start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=10
article-no=
start-page=2373
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241017
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Development and Characterization of a Three-Dimensional Organotypic In Vitro Oral Cancer Model with Four Co-Cultured Cell Types, Including Patient-Derived Cancer-Associated Fibroblasts
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Objectives: Cancer organoids have emerged as a valuable tool of three-dimensional (3D) cell cultures to investigate tumor heterogeneity and predict tumor behavior and treatment response. We developed a 3D organotypic culture model of oral squamous cell carcinoma (OSCC) to recapitulate the tumor?stromal interface by co-culturing four cell types, including patient-derived cancer-associated fibroblasts (PD-CAFs). Methods: A stainless-steel ring was used twice to create the horizontal positioning of the cancer stroma (adjoining normal oral mucosa connective tissue) and the OSCC layer (surrounding normal oral mucosa epithelial layer). Combined with a structured bi-layered model of the epithelial component and the underlying stroma, this protocol enabled us to construct four distinct portions mimicking the oral cancer tissue arising in the oral mucosa. Results: In this model, ¿-smooth muscle actin-positive PD-CAFs were localized in close proximity to the OSCC layer, suggesting a crosstalk between them. Furthermore, a linear laminin-Á2 expression was lacking at the interface between the OSCC layer and the underlying stromal layer, indicating the loss of the basement membrane-like structure. Conclusions: Since the specific 3D architecture and polarity mimicking oral cancer in vivo provides a more accurate milieu of the tumor microenvironment (TME), it could be crucial in elucidating oral cancer TME.
en-copyright=
kn-copyright=
en-aut-name=AizawaYuka
en-aut-sei=Aizawa
en-aut-mei=Yuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HagaKenta
en-aut-sei=Haga
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshibaNagako
en-aut-sei=Yoshiba
en-aut-mei=Nagako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YortchanWitsanu
en-aut-sei=Yortchan
en-aut-mei=Witsanu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakadaSho
en-aut-sei=Takada
en-aut-mei=Sho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TanakaRintaro
en-aut-sei=Tanaka
en-aut-mei=Rintaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NaitoEriko
en-aut-sei=Naito
en-aut-mei=Eriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=Ab?Tatsuya
en-aut-sei=Ab?
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MaruyamaSatoshi
en-aut-sei=Maruyama
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YamazakiManabu
en-aut-sei=Yamazaki
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TanumaJun-ichi
en-aut-sei=Tanuma
en-aut-mei=Jun-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=IgawaKazuyo
en-aut-sei=Igawa
en-aut-mei=Kazuyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TomiharaKei
en-aut-sei=Tomihara
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TogoShinsaku
en-aut-sei=Togo
en-aut-mei=Shinsaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=IzumiKenji
en-aut-sei=Izumi
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=2
en-affil=Division of Reconstructive Surgery for Oral and Maxillofacial Region, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=3
en-affil=Department of Oral Health and Welfare, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=4
en-affil=Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=5
en-affil=Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=6
en-affil=Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=7
en-affil=Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=8
en-affil=Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=9
en-affil=Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=10
en-affil=Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=11
en-affil=Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=12
en-affil=Neutron Therapy Research Center, Okayama University
kn-affil=
affil-num=13
en-affil=Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=14
en-affil=Department of Respiratory Medicine, Graduate School of Medicine, Juntendo University
kn-affil=
affil-num=15
en-affil=Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
en-keyword=oral cancer
kn-keyword=oral cancer
en-keyword=cancer-associated fibroblasts
kn-keyword=cancer-associated fibroblasts
en-keyword=oral mucosa
kn-keyword=oral mucosa
en-keyword=patient-derived
kn-keyword=patient-derived
en-keyword=organotypic culture
kn-keyword=organotypic culture
en-keyword=3D in vitro model
kn-keyword=3D in vitro model
en-keyword=polarity
kn-keyword=polarity
END
start-ver=1.4
cd-journal=joma
no-vol=156
cd-vols=
no-issue=2
article-no=
start-page=473
end-page=479.e1
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Dried blood spot proteome identifies subclinical interferon signature in neonates with type I interferonopathy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Type I interferonopathy is characterized by aberrant upregulation of type I interferon signaling. The mRNA interferon signature is a useful marker for activation of the interferon pathway and for diagnosis of type I interferonopathy; however, early diagnosis is challenging.
Objective: This study sought to identify the proteomic interferon signature in dried blood spot (DBS) samples. The aim was to evaluate the usefulness of the interferon signature for neonatal screening and to gain insight into presymptomatic state of neonates with inborn errors of immunity (IEIs).
Methods: DBS samples from healthy newborns/adults, patients with type I interferonopathy or other IEIs as well as from neonates with viral infections, including some samples obtained during the presymptomatic neonatal period, were examined by nontargeted proteome analyses. Expression of interferon-stimulated genes (ISGs) was evaluated and a DBS-interferon signature was defined. Differential expression/pathway analysis was also performed.
Results: The ISG products IFIT5, ISG15, and OAS2 were detected. Expression of IFIT5 and ISG15 was upregulated significantly in individuals with type I interferonopathy. We defined the sum of the z scores for these as the DBS-interferon signature, and found that patients with IEIs other than type I interferonopathy, such as chronic granulomatous disease (CGD), also showed significant elevation. Additionally, neonatal samples of type I interferonopathy and CGD patients showed high interferon signatures. Pathway analysis of neonatal CGD samples revealed upregulation of systemic lupus erythematosus?like pathways.
Conclusion: Upregulation of the interferon pathway exists already at birth?not only in neonates with type I interferonopathy but also in other IEIs, including CGD.
en-copyright=
kn-copyright=
en-aut-name=NihiraHiroshi
en-aut-sei=Nihira
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakajimaDaisuke
en-aut-sei=Nakajima
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IzawaKazushi
en-aut-sei=Izawa
en-aut-mei=Kazushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KawashimaYusuke
en-aut-sei=Kawashima
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShibataHirofumi
en-aut-sei=Shibata
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KonnoRyo
en-aut-sei=Konno
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HigashiguchiMotoko
en-aut-sei=Higashiguchi
en-aut-mei=Motoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MiyamotoTakayuki
en-aut-sei=Miyamoto
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=Nishitani-IsaMasahiko
en-aut-sei=Nishitani-Isa
en-aut-mei=Masahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HiejimaEitaro
en-aut-sei=Hiejima
en-aut-mei=Eitaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HondaYoshitaka
en-aut-sei=Honda
en-aut-mei=Yoshitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MatsubayashiTadashi
en-aut-sei=Matsubayashi
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=IshiharaTakashi
en-aut-sei=Ishihara
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=YashiroMasato
en-aut-sei=Yashiro
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=IwataNaomi
en-aut-sei=Iwata
en-aut-mei=Naomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=OhwadaYoko
en-aut-sei=Ohwada
en-aut-mei=Yoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=TomotakiSeiichi
en-aut-sei=Tomotaki
en-aut-mei=Seiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=KawaiMasahiko
en-aut-sei=Kawai
en-aut-mei=Masahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=MurakamiKosaku
en-aut-sei=Murakami
en-aut-mei=Kosaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=OhnishiHidenori
en-aut-sei=Ohnishi
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=IshimuraMasataka
en-aut-sei=Ishimura
en-aut-mei=Masataka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=OkadaSatoshi
en-aut-sei=Okada
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=YamashitaMotoi
en-aut-sei=Yamashita
en-aut-mei=Motoi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=MorioTomohiro
en-aut-sei=Morio
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=HoshinoAkihiro
en-aut-sei=Hoshino
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=KaneganeHirokazu
en-aut-sei=Kanegane
en-aut-mei=Hirokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=ImaiKohsuke
en-aut-sei=Imai
en-aut-mei=Kohsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=NakamuraYasuko
en-aut-sei=Nakamura
en-aut-mei=Yasuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=NonoyamaShigeaki
en-aut-sei=Nonoyama
en-aut-mei=Shigeaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=UchiyamaToru
en-aut-sei=Uchiyama
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=OnoderaMasafumi
en-aut-sei=Onodera
en-aut-mei=Masafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=IshikawaTakashi
en-aut-sei=Ishikawa
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
en-aut-name=KawaiToshinao
en-aut-sei=Kawai
en-aut-mei=Toshinao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=33
ORCID=
en-aut-name=TakitaJunko
en-aut-sei=Takita
en-aut-mei=Junko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=34
ORCID=
en-aut-name=NishikomoriRyuta
en-aut-sei=Nishikomori
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=35
ORCID=
en-aut-name=OharaOsamu
en-aut-sei=Ohara
en-aut-mei=Osamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=36
ORCID=
en-aut-name=YasumiTakahiro
en-aut-sei=Yasumi
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=37
ORCID=
affil-num=1
en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Applied Genomics, Kazusa DNA Research Institute
kn-affil=
affil-num=3
en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Applied Genomics, Kazusa DNA Research Institute
kn-affil=
affil-num=5
en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Applied Genomics, Kazusa DNA Research Institute
kn-affil=
affil-num=7
en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=12
en-affil=Department of Pediatrics, Seirei Hamamatsu General Hospital
kn-affil=
affil-num=13
en-affil=Department of Pediatrics, Nara Medical University
kn-affil=
affil-num=14
en-affil=Department of Pediatrics, Okayama University
kn-affil=
affil-num=15
en-affil=Department of Infection and Immunology, Aichi Childrenfs Health and Medical Center
kn-affil=
affil-num=16
en-affil=Department of Pediatrics, Dokkyo Medical University School of Medicine
kn-affil=
affil-num=17
en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=18
en-affil=Department of Neonatology, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=19
en-affil=Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=20
en-affil=Department of Pediatrics, Gifu University Graduate School of Medicine
kn-affil=
affil-num=21
en-affil=Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University
kn-affil=
affil-num=22
en-affil=Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences
kn-affil=
affil-num=23
en-affil=Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (SCIENCE TOKYO)
kn-affil=
affil-num=24
en-affil=Laboratory of Immunology and Molecular Medicine, Advanced Research Initiative, Institute of Science Tokyo (SCIENCE TOKYO)
kn-affil=
affil-num=25
en-affil=Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (SCIENCE TOKYO)
kn-affil=
affil-num=26
en-affil=Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (SCIENCE TOKYO)
kn-affil=
affil-num=27
en-affil=Department of Pediatrics, National Defense Medical College
kn-affil=
affil-num=28
en-affil=Department of Pediatrics, National Defense Medical College
kn-affil=
affil-num=29
en-affil=Department of Pediatrics, National Defense Medical College
kn-affil=
affil-num=30
en-affil=Department of Human Genetics, National Center for Child Health and Development
kn-affil=
affil-num=31
en-affil=Department of Human Genetics, National Center for Child Health and Development
kn-affil=
affil-num=32
en-affil=Division of Immunology, National Center for Child Health and Development
kn-affil=
affil-num=33
en-affil=Division of Immunology, National Center for Child Health and Development
kn-affil=
affil-num=34
en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=35
en-affil=Department of Pediatrics and Child Health, Kurume University School of Medicine
kn-affil=
affil-num=36
en-affil=Department of Applied Genomics, Kazusa DNA Research Institute
kn-affil=
affil-num=37
en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine
kn-affil=
en-keyword=Inborn errors of immunity
kn-keyword=Inborn errors of immunity
en-keyword=interferonopathy
kn-keyword=interferonopathy
en-keyword=signature
kn-keyword=signature
en-keyword=proteome
kn-keyword=proteome
en-keyword=dried blood spot
kn-keyword=dried blood spot
en-keyword=CGD
kn-keyword=CGD
en-keyword=WAS
kn-keyword=WAS
en-keyword=newborn
kn-keyword=newborn
en-keyword=neonate
kn-keyword=neonate
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=roaf042
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250603
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Recommendations for the treatment of juvenile idiopathic arthritis with oligoarthritis or polyarthritis from the 2024 update of the Japan College of Rheumatology Clinical Practice Guidelines for the management of rheumatoid arthritis including juvenile idiopathic arthritis with oligoarthritis or polyarthritis ? secondary publication
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objectives: To conduct systematic reviews (SRs) and develop clinical practice guidelines (CPGs) for managing juvenile idiopathic arthritis (JIA) with oligoarthritis or polyarthritis.
Methods: The Grading of Recommendations, Assessment, Development, and Evaluation methodology was employed to carry out SRs and formulate the CPGs. An expert panel, including patients, paediatric and nonpaediatric rheumatologists, guideline specialists, and patient representatives, used the Delphi method to discuss and agree on the recommendations.
Results: Six clinical questions (CQs) on the efficacy and safety of medical treatments were evaluated. These included CQ1 on methotrexate (MTX), CQ2 on non-MTX conventional synthetic disease-modifying antirheumatic drugs, CQ3 on glucocorticoids, CQ4 on tumour necrosis factor inhibitors, CQ5 on interleukin-6 inhibitors, and CQ6 on Janus kinase inhibitors. Two randomized controlled trials were identified for CQ1, three for CQ2, two for CQ3, eight for CQ4, two for CQ5, and two for CQ6. Based on these evaluations, three strong and three conditional recommendations were established. The CPGs have been endorsed by the Japan College of Rheumatology and the Pediatric Rheumatology Association of Japan.
Conclusions: The SRs provided the necessary evidence to develop the CPGs, which are intended to guide not only paediatric but also nonpaediatric rheumatologists, caregivers, patients, and their families in treatment decision-making.
en-copyright=
kn-copyright=
en-aut-name=MiyamaeTakako
en-aut-sei=Miyamae
en-aut-mei=Takako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkamotoNami
en-aut-sei=Okamoto
en-aut-mei=Nami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=InoueYuzaburo
en-aut-sei=Inoue
en-aut-mei=Yuzaburo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KubotaTomohiro
en-aut-sei=Kubota
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=EbatoTakasuke
en-aut-sei=Ebato
en-aut-mei=Takasuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IrabuHitoshi
en-aut-sei=Irabu
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KamedaHideto
en-aut-sei=Kameda
en-aut-mei=Hideto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KanekoYuko
en-aut-sei=Kaneko
en-aut-mei=Yuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KuboHiroshi
en-aut-sei=Kubo
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MitsunagaKanako
en-aut-sei=Mitsunaga
en-aut-mei=Kanako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MoriMasaaki
en-aut-sei=Mori
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NakajimaAyako
en-aut-sei=Nakajima
en-aut-mei=Ayako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=NishimuraKenichi
en-aut-sei=Nishimura
en-aut-mei=Kenichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=OhkuboNaoaki
en-aut-sei=Ohkubo
en-aut-mei=Naoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=SatoTomomi
en-aut-sei=Sato
en-aut-mei=Tomomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=SugitaYuko
en-aut-sei=Sugita
en-aut-mei=Yuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=TakanashiSatoshi
en-aut-sei=Takanashi
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=TanakaTakayuki
en-aut-sei=Tanaka
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=UmebayashiHiroaki
en-aut-sei=Umebayashi
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=YashiroMasato
en-aut-sei=Yashiro
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=YamanishiShingo
en-aut-sei=Yamanishi
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=FusamaMie
en-aut-sei=Fusama
en-aut-mei=Mie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=HirataShintaro
en-aut-sei=Hirata
en-aut-mei=Shintaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=KishimotoMitsumasa
en-aut-sei=Kishimoto
en-aut-mei=Mitsumasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=KohnoMasataka
en-aut-sei=Kohno
en-aut-mei=Masataka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=KojimaMasayo
en-aut-sei=Kojima
en-aut-mei=Masayo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=KojimaToshihisa
en-aut-sei=Kojima
en-aut-mei=Toshihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=MorinobuAkio
en-aut-sei=Morinobu
en-aut-mei=Akio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=SugiharaTakahiko
en-aut-sei=Sugihara
en-aut-mei=Takahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=TanakaEiichi
en-aut-sei=Tanaka
en-aut-mei=Eiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=YajimaNobuyuki
en-aut-sei=Yajima
en-aut-mei=Nobuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=YanaiRyo
en-aut-sei=Yanai
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
en-aut-name=KawahitoYutaka
en-aut-sei=Kawahito
en-aut-mei=Yutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=33
ORCID=
en-aut-name=HarigaiMasayoshi
en-aut-sei=Harigai
en-aut-mei=Masayoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=34
ORCID=
affil-num=1
en-affil=Department of Pediatric Rheumatology, Institute of Rheumatology, Tokyo Womenfs Medical University Hospital
kn-affil=
affil-num=2
en-affil=Department of Pediatrics, Osaka Rosai Hospital, Japan Organization of Occupational Health and Safety
kn-affil=
affil-num=3
en-affil=Department of General Medical Science, Graduate School of Medicine, Chiba University
kn-affil=
affil-num=4
en-affil=Department of Pediatrics, Kagoshima Prefectural Satsunan Hospital
kn-affil=
affil-num=5
en-affil=Department of Pediatrics, Kitasato University
kn-affil=
affil-num=6
en-affil=Department of Pediatrics and Development Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
kn-affil=
affil-num=7
en-affil=Division of Rheumatology, Department of Internal Medicine, Toho University
kn-affil=
affil-num=8
en-affil=Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
kn-affil=
affil-num=10
en-affil=Department of Allergy and Rheumatology, Chiba Children's Hospital
kn-affil=
affil-num=11
en-affil=Department of Lifetime Clinical Immunology, Tokyo Medical and Dental University
kn-affil=
affil-num=12
en-affil=Center for Rheumatic Diseases, Mie University Hospital
kn-affil=
affil-num=13
en-affil=Department of Pediatrics, Yokohama City University Graduate School of Medicine
kn-affil=
affil-num=14
en-affil=Iizuka Hospital
kn-affil=
affil-num=15
en-affil=Clinical Education Center For Physicians, Shiga University of Medical Science
kn-affil=
affil-num=16
en-affil=Department of Pediatrics, School of Medicine, Osaka Medical and Pharmaceutical University
kn-affil=
affil-num=17
en-affil=Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=18
en-affil=Department of Pediatrics, Japanese Red Cross Otsu Hospital
kn-affil=
affil-num=19
en-affil=Department of Rheumatology and Infectious Diseases, Miyagi Childrenfs Hospital
kn-affil=
affil-num=20
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
affil-num=21
en-affil=Department of Pediatrics, Nippon Medical School
kn-affil=
affil-num=22
en-affil=Health Sciences Department of Nursing, Kansai University of International Studies
kn-affil=
affil-num=23
en-affil=Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital
kn-affil=
affil-num=24
en-affil=Department of Nephrology and Rheumatology, Kyorin University School of Medicine
kn-affil=
affil-num=25
en-affil=Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
kn-affil=
affil-num=26
en-affil=Graduate School of Medical Sciences, Nagoya City University
kn-affil=
affil-num=27
en-affil=Department of Orthopedic Surgery, National Hospital Organization Nagoya Medical Center
kn-affil=
affil-num=28
en-affil=Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=29
en-affil=Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine
kn-affil=
affil-num=30
en-affil=Division of Rheumatology, Department of Internal Medicine, School of Medicine, Tokyo Women's Medical University
kn-affil=
affil-num=31
en-affil=Division of Rheumatology, Department of Medicine, Showa University School of Medicine
kn-affil=
affil-num=32
en-affil=Division of Rheumatology, Department of Medicine, Showa University School of Medicine
kn-affil=
affil-num=33
en-affil=Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
kn-affil=
affil-num=34
en-affil=Division of Rheumatology, Department of Internal Medicine, School of Medicine, Tokyo Women's Medical University
kn-affil=
en-keyword=Clinical practice guidelines
kn-keyword=Clinical practice guidelines
en-keyword=baricitinib
kn-keyword=baricitinib
en-keyword=GRADE (Grading of Recommendations, Assessment, Development, and Evaluation)
kn-keyword=GRADE (Grading of Recommendations, Assessment, Development, and Evaluation)
en-keyword=juvenile idiopathic arthritis
kn-keyword=juvenile idiopathic arthritis
en-keyword=systematic review
kn-keyword=systematic review
END
start-ver=1.4
cd-journal=joma
no-vol=18
cd-vols=
no-issue=
article-no=
start-page=244
end-page=256
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Postnatal expression of Cat-315-positive perineuronal nets in the SAMP10 mouse primary somatosensory cortex
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Perineuronal nets (PNNs) form at the end of the critical period of plasticity in the mouse primary somatosensory cortex. PNNs are said to have functions that control neuroplasticity and provide neuroprotection. However, it is not clear which molecules in PNNs have these functions. We have previously reported that Cat-315-positive molecules were not expressed in the PNNs of the senescence-accelerated model (SAM)P10 strain model mice at 12 months of age. To confirm whether the loss of Cat-315-positive molecules occurred early in life in SAMP10 mice, we examined Cat-315-positive PNNs in the primary somatosensory cortex during postnatal development. This research helps to elucidate the function of PNNs and the mechanism of cognitive decline associated with ageing. To confirm whether Cat-315-positive PNNs changed in an age-dependent manner in SAMP10 mice, we examined the primary somatosensory cortex at 21, 28, and 56 days after birth. We compared these results with those of senescence-accelerated mouse-resistant (SAMR) mice. In SAMP10 mice, Cat-315-positive PNNs were expressed in the primary somatosensory cortex early after birth, but their expression was significantly lower than that in SAMR1 mice. Many other molecules that calibrated the PNN were unchanged between SAMP10 and SAMR1 mice. This study revealed that the expression of the Cat-315 epitope was decreased in the primary somatosensory cortex of SAMP10 mice during postnatal development. SAMP10 mice have had histological abnormalities in their brains since early life. Furthermore, using SAMP10 will be useful in elucidating the mechanism of age-related abnormalities in brain function as well as in elucidating the function and structure of PNNs.
en-copyright=
kn-copyright=
en-aut-name=UenoHiroshi
en-aut-sei=Ueno
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakahashiYu
en-aut-sei=Takahashi
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MoriSachiko
en-aut-sei=Mori
en-aut-mei=Sachiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KitanoEriko
en-aut-sei=Kitano
en-aut-mei=Eriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MurakamiShinji
en-aut-sei=Murakami
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=WaniKenta
en-aut-sei=Wani
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsumotoYosuke
en-aut-sei=Matsumoto
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OkamotoMotoi
en-aut-sei=Okamoto
en-aut-mei=Motoi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IshiharaTakeshi
en-aut-sei=Ishihara
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Medical Technology, Kawasaki University of Medical Welfare
kn-affil=
affil-num=2
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=3
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=4
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=5
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=6
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=7
en-affil=Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
en-keyword=Ageing
kn-keyword=Ageing
en-keyword=Brain function
kn-keyword=Brain function
en-keyword=Neuroplasticity
kn-keyword=Neuroplasticity
en-keyword=Neuroprotection
kn-keyword=Neuroprotection
en-keyword=Cognitive decline
kn-keyword=Cognitive decline
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=1
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250225
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Age-related behavioural abnormalities in C57BL/6.KOR?Apoe shl mice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Spontaneously hyperlipidaemic (Apoeshl) mice were discovered in 1999 as mice lacking apolipoprotein E (ApoE) owing to a mutation in the Apoe gene. However, age-related behavioural changes in commercially available Apoeshl mice have not yet been clarified. The behavioural abnormalities of ApoE-deficient mice, which are genetically modified mice artificially deficient in ApoE, have been investigated in detail, and it has been reported that they can serve as a model of Alzheimerfs disease (AD). To understand whether Apoeshl mice can also serve as a murine model of AD, it is necessary to investigate age-related behavioural abnormalities in Apoeshl mice. In this study, we conducted a series of behavioural experiments on 7- and 11-month-old Apoeshl mice to investigate the behavioural abnormalities associated with ageing in Apoeshl mice. In this study, 7-month-old Apoeshl mice showed decreased body weight and grip strength compared to age-matched wild-type mice. In the open field test, 7-month-old Apoeshl mice showed increased anxiety-like behaviour compared to wild-type mice, whereas 11-month-old Apoeshl mice showed decreased anxiety-like behaviour. Moreover, Apoeshl mice aged 7 and 11 months had increased serum cholesterol levels. These results indicate that the behaviour of Apoeshl mice changes with age. However, 11-month-old Apoeshl mice did not show a decline in cognitive function or memory ability similar to murine models of AD. Our findings indicate that Apoeshl mice can be used to investigate the function of ApoE in the central nervous system.
en-copyright=
kn-copyright=
en-aut-name=UenoHiroshi
en-aut-sei=Ueno
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakahashiYu
en-aut-sei=Takahashi
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MoriSachiko
en-aut-sei=Mori
en-aut-mei=Sachiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KitanoEriko
en-aut-sei=Kitano
en-aut-mei=Eriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MurakamiShinji
en-aut-sei=Murakami
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=WaniKenta
en-aut-sei=Wani
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MiyazakiTetsuji
en-aut-sei=Miyazaki
en-aut-mei=Tetsuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MatsumotoYosuke
en-aut-sei=Matsumoto
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OkamotoMotoi
en-aut-sei=Okamoto
en-aut-mei=Motoi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=IshiharaTakeshi
en-aut-sei=Ishihara
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Medical Technology, Kawasaki University of Medical Welfare
kn-affil=
affil-num=2
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=3
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=4
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=5
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=6
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=7
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=8
en-affil=Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
en-keyword=age
kn-keyword=age
en-keyword=apolipoprotein
kn-keyword=apolipoprotein
en-keyword=behavioural test
kn-keyword=behavioural test
en-keyword=central nervous system
kn-keyword=central nervous system
en-keyword=mouse
kn-keyword=mouse
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=12
article-no=
start-page=1399
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250611
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Association Between Chewing Status and Steatotic Liver Disease in Japanese People Aged ?50 Years: A Cohort Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Objectives: In this longitudinal study, the relationship between chewing status and steatotic liver disease (SLD) was examined in 3775 people aged ?50 years who underwent medical checkups at Junpukai Health Maintenance Center in Okayama, Japan. Methods: Participants without SLD at the time of a baseline survey in 2018 were followed until 2022. Chewing status was assessed by a self-administered questionnaire. The presence or absence of SLD was ascertained from the medical records of Junpukai Health Maintenance Center. Results: A total of 541 participants (14%) were diagnosed as having a poor chewing status at baseline. Furthermore, 318 (8%) participants were newly diagnosed with SLD at follow-up. In multivariate logistic regression analyses, the presence or absence of SLD was found to be associated with the following characteristics at baseline: sex (male: odds ratio [ORs] = 1.806; 95% confidence interval [CIs]: 1.399?2.351), age (ORs = 0.969; 95% CIs: 0.948?0.991), body mass index (?25.0 kg/m2; ORs = 1.934; 95% CIs: 1.467?2.549), diastolic blood pressure (ORs = 1.017; 95% CIs: 1.002?1.032), and chewing status (poor: ORs = 1.472; 95% CIs: 1.087?1.994). Conclusions: The results indicate that a poor chewing status was associated with SLD development after 4 years. Aggressively recommending dental visits to participants with poor chewing status may not only improve their ability to chew well but may also reduce the incidence of SLD.
en-copyright=
kn-copyright=
en-aut-name=IwaiKomei
en-aut-sei=Iwai
en-aut-mei=Komei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=EkuniDaisuke
en-aut-sei=Ekuni
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AzumaTetsuji
en-aut-sei=Azuma
en-aut-mei=Tetsuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YonenagaTakatoshi
en-aut-sei=Yonenaga
en-aut-mei=Takatoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TabataKoichiro
en-aut-sei=Tabata
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ToyamaNaoki
en-aut-sei=Toyama
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KataokaKota
en-aut-sei=Kataoka
en-aut-mei=Kota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MaruyamaTakayuki
en-aut-sei=Maruyama
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TomofujiTakaaki
en-aut-sei=Tomofuji
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Community Oral Health, School of Dentistry, Asahi University
kn-affil=
affil-num=2
en-affil=Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Community Oral Health, School of Dentistry, Asahi University
kn-affil=
affil-num=4
en-affil=Department of Community Oral Health, School of Dentistry, Asahi University
kn-affil=
affil-num=5
en-affil=Department of Community Oral Health, School of Dentistry, Asahi University
kn-affil=
affil-num=6
en-affil=Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Community Oral Health, School of Dentistry, Asahi University
kn-affil=
en-keyword=oral health
kn-keyword=oral health
en-keyword=liver diseases
kn-keyword=liver diseases
en-keyword=longitudinal studies
kn-keyword=longitudinal studies
en-keyword=mastication
kn-keyword=mastication
en-keyword=physical examination
kn-keyword=physical examination
en-keyword=surveys and questionnaires
kn-keyword=surveys and questionnaires
END
start-ver=1.4
cd-journal=joma
no-vol=64
cd-vols=
no-issue=4
article-no=
start-page=292
end-page=296
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241225
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Computed tomography findings of idiopathic multicentric Castleman disease subtypes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study retrospectively evaluated the computed tomography (CT) findings of idiopathic multicentric Castleman disease (iMCD) at a single center and compared the CT findings of iMCD-TAFRO with those of iMCD-non-TAFRO. CT images obtained within 30 days before diagnostic confirmation were reviewed for 20 patients with iMCD (8 men and 12 women, mean age 52.8 } 12.3 years, range 25?74 years). Twelve patients were diagnosed with iMCD-TAFRO, five with iMCD-idiopathic plasmacytic lymphadenopathy, and three with iMCD-not otherwise specified. CT images revealed anasarca and lymphadenopathy in all 20 patients. The iMCD-TAFRO group showed significantly higher frequencies of ascites (100% vs. 37.5%, P = 0.004), gallbladder wall edema (75.0% vs. 12.5%, P = 0.020), periportal collar (91.7% vs. 25.0%, P = 0.004), and anterior mediastinal lesions (non-mass-forming infiltrative lesions) (66.7% vs. 12.5%, P = 0.028). Para-aortic edema tended to be more frequent in patients with the iMCD-TAFRO group (83.3% vs. 37.5%, P = 0.062), while the absence of anterior mediastinal lesions tended to be more frequent in the iMCD-non-TAFRO group (16.7% vs. 62.5%, P = 0.062). These CT findings may have clinical implications for improving the accuracy and speed of iMCD diagnosis and differentiating iMCD-TAFRO from other subtypes.
en-copyright=
kn-copyright=
en-aut-name=IguchiToshihiro
en-aut-sei=Iguchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishikoriAsami
en-aut-sei=Nishikori
en-aut-mei=Asami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SatoYasuharu
en-aut-sei=Sato
en-aut-mei=Yasuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NishimuraMidori Filiz
en-aut-sei=Nishimura
en-aut-mei=Midori Filiz
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IwakiNoriko
en-aut-sei=Iwaki
en-aut-mei=Noriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KojimaKatsuhide
en-aut-sei=Kojima
en-aut-mei=Katsuhide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=AsaharaTakashi
en-aut-sei=Asahara
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OtsukaFumio
en-aut-sei=Otsuka
en-aut-mei=Fumio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MaedaYoshinobu
en-aut-sei=Maeda
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HirakiTakao
en-aut-sei=Hiraki
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=3
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=4
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=5
en-affil=Department of Hematology, National Cancer Center Hospital
kn-affil=
affil-num=6
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=idiopathic multicentric Castleman disease
kn-keyword=idiopathic multicentric Castleman disease
en-keyword=TAFRO syndrome
kn-keyword=TAFRO syndrome
en-keyword=computed tomography
kn-keyword=computed tomography
END
start-ver=1.4
cd-journal=joma
no-vol=4
cd-vols=
no-issue=3
article-no=
start-page=e70167
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250728
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Occupational therapist]guided exercise increased white blood cell and neutrophil counts during clozapine treatment: A case report
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Moderate exercise increases white blood cells and neutrophils. However, there are no reports on the relationship between exercise intensity and these cells. We observed a patient taking clozapine whose white blood cell and neutrophil counts were borderline. Supervised exercise therapy with an occupational therapist stabilized these counts.
Case Presentation: A 50-year-old woman with treatment-resistant schizophrenia was prescribed clozapine. By Day 63, the clozapine dosage had been increased to 450?mg/day. Additionally, she was advised to perform a 30-min walking exercise program 1 h before blood tests. Exercise therapy supervised by an occupational therapist was performed eight times, and self-training was performed five times. Exercise intensity was monitored using the Borg Scale for subjective evaluation and the Karvonen formula for objective evaluation. Supervised exercise therapy with an occupational therapist resulted in greater increases on the Borg Scale and Karvonen formula than did self-training. It also induced increases in white blood cells and neutrophils. Her psychiatric symptoms improved, and she was discharged on Day 71. A blood test taken after discharge revealed that her white blood cell and neutrophil counts were within the normal range and she continued to take clozapine for 2 years. She has since been able to enjoy a calm and relaxed life at home.
Conclusion: Exercise involving subjective and objective evaluation by an occupational therapist effectively increased white blood cells and neutrophils during clozapine treatment. Supervised exercise therapy by an occupational therapist is important when self-exercise is insufficient for continuing clozapine treatment.
en-copyright=
kn-copyright=
en-aut-name=HinotsuKenji
en-aut-sei=Hinotsu
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SakamotoShinji
en-aut-sei=Sakamoto
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KawaiHiroki
en-aut-sei=Kawai
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OhyaYoshio
en-aut-sei=Ohya
en-aut-mei=Yoshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YokodeAkiyoshi
en-aut-sei=Yokode
en-aut-mei=Akiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AsadaTakahiro
en-aut-sei=Asada
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OkahisaYuko
en-aut-sei=Okahisa
en-aut-mei=Yuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakakiManabu
en-aut-sei=Takaki
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Neuropsychiatry, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Neuropsychiatry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Neuropsychiatry, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Neuropsychiatry, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Neuropsychiatry, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Neuropsychiatry, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Neuropsychiatry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=clozapine
kn-keyword=clozapine
en-keyword=exercise
kn-keyword=exercise
en-keyword=leukopenia
kn-keyword=leukopenia
en-keyword=neutropenia
kn-keyword=neutropenia
en-keyword=occupational therapist
kn-keyword=occupational therapist
END
start-ver=1.4
cd-journal=joma
no-vol=2892
cd-vols=
no-issue=
article-no=
start-page=012002
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Crystal Grain Rotation during Tensile Test of Polycrystalline Pure Titanium Thin Sheet Based on Surface Height and Crystal Orientation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Thin sheets and wires of polycrystalline pure titanium are important materials for various devices used in electrical, mechanical, dental, and medical fields. Since pure titanium shows strong anisotropy in elastic and plastic deformation, and the individual grains comprising a polycrystalline body have different orientations and geometries, inhomogeneous deformation always occurs on the microscopic scale. This inhomogeneity is more significant in thin films than in bulk materials. It is therefore important to investigate the inhomogeneous deformation of pure titanium thin sheets to ensure the reliability of various titanium devices. In this study, thin-sheet specimens made of polycrystalline pure titanium were subjected to tensile testing. Inhomogeneous deformation was evaluated on the basis of two kinds of crystal grain rotations based on surface height and crystal orientation. The results under elastic and plastic tensile conditions were compared.
en-copyright=
kn-copyright=
en-aut-name=TadaNaoya
en-aut-sei=Tada
en-aut-mei=Naoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OhashiHiroaki
en-aut-sei=Ohashi
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UemoriTakeshi
en-aut-sei=Uemori
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SakamotoJunji
en-aut-sei=Sakamoto
en-aut-mei=Junji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Okayama University
kn-affil=
affil-num=2
en-affil=Okayama University
kn-affil=
affil-num=3
en-affil=Okayama University
kn-affil=
affil-num=4
en-affil=Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=9
article-no=
start-page=4310
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Possibility of Plasma Membrane Transporters as Drug Targets in Oral Cancers
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Plasma membrane transporters are increasingly recognized as potential drug targets for oral cancer, particularly oral squamous cell carcinoma (OSCC). These transporters play crucial roles in cancer cell metabolism, drug resistance, and the tumor microenvironment, making them attractive targets for therapeutic intervention. Among the two main families of plasma membrane transporters, ATP-binding cassette (ABC) transporters have long been known to be involved in drug efflux and contribute to chemoresistance in cancer cells. On the other hand, solute carriers (SLCs) are also a family of transporters that facilitate the transport of various substrates, including nutrients and drugs, and have recently been shown to contribute to cancer chemosensitivity, metabolism, and proliferation. SLC transporters have been identified as potential cancer biomarkers and therapeutic targets, and their expression profiles suggest that they could be utilized in precision oncology approaches. We summarize previous reports on the expression and role of ABC and SLC transporters in oral cancer and discuss their potential as therapeutic targets.
en-copyright=
kn-copyright=
en-aut-name=SogawaChiharu
en-aut-sei=Sogawa
en-aut-mei=Chiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShimadaKatsumitsu
en-aut-sei=Shimada
en-aut-mei=Katsumitsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakanoKeisuke
en-aut-sei=Nakano
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Food and Health Sciences, Faculty of Environmental Studies, Hiroshima Institute of Technology
kn-affil=
affil-num=2
en-affil=Department of Clinical Phathophysiology, Matsumoto Dental University
kn-affil=
affil-num=3
en-affil=Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=SLC transporter
kn-keyword=SLC transporter
en-keyword=ABC transporter
kn-keyword=ABC transporter
en-keyword=oral cancer
kn-keyword=oral cancer
en-keyword=oral squamous cell carcinoma
kn-keyword=oral squamous cell carcinoma
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=
article-no=
start-page=1561628
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250321
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Histidine-rich glycoprotein inhibits TNF-¿?induced tube formation in human vascular endothelial cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction: Tumor necrosis factor-¿ (TNF-¿)-induced angiogenesis plays a critical role in tumor progression and metastasis, making it an important therapeutic target in cancer treatment. Suppressing angiogenesis can effectively limit tumor growth and metastasis. However, despite advancements in understanding angiogenic pathways, effective strategies to inhibit TNF-¿-mediated angiogenesis remain limited.
Methods: This study investigates the antiangiogenic effects of histidine-rich glycoprotein (HRG), a multifunctional plasma protein with potent antiangiogenic properties, on TNF-¿-stimulated human endothelial cells (EA.hy926). Tube formation assays were performed to assess angiogenesis, and gene/protein expression analyses were conducted to evaluate HRGfs effects on integrins ¿V and À8. The role of nuclear factor erythroid 2-related factor 2 (NRF2) in HRG-mediated antiangiogenic activity was also examined through nuclear translocation assays and NRF2 activation studies.
Results: At physiological concentrations, HRG effectively suppressed TNF-¿-induced tube formation in vitro and downregulated TNF-¿-induced expression of integrins ¿V and À8 at both the mRNA and protein levels. HRG treatment promoted NRF2 nuclear translocation in a time-dependent manner. Furthermore, activation of NRF2 significantly reduced TNF-¿-induced tube formation and integrin expression, suggesting that NRF2 plays a key role in HRG-mediated antiangiogenic effects.
Discussion and Conclusion: Our findings indicate that HRG suppresses TNF-¿-induced angiogenesis by promoting NRF2 nuclear translocation and transcriptional activation, which in turn inhibits integrin ¿V and À8 expression. Given the essential role of angiogenesis in tumor progression, HRGfs ability to regulate this process presents a promising therapeutic strategy for cancer treatment.
en-copyright=
kn-copyright=
en-aut-name=HatipogluOmer Faruk
en-aut-sei=Hatipoglu
en-aut-mei=Omer Faruk
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishinakaTakashi
en-aut-sei=Nishinaka
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YaykasliKursat Oguz
en-aut-sei=Yaykasli
en-aut-mei=Kursat Oguz
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MoriShuji
en-aut-sei=Mori
en-aut-mei=Shuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WatanabeMasahiro
en-aut-sei=Watanabe
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ToyomuraTakao
en-aut-sei=Toyomura
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NishiboriMasahiro
en-aut-sei=Nishibori
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HirohataSatoshi
en-aut-sei=Hirohata
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=WakeHidenori
en-aut-sei=Wake
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TakahashiHideo
en-aut-sei=Takahashi
en-aut-mei=Hideo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Pharmacology, Kindai University Faculty of Medicine
kn-affil=
affil-num=2
en-affil=Department of Pharmacology, Kindai University Faculty of Medicine
kn-affil=
affil-num=3
en-affil=Department of Internal Medicine 3?Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-N?rnberg (FAU) and Universit?tsklinikum Erlangen
kn-affil=
affil-num=4
en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University
kn-affil=
affil-num=5
en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University
kn-affil=
affil-num=6
en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University
kn-affil=
affil-num=7
en-affil=Department of Translational Research and Dug Development, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Pharmacology, Kindai University Faculty of Medicine
kn-affil=
affil-num=10
en-affil=Department of Pharmacology, Kindai University Faculty of Medicine
kn-affil=
en-keyword=histidine-rich glycoprotein
kn-keyword=histidine-rich glycoprotein
en-keyword=tumor necrosis factor-¿
kn-keyword=tumor necrosis factor-¿
en-keyword=integrin
kn-keyword=integrin
en-keyword=tube formation
kn-keyword=tube formation
en-keyword=angiogenesis
kn-keyword=angiogenesis
en-keyword=factor erythroid 2-related factor 2
kn-keyword=factor erythroid 2-related factor 2
END
start-ver=1.4
cd-journal=joma
no-vol=6
cd-vols=
no-issue=S1
article-no=
start-page=7
end-page=12
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Basic biology is not just gfor the birdsh: how avian studies have informed us about vertebrate reproduction
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Avian reproductive physiology has been studied for centuries, largely because of the importance of birds as food animals. It is likely that the ubiquity and ease of access to domesticated chickens led to them being used in some of the first experiments on transplantation of endocrine structures?in this case, the testes. Since then, study of seasonal changes in reproductive physiology (photoperiodism) in different orders of bird species has led to advances in the understanding of endocrine regulation of reproductive physiology and behavior. These include mechanisms of adult neuroplasticity, sexual selection, sperm competition, stress physiology, and circadian physiology. Here, we focus mainly on the discovery in birds of a neuropeptide named gonadotropin-inhibitory hormone that mostly has inhibitory effects on reproduction. This hormone has since been shown to exist in all mammals studied to date, including humans (it is known as RFamide-related peptide in mammals). We discuss the history and implications of avian studies on gonadotropin-inhibitory hormone/RFamide-related peptide for human reproductive biology.
en-copyright=
kn-copyright=
en-aut-name=BentleyGeorge E.
en-aut-sei=Bentley
en-aut-mei=George E.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AizawaSayaka
en-aut-sei=Aizawa
en-aut-mei=Sayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Integrative Biology and Helen Wills Neuroscience Institute, University of California at Berkeley
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=GnRH
kn-keyword=GnRH
en-keyword=GnIH
kn-keyword=GnIH
en-keyword=RFamide
kn-keyword=RFamide
END
start-ver=1.4
cd-journal=joma
no-vol=1863
cd-vols=
no-issue=
article-no=
start-page=149752
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Spearmint extract Neumentix downregulates amyloid-À accumulation by promoting phagocytosis in APP23 mice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In recent years, many researchers have focused on natural compounds that can effectively delay symptoms of Alzheimerfs disease (AD). The spearmint extract Neumentix, which is rich in phenolic compounds, has been shown to reduce inflammatory responses and oxidative stress in mice. However, the effect of Neumentix on AD has not been thoroughly studied. In this study, APP23 transgenic female and male mice were administered Neumentix orally from 4 to 18 months of age at a dosage of 2.65 g/kg/day (containing 0.41 g/kg/day of rosmarinic acid). The impact was evaluated by behavioral tests and histological analyses and compared with APP23 mice to which Neumentix was not administered. The results showed that Neumentix administration increased the survival rate of APP23 mice and effectively reduced AÀ accumulation by enhancing its phagocytosis by microglial cells. These findings suggest that Neumentix is a potential natural nutritional treatment for improving the progression of AD.
en-copyright=
kn-copyright=
en-aut-name=HuXinran
en-aut-sei=Hu
en-aut-mei=Xinran
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MoriharaRyuta
en-aut-sei=Morihara
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FukuiYusuke
en-aut-sei=Fukui
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=BianYuting
en-aut-sei=Bian
en-aut-mei=Yuting
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SunHongming
en-aut-sei=Sun
en-aut-mei=Hongming
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=Ota-ElliottRicardo Satoshi
en-aut-sei=Ota-Elliott
en-aut-mei=Ricardo Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AbeKoji
en-aut-sei=Abe
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YamashitaToru
en-aut-sei=Yamashita
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=National Center Hospital, National Center of Neurology and Psychiatry
kn-affil=
affil-num=9
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Alzheimer's disease
kn-keyword=Alzheimer's disease
en-keyword=Amyloid-beta
kn-keyword=Amyloid-beta
en-keyword=Inflammation
kn-keyword=Inflammation
en-keyword=Neumentix
kn-keyword=Neumentix
en-keyword=Phagocytosis
kn-keyword=Phagocytosis
en-keyword=Survival rate
kn-keyword=Survival rate
END
start-ver=1.4
cd-journal=joma
no-vol=89
cd-vols=
no-issue=8
article-no=
start-page=1217
end-page=1226
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250527
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Microbial biotransformation of proteins into amino acids in unpolished Thai and polished Japanese rice varieties cultivated with distinct industrial strains of koji mold
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We previously reported the cultivation of industrial koji mold strains to produce unpolished Thai-colored rice kojis. These kojis, along with those made from unpolished Thai white rice and polished Japanese white rice, showed increased polyphenol content after cultivation, with the highest levels observed in unpolished Thai-colored rice kojis. In this study, an increase in both proteinogenic and non-proteinogenic amino acid contents, particularly Á-aminobutyric acid (GABA) content, was observed in both unpolished Thai and polished Japanese rice kojis, suggesting the ability of koji mold in the biotransformation of proteins. This increase was almost comparable even when using different rice varieties; in contrast, it varied depending on the koji mold strain used. The observed increase in both polyphenol and functional amino acid contents, especially GABA content, highlights the potential of unpolished Thai and polished Japanese rice kojis, particularly unpolished Thai-colored rice koji, as multifunctional materials, benefiting from polyphenol and amino acid functionalities.
en-copyright=
kn-copyright=
en-aut-name=JitpakdeeJirayu
en-aut-sei=Jitpakdee
en-aut-mei=Jirayu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ItoKazunari
en-aut-sei=Ito
en-aut-mei=Kazunari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TaninoYuka
en-aut-sei=Tanino
en-aut-mei=Yuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakeuchiHayato
en-aut-sei=Takeuchi
en-aut-mei=Hayato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamashitaHideyuki
en-aut-sei=Yamashita
en-aut-mei=Hideyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakagawaTakuro
en-aut-sei=Nakagawa
en-aut-mei=Takuro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NitodaTeruhiko
en-aut-sei=Nitoda
en-aut-mei=Teruhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KanzakiHiroshi
en-aut-sei=Kanzaki
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Industrial Technology Center of Okayama Prefecture
kn-affil=
affil-num=3
en-affil=Industrial Technology Center of Okayama Prefecture
kn-affil=
affil-num=4
en-affil=Industrial Technology Center of Okayama Prefecture
kn-affil=
affil-num=5
en-affil=Higuchi Matsunosuke Shoten Co., Ltd.
kn-affil=
affil-num=6
en-affil=Higuchi Matsunosuke Shoten Co., Ltd.
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Amino acid
kn-keyword=Amino acid
en-keyword=GABA
kn-keyword=GABA
en-keyword=koji mold
kn-keyword=koji mold
en-keyword=rice koji
kn-keyword=rice koji
en-keyword=Thai-colored rice
kn-keyword=Thai-colored rice
END
start-ver=1.4
cd-journal=joma
no-vol=98
cd-vols=
no-issue=6
article-no=
start-page=uoaf044
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250516
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Redox-potential-controlled intermolecular [2 + 2] cycloaddition of styrenes for the regio- and diastereoselective synthesis of multisubstituted halogenocyclobutanes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The redox potential is an important factor for controlling the outcome of photoredox catalysis. Particularly, the selective oxidation of substrates and the control over the reactions are challenging when using photoredox catalysts that have high excited-state reduction potentials. In this study, a redox-potential-controlled intermolecular [2 + 2] cycloaddition of styrenes using a thioxanthylium organophotoredox (TXT) catalyst has been developed. This TXT catalyst selectively oxidizes À-halogenostyrenes and smoothly promotes the subsequent intermolecular [2 + 2] cycloadditions to give multisubstituted halogenocyclobutanes with excellent regio- and diastereoselectivity, which has not been effectively achieved by the hitherto reported representative photoredox catalysts. The synthesized halogenocyclobutanes exhibit interesting free radical scavenging activity. The present reaction contributes to the field of redox-potential-controlled electron transfer chemistry.
en-copyright=
kn-copyright=
en-aut-name=MizutaniAsuka
en-aut-sei=Mizutani
en-aut-mei=Asuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KondoMomo
en-aut-sei=Kondo
en-aut-mei=Momo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ItakuraShoko
en-aut-sei=Itakura
en-aut-mei=Shoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakamuraHiroyoshi
en-aut-sei=Takamura
en-aut-mei=Hiroyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HoshinoYujiro
en-aut-sei=Hoshino
en-aut-mei=Yujiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NishikawaMakiya
en-aut-sei=Nishikawa
en-aut-mei=Makiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KadotaIsao
en-aut-sei=Kadota
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KusamoriKosuke
en-aut-sei=Kusamori
en-aut-mei=Kosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TanakaKenta
en-aut-sei=Tanaka
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science
kn-affil=
affil-num=3
en-affil=Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environment and Information Sciences, Yokohama National University
kn-affil=
affil-num=6
en-affil=Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Laboratory of Cellular Drug Discovery and Development, Faculty of Pharmaceutical Sciences, Tokyo University of Science
kn-affil=
affil-num=9
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
en-keyword=redox potential
kn-keyword=redox potential
en-keyword=photoredox catalysis
kn-keyword=photoredox catalysis
en-keyword=[2 + 2] cycloaddition
kn-keyword=[2 + 2] cycloaddition
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250813
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The stress?strain behavior of poly(methyl acrylate) microparticle-based polymers determined via optical microscopy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The structural integrity of microparticle-based films is maintained through interpenetration of the superficial polymer chains of the microparticles that physically crosslink neighboring microparticles. This structural feature is fundamentally different from those of conventional polymers prepared by solvent casting or bulk polymerization. To understand the mechanical properties of such microparticle-based films, it is necessary to investigate the behavior of their constituent particles. However, methods are still being developed to evaluate microscale structural changes in microparticle-based films during the stretching process leading to film fracture. In this study, we propose a method that combines a stretching stage with optical microscopy to investigate the changes in particle morphology and its positional relationship with surrounding particles during uniaxial tensile tests on microparticle-based films. In a film consisting of cross-linked poly(methyl acrylate) microparticles, the deformation of the particles deviated from affine deformation due to the cross-linked structure. However, the deformation of a group of several (local) particles was confirmed to be location-dependent and larger than that of each particle forming the film. The method established here can be used to contribute to the design of tough microparticle-based films.
en-copyright=
kn-copyright=
en-aut-name=NishizawaYuichiro
en-aut-sei=Nishizawa
en-aut-mei=Yuichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawamuraYuto
en-aut-sei=Kawamura
en-aut-mei=Yuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SasakiYuma
en-aut-sei=Sasaki
en-aut-mei=Yuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SuzukiDaisuke
en-aut-sei=Suzuki
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=raduate School of Textile Science & Technology, Shinshu University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=140
cd-vols=
no-issue=
article-no=
start-page=745
end-page=776
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Advances in filler-crosslinked membranes for hydrogen fuel cells in sustainable energy generation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Fuel cell membranes can be used in various ways to achieve zero-emission transport and energy systems, which offer a promising way to power production due to their higher efficiency compared to the internal combustion engine and the eco-environment. Perfluoro sulfonic acid membranes used for proton exchange membranes (PEMs) have certain drawbacks, like higher fuel permeability and expense, lower mechanical and chemical durability, and proton conductivity under low humidity and above 80 C temperature. Researchers have drawn their attention to the production of polymer electrolyte membranes with higher proton conductivity, thermal and chemical resilience, maximum power density, lower fuel permeability, and lower expense. For sustainable clean energy generation, a review covering the most useful features of advanced material-associated membranes would be of great benefit to all interested communities. This paper endeavors to explore several types of novel inorganic fillers and crosslinking agents, which have been incorporated into membrane matrices to design the desired properties for an advanced fuel cell system. Membrane parameters such as proton conductivity, the ability of H2 transport, and the stability of the membrane are described. Research directions for developing fuel cell membranes are addressed based on several challenges suggested. The technological advancement of nanostructured materials for fuel cell applications is believed to significantly promote the future clean energy generation technology in practice.
en-copyright=
kn-copyright=
en-aut-name=IslamAminul
en-aut-sei=Islam
en-aut-mei=Aminul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShahriarMamun
en-aut-sei=Shahriar
en-aut-mei=Mamun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IslamMd. Tarekul
en-aut-sei=Islam
en-aut-mei=Md. Tarekul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TeoSiow Hwa
en-aut-sei=Teo
en-aut-mei=Siow Hwa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KhanM. Azizur R.
en-aut-sei=Khan
en-aut-mei=M. Azizur R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=Taufiq-YapYun Hin
en-aut-sei=Taufiq-Yap
en-aut-mei=Yun Hin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MohantaSuman C.
en-aut-sei=Mohanta
en-aut-mei=Suman C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=RehanAriyan Islam
en-aut-sei=Rehan
en-aut-mei=Ariyan Islam
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=RaseeAdiba Islam
en-aut-sei=Rasee
en-aut-mei=Adiba Islam
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KubraKhadiza Tul
en-aut-sei=Kubra
en-aut-mei=Khadiza Tul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HasanMd. Munjur
en-aut-sei=Hasan
en-aut-mei=Md. Munjur
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=SalmanMd. Shad
en-aut-sei=Salman
en-aut-mei=Md. Shad
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=WaliullahR.M.
en-aut-sei=Waliullah
en-aut-mei=R.M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=HasanMd. Nazmul
en-aut-sei=Hasan
en-aut-mei=Md. Nazmul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=SheikhMd. Chanmiya
en-aut-sei=Sheikh
en-aut-mei=Md. Chanmiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=UchidaTetsuya
en-aut-sei=Uchida
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=AwualMrs Eti
en-aut-sei=Awual
en-aut-mei=Mrs Eti
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=HossainMohammed Sohrab
en-aut-sei=Hossain
en-aut-mei=Mohammed Sohrab
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=ZnadHussein
en-aut-sei=Znad
en-aut-mei=Hussein
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=AwualMd. Rabiul
en-aut-sei=Awual
en-aut-mei=Md. Rabiul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
affil-num=1
en-affil=Department of Petroleum and Mining Engineering, Jashore University of Science and Technology
kn-affil=
affil-num=2
en-affil=Department of Petroleum and Mining Engineering, Jashore University of Science and Technology
kn-affil=
affil-num=3
en-affil=Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering and Technology
kn-affil=
affil-num=4
en-affil=Industrial Chemistry Program, Faculty of Science and Natural Resources, Universiti Malaysia Sabah
kn-affil=
affil-num=5
en-affil=Department of Chemistry, Jashore University of Science and Technology
kn-affil=
affil-num=6
en-affil=Catalysis Science and Technology Research Centre, Faculty of Science, Universiti Putra Malaysia
kn-affil=
affil-num=7
en-affil=Department of Chemistry, Jashore University of Science and Technology
kn-affil=
affil-num=8
en-affil=Department of Chemistry, School of Science, The University of Tokyo
kn-affil=
affil-num=9
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=10
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=11
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=12
en-affil=Institute for Chemical Research, Kyoto University
kn-affil=
affil-num=13
en-affil=Institute for Chemical Research, Kyoto University
kn-affil=
affil-num=14
en-affil=Department of Chemistry, School of Science, The University of Tokyo
kn-affil=
affil-num=15
en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=16
en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=17
en-affil=Institute for Chemical Research, Kyoto University
kn-affil=
affil-num=18
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=19
en-affil=Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University
kn-affil=
affil-num=20
en-affil=Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University
kn-affil=
en-keyword=Advanced materials
kn-keyword=Advanced materials
en-keyword=Fuel cell
kn-keyword=Fuel cell
en-keyword=Hydrogen gas generation
kn-keyword=Hydrogen gas generation
en-keyword=Proton exchange membrane
kn-keyword=Proton exchange membrane
en-keyword=Polymer
kn-keyword=Polymer
END
start-ver=1.4
cd-journal=joma
no-vol=101
cd-vols=
no-issue=
article-no=
start-page=173
end-page=211
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202502
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Next frontier in photocatalytic hydrogen production through CdS heterojunctions
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Photocatalytic hydrogen (H?) generation via solar-powered water splitting represents a sustainable solution to the global energy crisis. Cadmium sulfide (CdS) has emerged as a promising semiconductor photocatalyst due to its tunable bandgap, high physicochemical stability, cost-effectiveness, and widespread availability. This review systematically examines recent advancements in CdS-based heterojunctions, categorized into CdS-metal (Schottky), CdS-semiconductor (p-n, Z-scheme, S-scheme), and CdS-carbon heterojunctions. Various strategies employed to enhance photocatalytic efficiency and stability are discussed, including band structure engineering, surface modification, and the incorporation of crosslinked architectures. A critical evaluation of the underlying photocatalytic mechanisms highlights recent efforts to improve charge separation and photostability under operational conditions. This review highlights the challenges and opportunities in advancing CdS-based photocatalysts and provides a direction for future research. The insights presented aim to accelerate the development of efficient and durable CdS-based photocatalysts for sustainable H? production.
en-copyright=
kn-copyright=
en-aut-name=IslamAminul
en-aut-sei=Islam
en-aut-mei=Aminul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MalekAbdul
en-aut-sei=Malek
en-aut-mei=Abdul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IslamMd. Tarekul
en-aut-sei=Islam
en-aut-mei=Md. Tarekul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NipaFarzana Yeasmin
en-aut-sei=Nipa
en-aut-mei=Farzana Yeasmin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=RaihanObayed
en-aut-sei=Raihan
en-aut-mei=Obayed
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MahmudHasan
en-aut-sei=Mahmud
en-aut-mei=Hasan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=UddinMd. Elias
en-aut-sei=Uddin
en-aut-mei=Md. Elias
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IbrahimMohd Lokman
en-aut-sei=Ibrahim
en-aut-mei=Mohd Lokman
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=Abdulkareem-AlsultanG.
en-aut-sei=Abdulkareem-Alsultan
en-aut-mei=G.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MondalAlam Hossain
en-aut-sei=Mondal
en-aut-mei=Alam Hossain
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HasanMd. Munjur
en-aut-sei=Hasan
en-aut-mei=Md. Munjur
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=SalmanMd. Shad
en-aut-sei=Salman
en-aut-mei=Md. Shad
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KubraKhadiza Tul
en-aut-sei=Kubra
en-aut-mei=Khadiza Tul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=HasanMd. Nazmul
en-aut-sei=Hasan
en-aut-mei=Md. Nazmul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=SheikhMd. Chanmiya
en-aut-sei=Sheikh
en-aut-mei=Md. Chanmiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=UchidaTetsuya
en-aut-sei=Uchida
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=RaseeAdiba Islam
en-aut-sei=Rasee
en-aut-mei=Adiba Islam
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=RehanAriyan Islam
en-aut-sei=Rehan
en-aut-mei=Ariyan Islam
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=AwualMrs Eti
en-aut-sei=Awual
en-aut-mei=Mrs Eti
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=HossainMohammed Sohrab
en-aut-sei=Hossain
en-aut-mei=Mohammed Sohrab
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=WaliullahR.M.
en-aut-sei=Waliullah
en-aut-mei=R.M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=AwualMd. Rabiul
en-aut-sei=Awual
en-aut-mei=Md. Rabiul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
affil-num=1
en-affil=Department of Petroleum and Mining Engineering, Jashore University of Science and Technology
kn-affil=
affil-num=2
en-affil=Department of Petroleum and Mining Engineering, Jashore University of Science and Technology
kn-affil=
affil-num=3
en-affil=Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering and Technology
kn-affil=
affil-num=4
en-affil=Department of Petroleum and Mining Engineering, Jashore University of Science and Technology
kn-affil=
affil-num=5
en-affil=Department of Pharmaceutical Sciences, College of Health Sciences and Pharmacy, Chicago State University
kn-affil=
affil-num=6
en-affil=Bangladesh Energy and Power Research Council (BEPRC)
kn-affil=
affil-num=7
en-affil=Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering and Technology
kn-affil=
affil-num=8
en-affil=School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA
kn-affil=
affil-num=9
en-affil=Catalysis Science and Technology Research Centre, Faculty of Science, Universiti Putra Malaysia
kn-affil=
affil-num=10
en-affil=USAID - Bangladesh Advancing Development and Growth through Energy (BADGE) Project, Tetra Tech
kn-affil=
affil-num=11
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=12
en-affil=Institute for Chemical Research, Kyoto University
kn-affil=
affil-num=13
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=14
en-affil=Department of Chemistry, School of Science, The University of Tokyo
kn-affil=
affil-num=15
en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=16
en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=17
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=18
en-affil=Department of Chemistry, School of Science, The University of Tokyo
kn-affil=
affil-num=19
en-affil=Institute for Chemical Research, Kyoto University
kn-affil=
affil-num=20
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=21
en-affil=Institute for Chemical Research, Kyoto University
kn-affil=
affil-num=22
en-affil=Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University
kn-affil=
en-keyword=H2
kn-keyword=H2
en-keyword=Sustainability
kn-keyword=Sustainability
en-keyword=Photocatalytic
kn-keyword=Photocatalytic
en-keyword=Photo-stability
kn-keyword=Photo-stability
en-keyword=Heterojunction
kn-keyword=Heterojunction
en-keyword=CdS
kn-keyword=CdS
END
start-ver=1.4
cd-journal=joma
no-vol=30
cd-vols=
no-issue=1
article-no=
start-page=144
end-page=156
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241109
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Lymphadenectomy and chemotherapy are effective treatments for patients with 2023 international federation of gynecology and obstetrics stage IIC-high risk endometrial cancer in Japan
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background In early-stage endometrial cancer (EC), the treatment of aggressive histological subtypes (endometrioid carcinoma grade 3, serous carcinoma, clear-cell carcinoma, undifferentiated carcinoma, mixed carcinoma, and carcinosarcoma) is controversial. We aimed to investigate the treatment of patients with International Federation of Gynecology and Obstetrics (FIGO) stage IC and stage IIC EC according to the 2023 classification.
