-024-02844-6
発行日
2024-04-05
出版物タイトル
Mathematische Annalen
390巻
3号
出版者
Springer Science and Business Media LLC
開始ページ
3931
終了ページ
3967
ISSN
0025-5831
NCID
AA00295941
資料タイプ
学術雑誌論文
言語
英語
OAI-PMH Set
岡山大学
著作権者
© The Author(s) 2024
論文のバージョン
publisher
DOI
Web of Science KeyUT
関連URL
isVersionOf https://doi.org/10.1007/s00208-024-02844-6
ライセンス
http://creativecommons.org/licenses/by/4.0/
Citation
Taniguchi, M. Entire solutions with and without radial symmetry in balanced bistable reaction–diffusion equations. Math. Ann. 390, 3931–3967 (2024). https://doi.org/10.1007/s00208-024-02844-6
助成機関名
Japan Society for the Promotion of Science
助成番号
20K03702
20H01816
22K03288