Methods We retrospectively identified patients with FIGO 2023 stage IC, IIC-intermediate risk (IIC-I), and IIC-high risk (IIC-H) EC who underwent adjuvant therapy or observation after surgery at eight medical institutions from 2004 to 2023. Progression-free survival (PFS) and overall survival (OS) were evaluated using Kaplan?Meier estimates and univariate and multivariate analyses.
Results The PFS and OS were significantly worse in patients with FIGO 2023 stage IIC-H EC than in those with FIGO 2023 stage IIC-I EC (PFS: p?=?0.008 and OS: p?=?0.006). According to the FIGO 2023 stage IIC-H classification, lymphadenectomy and chemotherapy resulted in better prognoses regarding both PFS and OS (p?0.001 for both) than other treatments. Our findings suggest that lymphadenectomy and chemotherapy effectively reduced vaginal stump and lymph node metastases in FIGO 2023 stage IIC-H EC (p?0.001 and p?=?0.008, respectively). Furthermore, in the multivariate analysis, not undergoing lymphadenectomy or chemotherapy were independent predictors of recurrence and poor prognoses in patients with FIGO 2023 stage IIC-H EC (p?0.001 and p?=?0.031, respectively).
Conclusion Lymphadenectomy and chemotherapy resulted in better prognoses regarding both recurrence and survival in patients with FIGO 2023 stage IIC high-risk EC.
en-copyright=
kn-copyright=
en-aut-name=TaniYoshinori
en-aut-sei=Tani
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakamuraKeiichiro
en-aut-sei=Nakamura
en-aut-mei=Keiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YorimitsuMasae
en-aut-sei=Yorimitsu
en-aut-mei=Masae
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SekiNoriko
en-aut-sei=Seki
en-aut-mei=Noriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakanishiMie
en-aut-sei=Nakanishi
en-aut-mei=Mie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ItouHironori
en-aut-sei=Itou
en-aut-mei=Hironori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ShimizuMiyuki
en-aut-sei=Shimizu
en-aut-mei=Miyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YamamotoDan
en-aut-sei=Yamamoto
en-aut-mei=Dan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TakaharaEtsuko
en-aut-sei=Takahara
en-aut-mei=Etsuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MasuyamaHisashi
en-aut-sei=Masuyama
en-aut-mei=Hisashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Obstetrics and Gynecology, Hiroshima City Hiroshima Citizens Hospital
kn-affil=
affil-num=4
en-affil=Department of Obstetrics and Gynecology, Japanese Red Cross Society Himeji Hospital
kn-affil=
affil-num=5
en-affil=Department of Obstetrics and Gynecology, Kagawa Prefectural Central Hospital
kn-affil=
affil-num=6
en-affil=Department of Obstetrics and Gynecology, National Hospital Organization Iwakuni Clinical Center
kn-affil=
affil-num=7
en-affil=Department of Obstetrics and Gynecology, Kagawa Rosai Hospital
kn-affil=
affil-num=8
en-affil=Department of Obstetrics and Gynecology, National Organization Fukuyama Medical Center
kn-affil=
affil-num=9
en-affil=Department of Obstetrics and Gynecology, Fukuyama City Hospital
kn-affil=
affil-num=10
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Endometrial cancer
kn-keyword=Endometrial cancer
en-keyword=FIGO 2023
kn-keyword=FIGO 2023
en-keyword=Stage IIC high risk
kn-keyword=Stage IIC high risk
en-keyword=Lymphadenectomy
kn-keyword=Lymphadenectomy
en-keyword=Chemotherapy
kn-keyword=Chemotherapy
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=From sewage sludge to agriculture: governmental initiatives, technologies, and sustainable practices in Japan
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Sewage sludge (SS), an underutilized but valuable resource for agriculture, contains essential nutrients, such as phosphorus. In Japan, where dependence on imported fertilizers is high and global price fluctuations persist, using SS as fertilizer presents a sustainable alternative aligned with circular economy goals. This review analyzes Japanfs current efforts to repurpose SS, focusing on technological developments and key policy initiatives that promote safe and effective application. Selective phosphorus recovery technologies mitigate resource depletion, while holistic approaches, such as composting and carbonization, maximize sludge utilization for agricultural applications. Government-led initiatives, including public awareness campaigns, quality assurance standards and research support, have facilitated the adoption of sludge-based fertilizers. To contextualize Japanfs position, international trends, particularly in the EU, are also examined. These comparisons reveal both common strategies and areas for policy and technological advancement, especially regarding regulation of emerging contaminants. By integrating national case studies with global perspectives, the study offers insights into the economic, environmental, and social benefits of SS reuse, contributing to Japanfs goals of resource self-sufficiency and carbon neutrality, while also informing broader sustainable agriculture transitions worldwide.
en-copyright=
kn-copyright=
en-aut-name=NguyenThu Huong
en-aut-sei=Nguyen
en-aut-mei=Thu Huong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujiwaraTaku
en-aut-sei=Fujiwara
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamashitaHiromasa
en-aut-sei=Yamashita
en-aut-mei=Hiromasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TogawaHironori
en-aut-sei=Togawa
en-aut-mei=Hironori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MiyakeHaruo
en-aut-sei=Miyake
en-aut-mei=Haruo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=GotoMasako
en-aut-sei=Goto
en-aut-mei=Masako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NagareHideaki
en-aut-sei=Nagare
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakamuraMasato
en-aut-sei=Nakamura
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OritateFumiko
en-aut-sei=Oritate
en-aut-mei=Fumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=IharaHirotaka
en-aut-sei=Ihara
en-aut-mei=Hirotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MaedaMorihiro
en-aut-sei=Maeda
en-aut-mei=Morihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Graduate School of Engineering, Kyoto University
kn-affil=
affil-num=2
en-affil=Graduate School of Engineering, Kyoto University
kn-affil=
affil-num=3
en-affil=Water Supply and Sewerage Department, National Institute for Land and Infrastructure Management
kn-affil=
affil-num=4
en-affil=Water Supply and Sewerage Department, National Institute for Land and Infrastructure Management
kn-affil=
affil-num=5
en-affil=R & D Department, Japan Sewage Works Agency
kn-affil=
affil-num=6
en-affil=1St Research Department, Japan Institute of Wastewater Engineering and Technology
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Institute for Rural Engineering, NARO
kn-affil=
affil-num=9
en-affil=Institute for Rural Engineering, NARO
kn-affil=
affil-num=10
en-affil=Institute for Agro-Environmental Sciences, NARO
kn-affil=
affil-num=11
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Japan
kn-keyword=Japan
en-keyword=Sewage sludge
kn-keyword=Sewage sludge
en-keyword=Agriculture
kn-keyword=Agriculture
en-keyword=Sludge fertilizers
kn-keyword=Sludge fertilizers
en-keyword=Governmental initiatives
kn-keyword=Governmental initiatives
END
start-ver=1.4
cd-journal=joma
no-vol=63
cd-vols=
no-issue=23
article-no=
start-page=3243
end-page=3248
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Successful Treatment for Life Threatening Recurrent Non-traumatic Rectus Sheath Hematoma in a Case with Microscopic Polyangiitis with Rapidly Progressive Glomerulonephritis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A 68-year-old woman was admitted to our hospital because of a rapid progression of renal dysfunction with positive myeloperoxidase antineutrophil cytoplasmic antibody and was diagnosed with rapidly progressive glomerulonephritis associated with microscopic polyangiitis (MPA). Severe right rectus sheath hematoma (RSH) bleeding from the inferior epigastric artery developed after starting hemodialysis, which required 4 transarterial embolizations due to recurrent bleeding. After additional treatment with methylprednisolone pulse therapy and rituximab, no rebleeding occurred. Although the giant hematoma reached the pelvis, it shrank spontaneously without any intervention. Nontraumatic RSH should therefore be considered when treating patients with multiple risk factors.
en-copyright=
kn-copyright=
en-aut-name=NakanohHiroyuki
en-aut-sei=Nakanoh
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakeuchiHidemi
en-aut-sei=Takeuchi
en-aut-mei=Hidemi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MorimotoShiho
en-aut-sei=Morimoto
en-aut-mei=Shiho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TerajimaYuya
en-aut-sei=Terajima
en-aut-mei=Yuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OkamotoShugo
en-aut-sei=Okamoto
en-aut-mei=Shugo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OnishiYasuhiro
en-aut-sei=Onishi
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TanakaKeiko
en-aut-sei=Tanaka
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KatsuyamaTakayuki
en-aut-sei=Katsuyama
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TsujiKenji
en-aut-sei=Tsuji
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MatsumotoYoshinori
en-aut-sei=Matsumoto
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TanabeKatsuyuki
en-aut-sei=Tanabe
en-aut-mei=Katsuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MorinagaHiroshi
en-aut-sei=Morinaga
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=UkaMayu
en-aut-sei=Uka
en-aut-mei=Mayu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TomitaKoji
en-aut-sei=Tomita
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=UchidaHaruhito A.
en-aut-sei=Uchida
en-aut-mei=Haruhito A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=HirakiTakao
en-aut-sei=Hiraki
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=14
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=15
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=17
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=rectus sheath hematoma
kn-keyword=rectus sheath hematoma
en-keyword=microscopic polyangiitis
kn-keyword=microscopic polyangiitis
en-keyword=hemodialysis
kn-keyword=hemodialysis
END
start-ver=1.4
cd-journal=joma
no-vol=343
cd-vols=
no-issue=
article-no=
start-page=103558
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Progress in silicon-based materials for emerging solar-powered green hydrogen (H2) production
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The imperative demand for sustainable and renewable energy solutions has precipitated profound scientific investigations into photocatalysts designed for the processes of water splitting and hydrogen fuel generation. The abundance, low toxicity, high conductivity, and cost-effectiveness of silicon-based compounds make them attractive candidates for hydrogen production, driving ongoing research and technological advancements. Developing an effective synthesis method that is simple, economically feasible, and environmentally friendly is crucial for the widespread implementation of silicon-based heterojunctions for sustainable hydrogen production. Balancing the performance benefits with the economic and environmental considerations is a key challenge in the development of these systems. The specific performance of each catalyst type can vary depending on the synthesis method, surface modifications, catalyst loading, and reaction conditions. The confluence of high crystallinity, reduced oxygen concentration, and calcination temperature within the silicon nanoparticle has significantly contributed to its noteworthy hydrogen evolution rate. This review provides an up-to-date evaluation of Si-based photocatalysts, summarizing recent developments, guiding future research directions, and identifying areas that require further investigation. By combining theoretical insights and experimental findings, this review offers a comprehensive understanding of Si-based photocatalysts for water splitting. Through a comprehensive analysis, it aims to elucidate existing knowledge gaps and inspire future research directions towards optimized photocatalytic performance and scalability, ultimately contributing to the realization of sustainable hydrogen generation.
en-copyright=
kn-copyright=
en-aut-name=IslamAminul
en-aut-sei=Islam
en-aut-mei=Aminul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IslamMd. Tarekul
en-aut-sei=Islam
en-aut-mei=Md. Tarekul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TeoSiow Hwa
en-aut-sei=Teo
en-aut-mei=Siow Hwa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MahmudHasan
en-aut-sei=Mahmud
en-aut-mei=Hasan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SwarazA.M.
en-aut-sei=Swaraz
en-aut-mei=A.M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=RehanAriyan Islam
en-aut-sei=Rehan
en-aut-mei=Ariyan Islam
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=RaseeAdiba Islam
en-aut-sei=Rasee
en-aut-mei=Adiba Islam
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KubraKhadiza Tul
en-aut-sei=Kubra
en-aut-mei=Khadiza Tul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HasanMd. Munjur
en-aut-sei=Hasan
en-aut-mei=Md. Munjur
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SalmanMd. Shad
en-aut-sei=Salman
en-aut-mei=Md. Shad
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=WaliullahR.M.
en-aut-sei=Waliullah
en-aut-mei=R.M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=HasanMd. Nazmul
en-aut-sei=Hasan
en-aut-mei=Md. Nazmul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=SheikhMd. Chanmiya
en-aut-sei=Sheikh
en-aut-mei=Md. Chanmiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=UchidaTetsuya
en-aut-sei=Uchida
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=AwualMrs Eti
en-aut-sei=Awual
en-aut-mei=Mrs Eti
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=HossainMohammed Sohrab
en-aut-sei=Hossain
en-aut-mei=Mohammed Sohrab
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=ZnadHussein
en-aut-sei=Znad
en-aut-mei=Hussein
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=AwualMd. Rabiul
en-aut-sei=Awual
en-aut-mei=Md. Rabiul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
affil-num=1
en-affil=Department of Petroleum and Mining Engineering, Jashore University of Science and Technology
kn-affil=
affil-num=2
en-affil=Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering and Technology
kn-affil=
affil-num=3
en-affil=Industrial Chemistry Program, Faculty of Science and Natural Resources, Universiti Malaysia Sabah
kn-affil=
affil-num=4
en-affil=Bangladesh Energy and Power Research Council (BEPRC)
kn-affil=
affil-num=5
en-affil=Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology
kn-affil=
affil-num=6
en-affil=Department of Chemistry, School of Science, The University of Tokyo
kn-affil=
affil-num=7
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=8
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=9
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=10
en-affil=Institute for Chemical Research, Kyoto University
kn-affil=
affil-num=11
en-affil=Institute for Chemical Research, Kyoto University
kn-affil=
affil-num=12
en-affil=Department of Chemistry, School of Science, The University of Tokyo
kn-affil=
affil-num=13
en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=14
en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=15
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=16
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=17
en-affil=Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University
kn-affil=
affil-num=18
en-affil=Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University
kn-affil=
en-keyword=Silicon-based materials
kn-keyword=Silicon-based materials
en-keyword=Water splitting
kn-keyword=Water splitting
en-keyword=Hydrogen
kn-keyword=Hydrogen
en-keyword=Sustainable
kn-keyword=Sustainable
en-keyword=Clean and renewable energy
kn-keyword=Clean and renewable energy
END
start-ver=1.4
cd-journal=joma
no-vol=23
cd-vols=
no-issue=2
article-no=
start-page=71
end-page=81
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Study on the Removal Technology of Trichloramine from Drinking Water Using Ultraviolet Light
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Trichloramine (NCl3) is an inorganic chloramine that causes a pungent chlorine-like odor, and it is difficult to remove its precursors (nitrogen organic compounds and/or ammonia) completely from water. Powdered activated carbon, ozonation, and UV treatment have been applied for decomposing NCl3, but free chlorine was also decomposed. So, it is necessary to develop a technique that can selectively control NCl3 without losing free chlorine. UV light-emitting diodes (265, 280, and 300?nm) and plasma emission UV sheet (347 } 52?nm, hereafter 350?nm) were compared to find the optimal wavelengths that decompose NCl3 but not free chlorine. As a result, 90.6, 96.7, 92.5, and 77.8% of NCl3 were removed at 265, 280, 300 (3,600?mJ/cm2), and 350?nm (14,400?mJ/cm2), respectively. On the other hand, free chlorine at neutral pH (hypochlorous acid is dominant) and slightly alkaline pH (hypochlorite ion is dominant) was not decomposed at 350?nm, but at other wavelengths (i.e., 265, 280, and 300?nm) the removals were more than 64%. Therefore, UV radiation at 350?nm can be candidates to remove NCl3 while maintaining free chlorine. However, this method requires high input energy, and further study is needed for evaluating the practical applicability of this method by considering optimal reactor design.
en-copyright=
kn-copyright=
en-aut-name=HashiguchiAyumi
en-aut-sei=Hashiguchi
en-aut-mei=Ayumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YoshidaShiho
en-aut-sei=Yoshida
en-aut-mei=Shiho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=EchigoShinya
en-aut-sei=Echigo
en-aut-mei=Shinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakanamiRyohei
en-aut-sei=Takanami
en-aut-mei=Ryohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NagareHideaki
en-aut-sei=Nagare
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Shimane University
kn-affil=
affil-num=3
en-affil=Graduate School of Global Environmental Studies, Kyoto University
kn-affil=
affil-num=4
en-affil=Faculty of Design Technology, Osaka Sangyo University
kn-affil=
affil-num=5
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=trichloramine
kn-keyword=trichloramine
en-keyword=disinfection byproducts
kn-keyword=disinfection byproducts
en-keyword=drinking water
kn-keyword=drinking water
en-keyword=ultraviolet light
kn-keyword=ultraviolet light
END
start-ver=1.4
cd-journal=joma
no-vol=37
cd-vols=
no-issue=1
article-no=
start-page=43
end-page=53
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250220
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Fan-Shaped Pneumatic Soft Actuator that Can Operate Bending Motion for Ankle-Joint Rehabilitation Device
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Nowadays, owing to declining birthrates and an aging population, patients and the elderly requiring rehabilitation are not getting enough physical activity. In addressing this issue, devices for rehabilitating them have been researched and developed. However, rehabilitation devices are almost exclusively used for patients who can get up, rather than those who are bedridden. In this study, we aim to develop a rehabilitation device that can provide passive exercise for bedridden patients. The ankle joint was selected as the target joint because the patients who have undergone surgery for cerebrovascular disease remain bedridden, and early recovery in the acute stage is highly desirable. We proposed and tested a fan-shaped pneumatic soft actuator (FPSA) that can expand and bend stably at angles when supply pressure is applied as an actuator for a rehabilitation device to encourage patient exercise. However, the previous FPSAfs movement deviates from the arch of the foot owing to increased supply pressure. In the ideal case, FPSA should push the arch of the foot in an arc motion. This study proposes and tests the FPSA that can operate a bending motion to provide passive exercise to the ankle joint using tensile springs and a winding mechanism powered by a servo motor. The proposed FPSA has a significant advantage of exhibiting no hysteresis in its pressure-displacement characteristics. The configuration and static analytical model of the improved FPSA are described.
en-copyright=
kn-copyright=
en-aut-name=ShimookaSo
en-aut-sei=Shimooka
en-aut-mei=So
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YokoyaHirosato
en-aut-sei=Yokoya
en-aut-mei=Hirosato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HamadaMasanori
en-aut-sei=Hamada
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ShiomiShun
en-aut-sei=Shiomi
en-aut-mei=Shun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=UeharaTakenori
en-aut-sei=Uehara
en-aut-mei=Takenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HirayamaTakahiro
en-aut-sei=Hirayama
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KamegawaTetsushi
en-aut-sei=Kamegawa
en-aut-mei=Tetsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Rehabilitation Medicine, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Rehabilitation Medicine, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, NHO Okayama Medical Center
kn-affil=
affil-num=6
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=fan-shaped pneumatic soft actuator
kn-keyword=fan-shaped pneumatic soft actuator
en-keyword=ankle-joint rehabilitation device
kn-keyword=ankle-joint rehabilitation device
en-keyword=hysteresis
kn-keyword=hysteresis
en-keyword=range of motion
kn-keyword=range of motion
END
start-ver=1.4
cd-journal=joma
no-vol=329
cd-vols=
no-issue=1
article-no=
start-page=L183
end-page=L196
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250701
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Activated factor X inhibition ameliorates NF-ÈB-IL-6-mediated perivascular inflammation and pulmonary hypertension
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Activated factor X (FXa) induces inflammatory response and cell proliferation in various cell types via activation of proteinase-activated receptor-1 (PAR1) and/or PAR2. We thus aimed to investigate the impact of FXa on the development of pulmonary arterial hypertension (PAH) and the mechanisms involved. The effects of edoxaban, a selective FXa inhibitor, on hemodynamic, right ventricular (RV) hypertrophy, and vascular remodeling were evaluated in a monocrotaline (MCT)-exposed pulmonary hypertension (PH) rat model. At 21 days after a single subcutaneous injection of MCT of 60 mg/kg, right ventricular systolic pressure (RVSP) and total pulmonary vascular resistance index (TPRI) were elevated concomitant with the increased plasma FXa and lung interleukin-6 (IL-6) mRNA. Daily administration of edoxaban (10 mg/kg/day, by gavage) starting from the day of MCT injection for 21 days ameliorated RVSP, TPRI, RV hypertrophy, pulmonary vascular remodeling, and macrophage accumulation. Edoxaban reduced nuclear factor-kappa B (NF-ÈB) activity and IL-6 mRNA level in the lungs of MCT-exposed rats. mRNA levels of FXa, PAR1, and PAR2 in cultured pulmonary arterial smooth muscle cells (PASMCs) isolated from patients with PAH were higher than those seen in normal PASMCs. FXa stimulation increased cell proliferation and mRNA level of IL-6 in normal PASMCs, both of which were blunted by edoxaban and PAR1 antagonist. Moreover, FXa stimulation activated extracellularly regulated kinases 1/2 in a PAR1-dependent manner. Inhibition of FXa ameliorates NF-ÈB-IL-6-mediated perivascular inflammation, pulmonary vascular remodeling, and the development of PH in MCT-exposed rats, suggesting that FXa may be a potential target for the treatment of PAH.
NEW & NOTEWORTHY This study demonstrated that chronic treatment with activated factor X (FXa) inhibitor ameliorated NF-ÈB-IL-6-mediated perivascular inflammation in a rat model with pulmonary arterial hypertension, which is associated with elevated FXa activity. FXa may act on pulmonary arterial smooth muscle cells, inducing cell proliferation and inflammatory response via upregulated PAR1, thereby contributing to pulmonary vascular remodeling. Understanding the patient-specific pathophysiology is a prerequisite for applying FXa-targeted therapy to the treatment of pulmonary arterial hypertension.
en-copyright=
kn-copyright=
en-aut-name=ImakiireSatomi
en-aut-sei=Imakiire
en-aut-mei=Satomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KimuroKeiji
en-aut-sei=Kimuro
en-aut-mei=Keiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshidaKeimei
en-aut-sei=Yoshida
en-aut-mei=Keimei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MasakiKohei
en-aut-sei=Masaki
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IzumiRyo
en-aut-sei=Izumi
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ImabayashiMisaki
en-aut-sei=Imabayashi
en-aut-mei=Misaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=WatanabeTakanori
en-aut-sei=Watanabe
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IshikawaTomohito
en-aut-sei=Ishikawa
en-aut-mei=Tomohito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HosokawaKazuya
en-aut-sei=Hosokawa
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MatsushimaShouji
en-aut-sei=Matsushima
en-aut-mei=Shouji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HashimotoToru
en-aut-sei=Hashimoto
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ShinoharaKeisuke
en-aut-sei=Shinohara
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KatsukiShunsuke
en-aut-sei=Katsuki
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=MatobaTetsuya
en-aut-sei=Matoba
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=NakamuraKazufumi
en-aut-sei=Nakamura
en-aut-mei=Kazufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=HiranoKatsuya
en-aut-sei=Hirano
en-aut-mei=Katsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=TsutsuiHiroyuki
en-aut-sei=Tsutsui
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=AbeKohtaro
en-aut-sei=Abe
en-aut-mei=Kohtaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=6
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=7
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=8
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=9
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=10
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=11
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=12
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=13
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=14
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=15
en-affil=Department of Cardiovascular Medicine, Okayama University
kn-affil=
affil-num=16
en-affil=Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University
kn-affil=
affil-num=17
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=18
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
en-keyword=factor Xa
kn-keyword=factor Xa
en-keyword=IL-6
kn-keyword=IL-6
en-keyword=proteinase-activated receptor
kn-keyword=proteinase-activated receptor
en-keyword=pulmonary arterial hypertension
kn-keyword=pulmonary arterial hypertension
en-keyword=pulmonary hypertension
kn-keyword=pulmonary hypertension
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=30648
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250820
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effect of mechanical stretching stimulation on maturation of human iPS cell-derived cardiomyocytes co-cultured with human gingival fibroblasts
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In the realm of regenerative medicine, despite the various techniques available for inducing the differentiation of induced pluripotent stem (iPS) cells into cardiomyocytes, there remains a need to enhance the maturation of the cardiomyocytes. This study aimed to improve the differentiation and subsequent maturation of iPS-derived cardiomyocytes (iPS-CMs) by incorporating mechanical stretching. Human iPS cells were co-cultured with human gingival fibroblasts (HGF) on a polydimethylsiloxane (PDMS) stretch chamber, where mechanical stretching stimulation was applied during the induction of cardiomyocyte differentiation. The maturation of iPS-CMs was assessed using qRT-PCR, immunocytochemistry, transmission electron microscopy, calcium imaging and contractility comparisons. Results indicated significantly elevated gene expression levels of cardiomyocyte markers (cTnT) and the mesodermal marker (Nkx2.5) in the stretch group compared to the control group. Fluorescent immunocytochemical staining revealed the presence of cardiac marker proteins (cTnT and MYL2) in both groups, with higher protein expression in the stretch group. Additionally, structural maturation of iPS-CMs in the stretch group was notably better than in the control group. A significant increase in the contractility and calcium cycle of iPS-CMs was observed in the stretch group. These findings demonstrate that mechanical stretching stimulation enhances the maturation of iPS-CMs co-cultured with HGF.
en-copyright=
kn-copyright=
en-aut-name=WangMengxue
en-aut-sei=Wang
en-aut-mei=Mengxue
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IdeiHarumi
en-aut-sei=Idei
en-aut-mei=Harumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WangChen
en-aut-sei=Wang
en-aut-mei=Chen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=LiangYin
en-aut-sei=Liang
en-aut-mei=Yin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=LiuYun
en-aut-sei=Liu
en-aut-mei=Yun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MatsudaYusuke
en-aut-sei=Matsuda
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakahashiKen
en-aut-sei=Takahashi
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KamiokaHiroshi
en-aut-sei=Kamioka
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NaruseKeiji
en-aut-sei=Naruse
en-aut-mei=Keiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Nursing, School of Life and Health Sciences, HuZhou College
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Human induced pluripotent stem cell
kn-keyword=Human induced pluripotent stem cell
en-keyword=Cardiomyocyte
kn-keyword=Cardiomyocyte
en-keyword=Human gingival fibroblast
kn-keyword=Human gingival fibroblast
en-keyword=Mechanical stretching
kn-keyword=Mechanical stretching
END
start-ver=1.4
cd-journal=joma
no-vol=43
cd-vols=
no-issue=2
article-no=
start-page=282
end-page=289
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240917
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Evaluation of a novel central venous access port for direct catheter insertion without a peel-away sheath
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose This study retrospectively evaluated the feasibility and safety of implanting a newly developed central venous access port (CV-port) that allows catheter insertion into a vein without the use of a peel-away sheath, with a focus on its potential to minimize risks associated with conventional implantation methods.
Materials and methods All procedures were performed using a new device (P-U CelSite Port? MS; Toray Medical, Tokyo, Japan) under ultrasound guidance. The primary endpoint was the implantation success rate. The secondary endpoints were the safety and risk factors for infection in the early postprocedural period (30 days).
Results We assessed 523 CV-port implantations performed in a cumulative total of 523 patients (240 men and 283 women; mean age, 61.6?}?13.1 years; range, 18?85 years). All implantations were successfully performed using an inner guide tube and over-the-wire technique through 522 internal jugular veins and one subclavian vein. The mean procedural time was 33.2?}?10.9 min (range 15?112 min). Air embolism, rupture/perforation of the superior vena cava, or hemothorax did not occur during catheter insertion. Eleven (2.1%) intraprocedural complications occurred, including Grade I arrhythmia (n?=?8) and subcutaneous bleeding (n?=?1), Grade II arrhythmia (n?=?1), and Grade IIIa pneumothorax (n?=?1). Furthermore, 496 patients were followed up for???30 days. Six early postprocedural complications were encountered (1.1%), including Grade IIIa infection (n?=?4), catheter occlusion (n?=?1), and skin necrosis due to subcutaneous leakage of trabectedin (n?=?1). These six CV-ports were withdrawn, and no significant risk factors for infection in the early postprocedural period were identified.
Conclusion The implantation of this CV-port device demonstrated comparable success and complication rates to conventional devices, with the added potential benefit of eliminating complications associated with the use of a peel-away sheath.
en-copyright=
kn-copyright=
en-aut-name=IguchiToshihiro
en-aut-sei=Iguchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawabataTakahiro
en-aut-sei=Kawabata
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MatsuiYusuke
en-aut-sei=Matsui
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TomitaKoji
en-aut-sei=Tomita
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=UkaMayu
en-aut-sei=Uka
en-aut-mei=Mayu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UmakoshiNoriyuki
en-aut-sei=Umakoshi
en-aut-mei=Noriyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OkamotoSoichiro
en-aut-sei=Okamoto
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MunetomoKazuaki
en-aut-sei=Munetomo
en-aut-mei=Kazuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HirakiTakao
en-aut-sei=Hiraki
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Central venous catheters
kn-keyword=Central venous catheters
en-keyword=Vascular access device
kn-keyword=Vascular access device
en-keyword=Treatment outcome
kn-keyword=Treatment outcome
en-keyword=Safety
kn-keyword=Safety
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=7661
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240916
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Neurotransmitter recognition by human vesicular monoamine transporter 2
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Human vesicular monoamine transporter 2 (VMAT2), a member of the SLC18 family, plays a crucial role in regulating neurotransmitters in the brain by facilitating their uptake and storage within vesicles, preparing them for exocytotic release. Because of its central role in neurotransmitter signalling and neuroprotection, VMAT2 is a target for neurodegenerative diseases and movement disorders, with its inhibitor being used as therapeutics. Despite the importance of VMAT2 in pharmacophysiology, the molecular basis of VMAT2-mediated neurotransmitter transport and its inhibition remains unclear. Here we show the cryo-electron microscopy structure of VMAT2 in the substrate-free state, in complex with the neurotransmitter dopamine, and in complex with the inhibitor tetrabenazine. In addition to these structural determinations, monoamine uptake assays, mutational studies, and pKa value predictions were performed to characterize the dynamic changes in VMAT2 structure. These results provide a structural basis for understanding VMAT2-mediated vesicular transport of neurotransmitters and a platform for modulation of current inhibitor design.
en-copyright=
kn-copyright=
en-aut-name=ImDohyun
en-aut-sei=Im
en-aut-mei=Dohyun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=JormakkaMika
en-aut-sei=Jormakka
en-aut-mei=Mika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=JugeNarinobu
en-aut-sei=Juge
en-aut-mei=Narinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KishikawaJun-ichi
en-aut-sei=Kishikawa
en-aut-mei=Jun-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KatoTakayuki
en-aut-sei=Kato
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SugitaYukihiko
en-aut-sei=Sugita
en-aut-mei=Yukihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NodaTakeshi
en-aut-sei=Noda
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=UemuraTomoko
en-aut-sei=Uemura
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ShiimuraYuki
en-aut-sei=Shiimura
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MiyajiTakaaki
en-aut-sei=Miyaji
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=AsadaHidetsugu
en-aut-sei=Asada
en-aut-mei=Hidetsugu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=IwataSo
en-aut-sei=Iwata
en-aut-mei=So
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Cell Biology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=2
en-affil=Department of Cell Biology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=3
en-affil=Department of Genomics and Proteomics, Advanced Science Research Center, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Applied Biology, Kyoto Institute of Technology
kn-affil=
affil-num=5
en-affil=Institute for Protein Research, Osaka University
kn-affil=
affil-num=6
en-affil=Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University
kn-affil=
affil-num=7
en-affil=Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University
kn-affil=
affil-num=8
en-affil=Department of Cell Biology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=9
en-affil=Department of Cell Biology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=10
en-affil=Department of Genomics and Proteomics, Advanced Science Research Center, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Cell Biology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=12
en-affil=Department of Cell Biology, Graduate School of Medicine, Kyoto University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=5
article-no=
start-page=e240601
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250320
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Is subclinical hypothyroidism associated with cardiovascular disease in the elderly?
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Subclinical hypothyroidism (SCH) is diagnosed when thyroid function tests show that the serum thyrotropin (TSH) level is elevated and the serum free thyroxine (FT4) level is normal. SCH is mainly caused by Hashimotofs thyroiditis, the prevalence of which increases with aging. Recently, it has been revealed that SCH is associated with risk factors for cardiovascular diseases (CVDs), including atherosclerosis, dyslipidemia and hypertension, leading to cardiovascular morbidity and mortality. However, there are still controversies regarding the diagnosis and treatment of SCH in elderly patients. In this review, we present recent evidence regarding the relationship between SCH and CVD and treatment recommendations for SCH, especially in elderly patients. Studies have shown that SCH is associated with CVD and all-cause mortality. Patients aged less than 65 years showed significant associations of SCH with CVD risk and all-cause mortality, whereas patients aged 65 or older did not show such associations. It was shown that levothyroxine therapy was associated with lower all-cause mortality and cardiovascular mortality in younger SCH patients (<65?70 years) but not in SCH patients aged 65?70 years or older. In elderly SCH patients, levothyroxine treatment should be considered individually according to the patientfs age, serum TSH level, hypothyroid symptoms, CVD risk and other comorbidities. To further elucidate the impact of SCH on CVD in elderly patients, studies should be conducted using age-specific reference ranges of results of thyroid function tests, focusing on elderly patients, specific serum TSH levels, thyroid antibody status and cardiovascular risk factors.
en-copyright=
kn-copyright=
en-aut-name=YamamotoKoichiro
en-aut-sei=Yamamoto
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakanoYasuhiro
en-aut-sei=Nakano
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SoejimaYoshiaki
en-aut-sei=Soejima
en-aut-mei=Yoshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SuyamaAtsuhito
en-aut-sei=Suyama
en-aut-mei=Atsuhito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OguniKohei
en-aut-sei=Oguni
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HasegawaKou
en-aut-sei=Hasegawa
en-aut-mei=Kou
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OtsukaFumio
en-aut-sei=Otsuka
en-aut-mei=Fumio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=cardiovascular disease
kn-keyword=cardiovascular disease
en-keyword=elderly patients
kn-keyword=elderly patients
en-keyword=subclinical hypothyroidism
kn-keyword=subclinical hypothyroidism
en-keyword=thyroid disease
kn-keyword=thyroid disease
END
start-ver=1.4
cd-journal=joma
no-vol=487
cd-vols=
no-issue=
article-no=
start-page=137307
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Co-precipitating calcium phosphate as oral detoxification of cadmium
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Bone-eating (also known as osteophagia), found in wild animals, is primarily recognized as a means to supplement phosphorus and calcium intake. Herein, we describe a novel function of bone-eating in detoxifying heavy metal ions through the dissolution and co-precipitation of bone minerals as they travel through the gastrointestinal (GI) tract. In this study, cadmium (Cd), a heavy metal ion, served as a toxic model. We demonstrated that hydroxyapatite (HAp), the major calcium phosphate (CaP) in bone, dissolves in the stomach and acts as a co-precipitant in the intestine for Cd detoxification. We compared HAp to a common antidote, activated charcoal (AC), which did not precipitate within the GI tract. In vitro experiments showed that HAp dissolves under acidic conditions and, upon return to a neutral environment, efficiently re-sequesters Cd. Similarly, oral administration of HAp effectively prevented Cd absorption and accumulation, resulting in enhanced Cd excretion in the feces when compared to AC. A co-precipitating CaP in the GI tract could serve as an excellent detoxification system, as it helps prevent the accumulation of toxic substances and aids in developing appropriate strategies to reduce tissue toxicity. Moreover, understanding this detoxification system would be a valuable indicator for designing efficient detoxification materials.
en-copyright=
kn-copyright=
en-aut-name=BikharudinAhmad
en-aut-sei=Bikharudin
en-aut-mei=Ahmad
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkadaMasahiro
en-aut-sei=Okada
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SungPing-chin
en-aut-sei=Sung
en-aut-mei=Ping-chin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MatsumotoTakuya
en-aut-sei=Matsumoto
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Cadmium detoxification
kn-keyword=Cadmium detoxification
en-keyword=Coprecipitation
kn-keyword=Coprecipitation
en-keyword=Calcium phosphate
kn-keyword=Calcium phosphate
en-keyword=Gastrointestinal tract
kn-keyword=Gastrointestinal tract
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=2503029
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250601
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Polyglycerol]Grafted Graphene Oxide with pH]Responsive Charge]Convertible Surface to Dynamically Control the Nanobiointeractions for Enhanced in Vivo Tumor Internalization
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=pH-responsive charge-convertible nanomaterials (NMs) ameliorate the treatment of cancer via simultaneously reducing nonspecific interactions during systemic circulation and improving targeted uptake within solid tumors. While promising, little is known about how the pH-responsiveness of charge-convertible NMs directs their interactions with biological systems, leading to compromised performance, including off-target retention and low specificity to tumor cells. In the present study, polyglycerol-grafted graphene oxide bearing amino groups (GOPGNH2) at different densities are reacted with dimethylmaleic anhydride (DMMA), a pH-responsive moiety, to generate a set of charge-convertible GOPGNH-DMMA variants. This permits the assessment of a quantitative correlation between the structure of GOPGNH-DMMA to their pH-responsiveness, their dynamic interactions with proteins and cells, as well as their in vivo biological fate. Through a systematic investigation, it is revealed that GOPGNH115-DMMA prepared from GOPGNH2 with higher amine density experienced fast charge conversion at pH 7.4 to induce non-specific interactions at early stages, whereas GOPGNH60-DMMA and GOPGNH30-DMMA prepared from lower amine density retarded off-target charge conversion to enhance tumor accumulation. Notably, GOPGNH60-DMMA is also associated with enough amounts of proteins under acidic conditions to promote in vivo tumor internalization. The findings will inform the design of pH-responsive NMs for enhanced treatment accuracy and efficacy.
en-copyright=
kn-copyright=
en-aut-name=ZouYajuan
en-aut-sei=Zou
en-aut-mei=Yajuan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=BiancoAlberto
en-aut-sei=Bianco
en-aut-mei=Alberto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=2
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=3
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
en-keyword=charge conversion
kn-keyword=charge conversion
en-keyword=in vivo tumor internalization
kn-keyword=in vivo tumor internalization
en-keyword=non-specific interaction
kn-keyword=non-specific interaction
en-keyword=pH-responsiveness
kn-keyword=pH-responsiveness
en-keyword=polyglycerol-grafted graphene oxide
kn-keyword=polyglycerol-grafted graphene oxide
END
start-ver=1.4
cd-journal=joma
no-vol=48
cd-vols=
no-issue=1
article-no=
start-page=51
end-page=59
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250129
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=An Underlying Mechanism for the Altered Hypoglycemic Effects of Nateglinide in Rats with Acute Peripheral Inflammation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The hypoglycemic effects of nateglinide (NTG) were examined in rats with acute peripheral inflammation (API) induced by carrageenan treatment, and the mechanisms accounting for altered hypoglycemic effects were investigated. NTG was administered through the femoral vein in control and API rats, and its plasma concentration profile was characterized. The time courses of the changes in plasma glucose and insulin levels were also examined. Although the plasma concentration profile of NTG in API rats was marginally distinguishable from that in control rats, the hypoglycemic effect of NTG was more persistent in API rats than in control rats. In addition, NTG elevated the plasma level of insulin more intensely in API rats than in control rats. Then, the islets of Langerhans were procured by perfusing the pancreas with collagenase solution in control and API rats, and the pancreatic mRNA expression of preproinsulin (Ins1), as well as that of sulfonylurea receptor ABCC8 (Abcc8), were examined. As a result, the expression of preproinsulin and ABCC8 mRNA increased in API rats. These findings suggest that the hypoglycemic effect of NTG was potentiated in API rats due to increased insulin secretion in the pancreas, which was caused by enhanced preproinsulin synthesis and expression of the sulfonylurea receptor.
en-copyright=
kn-copyright=
en-aut-name=TokoHaruka
en-aut-sei=Toko
en-aut-mei=Haruka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OginoManami
en-aut-sei=Ogino
en-aut-mei=Manami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishiwakiAkane
en-aut-sei=Nishiwaki
en-aut-mei=Akane
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KojinaMoeko
en-aut-sei=Kojina
en-aut-mei=Moeko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AibaTetsuya
en-aut-sei=Aiba
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=blood sugar
kn-keyword=blood sugar
en-keyword=inflammation
kn-keyword=inflammation
en-keyword=insulin
kn-keyword=insulin
en-keyword=Langerhans islet
kn-keyword=Langerhans islet
en-keyword=nateglinide
kn-keyword=nateglinide
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=14
article-no=
start-page=2406
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250721
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Definitions of, Advances in, and Treatment Strategies for Breast Cancer Oligometastasis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Oligometastasis represents a clinically relevant state of limited metastatic disease that could be amenable to selected local therapies in carefully chosen patients. Although initial trials such as SABR-COMET demonstrated a survival benefit with aggressive local treatment, breast cancer was underrepresented. Subsequent breast cancer-specific trials, including NRG-BR002, failed to show a clear survival benefit, highlighting uncertainties and the need for further refinement in patient selection and integration with systemic approaches. The definitions of oligometastasis continue to evolve, incorporating radiological, clinical, and biological features. Advances in imaging and molecular profiling suggest that oligometastatic breast cancer might represent a distinct biological subtype, with potential biomarkers including PIK3CA mutations and YAP/TAZ expression. Organ-specific strategies using stereotactic radiotherapy, surgery, and proton therapy have shown favorable local control in certain settings, though their impact on the overall survival remains under investigation. Emerging techniques, including circulating tumor DNA (ctDNA) analysis, are being explored to improve patient selection and disease monitoring. Ongoing trials may provide further insight into the role of local therapy, particularly in hormone receptor-positive or HER2-positive subtypes. Local and systemic strategies need to be carefully coordinated to optimize the outcomes. This review summarizes the current definitions of and evidence and therapeutic considerations for oligometastatic breast cancer and outlines potential future directions.
en-copyright=
kn-copyright=
en-aut-name=ShienTadahiko
en-aut-sei=Shien
en-aut-mei=Tadahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakamotoShogo
en-aut-sei=Nakamoto
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FujiwaraYuki
en-aut-sei=Fujiwara
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KosakaMaya
en-aut-sei=Kosaka
en-aut-mei=Maya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NaraharaYuki
en-aut-sei=Narahara
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FujiiKento
en-aut-sei=Fujii
en-aut-mei=Kento
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MaedaReina
en-aut-sei=Maeda
en-aut-mei=Reina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KatoShutaro
en-aut-sei=Kato
en-aut-mei=Shutaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MimataAsuka
en-aut-sei=Mimata
en-aut-mei=Asuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YoshiokaRyo
en-aut-sei=Yoshioka
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KuwaharaChihiro
en-aut-sei=Kuwahara
en-aut-mei=Chihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TsukiokiTakahiro
en-aut-sei=Tsukioki
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TakahashiYuko
en-aut-sei=Takahashi
en-aut-mei=Yuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=IwataniTsuguo
en-aut-sei=Iwatani
en-aut-mei=Tsuguo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=TaniokaMaki
en-aut-sei=Tanioka
en-aut-mei=Maki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital
kn-affil=
affil-num=12
en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital
kn-affil=
affil-num=13
en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital
kn-affil=
affil-num=14
en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital
kn-affil=
affil-num=15
en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital
kn-affil=
en-keyword=oligo-recurrence
kn-keyword=oligo-recurrence
en-keyword=breast cancer
kn-keyword=breast cancer
en-keyword=local therapy
kn-keyword=local therapy
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250704
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Primary tumour resection plus systemic therapy versus systemic therapy alone in metastatic breast cancer (JCOG1017, PRIM-BC): a randomised clinical trial
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Several prospective studies have evaluated the benefit of primary tumour resection (PTR) in de novo Stage IV breast cancer (BC) patients, but it remains controversial. We aimed to investigate whether PTR improves the survival of de novo stage IV BC patients.
Methods: De novo stage IV BC patients were enrolled in the first registration and received systemic therapies according to clinical subtypes. Patients without progression after primary systemic therapy for 3 months were randomly assigned 1:1 to systemic therapy alone (arm A) or PTR plus systemic therapy (arm B). The primary endpoint was overall survival (OS), and the secondary endpoints included local relapse-free survival (LRFS).
Results: Five hundred seventy patients were enrolled between May 5, 2011, and May 31, 2018. Of these, 407 were randomised to arm A (N?=?205) or arm B (N?=?202). The median follow-up time of all randomised patients was 60 months. The difference in OS was not statistically significant (HR 0.86 90% CI 0.69?1.07, one-sided p?=?0.13). Median OS was 69 months (arm A) and 75 months (arm B). In the subgroup analysis, PTR was associated with improved OS in pre-menopausal patients, or those with single-organ metastasis. LRFS in arm B was significantly longer than that in arm A (median LRFS 20 vs. 63 months: HR 0.42, 95% CI 0.33?0.53, p?0.0001). There were no treatment-related deaths.
Conclusions: PTR did not prolong OS. However, it improved local control and might benefit a subset of patients, such as those with premenopausal status or with single-organ metastasis. It also improved local relapse-free survival (LRFS), which is a clinically meaningful outcome in trials of systemic therapy.
Clinical trial registration: UMIN Clinical Trials Registry (UMIN000005586); Japan Registry of Clinical Trials (jRCTs031180151).
en-copyright=
kn-copyright=
en-aut-name=ShienTadahiko
en-aut-sei=Shien
en-aut-mei=Tadahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HaraFumikata
en-aut-sei=Hara
en-aut-mei=Fumikata
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AogiKenjiro
en-aut-sei=Aogi
en-aut-mei=Kenjiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YanagidaYasuhiro
en-aut-sei=Yanagida
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TsuneizumiMichiko
en-aut-sei=Tsuneizumi
en-aut-mei=Michiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamamotoNaohito
en-aut-sei=Yamamoto
en-aut-mei=Naohito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsumotoHiroshi
en-aut-sei=Matsumoto
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SutoAkihiko
en-aut-sei=Suto
en-aut-mei=Akihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=WatanabeKenichi
en-aut-sei=Watanabe
en-aut-mei=Kenichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HaraoMichiko
en-aut-sei=Harao
en-aut-mei=Michiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KanbayashiChizuko
en-aut-sei=Kanbayashi
en-aut-mei=Chizuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ItohMitsuya
en-aut-sei=Itoh
en-aut-mei=Mitsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KadoyaTakayuki
en-aut-sei=Kadoya
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=AnanKeisei
en-aut-sei=Anan
en-aut-mei=Keisei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=MaedaShigeto
en-aut-sei=Maeda
en-aut-mei=Shigeto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=SasakiKeita
en-aut-sei=Sasaki
en-aut-mei=Keita
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=OgawaGakuto
en-aut-sei=Ogawa
en-aut-mei=Gakuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=SajiShigehira
en-aut-sei=Saji
en-aut-mei=Shigehira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=FukudaHaruhiko
en-aut-sei=Fukuda
en-aut-mei=Haruhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=IwataHiroji
en-aut-sei=Iwata
en-aut-mei=Hiroji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
affil-num=1
en-affil=Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Cancer Institute Hospital
kn-affil=
affil-num=3
en-affil=National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=4
en-affil=Shizuoka General Hospital
kn-affil=
affil-num=5
en-affil=Gunma Prefectural Cancer Center
kn-affil=
affil-num=6
en-affil=Chiba Prefectural Cancer Center
kn-affil=
affil-num=7
en-affil=Saitama Prefectural Cancer Center
kn-affil=
affil-num=8
en-affil=National Cancer Center Hospital
kn-affil=
affil-num=9
en-affil=Hokkaido Cancer Center
kn-affil=
affil-num=10
en-affil=Jichi Medical University Hospital
kn-affil=
affil-num=11
en-affil=Niigata Prefectural Cancer Center
kn-affil=
affil-num=12
en-affil=Hiroshima City Hiroshima Citizenfs Hospital
kn-affil=
affil-num=13
en-affil=Hiroshima University Hospital
kn-affil=
affil-num=14
en-affil=Kitakyushu Municipal Medical Center
kn-affil=
affil-num=15
en-affil=Nagasaki Municipal Medical Center
kn-affil=
affil-num=16
en-affil=National Cancer Center Hospital
kn-affil=
affil-num=17
en-affil=National Cancer Center Hospital
kn-affil=
affil-num=18
en-affil=Fukushima Medical University
kn-affil=
affil-num=19
en-affil=National Cancer Center Hospital
kn-affil=
affil-num=20
en-affil=Aichi Cancer Center Hospital
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=6
cd-vols=
no-issue=2
article-no=
start-page=53
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250606
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=An Endocrine-Disrupting Chemical, Bisphenol A Diglycidyl Ether (BADGE), Accelerates Neuritogenesis and Outgrowth of Cortical Neurons via the G-Protein-Coupled Estrogen Receptor
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Bisphenol A diglycidyl ether (BADGE) is the main component of epoxy resin and is used for the inner coating of canned foods and plastic food containers. BADGE can easily migrate from containers and result in food contamination; the compound is known as an endocrine-disrupting chemical. We previously reported that maternal exposure to bisphenol A bis (2,3-dihydroxypropyl) ether (BADGE?2H2O), which is the most detected BADGE derivative not only in canned foods but also in human specimens, during gestation and lactation, could accelerate neuronal differentiation in the cortex of fetuses and induce anxiety-like behavior in juvenile mice. In this study, we investigated the effects of low-dose BADGE?2H2O (1?100 pM) treatment on neurites and the mechanism of neurite outgrowth in cortical neurons. BADGE?2H2O exposure significantly increased the number of dendrites and neurite length in cortical neurons; these accelerating effects were inhibited by estrogen receptor (ER) antagonist ICI 182,780 and G-protein-coupled estrogen receptor (GPER) antagonist G15. BADGE?2H2O down-regulated Hes1 expression, which is a transcriptional repressor, and increased levels of neuritogenic factor neurogenin-3 (Ngn3) in the cortical neurons; the changes were significantly blocked by G15. These data suggest that direct BADGE?2H2O exposure can accelerate neuritogenesis and outgrowth in cortical neurons through down-regulation of Hes1 and by increasing Ngn3 levels through ERs, particularly GPER.
en-copyright=
kn-copyright=
en-aut-name=MiyazakiIkuko
en-aut-sei=Miyazaki
en-aut-mei=Ikuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishiyamaChiharu
en-aut-sei=Nishiyama
en-aut-mei=Chiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NagoshiTakeru
en-aut-sei=Nagoshi
en-aut-mei=Takeru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MiyakoAkane
en-aut-sei=Miyako
en-aut-mei=Akane
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OnoSuzuka
en-aut-sei=Ono
en-aut-mei=Suzuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MisawaIchika
en-aut-sei=Misawa
en-aut-mei=Ichika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IsseAika
en-aut-sei=Isse
en-aut-mei=Aika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TomimotoKana
en-aut-sei=Tomimoto
en-aut-mei=Kana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MasaiKaori
en-aut-sei=Masai
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ZenshoKazumasa
en-aut-sei=Zensho
en-aut-mei=Kazumasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=AsanumaMasato
en-aut-sei=Asanuma
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Medical Neurobiology, Okayama University Medical School
kn-affil=
affil-num=3
en-affil=Department of Medical Neurobiology, Okayama University Medical School
kn-affil=
affil-num=4
en-affil=Department of Medical Neurobiology, Okayama University Medical School
kn-affil=
affil-num=5
en-affil=Department of Medical Neurobiology, Okayama University Medical School
kn-affil=
affil-num=6
en-affil=Department of Medical Neurobiology, Okayama University Medical School
kn-affil=
affil-num=7
en-affil=Department of Medical Neurobiology, Okayama University Medical School
kn-affil=
affil-num=8
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=BADGE
kn-keyword=BADGE
en-keyword=neurite outgrowth
kn-keyword=neurite outgrowth
en-keyword=estrogen receptor
kn-keyword=estrogen receptor
en-keyword=GPER
kn-keyword=GPER
en-keyword=Hes1
kn-keyword=Hes1
en-keyword=neurogenin-3
kn-keyword=neurogenin-3
END
start-ver=1.4
cd-journal=joma
no-vol=3
cd-vols=
no-issue=4
article-no=
start-page=350
end-page=359
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241211
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=N-Phenylphenothiazine Radical Cation with Extended Î-Systems: Enhanced Heat Resistance of Triarylamine Radical Cations as Near-Infrared Absorbing Dyes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=N-Phenylphenothiazine derivatives extended with various aryl groups were designed and synthesized. These derivatives have bent conformation in crystal and exhibit high solubility. Radical cations obtained by one-electron oxidation of these derivatives gave stable radical cations in solution and showed absorption in the near-infrared region. A radical cation was isolated as a stable salt, which exhibited heat resistance up to around 200 C. A design strategy for radical cation-based near-infrared absorbing dyes, which are easily oxidized and stable not only as a solution but in solid form, is described.
en-copyright=
kn-copyright=
en-aut-name=YanoMasafumi
en-aut-sei=Yano
en-aut-mei=Masafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UedaMinami
en-aut-sei=Ueda
en-aut-mei=Minami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YajimaTatsuo
en-aut-sei=Yajima
en-aut-mei=Tatsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MitsudoKoichi
en-aut-sei=Mitsudo
en-aut-mei=Koichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KashiwagiYukiyasu
en-aut-sei=Kashiwagi
en-aut-mei=Yukiyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Faculty of Chemistry, Material and Bioengineering, Kansai University
kn-affil=
affil-num=2
en-affil=Faculty of Chemistry, Material and Bioengineering, Kansai University
kn-affil=
affil-num=3
en-affil=Faculty of Chemistry, Material and Bioengineering, Kansai University
kn-affil=
affil-num=4
en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Osaka Research Institute of Industrial Science and Technology
kn-affil=
en-keyword=triarylamines
kn-keyword=triarylamines
en-keyword=N-phenylphenothiazine
kn-keyword=N-phenylphenothiazine
en-keyword=radical cation
kn-keyword=radical cation
en-keyword=near-infrared absorption
kn-keyword=near-infrared absorption
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=1
article-no=
start-page=e003250
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Clinical impact of combined assessment of myocardial inflammation and fibrosis using myocardial biopsy in patients with dilated cardiomyopathy: a multicentre, retrospective cohort study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Among patients with dilated cardiomyopathy (DCM), myocardial inflammation and fibrosis are risk factors for poor clinical outcomes. Here, we investigated the combined prognostic value of these two factors, as evaluated using myocardial biopsy samples.
Methods This retrospective and multicentre study included patients with DCM?defined as LVEF of ?45% and left diastolic diameter of >112% of predicted value, without evidence of secondary or ischaemic cardiomyopathy. In myocardial biopsy samples, inflammatory cells were counted using immunohistochemistry, and Massonfs Trichrome staining was performed to quantify the myocardial fibrosis as collagen area fraction (CAF). Higher myocardial inflammation was defined as leucocytes of ?14/mm?, including ?4 monocytes/mm?, with CD3+ T lymphocytes of?7/mm?. Greater myocardial fibrosis was defined as CAF of>5.9% by the Youdenfs index. The primary endpoint was cardiac death or left ventricular assist device implantation.
Results A total of 255 DCM patients were enrolled (average age, 53.1 years; 78% males). Within this cohort, the mean LVEF was 28.0%, mean CAF was 10.7% and median CD3+ cell count was 8.3/mm2. During the median follow-up period of 2688 days, 46 patients met the primary endpoint. Multivariable Cox proportional hazard analyses revealed that CD3+ cell count and CAF were independent determinants of the primary endpoint. Kaplan?Meier analysis showed that patients with both higher myocardial inflammation and greater fibrosis had the worst prognosis (log-rank p<0.001). When myocardial inflammation was graded as one of three degrees: T lymphocytes of <13/mm? (low); 13 of 13.1?23.9/mm? (moderate); and T lymphocytes of ?24?/mm? (high), patients with moderate inflammation exhibited a superior survival rate when CAF was ?5.9%, but a worse survival rate when CAF was >5.9%.
Conclusions Having both biopsy-proven higher myocardial inflammation and greater fibrosis predicted the worst clinical prognosis in patients with DCM.
en-copyright=
kn-copyright=
en-aut-name=NakayamaTakafumi
en-aut-sei=Nakayama
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OgoKeiko Ohta
en-aut-sei=Ogo
en-aut-mei=Keiko Ohta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SuganoYasuo
en-aut-sei=Sugano
en-aut-mei=Yasuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YokokawaTetsuro
en-aut-sei=Yokokawa
en-aut-mei=Tetsuro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KanamoriHiromitsu
en-aut-sei=Kanamori
en-aut-mei=Hiromitsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IkedaYoshihiko
en-aut-sei=Ikeda
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HiroeMichiaki
en-aut-sei=Hiroe
en-aut-mei=Michiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HatakeyamaKinta
en-aut-sei=Hatakeyama
en-aut-mei=Kinta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=Ishibashi-UedaHatsue
en-aut-sei=Ishibashi-Ueda
en-aut-mei=Hatsue
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NakamuraKazufumi
en-aut-sei=Nakamura
en-aut-mei=Kazufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=DohiKaoru
en-aut-sei=Dohi
en-aut-mei=Kaoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=AnzaiToshihisa
en-aut-sei=Anzai
en-aut-mei=Toshihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=SeoYoshihiro
en-aut-sei=Seo
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=Imanaka-YoshidaKyoko
en-aut-sei=Imanaka-Yoshida
en-aut-mei=Kyoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Cardiology, Nagoya City University Graduate School of Medical Sciences
kn-affil=
affil-num=2
en-affil=Department of Pathology, National Cerebral and Cardiovascular Center
kn-affil=
affil-num=3
en-affil=Department of Cardiology, Keiyu Hospital
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Medicine, Fukushima Medical University
kn-affil=
affil-num=5
en-affil=Department of Cardiology, Gifu University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Pathology, National Cerebral and Cardiovascular Center
kn-affil=
affil-num=7
en-affil=Department of Cardiology, National Center for Global Health and Medicine
kn-affil=
affil-num=8
en-affil=Department of Pathology, National Cerebral and Cardiovascular Center
kn-affil=
affil-num=9
en-affil=Department of Pathology, National Cerebral and Cardiovascular Center
kn-affil=
affil-num=10
en-affil=Center for Advanced Heart Failure, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Cardiology and Nephrology, Mie University Graduate School of Medicine
kn-affil=
affil-num=12
en-affil=Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine
kn-affil=
affil-num=13
en-affil=Department of Cardiology, Nagoya City University Graduate School of Medical Sciences
kn-affil=
affil-num=14
en-affil=Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=5
cd-vols=
no-issue=2
article-no=
start-page=606
end-page=617
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250130
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Mechanistic Insights Into Oxidative Response of Heat Shock Factor 1 Condensates
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Heat shock factor 1 (Hsf1), a hub protein in the stress response and cell fate decisions, senses the strength, type, and duration of stress to balance cell survival and death through an unknown mechanism. Recently, changes in the physical property of Hsf1 condensates due to persistent stress have been suggested to trigger apoptosis, highlighting the importance of biological phase separation and transition in cell fate decisions. In this study, the mechanism underlying Hsf1 droplet formation and oxidative response was investigated through 3D refractive index imaging of the internal architecture, corroborated by molecular dynamics simulations and biophysical/biochemical experiments. We found that, in response to oxidative conditions, Hsf1 formed liquid condensates that suppressed its internal mobility. Furthermore, these conditions triggered the hyper-oligomerization of Hsf1, mediated by disulfide bonds and secondary structure stabilization, leading to the formation of dense core particles in the Hsf1 droplet. Collectively, these data demonstrate how the physical property of Hsf1 condensates undergoes an oxidative transition by sensing redox conditions to potentially drive cell fate decisions.
en-copyright=
kn-copyright=
en-aut-name=KawagoeSoichiro
en-aut-sei=Kawagoe
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsusakiMotonori
en-aut-sei=Matsusaki
en-aut-mei=Motonori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MabuchiTakuya
en-aut-sei=Mabuchi
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OgasawaraYuto
en-aut-sei=Ogasawara
en-aut-mei=Yuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WatanabeKazunori
en-aut-sei=Watanabe
en-aut-mei=Kazunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IshimoriKoichiro
en-aut-sei=Ishimori
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SaioTomohide
en-aut-sei=Saio
en-aut-mei=Tomohide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Institute of Advanced Medical Sciences, Tokushima University
kn-affil=
affil-num=2
en-affil=Institute of Advanced Medical Sciences, Tokushima University
kn-affil=
affil-num=3
en-affil=Frontier Research Institute for Interdisciplinary Sciences, Tohoku University
kn-affil=
affil-num=4
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Chemistry, Faculty of Science, Hokkaido University
kn-affil=
affil-num=7
en-affil=Institute of Advanced Medical Sciences, Tokushima University
kn-affil=
en-keyword=heat shock factor 1
kn-keyword=heat shock factor 1
en-keyword=oxidative hyper-oligomerization
kn-keyword=oxidative hyper-oligomerization
en-keyword=biological phase transition
kn-keyword=biological phase transition
en-keyword=stress response
kn-keyword=stress response
en-keyword=biophysics
kn-keyword=biophysics
END
start-ver=1.4
cd-journal=joma
no-vol=64
cd-vols=
no-issue=15
article-no=
start-page=2290
end-page=2294
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Clinical and Genetic Analyses of SPG7 in Japanese Patients with Undiagnosed Ataxia
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective Spastic paraplegia 7 (SPG7) is an autosomal recessive neurodegenerative disorder caused by biallelic pathogenic variants in SPG7. It is predominantly characterized by adult-onset slowly progressive spastic paraparesis. While SPG7 presenting with ataxia with or without spasticity is relatively common in Europe and North America, it is considered rare in Japan. This study aimed to identify SPG7 patients among those with undiagnosed ataxia within the Japanese population.
Methods We retrospectively selected 351 patients with undiagnosed ataxia, excluding those with secondary and common spinocerebellar ataxia. Whole-exome sequence analysis was conducted, and homozygosity of the identified variants was confirmed using droplet digital polymerase chain reaction (ddPCR).
Results Among the 351 patients, 2 were diagnosed with SPG7, and homozygosity was confirmed by ddPCR. Both patients carried homozygous pathogenic variants in SPG7: c.1948G>A, p.Asp650Asn, and c.1192C>T, p.Arg398Ter (NM_003119.4). Clinically, both patients presented with progressive ataxia. In addition, Patient 1 exhibited partial ophthalmoplegia and spastic paraparesis, whereas Patient 2 demonstrated cerebellar ataxia without spasticity.
Conclusion The rarity of SPG7 in Japan may be attributed to variation in the minor allele frequency of the c.1529C>T, p.Ala510Val variant, which is more prevalent in Europe and North America than in other areas.
en-copyright=
kn-copyright=
en-aut-name=MitsutakeAkihiko
en-aut-sei=Mitsutake
en-aut-mei=Akihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsukawaTakashi
en-aut-sei=Matsukawa
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HinoRimi
en-aut-sei=Hino
en-aut-mei=Rimi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FujinoGo
en-aut-sei=Fujino
en-aut-mei=Go
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SakaiYuto
en-aut-sei=Sakai
en-aut-mei=Yuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MitsuiJun
en-aut-sei=Mitsui
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=K. IwataNobue
en-aut-sei=K. Iwata
en-aut-mei=Nobue
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TsujiShoji
en-aut-sei=Tsuji
en-aut-mei=Shoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TodaTatsushi
en-aut-sei=Toda
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=2
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=3
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=4
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=5
en-affil=Department of Neurology, International University of Health and Welfare Mita Hospital
kn-affil=
affil-num=6
en-affil=Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=7
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Neurology, International University of Health and Welfare Mita Hospital
kn-affil=
affil-num=9
en-affil=Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=10
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
en-keyword=cerebellar ataxia
kn-keyword=cerebellar ataxia
en-keyword=spastic paraparesis
kn-keyword=spastic paraparesis
en-keyword=whole-exome sequence analysis
kn-keyword=whole-exome sequence analysis
en-keyword=SPG7
kn-keyword=SPG7
END
start-ver=1.4
cd-journal=joma
no-vol=156
cd-vols=
no-issue=2
article-no=
start-page=151
end-page=159.e1
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202502
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The greater palatine nerve and artery both supply the maxillary teeth
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background. It is generally accepted that the greater palatine nerve and artery supply the palatal mucosa, gingiva, and glands, but not the bone or tooth adjacent to those tissues. When the bony palate is observed closely, multiple small foramina are seen on the palatal surface of the alveolar process. The authors hypothesized that the greater palatine nerve and artery might supply the maxillary teeth via the foramina on the palatal surface of the alveolar process and the superior alveolar nerve and artery. The authors aimed to investigate the palatal innervation and blood supply of the maxillary teeth.
Methods. Eight cadaveric maxillae containing most teeth or alveolar sockets were selected. The mean age at the time of death was 82.4 years. The samples were examined with colored water injection, latex injection, microcomputed tomography with contrast dye, gross anatomic dissection, and histologic observation.
Results. Through both injection studies and microcomputed tomographic analysis, the authors found that the small foramina on and around the greater palatine groove connected to the alveolar process and tooth sockets. The small foramina in the greater palatine and incisive canal also continued inside the alveolar process and the tooth sockets.
Conclusions. The alveolar branches of the greater palatine nerve and artery as well as the nasopalatine nerve and sphenopalatine artery supply maxillary teeth, alveolar bone, and periodontal tissue via the palatal alveolar foramina with superior alveolar nerves and arteries.
Practical Implications. This knowledge is essential for dentists when administering local anesthetic to the maxillary teeth and performing an osteotomy. Anatomic and dental textbooks should be updated with this new knowledge for better patient care.
en-copyright=
kn-copyright=
en-aut-name=IwanagaJoe
en-aut-sei=Iwanaga
en-aut-mei=Joe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakeshitaYohei
en-aut-sei=Takeshita
en-aut-mei=Yohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AnbalaganMuralidharan
en-aut-sei=Anbalagan
en-aut-mei=Muralidharan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ZouBinghao
en-aut-sei=Zou
en-aut-mei=Binghao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ToriumiTaku
en-aut-sei=Toriumi
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KunisadaYuki
en-aut-sei=Kunisada
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IbaragiSoichiro
en-aut-sei=Ibaragi
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TubbsR. Shane
en-aut-sei=Tubbs
en-aut-mei=R. Shane
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Division of Gross and Clinical Anatomy, Department of Anatomy, School of Medicine, Kurume University
kn-affil=
affil-num=2
en-affil=Department of Oral and Maxillofacial Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Structural and Cellular Biology, School of Medicine, Tulane University
kn-affil=
affil-num=4
en-affil=Department of Structural and Cellular Biology, School of Medicine, Tulane University
kn-affil=
affil-num=5
en-affil=Department of Anatomy, School of Life Dentistry at Niigata, The Nippon Dental University
kn-affil=
affil-num=6
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=University of Queensland
kn-affil=
en-keyword=Maxillary teeth
kn-keyword=Maxillary teeth
en-keyword=dental pulp
kn-keyword=dental pulp
en-keyword=anatomy
kn-keyword=anatomy
en-keyword=nerve block
kn-keyword=nerve block
en-keyword=root canal treatment
kn-keyword=root canal treatment
en-keyword=cadaver
kn-keyword=cadaver
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=10
article-no=
start-page=1151
end-page=1159
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202412
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=NCF-1 plays a pivotal role in the survival of adenocarcinoma cells of pancreatic and gastric origins
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Reactive oxygen species (ROS) play a pivotal biological role in cells, with ROS function differing depending on cellular conditions and the extracellular environment. Notably, ROS act as cytotoxic factors to eliminate infectious pathogens or promote cell death under cellular stress, while also facilitating cell growth (via ROS-sensing pathways) by modifying gene expression. Among ROS-related genes, neutrophil cytosolic factor-1 (NCF-1; p47phox) was identified as a ROS generator in neutrophils. This product is a subunit of a cytosolic NADPH oxidase complex activated in response to pathogens such as bacteria and viruses. NCF-1 has been examined primarily in terms of ROS-production pathways in macrophages and neutrophils; however, the expression of this protein and its biological role in cancer cells remain unclear. Here, we report expression of NCF-1 in pancreatic and gastric cancers, and demonstrate its biological significance in these tumor cells. Abundant expression of NCF-1 was observed in pancreatic adenocarcinoma (PDAC) lines and in patient tissues, as well as in gastric adenocarcinomas. Accumulation of the protein was also detected in the invasive/metastatic foci of these tumors. Unexpectedly, BxPC-3 underwent apoptotic cell death when transfected with a small interfering RNA (siRNA) specific to NCF-1, whereas the cells treated with a control siRNA proliferated in a time-dependent manner. A similar phenomenon was observed in HSC-58, a poorly differentiated gastric adenocarcinoma line. Consequently, the tumor cells highly expressing NCF-1 obtained coincident accumulation of ROS and reduced glutathione (GSH) with expression of glutathione peroxidase 4 (GPX4), a quencher involved in ferroptosis. Unlike the conventional role of ROS as a representative cytotoxic factor, these findings suggest that NCF-1-mediated ROS generation may be required for expansive growth of PDAC and gastric cancers.
en-copyright=
kn-copyright=
en-aut-name=Furuya-IkudeChiemi
en-aut-sei=Furuya-Ikude
en-aut-mei=Chiemi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KittaAkane
en-aut-sei=Kitta
en-aut-mei=Akane
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TomonobuNaoko
en-aut-sei=Tomonobu
en-aut-mei=Naoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KawasakiYoshihiro
en-aut-sei=Kawasaki
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KondoEisaku
en-aut-sei=Kondo
en-aut-mei=Eisaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Division of Tumor Pathology, NIR-PIT Research Institute, Kansai Medical University
kn-affil=
affil-num=2
en-affil=Division of Tumor Pathology, NIR-PIT Research Institute, Kansai Medical University
kn-affil=
affil-num=3
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Division of Tumor Pathology, NIR-PIT Research Institute, Kansai Medical University
kn-affil=
affil-num=5
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Division of Tumor Pathology, NIR-PIT Research Institute, Kansai Medical University
kn-affil=
en-keyword=NCF-1 (p47phox)
kn-keyword=NCF-1 (p47phox)
en-keyword=ROS
kn-keyword=ROS
en-keyword=Cancer
kn-keyword=Cancer
en-keyword=Tumor growth
kn-keyword=Tumor growth
en-keyword=Apoptosis
kn-keyword=Apoptosis
END
start-ver=1.4
cd-journal=joma
no-vol=472
cd-vols=
no-issue=
article-no=
start-page=123486
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202505
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Clinical, neuroimaging and genetic findings in the Japanese case series of CLCN2-related leukoencephalopathy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Biallelic loss-of-function variants in CLCN2 lead to CLCN2-related leukoencephalopathy (CC2L), also called leukoencephalopathy with ataxia (LKPAT). CC2L is characterized clinically by a spectrum of clinical presentations including childhood- to adult-onset mild ataxia, spasticity, cognitive decline, and vision loss as well as typical MRI findings of symmetrical high signal intensities on the DWIs/T2WIs of the middle cerebellar peduncles (MCPs). We searched for pathogenic variants of CLCN2 in a case series of undiagnosed leukoencephalopathy accompanied by MCP signs, which led to the identification of four Japanese patients with CC2L. All the patients carried at least one allele of c.61dupC (p.Leu21Profs*27) in CLCN2, including compound heterozygosity with either the novel pathogenic variant c.983 + 2 T > A or the previously reported pathogenic variant c.1828C > T (p.Arg610*). Of note, all the four previously reported cases from Japan also harbored c.61dupC, and no reports of this variant have been documented from outside Japan. The allele frequency of c.61dupC in the Japanese population is 0.002152, raising the possibility of a relatively high prevalence of CC2L in Japan. Patients in this study developed symptoms after the age of 30, and demonstrated neurological signs including cerebellar ataxia, pyramidal signs, and mild cognitive impairment, consistent with previous reports. One male patient had two children, supporting preserved fertility, and another patient had calcifications in the cerebral and cerebellar surfaces. These findings provide valuable insights into the broader clinical and genetic spectra of CC2L in the Japanese population, and emphasize the importance of considering this disease in the differential diagnoses of leukoencephalopathy with MCP signs.
en-copyright=
kn-copyright=
en-aut-name=OrimoKenta
en-aut-sei=Orimo
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsukawaTakashi
en-aut-sei=Matsukawa
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MitsutakeAkihiko
en-aut-sei=Mitsutake
en-aut-mei=Akihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ChoTakusei
en-aut-sei=Cho
en-aut-mei=Takusei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NaruseHiroya
en-aut-sei=Naruse
en-aut-mei=Hiroya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SakiyamaYoshio
en-aut-sei=Sakiyama
en-aut-mei=Yoshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SumiKensho
en-aut-sei=Sumi
en-aut-mei=Kensho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=UchioNaohiro
en-aut-sei=Uchio
en-aut-mei=Naohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SatakeAkane
en-aut-sei=Satake
en-aut-mei=Akane
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TakiyamaYoshihisa
en-aut-sei=Takiyama
en-aut-mei=Yoshihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MatsushitaTakuya
en-aut-sei=Matsushita
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=OmaeYosuke
en-aut-sei=Omae
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KawaiYosuke
en-aut-sei=Kawai
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TokunagaKatsushi
en-aut-sei=Tokunaga
en-aut-mei=Katsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=MitsuiJun
en-aut-sei=Mitsui
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=TsujiShoji
en-aut-sei=Tsuji
en-aut-mei=Shoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=TodaTatsushi
en-aut-sei=Toda
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=2
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=3
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=4
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=5
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=6
en-affil=Division of Neurology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University
kn-affil=
affil-num=7
en-affil=Department of Neurology, Mitsui Memorial Hospital
kn-affil=
affil-num=8
en-affil=Department of Neurology, Mitsui Memorial Hospital
kn-affil=
affil-num=9
en-affil=Department of Neurology, Fuefuki Central Hospital
kn-affil=
affil-num=10
en-affil=Department of Neurology, Fuefuki Central Hospital
kn-affil=
affil-num=11
en-affil=Department of Neurology, Kochi Medical School, Kochi University
kn-affil=
affil-num=12
en-affil=Genome Medical Science Project, National Center for Global Health and Medicine
kn-affil=
affil-num=13
en-affil=Genome Medical Science Project, National Center for Global Health and Medicine
kn-affil=
affil-num=14
en-affil=Genome Medical Science Project, National Center for Global Health and Medicine
kn-affil=
affil-num=15
en-affil=Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=16
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=17
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=18
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
en-keyword=Leukodystrophy
kn-keyword=Leukodystrophy
en-keyword=CC2L
kn-keyword=CC2L
en-keyword=CLCN2
kn-keyword=CLCN2
en-keyword=MCP sign
kn-keyword=MCP sign
END
start-ver=1.4
cd-journal=joma
no-vol=219
cd-vols=
no-issue=
article-no=
start-page=104944
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202510
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Establishment of a transgenic strain for the whole brain calcium imaging in larval medaka fish (Oryzias latipes)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=GCaMP-based calcium imaging is a powerful tool for investigating neural function in specific neurons. We generated transgenic (Tg) medaka strains expressing jGCaMP7s across extensive brain regions under the control of the gap43 promoter. Using these Tg larvae, calcium imaging successfully detected a tricaine-induced suppression of spontaneous neural activity and topographical visual responses in the optic tectum elicited by moving paramecia or optical fiber stimulation. These results indicate that our Tg medaka strains provide a versatile platform for investigating neural dynamics and their responses to various stimuli.
en-copyright=
kn-copyright=
en-aut-name=SekiTakahide
en-aut-sei=Seki
en-aut-mei=Takahide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyanariKazuhiro
en-aut-sei=Miyanari
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShiraishiAsuka
en-aut-sei=Shiraishi
en-aut-mei=Asuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TsudaSachiko
en-aut-sei=Tsuda
en-aut-mei=Sachiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AnsaiSatoshi
en-aut-sei=Ansai
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TakeuchiHideaki
en-aut-sei=Takeuchi
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Graduate School of Life Sciences, Tohoku University
kn-affil=
affil-num=2
en-affil=Graduate School of Science and Engineering, Saitama University
kn-affil=
affil-num=3
en-affil=Graduate School of Science and Engineering, Saitama University
kn-affil=
affil-num=4
en-affil=Graduate School of Science and Engineering, Saitama University
kn-affil=
affil-num=5
en-affil=Ushimado Marine Institute, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Life Sciences, Tohoku University
kn-affil=
en-keyword=gap43
kn-keyword=gap43
en-keyword=JGCaMP7s
kn-keyword=JGCaMP7s
en-keyword=Ac/Ds
kn-keyword=Ac/Ds
en-keyword=Visuotopy
kn-keyword=Visuotopy
en-keyword=slc2a15b
kn-keyword=slc2a15b
END
start-ver=1.4
cd-journal=joma
no-vol=39
cd-vols=
no-issue=12
article-no=
start-page=2664
end-page=2671
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241014
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Long]term outcomes of endoscopic resection of superficial esophageal squamous cell carcinoma in late]elderly patients
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background and Aim: As the population ages, the number of elderly patients with superficial esophageal squamous cell carcinoma (ESCC) is increasing. We aimed to clarify the indications for endoscopic resection (ER) in late-elderly patients with ESCC in terms of life expectancy.
Methods: Patients aged ?75 years who underwent ER for ESCC at our institution from January 2005 to December 2018 were enrolled. Clinical data, including the Eastern Cooperative Oncology Group performance status, American Society of Anesthesiologists physical status (ASA-PS), Charlson comorbidity index, and prognostic nutritional index (PNI), were collected at the time of ER. The main outcome measure was overall survival (OS).
Results: Two hundred eight consecutive patients were enrolled. The patients' median age was 78 years (range, 75?89 years). The 5-year follow-up rate was 88.5% (median follow-up period, 6.6 years). The 5-year OS rate was 79.2% (95% confidence interval [CI], 72.2?84.8), and 5-year net survival standardized for age, sex, and calendar year was 1.04 (95% CI, 0.98?1.09). In the multivariate analysis, an ASA-PS of 3 (hazard ratio, 2.45; 95% CI, 1.16?5.17) and PNI of <44.0 (hazard ratio, 2.73; 95% CI, 1.38?5.40) were independent prognostic factors. When neither of these factors was met, the 5-year OS rate was 87.8% (95% CI, 80.0?92.9), and 5-year net survival was 1.08 (95% CI, 1.02?1.14).
Conclusions: ER for ESCC in late-elderly patients may improve life expectancy. ER is recommended in patients with a good ASA-PS and PNI.
en-copyright=
kn-copyright=
en-aut-name=MatsuedaKatsunori
en-aut-sei=Matsueda
en-aut-mei=Katsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawanoSeiji
en-aut-sei=Kawano
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FukuiKeisuke
en-aut-sei=Fukui
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HirataShoichiro
en-aut-sei=Hirata
en-aut-mei=Shoichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SatomiTakuya
en-aut-sei=Satomi
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=InooShoko
en-aut-sei=Inoo
en-aut-mei=Shoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HamadaKenta
en-aut-sei=Hamada
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KonoYoshiyasu
en-aut-sei=Kono
en-aut-mei=Yoshiyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IwamuroMasaya
en-aut-sei=Iwamuro
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KawaharaYoshiro
en-aut-sei=Kawahara
en-aut-mei=Yoshiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Faculty of Societal Safety Sciences, Kansai University
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Practical Gastrointestinal Endoscopy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
en-keyword=endoscopic resection
kn-keyword=endoscopic resection
en-keyword=esophageal cancer
kn-keyword=esophageal cancer
en-keyword=late-elderly patient
kn-keyword=late-elderly patient
en-keyword=long-term outcome
kn-keyword=long-term outcome
END
start-ver=1.4
cd-journal=joma
no-vol=63
cd-vols=
no-issue=12
article-no=
start-page=1697
end-page=1702
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240615
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Gastric Mucosa-associated Lymphoid Tissue Lymphoma That Relapsed after 11 Years Subsequent to Achieving Complete Remission
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A 38-year-old Japanese man was diagnosed with extranodal marginal zone lymphoma of the mucosa-associated lymphoid tissue in the stomach (gastric MALT lymphoma). Fluorescence in situ hybridization analysis revealed the absence of t (11;18) (q21;q21) translocation but the presence of extra copies of MALT1, indicating tetrasomy 18. Helicobacter pylori eradication led to complete remission (CR). However, the gastric MALT lymphoma relapsed after 11 years old. This case underscores the need for long-term observation (>10 years) of patients with gastric MALT lymphoma. Further investigation is warranted to elucidate the correlation between trisomy/tetrasomy 18 and the recurrence propensity.
en-copyright=
kn-copyright=
en-aut-name=InooShoko
en-aut-sei=Inoo
en-aut-mei=Shoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IwamuroMasaya
en-aut-sei=Iwamuro
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KawaharaYoshiro
en-aut-sei=Kawahara
en-aut-mei=Yoshiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OotukaMotoyuki
en-aut-sei=Ootuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Pathology, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Practical Gastrointestinal Endoscopy, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=gastric MALT lymphoma
kn-keyword=gastric MALT lymphoma
en-keyword=H. pylori
kn-keyword=H. pylori
en-keyword=relapse
kn-keyword=relapse
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=
dt-pub=
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
END
start-ver=1.4
cd-journal=joma
no-vol=4
cd-vols=
no-issue=1
article-no=
start-page=e261
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230703
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Alcohol consumption, multiple Lugol]voiding lesions, and field cancerization
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The development of multiple squamous cell carcinomas (SCC) in the upper aerodigestive tract, which includes the oral cavity, pharynx, larynx, and esophagus, is explained by field cancerization and is associated with alcohol consumption and cigarette smoking. We reviewed the association between alcohol consumption, multiple Lugol-voiding lesions, and field cancerization, mainly based on the Japan Esophageal Cohort study. The Japan Esophageal Cohort study is a prospective cohort study that enrolled patients with esophageal SCC after endoscopic resection. Enrolled patients received surveillance by gastrointestinal endoscopy every 6 months and surveillance by an otolaryngologist every 12 months. The Japan Esophageal Cohort study showed that esophageal SCC and head and neck SCC that developed after endoscopic resection for esophageal SCC were associated with genetic polymorphisms related to alcohol metabolism. They were also associated with Lugol-voiding lesions grade in the background esophageal mucosa, the score of the health risk appraisal model for predicting the risk of esophageal SCC, macrocytosis, and score on alcohol use disorders identification test. The standardized incidence ratio of head and neck SCC in patients with esophageal SCC after endoscopic resection was extremely high compared to the general population. Drinking and smoking cessation is strongly recommended to reduce the risk of metachronous esophageal SCC after treatment of esophageal SCC. Risk factors for field cancerization provide opportunities for early diagnosis and minimally invasive treatment. Lifestyle guidance of alcohol consumption and cigarette smoking for esophageal precancerous conditions, which are endoscopically visualized as multiple Lugol-voiding lesions, may play a pivotal role in decreasing the incidence and mortality of esophageal SCC.
en-copyright=
kn-copyright=
en-aut-name=KatadaChikatoshi
en-aut-sei=Katada
en-aut-mei=Chikatoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YokoyamaTetsuji
en-aut-sei=Yokoyama
en-aut-mei=Tetsuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YanoTomonori
en-aut-sei=Yano
en-aut-mei=Tomonori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SuzukiHaruhisa
en-aut-sei=Suzuki
en-aut-mei=Haruhisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FurueYasuaki
en-aut-sei=Furue
en-aut-mei=Yasuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamamotoKeiko
en-aut-sei=Yamamoto
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=DoyamaHisashi
en-aut-sei=Doyama
en-aut-mei=Hisashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KoikeTomoyuki
en-aut-sei=Koike
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TamaokiMasashi
en-aut-sei=Tamaoki
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KawataNoboru
en-aut-sei=Kawata
en-aut-mei=Noboru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HiraoMotohiro
en-aut-sei=Hirao
en-aut-mei=Motohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KawaharaYoshiro
en-aut-sei=Kawahara
en-aut-mei=Yoshiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=OgataTakashi
en-aut-sei=Ogata
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KatagiriAtsushi
en-aut-sei=Katagiri
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=YamanouchiTakenori
en-aut-sei=Yamanouchi
en-aut-mei=Takenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=KiyokawaHirofumi
en-aut-sei=Kiyokawa
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=KawakuboHirofumi
en-aut-sei=Kawakubo
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=KonnoMaki
en-aut-sei=Konno
en-aut-mei=Maki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=YokoyamaAkira
en-aut-sei=Yokoyama
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=OhashiShinya
en-aut-sei=Ohashi
en-aut-mei=Shinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=KondoYuki
en-aut-sei=Kondo
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=KishimotoYo
en-aut-sei=Kishimoto
en-aut-mei=Yo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=KanoKoichi
en-aut-sei=Kano
en-aut-mei=Koichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=MureKanae
en-aut-sei=Mure
en-aut-mei=Kanae
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=HayashiRyuichi
en-aut-sei=Hayashi
en-aut-mei=Ryuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=IshikawaHideki
en-aut-sei=Ishikawa
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=YokoyamaAkira
en-aut-sei=Yokoyama
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=MutoManabu
en-aut-sei=Muto
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
affil-num=1
en-affil=Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=2
en-affil=Department of Health and Promotion, National Institute of Public Health
kn-affil=
affil-num=3
en-affil=Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East
kn-affil=
affil-num=4
en-affil=Endoscopy Division, National Cancer Center Hospital
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology, Kitasato University School of Medicine
kn-affil=
affil-num=6
en-affil=Division of Endoscopy, Hokkaido University Hospital
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology, Ishikawa Prefectural Central Hospital
kn-affil=
affil-num=8
en-affil=Division of Gastroenterology, Tohoku University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=10
en-affil=Division of Endoscopy, Shizuoka Cancer Center
kn-affil=
affil-num=11
en-affil=Department of Surgery, National Hospital Organization Osaka National Hospital
kn-affil=
affil-num=12
en-affil=Department of Practical Gastrointestinal Endoscopy, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Gastroenterology, Kanagawa Cancer Center
kn-affil=
affil-num=14
en-affil=Department of Medicine, Division of Gastroenterology, Showa University Hospital
kn-affil=
affil-num=15
en-affil=Department of Gastroenterology, Kumamoto Regional Medical Center
kn-affil=
affil-num=16
en-affil=Division of Gastroenterology, Department of Internal Medicine, St. Marianna University School of Medicine
kn-affil=
affil-num=17
en-affil=Department of Surgery, Kawasaki Municipal Kawasaki Hospital
kn-affil=
affil-num=18
en-affil=Department of Gastroenterology, Tochigi Cancer Center
kn-affil=
affil-num=19
en-affil=Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=20
en-affil=Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=21
en-affil=Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=22
en-affil=Department of Otolaryngology-Head and Neck Surgery, Kyoto University Hospital
kn-affil=
affil-num=23
en-affil=Department of Otorhinolaryngology-Head and Neck Surgery, Kitasato University School of Medicine
kn-affil=
affil-num=24
en-affil=Department of Public Health, Wakayama Medical University School of Medicine
kn-affil=
affil-num=25
en-affil=Department of Head and Neck Surgery, National Cancer Center Hospital East
kn-affil=
affil-num=26
en-affil=Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
kn-affil=
affil-num=27
en-affil=Clinical Research Unit, National Hospital Organization Kurihama Medical and Addiction Center
kn-affil=
affil-num=28
en-affil=Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University
kn-affil=
en-keyword=alcohol
kn-keyword=alcohol
en-keyword=esophageal cancer
kn-keyword=esophageal cancer
en-keyword=field cancerization
kn-keyword=field cancerization
en-keyword=head and neck cancer
kn-keyword=head and neck cancer
en-keyword=JEC study
kn-keyword=JEC study
END
start-ver=1.4
cd-journal=joma
no-vol=52
cd-vols=
no-issue=8
article-no=
start-page=e18026
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Commissioning of respiratory]gated 4D dynamic dose calculations for various gating widths without spot timestamp in proton pencil beam scanning
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Proton pencil beam scanning (PBS) is susceptible to dose degradation because of interplay effects on moving targets. For cases of unacceptable motion, respiratory-gated (RG) irradiation is an effective alternative to free breathing (FB) irradiation. However, the introduction of RG irradiation with larger gate widths (GW) is hindered by interplay effects, which are analogous to those observed with FB irradiation. Accurate estimation of interplay effects can be performed by recording spot timestamps. However, our machine lacks this feature, making it imperative to find an alternative approach. Thus, we developed an RG 4-dimensional dynamic dose (RG-4DDD) system without spot timestamps.
Purpose: This study aimed to investigate the accuracy of calculated doses from the RG-4DDD system for PBS plans with varying breathing curves, amplitudes, and periods for 10%?50% GW.
Methods: RG-4DDDs were reconstructed using in-house developed software that assigned timestamps to individual spots, integrated start times for spills with breathing curves, and utilized deformable registrations for dose accumulation. Three cubic verification plans were created using a heterogeneous phantom. Additionally, typical liver and lung cases were employed for patient plan validation. Single- and multi-field-optimized (SFO and IMPT) plans (ten beams in total) were created for the liver and lung cases in a homogeneous phantom. Lateral profile measurements were obtained under both motion and no-motion conditions using a 2D ionization chamber array (2D-array) and EBT3 Gafchromic films on the CIRS dynamic platform. Breathing curves from the cubic plans were used to assess nine patterns of sine curves, with amplitudes of 5.0?10.0 mm (10.0?20.0 mm target motions) and periods of 3?6 sec. Patient field verifications were conducted using a representative patient curve with an average amplitude of 6.4 mm and period of 3.2 sec. Additional simulations were performed assuming a } 10% change in assigned timestamps for the dose rate (DR), spot spill (0.08-s), and gate time delay (0.1-s) to evaluate the effect of parameter selection on our 4DDD models. The 4DDDs were compared with measured values using the 2D gamma index and absolute doses over that required for dosing 95% of the target.
Results: The 2D-array measurements showed that average gamma scores for the reference (no motion) and 4DDD plans for all GWs were at least 99.9 } 0.2% and 98.2 } 2.4% at 3%/3 mm, respectively. The gamma scores of the 4DDDs in film measurements exceeded 95.4% and 92.9% at 2%/2 mm for the cubic and patient plans, respectively. The 4DDD calculations were acceptable under DR changes of }10% and both spill and gate time delays of }0.18 sec. For the 4DDD plan using all GWs for all measurement points, the absolute point differences for all validation plans were within }5.0% for 99.1% of the points.
Conclusions: The RG-4DDD calculations (less than 50% GW) of the heterogeneous and actual patient plans showed good agreement with measurements for various breathing curves in the amplitudes and periods described above. The proposed system allows us to evaluate actual RG irradiation without requiring the ability to record spot timestamps.
en-copyright=
kn-copyright=
en-aut-name=TominagaYuki
en-aut-sei=Tominaga
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WakisakaYushi
en-aut-sei=Wakisaka
en-aut-mei=Yushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KatoTakahiro
en-aut-sei=Kato
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IchiharaMasaya
en-aut-sei=Ichihara
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YasuiKeisuke
en-aut-sei=Yasui
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SasakiMotoharu
en-aut-sei=Sasaki
en-aut-mei=Motoharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OitaMasataka
en-aut-sei=Oita
en-aut-mei=Masataka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NishioTeiji
en-aut-sei=Nishio
en-aut-mei=Teiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Radiotherapy, Medical Co. Hakuhokai, Osaka Proton Therapy Clinic
kn-affil=
affil-num=2
en-affil=Department of Radiotherapy, Medical Co. Hakuhokai, Osaka Proton Therapy Clinic
kn-affil=
affil-num=3
en-affil=Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University
kn-affil=
affil-num=4
en-affil=Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, The University of Osaka
kn-affil=
affil-num=5
en-affil=School of Medical Sciences, Fujita Health University
kn-affil=
affil-num=6
en-affil=Graduate School of Biomedical Sciences, Tokushima University
kn-affil=
affil-num=7
en-affil=Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=8
en-affil=Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, The University of Osaka
kn-affil=
en-keyword=4D dynamic dose
kn-keyword=4D dynamic dose
en-keyword=interplay effect
kn-keyword=interplay effect
en-keyword=pencil beam scanning
kn-keyword=pencil beam scanning
en-keyword=proton therapy
kn-keyword=proton therapy
en-keyword=respiratory gating
kn-keyword=respiratory gating
END
start-ver=1.4
cd-journal=joma
no-vol=54
cd-vols=
no-issue=8
article-no=
start-page=afaf224
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Oestrogen replacement combined with resistance exercise in older women with knee osteoarthritis: a randomised, double-blind, placebo-controlled clinical trial
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Interventions targeting physical function decline in older women with knee osteoarthritis (KOA) are vital for healthy ageing. The additive benefits of combining oestrogen replacement therapy (ERT) with resistance exercise remain unclear.
Objective: To evaluate the additive effect of low-dose ERT on physical performance when combined with a muscle resistance exercise programme (MREP) in older women with KOA.
Design: This is a placebo-controlled, double-blind, randomised clinical trial.
Subjects: The subjects were community-dwelling women aged ?65 years with chronic knee pain and KOA diagnosis.
Methods: Participants completed a 3-month MREP and were randomised to receive daily low-dose transdermal ERT (oestradiol 0.54 mg/day) or placebo. Outcomes were assessed at baseline, postintervention and 12 months later. The primary outcome was change in 30-second chair stand test (CS-30) score. Secondary outcomes included muscle mass, knee extension strength, walking performance, metabolic indicators, knee pain scale and 12-item short-form health survey (SF-12). Between-group differences in CS-30 changes were analysed using a linear regression model based on the intention-to-treat principle.
Results: Among 168 individuals screened, 75 participants (mean age 73.8 years, SD 5.8) were enrolled and randomised into an ERT group (n?=?37) or a placebo group (n?=?38). Baseline CS-30 scores were 14.81 (SD 3.95) in the ERT group and 15.58 (SD 3.48) in the placebo group. At 3 months, mean changes were 2.59 (SD 2.58) and 1.79 (SD 2.28) repetitions, respectively. The primary analysis showed no statistically significant between-group difference [regression coefficient: 0.81 (95% CI: ?0.31, 1.92); P?=?.16]. Post hoc subgroup and sensitivity analyses suggested that benefits may exist among early-stage KOA participants. SF-12 mental health scores also improved significantly in the ERT group. No serious adverse events occurred.
Conclusions: ERT did not confer significant additive benefits to resistance exercise overall but may improve outcomes in early-stage KOA and mental health domains. These exploratory findings warrant further investigation.
en-copyright=
kn-copyright=
en-aut-name=MitomaTomohiro
en-aut-sei=Mitoma
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OobaHikaru
en-aut-sei=Ooba
en-aut-mei=Hikaru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakahashiKasumi
en-aut-sei=Takahashi
en-aut-mei=Kasumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KondoTsunemasa
en-aut-sei=Kondo
en-aut-mei=Tsunemasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IkedaTomohiro
en-aut-sei=Ikeda
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SakamotoYoko
en-aut-sei=Sakamoto
en-aut-mei=Yoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MitsuhashiToshiharu
en-aut-sei=Mitsuhashi
en-aut-mei=Toshiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MakiJota
en-aut-sei=Maki
en-aut-mei=Jota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Medical Development Field, Center for Innovative Clinical Medicine, Okayama University
kn-affil=
affil-num=2
en-affil=Medical Development Field, Center for Innovative Clinical Medicine, Okayama University
kn-affil=
affil-num=3
en-affil=Obstetrics and Gynecology, Ochiai Hospital
kn-affil=
affil-num=4
en-affil=Obstetrics and Gynecology, Ochiai Hospital
kn-affil=
affil-num=5
en-affil=Rehabilitation Medicine, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Medical Development Field, Center for Innovative Clinical Medicine, Okayama University
kn-affil=
affil-num=7
en-affil=Medical Development Field, Center for Innovative Clinical Medicine, Okayama University
kn-affil=
affil-num=8
en-affil=Medical Development Field, Center for Innovative Clinical Medicine, Okayama University
kn-affil=
en-keyword=oestrogen replacement therapy
kn-keyword=oestrogen replacement therapy
en-keyword=muscle resistance exercise
kn-keyword=muscle resistance exercise
en-keyword=knee osteoarthritis
kn-keyword=knee osteoarthritis
en-keyword=physical performance
kn-keyword=physical performance
en-keyword=randomised controlled trial
kn-keyword=randomised controlled trial
en-keyword=older people
kn-keyword=older people
END
start-ver=1.4
cd-journal=joma
no-vol=38
cd-vols=
no-issue=2
article-no=
start-page=ivae021
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Plasma concentrations of histidine-rich glycoprotein in primary graft dysfunction after lung transplantation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=OBJECTIVES: Histidine-rich glycoprotein has been reported as an anti-inflammatory glycoprotein that inhibits acute lung injury in mice with sepsis and as a prognostic biomarker in patients with sepsis. We investigated the relationship between plasma concentrations of histidine-rich glycoprotein and the risk of occurrence of primary graft dysfunction.
METHODS: According to the primary graft dysfunction grade at post-transplant 72?h, patients who underwent lung transplantation were divided into three groups: non-primary graft dysfunction group (grade 0?1), moderate primary graft dysfunction group (grade 2), and severe primary graft dysfunction group (grade 3). The plasma concentrations of histidine-rich glycoprotein measured daily during the first post-transplant 7?days were compared among the three groups. Appropriate cutoff values of the concentrations were set for survival analyses after lung transplantation.
RESULTS: A total of 68 patients were included. The plasma histidine-rich glycoprotein concentration at post-transplant 72?h was significantly lower in the severe primary graft dysfunction group (n?=?7) than in the other two groups [non-primary graft dysfunction group (n?=?43), P?=?0.042; moderate primary graft dysfunction group (n?=?18), P?=?0.040]. Patients with plasma histidine-rich glycoprotein concentration ?34.4??g/ml at post-transplant 72?h had significantly better chronic lung allograft dysfunction-free survival (P?=?0.012) and overall survival (P?=?0.037) than those with the concentration <34.4??g/ml.
CONCLUSIONS: Plasma histidine-rich glycoprotein concentrations at post-transplant 72?h might be associated with the risk of development of primary graft dysfunction.
en-copyright=
kn-copyright=
en-aut-name=ShiotaniToshio
en-aut-sei=Shiotani
en-aut-mei=Toshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SugimotoSeiichiro
en-aut-sei=Sugimoto
en-aut-mei=Seiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TomiokaYasuaki
en-aut-sei=Tomioka
en-aut-mei=Yasuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanakaShin
en-aut-sei=Tanaka
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MitsuhashiToshiharu
en-aut-sei=Mitsuhashi
en-aut-mei=Toshiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SuzawaKen
en-aut-sei=Suzawa
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ShienKazuhiko
en-aut-sei=Shien
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MiyoshiKentaroh
en-aut-sei=Miyoshi
en-aut-mei=Kentaroh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YamamotoHiromasa
en-aut-sei=Yamamoto
en-aut-mei=Hiromasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OkazakiMikio
en-aut-sei=Okazaki
en-aut-mei=Mikio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
en-keyword=Lung transplantation
kn-keyword=Lung transplantation
en-keyword=Primary graft dysfunction
kn-keyword=Primary graft dysfunction
en-keyword=Histidine-rich glycoprotein
kn-keyword=Histidine-rich glycoprotein
en-keyword=Chronic lung allograft dysfunction
kn-keyword=Chronic lung allograft dysfunction
en-keyword=Overall survival
kn-keyword=Overall survival
END
start-ver=1.4
cd-journal=joma
no-vol=207
cd-vols=
no-issue=
article-no=
start-page=108683
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Intracranial activity of sotorasib vs docetaxel in pretreated KRAS G12C-mutated advanced non-small cell lung cancer from a global, phase 3, randomized controlled trial
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objectives: To assess the efficacy and safety of sotorasib in patients with brain metastases using data from the phase 3 CodeBreaK 200 study, which evaluated sotorasib in adults with pretreated advanced or metastatic KRAS G12C-mutated non-small cell lung cancer (NSCLC).
Materials and methods: Patients with KRAS G12C-mutated NSCLC who progressed after platinum-based chemotherapy and checkpoint inhibitor therapy were randomized 1:1 to sotorasib or docetaxel. An exploratory post-hoc analysis evaluated central nervous system (CNS) progression-free survival (PFS) and time to CNS progression in patients with treated and stable brain metastases at baseline. Measures were assessed by blinded independent central review per study-modified Response Assessment in Neuro-Oncology Brain Metastases (RANO-BM) criteria.
Results: Of the patients randomly assigned to receive sotorasib (n=171) or docetaxel (n=174), baseline CNS metastases were present in 40 (23%) and 29 (17%) patients, respectively. With a median follow-up of 20.0 months for this patient subgroup, median CNS PFS was longer with sotorasib compared with docetaxel (9.6 vs 4.5 months; hazard ratio, 0.43 [95% CI, 0.20?0.92]; P=0.02). Among patients with baseline treated CNS lesions of ?10 mm, the percentage of patients who achieved CNS tumor shrinkage of ?30% was two-fold higher with sotorasib than docetaxel (33.3% vs 15.4%). Treatment-related adverse events among patients with CNS lesions at baseline were consistent with those of the overall study population.
Conclusions: These results suggest intracranial activity with sotorasib complements the overall PFS benefit observed with sotorasib vs docetaxel, with safety outcomes similar to those in the general CodeBreaK 200 population.
Clinical trials registration number: NCT04303780.
en-copyright=
kn-copyright=
en-aut-name=DingemansAnne-Marie C.
en-aut-sei=Dingemans
en-aut-mei=Anne-Marie C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SyrigosKonstantinos
en-aut-sei=Syrigos
en-aut-mei=Konstantinos
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=LiviLorenzo
en-aut-sei=Livi
en-aut-mei=Lorenzo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=PaulusAstrid
en-aut-sei=Paulus
en-aut-mei=Astrid
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KimSang-We
en-aut-sei=Kim
en-aut-mei=Sang-We
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ChenYuanbin
en-aut-sei=Chen
en-aut-mei=Yuanbin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=FelipEnriqueta
en-aut-sei=Felip
en-aut-mei=Enriqueta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=GriesingerFrank
en-aut-sei=Griesinger
en-aut-mei=Frank
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OhashiKadoaki
en-aut-sei=Ohashi
en-aut-mei=Kadoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ZalcmanGerard
en-aut-sei=Zalcman
en-aut-mei=Gerard
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HughesBrett G.M.
en-aut-sei=Hughes
en-aut-mei=Brett G.M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=S?rensenJens Benn
en-aut-sei=S?rensen
en-aut-mei=Jens Benn
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=BlaisNormand
en-aut-sei=Blais
en-aut-mei=Normand
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=FerreiraCarlos G.M.
en-aut-sei=Ferreira
en-aut-mei=Carlos G.M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=LindsayColin R.
en-aut-sei=Lindsay
en-aut-mei=Colin R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=DziadziuszkoRafal
en-aut-sei=Dziadziuszko
en-aut-mei=Rafal
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=WardPatrick J.
en-aut-sei=Ward
en-aut-mei=Patrick J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=ObiozorCynthia Chinedu
en-aut-sei=Obiozor
en-aut-mei=Cynthia Chinedu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=WangYang
en-aut-sei=Wang
en-aut-mei=Yang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=PetersSolange
en-aut-sei=Peters
en-aut-mei=Solange
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
affil-num=1
en-affil=Erasmus MC Cancer Institute, University Medical Center
kn-affil=
affil-num=2
en-affil=Sotiria General Hospital
kn-affil=
affil-num=3
en-affil=Department of Biomedical, Experimental and Clinical Sciences gMario Serioh, University of Florence
kn-affil=
affil-num=4
en-affil=Centre Hospitalier Universitaire de Li?ge
kn-affil=
affil-num=5
en-affil=Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine
kn-affil=
affil-num=6
en-affil=The Cancer & Hematology Centers of Western Michigan
kn-affil=
affil-num=7
en-affil=Medical Oncology Department, Vall dfHebron University Hospital
kn-affil=
affil-num=8
en-affil=Pius-Hospital Oldenburg
kn-affil=
affil-num=9
en-affil=Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Hospital Bichat-Claude Bernard
kn-affil=
affil-num=11
en-affil=The Prince Charles Hospital, University of Queensland
kn-affil=
affil-num=12
en-affil=Rigshospitalet
kn-affil=
affil-num=13
en-affil=Department of Medicine, Centre Hospitalier de lfUniversit? de Montr?al
kn-affil=
affil-num=14
en-affil=Oncoclinicas
kn-affil=
affil-num=15
en-affil=Division of Cancer Sciences, University of Manchester and The Christie NHS Foundation Trust
kn-affil=
affil-num=16
en-affil=University Clinical Centre, Medical University of Gdansk
kn-affil=
affil-num=17
en-affil=SCRI at OHC
kn-affil=
affil-num=18
en-affil=Amgen Inc.
kn-affil=
affil-num=19
en-affil=Amgen Inc.
kn-affil=
affil-num=20
en-affil=Lausanne University Hospital
kn-affil=
en-keyword=Brain metastases
kn-keyword=Brain metastases
en-keyword=KRAS G12C-mutated
kn-keyword=KRAS G12C-mutated
en-keyword=Non-small cell lung cancer
kn-keyword=Non-small cell lung cancer
en-keyword=NSCLC
kn-keyword=NSCLC
en-keyword=Randomized controlled trial
kn-keyword=Randomized controlled trial
en-keyword=Sotorasib
kn-keyword=Sotorasib
en-keyword=Survival
kn-keyword=Survival
END
start-ver=1.4
cd-journal=joma
no-vol=27
cd-vols=
no-issue=3
article-no=
start-page=121
end-page=127
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=2024
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Association Between Early Mobilization and Postoperative Pneumonia Following Robot-assisted Minimally Invasive Esophagectomy in Patients with Thoracic Esophageal Squamous Cell Carcinoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective: The objective of this study was to confirm that early mobilization (EM) could reduce pneumonia in patients undergoing robot-assisted minimally invasive esophagectomy (RAMIE) for thoracic esophageal squamous cell carcinoma (TESCC). Methods: Postoperative pneumonia was defined as physician-diagnosed pneumonia using the Esophagectomy Complications Consensus Group definition of pneumonia with a Clavien?Dindo classification grade II?V on postoperative day (POD) 3?5. EM was defined as achieving an ICU Mobility Scale (IMS) ?7 by POD 2. Patients were divided into EM (n = 36) and non-EM (n = 35) groups. Barriers to EM included pain, orthostatic intolerance (OI), and orthostatic hypotension. Results: The overall incidence of postoperative pneumonia was 12.7%, with a significant difference between the EM (2.8%) and non-EM (22.9%) groups (P = 0.014). The odds ratio was 0.098 in the EM group compared to the non-EM group. A significant difference was found between the two groups in terms of the barriers to EM at POD 2 only for OI, with a higher incidence in the non-EM group. Multivariate logistic regression analysis showed that patients with OI were more likely to be unable to achieve EM than those without OI (odds ratio, 7.030; P = 0.006). Conclusion: EM within POD 2 may reduce the incidence of postoperative pneumonia in patients undergoing RAMIE for TESCC. Furthermore, it was suggested that OI can have a negative impact on the EM after RAMIE.
en-copyright=
kn-copyright=
en-aut-name=NOZAWAYasuaki
en-aut-sei=NOZAWA
en-aut-mei=Yasuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HARADAKazuhiro
en-aut-sei=HARADA
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NOMAKazuhiro
en-aut-sei=NOMA
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KATAYAMAYoshimi
en-aut-sei=KATAYAMA
en-aut-mei=Yoshimi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HAMADAMasanori
en-aut-sei=HAMADA
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OZAKIToshifumi
en-aut-sei=OZAKI
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Division of Physical Medicine and Rehabilitation, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Graduate School of Health Science Studies, Kibi International University
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Division of Physical Medicine and Rehabilitation, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Division of Physical Medicine and Rehabilitation, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Division of Physical Medicine and Rehabilitation, Okayama University Hospital
kn-affil=
en-keyword=Early mobilization
kn-keyword=Early mobilization
en-keyword=Postoperative pneumonia
kn-keyword=Postoperative pneumonia
en-keyword=Orthostatic intolerance
kn-keyword=Orthostatic intolerance
en-keyword=Thoracic esophageal squamous cell carcinoma
kn-keyword=Thoracic esophageal squamous cell carcinoma
en-keyword=Robot-assisted minimally invasive esophagectomy
kn-keyword=Robot-assisted minimally invasive esophagectomy
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250802
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Berberine Prevents NSAID-Induced Small Intestinal Injury by Protecting Intestinal Barrier and Inhibiting Inflammasome-Associated Activation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Nonsteroidal anti-inflammatory drugs (NSAID), which are commonly used to manage pain and inflammation, often cause gastrointestinal injuries, including small intestinal damage. Berberine (BBR) is a traditional Chinese medicine that protects against these injuries. However, the mechanism of action is not fully understood.
Aims This study aimed to evaluate the protective effects of BBR against NSAID-induced intestinal injury and elucidate the underlying molecular mechanisms.
Methods We evaluated the effects of BBR on NSAID-induced intestinal injury using a combination of mouse models and human gut organoids. Mice were treated with indomethacin with or without BBR to induce small intestinal injury. Human gut organoids were exposed to NSAID, with or without BBR, to assess their direct epithelial effects. Histological analyses, cytokine measurements, and Western blotting were performed to evaluate intestinal damage, tight junction integrity, and inflammasome-associated activation.
Results In NSAID-treated mice, BBR markedly reduced ulcers and adhesions and preserved ileal Claudin-1, Occludin, and Zonula Occludens-1 (ZO-1) levels. BBR inhibited both NOD-like receptor family pyrin domain-containing 6 and NOD-like receptor family caspase recruitment domain?containing protein 4 inflammasome activation, reducing Caspase-1 maturation and downstream interleukin-1À and tumor necrosis factor-¿ release. In human gut organoids, BBR demonstrated comparable protective effects by directly mitigating NSAID-induced epithelial barrier disruption caused by Claudin-1 and Occludin downregulation, although it did not restore ZO-1 expression.
Conclusions BBR effectively prevented NSAID-induced small intestinal injury by maintaining tight junction integrity and inhibiting inflammasome-associated activation, indicating its potential as a therapeutic agent against such damage.
en-copyright=
kn-copyright=
en-aut-name=IshiguroMikako
en-aut-sei=Ishiguro
en-aut-mei=Mikako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakaharaMasahiro
en-aut-sei=Takahara
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakakiAkinobu
en-aut-sei=Takaki
en-aut-mei=Akinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HiraokaSakiko
en-aut-sei=Hiraoka
en-aut-mei=Sakiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ToyosawaJyunki
en-aut-sei=Toyosawa
en-aut-mei=Jyunki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AoyamaYuki
en-aut-sei=Aoyama
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IgawaShoko
en-aut-sei=Igawa
en-aut-mei=Shoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YamasakiYasushi
en-aut-sei=Yamasaki
en-aut-mei=Yasushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=InokuchiToshihiro
en-aut-sei=Inokuchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KinugasaHideaki
en-aut-sei=Kinugasa
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
en-keyword=Nonsteroidal anti-inflammatory drugs-induced small intestinal injury
kn-keyword=Nonsteroidal anti-inflammatory drugs-induced small intestinal injury
en-keyword=Berberine
kn-keyword=Berberine
en-keyword=Tight junction protein
kn-keyword=Tight junction protein
en-keyword=Inflammasomes
kn-keyword=Inflammasomes
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250714
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Week 2 remission with vedolizumab as a predictor of long-term remission in patients with ulcerative colitis: a multicenter, retrospective, observational study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Aims Vedolizumab (VDZ), a gut-selective monoclonal antibody for ulcerative colitis (UC) treatment, has no established biomarkers or clinical features that predict long-term remission. Week 2 remission, a potential predictor of long-term remission, could inform maintenance treatment strategy.
Methods This retrospective, observational chart review included patients with UC in Japan who initiated VDZ between December 2018 and February 2020. Outcome measures included 14- and 54-week remission rates in patients with week 2 and non-week 2 remission (remission by week 14), 54-week remission rates in patients with week 14 remission and primary nonresponse, and predictive factors of week 2 and week 54 remission (logistic regression).
Results Overall, 332 patients with UC (176 biologic-na?ve and 156 biologic-non-na?ve) were included. Significantly more biologic-na?ve than biologic-non-na?ve patients achieved week 2 remission (36.9% vs. 28.2%; odds ratio [OR], 1.43; 95% confidence interval [CI], 1.05?1.94; P=0.0224). Week 54 remission rates were significantly different between week 14 remission and primary nonresponse (both groups: P<0.0001), and between week 2 and non-week 2 remission (all patients: OR, 2.41; 95% CI, 1.30?4.48; P=0.0052; biologic-na?ve patients: OR, 2.40; 95% CI, 1.10?5.24; P=0.0280). Week 2 remission predictors were male sex, no anti-tumor necrosis factor alpha exposure, and normal/mild endoscopic findings. Week 54 remission was significantly associated with week 2 remission and no tacrolimus use.
Conclusions Week 2 remission with VDZ is a predictor of week 54 remission in patients with UC. Week 2 may be used as an evaluation point for UC treatment decisions. (Japanese Registry of Clinical Trials: jRCT-1080225363)
en-copyright=
kn-copyright=
en-aut-name=KobayashiTaku
en-aut-sei=Kobayashi
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HisamatsuTadakazu
en-aut-sei=Hisamatsu
en-aut-mei=Tadakazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MotoyaSatoshi
en-aut-sei=Motoya
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FujiiToshimitsu
en-aut-sei=Fujii
en-aut-mei=Toshimitsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KunisakiReiko
en-aut-sei=Kunisaki
en-aut-mei=Reiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShibuyaTomoyoshi
en-aut-sei=Shibuya
en-aut-mei=Tomoyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsuuraMinoru
en-aut-sei=Matsuura
en-aut-mei=Minoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakeuchiKen
en-aut-sei=Takeuchi
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HiraokaSakiko
en-aut-sei=Hiraoka
en-aut-mei=Sakiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YasudaHiroshi
en-aut-sei=Yasuda
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YokoyamaKaoru
en-aut-sei=Yokoyama
en-aut-mei=Kaoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TakatsuNoritaka
en-aut-sei=Takatsu
en-aut-mei=Noritaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MaemotoAtsuo
en-aut-sei=Maemoto
en-aut-mei=Atsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TaharaToshiyuki
en-aut-sei=Tahara
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=TominagaKeiichi
en-aut-sei=Tominaga
en-aut-mei=Keiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=ShimadaMasaaki
en-aut-sei=Shimada
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=KunoNobuaki
en-aut-sei=Kuno
en-aut-mei=Nobuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=CavaliereMary
en-aut-sei=Cavaliere
en-aut-mei=Mary
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=IshiguroKaori
en-aut-sei=Ishiguro
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=FernandezJovelle L
en-aut-sei=Fernandez
en-aut-mei=Jovelle L
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=HibiToshifumi
en-aut-sei=Hibi
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
affil-num=1
en-affil=Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Kyorin University School of Medicine
kn-affil=
affil-num=3
en-affil=Inflammatory Bowel Disease Center, Sapporo-Kosei General Hospital
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology and Hepatology, Institute of Science Tokyo
kn-affil=
affil-num=5
en-affil=Inflammatory Bowel Disease Center, Yokohama City University Medical Center
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology, Juntendo University School of Medicine
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology and Hepatology, Kyorin University School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology and Hepatology, IBD Center, Tsujinaka Hospital Kashiwanoha
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology, St. Marianna University School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Gastroenterology, Kitasato University School of Medicine
kn-affil=
affil-num=12
en-affil=Inflammatory Bowel Disease Center, Fukuoka University Chikushi Hospital
kn-affil=
affil-num=13
en-affil=Inflammatory Bowel Disease Center, Sapporo Higashi Tokushukai Hospital
kn-affil=
affil-num=14
en-affil=Department of Gastroenterology, Saiseikai Utsunomiya Hospital
kn-affil=
affil-num=15
en-affil=Department of Gastroenterology, Dokkyo Medical University
kn-affil=
affil-num=16
en-affil=Department of Gastroenterology, NHO Nagoya Medical Center
kn-affil=
affil-num=17
en-affil=Department of Gastroenterology and Medicine, Fukuoka University Hospital
kn-affil=
affil-num=18
en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited
kn-affil=
affil-num=19
en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited
kn-affil=
affil-num=20
en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited
kn-affil=
affil-num=21
en-affil=Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital
kn-affil=
en-keyword=Colitis, ulcerative
kn-keyword=Colitis, ulcerative
en-keyword=Inflammatory bowel diseases
kn-keyword=Inflammatory bowel diseases
en-keyword=Japan
kn-keyword=Japan
en-keyword=Vedolizumab
kn-keyword=Vedolizumab
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250116
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Factors affecting 1-year persistence with vedolizumab for ulcerative colitis: a multicenter, retrospective real-world study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Aims The objectives of this real-world study were to determine 1-year persistence with vedolizumab in patients with ulcerative colitis and to evaluate factors contributing to loss of response.
Methods In this multicenter, retrospective, observational chart review, patients with moderately to severely active ulcerative colitis who received ? 1 dose of vedolizumab in clinical practice at 16 tertiary hospitals in Japan (from December 2018 through February 2020) were enrolled.
Results Persistence with vedolizumab was 64.5% (n = 370); the median follow-up time was 53.2 weeks. Discontinuation due to loss of response among initial clinical remitters was reported in 12.5% (35/281) of patients. Multivariate analysis showed that concomitant use of tacrolimus (odds ratio [OR], 2.76; 95% confidence interval [CI], 1.00?7.62; P= 0.050) and shorter disease duration (OR for median duration ? 7.8 years vs. < 7.8 years, 0.33; 95% CI, 0.13?0.82; P= 0.017) were associated with discontinuation due to loss of response. Loss of response was not associated with prior use of anti-tumor necrosis factor alpha therapy, age at the time of treatment, disease severity, or concomitant corticosteroids or immunomodulators. Of the 25 patients with disease duration < 1 year, 32.0% discontinued due to loss of response.
Conclusions Persistence with vedolizumab was consistent with previous reports. Use of tacrolimus and shorter disease duration were the main predictors of decreased persistence.
en-copyright=
kn-copyright=
en-aut-name=KobayashiTaku
en-aut-sei=Kobayashi
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HisamatsuTadakazu
en-aut-sei=Hisamatsu
en-aut-mei=Tadakazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MotoyaSatoshi
en-aut-sei=Motoya
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FujiiToshimitsu
en-aut-sei=Fujii
en-aut-mei=Toshimitsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KunisakiReiko
en-aut-sei=Kunisaki
en-aut-mei=Reiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShibuyaTomoyoshi
en-aut-sei=Shibuya
en-aut-mei=Tomoyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsuuraMinoru
en-aut-sei=Matsuura
en-aut-mei=Minoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakeuchiKen
en-aut-sei=Takeuchi
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HiraokaSakiko
en-aut-sei=Hiraoka
en-aut-mei=Sakiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YasudaHiroshi
en-aut-sei=Yasuda
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YokoyamaKaoru
en-aut-sei=Yokoyama
en-aut-mei=Kaoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TakatsuNoritaka
en-aut-sei=Takatsu
en-aut-mei=Noritaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MaemotoAtsuo
en-aut-sei=Maemoto
en-aut-mei=Atsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TaharaToshiyuki
en-aut-sei=Tahara
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=TominagaKeiichi
en-aut-sei=Tominaga
en-aut-mei=Keiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=ShimadaMasaaki
en-aut-sei=Shimada
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=KunoNobuaki
en-aut-sei=Kuno
en-aut-mei=Nobuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=FernandezJovelle L.
en-aut-sei=Fernandez
en-aut-mei=Jovelle L.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=IshiguroKaori
en-aut-sei=Ishiguro
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=CavaliereMary
en-aut-sei=Cavaliere
en-aut-mei=Mary
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=DeguchiHisato
en-aut-sei=Deguchi
en-aut-mei=Hisato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=HibiToshifumi
en-aut-sei=Hibi
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
affil-num=1
en-affil=Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Kyorin University School of Medicine
kn-affil=
affil-num=3
en-affil=Inflammatory Bowel Disease Center, Sapporo-Kosei General Hospital
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology and Hepatology, Institute of Science Tokyo
kn-affil=
affil-num=5
en-affil=Inflammatory Bowel Disease Center, Yokohama City University Medical Center
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology, Juntendo University School of Medicine
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology and Hepatology, Kyorin University School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology and Hepatology, IBD Center
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology, St. Marianna University School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Gastroenterology, Kitasato University School of Medicine
kn-affil=
affil-num=12
en-affil=Inflammatory Bowel Disease Center, Fukuoka University Chikushi Hospital
kn-affil=
affil-num=13
en-affil=Inflammatory Bowel Disease Center, Sapporo Higashi Tokushukai Hospital
kn-affil=
affil-num=14
en-affil=Department of Gastroenterology, Saiseikai Utsunomiya Hospital
kn-affil=
affil-num=15
en-affil=Department of Gastroenterology, Dokkyo Medical University
kn-affil=
affil-num=16
en-affil=Department of Gastroenterology, NHO Nagoya Medical Center
kn-affil=
affil-num=17
en-affil=Department of Gastroenterology and Medicine, Fukuoka University Hospital
kn-affil=
affil-num=18
en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited
kn-affil=
affil-num=19
en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited
kn-affil=
affil-num=20
en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited
kn-affil=
affil-num=21
en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited
kn-affil=
affil-num=22
en-affil=Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital
kn-affil=
en-keyword=Colitis, ulcerative
kn-keyword=Colitis, ulcerative
en-keyword=Inflammatory bowel diseases
kn-keyword=Inflammatory bowel diseases
en-keyword=Japan
kn-keyword=Japan
en-keyword=Vedolizumab
kn-keyword=Vedolizumab
en-keyword=Medication persistence
kn-keyword=Medication persistence
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250102
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Health-related quality of life, work productivity, and persisting challenges in treated ulcerative colitis patients: a Japanese National Health and Wellness Survey
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Aims Despite available treatments for ulcerative colitis (UC), unmet needs persist among patients in Japan. This study explored the health-related quality of life (HRQoL), work productivity and activity impairment (WPAI), indirect cost, and unmet needs among treated UC patients in Japan.
Methods This cross-sectional, observational study utilized data from the online 2017, 2019, and 2021 Japan National Health and Wellness Survey. Respondents were aged ? 18 years and had undergone or were on UC treatment (5-aminosalicylic acid, steroids, immunomodulators/immunosuppressants, biologics/Janus kinase inhibitors [JAKi]). Demographic, general health, and clinical characteristics, medication adherence, HRQoL, WPAI, and indirect cost were collected and analyzed.
Results Among 293 treated UC patients, 83.6% were non-biologic/JAKi users, 29.0% had UC ? 15 years, 34.8% had moderate-to-severe disease severity, 55.3% experienced ? 1 persisting UC symptom, and 91.5% reported UC as bothersome to an extent. Patients reported EuroQoL visual analog scale score of 68.1 and ? 35% reported anxiety and depression. Mean work productivity loss was 29.3%, resulting in an annual mean indirect loss of 1.1 million JPY (45.3 thousand USD) per person. Higher WPAI (impairment) was associated with being male, moderate-to-severe disease severity, and low treatment adherence (P<0.05). Biologics/JAKi users had higher work impairment, and IM/IS users had higher activity impairment than 5-aminosalicylic acid users (P<0.05).
Conclusions Despite treatment, Japanese UC patients experienced high disease burden and persistent disease-related challenges. Overall HRQoL were lower than the mean healthy population and work productivity impairment led to high indirect costs. The findings suggest the importance of new interventions for optimizing UC outcomes.
en-copyright=
kn-copyright=
en-aut-name=HiraokaSakiko
en-aut-sei=Hiraoka
en-aut-mei=Sakiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HuangZhezhou
en-aut-sei=Huang
en-aut-mei=Zhezhou
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=QinFei
en-aut-sei=Qin
en-aut-mei=Fei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=Nathan ArokianathanFatima Megala
en-aut-sei=Nathan Arokianathan
en-aut-mei=Fatima Megala
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=Dav?Kiran
en-aut-sei=Dav?
en-aut-mei=Kiran
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShahShweta
en-aut-sei=Shah
en-aut-mei=Shweta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KimHyunchung
en-aut-sei=Kim
en-aut-mei=Hyunchung
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Gastroenterology, Okayama University
kn-affil=
affil-num=2
en-affil=Cerner Enviza
kn-affil=
affil-num=3
en-affil=Cerner Enviza
kn-affil=
affil-num=4
en-affil=Oracle Life Sciences
kn-affil=
affil-num=5
en-affil=Bristol Myers Squibb
kn-affil=
affil-num=6
en-affil=Bristol Myers Squibb
kn-affil=
affil-num=7
en-affil=Bristol Myers Squibb
kn-affil=
en-keyword=Quality of life
kn-keyword=Quality of life
en-keyword=Presenteeism
kn-keyword=Presenteeism
en-keyword=Absenteeism
kn-keyword=Absenteeism
en-keyword=Ulcerative colitis
kn-keyword=Ulcerative colitis
en-keyword=Japan
kn-keyword=Japan
END
start-ver=1.4
cd-journal=joma
no-vol=29
cd-vols=
no-issue=7
article-no=
start-page=920
end-page=927
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250228
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The association of fasting triglyceride variability with renal dysfunction and proteinuria in medical checkup participants
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background The association between the variability of triglyceride (TG) and chronic kidney disease (CKD) progression remains unclear. We examined whether intraindividual variability in fasting TG was associated with the exacerbation of CKD.
Methods We conducted a retrospective and observational study. 18,339 participants, who went through medical checkups and had checked their estimated glomerular filtration rate (eGFR) and semi-quantitative proteinuria by urine dipstick every year since 2017 for 4 years were registered. Variability in fasting TG was determined using the standard deviation (SD), and maximum minus minimum difference (MMD) between 2017 and 2021. The primary end point for the analysis of eGFR decline was eGFR?60 mL/min/1.73 m2. The secondary end point for the analysis of proteinuria was the incidence of proteinuria???(?}) by urine dipstick.
Results The renal survival was lower in the higher-SD, and higher-MMD groups than in the lower-SD, and lower-MMD groups, respectively (log-rank test p?0.001, and?0.001, respectively). Lower SD and lower MMD were significantly associated with renal survival in the adjusted model (hazard ratio (HR), 1.12; 95% confidence intervals (CI), 1.04?1.21, and HR, 1.13; 95% CI 1.05?1.23, respectively). The non-incidence of proteinuria was lower in the higher-SD, and higher-MMD groups than in the lower-SD, and lower-MMD groups, respectively (log-rank test p?0.001 and?0.001, respectively).
Conclusion Fasting TG variability was associated with CKD progression in participants who went through medical checkups.
en-copyright=
kn-copyright=
en-aut-name=Matsuoka-UchiyamaNatsumi
en-aut-sei=Matsuoka-Uchiyama
en-aut-mei=Natsumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UchidaHaruhito A.
en-aut-sei=Uchida
en-aut-mei=Haruhito A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AsakawaTomohiko
en-aut-sei=Asakawa
en-aut-mei=Tomohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SakurabuYoshimasa
en-aut-sei=Sakurabu
en-aut-mei=Yoshimasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KatayamaKatsuyoshi
en-aut-sei=Katayama
en-aut-mei=Katsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OkamotoShugo
en-aut-sei=Okamoto
en-aut-mei=Shugo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OnishiYasuhiro
en-aut-sei=Onishi
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TanakaKeiko
en-aut-sei=Tanaka
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TakeuchiHidemi
en-aut-sei=Takeuchi
en-aut-mei=Hidemi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TakemotoRika
en-aut-sei=Takemoto
en-aut-mei=Rika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=UmebayashiRyoko
en-aut-sei=Umebayashi
en-aut-mei=Ryoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=eGFR decline
kn-keyword=eGFR decline
en-keyword=Proteinuria
kn-keyword=Proteinuria
en-keyword=Renal dysfunction
kn-keyword=Renal dysfunction
en-keyword=Triglyceride variability
kn-keyword=Triglyceride variability
en-keyword=Fasting triglyceride
kn-keyword=Fasting triglyceride
END
start-ver=1.4
cd-journal=joma
no-vol=35
cd-vols=
no-issue=1
article-no=
start-page=30
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241128
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Transtibial pullout repair improved short-term clinical outcomes in patients with oblique medial meniscus posterior root tear comparable to radial root tear
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose Medial meniscus (MM) posterior root tears (PRT) can lead to excessive knee loading and unsatisfactory clinical outcomes after non-operative treatment or meniscectomy. Although favourable clinical outcomes after MM posterior root (PR) repair have been reported, no study has specifically investigated the outcomes of different types of MMPRT. This study aimed to compare the clinical outcomes of patients with complete radial and oblique MMPRT following MMPR repair.
Methods Forty patients who had undergone MMPR repair were retrospectively investigated. Patients with type 2 (20 knees) and 4 MMPRT (20 knees) were included in this study. The MMPRT type was classified according to the LaPrade classification. Plain radiographs, magnetic resonance images, arthroscopic findings, and pre- and postoperative clinical outcomes were evaluated.
Results At 1 year postoperatively, clinical outcomes notably improved in patients with type 2 and 4 MMPRT. No significant differences were observed in any of the evaluations between these patients, both before and after the surgery.
Conclusion Patients with type 2 and type 4 MMPRT exhibited significantly improved clinical outcomes. MMPR repair is beneficial in treating type 2 and type 4 MMPRT.
Level of evidence IV
en-copyright=
kn-copyright=
en-aut-name=HigashiharaNaohiro
en-aut-sei=Higashihara
en-aut-mei=Naohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FurumatsuTakayuki
en-aut-sei=Furumatsu
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OkazakiYuki
en-aut-sei=Okazaki
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YokoyamaYusuke
en-aut-sei=Yokoyama
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TamuraMasanori
en-aut-sei=Tamura
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KawadaKoki
en-aut-sei=Kawada
en-aut-mei=Koki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HasegawaTsubasa
en-aut-sei=Hasegawa
en-aut-mei=Tsubasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KoharaToshiki
en-aut-sei=Kohara
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=Clinical outcomes
kn-keyword=Clinical outcomes
en-keyword=Medial meniscus
kn-keyword=Medial meniscus
en-keyword=Oblique tear
kn-keyword=Oblique tear
en-keyword=Posterior root tear
kn-keyword=Posterior root tear
en-keyword=Pullout repair
kn-keyword=Pullout repair
en-keyword=Radial tear
kn-keyword=Radial tear
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=4
article-no=
start-page=305
end-page=309
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Rare Presentation of Pneumonic-Type Adenocarcinoma Hidden behind Empyema
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Pneumonic-type adenocarcinoma (P-ADC) can closely mimic pneumonia. We report a P-ADC initially diagnosed as pneumonia which developed into a pulmonary abscess and empyema. A 50-year-old Japanese male diagnosed with pneumonia, pulmonary abscess, and empyema was administered antibiotics and a chest tube for drainage, which improved his symptoms and blood test results. However, chest computed tomography showed an enlarged infiltrative shadow. The patient underwent bronchoscopy and was diagnosed with an adenocarcinoma. This case highlights the importance of considering P-ADC in differential diagnoses when a pneumonia-like shadow enlarges post-empyema treatment. Diagnostic and clinical tests, e.g., bronchoscopy, should be performed in such cases.
en-copyright=
kn-copyright=
en-aut-name=SenooSatoru
en-aut-sei=Senoo
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NimanEito
en-aut-sei=Niman
en-aut-mei=Eito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TsujiRyoko
en-aut-sei=Tsuji
en-aut-mei=Ryoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakataKohei
en-aut-sei=Takata
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MatsumoriShunsuke
en-aut-sei=Matsumori
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MuranoFumika
en-aut-sei=Murano
en-aut-mei=Fumika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SugisakiYuka
en-aut-sei=Sugisaki
en-aut-mei=Yuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OmoriHiroki
en-aut-sei=Omori
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TaniguchiAkihiko
en-aut-sei=Taniguchi
en-aut-mei=Akihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OmoteRika
en-aut-sei=Omote
en-aut-mei=Rika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=IchiharaEiki
en-aut-sei=Ichihara
en-aut-mei=Eiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TakahashiKenji
en-aut-sei=Takahashi
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=OkadaToshiaki
en-aut-sei=Okada
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Respiratory Medicine, National Hospital Organization Fukuyama Medical Center
kn-affil=
affil-num=2
en-affil=Department of General Thoracic Surgery, National Hospital Organization Fukuyama Medical Center
kn-affil=
affil-num=3
en-affil=Department of Respiratory Medicine, National Hospital Organization Fukuyama Medical Center
kn-affil=
affil-num=4
en-affil=Department of Respiratory Medicine, National Hospital Organization Fukuyama Medical Center
kn-affil=
affil-num=5
en-affil=Department of Respiratory Medicine, National Hospital Organization Fukuyama Medical Center
kn-affil=
affil-num=6
en-affil=Department of Respiratory Medicine, National Hospital Organization Fukuyama Medical Center
kn-affil=
affil-num=7
en-affil=Department of Respiratory Medicine, National Hospital Organization Fukuyama Medical Center
kn-affil=
affil-num=8
en-affil=Department of Respiratory Medicine, National Hospital Organization Fukuyama Medical Center
kn-affil=
affil-num=9
en-affil=Department of Respiratory Medicine, National Hospital Organization Fukuyama Medical Center
kn-affil=
affil-num=10
en-affil=Department of Diagnostic Pathology, National Hospital Organization Fukuyama Medical Center
kn-affil=
affil-num=11
en-affil=Department of Respiratory Medicine, National Hospital Organization Fukuyama Medical Center
kn-affil=
affil-num=12
en-affil=Department of General Thoracic Surgery, National Hospital Organization Fukuyama Medical Center
kn-affil=
affil-num=13
en-affil=Department of Respiratory Medicine, National Hospital Organization Fukuyama Medical Center
kn-affil=
en-keyword=pneumonic type adenocarcinoma
kn-keyword=pneumonic type adenocarcinoma
en-keyword=empyema
kn-keyword=empyema
en-keyword=bronchoscopy
kn-keyword=bronchoscopy
en-keyword=lung cancer diagnosis
kn-keyword=lung cancer diagnosis
en-keyword=cavity formation
kn-keyword=cavity formation
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=4
article-no=
start-page=283
end-page=286
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Anterior Uveitis Secondary to an Infected Postoperative Maxillary Cyst
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A 76-year-old man presented with right eyelid swelling and deteriorated vision. Examination revealed anterior uveitis with hypopyon and a visual acuity of 20/2,000 in the right eye, with no abnormalities in the left. Computed tomography revealed enlargement of the right maxillary sinus and internal fluid accumulation, suggesting a postoperative maxillary cyst (POMC). Nasal endoscopic surgery drained the pus by opening the lower wall of the maxillary cyst. Following the procedure, intraocular inflammation resolved, and visual acuity in the right eye improved to 24/20. This is the first reported case of uveitis secondary to POMC.
en-copyright=
kn-copyright=
en-aut-name=ImamuraYuta
en-aut-sei=Imamura
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShiodeYusuke
en-aut-sei=Shiode
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KimuraShuhei
en-aut-sei=Kimura
en-aut-mei=Shuhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HosokawaMio
en-aut-sei=Hosokawa
en-aut-mei=Mio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MatobaRyo
en-aut-sei=Matoba
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KanzakiYuki
en-aut-sei=Kanzaki
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KindoHiroya
en-aut-sei=Kindo
en-aut-mei=Hiroya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MoritaTetsuro
en-aut-sei=Morita
en-aut-mei=Tetsuro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MuraiAya
en-aut-sei=Murai
en-aut-mei=Aya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=AndoMizuo
en-aut-sei=Ando
en-aut-mei=Mizuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MorizaneYuki
en-aut-sei=Morizane
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Otolaryngology-Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Otolaryngology-Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=anterior uveitis
kn-keyword=anterior uveitis
en-keyword=hypopyon
kn-keyword=hypopyon
en-keyword=maxillary sinus
kn-keyword=maxillary sinus
en-keyword=postoperative maxillary cyst
kn-keyword=postoperative maxillary cyst
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=4
article-no=
start-page=279
end-page=282
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Long-Term Survival Following Extended Cholecystectomy for Synchronous Gallbladder and Regional Lymph Node Metastasis of Lung Adenocarcinoma, with Subsequent Pulmonary Lobectomy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=An 80-year-old male underwent an extended cholecystectomy for node-positive gallbladder adenocarcinoma. Two weeks later, hemoptysis revealed a left hilar tumor obstructing the bronchus, which was diagnosed as adenocarcinoma. Three months post-cholecystectomy, a left upper pulmonary lobectomy was performed. Histological similarity and positive thyroid transcription factor-1 (TTF-1) immunostaining in both tumors confirmed lung adenocarcinoma with gallbladder metastasis. Despite the generally poor prognosis for gallbladder metastasis from lung cancer, the patient achieved 3 years of survival. Patients with isolated synchronous gallbladder metastasis from lung cancer may benefit from oligometastasectomy.
en-copyright=
kn-copyright=
en-aut-name=YoshikawaMao
en-aut-sei=Yoshikawa
en-aut-mei=Mao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TaoHiroyuki
en-aut-sei=Tao
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of General Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Thoracic Surgery, Japanese Red Cross Society Himeji Hospital
kn-affil=
en-keyword=gallbladder metastasis
kn-keyword=gallbladder metastasis
en-keyword=lung cancer
kn-keyword=lung cancer
en-keyword=oligometastatic disease
kn-keyword=oligometastatic disease
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=4
article-no=
start-page=231
end-page=242
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Bloodstream Infections Caused by Gram-Negative Bacteria in Geriatric Patients: Epidemiology, Antimicrobial Resistance and The Factors Affecting Mortality
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Bloodstream infections (BSIs) are an important cause of morbidity and mortality in geriatric patients. We retrospectively analyzed the cases of geriatric patients who developed BSIs due to gram-negative bacteria in order to evaluate the epidemiology, antimicrobial resistance, and the factors affecting mortality. The cases of 110 patients aged ? 65 years admitted to our hospital between January 1, 2017, and December 31, 2022 were assessed; 70 (63.6%) of the BSIs were healthcare-associated BSIs. The urinary system was the most common detectable source of infection at 43.6%. The most frequently isolated bacteria were Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae, in that order. Carbapenem resistance was detected in 17 patients (15.5%), and extended-spectrum beta-lactamase (ESBL) production from Enterobacterales family members was detected in 37 (51.4%) patients. Multivariate analysis revealed that (i) the probability of mortality in the patients with total bilirubin was increased by approx. sixfold and (ii) the likelihood of mortality for those with a Pitt bacteremia score (PBS) ? 4 points was approx. 17 times higher. PBS and simplified qPitt scores can help predict mortality and manage geriatric patients. There is a significant increase in mortality among patients with procalcitonin (PCT) levels at ? 2 nm/ml.
en-copyright=
kn-copyright=
en-aut-name=KardanM Enes
en-aut-sei=Kardan
en-aut-mei=M Enes
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ErdemIlknur
en-aut-sei=Erdem
en-aut-mei=Ilknur
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YildizEmre
en-aut-sei=Yildiz
en-aut-mei=Emre
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KirazNuri
en-aut-sei=Kiraz
en-aut-mei=Nuri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=?elikkolAliye
en-aut-sei=?elikkol
en-aut-mei=Aliye
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Infectious Diseases, Faculty of Medicine, Namik Kemal University
kn-affil=
affil-num=2
en-affil=Department of Infectious Diseases, Faculty of Medicine, Namik Kemal University
kn-affil=
affil-num=3
en-affil=Department of Infectious Diseases, Faculty of Medicine, Namik Kemal University
kn-affil=
affil-num=4
en-affil=Department of Medical Microbiology, Faculty of Medicine, Namik Kemal University
kn-affil=
affil-num=5
en-affil=Department of Biochemistry, Faculty of Medicine, Namik Kemal University
kn-affil=
en-keyword=geriatrics
kn-keyword=geriatrics
en-keyword=gram-negative bacteria
kn-keyword=gram-negative bacteria
en-keyword=epidemiology
kn-keyword=epidemiology
en-keyword=antimicrobial resistance
kn-keyword=antimicrobial resistance
en-keyword=mortality
kn-keyword=mortality
END
start-ver=1.4
cd-journal=joma
no-vol=32
cd-vols=
no-issue=1
article-no=
start-page=e70005
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Lyme neuroborreliosis in Japan: Borrelia burgdorferi sensu lato as a cause of meningitis of previously undetermined etiology in hospitalized patients outside of the island of Hokkaido, 2010?2021
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background and Purpose: Clinical manifestations of Lyme borreliosis (LB), caused by Borrelia burgdorferi sensu lato (Bbsl), include erythema migrans, Lyme neuroborreliosis (LNB), carditis, and arthritis. LB is a notifiable disease in Japan with <30 surveillance-reported LB cases annually, predominately from Hokkaido Prefecture. However, LB, including LNB, may be under-diagnosed in Japan since diagnostic tests are not readily available. We sought to determine if LNB could be a cause of previously undiagnosed encephalitis or meningitis in Japan.
Methods: Investigators at 15 hospitals in 10 prefectures throughout Japan retrieved serum and/or cerebrospinal fluid (CSF) samples collected in 2010?2021 from 517 patients hospitalized with encephalitis or meningitis which had an etiology that had not been determined. Samples were tested for Bbsl-specific antibodies using ELISA and Western blot tests. In alignment with the European Union LNB case definition, a confirmed LNB case had CSF pleocytosis and intrathecal production of Bbsl-specific antibodies and a probable LNB case had a CSF sample with pleocytosis and Bbsl-specific antibodies.
Results: LNB was identified in three hospitalized patients with meningitis of previously undetermined etiology: a male resident of Aomori Prefecture was a confirmed LNB case, and two female residents of Oita Prefecture were probable LNB cases. None of the patients with confirmed or probable LNB had traveled in the month prior to symptom onset and none had samples previously tested for LB.
Conclusion: The identification of previously undiagnosed LNB cases indicates a need for enhanced disease awareness in Japan, particularly beyond Hokkaido Island, and more readily available LB diagnostic testing.
en-copyright=
kn-copyright=
en-aut-name=OhiraMasayuki
en-aut-sei=Ohira
en-aut-mei=Masayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakanoAi
en-aut-sei=Takano
en-aut-mei=Ai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshiKentaro
en-aut-sei=Yoshi
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AraiAkira
en-aut-sei=Arai
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AsoYashuhiro
en-aut-sei=Aso
en-aut-mei=Yashuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FurutaniRikiya
en-aut-sei=Furutani
en-aut-mei=Rikiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HamanoTadanori
en-aut-sei=Hamano
en-aut-mei=Tadanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=Takahashi]IwataIkuko
en-aut-sei=Takahashi]Iwata
en-aut-mei=Ikuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KanekoChikako
en-aut-sei=Kaneko
en-aut-mei=Chikako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MatsuuraTohru
en-aut-sei=Matsuura
en-aut-mei=Tohru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MaedaNorihisa
en-aut-sei=Maeda
en-aut-mei=Norihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NakajimaHideto
en-aut-sei=Nakajima
en-aut-mei=Hideto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=ShindoKatsuro
en-aut-sei=Shindo
en-aut-mei=Katsuro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=SuenagaToshihiko
en-aut-sei=Suenaga
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=SugieKazuma
en-aut-sei=Sugie
en-aut-mei=Kazuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=SuzukiYasuhiro
en-aut-sei=Suzuki
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=YamashitaToru
en-aut-sei=Yamashita
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=AnguloFrederick J.
en-aut-sei=Angulo
en-aut-mei=Frederick J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=EdwardsJuanita
en-aut-sei=Edwards
en-aut-mei=Juanita
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=BenderCody Matthew
en-aut-sei=Bender
en-aut-mei=Cody Matthew
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=HarperLisa R.
en-aut-sei=Harper
en-aut-mei=Lisa R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=NakayamaYoshikazu
en-aut-sei=Nakayama
en-aut-mei=Yoshikazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=ItoShuhei
en-aut-sei=Ito
en-aut-mei=Shuhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=PilzAndreas
en-aut-sei=Pilz
en-aut-mei=Andreas
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=StarkJames H.
en-aut-sei=Stark
en-aut-mei=James H.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=Mo?siJennifer C.
en-aut-sei=Mo?si
en-aut-mei=Jennifer C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=MizusawaHidehiro
en-aut-sei=Mizusawa
en-aut-mei=Hidehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=TakaoMasaki
en-aut-sei=Takao
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
affil-num=1
en-affil=Department of Clinical Laboratory and Internal Medicine, National Center of Neurology and Psychiatry
kn-affil=
affil-num=2
en-affil=Department of Veterinary Medicine, Joint Faculty of Veterinary Medicine, Yamaguchi University
kn-affil=
affil-num=3
en-affil=National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University
kn-affil=
affil-num=4
en-affil=Department of Neurology, Aomori Prefectural Central Hospital
kn-affil=
affil-num=5
en-affil=Department of Neurology, Oita Prefectural Hospital
kn-affil=
affil-num=6
en-affil=Department of Neurology, National Hospital Organization, Shinshu Ueda General Hospital
kn-affil=
affil-num=7
en-affil=Department of Neurology, University of Fukui Hospital
kn-affil=
affil-num=8
en-affil=Department of Neurology, Hokkaido University Hospital
kn-affil=
affil-num=9
en-affil=Department of Neurology, Southern Tohoku General Hospital
kn-affil=
affil-num=10
en-affil=Division of Neurology, Jichi Medical University
kn-affil=
affil-num=11
en-affil=Department of Neurology, National Hospital Organization Beppu Medical Center
kn-affil=
affil-num=12
en-affil=Department of Neurology, Nihon University Itabashi Hospital
kn-affil=
affil-num=13
en-affil=Department of Neurology, Kurashiki Central Hospital
kn-affil=
affil-num=14
en-affil=Department of Neurology, Tenri Hospital
kn-affil=
affil-num=15
en-affil=Department of Neurology, Nara Medical University Hospital
kn-affil=
affil-num=16
en-affil=Department of Neurology, National Hospital Organization Asahikawa Medical Center
kn-affil=
affil-num=17
en-affil=Department of Neurology, Okayama University Hospital
kn-affil=
affil-num=18
en-affil=Vaccines and Antivirals Medical Affairs, Pfizer Vaccines
kn-affil=
affil-num=19
en-affil=Vaccines and Antivirals Medical Affairs, Pfizer Vaccines
kn-affil=
affil-num=20
en-affil=Vaccines and Antivirals Medical Affairs, Pfizer Vaccines
kn-affil=
affil-num=21
en-affil=Vaccines and Antivirals Medical Affairs, Pfizer Vaccines
kn-affil=
affil-num=22
en-affil=Vaccines Medical Affairs, Pfizer Japan Inc
kn-affil=
affil-num=23
en-affil=Vaccines Medical Affairs, Pfizer Japan Inc
kn-affil=
affil-num=24
en-affil=Vaccines and Antivirals Medical Affairs, Pfizer Vaccines
kn-affil=
affil-num=25
en-affil=Vaccines and Antivirals Medical Affairs, Pfizer Vaccines
kn-affil=
affil-num=26
en-affil=Vaccines and Antivirals Medical Affairs, Pfizer Vaccines
kn-affil=
affil-num=27
en-affil=Department of Neurology, National Center of Neurology and Psychiatry
kn-affil=
affil-num=28
en-affil=Department of Clinical Laboratory and Internal Medicine, National Center of Neurology and Psychiatry
kn-affil=
en-keyword=epidemiology
kn-keyword=epidemiology
en-keyword=disease burden
kn-keyword=disease burden
en-keyword=Lyme neuroborreliosis
kn-keyword=Lyme neuroborreliosis
en-keyword=meningitis
kn-keyword=meningitis
en-keyword=tick-borne disease
kn-keyword=tick-borne disease
END
start-ver=1.4
cd-journal=joma
no-vol=47
cd-vols=
no-issue=1
article-no=
start-page=104318
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202502
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Hypotheses of pathophysiological mechanisms in epileptic encephalopathies: A review
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction: Epileptic encephalopathy (EE) is a serious clinical issue that manifests as part of developmental and epileptic encephalopathy (DEE), particularly in childhood epilepsy. In EE, neurocognitive functions and behavior are impaired by intense epileptiform electroencephalogram (EEG) activity. Hypotheses of pathophysiological mechanisms behind EE are reviewed to contribute to an effective solution for EE.
Review: Current hypotheses are as follows: 1) neuronal dysfunction based on genetic abnormalities that may affect neurocognitive functions and epilepsy separately; 2) impairment of synaptic homeostasis during sleep that may be responsible for DEE/EE with spike-and-wave activation in sleep; 3) abnormal subcortical regulation of the cerebral cortex; 4) abnormal cortical metabolism and hemodynamics with impairment of the neural network including default mode network; 5) neurotransmitter imbalance and disordered neural excitability; 6) the effects of neuroinflammation that may be caused by epileptic seizures and in turn aggravate epileptogenesis; 7) the interaction between physiological and pathological high-frequency EEG activity; etc. The causal relationship between epileptiform EEG activity and neurocognitive dysfunctions is small in DEE based on genetic abnormalities and it is largely unestablished in the other hypothetical mechanisms.
Conclusion: We have not yet found answers to the question of whether the single-central or multiple derangements are present and what seizures and intense epileptiform EEG abnormalities mean in EE. We need to continue our best efforts in both aspects to elucidate the pathophysiological mechanisms of DEE/EE and further develop epilepsy treatment and precision medicine.
en-copyright=
kn-copyright=
en-aut-name=KobayashiKatsuhiro
en-aut-sei=Kobayashi
en-aut-mei=Katsuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShibataTakashi
en-aut-sei=Shibata
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TsuchiyaHiroki
en-aut-sei=Tsuchiya
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AkiyamaMari
en-aut-sei=Akiyama
en-aut-mei=Mari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AkiyamaTomoyuki
en-aut-sei=Akiyama
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Pediatrics, Asahigawaso Rehabilitation and Medical Center
kn-affil=
affil-num=2
en-affil=Department of Pediatric Neurology, Okayama University Hospital and Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Pediatric Neurology, Okayama University Hospital and Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Pediatric Neurology, Okayama University Hospital and Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Pediatric Neurology, Okayama University Hospital and Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Behavior
kn-keyword=Behavior
en-keyword=Childhood epilepsy
kn-keyword=Childhood epilepsy
en-keyword=Cognitive function
kn-keyword=Cognitive function
en-keyword=Developmental and epileptic encephalopathy
kn-keyword=Developmental and epileptic encephalopathy
en-keyword=Regression
kn-keyword=Regression
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=30648
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250820
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effect of mechanical stretching stimulation on maturation of human iPS cell-derived cardiomyocytes co-cultured with human gingival fibroblasts
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In the realm of regenerative medicine, despite the various techniques available for inducing the differentiation of induced pluripotent stem (iPS) cells into cardiomyocytes, there remains a need to enhance the maturation of the cardiomyocytes. This study aimed to improve the differentiation and subsequent maturation of iPS-derived cardiomyocytes (iPS-CMs) by incorporating mechanical stretching. Human iPS cells were co-cultured with human gingival fibroblasts (HGF) on a polydimethylsiloxane (PDMS) stretch chamber, where mechanical stretching stimulation was applied during the induction of cardiomyocyte differentiation. The maturation of iPS-CMs was assessed using qRT-PCR, immunocytochemistry, transmission electron microscopy, calcium imaging and contractility comparisons. Results indicated significantly elevated gene expression levels of cardiomyocyte markers (cTnT) and the mesodermal marker (Nkx2.5) in the stretch group compared to the control group. Fluorescent immunocytochemical staining revealed the presence of cardiac marker proteins (cTnT and MYL2) in both groups, with higher protein expression in the stretch group. Additionally, structural maturation of iPS-CMs in the stretch group was notably better than in the control group. A significant increase in the contractility and calcium cycle of iPS-CMs was observed in the stretch group. These findings demonstrate that mechanical stretching stimulation enhances the maturation of iPS-CMs co-cultured with HGF.
en-copyright=
kn-copyright=
en-aut-name=WangMengxue
en-aut-sei=Wang
en-aut-mei=Mengxue
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IdeiHarumi
en-aut-sei=Idei
en-aut-mei=Harumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WangChen
en-aut-sei=Wang
en-aut-mei=Chen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=LiangYin
en-aut-sei=Liang
en-aut-mei=Yin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=LiuYun
en-aut-sei=Liu
en-aut-mei=Yun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MatsudaYusuke
en-aut-sei=Matsuda
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakahashiKen
en-aut-sei=Takahashi
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KamiokaHiroshi
en-aut-sei=Kamioka
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NaruseKeiji
en-aut-sei=Naruse
en-aut-mei=Keiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Nursing, School of Life and Health Sciences, HuZhou College
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Human induced pluripotent stem cell
kn-keyword=Human induced pluripotent stem cell
en-keyword=Cardiomyocyte
kn-keyword=Cardiomyocyte
en-keyword=Human gingival fibroblast
kn-keyword=Human gingival fibroblast
en-keyword=Mechanical stretching
kn-keyword=Mechanical stretching
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=16
article-no=
start-page=7832
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250813
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Synergistic Antimicrobial Activity of BrSPR20-P1 Peptide and Silver Nanoparticles Against Pathogenic Bacteria
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Bacterial infection is a cause of life-threatening diseases. The emergence of antimicrobial-resistant bacteria exacerbates this situation, highlighting the need for the discovery of new antimicrobial agents. Our previous study identified a novel antimicrobial peptide, BrSPR20-P1 (P1), which showed potential activity against MRSA. Additionally, silver nanoparticles (AgNPs) exhibit broad-spectrum antibacterial activity, capable of killing multidrug-resistant bacteria. The combination of antimicrobial agents presents a novel strategy for combating these pathogens. This study aimed to evaluate the antibacterial activity of the combination of P1 and AgNPs. It revealed that the combinations showed synergy. The P1 and AgNP mixture at a concentration of 1 and 8 ?g/mL (1:8) doubled the activity against S. aureus and MRSA, while that combination of 64 and 64 ?g/mL (64:64) exhibited broad-spectrum activity, expanding to E. coli with a 32-fold increase. These combinations exhibited a bactericidal effect, showing the rapid killing of tested bacteria at 10~ MIC, with killing rates during the first 3 h ranging from 4.04 } 0.01 to 4.31 } 0.03 h?1. The P1 and AgNP mixtures caused a low risk of antibacterial resistance up to 30 passages. It was demonstrated that the synergistic activity of P1 and AgNPs occurred through the disruption of cell walls and membranes, leakage of intracellular materials, and cell lysis. Additionally, the mixtures appeared to interact with bacterial genomic DNA, as indicated by a gel retardation assay. These activities of the combinations were concentration-dependent. The 1:8 ?g/mL mixture caused low hemolysis and cytotoxicity and did not impede the wound healing process. In contrast, although the 64:64 ?g/mL mixture showed excellent antibacterial efficacy, it was toxic to erythrocytes and mammalian cells. It implies that dose optimization is required to balance its efficacy and toxicity. Therefore, the P1 and AgNP combinations exhibit synergistic antimicrobial activity and have the potential to resolve bacterial infections.
en-copyright=
kn-copyright=
en-aut-name=ThonginThanyamai
en-aut-sei=Thongin
en-aut-mei=Thanyamai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SawatdeeSomchai
en-aut-sei=Sawatdee
en-aut-mei=Somchai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SongnakaNuttapon
en-aut-sei=Songnaka
en-aut-mei=Nuttapon
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=UchiyamaJumpei
en-aut-sei=Uchiyama
en-aut-mei=Jumpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WiwasukuTheanchai
en-aut-sei=Wiwasuku
en-aut-mei=Theanchai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SrichanaTeerapol
en-aut-sei=Srichana
en-aut-mei=Teerapol
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakphengTitpawan
en-aut-sei=Nakpheng
en-aut-mei=Titpawan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AtipairinApichart
en-aut-sei=Atipairin
en-aut-mei=Apichart
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil= School of Pharmacy, Walailak University
kn-affil=
affil-num=2
en-affil= School of Pharmacy, Walailak University
kn-affil=
affil-num=3
en-affil= School of Pharmacy, Walailak University
kn-affil=
affil-num=4
en-affil=Department of Bacteriology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=School of Science, Walailak University
kn-affil=
affil-num=6
en-affil=Drug Delivery System Excellence Center and Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University
kn-affil=
affil-num=7
en-affil=Drug Delivery System Excellence Center and Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University
kn-affil=
affil-num=8
en-affil= School of Pharmacy, Walailak University
kn-affil=
en-keyword=antimicrobial peptide
kn-keyword=antimicrobial peptide
en-keyword=Brevibacillus sp. SPR20
kn-keyword=Brevibacillus sp. SPR20
en-keyword=silver nanoparticle
kn-keyword=silver nanoparticle
en-keyword=synergistic effect
kn-keyword=synergistic effect
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=7
article-no=
start-page=e70506
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250626
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Tongue Schwannoma at the Median Inferior Surface in the Elderly: A Case Report
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We report the extremely rare case of an atypical schwannoma that occurred at the median inferior surface of the tongue in an elderly patient. We performed an excisional biopsy to achieve a definitive diagnosis. Based on the histopathological findings, we diagnosed a schwannoma (mixed type, Antoni A/B).
en-copyright=
kn-copyright=
en-aut-name=FukushimaKiho
en-aut-sei=Fukushima
en-aut-mei=Kiho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OnoKisho
en-aut-sei=Ono
en-aut-mei=Kisho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ObataKyoichi
en-aut-sei=Obata
en-aut-mei=Kyoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamamotoIzumi
en-aut-sei=Yamamoto
en-aut-mei=Izumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KunisadaYuki
en-aut-sei=Kunisada
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YutoriHirokazu
en-aut-sei=Yutori
en-aut-mei=Hirokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IbaragiSoichiro
en-aut-sei=Ibaragi
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=elderly
kn-keyword=elderly
en-keyword=inferior surface of the tongue
kn-keyword=inferior surface of the tongue
en-keyword=schwannoma
kn-keyword=schwannoma
en-keyword=tongue tumor
kn-keyword=tongue tumor
END
start-ver=1.4
cd-journal=joma
no-vol=104
cd-vols=
no-issue=2
article-no=
start-page=151495
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Tri-culture model of intestinal epithelial cell, macrophage, and bacteria for the triggering of inflammatory bowel disease on a microfluidic device
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Inflammatory bowel disease (IBD) involves gastrointestinal inflammation, due to intestinal epithelial barrier destruction caused by excessive immune activation. Conventional cell culture systems do not provide a model system that can recapitulate the complex interactions between epithelial cells, immune cells, and intestinal bacteria. To address this, we developed a microfluidic device that mimics the inflammatory response associated with microbial invasion of the intestinal mucosa. The device consisted of two media channels, an upper and a lower channel, and a porous membrane between these channels on which C2BBe1 intestinal epithelial cells were seeded to form a tight junction layer. Each electrode was placed in contact with both channels to continuously monitor the tight junction state. Fresh medium flow allowed bacterial numbers to be controlled and bacterial toxins to be removed, allowing co-culture of mammalian cells and bacteria. In addition, RAW264 macrophage cells were attached to the bottom of the lower channel. By introducing E. coli into the lower channel, the RAW264 cells were activated and produced TNF-¿, successfully recapitulating a culture model of inflammation in which the C2BBe1cell tight junction layer was destroyed. The main structure of the device was initially made of polydimethylsiloxane to facilitate its widespread use, but with a view to introducing anaerobic bacteria in the future, a similar phenomenon was successfully reproduced using polystyrene. When TPCA-1, an IÈB kinase 2 inhibitor was added into this IBD culture model, the tight junction destruction was significantly suppressed. The results suggest that this IBD culture model also is useful as a screening system for anti-IBD drugs.
en-copyright=
kn-copyright=
en-aut-name=TamuraShiori
en-aut-sei=Tamura
en-aut-mei=Shiori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=PasangClarissa Ellice Talitha
en-aut-sei=Pasang
en-aut-mei=Clarissa Ellice Talitha
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TsudaMinami
en-aut-sei=Tsuda
en-aut-mei=Minami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MaShilan
en-aut-sei=Ma
en-aut-mei=Shilan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShindoHiromasa
en-aut-sei=Shindo
en-aut-mei=Hiromasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NagaokaNoriyuki
en-aut-sei=Nagaoka
en-aut-mei=Noriyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OhkuboTomoki
en-aut-sei=Ohkubo
en-aut-mei=Tomoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=FujiyamaYoichi
en-aut-sei=Fujiyama
en-aut-mei=Yoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TamaiMiho
en-aut-sei=Tamai
en-aut-mei=Miho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TagawaYoh-ichi
en-aut-sei=Tagawa
en-aut-mei=Yoh-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=School of Life Science and Technology, Institute of Science Tokyo
kn-affil=
affil-num=2
en-affil=School of Life Science and Technology, Tokyo Institute of Technology
kn-affil=
affil-num=3
en-affil=School of Life Science and Technology, Tokyo Institute of Technology
kn-affil=
affil-num=4
en-affil=School of Life Science and Technology, Institute of Science Tokyo
kn-affil=
affil-num=5
en-affil=School of Life Science and Technology, Tokyo Institute of Technology
kn-affil=
affil-num=6
en-affil=Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Biology-Chemistry Unit, Technology Research Laboratory, Shimadzu Corporation
kn-affil=
affil-num=8
en-affil=Biology-Chemistry Unit, Technology Research Laboratory, Shimadzu Corporation
kn-affil=
affil-num=9
en-affil=School of Life Science and Technology, Tokyo Institute of Technology
kn-affil=
affil-num=10
en-affil=School of Life Science and Technology, Institute of Science Tokyo
kn-affil=
en-keyword=Intestine chip
kn-keyword=Intestine chip
en-keyword=Inflammatory bowel disease
kn-keyword=Inflammatory bowel disease
en-keyword=Co-culture
kn-keyword=Co-culture
en-keyword=Tri-culture
kn-keyword=Tri-culture
en-keyword=Fluidic device
kn-keyword=Fluidic device
en-keyword=Disease model
kn-keyword=Disease model
en-keyword=Macrophage
kn-keyword=Macrophage
en-keyword=Inflammation
kn-keyword=Inflammation
END
start-ver=1.4
cd-journal=joma
no-vol=272
cd-vols=
no-issue=1
article-no=
start-page=36
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241212
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Genetic and functional analyses of SPTLC1 in juvenile amyotrophic lateral sclerosis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder of the motor system. Pathogenic variants in SPTLC1, encoding a subunit of serine palmitoyltransferase, cause hereditary sensory and autonomic neuropathy type 1 (HSAN1), and have recently been associated with juvenile ALS. SPTLC1 variants associated with ALS cause elevated levels of sphinganines and ceramides. Reports on ALS associated with SPTLC1 remain limited. This study aimed to investigate the frequency of SPTLC1 variants in ALS and relevant clinical characteristics.
Methods We analyzed whole-exome and whole-genome sequence data from 40 probands with familial ALS and 413 patients with sporadic ALS without previously identified causative variants. Reverse transcription polymerase chain reaction (RT-PCR) analysis and droplet digital PCR (ddPCR) were used to assess splicing and mosaicism, respectively. Plasma sphingolipid levels were quantified to analyze biochemical consequences.
Results The heterozygous c.58G>A, p.Ala20Thr variant was identified in a 21-year-old Japanese female patient presenting with symmetric weakness which slowly progressed over 15 years. RT-PCR analysis showed no splice defects. Plasma sphingolipid levels in the patient were significantly increased compared to her asymptomatic parents. ddPCR revealed that the asymptomatic father harbored a mosaic variant with 17% relative mutant allele abundance in peripheral blood leukocytes.
Conclusions We identified a pathogenic c.58G>A, p.Ala20Thr SPTLC1 variant in a patient with juvenile ALS, likely inherited from an asymptomatic parent with mosaicism. Lipid analysis results are consistent with previous findings on SPTLC1-associated ALS. Further studies are necessary to determine the clinical effect of mosaic variants of SPTLC1.
en-copyright=
kn-copyright=
en-aut-name=OkuboSo
en-aut-sei=Okubo
en-aut-mei=So
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NaruseHiroya
en-aut-sei=Naruse
en-aut-mei=Hiroya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SudoAtsushi
en-aut-sei=Sudo
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=EsakiKayoko
en-aut-sei=Esaki
en-aut-mei=Kayoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MitsuiJun
en-aut-sei=Mitsui
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsukawaTakashi
en-aut-sei=Matsukawa
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SatakeWataru
en-aut-sei=Satake
en-aut-mei=Wataru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=GreimelPeter
en-aut-sei=Greimel
en-aut-mei=Peter
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ShingaiNanoka
en-aut-sei=Shingai
en-aut-mei=Nanoka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OyaYasushi
en-aut-sei=Oya
en-aut-mei=Yasushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=YoshikawaTakeo
en-aut-sei=Yoshikawa
en-aut-mei=Takeo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TsujiShoji
en-aut-sei=Tsuji
en-aut-mei=Shoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TodaTatsushi
en-aut-sei=Toda
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=2
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=3
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=5
en-affil=Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University
kn-affil=
affil-num=6
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=7
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=8
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=9
en-affil=Laboratory for Cell Function Dynamics, RIKEN Centre for Brain Sciences
kn-affil=
affil-num=10
en-affil=Division of Applied Life Science, Graduate School of Engineering, Sojo University
kn-affil=
affil-num=11
en-affil=Department of Neurology, National Center of Neurology and Psychiatry
kn-affil=
affil-num=12
en-affil=Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science
kn-affil=
affil-num=13
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=14
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
en-keyword=Juvenile amyotrophic lateral sclerosis
kn-keyword=Juvenile amyotrophic lateral sclerosis
en-keyword=SPTLC1
kn-keyword=SPTLC1
en-keyword=Sphingolipids
kn-keyword=Sphingolipids
en-keyword=Mosaicism
kn-keyword=Mosaicism
END
start-ver=1.4
cd-journal=joma
no-vol=64
cd-vols=
no-issue=14
article-no=
start-page=2240
end-page=2244
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250715
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Wilson's Disease Preceded by Schizophrenia-like Symptoms with Frontal-dominant Leukoencephalopathy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We herein report a 26-year-old man diagnosed with Wilson's disease (WD), initially treated for schizophrenia for 11 years. At 26 years old, he was admitted because of status epilepticus. Brain magnetic resonance imaging revealed frontal-dominant leukoencephalopathy with cystic changes and basal ganglia atrophy. The diagnosis of WD was confirmed based on neuropsychiatric symptoms, Kayser-Fleischer rings, abnormal copper metabolism, and a genetic analysis of ATP7B. Psychotic symptoms in WD can precede neurological manifestations, and extrapyramidal signs may be mistaken for drug-induced Parkinsonism. WD should be considered in patients presenting with progressive Parkinsonism preceded by schizophrenia-like psychiatric symptoms.
en-copyright=
kn-copyright=
en-aut-name=MiyanoRyoji
en-aut-sei=Miyano
en-aut-mei=Ryoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MitsutakeAkihiko
en-aut-sei=Mitsutake
en-aut-mei=Akihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MatsukawaTakashi
en-aut-sei=Matsukawa
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ObataSatomi
en-aut-sei=Obata
en-aut-mei=Satomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KoyamaHiroaki
en-aut-sei=Koyama
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakaiYudai
en-aut-sei=Nakai
en-aut-mei=Yudai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KubotaAkatsuki
en-aut-sei=Kubota
en-aut-mei=Akatsuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ShimizuJun
en-aut-sei=Shimizu
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SakuishiKaori
en-aut-sei=Sakuishi
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TodaTatsushi
en-aut-sei=Toda
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=2
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=3
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=4
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=5
en-affil=Department of Radiology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=6
en-affil=Department of Radiology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=7
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=9
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=10
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=11
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
en-keyword=Wilsonfs disease
kn-keyword=Wilsonfs disease
en-keyword=leukoencephalopathy
kn-keyword=leukoencephalopathy
en-keyword=brain MRI
kn-keyword=brain MRI
en-keyword=ATP7B
kn-keyword=ATP7B
en-keyword=schizophrenia
kn-keyword=schizophrenia
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=15
article-no=
start-page=e71098
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Real]World Data of Comprehensive Cancer Genomic Profiling Tests Performed in the Routine Clinical Setting in Sarcoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction: Next-generation sequencing-based comprehensive cancer genomic profiling (CGP) tests are beneficial for refining diagnosis and personalized treatment of various cancers. However, the clinical impact of CGP, as covered by public health insurance in the management of sarcomas, remains unknown. Especially, the data on the utility of the newly emerging dual DNA?RNA panel compared to the conventional DNA-only panel in clinical settings is lacking. Therefore, we evaluated the utility of CGP in routine clinical practice for sarcoma treatment.
Patients and Methods: In this study, three types of DNA panel and one DNA?RNA panel, reimbursed by Japanese public health insurance, were utilized. We detected oncogenic and druggable gene mutations and genotype-matched therapies.
Results: One hundred and thirty-six patients were included in this study. Based on the detection of highly histology-specific translocations in the sequencing results, 2.2% of patients were re-classified. In patients with translocation-related sarcomas, a DNA?RNA panel identified more histology-specific fusion genes than DNA panels (p?=?0.0035). Specifically, 86.8% and 39.0% of patients had oncogenic and druggable genomic alterations, respectively. Of these, 9.6% underwent genotype-matched therapy, with a 36.3% response rate and an 81.8% disease control rate. Patients who were administered genomically matched therapy had better overall survival (OS) than those who did not in patients with metastatic or advanced sarcoma with no prior chemotherapy (3-year OS: 83.3% vs. 48.0%, p?=?0.42). Patients with TP53 and RB1 mutations had worse OS than those without. Germline findings were detected in 11.0% of the patients, one of whom had a truly germline origin.
Conclusions: This study suggests that publicly reimbursed CGP tests, particularly the dual DNA?RNA panel, could be beneficial for refining diagnostic precision in selected sarcoma subtypes, treatment decisions, detecting the germline findings, and prognosis prediction in routine clinical settings for sarcoma. The implementation of genotype-matched therapies showed favorable clinical outcomes and improved the prognosis.
en-copyright=
kn-copyright=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=EnnishiDaisuke
en-aut-sei=Ennishi
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OsoneTatsunori
en-aut-sei=Osone
en-aut-mei=Tatsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NinomiyaKiichiro
en-aut-sei=Ninomiya
en-aut-mei=Kiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TomidaShuta
en-aut-sei=Tomida
en-aut-mei=Shuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ItanoTakuto
en-aut-sei=Itano
en-aut-mei=Takuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=FujiwaraTomohiro
en-aut-sei=Fujiwara
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KunisadaToshiyuki
en-aut-sei=Kunisada
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IdaNaoyuki
en-aut-sei=Ida
en-aut-mei=Naoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YamamotoHideki
en-aut-sei=Yamamoto
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=FutagawaMashu
en-aut-sei=Futagawa
en-aut-mei=Mashu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ShimoiTatsunori
en-aut-sei=Shimoi
en-aut-mei=Tatsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=YanaiHiroyuki
en-aut-sei=Yanai
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=HirasawaAkira
en-aut-sei=Hirasawa
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=TabataMasahiro
en-aut-sei=Tabata
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Medical Oncology, National Cancer Center Hospital
kn-affil=
affil-num=13
en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Center for Clinical Oncology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=17
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=comprehensive genomic profiling
kn-keyword=comprehensive genomic profiling
en-keyword=genotype-matched therapy
kn-keyword=genotype-matched therapy
en-keyword=multiplex gene panel test
kn-keyword=multiplex gene panel test
en-keyword=sarcoma
kn-keyword=sarcoma
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250613
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Distinct age-related effects of homologous recombination deficiency on genomic profiling and treatment efficacy in gastric cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background The incidence of gastric cancer among younger patients is increasing globally, with growing attention being paid to the role of homologous recombination deficiency (HRD). However, the effect of HRD on treatment outcomes and prognosis in this population remains unclear.
Methods We analyzed clinical and genomic data from the Center for Cancer Genomics and Advanced Therapeutics database. Younger patients (??39 years, n?=?140) were compared with older patients (??65 years, n?=?1118) diagnosed with gastric cancer. This study focused on mutations in homologous recombination repair (HRR) genes and their association with tumor mutation burden (TMB), microsatellite instability (MSI), and treatment outcomes.
Results In older patients, HRD was associated with higher TMB and microsatellite instability-high (MSI-H) status, whereas no such correlations were observed in younger patients. Notably, MSI-H status was not observed in the younger group. Younger patients with HRD had a significantly shorter time to treatment failure (TTF) and overall survival (OS) than those without HRD. Conversely, in older patients, there was no significant difference in TTF or OS based on HRD status.
Conclusion HRR gene mutations influence genomic profiling, TMB, and MSI differently depending on the age of gastric cancer onset, suggesting potential effects on treatment efficacy and prognosis.
en-copyright=
kn-copyright=
en-aut-name=MakiYoshie
en-aut-sei=Maki
en-aut-mei=Yoshie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KonoYoshiyasu
en-aut-sei=Kono
en-aut-mei=Yoshiyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OzatoToshiki
en-aut-sei=Ozato
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamamotoHideki
en-aut-sei=Yamamoto
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HirasawaAkira
en-aut-sei=Hirasawa
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=EnnishiDaisuke
en-aut-sei=Ennishi
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TomidaShuta
en-aut-sei=Tomida
en-aut-mei=Shuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HamadaKenta
en-aut-sei=Hamada
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=IwamuroMasaya
en-aut-sei=Iwamuro
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KawanoSeiji
en-aut-sei=Kawano
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Faculty of Medicine, Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Faculty of Medicine, Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Medicine, Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Clinical Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Clinical Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Faculty of Medicine, Department of Practical Gastrointestinal Endoscopy, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Faculty of Medicine, Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Faculty of Medicine, Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Homologous recombination repair gene
kn-keyword=Homologous recombination repair gene
en-keyword=Early-onset gastric cancer
kn-keyword=Early-onset gastric cancer
en-keyword=Comprehensive genomic profiling
kn-keyword=Comprehensive genomic profiling
END
start-ver=1.4
cd-journal=joma
no-vol=638
cd-vols=
no-issue=8049
article-no=
start-page=225
end-page=236
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250122
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Immune evasion through mitochondrial transfer in the tumour microenvironment
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Cancer cells in the tumour microenvironment use various mechanisms to evade the immune system, particularly T?cell attack1. For example, metabolic reprogramming in the tumour microenvironment and mitochondrial dysfunction in tumour-infiltrating lymphocytes (TILs) impair antitumour immune responses2,3,4. However, detailed mechanisms of such processes remain unclear. Here we analyse clinical specimens and identify mitochondrial DNA (mtDNA) mutations in TILs that are shared with cancer cells. Moreover, mitochondria with mtDNA mutations from cancer cells are able to transfer to TILs. Typically, mitochondria in TILs readily undergo mitophagy through reactive oxygen species. However, mitochondria transferred from cancer cells do not undergo mitophagy, which we find is due to mitophagy-inhibitory molecules. These molecules attach to mitochondria and together are transferred to TILs, which results in homoplasmic replacement. T?cells that acquire mtDNA mutations from cancer cells exhibit metabolic abnormalities and senescence, with defects in effector functions and memory formation. This in turn leads to impaired antitumour immunity both in vitro and in vivo. Accordingly, the presence of an mtDNA mutation in tumour tissue is a poor prognostic factor for immune checkpoint inhibitors in patients with melanoma or non-small-cell lung cancer. These findings reveal a previously unknown mechanism of cancer immune evasion through mitochondrial transfer and can contribute to the development of future cancer immunotherapies.
en-copyright=
kn-copyright=
en-aut-name=IkedaHideki
en-aut-sei=Ikeda
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawaseKatsushige
en-aut-sei=Kawase
en-aut-mei=Katsushige
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishiTatsuya
en-aut-sei=Nishi
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=WatanabeTomofumi
en-aut-sei=Watanabe
en-aut-mei=Tomofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakenagaKeizo
en-aut-sei=Takenaga
en-aut-mei=Keizo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=InozumeTakashi
en-aut-sei=Inozume
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IshinoTakamasa
en-aut-sei=Ishino
en-aut-mei=Takamasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AkiSho
en-aut-sei=Aki
en-aut-mei=Sho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=LinJason
en-aut-sei=Lin
en-aut-mei=Jason
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KawashimaShusuke
en-aut-sei=Kawashima
en-aut-mei=Shusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NagasakiJoji
en-aut-sei=Nagasaki
en-aut-mei=Joji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=UedaYouki
en-aut-sei=Ueda
en-aut-mei=Youki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=SuzukiShinichiro
en-aut-sei=Suzuki
en-aut-mei=Shinichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=MakinoshimaHideki
en-aut-sei=Makinoshima
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=ItamiMakiko
en-aut-sei=Itami
en-aut-mei=Makiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=NakamuraYuki
en-aut-sei=Nakamura
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=TatsumiYasutoshi
en-aut-sei=Tatsumi
en-aut-mei=Yasutoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=SuenagaYusuke
en-aut-sei=Suenaga
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=MorinagaTakao
en-aut-sei=Morinaga
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=Honobe-TabuchiAkiko
en-aut-sei=Honobe-Tabuchi
en-aut-mei=Akiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=OhnumaTakehiro
en-aut-sei=Ohnuma
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=KawamuraTatsuyoshi
en-aut-sei=Kawamura
en-aut-mei=Tatsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=UmedaYoshiyasu
en-aut-sei=Umeda
en-aut-mei=Yoshiyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=NakamuraYasuhiro
en-aut-sei=Nakamura
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=KiniwaYukiko
en-aut-sei=Kiniwa
en-aut-mei=Yukiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=IchiharaEiki
en-aut-sei=Ichihara
en-aut-mei=Eiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=HayashiHidetoshi
en-aut-sei=Hayashi
en-aut-mei=Hidetoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=IkedaJun-ichiro
en-aut-sei=Ikeda
en-aut-mei=Jun-ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=HanazawaToyoyuki
en-aut-sei=Hanazawa
en-aut-mei=Toyoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=ManoHiroyuki
en-aut-sei=Mano
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=SuzukiTakuji
en-aut-sei=Suzuki
en-aut-mei=Takuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
en-aut-name=OsawaTsuyoshi
en-aut-sei=Osawa
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=33
ORCID=
en-aut-name=KawazuMasahito
en-aut-sei=Kawazu
en-aut-mei=Masahito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=34
ORCID=
en-aut-name=TogashiYosuke
en-aut-sei=Togashi
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=35
ORCID=
affil-num=1
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=2
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=3
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Division of Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute
kn-affil=
affil-num=6
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=7
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Division of Nutriomics and Oncology, RCAST, The University of Tokyo
kn-affil=
affil-num=9
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=10
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan Department of Dermatology, Graduate School of Medicine, Chiba University
kn-affil=
affil-num=11
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Medical Oncology, Kindai University Faculty of Medicine
kn-affil=
affil-num=14
en-affil=Tsuruoka Metabolomics Laboratory, National Cancer Center
kn-affil=
affil-num=15
en-affil=Department of Surgical Pathology, Chiba Cancer Center
kn-affil=
affil-num=16
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=17
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=18
en-affil=Laboratory of Evolutionary Oncology, Chiba Cancer Center Research Institute
kn-affil=
affil-num=19
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=20
en-affil=Department of Dermatology, Faculty of Medicine, University of Yamanashi
kn-affil=
affil-num=21
en-affil=Department of Dermatology, Faculty of Medicine, University of Yamanashi
kn-affil=
affil-num=22
en-affil=Department of Dermatology, Faculty of Medicine, University of Yamanashi
kn-affil=
affil-num=23
en-affil=Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center
kn-affil=
affil-num=24
en-affil=Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center
kn-affil=
affil-num=25
en-affil=Department of Dermatology, Shinshu University School of Medicine
kn-affil=
affil-num=26
en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=27
en-affil=Department of Medical Oncology, Kindai University Faculty of Medicine
kn-affil=
affil-num=28
en-affil=Department of Diagnostic Pathology, Graduate School of Medicine, Chiba University
kn-affil=
affil-num=29
en-affil=Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine
kn-affil=
affil-num=30
en-affil=Department of General Thoracic Surgery and Endocrinological Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=31
en-affil=Division of Cellular Signalling, National Cancer Center Research Institute
kn-affil=
affil-num=32
en-affil=Department of Respirology, Graduate School of Medicine, Chiba University
kn-affil=
affil-num=33
en-affil=Division of Nutriomics and Oncology, RCAST, The University of Tokyo
kn-affil=
affil-num=34
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=35
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=
article-no=
start-page=1477
end-page=1486
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250719
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Predictive Value of Tumor ERCC1 Expression for Treatment Outcomes After Adjuvant Chemotherapy in Patients with Completely Resected Non-Small Cell Lung Cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose: To evaluate the predictive value of tumor expression of the excision repair cross-complementation group 1 gene (ERCC1) for the treatment outcomes after platinum-based adjuvant chemotherapy in patients with completely resected non-small cell lung cancer (NSCLC).
Methods: In this study, we conducted immunohistochemical analysis using a mouse monoclonal anti-ERCC1 antibody (clone 8F1) of operative specimens obtained from 238 patients enrolled in the SLCG0401 study which compared paclitaxel plus carboplatin (CBDCA+PTX) with uracil-tegafur (UFT) as adjuvant chemotherapy for stage IB-IIIA NSCLC. The overall survival (OS) of the patients was compared according to the ERCC1 expression status and adjuvant chemotherapy employed.
Results: Of the 238 specimens, 102 (42.9%) showed a positive result for ERCC1 expression. There were no significant differences in the patient characteristics or OS between the tumor ERCC1-positive and -negative patient groups. Among the patients with ERCC1-negative tumors, there was no significant difference in the survival between patient groups treated with CBDCA+PTX and UFT (HR=0.932, 95% CI: 0.52? 1.67, p=0.814). However, among the patients with ERCC1-positive tumors, CBDCA+PTX treatment tended to yield an inferior outcome, in terms of the OS, as compared with UFT treatment (HR=1.852, 95% CI: 0.92? 3.73, p=0.080). Multivariate analysis showed that ERCC1 expression was not an independent predictor of the OS following CBDCA+PTX treatment in completely resected NSCLC patients.
Conclusion: In completely resected NSCLC patients with positive tumor ERCC1 expression, adjuvant CBDCA+PTX treatment tended to yield an inferior outcome as compared with UFT treatment in terms of the OS. However, immunohistochemical analysis with the 8F1 antibody cannot be used for clinical decision making at this point.
en-copyright=
kn-copyright=
en-aut-name=NakataMasao
en-aut-sei=Nakata
en-aut-mei=Masao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SaishoShinsuke
en-aut-sei=Saisho
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SohJunichi
en-aut-sei=Soh
en-aut-mei=Junichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OkumuraNorihito
en-aut-sei=Okumura
en-aut-mei=Norihito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakamuraHiroshige
en-aut-sei=Nakamura
en-aut-mei=Hiroshige
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamashitaMotohiro
en-aut-sei=Yamashita
en-aut-mei=Motohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=DateHiroshi
en-aut-sei=Date
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of General Thoracic Surgery, Kawasaki Medical School
kn-affil=
affil-num=2
en-affil=Department of General Thoracic Surgery, Kawasaki Medical School
kn-affil=
affil-num=3
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Thoracic Surgery, Kurashiki Central Hospital
kn-affil=
affil-num=5
en-affil=Division of General Thoracic Surgery and Breast and Endocrine Surgery, Department of Surgery, Faculty of Medicine, Tottori University
kn-affil=
affil-num=6
en-affil=Department of Thoracic Surgery, National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=7
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Thoracic Surgery, Kyoto University Graduate School of Medicine
kn-affil=
en-keyword=non-small cell lung cancer
kn-keyword=non-small cell lung cancer
en-keyword=postoperative adjuvant chemotherapy
kn-keyword=postoperative adjuvant chemotherapy
en-keyword=platinum-based chemotherapy
kn-keyword=platinum-based chemotherapy
en-keyword=excision repair crosscomplementation group 1 gene
kn-keyword=excision repair crosscomplementation group 1 gene
en-keyword=survival
kn-keyword=survival
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=1
article-no=
start-page=cr.25-0262
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Case of Omental Bleeding as a Result of Segmental Arterial Mediolysis Treated Successfully by Laparoscopic Partial Omentectomy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=INTRODUCTION: Segmental arterial mediolysis (SAM) is a rare, non-atherosclerotic, non-inflammatory arteriopathy characterized by lysis of the arterial media, leading to aneurysm formation and possible rupture. Although visceral arteries are typically involved, SAM-induced omental bleeding is extremely uncommon. While transcatheter arterial embolization (TAE) has been reported, surgical resection offers both definitive hemostasis and histopathological confirmation.
CASE PRESENTATION: A 56-year-old man presented with upper abdominal pain without a history of trauma. Contrast-enhanced CT revealed a hematoma and fusiform dilation of an omental artery, suggesting omental hemorrhage. As he was hemodynamically stable, initial conservative management was chosen. However, a follow-up CT on day 7 demonstrated aneurysm enlargement, prompting laparoscopic partial omentectomy. Intraoperative findings included a 5-cm hematoma in the central omentum. Histopathological examination showed vacuolization of the tunica media and loss of the internal elastic lamina, confirming the diagnosis of SAM. The patient had an uneventful postoperative course and was discharged on the 3rd postoperative day.
CONCLUSIONS: This rare case of SAM-related omental bleeding was successfully treated with laparoscopic partial omentectomy. Tailored treatment strategies including laparoscopic surgery are essential for optimal outcomes in SAM.
en-copyright=
kn-copyright=
en-aut-name=MimataYudai
en-aut-sei=Mimata
en-aut-mei=Yudai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KanayaNobuhiko
en-aut-sei=Kanaya
en-aut-mei=Nobuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KondoYoshitaka
en-aut-sei=Kondo
en-aut-mei=Yoshitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MinagiHitoshi
en-aut-sei=Minagi
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KakiuchiYoshihiko
en-aut-sei=Kakiuchi
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KurodaShinji
en-aut-sei=Kuroda
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ShigeyasuKunitoshi
en-aut-sei=Shigeyasu
en-aut-mei=Kunitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KagawaShunsuke
en-aut-sei=Kagawa
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=segmental arterial mediolysis
kn-keyword=segmental arterial mediolysis
en-keyword=laparoscopic partial omentectomy
kn-keyword=laparoscopic partial omentectomy
en-keyword=hemoperitoneum
kn-keyword=hemoperitoneum
END
start-ver=1.4
cd-journal=joma
no-vol=8
cd-vols=
no-issue=6
article-no=
start-page=1008
end-page=1016
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240422
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=High risk of multiple gastric cancers in Japanese individuals with Lynch syndrome
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Aim: Lynch syndrome (LS) is a dominantly inherited syndrome characterized by an increased risk for LS associated tumors such as colorectal cancer (CRC) and gastric cancer (GC). However, the clinical benefit of surveillance for GC remains unclear while it has already been recommended for CRC. This study aimed to elucidate the clinical features of GC in Japanese individuals with LS, and the risk of developing multiple GCs to build regional-tailored surveillance programs in LS patients with GC.
Methods: Data on Japanese individuals with LS were retrospectively collected from a single institution. The clinical features of GC, including the cumulative risk of multiple GCs, were analyzed.
Results: Among 96 individuals with LS (MLH1/MSH2/MSH6, 75:20:1), 32 GC lesions were detected in 15 individuals with LS (male/female, 11:4). The median age at initial GC diagnosis was 52.7?y (range: 28?71). Histological examination revealed a predominance of intestinal type (19/24: 87.5%). Moreover, the majority of the GC lesions (82%) were determined to have high-frequency of microsatellite instability. The cumulative risk of individuals with LS developing GC at 70?y was 31.3% (MLH1 36.1%, MSH2 18.0%). Notably, the cumulative risk of individuals with LS developing metachronous and/or synchronous GCs at 0, 10 and 20?y after initial diagnosis of GC was 26.7%, 40.7%, and 59.4%, respectively.
Conclusion: Due to a higher risk of developing multiple GCs, intensive surveillance might be especially recommended for Japanese individuals with LS associated initial GC.
en-copyright=
kn-copyright=
en-aut-name=KanayaNobuhiko
en-aut-sei=Kanaya
en-aut-mei=Nobuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=van SchaikThijs A.
en-aut-sei=van Schaik
en-aut-mei=Thijs A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AokiHideki
en-aut-sei=Aoki
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SatoYumiko
en-aut-sei=Sato
en-aut-mei=Yumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TaniguchiFumitaka
en-aut-sei=Taniguchi
en-aut-mei=Fumitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShigeyasuKunitoshi
en-aut-sei=Shigeyasu
en-aut-mei=Kunitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SuganoKokichi
en-aut-sei=Sugano
en-aut-mei=Kokichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AkagiKiwamu
en-aut-sei=Akagi
en-aut-mei=Kiwamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IshidaHideyuki
en-aut-sei=Ishida
en-aut-mei=Hideyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TanakayaKohji
en-aut-sei=Tanakaya
en-aut-mei=Kohji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School
kn-affil=
affil-num=3
en-affil=Department of Surgery, National Hospital Organization Iwakuni Clinical Center
kn-affil=
affil-num=4
en-affil=Department of Pathology, National Hospital Organization Iwakuni Clinical Center
kn-affil=
affil-num=5
en-affil=Department of Surgery, National Hospital Organization Iwakuni Clinical Center
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Genetic Medicine, Kyoundo Hospital, SSasaki Foundation
kn-affil=
affil-num=8
en-affil=Division of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center
kn-affil=
affil-num=9
en-affil=Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University
kn-affil=
affil-num=10
en-affil=Department of Surgery, National Hospital Organization Iwakuni Clinical Center
kn-affil=
en-keyword=cumulative risk
kn-keyword=cumulative risk
en-keyword=gastric cancer
kn-keyword=gastric cancer
en-keyword=Japanese individuals
kn-keyword=Japanese individuals
en-keyword=Lynch syndrome
kn-keyword=Lynch syndrome
en-keyword=multiple gastric cancers
kn-keyword=multiple gastric cancers
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=5
article-no=
start-page=271
end-page=277
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240329
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Japan MSA registry: A multicenter cohort study of multiple system atrophy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Multiple system atrophy (MSA) is a neurodegenerative disorder characterized by autonomic failure and various motor symptoms. While MSA-C (cerebellar type) predominates in East Asia, MSA-P (parkinsonian type) predominates in Europe and North America. This nationwide patient registry aimed to (1) conduct a prospective natural history study of MSA in Japan, (2) facilitate patient recruitment for clinical trials, and (3) deposit bioresources and clinical information in a biobank.
Methods: Thirteen institutions participated in this study. Clinical information was obtained by neurologists from the patients visiting the hospital every 12?months to assess the UMSARS Part 2 scores and by telephone interviews by nurses every 6?months to assess UMSARS Part 1 scores and to determine whether clinical events had occurred.
Results: Demographic data from 329 MSA patients (216 MSA-C and 113 MSA-P) were analyzed. The mean age at symptom onset was 58.2?years (standard deviation, 8.9); the mean duration of symptoms at enrollment was 3.5?years (standard deviation, 2.2). The mean 12-month changes in the UMSARS Part 1 and Part 2 scores were 7.9 (standard deviation, 5.6) and 6.4 (standard deviation, 5.9), respectively. The patient registry proved useful in recruiting participants for clinical trials, including those with gene variants. Clinical information and biospecimens were deposited in a biobank.
Discussion: The study highlighted the importance of telephone interviews in minimizing drop-out rates in natural history studies and demonstrated similar MSA progression rates across populations. The deposited bioresources are available to researchers upon request, aiming to contribute to future MSA researches.
en-copyright=
kn-copyright=
en-aut-name=ChikadaAyaka
en-aut-sei=Chikada
en-aut-mei=Ayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OrimoKenta
en-aut-sei=Orimo
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MitsuiJun
en-aut-sei=Mitsui
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MatsukawaTakashi
en-aut-sei=Matsukawa
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TodaTatsushi
en-aut-sei=Toda
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MizusawaHidehiro
en-aut-sei=Mizusawa
en-aut-mei=Hidehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakahashiYuji
en-aut-sei=Takahashi
en-aut-mei=Yuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KatsunoMasahisa
en-aut-sei=Katsuno
en-aut-mei=Masahisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HaraKazuhiro
en-aut-sei=Hara
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OnoderaOsamu
en-aut-sei=Onodera
en-aut-mei=Osamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=IshiharaTomohiko
en-aut-sei=Ishihara
en-aut-mei=Tomohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TadaMasayoshi
en-aut-sei=Tada
en-aut-mei=Masayoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KuwabaraSatoshi
en-aut-sei=Kuwabara
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=SugiyamaAtsuhiko
en-aut-sei=Sugiyama
en-aut-mei=Atsuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=YamanakaYoshitaka
en-aut-sei=Yamanaka
en-aut-mei=Yoshitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=TakahashiRyosuke
en-aut-sei=Takahashi
en-aut-mei=Ryosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=SawamotoNobukatsu
en-aut-sei=Sawamoto
en-aut-mei=Nobukatsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=SakatoYusuke
en-aut-sei=Sakato
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=IshimotoTomoyuki
en-aut-sei=Ishimoto
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=HanajimaRitsuko
en-aut-sei=Hanajima
en-aut-mei=Ritsuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=WatanabeYasuhiro
en-aut-sei=Watanabe
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=TakigawaHiroshi
en-aut-sei=Takigawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=AdachiTadashi
en-aut-sei=Adachi
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=AbeKoji
en-aut-sei=Abe
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=YamashitaToru
en-aut-sei=Yamashita
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=TakashimaHiroshi
en-aut-sei=Takashima
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=HigashiKeiko
en-aut-sei=Higashi
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=KiraJunichi
en-aut-sei=Kira
en-aut-mei=Junichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=YabeIchiro
en-aut-sei=Yabe
en-aut-mei=Ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=MatsushimaMasaaki
en-aut-sei=Matsushima
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=OgataKatsuhisa
en-aut-sei=Ogata
en-aut-mei=Katsuhisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
en-aut-name=IshikawaKinya
en-aut-sei=Ishikawa
en-aut-mei=Kinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=33
ORCID=
en-aut-name=NishidaYoichiro
en-aut-sei=Nishida
en-aut-mei=Yoichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=34
ORCID=
en-aut-name=IshiguroTaro
en-aut-sei=Ishiguro
en-aut-mei=Taro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=35
ORCID=
en-aut-name=OzakiKokoro
en-aut-sei=Ozaki
en-aut-mei=Kokoro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=36
ORCID=
en-aut-name=NagataTetsuya
en-aut-sei=Nagata
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=37
ORCID=
en-aut-name=TsujiShoji
en-aut-sei=Tsuji
en-aut-mei=Shoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=38
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=2
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=3
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=4
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=5
en-affil=Department of Neurology, Okayama University Graduate School of Medicine and Dentistry
kn-affil=
affil-num=6
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=7
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=8
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=9
en-affil=Department of Neurology, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Neurology, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Neurology, Brain Research Institute, Niigata University
kn-affil=
affil-num=12
en-affil=Department of Neurology, Brain Research Institute, Niigata University
kn-affil=
affil-num=13
en-affil=Department of Neurology, Brain Research Institute, Niigata University
kn-affil=
affil-num=14
en-affil=Department of Neurology, Graduate School of Medicine, Chiba University
kn-affil=
affil-num=15
en-affil=Department of Neurology, Graduate School of Medicine, Chiba University
kn-affil=
affil-num=16
en-affil=Department of Neurology, Graduate School of Medicine, Chiba University
kn-affil=
affil-num=17
en-affil=Department of Neurology, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=18
en-affil=Department of Human Health Sciences, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=19
en-affil=Department of Neurology, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=20
en-affil=Department of Neurology, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=21
en-affil=Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University
kn-affil=
affil-num=22
en-affil=Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University
kn-affil=
affil-num=23
en-affil=Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University
kn-affil=
affil-num=24
en-affil=Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University
kn-affil=
affil-num=25
en-affil=Department of Neurology, Okayama University Graduate School of Medicine and Dentistry
kn-affil=
affil-num=26
en-affil=Department of Neurology, Okayama University Graduate School of Medicine and Dentistry
kn-affil=
affil-num=27
en-affil=Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University
kn-affil=
affil-num=28
en-affil=Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University
kn-affil=
affil-num=29
en-affil=Department of Neurology, Graduate School of Medical Sciences, Kyushu University
kn-affil=
affil-num=30
en-affil=Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University
kn-affil=
affil-num=31
en-affil=Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University
kn-affil=
affil-num=32
en-affil=Department of Neurology, Higashi-Saitama National Hospital
kn-affil=
affil-num=33
en-affil=Department of Neurology and Neurological Science, Tokyo Medical and Dental University
kn-affil=
affil-num=34
en-affil=Department of Neurology and Neurological Science, Tokyo Medical and Dental University
kn-affil=
affil-num=35
en-affil=Department of Neurology and Neurological Science, Tokyo Medical and Dental University
kn-affil=
affil-num=36
en-affil=Department of Neurology and Neurological Science, Tokyo Medical and Dental University
kn-affil=
affil-num=37
en-affil=Department of Neurology and Neurological Science, Tokyo Medical and Dental University
kn-affil=
affil-num=38
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
en-keyword=multicenter cohort study
kn-keyword=multicenter cohort study
en-keyword=multiple system atrophy
kn-keyword=multiple system atrophy
en-keyword=natural history
kn-keyword=natural history
en-keyword=patient registry
kn-keyword=patient registry
END
start-ver=1.4
cd-journal=joma
no-vol=69
cd-vols=
no-issue=12
article-no=
start-page=613
end-page=621
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240718
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Association study of GBA1 variants with MSA based on comprehensive sequence analysis -Pitfalls in short-read sequence analysis depending on the human reference genome-
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Multiple system atrophy (MSA) is a neurodegenerative disorder characterized by various combinations of autonomic failure, parkinsonism, and cerebellar ataxia. To elucidate variants associated with MSA, we have been conducting short-read-based whole-genome sequence analysis. In the process of the association studies, we initially focused on GBA1, a previously proposed susceptibility gene for MSA, to evaluate whether GBA1 variants can be efficiently identified despite its extraordinarily high homology with its pseudogene, GBA1LP. To accomplish this, we conducted a short-read whole-genome sequence analysis with alignment to GRCh38 as well as Sanger sequence analysis and compared the results. We identified five variants with inconsistencies between the two pipelines, of which three variants (p.L483P, p.A495P?p.V499V, p.L483_M489delinsW) were the results of misalignment due to minor alleles in GBA1P1 registered in GRCh38. The miscalling events in these variants were resolved by alignment to GRCh37 as the reference genome, where the major alleles are registered. In addition, a structural variant was not properly identified either by short-read or by Sanger sequence analyses. Having accomplished correct variant calling, we identified three variants pathogenic for Gaucher disease (p.S310G, p.L483P, and p.L483_M489delinsW). Of these variants, the allele frequency of p.L483P (0.003) in the MSA cases was higher than that (0.0011) in controls. The meta-analysis incorporating a previous report demonstrated a significant association of p.L483P with MSA with an odds ratio of 2.85 (95% CI; 1.05 ? 7.76, p = 0.0400).
en-copyright=
kn-copyright=
en-aut-name=OrimoKenta
en-aut-sei=Orimo
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MitsuiJun
en-aut-sei=Mitsui
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MatsukawaTakashi
en-aut-sei=Matsukawa
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanakaMasaki
en-aut-sei=Tanaka
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NomotoJunko
en-aut-sei=Nomoto
en-aut-mei=Junko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OmaeYosuke
en-aut-sei=Omae
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KawaiYosuke
en-aut-sei=Kawai
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TokunagaKatsushi
en-aut-sei=Tokunaga
en-aut-mei=Katsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NCBN Controls WGS Consortium
en-aut-sei=NCBN Controls WGS Consortium
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TodaTatsushi
en-aut-sei=Toda
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TsujiShoji
en-aut-sei=Tsuji
en-aut-mei=Shoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=2
en-affil=Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=3
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=4
en-affil=Institute of Medical Genomics, International University of Health and Welfare
kn-affil=
affil-num=5
en-affil=Institute of Medical Genomics, International University of Health and Welfare
kn-affil=
affil-num=6
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Genome Medical Science Project, National Center for Global Health and Medicine
kn-affil=
affil-num=8
en-affil=Genome Medical Science Project, National Center for Global Health and Medicine
kn-affil=
affil-num=9
en-affil=Genome Medical Science Project, National Center for Global Health and Medicine
kn-affil=
affil-num=10
en-affil=
kn-affil=
affil-num=11
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=12
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=23
cd-vols=
no-issue=3
article-no=
start-page=79
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250703
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Association of the expression of 5?FU biomarkers with aging and prognosis in elderly patients with lung cancer treated with S?1 adjuvant chemotherapy: Follow?up results of the Setouchi Lung Cancer Group Study 1201
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Managing elderly patients presents several challenges because of age?related declines; however, age should not be the sole determinant for adjuvant treatment decisions in patients with non?small cell lung cancer (NSCLC). Moreover, age may affect the expression of 5?fluorouracil (5?FU) biomarkers. The present study assessed: i) The effect of age on the expression levels of 5?FU biomarkers by analyzing a public database; and ii) the ability of these biomarkers to predict clinical outcomes in elderly patients with NSCLC who underwent complete resection in the Setouchi Lung Cancer Group Study 1201 (SCLG1201) followed by S?1 adjuvant chemotherapy. Changes in gene expression levels across age groups were assessed by analyzing The Cancer Genome Atlas (TCGA) database. The expression of 5?FU biomarkers, including thymidylate synthase (TS), dihydropyrimidine dehydrogenase (DPD), orotate phosphoribosyltransferase, epidermal growth factor receptor (EGFR) and excision repair cross?complementation group 1 (ERCC1), were assessed via quantitative reverse?transcription PCR assays in 89 elderly patients (?75 years) with NSCLC who received adjuvant chemotherapy with oral fluoropyrimidine prodrug S?1 in the SLCG1201 trial. TCGA database analysis (n=955) showed that TS expression decreased significantly with aging, especially in the age group ?75. In the SCLG1201 trial, univariate analysis revealed that EGFR upregulation and TS downregulation were correlated with favorable recurrence?free survival (RFS) and overall survival (OS), respectively. Multivariate analysis demonstrated that pathological stage was an independent prognostic factor for both RFS and OS. EGFR mutations were associated with upregulation of DPD and EGFR, and downregulation of TS and ERCC1. In conclusion, although pathological stage is an independent prognostic factor for survival, EGFR upregulation and TS downregulation may be a greater predictor of clinical outcomes in elderly patients with NSCLC treated with S?1 adjuvant chemotherapy. The age?related decrease in TS expression supports the potential benefit of 5?FU therapies in elderly patients. Nonetheless, further research is warranted to validate these results.
en-copyright=
kn-copyright=
en-aut-name=SohJunichi
en-aut-sei=Soh
en-aut-mei=Junichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamamotoHiromasa
en-aut-sei=Yamamoto
en-aut-mei=Hiromasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OkumuraNorihito
en-aut-sei=Okumura
en-aut-mei=Norihito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SuzukiHiroyuki
en-aut-sei=Suzuki
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakataMasao
en-aut-sei=Nakata
en-aut-mei=Masao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FujiwaraToshiya
en-aut-sei=Fujiwara
en-aut-mei=Toshiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=GembaKenicehi
en-aut-sei=Gemba
en-aut-mei=Kenicehi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SanoIsao
en-aut-sei=Sano
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=FujinagaTakuji
en-aut-sei=Fujinaga
en-aut-mei=Takuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KataokaMasafumi
en-aut-sei=Kataoka
en-aut-mei=Masafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TerasakiYasuhiro
en-aut-sei=Terasaki
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=FujimotoNobukazu
en-aut-sei=Fujimoto
en-aut-mei=Nobukazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KataokaKazuhiko
en-aut-sei=Kataoka
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KosakaShinji
en-aut-sei=Kosaka
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=YamashitaMotohiro
en-aut-sei=Yamashita
en-aut-mei=Motohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=InokawaHidetoshi
en-aut-sei=Inokawa
en-aut-mei=Hidetoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=InoueMasaaki
en-aut-sei=Inoue
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=NakamuraHiroshige
en-aut-sei=Nakamura
en-aut-mei=Hiroshige
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=YamashitaYoshinori
en-aut-sei=Yamashita
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=TakahashiYuta
en-aut-sei=Takahashi
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=TorigoeHidejiro
en-aut-sei=Torigoe
en-aut-mei=Hidejiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=SatoHiroki
en-aut-sei=Sato
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=TomidaShuta
en-aut-sei=Tomida
en-aut-mei=Shuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=HottaKatsuyuki
en-aut-sei=Hotta
en-aut-mei=Katsuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=YoshiokaHiroshige
en-aut-sei=Yoshioka
en-aut-mei=Hiroshige
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=MoritaSatoshi
en-aut-sei=Morita
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=MatsuoKeitaro
en-aut-sei=Matsuo
en-aut-mei=Keitaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=SakamotoJunichi
en-aut-sei=Sakamoto
en-aut-mei=Junichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=DateHiroshi
en-aut-sei=Date
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
affil-num=1
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Thoracic Surgery, Kurashiki Central Hospital
kn-affil=
affil-num=4
en-affil=Department of Chest Surgery, Fukushima Medical University Hospital
kn-affil=
affil-num=5
en-affil=Department of General Thoracic Surgery, Kawasaki Medical School Hospital
kn-affil=
affil-num=6
en-affil=Department of Thoracic Surgery, Hiroshima City Hiroshima Citizens Hospital
kn-affil=
affil-num=7
en-affil=Department of Respiratory Medicine, Chugoku Central Hospital, Fukuyama, Hiroshima 720?0001, Japan; 8Department of Respiratory Surgery, Japanese Red Cross Nagasaki Genbaku Hospital
kn-affil=
affil-num=8
en-affil=Department of Respiratory Surgery, Japanese Red Cross Nagasaki Genbaku Hospital
kn-affil=
affil-num=9
en-affil=Department of General Thoracic Surgery, National Hospital Organization Nagara Medical Center
kn-affil=
affil-num=10
en-affil=Department of Surgery and Respiratory Center, Okayama Saiseikai General Hospital
kn-affil=
affil-num=11
en-affil=Department of Respiratory Surgery, Saga Medical Center Koseikan
kn-affil=
affil-num=12
en-affil=Department of Medical Oncology and Respiratory Medicine, Okayama Rosai Hospital
kn-affil=
affil-num=13
en-affil=Department of Thoracic Surgery, National Hospital Organization Iwakuni Clinical Center
kn-affil=
affil-num=14
en-affil=Department of Thoracic Surgery, Shimane Prefectural Central Hospital
kn-affil=
affil-num=15
en-affil=Department of Thoracic Surgery, National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=16
en-affil=Department of Thoracic Surgery, National Hospital Organization Yamaguchi?Ube Medical Center
kn-affil=
affil-num=17
en-affil=Department of Thoracic Surgery, Shimonoseki City Hospital
kn-affil=
affil-num=18
en-affil=Division of General Thoracic Surgery, Tottori University Hospital
kn-affil=
affil-num=19
en-affil=Department of Thoracic Surgery, National Hospital Organization Kure Medical Center and Chugoku Cancer Center
kn-affil=
affil-num=20
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=21
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=22
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=23
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=24
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=25
en-affil=Department of Thoracic Oncology, Kansai Medical University Hospital
kn-affil=
affil-num=26
en-affil=Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=27
en-affil=Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute
kn-affil=
affil-num=28
en-affil=Tokai Central Hospital
kn-affil=
affil-num=29
en-affil=Department of Thoracic Surgery, Kyoto University Hospital
kn-affil=
affil-num=30
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
en-keyword=non?small cell lung cancer
kn-keyword=non?small cell lung cancer
en-keyword=elderly patients
kn-keyword=elderly patients
en-keyword=adjuvant chemotherapy
kn-keyword=adjuvant chemotherapy
en-keyword=S?1
kn-keyword=S?1
en-keyword=EGFR
kn-keyword=EGFR
en-keyword=TP
kn-keyword=TP
en-keyword=TS
kn-keyword=TS
en-keyword=OPRT
kn-keyword=OPRT
en-keyword=ERCC1
kn-keyword=ERCC1
en-keyword=DPD
kn-keyword=DPD
END
start-ver=1.4
cd-journal=joma
no-vol=120
cd-vols=
no-issue=1
article-no=
start-page=87
end-page=98
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202507
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Comparable Clinical Outcomes Between Segmentectomy and Lobectomy for NSCLC With Unsuspected N1/N2: A Multicenter Real-World Data Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Segmentectomy for lung cancer has been increasingly performed. However, evidence regarding the necessity of additional surgical resection after the diagnosis of unsuspected N1 or N2 lymph node metastasis is limited.
Methods We conducted a multicenter, real-world data study of patients with any clinical T and N0 non-small cell lung cancer (NSCLC) who underwent lobectomy or segmentectomy between 2012 and 2021 and who subsequently received a diagnosis of pathologic N1 or N2 lymph node metastasis. Patients were categorized into lobectomy and segmentectomy groups. We analyzed overall survival (OS), recurrence-free survival (RFS), cumulative recurrence rates, and recurrence patterns using both unadjusted and propensity score?adjusted cohorts.
Results A total of 736 patients were in the lobectomy group, and 70 were in the segmentectomy group. In the unadjusted cohort, segmentectomy-treated patients were older, had a lower preoperative percentage of vital capacity, had smaller tumors, and received less postoperative adjuvant chemotherapy. The 5-year OS was significantly worse in the segmentectomy group (P = .011), with no significant differences in 5-year RFS or cumulative recurrence rates. In the propensity score?adjusted cohort, there were no significant differences in OS, RFS, or recurrence rates; however, the segmentectomy group had a higher rate of local recurrence.
Conclusions In patients with unsuspected N1 or N2 NSCLC, analysis using a cohort adjusted for patient background with propensity scores revealed no differences in OS, RFS, or cumulative recurrence rates between segmentectomy and lobectomy. This finding suggests that additional resection of the remaining segments may not be necessary for these patients. However, the higher rate of local recurrence in the segmentectomy group warrants careful consideration.
en-copyright=
kn-copyright=
en-aut-name=RyukoTsuyoshi
en-aut-sei=Ryuko
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkazakiMikio
en-aut-sei=Okazaki
en-aut-mei=Mikio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MitsuhashiToshiharu
en-aut-sei=Mitsuhashi
en-aut-mei=Toshiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SuzawaKen
en-aut-sei=Suzawa
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShienKazuhiko
en-aut-sei=Shien
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UenoTsuyoshi
en-aut-sei=Ueno
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=FujiwaraToshiya
en-aut-sei=Fujiwara
en-aut-mei=Toshiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=WatanabeMototsugu
en-aut-sei=Watanabe
en-aut-mei=Mototsugu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=InokawaHidetoshi
en-aut-sei=Inokawa
en-aut-mei=Hidetoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MisaoTakahiko
en-aut-sei=Misao
en-aut-mei=Takahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TorigoeHidejiro
en-aut-sei=Torigoe
en-aut-mei=Hidejiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=WashioKazuhiro
en-aut-sei=Washio
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TaoHiroyuki
en-aut-sei=Tao
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=OkutaniDaisuke
en-aut-sei=Okutani
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=HayamaMakio
en-aut-sei=Hayama
en-aut-mei=Makio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=UomotoMasashi
en-aut-sei=Uomoto
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=YamadaEiji
en-aut-sei=Yamada
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=OtaniShinji
en-aut-sei=Otani
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=KurosakiTakeshi
en-aut-sei=Kurosaki
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=YaginumaYuji
en-aut-sei=Yaginuma
en-aut-mei=Yuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=NimanEito
en-aut-sei=Niman
en-aut-mei=Eito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=KawamataOsamu
en-aut-sei=Kawamata
en-aut-mei=Osamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=NishikawaHitoshi
en-aut-sei=Nishikawa
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=OtsukaTomoaki
en-aut-sei=Otsuka
en-aut-mei=Tomoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=YoshikawaTakeshi
en-aut-sei=Yoshikawa
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=HayashiTatsuro
en-aut-sei=Hayashi
en-aut-mei=Tatsuro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
affil-num=1
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=7
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=8
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=9
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=10
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=11
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=12
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=13
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=14
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=15
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=16
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=17
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=18
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=19
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=20
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=21
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=22
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=23
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=24
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=25
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=26
en-affil=Okayama University Thoracic Surgery Study Group
kn-affil=
affil-num=27
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=10
article-no=
start-page=1215
end-page=1227
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241121
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Enhanced design of pCMViR-TSC plasmid vector for sustainably high cargo gene expression in mammalian cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The first-generation pCMViR-TSC, implemented through the promoter sandwich rule, yields 10- to 100-fold higher gene expression than the standard plasmid used with the CMV (cytomegalovirus) or CAG promoter. However, the vectorfs shortcomings limit its utility to transient expression only, as it is not suitable for establishing stable transformants in mammalian cells. To overcome this weakness, we here introduce the improved plasmid vector pSAKA-4B, derived from pCMViR-TSC as a second-generation chromosome-insertable vector. This vector facilitates the linear entry of the expression unit into the TTAA site of DNA universally with transposase assistance. The vector is helpful for the indefinite expression of our target gene. The new vector system is proven here to be efficient in establishing stable transformants with a high likelihood of positive clones that exhibit significantly elevated expression levels of the delivered foreign gene. This system, alongside the first-generation vector, is therefore instrumental for diverse basic research endeavors concerning genes, proteins, cells, and animals, and potentially for clinical applications such as gene therapy.
en-copyright=
kn-copyright=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KinoshitaRie
en-aut-sei=Kinoshita
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TomonobuNahoko
en-aut-sei=Tomonobu
en-aut-mei=Nahoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SakaguchiYoshihiko
en-aut-sei=Sakaguchi
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FutamiJunichiro
en-aut-sei=Futami
en-aut-mei=Junichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamauchiAkira
en-aut-sei=Yamauchi
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MurataHitoshi
en-aut-sei=Murata
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YamamotoKen-ichi
en-aut-sei=Yamamoto
en-aut-mei=Ken-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TakahashiTetta
en-aut-sei=Takahashi
en-aut-mei=Tetta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=GoharaYuma
en-aut-sei=Gohara
en-aut-mei=Yuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OchiToshiki
en-aut-sei=Ochi
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=JiangFan
en-aut-sei=Jiang
en-aut-mei=Fan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KomalasariNi Luh Gede Yoni
en-aut-sei=Komalasari
en-aut-mei=Ni Luh Gede Yoni
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=ChenYouyi
en-aut-sei=Chen
en-aut-mei=Youyi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=RumaI Made Winarsa
en-aut-sei=Ruma
en-aut-mei=I Made Winarsa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=SumardikaI Wayan
en-aut-sei=Sumardika
en-aut-mei=I Wayan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=ZhouJin
en-aut-sei=Zhou
en-aut-mei=Jin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=HonjoTomoko
en-aut-sei=Honjo
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=KuribayashiFutoshi
en-aut-sei=Kuribayashi
en-aut-mei=Futoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=SagayamaKazumi
en-aut-sei=Sagayama
en-aut-mei=Kazumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=KondoEisaku
en-aut-sei=Kondo
en-aut-mei=Eisaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=InoueYusuke
en-aut-sei=Inoue
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
affil-num=1
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Microbiology, Tokushima Bunri University
kn-affil=
affil-num=5
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Biochemistry, Kawasaki Medical School
kn-affil=
affil-num=7
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=12
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=13
en-affil=Faculty of Medicine, Udayana University
kn-affil=
affil-num=14
en-affil=Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine
kn-affil=
affil-num=15
en-affil=Faculty of Medicine, Udayana University
kn-affil=
affil-num=16
en-affil=Faculty of Medicine, Udayana University
kn-affil=
affil-num=17
en-affil=Medical Oncology Department of Gastrointestinal Tumors, Liaoning Cancer Hospital & Institute, Cancer Hospital of the Dalian University of Technology
kn-affil=
affil-num=18
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=19
en-affil=Department of Biochemistry, Kawasaki Medical School
kn-affil=
affil-num=20
en-affil=Organization for Research and Innovation Strategy, Okayama University
kn-affil=
affil-num=21
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=22
en-affil=Division of Tumor Pathology, Near InfraRed Photo-Immuno-Therapy Research Institute, Kansai Medical University
kn-affil=
affil-num=23
en-affil=Faculty of Science and Technology, Division of Molecular Science, Gunma University
kn-affil=
en-keyword=Plasmid
kn-keyword=Plasmid
en-keyword=Gene engineering
kn-keyword=Gene engineering
en-keyword=Cancer
kn-keyword=Cancer
en-keyword=Cell culture
kn-keyword=Cell culture
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250718
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Advances in liquid biopsy for bone and soft-tissue sarcomas
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Bone and soft-tissue sarcomas are a heterogeneous group of malignant tumors originating from mesenchymal tissues, accounting for approximately 1% of adult solid malignancies and 20% of pediatric solid malignancies. While blood-based tumor markers are available in major types of cancers, evidence demonstrating useful circulating biomarkers is limited in bone and soft-tissue sarcomas. Despite the development of combined modality treatments, a significant proportion of sarcoma patients respond poorly to chemotherapy or radiotherapy, leading to local relapse or distant metastasis. However, imaging methods, such as X-ray, computed tomography, positron emission tomography, magnetic resonance imaging, and scintigraphy, are mostly used to detect or monitor tumor development. Liquid biopsy is an emerging minimally invasive diagnostic technique that detects tumor-derived molecules in body fluids, including circulating tumor cells, circulating tumor DNA (ctDNA), circulating tumor RNA (ctRNA), and circulating extracellular vesicles. This method offers new possibilities for early tumor detection, prognostic evaluation, and therapeutic monitoring and may serve as a benchmark for treatment modification. This review focuses on the current technological advances in liquid biopsy for bone and soft-tissue sarcoma and explores its potential role in guiding personalized treatments. If these modalities could determine resistance to ongoing therapy or the presence of minimal residual disease at the end of the treatment protocol, the obtained data would be important for determining whether to change treatment approaches or add adjuvant therapies.
en-copyright=
kn-copyright=
en-aut-name=WangYilang
en-aut-sei=Wang
en-aut-mei=Yilang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujiwaraTomohiro
en-aut-sei=Fujiwara
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KurozumiTakanao
en-aut-sei=Kurozumi
en-aut-mei=Takanao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AndoTeruhiko
en-aut-sei=Ando
en-aut-mei=Teruhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IshimaruTakahiko
en-aut-sei=Ishimaru
en-aut-mei=Takahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KondoHiroya
en-aut-sei=Kondo
en-aut-mei=Hiroya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KunisadaToshiyuki
en-aut-sei=Kunisada
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=Liquid biopsy
kn-keyword=Liquid biopsy
en-keyword=Bone sarcoma
kn-keyword=Bone sarcoma
en-keyword=Soft-tissue sarcoma
kn-keyword=Soft-tissue sarcoma
en-keyword=Circulating tumor cells
kn-keyword=Circulating tumor cells
en-keyword=Circulating nucleic acids
kn-keyword=Circulating nucleic acids
en-keyword=Circulating microvesicles
kn-keyword=Circulating microvesicles
END
start-ver=1.4
cd-journal=joma
no-vol=6
cd-vols=
no-issue=1
article-no=
start-page=654
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250812
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Biogeochemical impact of nickel and urea in the great oxidation event
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The Great Oxidation Event marks the first substantial increase in atmospheric oxygen on Earth. Despite the oxygenic photosynthesis that emerged hundreds of million years before this event, the specific biogeochemical mechanisms responsible for maintaining low oxygen levels for an extended period remain elusive. Here, we show the critical role of urea as a nitrogen source for cyanobacteria, the cascading impact of nickel on abiotic urea production, and their combined effects on the proliferation of cyanobacteria leading to the great oxidation event. Urea formation was experimentally evaluated under simulated Archean conditions and cyanobacterial growth was monitored providing urea as the nitrogen source. Our findings demonstrate that urea can be produced in the Archean cyanobacterial habitats with UV-C irradiation, shedding light on the controversy regarding the evolution of nitrogen-fixing enzymes in primitive cyanobacteria. We propose that environmental conditions in the early Archean, characterized by elevated urea and nickel concentration, may have hindered cyanobacterial expansion, contributing to the delay between the evolution of oxygenic photosynthesis and the onset of the great oxidation event.
en-copyright=
kn-copyright=
en-aut-name=RatnayakeDilan M.
en-aut-sei=Ratnayake
en-aut-mei=Dilan M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaRyoji
en-aut-sei=Tanaka
en-aut-mei=Ryoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakamuraEizo
en-aut-sei=Nakamura
en-aut-mei=Eizo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=2
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=3
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=150
cd-vols=
no-issue=1
article-no=
start-page=19
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250813
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Biallelic variants in DNAJC7 cause familial amyotrophic lateral sclerosis with the TDP-43 pathology
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the progressive degeneration of motor neurons. ALS pathology primarily involves the failure of protein quality control mechanisms, leading to the accumulation of misfolded proteins, particularly TAR DNA-binding protein 43 (TDP-43). TDP-43 aggregation is a central pathological feature of ALS. Maintaining protein homeostasis is critical and facilitated by heat shock proteins (HSPs), particularly the HSP40 family, which includes co-chaperones such as DNAJC7. Here, we report a family with three siblings affected by ALS who carry a homozygous c.518dupC frameshift variant in DNAJC7, a member of the HSP40 family. All three patients exhibited progressive muscle weakness, limb atrophy, bulbar palsy, and respiratory failure. Pathological examination revealed degeneration of both upper and lower motor neurons, with phosphorylated TDP-43-positive neuronal cytoplasmic inclusions in the frontal and temporal cortices. Immunoblot analysis were consistent with a type B pattern of phosphorylated TDP-43 in the precentral gyrus. Immunohistochemistry and RNA sequencing analyses demonstrated a substantial reduction in DNAJC7 expression at both the protein and RNA levels in affected brain regions. In a TDP-43 cell model, DNAJC7 knockdown impaired the disassembly of TDP-43 following arsenite-induced stress, whereas DNAJC7 overexpression suppressed the assembly and promoted the disassembly of arsenite-induced TDP-43 condensates. Furthermore, in a zebrafish ALS model, dnajc7 knockdown resulted in increased TDP-43 aggregation in motor neurons and reduced survival. To the best of our knowledge, this study provides the first evidence linking biallelic loss-of-function variants in DNAJC7 to familial ALS with TDP-43 pathology.
en-copyright=
kn-copyright=
en-aut-name=YamashitaToru
en-aut-sei=Yamashita
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YokotaOsamu
en-aut-sei=Yokota
en-aut-mei=Osamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OusakaDaiki
en-aut-sei=Ousaka
en-aut-mei=Daiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SunHongming
en-aut-sei=Sun
en-aut-mei=Hongming
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HaraguchiTakashi
en-aut-sei=Haraguchi
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=Ota-ElliottRicardo Satoshi
en-aut-sei=Ota-Elliott
en-aut-mei=Ricardo Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsuokaChika
en-aut-sei=Matsuoka
en-aut-mei=Chika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KawanoTomohito
en-aut-sei=Kawano
en-aut-mei=Tomohito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=Nakashima-YasudaHanae
en-aut-sei=Nakashima-Yasuda
en-aut-mei=Hanae
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=FukuiYusuke
en-aut-sei=Fukui
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NakanoYumiko
en-aut-sei=Nakano
en-aut-mei=Yumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MoriharaRyuta
en-aut-sei=Morihara
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=HasegawaMasato
en-aut-sei=Hasegawa
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=HosonoYasuyuki
en-aut-sei=Hosono
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=TeradaSeishi
en-aut-sei=Terada
en-aut-mei=Seishi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=TakakiManabu
en-aut-sei=Takaki
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
affil-num=1
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Neurology, National Hospital Organisation Minami-Okayama Medical Centre
kn-affil=
affil-num=6
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Psychiatry, Zikei Hospital
kn-affil=
affil-num=10
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science
kn-affil=
affil-num=14
en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=17
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Amyotrophic lateral sclerosis
kn-keyword=Amyotrophic lateral sclerosis
en-keyword=Heat shock protein
kn-keyword=Heat shock protein
en-keyword=DNAJC7
kn-keyword=DNAJC7
en-keyword=TDP-43
kn-keyword=TDP-43
en-keyword=Live-cell imaging
kn-keyword=Live-cell imaging
en-keyword=Zebrafish disease model
kn-keyword=Zebrafish disease model
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=27502
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250728
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Autoantibody spark response predicts treatment outcome in patients receiving chemoradiation followed by durvalumab therapy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The PACIFIC regimen, comprising chemoradiotherapy (CRT) followed by maintenance with the immune checkpoint inhibitor (ICI) durvalumab, has become the standard of care for patients with unresectable non-small cell lung cancer (NSCLC). Although ICI is used to prevent recurrence by targeting residual microtumors, biomarkers capable of monitoring immune activity during this phase remain lacking. Here, we evaluated whether temporal changes in serum autoantibody levels can predict treatment efficacy. This retrospective study included 20 patients with unresectable stage II or III NSCLC who received the PACIFIC regimen. Serum autoantibodies against 130 antigens were quantified before CRT, after CRT, and two weeks after the first ICI dose. The primary outcome was progression-free survival (PFS), and its association with autoantibody dynamics was examined. We observed an immediate and strong autoantibody response (spark response [SR]) after ICI initiation in patients with favorable treatment outcomes. Patients with SR and programmed death ligand 1 (PD-L1) expression???50% showed better PFS (two-year PFS; 72.9% vs. 18.2%, p?=?0.0021). These findings suggest that serial monitoring of serum autoantibodies can provide a noninvasive approach to assess immune activity and predict treatment outcomes in patients receiving CRT or ICI therapy.
en-copyright=
kn-copyright=
en-aut-name=MoriTakeru
en-aut-sei=Mori
en-aut-mei=Takeru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KitagawaMio
en-aut-sei=Kitagawa
en-aut-mei=Mio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HasegawaTomokazu
en-aut-sei=Hasegawa
en-aut-mei=Tomokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SomeyaMasanori
en-aut-sei=Someya
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TsuchiyaTakaaki
en-aut-sei=Tsuchiya
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=GochoToshio
en-aut-sei=Gocho
en-aut-mei=Toshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HonjoTomoko
en-aut-sei=Honjo
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=DateMirei
en-aut-sei=Date
en-aut-mei=Mirei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MoriiMariko
en-aut-sei=Morii
en-aut-mei=Mariko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MiyamotoAi
en-aut-sei=Miyamoto
en-aut-mei=Ai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=FutamiJunichiro
en-aut-sei=Futami
en-aut-mei=Junichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Radiology, Sapporo Medical University School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Radiology, Sapporo Medical University School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Radiology, Sapporo Medical University School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Radiology, Sapporo Medical University School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Radiology, Sapporo Medical University School of Medicine
kn-affil=
affil-num=7
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=8
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=9
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=10
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=11
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=Autoantibodies
kn-keyword=Autoantibodies
en-keyword=PACIFIC regimen
kn-keyword=PACIFIC regimen
en-keyword=ICIs
kn-keyword=ICIs
en-keyword=Immune monitoring
kn-keyword=Immune monitoring
END
start-ver=1.4
cd-journal=joma
no-vol=10
cd-vols=
no-issue=6
article-no=
start-page=e00110-25
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250519
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Mycobacterium tuberculosis bacillus induces pyroptosis in human lung fibroblasts
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We previously reported that live, but not dead, virulent Mycobacterium tuberculosis (Mtb) H37Rv bacilli induce cell death in human lung fibroblast cell lines, MRC-5, MRC-9, and TIG-1. Here, using two distinct Mtb strains from two different lineages (HN878 lineage 2 and H37Rv lineage 4), we confirmed cell death at day 2 after infection with a device that measures cell growth/cytotoxicity in real time (Maestro-Z [AXION]). Mtb bacilli uptake by the fibroblast was confirmed with a transmission electron microscope on day 2. Expressions of inflammatory cytokines and interleukin (IL)?1À, IL-6, and IL-8 were observed when exposed to live, but not dead bacteria. The cell death of fibroblasts induced by both Mtb strains tested was prevented by caspase-1/4 and NLRP3 inflammasome inhibitors, but not by caspase-3 and caspase-9 inhibitors. Therefore, we classified the fibroblast cell death by Mtb infection as pyroptosis. To investigate the biological and pathological relevance of fibroblast cell death by Mtb infection, we performed dual RNA-Seq analysis on Mtb within fibroblasts and Mtb-infected fibroblasts at day 2. In Mtb bacilli tcrR, secE2, ahpD, and mazF8 genes were highly induced during infection. These genes play roles in survival in a hypoxic environment, production of a calcium-binding protein-inducing cytokine, and regulation of transcription in a toxin-antitoxin system. The gene expressions of IL-1À, IL-6, and IL-8, caspase-4, and NLRP3, but not of caspase-3 and caspase-9, were augmented in Mtb bacilli-infected fibroblasts. Taken together, our study suggests that Mtb bacilli attempt to survive in lung fibroblasts and that pyroptosis of the host fibroblasts activates the immune system against the infection.
en-copyright=
kn-copyright=
en-aut-name=TakiiTakemasa
en-aut-sei=Takii
en-aut-mei=Takemasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamadaHiroyuki
en-aut-sei=Yamada
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MotozonoChihiro
en-aut-sei=Motozono
en-aut-mei=Chihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamasakiSho
en-aut-sei=Yamasaki
en-aut-mei=Sho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TorrellesJordi B.
en-aut-sei=Torrelles
en-aut-mei=Jordi B.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TurnerJoanne
en-aut-sei=Turner
en-aut-mei=Joanne
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KimishimaAoi
en-aut-sei=Kimishima
en-aut-mei=Aoi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AsamiYukihiro
en-aut-sei=Asami
en-aut-mei=Yukihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OharaNaoya
en-aut-sei=Ohara
en-aut-mei=Naoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HidaShigeaki
en-aut-sei=Hida
en-aut-mei=Shigeaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HayashiHidetoshi
en-aut-sei=Hayashi
en-aut-mei=Hidetoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=OnozakiKikuo
en-aut-sei=Onozaki
en-aut-mei=Kikuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Mycobacterium Reference and Research, the Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association
kn-affil=
affil-num=2
en-affil=Department of Mycobacterium Reference and Research, the Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association
kn-affil=
affil-num=3
en-affil=Department of Molecular Immunology, Research Institute for Microbial Diseases, The University of Osaka
kn-affil=
affil-num=4
en-affil=Department of Molecular Immunology, Research Institute for Microbial Diseases, The University of Osaka
kn-affil=
affil-num=5
en-affil=Texas Biomedical Research Institute and International Center for the Advancement of Research & Education (I?CARE)
kn-affil=
affil-num=6
en-affil=Texas Biomedical Research Institute and International Center for the Advancement of Research & Education (I?CARE)
kn-affil=
affil-num=7
en-affil=Laboratory of Applied Microbial Chemistry, ?mura Satoshi Memorial Institute, Kitasato University
kn-affil=
affil-num=8
en-affil=Laboratory of Applied Microbial Chemistry, ?mura Satoshi Memorial Institute, Kitasato University
kn-affil=
affil-num=9
en-affil=Department of Oral Microbiology, Graduate School of Medicine, Density and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Hygienic Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University
kn-affil=
affil-num=11
en-affil=Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University
kn-affil=
affil-num=12
en-affil=Department of Hygienic Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University
kn-affil=
en-keyword=Mycobacterium tuberculosis
kn-keyword=Mycobacterium tuberculosis
en-keyword=pyroptosis
kn-keyword=pyroptosis
en-keyword=caspase
kn-keyword=caspase
en-keyword=RNA-Seq
kn-keyword=RNA-Seq
en-keyword=cytokine
kn-keyword=cytokine
en-keyword=fibroblasts
kn-keyword=fibroblasts
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=11
article-no=
start-page=348
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241030
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Coronal Cementum and Reduced Enamel Epithelium on Occlusal Surface of Impacted Wisdom Tooth in a Human
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: There is only limited research on the coronal cementum of a tooth, and the mechanisms of its forming process are not well-defined. This report presents a coronal cementum on the occlusal surfaces of enamel in an impacted wisdom tooth in a human, which is not nearly the cervical portion. Materials and Methods: The tooth (Tooth #1) was derived from a 46-year-old female. Histological analysis, including hematoxylin and eosin (HE) and toluidine blue (TB) staining, and Scanning Electron Microscopy and Energy Dispersive X-ray Spectrometer (SEM-EDS) analysis of the extracted tooth were conducted. Radiographic examination showed that Tooth #1 was horizontally impacted in the maxilla and had the apex of a single root placed between the buccal and palatal roots of Tooth #2. Results: Coronal cementum was distributed widely on the enamel, and reduced enamel epithelium was also found with enamel matrix proteins histologically. The formation of acellular cementum was observed to be more predominant than that of the cellular cementum in Tooth #1. SEM showed that the occlusal cementum connected directly with enamel. Calcium mapping revealed an almost similar occlusal cementum and enamel. In addition, the spectrum of elements in coronal cementum resembled the primary cementum according to SEM-EDS. Discussion: Thus, coronal cementogenesis in impacted human teeth might be related to the existence of reduced enamel epithelium.
en-copyright=
kn-copyright=
en-aut-name=HorieNaohiro
en-aut-sei=Horie
en-aut-mei=Naohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MurataMasaru
en-aut-sei=Murata
en-aut-mei=Masaru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MinamidaYasuhito
en-aut-sei=Minamida
en-aut-mei=Yasuhito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NagayasuHiroki
en-aut-sei=Nagayasu
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShimoTsuyoshi
en-aut-sei=Shimo
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AkazawaToshiyuki
en-aut-sei=Akazawa
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TsujigiwaHidetsugu
en-aut-sei=Tsujigiwa
en-aut-mei=Hidetsugu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HaikelYoussef
en-aut-sei=Haikel
en-aut-mei=Youssef
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NagatsukaHitoshi
en-aut-sei=Nagatsuka
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Division of Reconstructive Surgery for Oral and Maxillofacial Region, School of Dentistry, Health Sciences University of Hokkaido
kn-affil=
affil-num=2
en-affil=Division of Regenerative Medicine, School of Dentistry, Health Sciences University of Hokkaido
kn-affil=
affil-num=3
en-affil=Division of Oral and Maxillofacial Surgery, School of Dentistry, Health Sciences University of Hokkaido
kn-affil=
affil-num=4
en-affil=Division of Oral and Maxillofacial Surgery, School of Dentistry, Health Sciences University of Hokkaido
kn-affil=
affil-num=5
en-affil=Division of Reconstructive Surgery for Oral and Maxillofacial Region, School of Dentistry, Health Sciences University of Hokkaido
kn-affil=
affil-num=6
en-affil=Industrial Technology and Environment Research Development, Hokkaido Research Organization
kn-affil=
affil-num=7
en-affil=Department of Life Science, Faculty of Science, Okayama University of Science
kn-affil=
affil-num=8
en-affil=Department of Biomaterials and Bioengineering, Institut National de la Sant? et de la Recherche m?dicale Unit? Mixte de Recherche (INSERM UMR) _S 1121, University of Strasbourg
kn-affil=
affil-num=9
en-affil=Department of Oral Pathology and Medicine Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=coronal cementum
kn-keyword=coronal cementum
en-keyword=human
kn-keyword=human
en-keyword=reduced epithelium
kn-keyword=reduced epithelium
en-keyword=impacted tooth
kn-keyword=impacted tooth
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=hcaf176
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Disseminated Mycobacterium chelonae infection predominantly involving the facial region of an immunocompromised elderly patient
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=SazumiYosuke
en-aut-sei=Sazumi
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HagiyaHideharu
en-aut-sei=Hagiya
en-aut-mei=Hideharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FukushimaShinnosuke
en-aut-sei=Fukushima
en-aut-mei=Shinnosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=UchiyamaJumpei
en-aut-sei=Uchiyama
en-aut-mei=Jumpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MuenrayaPoowadon
en-aut-sei=Muenraya
en-aut-mei=Poowadon
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SugiharaSatoru
en-aut-sei=Sugihara
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KawakamiYoshio
en-aut-sei=Kawakami
en-aut-mei=Yoshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MorizaneShin
en-aut-sei=Morizane
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OguniKohei
en-aut-sei=Oguni
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OtsukaFumio
en-aut-sei=Otsuka
en-aut-mei=Fumio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of General Medicine, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Infectious Diseases, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Infectious Diseases, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Dermatology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Dermatology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Dermatology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of General Medicine, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of General Medicine, Okayama University Hospital
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=779
cd-vols=
no-issue=
article-no=
start-page=152453
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250912
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=1,2-naphthoquinone enhances IFN-Á-induced MHC-I expression in dendritic cells, thereby inducing CD8 T cell activation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Dendritic cells play a crucial role in immune responses by capturing pathogens and presenting antigens to T cells via major histocompatibility complex (MHC) molecules, thus triggering adaptive immune responses. 1,2-naphthoquinone (1,2-NQ), a quinone found in diesel exhaust and cigarette smoke, has various physiological functions. In this study, we investigated the effect of 1,2-NQ on the expression of antigen presentation-related molecules in the dendritic cell line DC2.4. The results revealed that 1,2-NQ enhanced the IFN-Á-induced upregulation of MHC-I expression at the transcriptional level. Moreover, it upregulated the expression of NLRC5, a transcriptional activator of MHC-I. 1,2-NQ is a reactive oxygen species (ROS) producing reagent. The 1,2-NQ-induced upregulation of MHC-I expression and downregulation of MHC-II expression were abolished by the ROS scavenger N-acetylcysteine. Similar effects on MHC expression were also observed with ROS-inducing reagents, such as paraquat and diethyl maleate. In addition, dendritic cells stimulated with 1,2-NQ exhibited enhanced efficacy in CD8 T cell activation, which was accompanied by increased IFN-Á production by T cells. These findings demonstrate that 1,2-NQ enhances the IFN-Á-induced activation of dendritic cells and promotes the activation of CD8 T cells.
en-copyright=
kn-copyright=
en-aut-name=FurutaKazuyuki
en-aut-sei=Furuta
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyazatoKanon
en-aut-sei=Miyazato
en-aut-mei=Kanon
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KobataKai
en-aut-sei=Kobata
en-aut-mei=Kai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IshikawaKazuya
en-aut-sei=Ishikawa
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KaitoChikara
en-aut-sei=Kaito
en-aut-mei=Chikara
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=1,2-Napthoquinone
kn-keyword=1,2-Napthoquinone
en-keyword=Dendritic cell
kn-keyword=Dendritic cell
en-keyword=IFN-Á
kn-keyword=IFN-Á
en-keyword=MHC-I
kn-keyword=MHC-I
en-keyword=CD8 T cell
kn-keyword=CD8 T cell
END
start-ver=1.4
cd-journal=joma
no-vol=122
cd-vols=
no-issue=32
article-no=
start-page=e2501933122
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250805
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Structural insights into a citrate transporter that mediates aluminum tolerance in barley
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=HvAACT1 is a major aluminum (Al)-tolerance gene in barley, encoding a citrate transporter that belongs to the multidrug and toxic compound extrusion (MATE) family. This transporter facilitates citrate secretion from the roots, thereby detoxifying external Al ions?a major constraint of crop production on acidic soils. In this study, we present the outward-facing crystal structure of HvAACT1, providing insights into a citrate transport mechanism. The putative citrate binding site consists of three basic residues?K126 in transmembrane helix 2 (TM2), R358 in TM7, and R535 in TM12?creating substantial positive charges in the C-lobe cavity. Proton coupling for substrate transport may involve two pairs of aspartate residues in the N-lobe cavity, one of which corresponds to the essential Asp pair found in prokaryotic H+-coupled MATE transporters belonging to the DinF subfamily. Structural coupling between proton uptake in the N-lobe and citrate extrusion in the C-lobe can be enabled by an extensive, unique hydrogen-bonding network at the extracellular half of the N-lobe. Mutation-based functional analysis, structural comparisons, molecular dynamics simulation, and phylogenic analysis suggest an evolutionary link between citrate MATE transporters and the DinF MATE subfamily. Our findings provide a solid structural basis for citrate transport by HvAACT1 in barley and contribute to a broader understanding of citrate transporter structures in other plant species.
en-copyright=
kn-copyright=
en-aut-name=Nguyen ThaoTran
en-aut-sei=Nguyen Thao
en-aut-mei=Tran
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=Mitani-UenoNamiki
en-aut-sei=Mitani-Ueno
en-aut-mei=Namiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UranoRyo
en-aut-sei=Urano
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SaitohYasunori
en-aut-sei=Saitoh
en-aut-mei=Yasunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WangPeitong
en-aut-sei=Wang
en-aut-mei=Peitong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamajiNaoki
en-aut-sei=Yamaji
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ShenJian-Ren
en-aut-sei=Shen
en-aut-mei=Jian-Ren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ShinodaWataru
en-aut-sei=Shinoda
en-aut-mei=Wataru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MaJian Feng
en-aut-sei=Ma
en-aut-mei=Jian Feng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SugaMichihiro
en-aut-sei=Suga
en-aut-mei=Michihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Degree Program in Interdisciplinary Sciences, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Research Core for Plant Stress Science, Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Division of Superconducting and Functional Materials, Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=4
en-affil=Degree Program in Interdisciplinary Sciences, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Research Core for Plant Stress Science, Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=6
en-affil=Research Core for Plant Stress Science, Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=7
en-affil=Degree Program in Interdisciplinary Sciences, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Degree Program in Interdisciplinary Sciences, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University
kn-affil=
affil-num=9
en-affil=Research Core for Plant Stress Science, Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=10
en-affil=Degree Program in Interdisciplinary Sciences, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University
kn-affil=
en-keyword=barley
kn-keyword=barley
en-keyword=aluminum resistance
kn-keyword=aluminum resistance
en-keyword=membrane protein structure
kn-keyword=membrane protein structure
en-keyword=citrate transporter
kn-keyword=citrate transporter
en-keyword=MATE transporter
kn-keyword=MATE transporter
END
start-ver=1.4
cd-journal=joma
no-vol=33
cd-vols=
no-issue=8
article-no=
start-page=3474
end-page=3475
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250806
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Gene replacement therapy for centronuclear myopathy: A breakthrough in complex genetic muscle disease
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=TakedaTetsuya
en-aut-sei=Takeda
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Biochemistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=90
cd-vols=
no-issue=1
article-no=
start-page=29
end-page=36
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Elucidation of the phylogenetic relationships among <i>Alpinia</i> species native to the Nansei Islands, Japan
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The Alpinia species (A. intermedia, A. zerumbet, A. formosana, A. uraiensis, and unidentified strains native to the Daito Islands), which are native to the Nansei Islands, Japan are ornamental plants that can be used as resources to produce seasonings and antibacterial and antiviral substances. Despite the usefulness of these plants, little scientific research has been conducted on their phylogenetic relationships. In this study, their phylogenetic relationships were examined based on genomic and chloroplast DNA polymorphisms, repetitive sequence abundance, and cytogenetic perspectives. The results indicated that A. formosana is most likely the outcome of a hybrid of A. zerumbet and A. intermedia, and the unidentified strains native to the Daito Islands are the outcomes of a hybrid of A. zerumbet and A. uraiensis. Immunostaining with a newly produced anti-centromere-specific histone H3 (CENH3) antibody revealed that the number of chromosomes in these species was 2n=48.
en-copyright=
kn-copyright=
en-aut-name=NagakiKiyotaka
en-aut-sei=Nagaki
en-aut-mei=Kiyotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NarusakaMari
en-aut-sei=Narusaka
en-aut-mei=Mari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NarusakaYoshihiro
en-aut-sei=Narusaka
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Okayama Prefectural Technology Center for Agriculture, Forestry, and Fisheries, Research Institute for Biological Sciences (RIBS)
kn-affil=
affil-num=3
en-affil=Okayama Prefectural Technology Center for Agriculture, Forestry, and Fisheries, Research Institute for Biological Sciences (RIBS)
kn-affil=
en-keyword=Alpinia
kn-keyword=Alpinia
en-keyword=Nansei Islands
kn-keyword=Nansei Islands
en-keyword=Chromosome number
kn-keyword=Chromosome number
en-keyword=CENH3 (centromere-specific histone H3)
kn-keyword=CENH3 (centromere-specific histone H3)
END
start-ver=1.4
cd-journal=joma
no-vol=7
cd-vols=
no-issue=12
article-no=
start-page=e202402802
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241001
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Chromosome-specific barcode system with centromeric repeat in cultivated soybean and wild progenitor
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Wild soybean Glycine soja is the progenitor of cultivated soybean Glycine max. Information on soybean functional centromeres is limited despite extensive genome analysis. These species are an ideal model for studying centromere dynamics for domestication and breeding. We performed a detailed chromatin immunoprecipitation analysis using centromere-specific histone H3 protein to delineate two distinct centromeric DNA sequences with unusual repeating units with monomer sizes of 90?92 bp (CentGm-1) and 413-bp (CentGm-4) shorter and longer than standard nucleosomes. These two unrelated DNA sequences with no sequence similarity are part of functional centromeres in both species. Our results provide a comparison of centromere properties between a cultivated and a wild species under the effect of the same kinetochore protein. Possible sequence homogenization specific to each chromosome could highlight the mechanism for evolutionary conservation of centromeric properties independent of domestication and breeding. Moreover, a unique barcode system to track each chromosome is developed using CentGm-4 units. Our results with a unifying centromere composition model using CentGm-1 and CentGm-4 superfamilies could have far-reaching implications for comparative and evolutionary genome research.
en-copyright=
kn-copyright=
en-aut-name=TekAhmet L
en-aut-sei=Tek
en-aut-mei=Ahmet L
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NagakiKiyotaka
en-aut-sei=Nagaki
en-aut-mei=Kiyotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=Y?ld?z Akkam??H?meyra
en-aut-sei=Y?ld?z Akkam??
en-aut-mei=H?meyra
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanakaKeisuke
en-aut-sei=Tanaka
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KobayashiHisato
en-aut-sei=Kobayashi
en-aut-mei=Hisato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Agricultural Genetic Engineering, Ayhan ?ahenk Faculty of Agricultural Sciences and Technologies, Ni?de ?mer Halisdemir University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Agricultural Genetic Engineering, Ayhan ?ahenk Faculty of Agricultural Sciences and Technologies, Ni?de ?mer Halisdemir University
kn-affil=
affil-num=4
en-affil=NODAI Genome Research Center, Tokyo University of Agriculture
kn-affil=
affil-num=5
en-affil=NODAI Genome Research Center, Tokyo University of Agriculture
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=77
cd-vols=
no-issue=8
article-no=
start-page=522
end-page=532
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240625
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Synthesis and biochemical characterization of naphthoquinone derivatives targeting bacterial histidine kinases
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Waldiomycin is an inhibitor of histidine kinases (HKs). Although most HK inhibitors target the ATP-binding region, waldiomycin binds to the intracellular dimerization domain (DHp domain) with its naphthoquinone moiety presumed to interact with the conserved H-box region. To further develop inhibitors targeting the H-box, various 2-aminonaphthoquinones with cyclic, aliphatic, or aromatic amino groups and naphtho [2,3-d] isoxazole-4,9-diones were synthesized. These compounds were tested for their inhibitory activity (IC50) against WalK, an essential HK for Bacillus subtilis growth, and their minimum inhibitory concentrations (MIC) against B. subtilis. As a result, 11 novel HK inhibitors were obtained as naphthoquinone derivatives (IC50: 12.6?305??M, MIC: 0.5?128??g?ml?1). The effect of representative compounds on the expression of WalK/WalR regulated genes in B. subtilis was investigated. Four naphthoquinone derivatives induced the expression of iseA (formerly yoeB), whose expression is negatively regulated by the WalK/WalR system. This suggests that these compounds inhibit WalK in B. subtilis cells, resulting in antibacterial activity. Affinity selection/mass spectrometry analysis was performed to identify whether these naphthoquinone derivatives interact with WalK in a manner similar to waldiomycin. Three compounds were found to competitively inhibit the binding of waldiomycin to WalK, suggesting that they bind to the H-box region conserved in HKs and inhibit HK activity.
en-copyright=
kn-copyright=
en-aut-name=IshikawaTeruhiko
en-aut-sei=Ishikawa
en-aut-mei=Teruhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=EguchiYoko
en-aut-sei=Eguchi
en-aut-mei=Yoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IgarashiMasayuki
en-aut-sei=Igarashi
en-aut-mei=Masayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OkajimaToshihide
en-aut-sei=Okajima
en-aut-mei=Toshihide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MitaKohei
en-aut-sei=Mita
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamasakiYuri
en-aut-sei=Yamasaki
en-aut-mei=Yuri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SumikuraKaho
en-aut-sei=Sumikura
en-aut-mei=Kaho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OkumuraTaisei
en-aut-sei=Okumura
en-aut-mei=Taisei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TabuchiYuna
en-aut-sei=Tabuchi
en-aut-mei=Yuna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HayashiChigusa
en-aut-sei=Hayashi
en-aut-mei=Chigusa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=PasquaMartina
en-aut-sei=Pasqua
en-aut-mei=Martina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ColucciaMarco
en-aut-sei=Coluccia
en-aut-mei=Marco
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=ProssedaGianni
en-aut-sei=Prosseda
en-aut-mei=Gianni
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=ColonnaBianca
en-aut-sei=Colonna
en-aut-mei=Bianca
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KohayakawaChie
en-aut-sei=Kohayakawa
en-aut-mei=Chie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=TaniAkiyoshi
en-aut-sei=Tani
en-aut-mei=Akiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=HarutaJun-ichi
en-aut-sei=Haruta
en-aut-mei=Jun-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=UtsumiRyutaro
en-aut-sei=Utsumi
en-aut-mei=Ryutaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
affil-num=1
en-affil=Graduate School of Education, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Science and Technology on Food Safety, Faculty of Biology-Oriented Science and Technology, Kindai University
kn-affil=
affil-num=3
en-affil=Institute of Microbial Chemistry (BIKAKEN)
kn-affil=
affil-num=4
en-affil=SANKEN (The Institute of Scientific and Industrial Research), Osaka University
kn-affil=
affil-num=5
en-affil=Graduate School of Education, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Education, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Education, Okayama University
kn-affil=
affil-num=8
en-affil=Graduate School of Education, Okayama University
kn-affil=
affil-num=9
en-affil=Graduate School of Education, Okayama University
kn-affil=
affil-num=10
en-affil=Institute of Microbial Chemistry (BIKAKEN)
kn-affil=
affil-num=11
en-affil=Istituto Pasteur Italy, Department of Biology and Biotechnology, gC. Darwinh, Sapienza University of Rome
kn-affil=
affil-num=12
en-affil=Istituto Pasteur Italy, Department of Biology and Biotechnology, gC. Darwinh, Sapienza University of Rome
kn-affil=
affil-num=13
en-affil=Istituto Pasteur Italy, Department of Biology and Biotechnology, gC. Darwinh, Sapienza University of Rome
kn-affil=
affil-num=14
en-affil=Istituto Pasteur Italy, Department of Biology and Biotechnology, gC. Darwinh, Sapienza University of Rome
kn-affil=
affil-num=15
en-affil=Department of Lead Exploration Units, Graduate School of Pharmaceutical Sciences, Osaka University
kn-affil=
affil-num=16
en-affil=Compound Library Screening Center, Graduate School of Pharmaceutical Sciences, Osaka University
kn-affil=
affil-num=17
en-affil=Department of Lead Exploration Units, Graduate School of Pharmaceutical Sciences, Osaka University
kn-affil=
affil-num=18
en-affil=SANKEN (The Institute of Scientific and Industrial Research), Osaka University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=1
end-page=11
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250707
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Dual roles of suberin deposition at the endodermal Casparian strip in manganese uptake of rice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Rice roots are characterized by having two Casparian strips (CSs) at the exodermis and endodermis, where transporters for mineral nutrients are expressed. However, the exact role of the CS in expression of the transporters and subsequent nutrient uptake is poorly understood. Here, we first investigated the role of the CS in manganese (Mn) uptake by using a rice mutant (oscasp1) defective in formation of the endodermal CS. Knockout of OsCASP1 resulted in decreased Mn uptake under limited Mn conditions, but increased Mn uptake at high Mn concentration. Immunostaining revealed that knockout of OsCASP1 did not affect the cell specificity of localization of two transporters (OsNramp5 and OsMTP9) required for Mn uptake, but decreased the protein abundance of these transporters at the endodermis regardless of Mn concentrations tested. Furthermore, we found that overaccumulation of suberin at the endodermis of the mutants suppressed the expression of two transporters; the expression of the two transporters was only observed in the endodermal cells without suberin deposition, but not in the cells with suberin deposition. Taken together, our results indicate that there are two roles for the CS in Mn uptake; maintaining normal expression of the transporters at limited Mn concentration and preventing Mn diffusion to the stele at high Mn concentration.
en-copyright=
kn-copyright=
en-aut-name=FujiiToshiki
en-aut-sei=Fujii
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamajiNaoki
en-aut-sei=Yamaji
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MaJian Feng
en-aut-sei=Ma
en-aut-mei=Jian Feng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
en-keyword=Casparian strip
kn-keyword=Casparian strip
en-keyword=endodermis
kn-keyword=endodermis
en-keyword=manganese transporter
kn-keyword=manganese transporter
en-keyword=rice
kn-keyword=rice
en-keyword=root
kn-keyword=root
en-keyword=suberin deposition
kn-keyword=suberin deposition
END
start-ver=1.4
cd-journal=joma
no-vol=33
cd-vols=
no-issue=3
article-no=
start-page=99
end-page=117
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240429
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Generation and characterization of cerebellar granule neurons specific knockout mice of Golli-MBP
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Golli?myelin basic proteins, encoded by the myelin basic protein gene, are widely expressed in neurons and oligodendrocytes in the central nervous system. Further, prior research has shown that Golli?myelin basic protein is necessary for myelination and neuronal maturation during central nervous system development. In this study, we established Golli?myelin basic protein-floxed mice to elucidate the cell-type-specific effects of Golli?myelin basic protein knockout through the generation of conditional knockout mice (Golli?myelin basic proteinsfl/fl; E3CreN), in which Golli?myelin basic proteins were specifically deleted in cerebellar granule neurons, where Golli?myelin basic proteins are expressed abundantly in wild-type mice. To investigate the role of Golli?myelin basic proteins in cerebellar granule neurons, we further performed histopathological analyses of these mice, with results indicating no morphological changes or degeneration of the major cellular components of the cerebellum. Furthermore, behavioral analysis showed that Golli?myelin basic proteinsfl/fl; E3CreN mice were healthy and did not display any abnormal behavior. These results suggest that the loss of Golli?myelin basic proteins in cerebellar granule neurons does not lead to cerebellar perturbations or behavioral abnormalities. This mouse model could therefore be employed to analyze the effect of Golli?myelin basic protein deletion in specific cell types of the central nervous system, such as other neuronal cells and oligodendrocytes, or in lymphocytes of the immune system.
en-copyright=
kn-copyright=
en-aut-name=MiyazakiHaruko
en-aut-sei=Miyazaki
en-aut-mei=Haruko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishiokaSaki
en-aut-sei=Nishioka
en-aut-mei=Saki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamanakaTomoyuki
en-aut-sei=Yamanaka
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AbeManabu
en-aut-sei=Abe
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ImamuraYukio
en-aut-sei=Imamura
en-aut-mei=Yukio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MiyasakaTomohiro
en-aut-sei=Miyasaka
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KakudaNobuto
en-aut-sei=Kakuda
en-aut-mei=Nobuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OohashiToshitaka
en-aut-sei=Oohashi
en-aut-mei=Toshitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ShimogoriTomomi
en-aut-sei=Shimogori
en-aut-mei=Tomomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YamakawaKazuhiro
en-aut-sei=Yamakawa
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=IkawaMasahito
en-aut-sei=Ikawa
en-aut-mei=Masahito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NukinaNobuyuki
en-aut-sei=Nukina
en-aut-mei=Nobuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Molecular Biology and Biochemistry, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University
kn-affil=
affil-num=3
en-affil=Laboratory of Structural Neuropathology, Graduate School of Brain Science, Doshisha University
kn-affil=
affil-num=4
en-affil=Department of Animal Model Development, Brain Research Institute, Niigata University
kn-affil=
affil-num=5
en-affil=Laboratory of Structural Neuropathology, Graduate School of Brain Science, Doshisha University
kn-affil=
affil-num=6
en-affil=Faculty of Life and Medical Sciences, Doshisha University
kn-affil=
affil-num=7
en-affil=Faculty of Life and Medical Sciences, Doshisha University
kn-affil=
affil-num=8
en-affil=Department of Molecular Biology and Biochemistry, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science
kn-affil=
affil-num=10
en-affil=Laboratory for Neurogenetics, RIKEN Center for Brain Science
kn-affil=
affil-num=11
en-affil=Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University
kn-affil=
affil-num=12
en-affil=Laboratory of Structural Neuropathology, Graduate School of Brain Science, Doshisha University
kn-affil=
en-keyword=Golli-MBP
kn-keyword=Golli-MBP
en-keyword=Cerebellar granule neuron
kn-keyword=Cerebellar granule neuron
en-keyword=CRISPR/Cas9
kn-keyword=CRISPR/Cas9
en-keyword=Conditional knockout
kn-keyword=Conditional knockout
END
start-ver=1.4
cd-journal=joma
no-vol=218
cd-vols=
no-issue=
article-no=
start-page=104922
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Alteration of perineuronal nets and parvalbumin interneurons in prefrontal cortex and hippocampus, and correlation with blood corticosterone in activity-based anorexia model mice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Anorexia nervosa (AN) is an eating disorder characterized by restricted energy intake, severely underweight status, and frequent hyperactivity. Previous research has shown structural and functional alterations in the medial prefrontal cortex (mPFC) and hippocampus of AN patients. To investigate the pathological mechanism of AN, we analyzed the expression and distribution of parvalbumin (PV) interneurons and perineuronal nets (PNNs), which are implicated in the pathology of neuropsychiatric disorders, in the mPFC and hippocampus dorsal (HPCd) and ventral (HPCv) using an activity-based anorexia (ABA) mouse model. We found that PNN expression and density increased in the mPFC, with minor alterations in the HPCd and HPCv of ABA mice. The expression and distribution of PV neurons were unchanged in the brains of ABA mice, except for a regional decrease in PV-expressing neuron density in the HPCd. Co-localization analysis showed an increased number of PNNs enwrapping PV-negative neurons in the mPFC of ABA mice. Furthermore, the upregulation of PNN expression in the mPFC was positively correlated with elevated blood corticosterone levels, a well-known stress indicator, in ABA mice. Our findings suggest that the increased expression and distribution of PNNs surrounding PV-negative neurons in the mPFC may indicate the pathological mechanisms of AN.
en-copyright=
kn-copyright=
en-aut-name=NguyenHoang Duy
en-aut-sei=Nguyen
en-aut-mei=Hoang Duy
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyazakiHaruko
en-aut-sei=Miyazaki
en-aut-mei=Haruko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KawaiHiroki
en-aut-sei=Kawai
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=WangZiyi
en-aut-sei=Wang
en-aut-mei=Ziyi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SakamotoShinji
en-aut-sei=Sakamoto
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TakakiManabu
en-aut-sei=Takaki
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OohashiToshitaka
en-aut-sei=Oohashi
en-aut-mei=Toshitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Molecular Biology and Biochemistry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Molecular Biology and Biochemistry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Neuropsychiatry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Neuropsychiatry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=anorexia nervosa
kn-keyword=anorexia nervosa
en-keyword=activity-based anorexia
kn-keyword=activity-based anorexia
en-keyword=perineuronal nets
kn-keyword=perineuronal nets
en-keyword=parvalbumin
kn-keyword=parvalbumin
en-keyword=corticosterone
kn-keyword=corticosterone
en-keyword=prefrontal cortex
kn-keyword=prefrontal cortex
en-keyword=hippocampus
kn-keyword=hippocampus
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Electrostatically]Driven Collapse of Polyelectrolytes: The?Role of the Solvent's Dielectric Constant
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We experimentally confirm a longstanding theoretical prediction of counterion-induced
polyelectrolyte collapse in low dielectric media. The scattering behavior of polystyrene sulfonate in different solvents with dielectric permittivities in the range of à ? 12 ? 180 is investigated. For high and intermediate à media, typical polyelectrolyte behavior is observed: the correlation length (Ì) scales with concentration (c) as Ì ? c?1?2, as predicted by various theories. When the dielectric constant of the solvent decreases below ? 22, a scaling of Ì ? c?1?3, characteristic of partially collapsed polyelectrolytes, is observed. For these solvents, the correlation peak disappears at high concentrations. Interestingly, polyelectrolyte collapse is observed under both solvophilic and solvophobic conditions, supporting the existence of attractive electrostatic interactions. These results are in qualitative agreement with theoretical predictions which expect chain collapse in low dielectric media due to the influence of condensed counterions, either via dipolar attraction and/or charge-correlation-induced attractions.
en-copyright=
kn-copyright=
en-aut-name=GulatiAnish
en-aut-sei=Gulati
en-aut-mei=Anish
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MengLingzi
en-aut-sei=Meng
en-aut-mei=Lingzi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WatanabeTakaichi
en-aut-sei=Watanabe
en-aut-mei=Takaichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=LopezCarlos G.
en-aut-sei=Lopez
en-aut-mei=Carlos G.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Institute of Physical Chemistry, RWTH Aachen University
kn-affil=
affil-num=2
en-affil=Materials Science and Engineering Department, The Pennsylvania State University, State College
kn-affil=
affil-num=3
en-affil=Department of Applied Chemistry, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Materials Science and Engineering Department, The Pennsylvania State University, State College
kn-affil=
en-keyword=counterion
kn-keyword=counterion
en-keyword=dipole
kn-keyword=dipole
en-keyword=polyelectrolyte
kn-keyword=polyelectrolyte
en-keyword=SANS
kn-keyword=SANS
en-keyword=SAXS
kn-keyword=SAXS
en-keyword=scattering
kn-keyword=scattering
END
start-ver=1.4
cd-journal=joma
no-vol=6
cd-vols=
no-issue=1
article-no=
start-page=e70146
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250522
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Case of Gastric Atypical Lipomatous Tumor/Well]Differentiated Liposarcoma With Endoscopic Morphological Changes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Atypical lipomatous tumor/well-differentiated liposarcoma is a locally aggressive mesenchymal neoplasm composed of adipocytes and stromal cells. Gastric cases are exceedingly rare, and their malignant potential remains unclear. We report a case of a woman in her 60s who was found to have multiple submucosal tumor-like lesions of the stomach. Over time, the tumors increased in size, requiring a laparoscopic partial gastrectomy. Histological examination revealed a tumor composed of both fatty tissue and fibrous stroma with nuclear atypia. Immunohistochemistry showed positivity for CDK4 and MDM2, and fluorescence in situ hybridization confirmed MDM2 amplification, leading to a diagnosis of atypical lipomatous tumor/well-differentiated liposarcoma. This case presented an unusual gastric manifestation, with multiple submucosal tumor-like lesions on endoscopy and exhibiting progressive morphological changes over several years.
en-copyright=
kn-copyright=
en-aut-name=OmoteRika
en-aut-sei=Omote
en-aut-mei=Rika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OmoteShizuma
en-aut-sei=Omote
en-aut-mei=Shizuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SonobeHiroshi
en-aut-sei=Sonobe
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HamanoRyosuke
en-aut-sei=Hamano
en-aut-mei=Ryosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ToyokawaTatsuya
en-aut-sei=Toyokawa
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OtsukaShinya
en-aut-sei=Otsuka
en-aut-mei=Shinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YanaiHiroyuki
en-aut-sei=Yanai
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=InagakiMasaru
en-aut-sei=Inagaki
en-aut-mei=Masaru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YamamotoHidetaka
en-aut-sei=Yamamoto
en-aut-mei=Hidetaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Diagnostic Pathology, NHO Fukuyama Medical Center
kn-affil=
affil-num=2
en-affil=Department of Internal Medicine, Fukuyama Minami Hospital
kn-affil=
affil-num=3
en-affil=Department of Diagnostic Pathology, NHO Fukuyama Medical Center
kn-affil=
affil-num=4
en-affil=Department of Surgery, NHO Fukuyama Medical Center
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology, NHO Fukuyama Medical Center
kn-affil=
affil-num=6
en-affil=Department of Surgery, NHO Fukuyama Medical Center
kn-affil=
affil-num=7
en-affil=Department of Pathology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Pathology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Surgery, NHO Fukuyama Medical Center
kn-affil=
affil-num=10
en-affil=Department of Pathology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=atypical lipomatous tumor
kn-keyword=atypical lipomatous tumor
en-keyword=CDK4
kn-keyword=CDK4
en-keyword=MDM2
kn-keyword=MDM2
en-keyword=stomach
kn-keyword=stomach
en-keyword=well-differentiated liposarcoma
kn-keyword=well-differentiated liposarcoma
END
start-ver=1.4
cd-journal=joma
no-vol=54
cd-vols=
no-issue=
article-no=
start-page=104719
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Near-infrared photoimmunotherapy for recurrent cancer at the base of the tongue
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Near-infrared photoimmunotherapy (NIR-PIT) is a novel therapeutic approach that targets epidermal growth factor receptor (EGFR). In NIR-PIT, administration of cetuximab sarotalocan sodium is followed by laser irradiation of the affected area, which theoretically should induce tumor cell death. However, residual tumors are occasionally observed. This study investigated factors that influence the therapeutic efficacy of NIR-PIT in cases of recurrence of cancer at the base of the tongue. Six patients undergoing 11 treatment cycles were analyzed, focusing on the puncture interval of cylindrical diffusers and the expression of EGFR in tumors. The results demonstrated that a puncture interval of ?12 mm significantly enhanced therapeutic efficacy, with one case achieving complete response. EGFR expression was positive in all cases and expression score showed no significant change between before and after treatment. These findings suggest that puncture interval plays a critical role in therapeutic outcomes, whereas EGFR expression may not directly influence treatment efficacy.
en-copyright=
kn-copyright=
en-aut-name=MakinoTakuma
en-aut-sei=Makino
en-aut-mei=Takuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishikoriAsami
en-aut-sei=Nishikori
en-aut-mei=Asami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SatoYasuharu
en-aut-sei=Sato
en-aut-mei=Yasuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NaoiYuto
en-aut-sei=Naoi
en-aut-mei=Yuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MatsumotoJunya
en-aut-sei=Matsumoto
en-aut-mei=Junya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FujimotoShohei
en-aut-sei=Fujimoto
en-aut-mei=Shohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=AndoMizuo
en-aut-sei=Ando
en-aut-mei=Mizuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Otolaryngology - Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=3
en-affil=Department of Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=4
en-affil=Department of Otolaryngology - Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Otolaryngology - Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Otolaryngology - Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Otolaryngology - Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=ear-infrared photoimmunotherapy (NIR-PIT)
kn-keyword=ear-infrared photoimmunotherapy (NIR-PIT)
en-keyword=Epidermal growth factor receptor (EGFR)
kn-keyword=Epidermal growth factor receptor (EGFR)
en-keyword=Cylindrical diffuser
kn-keyword=Cylindrical diffuser
en-keyword=Puncture interval
kn-keyword=Puncture interval
en-keyword=Base of tongue cancer
kn-keyword=Base of tongue cancer
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=26752
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250723
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=ADAR1 as a prognostic marker for patients with colorectal cancer and synchronous liver metastasis and a predictor of chemotherapy efficacy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=RNA editing by adenosine deaminase acting on RNA (ADAR) enzymes plays a role in cancer progression. However, its clinical significance in metastatic colorectal cancer (CRC) remains unclear. This study aimed to evaluate whether ADAR1 expression predicts prognosis and treatment response in colorectal cancer (CRC) with synchronous liver metastasis. This study included 40 patients with stage IV CRC and synchronous liver metastases. ADAR1 expression in tumor tissues was evaluated using immunohistochemistry. Expression levels were quantified using the immunoreactive score, and associations with clinicopathological features, overall survival (OS), and chemotherapy response were examined. High ADAR1 expression was significantly associated with multiple liver metastases (P?=?0.0206), lymph node metastasis (P = 0.0241), and reduced response to chemotherapy (P?=?0.0224). Significantly shorter OS was observed in patients with high ADAR1 expression in the nucleus (P?=?0.0458). ADAR1 expression was an independent prognostic factor comparable to the presence of extrahepatic metastases. Low ADAR1 expression was correlated with a higher likelihood of achieving a response to chemotherapy. ADAR1 expression can reflect tumor aggressiveness and chemotherapy resistance in patients with CRC and synchronous liver metastasis. ADAR1 has considerable potential as a dual-purpose biomarker for stratifying patients based on prognosis and optimizing treatment intensity.
en-copyright=
kn-copyright=
en-aut-name=NittaKaori
en-aut-sei=Nitta
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShigeyasuKunitoshi
en-aut-sei=Shigeyasu
en-aut-mei=Kunitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KondoYoshitaka
en-aut-sei=Kondo
en-aut-mei=Yoshitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=UmedaHibiki
en-aut-sei=Umeda
en-aut-mei=Hibiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakahashiToshiaki
en-aut-sei=Takahashi
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MoriwakeKazuya
en-aut-sei=Moriwake
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YoshidaKazuhiro
en-aut-sei=Yoshida
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakedaSho
en-aut-sei=Takeda
en-aut-mei=Sho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MatsumiYuki
en-aut-sei=Matsumi
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KishimotoHiroyuki
en-aut-sei=Kishimoto
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=FujiTomokazu
en-aut-sei=Fuji
en-aut-mei=Tomokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=YasuiKazuya
en-aut-sei=Yasui
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TakagiKosei
en-aut-sei=Takagi
en-aut-mei=Kosei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KayanoMasashi
en-aut-sei=Kayano
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=NakamuraShunsuke
en-aut-sei=Nakamura
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=MichiueHiroyuki
en-aut-sei=Michiue
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=YamamotoHideki
en-aut-sei=Yamamoto
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=KanayaNobuhiko
en-aut-sei=Kanaya
en-aut-mei=Nobuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=KondoYuhei
en-aut-sei=Kondo
en-aut-mei=Yuhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=MiyakeEiki
en-aut-sei=Miyake
en-aut-mei=Eiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=YoshidaYusuke
en-aut-sei=Yoshida
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=ShojiRyohei
en-aut-sei=Shoji
en-aut-mei=Ryohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=KakiuchiYoshihiko
en-aut-sei=Kakiuchi
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=TazawaHiroshi
en-aut-sei=Tazawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=KagawaShunsuke
en-aut-sei=Kagawa
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Neutron Therapy Research Center, Okayama University
kn-affil=
affil-num=17
en-affil=Department of Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=18
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=19
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=20
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=21
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=22
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=23
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=24
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=25
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=26
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=RNA editing
kn-keyword=RNA editing
en-keyword=Liver metastasis
kn-keyword=Liver metastasis
en-keyword=Chemotherapy
kn-keyword=Chemotherapy
en-keyword=Biomarker
kn-keyword=Biomarker
en-keyword=Colorectal cancer
kn-keyword=Colorectal cancer
END
start-ver=1.4
cd-journal=joma
no-vol=10
cd-vols=
no-issue=1
article-no=
start-page=158
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250719
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Oncolytic virus-mediated p53 activation boosts the antitumor immunity of a p53-transduced dendritic cell vaccine
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Dendritic cells (DCs) transduced with replication-deficient, wild-type human p53-expressing adenovirus Ad-p53 (Ad-p53 DCs) induce p53-targeting cytotoxic T lymphocytes (CTLs). However, the antitumor efficacy of Ad-p53 DCs is diminished by weak p53 immunogenicity in tumor cells and poor immune responses. We developed a p53-armed oncolytic adenovirus, OBP-702, to induce tumor-specific p53 expression and antitumor immune response, suggesting a role for OBP-702 in enhancing the antitumor efficacy of Ad-p53 DCs. The combined effect of Ad-p53 DCs and OBP-702 was investigated using murine colon cancer (CC) tumor models. Ad-p53 DCs were obtained by stimulating bone marrow-derived cells with granulocyte-macrophage colony-stimulating factor, interleukin-4, and Ad-p53. Subcutaneous tumor models of CT26 (p53 wild-type) and MC38 (p53 mutant-type) murine CC cell lines were used to evaluate the therapeutic potential of combination therapy in the terms of tumor growth, abscopal effect, antitumor immune response, and presentation of p53 peptides in tumor cells. Combination therapy with Ad-p53 DCs and OBP-702 significantly suppressed the growth of p53-intact CT26 tumors at treated and untreated sites by inducing tumor-infiltration of CD8+ CTLs and CD11c+ DCs. OBP-702-infected tumor cells presented human p53 epitopes in the context of major histocompatibility complex molecules, which were recognized by CTLs induced by Ad-p53 DCs. Combination therapy significantly suppressed the growth of p53-mutant MC38 tumors by activating the antitumor immune response. Our results suggest that OBP-702-mediated presentation of p53 epitopes on tumor cells enhances the antitumor efficacy of Ad-p53 DCs against murine CC tumors by attracting p53-targeting CTLs.
en-copyright=
kn-copyright=
en-aut-name=YamadaMotohiko
en-aut-sei=Yamada
en-aut-mei=Motohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TazawaHiroshi
en-aut-sei=Tazawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SuemoriKanto
en-aut-sei=Suemori
en-aut-mei=Kanto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OkadaNaohiro
en-aut-sei=Okada
en-aut-mei=Naohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KajiwaraYoshinori
en-aut-sei=Kajiwara
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShojiRyohei
en-aut-sei=Shoji
en-aut-mei=Ryohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NagaiYasuo
en-aut-sei=Nagai
en-aut-mei=Yasuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=InoueHiroaki
en-aut-sei=Inoue
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HashimotoNaoyuki
en-aut-sei=Hashimoto
en-aut-mei=Naoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KanayaNobuhiko
en-aut-sei=Kanaya
en-aut-mei=Nobuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KikuchiSatoru
en-aut-sei=Kikuchi
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KurodaShinji
en-aut-sei=Kuroda
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MichiueHiroyuki
en-aut-sei=Michiue
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=UrataYasuo
en-aut-sei=Urata
en-aut-mei=Yasuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KagawaShunsuke
en-aut-sei=Kagawa
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Neutron Therapy Research Center, Okayama University Hospital
kn-affil=
affil-num=14
en-affil=Oncolys BioPharma, Inc
kn-affil=
affil-num=15
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=199
cd-vols=
no-issue=
article-no=
start-page=108027
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Real-world status of multimodal treatment of Stage IIIA-N2 non-small cell lung cancer in Japan: Results from the SOLUTION study, a non-interventional, multicenter cohort study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objectives: There is limited consensus on resectability criteria for Stage IIIA-N2 non-small cell lung cancer (NSCLC). We examined the patient characteristics, N2 status, treatment decisions, and clinical outcomes according to the treatment modality for Stage IIIA-N2 NSCLC in Japan.
Materials and methods: Patients with Stage IIIA-N2 NSCLC in Japan were consecutively registered in the SOLUTION study between 2013 and 2014. Patients were divided according to treatment (chemoradiotherapy [CRT], surgery + perioperative therapy [neoadjuvant and/or adjuvant therapy], surgery alone). Demographic characteristics, N2 status (number and morphological features), pathological information, and treatments were analyzed descriptively. Overall survival (OS), progression-free survival (PFS), and disease-free survival (DFS) were estimated using the Kaplan?Meier method.
Results: Of 227 patients registered, 133 underwent CRT, 56 underwent surgery + perioperative therapy, and 38 underwent surgery alone. The physicians reported the following reasons for unresectability for 116 of 133 CRT patients: large number of metastatic lymph nodes (70.7 %), extranodal infiltration (25.0 %), poor surgical tolerance (19.0 %), or other reasons (18.1 %). CRT was more frequently performed in patients whose lymph nodes had an infiltrative appearance (64.3 %) and was the predominant treatment in patients with multiple involved stations (discrete: 60.0 %; infiltrative: 80.4 %). Distant metastasis with/without local progression was found in 50.4 %, 50.0 %, and 36.8 % of patients in the CRT, surgery + perioperative therapy, and surgery alone groups, respectively. The respective 3-year OS and DFS/PFS rates (median values) were as follows: surgery + perioperative therapy?61.9 % (not reached) and 37.1 % (22.4 months; DFS); CRT group?42.2 % (31.9 months) and 26.8 % (12.0 months; PFS); surgery alone group?37.7 % (26.5 months) and 28.7 % (12.6 months; DFS).
Conclusion: This study has illuminated the real-world decision rules for choosing between surgical and non-surgical approaches in patients with Stage IIIA-N2 NSCLC. Our landmark data could support treatment decision making for using immune checkpoint inhibitors and targeted therapy for driver oncogenes in the perioperative therapy era.
en-copyright=
kn-copyright=
en-aut-name=HorinouchiHidehito
en-aut-sei=Horinouchi
en-aut-mei=Hidehito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MurakamiHaruyasu
en-aut-sei=Murakami
en-aut-mei=Haruyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HaradaHideyuki
en-aut-sei=Harada
en-aut-mei=Hideyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SobueTomotaka
en-aut-sei=Sobue
en-aut-mei=Tomotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KatoTomohiro
en-aut-sei=Kato
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AtagiShinji
en-aut-sei=Atagi
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KozukiToshiyuki
en-aut-sei=Kozuki
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TokitoTakaaki
en-aut-sei=Tokito
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OizumiSatoshi
en-aut-sei=Oizumi
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SeikeMasahiro
en-aut-sei=Seike
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OhashiKadoaki
en-aut-sei=Ohashi
en-aut-mei=Kadoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MioTadashi
en-aut-sei=Mio
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=SoneTakashi
en-aut-sei=Sone
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=IwaoChikako
en-aut-sei=Iwao
en-aut-mei=Chikako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=IwaneTakeshi
en-aut-sei=Iwane
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=KotoRyo
en-aut-sei=Koto
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=TsuboiMasahiro
en-aut-sei=Tsuboi
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
affil-num=1
en-affil=Department of Thoracic Oncology, National Cancer Center Hospital
kn-affil=
affil-num=2
en-affil=Department of Thoracic Oncology, Shizuoka Cancer Center
kn-affil=
affil-num=3
en-affil=Division of Radiation Therapy, Shizuoka Cancer Center
kn-affil=
affil-num=4
en-affil=Division of Environmental Medicine and Population Sciences, Graduate School of Medicine, Osaka University
kn-affil=
affil-num=5
en-affil=Department of Respiratory Medicine, National Hospital Organization Himeji Medical Cente
kn-affil=
affil-num=6
en-affil=Department of Thoracic Oncology, National Hospital Organization Kinki-Chuo Chest Medical Center
kn-affil=
affil-num=7
en-affil=Department of Thoracic Oncology and Medicine, National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=8
en-affil=Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University Hospital
kn-affil=
affil-num=9
en-affil=Department of Respiratory Medicine, National Hospital Organization Hokkaido Cancer Center
kn-affil=
affil-num=10
en-affil=Department of Pulmonary Medicine and Oncology, Nippon Medical School Hospital
kn-affil=
affil-num=11
en-affil=Department of Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=12
en-affil=Department of Respiratory Medicine, National Hospital Organization Kyoto Medical Center
kn-affil=
affil-num=13
en-affil=Department of Respiratory Medicine, Kanazawa University Hospital
kn-affil=
affil-num=14
en-affil=Department of Medical, AstraZeneca K.K.
kn-affil=
affil-num=15
en-affil=Department of Medical, AstraZeneca K.K.
kn-affil=
affil-num=16
en-affil=Department of Medical, AstraZeneca K.K.
kn-affil=
affil-num=17
en-affil=Department of Thoracic Surgery, National Cancer Center Hospital East
kn-affil=
en-keyword=Non-small cell lung cancer
kn-keyword=Non-small cell lung cancer
en-keyword=Surgery
kn-keyword=Surgery
en-keyword=Adjuvant therapy
kn-keyword=Adjuvant therapy
en-keyword=Neoadjuvant therapy
kn-keyword=Neoadjuvant therapy
en-keyword=Chemoradiotherapy
kn-keyword=Chemoradiotherapy
en-keyword=Observational study
kn-keyword=Observational study
en-keyword=Retrospective study
kn-keyword=Retrospective study
END
start-ver=1.4
cd-journal=joma
no-vol=20
cd-vols=
no-issue=40
article-no=
start-page=3355-
end-page=3364
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241112
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Plain language summary: tarlatamab for patients with previously treated small cell lung cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=AhnMyung-Ju
en-aut-sei=Ahn
en-aut-mei=Myung-Ju
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ChoByoung Chul
en-aut-sei=Cho
en-aut-mei=Byoung Chul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FelipEnriqueta
en-aut-sei=Felip
en-aut-mei=Enriqueta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KorantzisIppokratis
en-aut-sei=Korantzis
en-aut-mei=Ippokratis
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OhashiKadoaki
en-aut-sei=Ohashi
en-aut-mei=Kadoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MajemMargarita
en-aut-sei=Majem
en-aut-mei=Margarita
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=Juan-VidalOscar
en-aut-sei=Juan-Vidal
en-aut-mei=Oscar
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HandzhievSabin
en-aut-sei=Handzhiev
en-aut-mei=Sabin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IzumiHiroki
en-aut-sei=Izumi
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=LeeJong-Seok
en-aut-sei=Lee
en-aut-mei=Jong-Seok
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=DziadziuszkoRafal
en-aut-sei=Dziadziuszko
en-aut-mei=Rafal
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=WolfJ?rgen
en-aut-sei=Wolf
en-aut-mei=J?rgen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=BlackhallFiona
en-aut-sei=Blackhall
en-aut-mei=Fiona
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=ReckMartin
en-aut-sei=Reck
en-aut-mei=Martin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=AlvarezJean Bustamante
en-aut-sei=Alvarez
en-aut-mei=Jean Bustamante
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=HummelHorst-Dieter
en-aut-sei=Hummel
en-aut-mei=Horst-Dieter
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=DingemansAnne-Marie C.
en-aut-sei=Dingemans
en-aut-mei=Anne-Marie C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=SandsJacob
en-aut-sei=Sands
en-aut-mei=Jacob
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=AkamatsuHiroaki
en-aut-sei=Akamatsu
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=OwonikokoTaofeek K.
en-aut-sei=Owonikoko
en-aut-mei=Taofeek K.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=RamalingamSuresh S.
en-aut-sei=Ramalingam
en-aut-mei=Suresh S.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=BorghaeiHossein
en-aut-sei=Borghaei
en-aut-mei=Hossein
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=JohnsonMelissa L.
en-aut-sei=Johnson
en-aut-mei=Melissa L.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=HuangShuang
en-aut-sei=Huang
en-aut-mei=Shuang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=MukherjeeSujoy
en-aut-sei=Mukherjee
en-aut-mei=Sujoy
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=MinochaMukul
en-aut-sei=Minocha
en-aut-mei=Mukul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=JiangTony
en-aut-sei=Jiang
en-aut-mei=Tony
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=MartinezPablo
en-aut-sei=Martinez
en-aut-mei=Pablo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=AndersonErik S.
en-aut-sei=Anderson
en-aut-mei=Erik S.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=Paz-AresLuis
en-aut-sei=Paz-Ares
en-aut-mei=Luis
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
affil-num=1
en-affil=Samsung Medical Center, Sungkyunkwan University School of Medicine
kn-affil=
affil-num=2
en-affil=Yonsei Cancer Center, Yonsei University College of Medicine
kn-affil=
affil-num=3
en-affil=Vall dfHebron University Hospital and Vall dfHebron Institute of Oncology
kn-affil=
affil-num=4
en-affil=Department of Medical Oncology, Saint Loukas Hospital
kn-affil=
affil-num=5
en-affil=Department of Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Hospital de la Santa Creu i Sant Pau
kn-affil=
affil-num=7
en-affil=
kn-affil=
affil-num=8
en-affil=Klinische Abteilung f?r Pneumologie, Universit?tsklinikum Krems
kn-affil=
affil-num=9
en-affil=Department of Thoracic Oncology, National Cancer Center Hospital East
kn-affil=
affil-num=10
en-affil=Seoul National University Bundang Hospital
kn-affil=
affil-num=11
en-affil=Department of Oncology and Radiotherapy and Early Phase Clinical Trials Center, Medical University of Gdansk
kn-affil=
affil-num=12
en-affil=Department of Internal Medicine, Center for Integrated Oncology, University Hospital Cologne
kn-affil=
affil-num=13
en-affil=Christie NHS Foundation Trust and University of Manchester
kn-affil=
affil-num=14
en-affil=Lungen Clinic, Airway Research Center North, German Center for Lung Research
kn-affil=
affil-num=15
en-affil=West Virginia University Health Sciences Center
kn-affil=
affil-num=16
en-affil=Translational Oncology?Early Clinical Trial Unit, Comprehensive Cancer Center Mainfranken and Bavarian Cancer Research Center, Universit?tsklinikum W?rzburg
kn-affil=
affil-num=17
en-affil=Department of Pulmonary Medicine, Erasmus MC Cancer Institute
kn-affil=
affil-num=18
en-affil=Dana?Farber Cancer Institute, Harvard Medical School
kn-affil=
affil-num=19
en-affil=Wakayama Medical University Hospital
kn-affil=
affil-num=20
en-affil=Division of Hematology?Oncology, Hillman Cancer Center, University of Pittsburgh Medical Center
kn-affil=
affil-num=21
en-affil=Winship Cancer Institute of Emory University
kn-affil=
affil-num=22
en-affil=Fox Chase Cancer Center
kn-affil=
affil-num=23
en-affil=Sarah Cannon Research Institute at Tennessee Oncology
kn-affil=
affil-num=24
en-affil=Amgen
kn-affil=
affil-num=25
en-affil=Amgen
kn-affil=
affil-num=26
en-affil=Amgen
kn-affil=
affil-num=27
en-affil=Amgen
kn-affil=
affil-num=28
en-affil=Amgen
kn-affil=
affil-num=29
en-affil=Amgen
kn-affil=
affil-num=30
en-affil=Hospital Universitario 12 de Octubre, CNIO-H12o Lung Cancer Unit, Complutense University and Ciberonc
kn-affil=
en-keyword=Clinical trials
kn-keyword=Clinical trials
en-keyword=DeLLphi-301
kn-keyword=DeLLphi-301
en-keyword=DLL3
kn-keyword=DLL3
en-keyword=Immunotherapy
kn-keyword=Immunotherapy
en-keyword=SCLC
kn-keyword=SCLC
en-keyword=Small cell lung cancer
kn-keyword=Small cell lung cancer
en-keyword=T cell
kn-keyword=T cell
en-keyword=Tarlatamab
kn-keyword=Tarlatamab
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=24117
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250706
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Survival days of patients with metastatic spinal tumors of lung cancer requiring surgery: a prospective multicenter study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Surgery for metastatic spinal tumors has improved postoperative activities of daily living. A few studies reported on prognostic factors assessed in large multicenter prospective studies for metastatic spinal tumors of lung cancer origin. This study aimed to determine preoperative prognostic factors in patients undergoing surgery for metastatic spinal tumors associated with lung cancer. This prospective registry study included 74 patients diagnosed and operated with metastatic spine tumors derived from lung cancer in 39 high-volume cancer centers. We examined the postoperative survival period and the preoperative factors related to postoperative survival time. We conducted univariate and multivariate Cox regression analyses to determine preoperative prognostic factors. The mean postoperative survival period was 343 days. Multivariate Cox regression analysis revealed a higher feeding score of vitality index, indications for molecularly targeted therapy, and a higher mobility score of Barthel index as independent factors associated with postoperative survival time in metastatic spinal tumors derived from lung cancer. Patients with indications for molecular-targeted therapy and good vitality exhibited longer survival. These results may help in surgical selection for patients with metastatic spinal tumors derived from lung cancer.
en-copyright=
kn-copyright=
en-aut-name=TakahashiTakuya
en-aut-sei=Takahashi
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HiraiTakashi
en-aut-sei=Hirai
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShirataniYuki
en-aut-sei=Shiratani
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SuzukiAkinobu
en-aut-sei=Suzuki
en-aut-mei=Akinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KakutaniKenichiro
en-aut-sei=Kakutani
en-aut-mei=Kenichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KatoSatoshi
en-aut-sei=Kato
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TominagaHiroyuki
en-aut-sei=Tominaga
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=InoueHirokazu
en-aut-sei=Inoue
en-aut-mei=Hirokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SawadaHirokatsu
en-aut-sei=Sawada
en-aut-mei=Hirokatsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TakegamiNorihiko
en-aut-sei=Takegami
en-aut-mei=Norihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NakanishiKazuo
en-aut-sei=Nakanishi
en-aut-mei=Kazuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NakajimaHideaki
en-aut-sei=Nakajima
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=IshiharaMasayuki
en-aut-sei=Ishihara
en-aut-mei=Masayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=OshigiriTsutomu
en-aut-sei=Oshigiri
en-aut-mei=Tsutomu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=FunayamaToru
en-aut-sei=Funayama
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=IimuraTakuya
en-aut-sei=Iimura
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=TanishimaShinji
en-aut-sei=Tanishima
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=NakashimaHiroaki
en-aut-sei=Nakashima
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=YamabeDaisuke
en-aut-sei=Yamabe
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=HashimotoKo
en-aut-sei=Hashimoto
en-aut-mei=Ko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=UotaniKoji
en-aut-sei=Uotani
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=FunabaMasahiro
en-aut-sei=Funaba
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=NagoshiNarihito
en-aut-sei=Nagoshi
en-aut-mei=Narihito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=KobayakawaKazu
en-aut-sei=Kobayakawa
en-aut-mei=Kazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=YoshiiToshitaka
en-aut-sei=Yoshii
en-aut-mei=Toshitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=WatanabeKazuyuki
en-aut-sei=Watanabe
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=NakamaeToshio
en-aut-sei=Nakamae
en-aut-mei=Toshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=KaitoTakashi
en-aut-sei=Kaito
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=InoueGen
en-aut-sei=Inoue
en-aut-mei=Gen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=ImagamaShiro
en-aut-sei=Imagama
en-aut-mei=Shiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=WatanabeKota
en-aut-sei=Watanabe
en-aut-mei=Kota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=FuruyaTakeo
en-aut-sei=Furuya
en-aut-mei=Takeo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
affil-num=1
en-affil=Department of Orthopedic Surgery, Institute of Science Tokyo
kn-affil=
affil-num=2
en-affil=Department of Orthopedic Surgery, Institute of Science Tokyo
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Osaka Metropolitan University
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery Graduate School of Medical Sciences, Kanazawa University
kn-affil=
affil-num=7
en-affil=Department of Orthopedic Surgery Graduate School of Medical and Dental Sciences, Kagoshima University
kn-affil=
affil-num=8
en-affil=Rehabilitation Center, Jichi Medical University Hospital
kn-affil=
affil-num=9
en-affil=Department of Orthopaedic Surgery, Nihon University School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Orthopaedic Surgery, Mie University Graduate School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Orthopaedic Surgery, Kawasaki Medical School
kn-affil=
affil-num=12
en-affil=Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui
kn-affil=
affil-num=13
en-affil=Department of Orthopaedic surgery, Kansai Medical University Hospital
kn-affil=
affil-num=14
en-affil=Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine
kn-affil=
affil-num=15
en-affil=Department of Orthopaedic Surgery Institute of Medicine, University of Tsukuba
kn-affil=
affil-num=16
en-affil=Department of Orthopaedic Surgery, Dokkyo Medical University
kn-affil=
affil-num=17
en-affil=Division of Orthopedic Surgery, Department of Sensory and Motor Organs, School of Medicine, Faculty of Medicine, Tottori University
kn-affil=
affil-num=18
en-affil=Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=19
en-affil=Department of Orthopaedic Surgery, Iwate Medical University
kn-affil=
affil-num=20
en-affil=Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
kn-affil=
affil-num=21
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=22
en-affil=Department of Orthopaedics Surgery, Yamaguchi University Graduate school of Medicine
kn-affil=
affil-num=23
en-affil=Department of Orthopaedic Surgery, Keio University
kn-affil=
affil-num=24
en-affil=Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University
kn-affil=
affil-num=25
en-affil=Department of Orthopedic Surgery, Institute of Science Tokyo
kn-affil=
affil-num=26
en-affil=Department of Orthopaedic Surgery, Fukushima Medical University School of Medicine
kn-affil=
affil-num=27
en-affil=Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University
kn-affil=
affil-num=28
en-affil=Department of Orthopedic Surgery, Osaka University Graduate School of Medicine
kn-affil=
affil-num=29
en-affil=Department of Orthopaedic Surgery, Kitasato University School of Medicine
kn-affil=
affil-num=30
en-affil=Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=31
en-affil=Department of Orthopaedic Surgery, Keio University
kn-affil=
affil-num=32
en-affil=Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University
kn-affil=
en-keyword=Metastatic spinal tumor
kn-keyword=Metastatic spinal tumor
en-keyword=Lung cancer
kn-keyword=Lung cancer
en-keyword=Postoperative survival period
kn-keyword=Postoperative survival period
en-keyword=Barthel index
kn-keyword=Barthel index
en-keyword=Vitality index
kn-keyword=Vitality index
en-keyword=Molecularly targeted therapy
kn-keyword=Molecularly targeted therapy
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=5
article-no=
start-page=594
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250228
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Review Article: Diagnostic Paradigm Shift in Spine Surgery
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Meticulous clinical examination is essential for spinal disorders to utilize the diagnostic methods and technologies that strongly support physicians and enhance clinical practice. A significant change in the approach to diagnosing spinal disorders has occurred in the last three decades, which has enhanced a more nuanced understanding of spine pathology. Traditional radiographic methods such as conventional and functional X-rays and CT scans are still the first line in the diagnosis of spinal disorders due to their low cost and accessibility. As more advanced imaging technologies become increasingly available worldwide, there is a constantly increasing trend in MRI scans for detecting spinal pathologies and making treatment decisions. Not only do MRI scans have superior diagnostic capabilities, but they also assist surgeons in performing meticulous preoperative planning, making them currently the most widely used diagnostic tool for spinal disorders. Positron Emission Tomography (PET) can help detect inflammatory lesions, infections, and tumors. Other advanced diagnostic tools such as CT/MRI fusion image, Functional Magnetic Resonance Imaging (fMRI), Upright and Kinetic MRI, magnetic resonance spectroscopy (MRS), diffusion-weighted imaging (DWI), and diffusion tensor imaging (DTI) could play an important role when it comes to detecting more special pathologies. However, some technical difficulties in the daily praxis and their high costs act as obstacles to their further spread. Integrating artificial intelligence and advancements in data analytics and virtual reality promises to enhance spinal proceduresf precision, safety, and efficacy. As these technologies continue to develop, they will play a critical role in transforming spinal surgery. This paradigm shift emphasizes the importance of continuous innovation and adaptability in improving the diagnosis and treatment of spinal disorders.
en-copyright=
kn-copyright=
en-aut-name=LeventAras Efe
en-aut-sei=Levent
en-aut-mei=Aras Efe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaMasato
en-aut-sei=Tanaka
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KumawatChetan
en-aut-sei=Kumawat
en-aut-mei=Chetan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HengChristian
en-aut-sei=Heng
en-aut-mei=Christian
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NikolaosSalamalikis
en-aut-sei=Nikolaos
en-aut-mei=Salamalikis
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=LatkaKajetan
en-aut-sei=Latka
en-aut-mei=Kajetan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MiyamotoAkiyoshi
en-aut-sei=Miyamoto
en-aut-mei=Akiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KomatsubaraTadashi
en-aut-sei=Komatsubara
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=AratakiShinya
en-aut-sei=Arataki
en-aut-mei=Shinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OdaYoshiaki
en-aut-sei=Oda
en-aut-mei=Yoshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=ShinoharaKensuke
en-aut-sei=Shinohara
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=UotaniKoji
en-aut-sei=Uotani
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=2
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=3
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=4
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=5
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=6
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=7
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=8
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=9
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=10
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=12
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
en-keyword=diagnosis
kn-keyword=diagnosis
en-keyword=spine surgery
kn-keyword=spine surgery
en-keyword=innovative technique
kn-keyword=innovative technique
en-keyword=MRI
kn-keyword=MRI
en-keyword=myelography
kn-keyword=myelography
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=4
article-no=
start-page=2286
end-page=2299
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202411
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effects of Palliative Surgical Treatment for Spinal Metastases on the Patientfs Quality of Life With a Focus on the Segment of the Metastasis: A Prospective Multicenter Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Study Design: Prospective multicenter study.
Objectives: Palliative surgery is crucial for maintaining the quality of life (QOL) in patients with spinal metastases. This study aimed to compare the short-term outcomes of QOL after palliative surgery between patients with metastatic spinal tumors at different segments.
Methods: We prospectively compared the data of 203 patients with spinal metastases at 2-3 consecutive segments who were divided into the following three groups: cervical, patients with cervical spine lesions; thoracic, patients with upper?middle thoracic spine lesions; and TL/L/S, patients with lesions at the thoracolumbar junction and lumbar and sacral regions. Preoperative and postoperative EuroQol 5-dimension (EQ5D) 5-level were compared.
Results: All groups exhibited improvement in the Frankel grade, performance status, pain, Barthel index, EQ5D health state utility value (HSUV), and EQ5D visual analog scale (VAS) postoperatively. Although preoperative EQ5D HSUVs did not significantly differ between the groups (cervical, 0.461 } 0.291; thoracic, 0.321 } 0.292; and TL/L/S, 0.376 } 0.272), the thoracic group exhibited significantly lower postoperative EQ5D HSUVs than the other two groups (cervical, 0.653 } 0.233; thoracic, 0.513 } 0.252; and TL/L/S, 0.624 } 0.232). However, postoperative EQ5D VAS was not significantly different between the groups (cervical, 63.4 } 25.8; thoracic, 54.7 } 24.5; and TL/L/S, 61.7 } 21.9).
Conclusions: Palliative surgery for metastatic spinal tumors provided comparable QOL improvement, irrespective of the spinal segment involved. Patients with upper and middle thoracic spinal metastases had poorer QOL outcomes than those with metastases in other segments; however, sufficient QOL improvement was achieved.
en-copyright=
kn-copyright=
en-aut-name=SegiNaoki
en-aut-sei=Segi
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakashimaHiroaki
en-aut-sei=Nakashima
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ItoSadayuki
en-aut-sei=Ito
en-aut-mei=Sadayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OuchidaJun
en-aut-sei=Ouchida
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShirataniYuki
en-aut-sei=Shiratani
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShimizuTakaki
en-aut-sei=Shimizu
en-aut-mei=Takaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SuzukiAkinobu
en-aut-sei=Suzuki
en-aut-mei=Akinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TeraiHidetomi
en-aut-sei=Terai
en-aut-mei=Hidetomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KakutaniKenichiro
en-aut-sei=Kakutani
en-aut-mei=Kenichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KandaYutaro
en-aut-sei=Kanda
en-aut-mei=Yutaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TominagaHiroyuki
en-aut-sei=Tominaga
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KawamuraIchiro
en-aut-sei=Kawamura
en-aut-mei=Ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=IshiharaMasayuki
en-aut-sei=Ishihara
en-aut-mei=Masayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=PakuMasaaki
en-aut-sei=Paku
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=TakahashiYohei
en-aut-sei=Takahashi
en-aut-mei=Yohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=FunabaMasahiro
en-aut-sei=Funaba
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=FunayamaToru
en-aut-sei=Funayama
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=NakajimaHideaki
en-aut-sei=Nakajima
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=AkedaKoji
en-aut-sei=Akeda
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=HiraiTakashi
en-aut-sei=Hirai
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=InoueHirokazu
en-aut-sei=Inoue
en-aut-mei=Hirokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=NakanishiKazuo
en-aut-sei=Nakanishi
en-aut-mei=Kazuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=FunaoHaruki
en-aut-sei=Funao
en-aut-mei=Haruki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=OshigiriTsutomu
en-aut-sei=Oshigiri
en-aut-mei=Tsutomu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=OtsukiBungo
en-aut-sei=Otsuki
en-aut-mei=Bungo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=KobayakawaKazu
en-aut-sei=Kobayakawa
en-aut-mei=Kazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=TanishimaShinji
en-aut-sei=Tanishima
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=HashimotoKo
en-aut-sei=Hashimoto
en-aut-mei=Ko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=IimuraTakuya
en-aut-sei=Iimura
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=SawadaHirokatsu
en-aut-sei=Sawada
en-aut-mei=Hirokatsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=UotaniKoji
en-aut-sei=Uotani
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=ManabeHiroaki
en-aut-sei=Manabe
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
en-aut-name=IwaiChizuo
en-aut-sei=Iwai
en-aut-mei=Chizuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=33
ORCID=
en-aut-name=YamabeDaisuke
en-aut-sei=Yamabe
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=34
ORCID=
en-aut-name=HiyamaAkihiko
en-aut-sei=Hiyama
en-aut-mei=Akihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=35
ORCID=
en-aut-name=SekiShoji
en-aut-sei=Seki
en-aut-mei=Shoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=36
ORCID=
en-aut-name=GotoYuta
en-aut-sei=Goto
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=37
ORCID=
en-aut-name=MiyazakiMasashi
en-aut-sei=Miyazaki
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=38
ORCID=
en-aut-name=WatanabeKazuyuki
en-aut-sei=Watanabe
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=39
ORCID=
en-aut-name=NakamaeToshio
en-aut-sei=Nakamae
en-aut-mei=Toshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=40
ORCID=
en-aut-name=KaitoTakashi
en-aut-sei=Kaito
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=41
ORCID=
en-aut-name=NagoshiNarihito
en-aut-sei=Nagoshi
en-aut-mei=Narihito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=42
ORCID=
en-aut-name=KatoSatoshi
en-aut-sei=Kato
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=43
ORCID=
en-aut-name=WatanabeKota
en-aut-sei=Watanabe
en-aut-mei=Kota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=44
ORCID=
en-aut-name=ImagamaShiro
en-aut-sei=Imagama
en-aut-mei=Shiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=45
ORCID=
en-aut-name=InoueGen
en-aut-sei=Inoue
en-aut-mei=Gen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=46
ORCID=
en-aut-name=FuruyaTakeo
en-aut-sei=Furuya
en-aut-mei=Takeo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=47
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Chiba University Hospital
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Osaka Metropolitan University
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Osaka Metropolitan University
kn-affil=
affil-num=9
en-affil=Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Orthopedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University
kn-affil=
affil-num=12
en-affil=Department of Orthopedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University
kn-affil=
affil-num=13
en-affil=Department of Orthopaedic Surgery, Kansai Medial University Hospital
kn-affil=
affil-num=14
en-affil=Department of Orthopaedic Surgery, Kansai Medial University Hospital
kn-affil=
affil-num=15
en-affil=Department of Orthopaedic Surgery, Keio University
kn-affil=
affil-num=16
en-affil=Department of Orthopaedics Surgery, Yamaguchi University Graduate school of Medicine
kn-affil=
affil-num=17
en-affil=Department of Orthopaedic Surgery, Institute of Medicine, University of Tsukuba
kn-affil=
affil-num=18
en-affil=Department of Orthopaedics and Rehabilitation Medicine, University of Fukui Faculty of Medical Sciences
kn-affil=
affil-num=19
en-affil=Department of Orthopaedic Surgery, Mie University Graduate School of Medicine
kn-affil=
affil-num=20
en-affil=Department of Orthopedic Surgery, Tokyo Medical and Dental University
kn-affil=
affil-num=21
en-affil=Rehabilitation Center, Jichi Medical University Hospital
kn-affil=
affil-num=22
en-affil=Department of Orthopaedic Surgery, Kawasaki Medical School
kn-affil=
affil-num=23
en-affil=Department of Orthopaedic Surgery, International University of Health and Welfare Narita Hospital
kn-affil=
affil-num=24
en-affil=Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine
kn-affil=
affil-num=25
en-affil=Department of Orthopaedic Surgery, Kyoto University Hospital
kn-affil=
affil-num=26
en-affil=Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University
kn-affil=
affil-num=27
en-affil=Division of Orthopedic Surgery, Department of Sensory and Motor Organs, School of Medicine, Faculty of Medicine, Tottori University
kn-affil=
affil-num=28
en-affil=Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
kn-affil=
affil-num=29
en-affil=Department of Orthopaedic Surgery, Dokkyo Medical University
kn-affil=
affil-num=30
en-affil=Department of Orthopaedic Surgery, Nihon University School of Medicine
kn-affil=
affil-num=31
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=32
en-affil=Department of Orthopedics, Tokushima University
kn-affil=
affil-num=33
en-affil=Department of Orthopaedic Surgery, Gifu University Hospital
kn-affil=
affil-num=34
en-affil=Department of Orthopaedic Surgery, Iwate Medical University
kn-affil=
affil-num=35
en-affil=Department of Orthopaedic Surgery, Tokai University School of Medicine
kn-affil=
affil-num=36
en-affil=Department of Orthopaedic Surgery, University of Toyama
kn-affil=
affil-num=37
en-affil=Department of Orthopaedic Surgery, Nagoya City University
kn-affil=
affil-num=38
en-affil=Department of Orthopaedic Surgery, Faculty of Medicine, Oita University
kn-affil=
affil-num=39
en-affil=Department of Orthopaedic Surgery, Fukushima Medical University School of Medicine
kn-affil=
affil-num=40
en-affil=Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University
kn-affil=
affil-num=41
en-affil=Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine
kn-affil=
affil-num=42
en-affil=Department of Orthopaedic Surgery, Keio University
kn-affil=
affil-num=43
en-affil=Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University
kn-affil=
affil-num=44
en-affil=Department of Orthopaedic Surgery, Keio University
kn-affil=
affil-num=45
en-affil=Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=46
en-affil=Department of Orthopaedic Surgery, Kitasato University School of Medicine
kn-affil=
affil-num=47
en-affil=Department of Orthopaedic Surgery, Chiba University Hospital
kn-affil=
en-keyword=spinal metastasis
kn-keyword=spinal metastasis
en-keyword=metastasis segment
kn-keyword=metastasis segment
en-keyword=palliative surgery
kn-keyword=palliative surgery
en-keyword=quality of life
kn-keyword=quality of life
en-keyword=activities of daily living
kn-keyword=activities of daily living
en-keyword=pain
kn-keyword=pain
en-keyword=anxiety
kn-keyword=anxiety
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=23
article-no=
start-page=2715
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241202
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Predicting Surgical Site Infections in Spine Surgery: Association of Postoperative Lymphocyte Reduction
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective: Postoperative lymphopenia is reported as an excellent indicator to predict surgical-site infection (SSI) after spine surgery. However, there is still controversy concerning which serological markers can predict spinal SSI. This study aims to evaluate excellent and early indicators for detecting SSI, focusing on spine instrumented surgery. Materials and Methods: This study included 268 patients who underwent spinal instrumented surgery from January 2022 to December 2023 (159 female and 109 male, average 62.9 years). The SSI group included 20 patients, and the non-SSI group comprised 248 patients. Surgical time, intraoperative blood loss, and glycemic levels were measured in both groups. The complete blood cell counts, differential counts, albumin, and C-reactive protein (CRP) levels were measured pre-surgery and postoperative on Days 1, 3, and 7. In comparing the groups, the Mann?Whitney U test analysis was used for continuous variables, while the chi-squared test and Fisherfs exact test were used for dichotomous variables. Results: The incidence of SSI after spinal instrumentation was 7.46% and was relatively higher in scoliosis surgery. The SSI group had significantly longer surgical times (248 min vs. 180 min, p = 0.0004) and a higher intraoperative blood loss (772 mL vs. 372 mL, p < 0.0001) than the non-SSI group. In the SSI group, the Day 3 (10.5 } 6.2% vs. 13.8 } 6.0%, p = 0.012) and Day 7 (14.4 } 4.8% vs. 18.8 } 7.1%, p = 0.012) lymphocyte ratios were lower than the non-SSI group. Albumin levels on Day 1 in the SSI group were lower than in the non-SSI group (2.94 } 0.30 mg/dL vs. 3.09 } 0.38 mg/dL, p = 0.045). There is no difference in CRP and lymphocyte count between the two groups. Conclusions: SSI patients had lower lymphocyte percentages than non-SSI patients, which was a risk factor for SSI, with constant high inflammation. The Day 3 lymphocyte percentage may predict SSI after spinal instrumented surgery.
en-copyright=
kn-copyright=
en-aut-name=MiyamotoAkiyoshi
en-aut-sei=Miyamoto
en-aut-mei=Akiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaMasato
en-aut-sei=Tanaka
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FloresAngel Oscar Paz
en-aut-sei=Flores
en-aut-mei=Angel Oscar Paz
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YuDongwoo
en-aut-sei=Yu
en-aut-mei=Dongwoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=JainMukul
en-aut-sei=Jain
en-aut-mei=Mukul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HengChristan
en-aut-sei=Heng
en-aut-mei=Christan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KomatsubaraTadashi
en-aut-sei=Komatsubara
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AratakiShinya
en-aut-sei=Arataki
en-aut-mei=Shinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OdaYoshiaki
en-aut-sei=Oda
en-aut-mei=Yoshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ShinoharaKensuke
en-aut-sei=Shinohara
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=UotaniKoji
en-aut-sei=Uotani
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=2
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=3
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=4
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=5
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=6
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=7
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=8
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=9
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
en-keyword=surgical site infection
kn-keyword=surgical site infection
en-keyword=spine surgery
kn-keyword=spine surgery
en-keyword=instrumentation
kn-keyword=instrumentation
en-keyword=diagnosis
kn-keyword=diagnosis
en-keyword=lymphocyte
kn-keyword=lymphocyte
END
start-ver=1.4
cd-journal=joma
no-vol=19
cd-vols=
no-issue=1
article-no=
start-page=209
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Exercise hemodynamic evaluation in the management of dasatinib-related pulmonary arterial hypertension: a case report
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Dasatinib-related pulmonary arterial hypertension is a rare complication of chronic therapy for hematological malignancies. Pulmonary hypertension often persists despite drug discontinuation and might require vasodilators. Normalizing pulmonary hemodynamics and avoiding the long-term use of vasodilators is challenging.
Case presentation Patient was a 55-year-old Japanese man complaining of progressive dyspnea on effort and fatigue. He had a history of hypertension and chronic myeloid leukemia treated with dasatinib. He was diagnosed with dasatinib-related pulmonary arterial hypertension by a right heart catheterization at rest, demonstrating a mean pulmonary artery pressure of 31 mmHg and a normal pulmonary arterial wedge pressure of 6 mmHg. Symptoms and hemodynamics significantly improved after the discontinuation of dasatinib and the initiation of upfront combination therapy of vasodilators. An exercise right heart catheterization, performed more than 2 years after the initiation of vasodilators, showed a mean pulmonary artery pressure of 15 mmHg at rest and 29 mmHg at peak exercise (normal reference value,?30 mmHg), suggesting normal pulmonary microcirculation. On the basis of these findings, pulmonary vasodilators were discontinued. Notably, a repeat exercise right heart catheterization demonstrated preserved pulmonary microcirculation, and the patient has remained asymptomatic for more than 2 years after discontinuing pulmonary-arterial-hypertension-targeted therapy.
Conclusions The evaluation of pulmonary microcirculation by exercise right heart catheterization can be useful for withdrawing pulmonary vasodilators safely in the management of patients with dasatinib-related pulmonary arterial hypertension.
en-copyright=
kn-copyright=
en-aut-name=YamashitaShuhei
en-aut-sei=Yamashita
en-aut-mei=Shuhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HiraideTakahiro
en-aut-sei=Hiraide
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShiraishiYasuyuki
en-aut-sei=Shiraishi
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KatsumataYoshinori
en-aut-sei=Katsumata
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KataokaMasaharu
en-aut-sei=Kataoka
en-aut-mei=Masaharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FukuiShogo
en-aut-sei=Fukui
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KawakamiMichiyuki
en-aut-sei=Kawakami
en-aut-mei=Michiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YuasaShinsuke
en-aut-sei=Yuasa
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OkamotoShinichiro
en-aut-sei=Okamoto
en-aut-mei=Shinichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=FukudaKeiichi
en-aut-sei=Fukuda
en-aut-mei=Keiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=IedaMasaki
en-aut-sei=Ieda
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Rehabilitation, Keio University Hospital
kn-affil=
affil-num=7
en-affil=Department of Rehabilitation, Keio University School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Cardiovascular Medicine Academic Field, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Hematology, Keio University School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
en-keyword=Case report
kn-keyword=Case report
en-keyword=Dasatinib
kn-keyword=Dasatinib
en-keyword=Drug-induced
kn-keyword=Drug-induced
en-keyword=Exercise-induced pulmonary hypertension
kn-keyword=Exercise-induced pulmonary hypertension
en-keyword=Pulmonary arterial hypertension
kn-keyword=Pulmonary arterial hypertension
END
start-ver=1.4
cd-journal=joma
no-vol=27
cd-vols=
no-issue=2
article-no=
start-page=euaf024
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202502
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=SCN5A variant type-dependent risk prediction in Brugada syndrome
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Aims The variant in SCN5A with the loss of function (LOF) effect in the cardiac Na+ channel (Nav1.5) is the definitive cause for Brugada syndrome (BrS), and the functional analysis data revealed that LOF variants are associated with poor prognosis. However, which variant types (e.g. missense or non-missense) affect the prognoses of those variant carriers remain unelucidated.
Methods and results We defined SCN5A LOF variants as all non-missense and missense variants that produce peak INa < 65% of wild-type previously confirmed by patch-clamp studies. The study population consisted of 76 Japanese BrS patients (74% patients were male and the median age [IQR] at diagnosis was 28 [14?45] years) with LOF type of SCN5A variants: 40 with missense and 36 with non-missense variants. Non-missense variant carriers presented significantly more severe cardiac conduction disorder compared to the missense variant carriers. During follow-up periods of 9.0 [5.0?14.0] years, compared to missense variants, non-missense variants were significant risk factors of lifetime lethal arrhythmia events (LAEs) (P = 0.023). When focusing only on the missense variants that produce no peak INa, these missense variant carriers exhibited the same clinical outcomes as those with non-missense (log-rank P = 0.325). After diagnosis, however, both variant types were comparable in risk of LAEs (P = 0.155).
Conclusion We identified, for the first time, that SCN5A non-missense variants were associated with higher probability of LAE than missense variants in BrS patients though it did not change significantly after diagnosis.
en-copyright=
kn-copyright=
en-aut-name=AizawaTakanori
en-aut-sei=Aizawa
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MakiyamaTakeru
en-aut-sei=Makiyama
en-aut-mei=Takeru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HuangHai
en-aut-sei=Huang
en-aut-mei=Hai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ImamuraTomohiko
en-aut-sei=Imamura
en-aut-mei=Tomohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FukuyamaMegumi
en-aut-sei=Fukuyama
en-aut-mei=Megumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SonodaKeiko
en-aut-sei=Sonoda
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KatoKoichi
en-aut-sei=Kato
en-aut-mei=Koichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HisamatsuTakashi
en-aut-sei=Hisamatsu
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NakamuraYuko
en-aut-sei=Nakamura
en-aut-mei=Yuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HoshinoKenji
en-aut-sei=Hoshino
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OzawaJunichi
en-aut-sei=Ozawa
en-aut-mei=Junichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=SuzukiHiroshi
en-aut-sei=Suzuki
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=YasudaKazushi
en-aut-sei=Yasuda
en-aut-mei=Kazushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=AokiHisaaki
en-aut-sei=Aoki
en-aut-mei=Hisaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KuritaTakashi
en-aut-sei=Kurita
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=YoshidaYoko
en-aut-sei=Yoshida
en-aut-mei=Yoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=SuzukiTsugutoshi
en-aut-sei=Suzuki
en-aut-mei=Tsugutoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=NakamuraYoshihide
en-aut-sei=Nakamura
en-aut-mei=Yoshihide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=OgawaYoshiharu
en-aut-sei=Ogawa
en-aut-mei=Yoshiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=YamagamiShintaro
en-aut-sei=Yamagami
en-aut-mei=Shintaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=MoritaHiroshi
en-aut-sei=Morita
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=YuasaShinsuke
en-aut-sei=Yuasa
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=FukudaMasakazu
en-aut-sei=Fukuda
en-aut-mei=Masakazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=OnoMakoto
en-aut-sei=Ono
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=KondoHidekazu
en-aut-sei=Kondo
en-aut-mei=Hidekazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=TakahashiNaohiko
en-aut-sei=Takahashi
en-aut-mei=Naohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=OhnoSeiko
en-aut-sei=Ohno
en-aut-mei=Seiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=NakagawaYoshihisa
en-aut-sei=Nakagawa
en-aut-mei=Yoshihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=OnoKoh
en-aut-sei=Ono
en-aut-mei=Koh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=HorieMinoru
en-aut-sei=Horie
en-aut-mei=Minoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine , 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507 ,
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Medicine, Shiga University of Medical Science
kn-affil=
affil-num=6
en-affil=Medical Genome Center, National Cerebral and Cardiovascular Center
kn-affil=
affil-num=7
en-affil=Department of Cardiovascular Medicine, Shiga University of Medical Science
kn-affil=
affil-num=8
en-affil=Department of Public Health, Dentistry and Pharmaceutical Science, Okayama University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Pediatrics, Tsuchiura Kyodo General Hospital
kn-affil=
affil-num=10
en-affil=Department of Cardiology, Saitama Childrenfs Medical Center
kn-affil=
affil-num=11
en-affil=Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences
kn-affil=
affil-num=12
en-affil=Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital
kn-affil=
affil-num=13
en-affil=Department of Pediatric Cardiology, Aichi Childrenfs Health and Medical Center
kn-affil=
affil-num=14
en-affil=Department of Pediatric Cardiology, Osaka Womenfs and Childrenfs Hospital
kn-affil=
affil-num=15
en-affil=Division of Cardiovascular Center, Kindai University School of Medicine
kn-affil=
affil-num=16
en-affil=Division of Pediatric Cardiology and Electrophysiology, Osaka City General Hospital
kn-affil=
affil-num=17
en-affil=Division of Pediatric Cardiology and Electrophysiology, Osaka City General Hospital
kn-affil=
affil-num=18
en-affil=Division of Pediatric Cardiology and Electrophysiology, Osaka City General Hospital
kn-affil=
affil-num=19
en-affil=Division of Cardiology, Hyogo Prefectural Kobe Childrenfs Hospital
kn-affil=
affil-num=20
en-affil=Department of Cardiology, Tenri Hospital
kn-affil=
affil-num=21
en-affil=Department of Cardiovascular Therapeutics, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=22
en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=23
en-affil=Division of Cardiology, Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine
kn-affil=
affil-num=24
en-affil=Division of Cardiology, Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine
kn-affil=
affil-num=25
en-affil=Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
kn-affil=
affil-num=26
en-affil=Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
kn-affil=
affil-num=27
en-affil=Medical Genome Center, National Cerebral and Cardiovascular Center
kn-affil=
affil-num=28
en-affil=Department of Cardiovascular Medicine, Shiga University of Medical Science
kn-affil=
affil-num=29
en-affil=Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=30
en-affil=Department of Cardiovascular Medicine, Shiga University of Medical Science
kn-affil=
en-keyword=Brugada syndrome
kn-keyword=Brugada syndrome
en-keyword=SCN5A
kn-keyword=SCN5A
en-keyword=Lethal arrhythmia event
kn-keyword=Lethal arrhythmia event
en-keyword=Variant type
kn-keyword=Variant type
en-keyword=Loss of function
kn-keyword=Loss of function
END
start-ver=1.4
cd-journal=joma
no-vol=37
cd-vols=
no-issue=2
article-no=
start-page=395
end-page=412.e6
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202502
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Maternal circadian rhythms during pregnancy dictate metabolic plasticity in offspring
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Tissue-level oscillation is achieved by tissue-intrinsic clocks along with network-dependent signals originating from distal organs and organismal behavior. Yet, it remains unexplored whether maternal circadian rhythms during pregnancy influence fetal rhythms and impact long-term susceptibility to dietary challenges in offspring. Here, we demonstrate that circadian disruption during pregnancy decreased placental and neonatal weight yet retained transcriptional and structural maturation. Intriguingly, diet-induced obesity was exacerbated in parallel with arrhythmic feeding behavior, hypothalamic leptin resistance, and hepatic circadian reprogramming in offspring of chronodisrupted mothers. In utero circadian desynchrony altered the phase-relationship between the mother and fetus and impacted placental efficiency. Temporal feeding restriction in offspring failed to fully prevent obesity, whereas the circadian alignment of caloric restriction with the onset of the active phase virtually ameliorated the phenotype. Thus, maternal circadian rhythms during pregnancy confer adaptive properties to metabolic functions in offspring and provide insights into the developmental origins of health and disease.
en-copyright=
kn-copyright=
en-aut-name=YaoNa
en-aut-sei=Yao
en-aut-mei=Na
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KinouchiKenichiro
en-aut-sei=Kinouchi
en-aut-mei=Kenichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KatohManami
en-aut-sei=Katoh
en-aut-mei=Manami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AshtianiKousha Changizi
en-aut-sei=Ashtiani
en-aut-mei=Kousha Changizi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AbdelkarimSherif
en-aut-sei=Abdelkarim
en-aut-mei=Sherif
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MorimotoHiroyuki
en-aut-sei=Morimoto
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TorimitsuTakuto
en-aut-sei=Torimitsu
en-aut-mei=Takuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KozumaTakahide
en-aut-sei=Kozuma
en-aut-mei=Takahide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IwaharaAkihide
en-aut-sei=Iwahara
en-aut-mei=Akihide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KosugiShotaro
en-aut-sei=Kosugi
en-aut-mei=Shotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KomuroJin
en-aut-sei=Komuro
en-aut-mei=Jin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KatoKyosuke
en-aut-sei=Kato
en-aut-mei=Kyosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TonomuraShun
en-aut-sei=Tonomura
en-aut-mei=Shun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=NakamuraToshifumi
en-aut-sei=Nakamura
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=ItohArata
en-aut-sei=Itoh
en-aut-mei=Arata
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=YamaguchiShintaro
en-aut-sei=Yamaguchi
en-aut-mei=Shintaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=YoshinoJun
en-aut-sei=Yoshino
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=IrieJunichiro
en-aut-sei=Irie
en-aut-mei=Junichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=HashimotoHisayuki
en-aut-sei=Hashimoto
en-aut-mei=Hisayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=YuasaShinsuke
en-aut-sei=Yuasa
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=SatohAkiko
en-aut-sei=Satoh
en-aut-mei=Akiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=MikamiYohei
en-aut-sei=Mikami
en-aut-mei=Yohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=UchidaShusaku
en-aut-sei=Uchida
en-aut-mei=Shusaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=UekiTakatoshi
en-aut-sei=Ueki
en-aut-mei=Takatoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=NomuraSeitaro
en-aut-sei=Nomura
en-aut-mei=Seitaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=BaldiPierre
en-aut-sei=Baldi
en-aut-mei=Pierre
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=HayashiKaori
en-aut-sei=Hayashi
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=ItohHiroshi
en-aut-sei=Itoh
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
affil-num=1
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=2
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=4
en-affil=Department of Computer Science, University of California
kn-affil=
affil-num=5
en-affil=Department of Computer Science, University of California
kn-affil=
affil-num=6
en-affil=Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences
kn-affil=
affil-num=7
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=8
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=9
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=10
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=12
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=13
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=14
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=15
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=16
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=17
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=18
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=19
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=20
en-affil=Department of Cardiovascular Medicine, Academic Field, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=21
en-affil=Department of Integrative Physiology, Institute of Development, Aging and Cancer, Tohoku University
kn-affil=
affil-num=22
en-affil=Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=23
en-affil=Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences
kn-affil=
affil-num=24
en-affil=Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences
kn-affil=
affil-num=25
en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=26
en-affil=Department of Computer Science, University of California
kn-affil=
affil-num=27
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=28
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
en-keyword=circadian rhythm
kn-keyword=circadian rhythm
en-keyword=metabolism
kn-keyword=metabolism
en-keyword=circadian clock
kn-keyword=circadian clock
en-keyword=pregnancy
kn-keyword=pregnancy
en-keyword=developmental origins of health and disease
kn-keyword=developmental origins of health and disease
en-keyword=obesity
kn-keyword=obesity
en-keyword=leptin
kn-keyword=leptin
en-keyword=time-restricted feeding
kn-keyword=time-restricted feeding
en-keyword=caloric restriction
kn-keyword=caloric restriction
en-keyword=eating behavior
kn-keyword=eating behavior
END
start-ver=1.4
cd-journal=joma
no-vol=106
cd-vols=
no-issue=7
article-no=
start-page=002112
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250725
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Summary of taxonomy changes ratified by the International Committee on Taxonomy of Viruses (ICTV) from the Animal dsRNA and ssRNA(?) Viruses Subcommittee, 2025
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=RNA viruses are ubiquitous in the environment and are important pathogens of humans, animals and plants. In 2024, the International Committee on Taxonomy of Viruses Animal dsRNA and ssRNA(?) Viruses Subcommittee submitted 18 taxonomic proposals for consideration. These proposals expanded the known virosphere by classifying 9 new genera and 88 species for newly detected virus genomes. Of note, newly established species expand the large family of Rhabdoviridae to 580 species. A new species in the family Arenaviridae includes a virus detected in Antarctic fish with a unique split nucleoprotein ORF. Additionally, four new species were established for historically isolated viruses with previously unsequenced genomes. Furthermore, three species were abolished due to incomplete genome sequence information, and one family was moved from being unassigned in the phylum Negarnaviricota into a subphylum and order. Herein, we summarize the 18 ratified taxonomic proposals and the general features of the current taxonomy, thereby supporting public and animal health responses.
en-copyright=
kn-copyright=
en-aut-name=HughesHolly R.
en-aut-sei=Hughes
en-aut-mei=Holly R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=BallingerMatthew J.
en-aut-sei=Ballinger
en-aut-mei=Matthew J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=BaoYiming
en-aut-sei=Bao
en-aut-mei=Yiming
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=BejermanNicolas
en-aut-sei=Bejerman
en-aut-mei=Nicolas
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=BlasdellKim R.
en-aut-sei=Blasdell
en-aut-mei=Kim R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=BrieseThomas
en-aut-sei=Briese
en-aut-mei=Thomas
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=BrignoneJulia
en-aut-sei=Brignone
en-aut-mei=Julia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=CarreraJean Paul
en-aut-sei=Carrera
en-aut-mei=Jean Paul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=De ConinckLander
en-aut-sei=De Coninck
en-aut-mei=Lander
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=de SouzaWilliam Marciel
en-aut-sei=de Souza
en-aut-mei=William Marciel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=DebatHumberto
en-aut-sei=Debat
en-aut-mei=Humberto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=DietzgenRalf G.
en-aut-sei=Dietzgen
en-aut-mei=Ralf G.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=D?rrwaldRalf
en-aut-sei=D?rrwald
en-aut-mei=Ralf
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=ErdinMert
en-aut-sei=Erdin
en-aut-mei=Mert
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=FooksAnthony R.
en-aut-sei=Fooks
en-aut-mei=Anthony R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=ForbesKristian M.
en-aut-sei=Forbes
en-aut-mei=Kristian M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=Freitas-Ast?aJuliana
en-aut-sei=Freitas-Ast?a
en-aut-mei=Juliana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=GarciaJorge B.
en-aut-sei=Garcia
en-aut-mei=Jorge B.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=GeogheganJemma L.
en-aut-sei=Geoghegan
en-aut-mei=Jemma L.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=GrimwoodRebecca M.
en-aut-sei=Grimwood
en-aut-mei=Rebecca M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=HorieMasayuki
en-aut-sei=Horie
en-aut-mei=Masayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=HyndmanTimothy H.
en-aut-sei=Hyndman
en-aut-mei=Timothy H.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=JohneReimar
en-aut-sei=Johne
en-aut-mei=Reimar
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=KlenaJohn D.
en-aut-sei=Klena
en-aut-mei=John D.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=KondoHideki
en-aut-sei=Kondo
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=KooninEugene V.
en-aut-sei=Koonin
en-aut-mei=Eugene V.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=KostygovAlexei Y.
en-aut-sei=Kostygov
en-aut-mei=Alexei Y.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=KrupovicMart
en-aut-sei=Krupovic
en-aut-mei=Mart
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=KuhnJens H.
en-aut-sei=Kuhn
en-aut-mei=Jens H.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=LetkoMichael
en-aut-sei=Letko
en-aut-mei=Michael
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=LiJun-Min
en-aut-sei=Li
en-aut-mei=Jun-Min
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=LiuYiyun
en-aut-sei=Liu
en-aut-mei=Yiyun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
en-aut-name=MartinMaria Laura
en-aut-sei=Martin
en-aut-mei=Maria Laura
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=33
ORCID=
en-aut-name=MullNathaniel
en-aut-sei=Mull
en-aut-mei=Nathaniel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=34
ORCID=
en-aut-name=NazarYael
en-aut-sei=Nazar
en-aut-mei=Yael
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=35
ORCID=
en-aut-name=NowotnyNorbert
en-aut-sei=Nowotny
en-aut-mei=Norbert
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=36
ORCID=
en-aut-name=NunesM?rcio Roberto Teixeira
en-aut-sei=Nunes
en-aut-mei=M?rcio Roberto Teixeira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=37
ORCID=
en-aut-name=?klandArnfinn Lodden
en-aut-sei=?kland
en-aut-mei=Arnfinn Lodden
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=38
ORCID=
en-aut-name=RubbenstrothDennis
en-aut-sei=Rubbenstroth
en-aut-mei=Dennis
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=39
ORCID=
en-aut-name=RussellBrandy J.
en-aut-sei=Russell
en-aut-mei=Brandy J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=40
ORCID=
en-aut-name=SchottEric
en-aut-sei=Schott
en-aut-mei=Eric
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=41
ORCID=
en-aut-name=SeifertStephanie
en-aut-sei=Seifert
en-aut-mei=Stephanie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=42
ORCID=
en-aut-name=SenCarina
en-aut-sei=Sen
en-aut-mei=Carina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=43
ORCID=
en-aut-name=ShedroffElizabeth
en-aut-sei=Shedroff
en-aut-mei=Elizabeth
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=44
ORCID=
en-aut-name=SironenTarja
en-aut-sei=Sironen
en-aut-mei=Tarja
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=45
ORCID=
en-aut-name=SmuraTeemu
en-aut-sei=Smura
en-aut-mei=Teemu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=46
ORCID=
en-aut-name=TavaresCamila Prestes Dos Santos
en-aut-sei=Tavares
en-aut-mei=Camila Prestes Dos Santos
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=47
ORCID=
en-aut-name=TeshRobert B.
en-aut-sei=Tesh
en-aut-mei=Robert B.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=48
ORCID=
en-aut-name=TilstonNatasha L.
en-aut-sei=Tilston
en-aut-mei=Natasha L.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=49
ORCID=
en-aut-name=TordoNo?l
en-aut-sei=Tordo
en-aut-mei=No?l
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=50
ORCID=
en-aut-name=VasilakisNikos
en-aut-sei=Vasilakis
en-aut-mei=Nikos
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=51
ORCID=
en-aut-name=WalkerPeter J.
en-aut-sei=Walker
en-aut-mei=Peter J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=52
ORCID=
en-aut-name=WangFei
en-aut-sei=Wang
en-aut-mei=Fei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=53
ORCID=
en-aut-name=WhitfieldAnna E.
en-aut-sei=Whitfield
en-aut-mei=Anna E.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=54
ORCID=
en-aut-name=WhitmerShannon L.M.
en-aut-sei=Whitmer
en-aut-mei=Shannon L.M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=55
ORCID=
en-aut-name=WolfYuri I.
en-aut-sei=Wolf
en-aut-mei=Yuri I.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=56
ORCID=
en-aut-name=XiaHan
en-aut-sei=Xia
en-aut-mei=Han
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=57
ORCID=
en-aut-name=YeGong-Yin
en-aut-sei=Ye
en-aut-mei=Gong-Yin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=58
ORCID=
en-aut-name=YeZhuangxin
en-aut-sei=Ye
en-aut-mei=Zhuangxin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=59
ORCID=
en-aut-name=YurchenkoVyacheslav
en-aut-sei=Yurchenko
en-aut-mei=Vyacheslav
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=60
ORCID=
en-aut-name=ZhaoMingli
en-aut-sei=Zhao
en-aut-mei=Mingli
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=61
ORCID=
affil-num=1
en-affil=Centers for Disease Control and Prevention
kn-affil=
affil-num=2
en-affil=Biological Sciences, Mississippi State University
kn-affil=
affil-num=3
en-affil=National Genomics Data Center, China National Center for Bioinformation; Beijing Institute of Genomics, Chinese Academy of Sciences; University of Chinese Academy of Sciences
kn-affil=
affil-num=4
en-affil=Consejo Nacional de Investigaciones Cient?ficas y T?cnicas (CONICET) and Instituto Nacional de Tecnolog?a Agropecuaria (INTA)
kn-affil=
affil-num=5
en-affil=CSIRO Health and Biosecurity
kn-affil=
affil-num=6
en-affil=Center for Infection and Immunity, and Department of Epidemiology, Mailman School of Public Health, Columbia University
kn-affil=
affil-num=7
en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS
kn-affil=
affil-num=8
en-affil=Instituto Conmemorativo Gorgas de Estudios de la Salud
kn-affil=
affil-num=9
en-affil=Division of Clinical and Epidemiological Virology, KU Leuven
kn-affil=
affil-num=10
en-affil=Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky
kn-affil=
affil-num=11
en-affil=Instituto Nacional de Tecnolog?a Agropecuaria (INTA)
kn-affil=
affil-num=12
en-affil=QAAFI, The University of Queensland
kn-affil=
affil-num=13
en-affil=Robert Koch Institut
kn-affil=
affil-num=14
en-affil=Department of Virology, University of Helsinki
kn-affil=
affil-num=15
en-affil=Animal and Plant Health Agency (APHA)
kn-affil=
affil-num=16
en-affil=Department of Biological Sciences, University of Arkansas
kn-affil=
affil-num=17
en-affil=Embrapa Cassava and Fruits
kn-affil=
affil-num=18
en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS
kn-affil=
affil-num=19
en-affil=Department of Microbiology and Immunology, University of Otago
kn-affil=
affil-num=20
en-affil=Department of Microbiology and Immunology, University of Otago
kn-affil=
affil-num=21
en-affil=Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University
kn-affil=
affil-num=22
en-affil=School of Veterinary Medicine, Murdoch University
kn-affil=
affil-num=23
en-affil=German Federal Institute for Risk Assessment
kn-affil=
affil-num=24
en-affil=Viral Special Pathogens Branch, The Centers for Disease Control and Prevention
kn-affil=
affil-num=25
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=26
en-affil=Computational Biology Branch, Division of Intramural Research National Library of Medicine, National Institutes of Health
kn-affil=
affil-num=27
en-affil=University of Ostrava
kn-affil=
affil-num=28
en-affil=Institut Pasteur, Universit? Paris Cit?, CNRS UMR6047, Archaeal Virology Unit
kn-affil=
affil-num=29
en-affil=Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health
kn-affil=
affil-num=30
en-affil=Paul G. Allen School for Global Health, Washington State University
kn-affil=
affil-num=31
en-affil=Institute of Plant Virology, Ningbo University
kn-affil=
affil-num=32
en-affil=National Genomics Data Center, China National Center for Bioinformation; Beijing Institute of Genomics, Chinese Academy of Sciences; University of Chinese Academy of Sciences
kn-affil=
affil-num=33
en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS
kn-affil=
affil-num=34
en-affil=Department of Natural Sciences, Shawnee State University
kn-affil=
affil-num=35
en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS
kn-affil=
affil-num=36
en-affil=College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health
kn-affil=
affil-num=37
en-affil=Universidade Federal do Par?
kn-affil=
affil-num=38
en-affil=Pharmaq Analytiq
kn-affil=
affil-num=39
en-affil=Institute of Diagnostic Virology, Friedrich-Loeffler-Institut
kn-affil=
affil-num=40
en-affil=Centers for Disease Control and Prevention
kn-affil=
affil-num=41
en-affil=Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science
kn-affil=
affil-num=42
en-affil=Paul G. Allen School for Global Health, Washington State University
kn-affil=
affil-num=43
en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS
kn-affil=
affil-num=44
en-affil=Viral Special Pathogens Branch, The Centers for Disease Control and Prevention
kn-affil=
affil-num=45
en-affil=Department of Virology, University of Helsinki
kn-affil=
affil-num=46
en-affil=Department of Virology, University of Helsinki
kn-affil=
affil-num=47
en-affil=Integrated Group of Aquaculture and Environmental Studies, Federal University of Paran?
kn-affil=
affil-num=48
en-affil=Department of Pathology, The University of Texas Medical Branch
kn-affil=
affil-num=49
en-affil=Department of Microbiology and Immunology, Indiana University School of Medicine
kn-affil=
affil-num=50
en-affil=Institut Pasteur
kn-affil=
affil-num=51
en-affil=Department of Pathology, The University of Texas Medical Branch
kn-affil=
affil-num=52
en-affil=University of Queensland
kn-affil=
affil-num=53
en-affil=Wuhan Institute of Virology, Chinese Academy of Sciences
kn-affil=
affil-num=54
en-affil=North Carolina State University
kn-affil=
affil-num=55
en-affil=Viral Special Pathogens Branch, The Centers for Disease Control and Prevention
kn-affil=
affil-num=56
en-affil=Computational Biology Branch, Division of Intramural Research National Library of Medicine, National Institutes of Health
kn-affil=
affil-num=57
en-affil=Wuhan Institute of Virology, Chinese Academy of Sciences
kn-affil=
affil-num=58
en-affil=Institute of Insect Sciences, Zhejiang University
kn-affil=
affil-num=59
en-affil=Institute of Plant Virology, Ningbo University
kn-affil=
affil-num=60
en-affil=University of Ostrava
kn-affil=
affil-num=61
en-affil=Department of Pathobiology and Population Sciences, Royal Veterinary College
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=106
cd-vols=
no-issue=7
article-no=
start-page=002114
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250725
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Summary of taxonomy changes ratified by the International Committee on Taxonomy of Viruses from the Plant Viruses Subcommittee, 2025
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In March 2025, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote, newly proposed taxa were added to those under the mandate of the Plant Viruses Subcommittee. In brief, 1 new order, 3 new families, 6 new genera, 2 new subgenera and 206 new species were created. Some taxa were reorganized. Genus Cytorhabdovirus in the family Rhabdoviridae was abolished and its taxa were redistributed into three new genera Alphacytorhabdovirus, Betacytorhabdovirus and Gammacytorhabdovirus. Genus Waikavirus in the family Secoviridae was reorganized into two subgenera (Actinidivirus and Ritunrivirus). One family and four previously unaffiliated genera were moved to the newly established order Tombendovirales. Twelve species not assigned to a genus were abolished. To comply with the ICTV mandate of a binomial format for virus species, eight species were renamed. Demarcation criteria in the absence of biological information were defined in the genus Ilarvirus (family Bromoviridae). This article presents the updated taxonomy put forth by the Plant Viruses Subcommittee and ratified by the ICTV.
en-copyright=
kn-copyright=
en-aut-name=RubinoLuisa
en-aut-sei=Rubino
en-aut-mei=Luisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AbrahamianPeter
en-aut-sei=Abrahamian
en-aut-mei=Peter
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AnWenxia
en-aut-sei=An
en-aut-mei=Wenxia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ArandaMiguel A.
en-aut-sei=Aranda
en-aut-mei=Miguel A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=Ascencio-Iba?ezJos? T.
en-aut-sei=Ascencio-Iba?ez
en-aut-mei=Jos? T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=BejermanNicolas
en-aut-sei=Bejerman
en-aut-mei=Nicolas
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=BlouinArnaud G.
en-aut-sei=Blouin
en-aut-mei=Arnaud G.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=CandresseThierry
en-aut-sei=Candresse
en-aut-mei=Thierry
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=CantoTomas
en-aut-sei=Canto
en-aut-mei=Tomas
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=CaoMengji
en-aut-sei=Cao
en-aut-mei=Mengji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=CarrJohn P.
en-aut-sei=Carr
en-aut-mei=John P.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ChoWon Kyong
en-aut-sei=Cho
en-aut-mei=Won Kyong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=ConstableFiona
en-aut-sei=Constable
en-aut-mei=Fiona
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=DasguptaIndranil
en-aut-sei=Dasgupta
en-aut-mei=Indranil
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=DebatHumberto
en-aut-sei=Debat
en-aut-mei=Humberto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=DietzgenRalf G.
en-aut-sei=Dietzgen
en-aut-mei=Ralf G.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=DigiaroMichele
en-aut-sei=Digiaro
en-aut-mei=Michele
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=DonaireLivia
en-aut-sei=Donaire
en-aut-mei=Livia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=ElbeainoToufic
en-aut-sei=Elbeaino
en-aut-mei=Toufic
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=FargetteDenis
en-aut-sei=Fargette
en-aut-mei=Denis
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=FilardoFiona
en-aut-sei=Filardo
en-aut-mei=Fiona
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=FischerMatthias G.
en-aut-sei=Fischer
en-aut-mei=Matthias G.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=FontdevilaNuria
en-aut-sei=Fontdevila
en-aut-mei=Nuria
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=FoxAdrian
en-aut-sei=Fox
en-aut-mei=Adrian
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=Freitas-AstuaJuliana
en-aut-sei=Freitas-Astua
en-aut-mei=Juliana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=FuchsMarc
en-aut-sei=Fuchs
en-aut-mei=Marc
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=GeeringAndrew D.W.
en-aut-sei=Geering
en-aut-mei=Andrew D.W.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=GhafariMahan
en-aut-sei=Ghafari
en-aut-mei=Mahan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=Hafr?nAnders
en-aut-sei=Hafr?n
en-aut-mei=Anders
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=HammondJohn
en-aut-sei=Hammond
en-aut-mei=John
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=HammondRosemarie
en-aut-sei=Hammond
en-aut-mei=Rosemarie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=Hasi?w-JaroszewskaBeata
en-aut-sei=Hasi?w-Jaroszewska
en-aut-mei=Beata
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
en-aut-name=HebrardEugenie
en-aut-sei=Hebrard
en-aut-mei=Eugenie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=33
ORCID=
en-aut-name=Hern?ndezCarmen
en-aut-sei=Hern?ndez
en-aut-mei=Carmen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=34
ORCID=
en-aut-name=HilyJean-Michel
en-aut-sei=Hily
en-aut-mei=Jean-Michel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=35
ORCID=
en-aut-name=HosseiniAhmed
en-aut-sei=Hosseini
en-aut-mei=Ahmed
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=36
ORCID=
en-aut-name=HullRoger
en-aut-sei=Hull
en-aut-mei=Roger
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=37
ORCID=
en-aut-name=Inoue-NagataAlice K.
en-aut-sei=Inoue-Nagata
en-aut-mei=Alice K.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=38
ORCID=
en-aut-name=JordanRamon
en-aut-sei=Jordan
en-aut-mei=Ramon
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=39
ORCID=
en-aut-name=KondoHideki
en-aut-sei=Kondo
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=40
ORCID=
en-aut-name=KreuzeJan F.
en-aut-sei=Kreuze
en-aut-mei=Jan F.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=41
ORCID=
en-aut-name=KrupovicMart
en-aut-sei=Krupovic
en-aut-mei=Mart
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=42
ORCID=
en-aut-name=KubotaKenji
en-aut-sei=Kubota
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=43
ORCID=
en-aut-name=KuhnJens H.
en-aut-sei=Kuhn
en-aut-mei=Jens H.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=44
ORCID=
en-aut-name=LeisnerScott
en-aut-sei=Leisner
en-aut-mei=Scott
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=45
ORCID=
en-aut-name=LettJean-Michel
en-aut-sei=Lett
en-aut-mei=Jean-Michel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=46
ORCID=
en-aut-name=LiChengyu
en-aut-sei=Li
en-aut-mei=Chengyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=47
ORCID=
en-aut-name=LiFan
en-aut-sei=Li
en-aut-mei=Fan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=48
ORCID=
en-aut-name=LiJun Min
en-aut-sei=Li
en-aut-mei=Jun Min
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=49
ORCID=
en-aut-name=L?pez-LambertiniPaola M.
en-aut-sei=L?pez-Lambertini
en-aut-mei=Paola M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=50
ORCID=
en-aut-name=Lopez-MoyaJuan J.
en-aut-sei=Lopez-Moya
en-aut-mei=Juan J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=51
ORCID=
en-aut-name=MaclotFrancois
en-aut-sei=Maclot
en-aut-mei=Francois
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=52
ORCID=
en-aut-name=M?kinenKristiina
en-aut-sei=M?kinen
en-aut-mei=Kristiina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=53
ORCID=
en-aut-name=MartinDarren
en-aut-sei=Martin
en-aut-mei=Darren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=54
ORCID=
en-aut-name=MassartSebastien
en-aut-sei=Massart
en-aut-mei=Sebastien
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=55
ORCID=
en-aut-name=MillerW. Allen
en-aut-sei=Miller
en-aut-mei=W. Allen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=56
ORCID=
en-aut-name=MohammadiMusa
en-aut-sei=Mohammadi
en-aut-mei=Musa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=57
ORCID=
en-aut-name=MollovDimitre
en-aut-sei=Mollov
en-aut-mei=Dimitre
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=58
ORCID=
en-aut-name=MullerEmmanuelle
en-aut-sei=Muller
en-aut-mei=Emmanuelle
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=59
ORCID=
en-aut-name=NagataTatsuya
en-aut-sei=Nagata
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=60
ORCID=
en-aut-name=Navas-CastilloJes?s
en-aut-sei=Navas-Castillo
en-aut-mei=Jes?s
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=61
ORCID=
en-aut-name=NeriyaYutaro
en-aut-sei=Neriya
en-aut-mei=Yutaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=62
ORCID=
en-aut-name=Ochoa-CoronaFrancisco M.
en-aut-sei=Ochoa-Corona
en-aut-mei=Francisco M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=63
ORCID=
en-aut-name=OhshimaKazusato
en-aut-sei=Ohshima
en-aut-mei=Kazusato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=64
ORCID=
en-aut-name=Pall?sVicente
en-aut-sei=Pall?s
en-aut-mei=Vicente
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=65
ORCID=
en-aut-name=PappuHanu
en-aut-sei=Pappu
en-aut-mei=Hanu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=66
ORCID=
en-aut-name=PetrzikKarel
en-aut-sei=Petrzik
en-aut-mei=Karel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=67
ORCID=
en-aut-name=PoogginMikhail
en-aut-sei=Pooggin
en-aut-mei=Mikhail
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=68
ORCID=
en-aut-name=PrigigalloMaria Isabella
en-aut-sei=Prigigallo
en-aut-mei=Maria Isabella
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=69
ORCID=
en-aut-name=Ramos-Gonz?lezPedro L.
en-aut-sei=Ramos-Gonz?lez
en-aut-mei=Pedro L.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=70
ORCID=
en-aut-name=RibeiroSimone
en-aut-sei=Ribeiro
en-aut-mei=Simone
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=71
ORCID=
en-aut-name=Richert-P?ggelerKatja R.
en-aut-sei=Richert-P?ggeler
en-aut-mei=Katja R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=72
ORCID=
en-aut-name=RoumagnacPhilippe
en-aut-sei=Roumagnac
en-aut-mei=Philippe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=73
ORCID=
en-aut-name=RoyAvijit
en-aut-sei=Roy
en-aut-mei=Avijit
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=74
ORCID=
en-aut-name=SabanadzovicSead
en-aut-sei=Sabanadzovic
en-aut-mei=Sead
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=75
ORCID=
en-aut-name=?af??ov?Dana
en-aut-sei=?af??ov?
en-aut-mei=Dana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=76
ORCID=
en-aut-name=SaldarelliPasquale
en-aut-sei=Saldarelli
en-aut-mei=Pasquale
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=77
ORCID=
en-aut-name=Sanfa?onH?l?ne
en-aut-sei=Sanfa?on
en-aut-mei=H?l?ne
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=78
ORCID=
en-aut-name=SarmientoCecilia
en-aut-sei=Sarmiento
en-aut-mei=Cecilia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=79
ORCID=
en-aut-name=SasayaTakahide
en-aut-sei=Sasaya
en-aut-mei=Takahide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=80
ORCID=
en-aut-name=ScheetsKay
en-aut-sei=Scheets
en-aut-mei=Kay
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=81
ORCID=
en-aut-name=SchravesandeWillem E.W.
en-aut-sei=Schravesande
en-aut-mei=Willem E.W.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=82
ORCID=
en-aut-name=SealSusan
en-aut-sei=Seal
en-aut-mei=Susan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=83
ORCID=
en-aut-name=ShimomotoYoshifumi
en-aut-sei=Shimomoto
en-aut-mei=Yoshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=84
ORCID=
en-aut-name=S?meraMerike
en-aut-sei=S?mera
en-aut-mei=Merike
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=85
ORCID=
en-aut-name=StavoloneLivia
en-aut-sei=Stavolone
en-aut-mei=Livia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=86
ORCID=
en-aut-name=StewartLucy R.
en-aut-sei=Stewart
en-aut-mei=Lucy R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=87
ORCID=
en-aut-name=TeycheneyPierre-Yves
en-aut-sei=Teycheney
en-aut-mei=Pierre-Yves
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=88
ORCID=
en-aut-name=ThomasJohn E.
en-aut-sei=Thomas
en-aut-mei=John E.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=89
ORCID=
en-aut-name=ThompsonJeremy R.
en-aut-sei=Thompson
en-aut-mei=Jeremy R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=90
ORCID=
en-aut-name=TiberiniAntonio
en-aut-sei=Tiberini
en-aut-mei=Antonio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=91
ORCID=
en-aut-name=TomitakaYasuhiro
en-aut-sei=Tomitaka
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=92
ORCID=
en-aut-name=TzanetakisIoannis
en-aut-sei=Tzanetakis
en-aut-mei=Ioannis
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=93
ORCID=
en-aut-name=UmberMarie
en-aut-sei=Umber
en-aut-mei=Marie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=94
ORCID=
en-aut-name=UrbinoCica
en-aut-sei=Urbino
en-aut-mei=Cica
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=95
ORCID=
en-aut-name=van den BurgHarrold A.
en-aut-sei=van den Burg
en-aut-mei=Harrold A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=96
ORCID=
en-aut-name=Van der VlugtRen? A.A.
en-aut-sei=Van der Vlugt
en-aut-mei=Ren? A.A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=97
ORCID=
en-aut-name=VarsaniArvind
en-aut-sei=Varsani
en-aut-mei=Arvind
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=98
ORCID=
en-aut-name=VerhageAdriaan
en-aut-sei=Verhage
en-aut-mei=Adriaan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=99
ORCID=
en-aut-name=VillamorDan
en-aut-sei=Villamor
en-aut-mei=Dan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=100
ORCID=
en-aut-name=von BargenSusanne
en-aut-sei=von Bargen
en-aut-mei=Susanne
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=101
ORCID=
en-aut-name=WalkerPeter J.
en-aut-sei=Walker
en-aut-mei=Peter J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=102
ORCID=
en-aut-name=WetzelThierry
en-aut-sei=Wetzel
en-aut-mei=Thierry
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=103
ORCID=
en-aut-name=WhitfieldAnna E.
en-aut-sei=Whitfield
en-aut-mei=Anna E.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=104
ORCID=
en-aut-name=WylieStephen J.
en-aut-sei=Wylie
en-aut-mei=Stephen J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=105
ORCID=
en-aut-name=YangCaixia
en-aut-sei=Yang
en-aut-mei=Caixia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=106
ORCID=
en-aut-name=ZerbiniF. Murilo
en-aut-sei=Zerbini
en-aut-mei=F. Murilo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=107
ORCID=
en-aut-name=ZhangSong
en-aut-sei=Zhang
en-aut-mei=Song
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=108
ORCID=
affil-num=1
en-affil=Istituto per la Protezione Sostenibile delle Piante, CNR
kn-affil=
affil-num=2
en-affil=USDA-ARS, BARC, National Germplasm Resources Laboratory
kn-affil=
affil-num=3
en-affil=Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, Shenyang University
kn-affil=
affil-num=4
en-affil=Centro de Edafolog?a y Biolog?a Aplicada del Segura-CSIC
kn-affil=
affil-num=5
en-affil=Department of Molecular and Structural Biochemistry, North Carolina State University
kn-affil=
affil-num=6
en-affil=Unidad de Fitopatolog?a y Modelizaci?n Agr?cola (UFYMA) INTA-CONICET
kn-affil=
affil-num=7
en-affil=Plant Protection Department
kn-affil=
affil-num=8
en-affil=UMR 1332 Biologie du Fruit et Pathologie, University of Bordeaux, INRAE
kn-affil=
affil-num=9
en-affil=Margarita Salas Center for Biological Research (CIB-CSIC) Spanish Council for Scientific Research (CSIC)
kn-affil=
affil-num=10
en-affil=National Citrus Engineering and Technology Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University
kn-affil=
affil-num=11
en-affil=Department of Plant Sciences, University of Cambridge
kn-affil=
affil-num=12
en-affil=Agriculture and Life Sciences Research Institute, Kangwon National University
kn-affil=
affil-num=13
en-affil=Agriculture Victoria Research, Department of Energy, Environment and Climate Action and School of Applied Systems Biology, La Trobe University
kn-affil=
affil-num=14
en-affil=University of Delhi South Campu
kn-affil=
affil-num=15
en-affil=Unidad de Fitopatolog?a y Modelizaci?n Agr?cola (UFYMA) INTA-CONICET
kn-affil=
affil-num=16
en-affil=Queensland Alliance for Agriculture and Food Innovation, The University of Queensland
kn-affil=
affil-num=17
en-affil=CIHEAM, Istituto Agronomico Mediterraneo of Bari
kn-affil=
affil-num=18
en-affil=Centro de Edafolog?a y Biolog?a Aplicada del Segura-CSIC
kn-affil=
affil-num=19
en-affil=CIHEAM, Istituto Agronomico Mediterraneo of Bari
kn-affil=
affil-num=20
en-affil=Virus South Data
kn-affil=
affil-num=21
en-affil=Queensland Department of Primary Industries
kn-affil=
affil-num=22
en-affil=Max Planck Institute for Marine Microbiology
kn-affil=
affil-num=23
en-affil=Plant Protection Department
kn-affil=
affil-num=24
en-affil=Fera Science Ltd (Fera), York Biotech Campus
kn-affil=
affil-num=25
en-affil=Embrapa Cassava and Fruits, Brazilian Agricultural Research Corporation
kn-affil=
affil-num=26
en-affil=Plant Pathology, Cornell University
kn-affil=
affil-num=27
en-affil=Queensland Alliance for Agriculture and Food Innovation, The University of Queensland
kn-affil=
affil-num=28
en-affil=Department of Biology, University of Oxford
kn-affil=
affil-num=29
en-affil=Swedish University of Agriculture
kn-affil=
affil-num=30
en-affil=USDA-ARS, USNA, Floral and Nursery Plants Research Unit
kn-affil=
affil-num=31
en-affil=USDA-ARS, BARC, Molecular Plant Pathology Laboratory
kn-affil=
affil-num=32
en-affil=Institute of Plant Protection-NRI
kn-affil=
affil-num=33
en-affil=PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro
kn-affil=
affil-num=34
en-affil=Instituto de Biolog?a Molecular y Celular de Plantas (IBMCP), Universitat Polit?cnica de Valencia-CSIC
kn-affil=
affil-num=35
en-affil=Institut Fran?ais de la Vigne et du Vin
kn-affil=
affil-num=36
en-affil=Vali-e-Asr University of Rafsanjan, Department of Plant Protection
kn-affil=
affil-num=37
en-affil=Retired from John Innes Centre
kn-affil=
affil-num=38
en-affil=Embrapa Hortali?as
kn-affil=
affil-num=39
en-affil=USDA-ARS, USNA, Floral and Nursery Plants Research Unit
kn-affil=
affil-num=40
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=41
en-affil=International Potato Center (CIP)
kn-affil=
affil-num=42
en-affil=Institut Pasteur, Universit? Paris Cit?, CNRS UMR6047, Archaeal Virology Unit
kn-affil=
affil-num=43
en-affil=Institute for Plant Protection, NARO
kn-affil=
affil-num=44
en-affil=Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health
kn-affil=
affil-num=45
en-affil=Department of Biological Sciences, University of Toledo
kn-affil=
affil-num=46
en-affil=CIRAD, UMR PVBMT
kn-affil=
affil-num=47
en-affil=Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, Shenyang University
kn-affil=
affil-num=48
en-affil=State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University
kn-affil=
affil-num=49
en-affil=Institute of Plant Virology, Ningbo University
kn-affil=
affil-num=50
en-affil=Instituto de Patolog?a Vegetal (IPAVE), INTA, Unidad de Fitopatolog?a y Modelizaci?n Agr?cola (UFYMA) INTA-CONICET
kn-affil=
affil-num=51
en-affil=Centre for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB)
kn-affil=
affil-num=52
en-affil=UMR 1332 Biologie du Fruit et Pathologie, University of Bordeaux, INRAE
kn-affil=
affil-num=53
en-affil=Department of Agricultural Sciences, University of Helsinki
kn-affil=
affil-num=54
en-affil=Institute of Infectious Disease and Molecular Medicine, University of Cape Town
kn-affil=
affil-num=55
en-affil=Plant Pathology Laboratory, TERRA Gembloux Agro-Bio Tech, University of Liege
kn-affil=
affil-num=56
en-affil=Department of Plant Pathology, Entomology and Microbiology, Iowa State University
kn-affil=
affil-num=57
en-affil=Department of Plant Protection, Gorgan University of Agricultural Sciences and Natural Resources
kn-affil=
affil-num=58
en-affil=USDA-APHIS, Plant Protection and Quarantine
kn-affil=
affil-num=59
en-affil=CIRAD, AGAP Institut; AGAP Institut, University of Montpellier; CIRAD, INRAE
kn-affil=
affil-num=60
en-affil=Instituto de Ci?ncias Biol?gicas, Universidade de Bras?lia
kn-affil=
affil-num=61
en-affil=Instituto de Hortofruticultura Subtropical y Mediterr?nea gLa Mayorah (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Cient?ficas
kn-affil=
affil-num=62
en-affil=Utsunomiya University
kn-affil=
affil-num=63
en-affil=Oklahoma State University, Institute for Biosecurity & Microbial Forensics
kn-affil=
affil-num=64
en-affil=Saga University
kn-affil=
affil-num=65
en-affil=Instituto de Biolog?a Molecular y Celular de Plantas (IBMCP), Universitat Polit?cnica de Valencia-CSIC
kn-affil=
affil-num=66
en-affil=Department of Plant Pathology, Washington State University
kn-affil=
affil-num=67
en-affil=Institute of Plant Molecular Biology
kn-affil=
affil-num=68
en-affil=PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD
kn-affil=
affil-num=69
en-affil=Istituto per la Protezione Sostenibile delle Piante, CNR
kn-affil=
affil-num=70
en-affil=Applied Molecular Biology Laboratory, Instituto Biol?gico de S?o Paulo
kn-affil=
affil-num=71
en-affil=Embrapa Recursos Gen?ticos e Biotecnologia
kn-affil=
affil-num=72
en-affil=Julius K?hn Institute, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics
kn-affil=
affil-num=73
en-affil=CIRAD, UMR PHIM
kn-affil=
affil-num=74
en-affil=USDA-ARS, BARC, Molecular Plant Pathology Laboratory, Beltsville, MD, USA
kn-affil=
affil-num=75
en-affil=Department of Agricultural Science and Plant Protection, Mississippi State University
kn-affil=
affil-num=76
en-affil=Department of Cell Biology and Genetics, Faculty of Science, Palack? University Olomouc
kn-affil=
affil-num=77
en-affil=Istituto per la Protezione Sostenibile delle Piante, CNR
kn-affil=
affil-num=78
en-affil=Summerland Research and Development Centre, Agriculture and Agri-Food Canada
kn-affil=
affil-num=79
en-affil=Department of Chemistry and Biotechnology, Tallinn University of Technology
kn-affil=
affil-num=80
en-affil=Strategic Planning Headquarters, NARO
kn-affil=
affil-num=81
en-affil=Department of Plant Pathology, Ecology and Evolution, Oklahoma State University
kn-affil=
affil-num=82
en-affil=Molecular Plant Pathology, University of Amsterdam
kn-affil=
affil-num=83
en-affil=Natural Resources Institute, University of Greenwich
kn-affil=
affil-num=84
en-affil=Kochi Agricultural Research Center
kn-affil=
affil-num=85
en-affil=Department of Chemistry and Biotechnology, Tallinn University of Technology
kn-affil=
affil-num=86
en-affil=Istituto per la Protezione Sostenibile delle Piante, CNR
kn-affil=
affil-num=87
en-affil=Currently unaffiliated
kn-affil=
affil-num=88
en-affil=CIRAD, UMR PVBMT & UMR PVBMT, Universit? de la R?union
kn-affil=
affil-num=89
en-affil=Queensland Alliance for Agriculture and Food Innovation, The University of Queensland
kn-affil=
affil-num=90
en-affil=Plant Health and Environment Laboratory
kn-affil=
affil-num=91
en-affil=Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification
kn-affil=
affil-num=92
en-affil=Institute for Plant Protection, NARO
kn-affil=
affil-num=93
en-affil=Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System
kn-affil=
affil-num=94
en-affil=INRAE, UR ASTRO
kn-affil=
affil-num=95
en-affil=PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro
kn-affil=
affil-num=96
en-affil=Molecular Plant Pathology, University of Amsterdam
kn-affil=
affil-num=97
en-affil=Wageningen University and Research
kn-affil=
affil-num=98
en-affil=The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University
kn-affil=
affil-num=99
en-affil=Rijk Zwaan Breeding B.V.
kn-affil=
affil-num=100
en-affil=Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System
kn-affil=
affil-num=101
en-affil=Humboldt-Universit?t zu Berlin, Thaer-Institute of Agricultural and Horticultural Sciences
kn-affil=
affil-num=102
en-affil=The University of Queensland
kn-affil=
affil-num=103
en-affil=Dienstleistungszentrum L?ndlicher Raum Rheinpfalz
kn-affil=
affil-num=104
en-affil=North Carolina State University
kn-affil=
affil-num=105
en-affil=Food Futures Institute, Murdoch University
kn-affil=
affil-num=106
en-affil=Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, Shenyang University
kn-affil=
affil-num=107
en-affil=Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Vi?osa
kn-affil=
affil-num=108
en-affil=National Citrus Engineering and Technology Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=19
cd-vols=
no-issue=12
article-no=
start-page=2429
end-page=2437
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241112
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Discovery of a Compound That Inhibits IRE1¿ S-Nitrosylation and Preserves the Endoplasmic Reticulum Stress Response under Nitrosative Stress
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Inositol-requiring enzyme 1¿ (IRE1¿) is a sensor of endoplasmic reticulum (ER) stress and drives ER stress response pathways. Activated IRE1¿ exhibits RNase activity and cleaves mRNA encoding X-box binding protein 1, a transcription factor that induces the expression of genes that maintain ER proteostasis for cell survival. Previously, we showed that IRE1¿ undergoes S-nitrosylation, a post-translational modification induced by nitric oxide (NO), resulting in reduced RNase activity. Therefore, S-nitrosylation of IRE1¿ compromises the response to ER stress, making cells more vulnerable. We conducted virtual screening and cell-based validation experiments to identify compounds that inhibit the S-nitrosylation of IRE1¿ by targeting nitrosylated cysteine residues. We ultimately identified a compound (1ACTA) that selectively inhibits the S-nitrosylation of IRE1¿ and prevents the NO-induced reduction of RNase activity. Furthermore, 1ACTA reduces the rate of NO-induced cell death. Our research identified S-nitrosylation as a novel target for drug development for IRE1¿ and provides a suitable screening strategy.
en-copyright=
kn-copyright=
en-aut-name=KurogiHaruna
en-aut-sei=Kurogi
en-aut-mei=Haruna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakasugiNobumasa
en-aut-sei=Takasugi
en-aut-mei=Nobumasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KubotaSho
en-aut-sei=Kubota
en-aut-mei=Sho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KumarAshutosh
en-aut-sei=Kumar
en-aut-mei=Ashutosh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SuzukiTakehiro
en-aut-sei=Suzuki
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=DohmaeNaoshi
en-aut-sei=Dohmae
en-aut-mei=Naoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SawadaDaisuke
en-aut-sei=Sawada
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ZhangKam Y.J.
en-aut-sei=Zhang
en-aut-mei=Kam Y.J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=UeharaTakashi
en-aut-sei=Uehara
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN
kn-affil=
affil-num=5
en-affil=Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science
kn-affil=
affil-num=6
en-affil=Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science
kn-affil=
affil-num=7
en-affil=Department of Fine Organic Synthesis, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN
kn-affil=
affil-num=9
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=7
cd-vols=
no-issue=9
article-no=
start-page=2604
end-page=2611
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240830
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Rethinking Thin-Layer Chromatography for Screening Technetium-99m Radiolabeled Polymer Nanoparticles
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Thin-layer chromatography (TLC) is commonly employed to screen technetium-99m labeled polymer nanoparticle batches for unreduced pertechnetate and radio-colloidal impurities. Although this method is widely accepted, our findings applying radiolabeled PLGA/PLA?PEG nanoparticles underscore its lack of transferability between different settings and its limitations as a standalone quality control tool. While TLC profiles may appear similar for purified and radiocolloid containing nanoparticle formulations, their in vivo behavior can vary significantly, as demonstrated by discrepancies between TLC results and single-photon emission computed tomography (SPECT) and biodistribution data. This highlights the urgent need for a case-by-case evaluation of TLC methods for each specific nanoparticle type. Our study revealed that polymeric nanoparticles cannot be considered analytically uniform entities in the context of TLC analysis, emphasizing the complex interplay between nanoparticle composition, radiolabeling conditions, and subsequent biological behavior.
en-copyright=
kn-copyright=
en-aut-name=SchorrKathrin
en-aut-sei=Schorr
en-aut-mei=Kathrin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ChenXinyu
en-aut-sei=Chen
en-aut-mei=Xinyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SasakiTakanori
en-aut-sei=Sasaki
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=Arias-LozaAnahi Paula
en-aut-sei=Arias-Loza
en-aut-mei=Anahi Paula
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=LangJohannes
en-aut-sei=Lang
en-aut-mei=Johannes
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HiguchiTakahiro
en-aut-sei=Higuchi
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=GoepferichAchim
en-aut-sei=Goepferich
en-aut-mei=Achim
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Pharmaceutical Technology, University of Regensburg
kn-affil=
affil-num=2
en-affil=Nuclear Medicine, Faculty of Medicine, University of Augsburg
kn-affil=
affil-num=3
en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital W?rzburg
kn-affil=
affil-num=5
en-affil=Department of Pharmaceutical Technology, University of Regensburg
kn-affil=
affil-num=6
en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Pharmaceutical Technology, University of Regensburg
kn-affil=
en-keyword=polymer nanoparticles
kn-keyword=polymer nanoparticles
en-keyword=direct 99mTc-labeling
kn-keyword=direct 99mTc-labeling
en-keyword=single-photon emission computed tomography
kn-keyword=single-photon emission computed tomography
en-keyword=radio-thin layer chromatography
kn-keyword=radio-thin layer chromatography
en-keyword=radiocolloids
kn-keyword=radiocolloids
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=2
article-no=
start-page=294
end-page=300
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240104
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Evaluating the Patterns of FAPI Uptake in the Shoulder Joint: a Preliminary Study Comparing with FDG Uptake in Oncological Studies
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Fibroblast activation protein inhibitor (FAPI) targeting PET has been introduced as a novel molecular imaging modality for visualizing cancer-associated fibroblasts. There have also been reports suggesting incidental findings of localized accumulation in the shoulder joints. However, further characterization in a larger patient cohort is still lacking.
Methods 77 consecutive patients (28 females; mean age, 63.1?}?11.6) who underwent Ga-68 FAPI-04 PET/CT for diagnosis of solid tumors were included. The incidence and localization of tracer uptake in shoulder joints were investigated and compared with available F-18 FDG scans serving as reference.
Results Ga-68 FAPI-04 uptake was evaluated in 77 patients (154 shoulder joints), of whom 54 subjects (108 shoulder joints) also had available F-18 FDG scans for head-to-head comparison. On FAPI-targeted imaging, 67/154 shoulders (43.5%) demonstrated increased radiotracer accumulation in target lesions, which were distributed as follows: acromioclavicular (AC) joints in 25/67 (37.3%), followed by glenohumeral and subacromial (GH?+?SA) joints in 23/67 (34.3%), or both (AC and GH?+?SA joints) in the remaining 19/67 (28.4%). Ga-68 FAPI-04 correlated with quantified F-18 FDG uptake (r?=?0.69, p?0.0001). Relative to the latter radiotracer, however, in-vivo FAP expression in the shoulders was significantly increased (Ga-68 FAPI-04, 4.7?}?3.2 vs F-18 FDG, 3.6?}?1.3, p?0.001).
Conclusion Our study revealed focal accumulation of Ga-68 FAPI-04 in the shoulders, particularly in the AC joints, with higher uptake compared to the inflammatory-directed PET radiotracer F-18 FDG in oncological studies. As a result, further trials are warranted to investigate the potential of FAPI-directed molecular imaging in identifying chronic remodeling in shoulder joints. This could have implications for initiating anti-FAP targeted photodynamic therapy based on PET signal strength.
en-copyright=
kn-copyright=
en-aut-name=MatsusakaYohji
en-aut-sei=Matsusaka
en-aut-mei=Yohji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WernerRudolf A.
en-aut-sei=Werner
en-aut-mei=Rudolf A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SerflingSebastian E.
en-aut-sei=Serfling
en-aut-mei=Sebastian E.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=BuckAndreas K.
en-aut-sei=Buck
en-aut-mei=Andreas K.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KosmalaAleksander
en-aut-sei=Kosmala
en-aut-mei=Aleksander
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SasakiTakanori
en-aut-sei=Sasaki
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=WeichAlexander
en-aut-sei=Weich
en-aut-mei=Alexander
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HiguchiTakahiro
en-aut-sei=Higuchi
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Nuclear Medicine and Comprehensive Heart Failure Center (CHFC), Molecular Imaging of the Heart, University Hospital of W?rzburg
kn-affil=
affil-num=2
en-affil=Department of Nuclear Medicine and Comprehensive Heart Failure Center (CHFC), Molecular Imaging of the Heart, University Hospital of W?rzburg
kn-affil=
affil-num=3
en-affil=Department of Nuclear Medicine and Comprehensive Heart Failure Center (CHFC), Molecular Imaging of the Heart, University Hospital of W?rzburg
kn-affil=
affil-num=4
en-affil=Department of Nuclear Medicine and Comprehensive Heart Failure Center (CHFC), Molecular Imaging of the Heart, University Hospital of W?rzburg
kn-affil=
affil-num=5
en-affil=Department of Nuclear Medicine and Comprehensive Heart Failure Center (CHFC), Molecular Imaging of the Heart, University Hospital of W?rzburg
kn-affil=
affil-num=6
en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Nuclear Medicine and Comprehensive Heart Failure Center (CHFC), Molecular Imaging of the Heart, University Hospital of W?rzburg
kn-affil=
affil-num=8
en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Fibroblast activation inhibitor
kn-keyword=Fibroblast activation inhibitor
en-keyword=Shoulder
kn-keyword=Shoulder
en-keyword=Acromioclavicular joints
kn-keyword=Acromioclavicular joints
en-keyword=F-18 fluorodeoxyglucose
kn-keyword=F-18 fluorodeoxyglucose
en-keyword=Positron emission tomography
kn-keyword=Positron emission tomography
en-keyword=FAP
kn-keyword=FAP
en-keyword=Ga-68 FAPI-04
kn-keyword=Ga-68 FAPI-04
en-keyword=Rheumatoid arthritis
kn-keyword=Rheumatoid arthritis
en-keyword=Osteoarthritis
kn-keyword=Osteoarthritis
END
start-ver=1.4
cd-journal=joma
no-vol=47
cd-vols=
no-issue=6
article-no=
start-page=466
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250617
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Artificial Intelligence Approach in Machine Learning-Based Modeling and Networking of the Coronavirus Pathogenesis Pathway
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The coronavirus pathogenesis pathway, which consists of severe acute respiratory syndrome (SARS) coronavirus infection and signaling pathways, including the interferon pathway, the transforming growth factor beta pathway, the mitogen-activated protein kinase pathway, the apoptosis pathway, and the inflammation pathway, is activated upon coronaviral infection. An artificial intelligence approach based on machine learning was utilized to develop models with images of the coronavirus pathogenesis pathway to predict the activation states. Data on coronaviral infection held in a database were analyzed with Ingenuity Pathway Analysis (IPA), a network pathway analysis tool. Data related to SARS coronavirus 2 (SARS-CoV-2) were extracted from more than 100,000 analyses and datasets in the IPA database. A total of 27 analyses, including nine analyses of SARS-CoV-2-infected human-induced pluripotent stem cells (iPSCs) and iPSC-derived cardiomyocytes and fibroblasts, and a total of 22 analyses of SARS-CoV-2-infected lung adenocarcinoma (LUAD), were identified as being related to ghumanh and gSARS coronavirus 2h in the database. The coronavirus pathogenesis pathway was activated in SARS-CoV-2-infected iPSC-derived cells and LUAD cells. A prediction model was developed in Python 3.11 using images of the coronavirus pathogenesis pathway under different conditions. The prediction model of activation states of the coronavirus pathogenesis pathway may aid in treatment identification.
en-copyright=
kn-copyright=
en-aut-name=TanabeShihori
en-aut-sei=Tanabe
en-aut-mei=Shihori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=QuaderSabina
en-aut-sei=Quader
en-aut-mei=Sabina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OnoRyuichi
en-aut-sei=Ono
en-aut-mei=Ryuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanakaHiroyoshi Y.
en-aut-sei=Tanaka
en-aut-mei=Hiroyoshi Y.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamamotoAkihisa
en-aut-sei=Yamamoto
en-aut-mei=Akihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KojimaMotohiro
en-aut-sei=Kojima
en-aut-mei=Motohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=PerkinsEdward J.
en-aut-sei=Perkins
en-aut-mei=Edward J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=CabralHoracio
en-aut-sei=Cabral
en-aut-mei=Horacio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences
kn-affil=
affil-num=2
en-affil=Innovation Centre of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion
kn-affil=
affil-num=3
en-affil=Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences
kn-affil=
affil-num=4
en-affil=Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Mechanical Systems Engineering, Graduate School of Systems Design Tokyo Metropolitan University
kn-affil=
affil-num=6
en-affil=Department of Surgical Pathology, Kyoto Prefecture University of Medicine
kn-affil=
affil-num=7
en-affil=US Army Engineer Research and Development Center
kn-affil=
affil-num=8
en-affil=Department of Bioengineering, Graduate School of Engineering, The University of Tokyo
kn-affil=
en-keyword=artificial intelligence
kn-keyword=artificial intelligence
en-keyword=coronavirus
kn-keyword=coronavirus
en-keyword=coronaviral infection
kn-keyword=coronaviral infection
en-keyword=machine learning
kn-keyword=machine learning
en-keyword=pathway analysis
kn-keyword=pathway analysis
en-keyword=predictionmodel
kn-keyword=predictionmodel
en-keyword=molecular network
kn-keyword=molecular network
en-keyword=molecular pathway image
kn-keyword=molecular pathway image
en-keyword=network analysis
kn-keyword=network analysis
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=11
article-no=
start-page=4984
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250522
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Induced Pluripotent Stem Cells in Cardiomyopathy: Advancing Disease Modeling, Therapeutic Development, and Regenerative Therapy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Cardiomyopathies are a heterogeneous group of heart muscle diseases that can lead to heart failure, arrhythmias, and sudden cardiac death. Traditional animal models and in vitro systems have limitations in replicating the complex pathology of human cardiomyopathies. Induced pluripotent stem cells (iPSCs) offer a transformative platform by enabling the generation of patient-specific cardiomyocytes, thus opening new avenues for disease modeling, drug discovery, and regenerative therapy. This process involves reprogramming somatic cells into iPSCs and subsequently differentiating them into functional cardiomyocytes, which can be characterized using techniques such as electrophysiology, contractility assays, and gene expression profiling. iPSC-derived cardiomyocyte (iPSC-CM) platforms are also being explored for drug screening and personalized medicine, including high-throughput testing for cardiotoxicity and the identification of patient-tailored therapies. While iPSC-CMs already serve as valuable models for understanding disease mechanisms and screening drugs, ongoing advances in maturation and bioengineering are bringing iPSC-based therapies closer to clinical application. Furthermore, the integration of multi-omics approaches and artificial intelligence (AI) is enhancing the predictive power of iPSC models. iPSC-based technologies are paving the way for a new era of personalized cardiology, with the potential to revolutionize the management of cardiomyopathies through patient-specific insights and regenerative strategies.
en-copyright=
kn-copyright=
en-aut-name=VoQuan Duy
en-aut-sei=Vo
en-aut-mei=Quan Duy
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakamuraKazufumi
en-aut-sei=Nakamura
en-aut-mei=Kazufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SaitoYukihiro
en-aut-sei=Saito
en-aut-mei=Yukihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AkagiSatoshi
en-aut-sei=Akagi
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MiyoshiToru
en-aut-sei=Miyoshi
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YuasaShinsuke
en-aut-sei=Yuasa
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Medicine, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=induced pluripotent stem cells
kn-keyword=induced pluripotent stem cells
en-keyword=cardiomyopathy
kn-keyword=cardiomyopathy
en-keyword=disease modeling
kn-keyword=disease modeling
en-keyword=drug screening
kn-keyword=drug screening
en-keyword=regenerative therapy
kn-keyword=regenerative therapy
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=13
article-no=
start-page=7238
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250627
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Protective Effects of the Ethyl Acetate Fraction of Distylium racemosum Against Metabolic Dysfunction-Associated Steatohepatitis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Metabolic dysfunction-associated steatohepatitis (MASH), previously referred to as non-alcoholic steatohepatitis (NASH), which is a progressive non-alcoholic fatty liver disease, is accompanied by hepatic steatosis, inflammation, and fibrosis. Despite its increasing prevalence, available treatment options for MASH are limited. Here, we investigated the protective effects of the Distylium racemosum ethyl acetate fraction (DRE) using MASH models and explored its key physiologically active components. Palmitic acid (PA)-induced AML12 hepatocytes and high-fat methionine- and choline-deficient-fed C57BL/6 mice were used as MASH models. Lipid accumulation was evaluated via triglyceride measurement, oil red O staining, and histological analysis. Lipid accumulation, inflammation, and fibrosis-associated gene expression were evaluated via real-time polymerase chain reaction. The physiologically active components of DRE were identified via high-performance liquid chromatography. Lipid accumulation and triglyceride levels were significantly reduced in PA-treated AML12 cells following DRE treatment. Additionally, DRE inhibited the expression of genes involved in lipogenesis (FAS and SREBP1c), inflammation (CD68, IL-6, and MCP-1), and fibrosis (COL1A1, COL1A2, and TIMP1). DRE reduced the liver weight, liver-to-body weight ratio, and hepatic steatosis in MASH model mice. It increased carnitine palmitoyltransferase-1 levels and decreased CD36 and transforming growth factor-À levels in the MASH mouse liver. High-performance liquid chromatography revealed that the extract contained rutin flavonoid family members. Overall, DRE was involved in lipid metabolism, inflammation, and fibrosis regulation, exerting potent hepatoprotective effects partly attributed to rutin and serving as a potential preventive candidate for MASH.
en-copyright=
kn-copyright=
en-aut-name=LeeYoung-Hyeon
en-aut-sei=Lee
en-aut-mei=Young-Hyeon
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YeoMin-Ho
en-aut-sei=Yeo
en-aut-mei=Min-Ho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ChangKyung-Soo
en-aut-sei=Chang
en-aut-mei=Kyung-Soo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YoonWeon-Jong
en-aut-sei=Yoon
en-aut-mei=Weon-Jong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KimHye-Sook
en-aut-sei=Kim
en-aut-mei=Hye-Sook
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KimJongwan
en-aut-sei=Kim
en-aut-mei=Jongwan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KimHye-Ran
en-aut-sei=Kim
en-aut-mei=Hye-Ran
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Clinical Laboratory Science, Catholic University of Pusan
kn-affil=
affil-num=2
en-affil=Department of Clinical Laboratory Science, Catholic University of Pusan
kn-affil=
affil-num=3
en-affil=Department of Clinical Laboratory Science, Catholic University of Pusan
kn-affil=
affil-num=4
en-affil=Clean Bio Business Division, Biodiversity Research Institute (JBRI), Jeju Technopark (JTP)
kn-affil=
affil-num=5
en-affil=Department of International Infectious Diseases Control, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Anatomy, College of Medicine, Dongguk University
kn-affil=
affil-num=7
en-affil=Department of Biomedical Laboratory Science, Dong-Eui Institute of Technology
kn-affil=
en-keyword=metabolic dysfunction-associated steatohepatitis
kn-keyword=metabolic dysfunction-associated steatohepatitis
en-keyword=Distylium racemosum
kn-keyword=Distylium racemosum
en-keyword=ethyl acetate fraction
kn-keyword=ethyl acetate fraction
en-keyword=extract
kn-keyword=extract
END
start-ver=1.4
cd-journal=joma
no-vol=30
cd-vols=
no-issue=8
article-no=
start-page=1621
end-page=1630
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250606
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Percutaneous cryoablation versus robot-assisted partial nephrectomy for small renal cell carcinoma: a retrospective cost analysis at Japanese single-institution
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: No direct cost comparison has been conducted between percutaneous cryoablation (PCA) and robot-assisted partial nephrectomy (RAPN) for clinical T1a renal cell carcinoma (RCC) in Japan. This study aimed to compare their costs.
Methods: We retrospectively analyzed data from 212 PCAs (including 155 with transcatheter arterial embolization) and 119 RAPN cases performed between December 2017 and May 2022.
Results: PCA patients were older with higher American Society of Anesthesiologists scores, Charlson Comorbidity Index, and history of previous RCC treatment, cardiovascular disease, and antithrombotic drug use than RAPN patients. PCA was associated with a significantly shorter procedure time and hospitalization duration with fewer major complications than those associated with RAPN. While PCA incurred a slightly lower total cost (1,123,000 vs. 1,155,000 yen), it had a significantly higher procedural cost (739,000 vs. 693,000 yen) and markedly worse total (? 93,000 vs. 249,000 yen) and procedural income-expenditure balance (? 189,000 vs. 231,000 yen) than those of RAPN. After statistical adjustment, PCA demonstrated significantly higher total (difference: 114,000 yen) and procedural costs (difference: 72,000 yen), alongside significantly worse total (difference: ? 358,000 yen) and procedural income-expenditure balances (difference: ? 439,000 yen). The incremental cost-effectiveness ratio was more favorable for PCA than for RAPN.
Conclusion: For high- risk patients, PCA demonstrated a safer option with shorter hospitalization duration than those of RAPN. Although PCA was more cost-effective, its higher procedural cost and unfavorable income-expenditure balance require careful evaluation, especially for large tumors that require three or more needles.
en-copyright=
kn-copyright=
en-aut-name=UkaMayu
en-aut-sei=Uka
en-aut-mei=Mayu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IguchiToshihiro
en-aut-sei=Iguchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=BekkuKensuke
en-aut-sei=Bekku
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamanoiTomoaki
en-aut-sei=Yamanoi
en-aut-mei=Tomoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MitsuhashiToshiharu
en-aut-sei=Mitsuhashi
en-aut-mei=Toshiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=GobaraHideo
en-aut-sei=Gobara
en-aut-mei=Hideo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=UmakoshiNoriyuki
en-aut-sei=Umakoshi
en-aut-mei=Noriyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KawabataTakahiro
en-aut-sei=Kawabata
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TomitaKoji
en-aut-sei=Tomita
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MatsuiYusuke
en-aut-sei=Matsui
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=HirakiTakao
en-aut-sei=Hiraki
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Division of Medical Informatics, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Renal cancer
kn-keyword=Renal cancer
en-keyword=Cryoablation
kn-keyword=Cryoablation
en-keyword=Robot-assisted partial nephrectomy
kn-keyword=Robot-assisted partial nephrectomy
en-keyword=Cost
kn-keyword=Cost
en-keyword=Cost effectiveness
kn-keyword=Cost effectiveness
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=27163
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250725
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Eosinophils as a predictive marker of treatment-related adverse events in mRCC patients treated with first-line immune-checkpoint inhibitor combination therapy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Immune checkpoint inhibitors (ICIs) are a key component of first-line treatment for metastatic renal cell carcinoma (mRCC). However, predicting treatment-related adverse events (TRAEs) remains challenging. This study investigated the utility of eosinophil-related biomarkers as predictors of Common Terminology Criteria for Adverse Events grade???3 TRAEs in mRCC patients undergoing ICI combination therapy. In this retrospective analysis across 21 hospitals in Japan, we examined 180 patients treated with ICI/ICI therapy and 216 patients treated with ICI/tyrosine kinase inhibitor (TKI) therapy. Grade???3 TRAEs occurred in 39.4% and 31.9% of patients in the ICI/ICI and ICI/TKI groups, respectively. An elevated eosinophil proportion of???2.0% (odds ratio [OR]: 2.36; 95% CI [confidence interval] 1.23?4.54, p?=?0.01) and a low neutrophil/eosinophil ratio (NER) of???40.0 (OR: 2.78, 95% CI 1.39?5.53, p?=?0.004) were significant predictors of severe TRAEs in the ICI/ICI group. However, no significant associations were found in the ICI/TKI group. These findings may help identify patients who suffer from grade???3 TRAEs and help determine individualized treatment strategies in patients with mRCC.
en-copyright=
kn-copyright=
en-aut-name=KawadaTatsushi
en-aut-sei=Kawada
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KatayamaSatoshi
en-aut-sei=Katayama
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YanagisawaTakafumi
en-aut-sei=Yanagisawa
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MoriKeiichiro
en-aut-sei=Mori
en-aut-mei=Keiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FukuokayaWataru
en-aut-sei=Fukuokaya
en-aut-mei=Wataru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KomuraKazumasa
en-aut-sei=Komura
en-aut-mei=Kazumasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TsujinoTakuya
en-aut-sei=Tsujino
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MaenosonoRyoichi
en-aut-sei=Maenosono
en-aut-mei=Ryoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TakaharaKiyoshi
en-aut-sei=Takahara
en-aut-mei=Kiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NukayaTakuhisa
en-aut-sei=Nukaya
en-aut-mei=Takuhisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=InokiLan
en-aut-sei=Inoki
en-aut-mei=Lan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ToyodaShingo
en-aut-sei=Toyoda
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=HashimotoTakeshi
en-aut-sei=Hashimoto
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=HirasawaYosuke
en-aut-sei=Hirasawa
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=EdamuraKohei
en-aut-sei=Edamura
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=KobayashiTomoko
en-aut-sei=Kobayashi
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=BekkuKensuke
en-aut-sei=Bekku
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=NishimuraShingo
en-aut-sei=Nishimura
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=IwataTakehiro
en-aut-sei=Iwata
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=SadahiraTakuya
en-aut-sei=Sadahira
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=TominagaYusuke
en-aut-sei=Tominaga
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=YamanoiTomoaki
en-aut-sei=Yamanoi
en-aut-mei=Tomoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=YoshinagaKasumi
en-aut-sei=Yoshinaga
en-aut-mei=Kasumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=TsuboiKazuma
en-aut-sei=Tsuboi
en-aut-mei=Kazuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=KobayashiYasuyuki
en-aut-sei=Kobayashi
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=TakamotoAtsushi
en-aut-sei=Takamoto
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=KuroseKyohei
en-aut-sei=Kurose
en-aut-mei=Kyohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=KimuraTakahiro
en-aut-sei=Kimura
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=AzumaHaruhito
en-aut-sei=Azuma
en-aut-mei=Haruhito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=ShirokiRyoichi
en-aut-sei=Shiroki
en-aut-mei=Ryoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=FujitaKazutoshi
en-aut-sei=Fujita
en-aut-mei=Kazutoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=OhnoYoshio
en-aut-sei=Ohno
en-aut-mei=Yoshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=33
ORCID=
affil-num=1
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Urology, The Jikei University School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Urology, The Jikei University School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Urology, The Jikei University School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Urology, Osaka Medical and Pharmaceutical University
kn-affil=
affil-num=7
en-affil=Department of Urology, Osaka Medical and Pharmaceutical University
kn-affil=
affil-num=8
en-affil=Department of Urology, Osaka Medical and Pharmaceutical University
kn-affil=
affil-num=9
en-affil=Department of Urology, Fujita Health University School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Urology, Fujita Health University School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Urology, Kindai University Faculty of Medicine
kn-affil=
affil-num=12
en-affil=Department of Urology, Kindai University Faculty of Medicine
kn-affil=
affil-num=13
en-affil=Department of Urology, Tokyo Medical University
kn-affil=
affil-num=14
en-affil=Department of Urology, Tokyo Medical University
kn-affil=
affil-num=15
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=17
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=18
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=19
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=20
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=21
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=22
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=23
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=24
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=25
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=26
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=27
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=28
en-affil=Department of Urology, The Jikei University School of Medicine
kn-affil=
affil-num=29
en-affil=Department of Urology, Osaka Medical and Pharmaceutical University
kn-affil=
affil-num=30
en-affil=Department of Urology, Fujita Health University School of Medicine
kn-affil=
affil-num=31
en-affil=Department of Urology, Kindai University Faculty of Medicine
kn-affil=
affil-num=32
en-affil=Department of Urology, Tokyo Medical University
kn-affil=
affil-num=33
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Renal cell carcinoma
kn-keyword=Renal cell carcinoma
en-keyword=Immune checkpoint inhibitor
kn-keyword=Immune checkpoint inhibitor
en-keyword=ICI
kn-keyword=ICI
en-keyword=Eosinophil
kn-keyword=Eosinophil
en-keyword=Immune-related adverse event
kn-keyword=Immune-related adverse event
en-keyword=Treatment-related adverse event
kn-keyword=Treatment-related adverse event
END
start-ver=1.4
cd-journal=joma
no-vol=135
cd-vols=
no-issue=13
article-no=
start-page=e172988
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250513
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=LAG3 regulates antibody responses in a murine model of kidney transplantation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Lymphocyte activation gene 3 (LAG3) is a coinhibitory receptor expressed by various immune cells. Although the immunomodulatory potential of LAG3 is being explored in cancer and autoimmunity, there is no information on its role after organ transplantation. Our study investigated the functions of LAG3 in a mouse model of renal allograft rejection. LAG3?/? recipients rapidly rejected MHC-mismatched renal allografts that were spontaneously accepted by WT recipients, with graft histology characteristic of antibody-mediated rejection. Depletion of recipient B cells but not CD8+ T cells significantly extended kidney allograft survival in LAG3?/? recipients. Treatment of WT recipients with an antagonistic LAG3 antibody enhanced anti-donor immune responses and induced kidney damage associated with chronic rejection. The studies of conditional LAG3?/? recipients and mixed bone marrow chimeras demonstrated that LAG3 expression on either T or B cells is sufficient to regulate anti-donor humoral immunity but not to induce acute allograft rejection. The numbers and proinflammatory functions of graft-infiltrating NK cells were markedly increased in LAG3?/? recipients, suggesting that LAG3 also regulates the effector stage of antibody-mediated rejection. These findings identified LAG3 as a regulator of immune responses to kidney allografts and a potential therapeutic target for antibody-mediated rejection prevention and treatment.
en-copyright=
kn-copyright=
en-aut-name=NicosiaMichael
en-aut-sei=Nicosia
en-aut-mei=Michael
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FanRan
en-aut-sei=Fan
en-aut-mei=Ran
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=LeeJuyeun
en-aut-sei=Lee
en-aut-mei=Juyeun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AllGabriella
en-aut-sei=All
en-aut-mei=Gabriella
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=GorbachevaVictoria
en-aut-sei=Gorbacheva
en-aut-mei=Victoria
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ValenzuelaJos? I.
en-aut-sei=Valenzuela
en-aut-mei=Jos? I.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YamamotoYosuke
en-aut-sei=Yamamoto
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=BeaversAshley
en-aut-sei=Beavers
en-aut-mei=Ashley
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=DvorinaNina
en-aut-sei=Dvorina
en-aut-mei=Nina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=BaldwinWilliam M.
en-aut-sei=Baldwin
en-aut-mei=William M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=ChuluyanEduardo
en-aut-sei=Chuluyan
en-aut-mei=Eduardo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=GaudetteBrian T.
en-aut-sei=Gaudette
en-aut-mei=Brian T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=FairchildRobert L.
en-aut-sei=Fairchild
en-aut-mei=Robert L.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=MinBooki
en-aut-sei=Min
en-aut-mei=Booki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=ValujskikhAnna
en-aut-sei=Valujskikh
en-aut-mei=Anna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
affil-num=1
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=2
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=4
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=5
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=6
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=7
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=8
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=9
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=10
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=11
en-affil=Universidad de Buenos Aires, Consejo Nacional de Investigaciones Cient?ficas y T?cnicas, Centro de Estudios Farmacol?gicos y Bot?nicos (CEFYBO), Facultad de Medicina
kn-affil=
affil-num=12
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=14
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=15
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=16
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=5
article-no=
start-page=468
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Distribution of Fimbrial Genes and Their Association with Virulence and Levofloxacin Resistance/Extended-Spectrum Beta-Lactamase Production in Uropathogenic Escherichia coli
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Urinary tract infection (UTI) is predominantly caused by uropathogenic Escherichia coli (UPEC). Previous studies have reported that the fimbriae of UPEC are involved in virulence and antimicrobial resistance. We aimed to analyze the fimbrial gene profiles of UPEC and investigate the specificity of these expressions in symptomatic UTI, urinary device use, and levofloxacin (LVFX) resistance/extended-spectrum beta-lactamase (ESBL) production. Methods: A total of 120 UPEC strains were isolated by urine culture between 2019 and 2023 at our institution. They were subjected to an antimicrobial susceptibility test and polymerase chain reaction (PCR) to identify 14 fimbrial genes and their association with clinical outcomes or antimicrobial resistance. Results: The prevalence of the papG2 gene was significantly higher in the symptomatic UTI group by multivariate analyses (OR 5.850, 95% CI 1.390?24.70, p = 0.016). The prevalence of the c2395 gene tended to be lower in the symptomatic UTI group with urinary devices (all p < 0.05). In LVFX-resistant UPEC strains from both the asymptomatic bacteriuria (ABU) and the symptomatic UTI group, the expression of the papEF, papG3, c2395, and yadN genes tended to be lower (all p < 0.05). Conclusion: The fimbrial genes of UPEC are associated with virulence and LVFX resistance, suggesting that even UPEC with fewer motility factors may be more likely to ascend the urinary tract in the presence of the urinary devices. These findings may enhance not only the understanding of the virulence of UPEC but also the management of UTI.
en-copyright=
kn-copyright=
en-aut-name=MitsuiMasao
en-aut-sei=Mitsui
en-aut-mei=Masao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SekitoTakanori
en-aut-sei=Sekito
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MaruhashiMai
en-aut-sei=Maruhashi
en-aut-mei=Mai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MaruyamaYuki
en-aut-sei=Maruyama
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IwataTakehiro
en-aut-sei=Iwata
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TominagaYusuke
en-aut-sei=Tominaga
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KatayamaSatoshi
en-aut-sei=Katayama
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NishimuraShingo
en-aut-sei=Nishimura
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=BekkuKensuke
en-aut-sei=Bekku
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HirakawaHidetada
en-aut-sei=Hirakawa
en-aut-mei=Hidetada
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=SadahiraTakuya
en-aut-sei=Sadahira
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Bacteriology, Graduate School of Medicine, Gunma University
kn-affil=
affil-num=4
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Bacteriology, Graduate School of Medicine, Gunma University
kn-affil=
affil-num=12
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=fimbriae
kn-keyword=fimbriae
en-keyword=urinary tract infection
kn-keyword=urinary tract infection
en-keyword=drug resistance
kn-keyword=drug resistance
en-keyword=virulence
kn-keyword=virulence
en-keyword=uropathogenic Escherichia coli
kn-keyword=uropathogenic Escherichia coli
END
start-ver=1.4
cd-journal=joma
no-vol=25
cd-vols=
no-issue=1
article-no=
start-page=107
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250428
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Impact of concomitant medications on the oncologic efficacy of systemic therapy in patients with advanced or metastatic urothelial carcinoma: a systematic review and meta-analysis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Immune checkpoint inhibitors (ICI) and chemotherapy, including antibody-drug conjugates, are widely used for the treatment of patients with advanced unresectable or metastatic urothelial carcinoma (UC). The majority of elderly patients receive concomitant medications to address various comorbidities. We aimed to evaluate the impact of concomitant medications on oncological outcomes in patients with advanced unresectable or metastatic UC treated with systemic therapy.
Material & methods: In August 2024, three datasets were queried for studies evaluating concomitant medications in patients with advanced unresectable or metastatic UC. The review protocol was registered in PROSPERO (CRD42024547335). The primary outcome was overall survival (OS). A fixed- or random-effects model was used for meta-analysis depending on the heterogeneity.
Results: We identified 16 eligible studies (3 prospective and 13 retrospective) comprising 4,816 patients. Most reported concomitant medications included proton pump inhibitors (PPIs), antibiotics, steroids, and opioids. The use of concomitant PPIs, antibiotics, steroids or opioids during ICI therapy was associated with worsened OS (PPIs: HR: 1.43, 95% CI: 1.31?1.57, p?0.001; antibiotics: HR: 1.2, 95% CI: 1.04?1.38, p?=?0.01; steroids: HR: 1.45, 95% CI: 1.25?1.67, p?0.001; and opioids: HR: 1.74, 95% CI: 1.46?2.07, p?0.001). Concomitant use of antibiotics during chemotherapy did not impact OS (HR: 1.01, 95% CI: 0.67?1.51).
Conclusions: When treating advanced unresectable or metastatic UC with ICI therapy, we need to pay attention to concomitant medications, such as PPIs and antibiotics to avoid reducing the efficacy of ICI therapy. The mechanism of action of these drugs on ICI efficacy requires further examination.
en-copyright=
kn-copyright=
en-aut-name=TsuboiIchiro
en-aut-sei=Tsuboi
en-aut-mei=Ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsukawaAkihiro
en-aut-sei=Matsukawa
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=PariziMehdi Kardoust
en-aut-sei=Parizi
en-aut-mei=Mehdi Kardoust
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MiszczykMarcin
en-aut-sei=Miszczyk
en-aut-mei=Marcin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FazekasTam?s
en-aut-sei=Fazekas
en-aut-mei=Tam?s
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SchulzRobert J
en-aut-sei=Schulz
en-aut-mei=Robert J
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=LaukhtinaEkaterina
en-aut-sei=Laukhtina
en-aut-mei=Ekaterina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KawadaTatsushi
en-aut-sei=Kawada
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KatayamaSatoshi
en-aut-sei=Katayama
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=IwataTakehiro
en-aut-sei=Iwata
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=BekkuKensuke
en-aut-sei=Bekku
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=RajwaPawel
en-aut-sei=Rajwa
en-aut-mei=Pawel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=WadaKoichiro
en-aut-sei=Wada
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=ObernederKatharina
en-aut-sei=Oberneder
en-aut-mei=Katharina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=ChlostaPiotr
en-aut-sei=Chlosta
en-aut-mei=Piotr
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=KarakiewiczPierre I.
en-aut-sei=Karakiewicz
en-aut-mei=Pierre I.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=ShariatShahrokh F.
en-aut-sei=Shariat
en-aut-mei=Shahrokh F.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
affil-num=1
en-affil=Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=3
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=4
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=5
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=6
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=7
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=8
en-affil=Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=12
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=13
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=14
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=15
en-affil=Department of Urology, Medical College, Jagiellonian University
kn-affil=
affil-num=16
en-affil=Cancer Prognostics and Health Outcomes Unit, University of Montreal Health Centre
kn-affil=
affil-num=17
en-affil=Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=18
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
en-keyword=Concomitant medications
kn-keyword=Concomitant medications
en-keyword=Proton pump inhibitors
kn-keyword=Proton pump inhibitors
en-keyword=Antibiotics
kn-keyword=Antibiotics
en-keyword=steroids
kn-keyword=steroids
en-keyword=Opioids
kn-keyword=Opioids
en-keyword=Histamine type-2 receptor antagonists
kn-keyword=Histamine type-2 receptor antagonists
en-keyword=Immune checkpoint inhibitors
kn-keyword=Immune checkpoint inhibitors
en-keyword=Urothelial carcinoma
kn-keyword=Urothelial carcinoma
END
start-ver=1.4
cd-journal=joma
no-vol=32
cd-vols=
no-issue=3
article-no=
start-page=258
end-page=263
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241118
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Postoperative infections after robotic]assisted radical prostatectomy in a single large institution: Effect of type and duration of prophylactic antibiotic administration
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective: We evaluated the incidence of and risk factors for postoperative infections after robotic-assisted radical prostatectomy (RARP) according to the type and duration of prophylactic antibiotic administration.
Methods: A total of 1038 patients underwent RARP at our institution from 2010 to 2021; 1026 patients (201 in the cefazolin [CEZ] group and 825 in the ampicillin/sulbactam [ABPC/SBT] group) were analyzed, and 12 who used other antibiotics were excluded. The primary endpoint was the incidence of urinary tract infection (UTI), surgical site infection (SSI), and remote infection (RI). T-tests, propensity score matching (PSM) and inverse probability of treatment weighting (IPTW) were performed. Multivariate logistic regression analysis was performed to evaluate the effect of type and duration of prophylactic antibiotic administration.
Results: The incidence of UTI was 2.5% (5/201) in the CEZ group and 3.2% (26/825) in the ABPC/SBT group, with no significant difference between groups (p?=?0.622). The rates of SSI and RI were comparable between groups (p?=?0.680 and 0.906, respectively). Although the duration of antimicrobial therapy was longer in the ABPC/SBT group (p?0.001), there was no significant difference in the incidence of UTI/SSI/RI after PSM and IPTW (all p?>?0.05). Multivariate logistic regression analysis showed that neither the type of antibiotic nor the duration of administration affected the incidence of UTI/SSI/RI.
Conclusion: The risk of postoperative UTI/SSI/RI after RARP did not change with the type and duration of antimicrobial therapy.
en-copyright=
kn-copyright=
en-aut-name=MitsuiMasao
en-aut-sei=Mitsui
en-aut-mei=Masao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SadahiraTakuya
en-aut-sei=Sadahira
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NagasakiNaoya
en-aut-sei=Nagasaki
en-aut-mei=Naoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MaruyamaYuki
en-aut-sei=Maruyama
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SekitoTakanori
en-aut-sei=Sekito
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IwataTakehiro
en-aut-sei=Iwata
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KatayamaSatoshi
en-aut-sei=Katayama
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=BekkuKensuke
en-aut-sei=Bekku
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=
kn-affil=
affil-num=5
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=cefazolin
kn-keyword=cefazolin
en-keyword=postoperative infections
kn-keyword=postoperative infections
en-keyword=prophylactic antibiotics
kn-keyword=prophylactic antibiotics
en-keyword=prostate
kn-keyword=prostate
en-keyword=robotic-assisted radical prostatectomy
kn-keyword=robotic-assisted radical prostatectomy
END
start-ver=1.4
cd-journal=joma
no-vol=5
cd-vols=
no-issue=4
article-no=
start-page=48
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250604
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Influence of tumor?associated factors on the treatment selection between partial nephrectomy and ablation therapy for small renal tumors (Review)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=For small renal tumors, nephron?preserving treatment, including partial nephrectomy or ablation therapy, is recommended. According to major guidelines, ablation therapies are advised for patients who are deemed not suitable to undergo surgery due to an advanced age or the presence of comorbidities. However, compared with surgery, ablation therapy can result in superior safety and functional outcomes. The present review discusses the factors affecting decision?making as regards treatment options for small renal tumors. When determining an appropriate treatment option, tumor locations, as well as the condition and preferences of the patient, are considered. Scoring systems, such as the RENAL Nephrometry Score can assist in guiding treatment decisions. However, surgery may be the preferred approach for tumors near major vessels and collecting systems. For endophytic tumors, partial nephrectomy can be challenging due to the difficulty in visualizing intra?parenchymal tumors during the procedure, whereas ablation therapies may be inferior to partial nephrectomy. Although treatment selection for small renal tumors can be affected by tumor location, partial nephrectomy remains the gold standard for numerous cases.
en-copyright=
kn-copyright=
en-aut-name=BekkuKensuke
en-aut-sei=Bekku
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=InoueShota
en-aut-sei=Inoue
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshinagaKasumi
en-aut-sei=Yoshinaga
en-aut-mei=Kasumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamanoiTomoaki
en-aut-sei=Yamanoi
en-aut-mei=Tomoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MitsuiYosuke
en-aut-sei=Mitsui
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KawadaTatsushi
en-aut-sei=Kawada
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TominagaYusuke
en-aut-sei=Tominaga
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SadahiraTakuya
en-aut-sei=Sadahira
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IwataTakehiro
en-aut-sei=Iwata
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KatayamaSatoshi
en-aut-sei=Katayama
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NishimuraShingo
en-aut-sei=Nishimura
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=EdamuraKohei
en-aut-sei=Edamura
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KobayashiTomoko
en-aut-sei=Kobayashi
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=small renal mass
kn-keyword=small renal mass
en-keyword=partial nephrectomy
kn-keyword=partial nephrectomy
en-keyword=ablation therapy
kn-keyword=ablation therapy
en-keyword=tumor location
kn-keyword=tumor location
en-keyword=endophytic tumor
kn-keyword=endophytic tumor
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=10
article-no=
start-page=1444
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250516
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Canine c-kit Novel Mutation Isolated from a Gastrointestinal Stromal Tumor (GIST) Retains the Ability to Form Dimers but Lacks Autophosphorylation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Gastrointestinal stromal tumors (GISTs) are mesenchymal tumors that develop in the gastrointestinal tract; KIT mutations are present in both canine and human GISTs. In this study, genomic DNA was extracted from formalin-fixed paraffin-embedded (FFPE) sections of 55 canine GIST cases, and mutation searches were performed for exons 8, 9, and 11. The results revealed novel mutations, A434T and F436S, in exon 8. In contrast to the A434T mutation without functional changes, the F436S mutant retained its dimerization ability, but lost its phosphorylation function and attenuated downstream Akt signaling, which is reflected in wound healing and migration activities. A comparison of the subcellular localization of WT KIT and the F436S mutant revealed no differences. In silico simulations indicated that the F436S mutation alters the structure of the near-membrane region and that its effects may extend to the transmembrane and intracellular domains compared to the WT. F436S is a point mutation that affects the entire molecule because co-mutation with the F436S mutation and the known autophosphorylation mutation reduces the autophosphorylation abilities.
en-copyright=
kn-copyright=
en-aut-name=ShimakawaKei
en-aut-sei=Shimakawa
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=DogeSo
en-aut-sei=Doge
en-aut-mei=So
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MichishitaMasaki
en-aut-sei=Michishita
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanabeEri
en-aut-sei=Tanabe
en-aut-mei=Eri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TajimaTsuyoshi
en-aut-sei=Tajima
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KobayashiMasato
en-aut-sei=Kobayashi
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=BonkobaraMakoto
en-aut-sei=Bonkobara
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=WatanabeMasami
en-aut-sei=Watanabe
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OchiaiKazuhiko
en-aut-sei=Ochiai
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TanakaYoshikazu
en-aut-sei=Tanaka
en-aut-mei=Yoshikazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Laboratory of Veterinary Hygiene, School of Veterinary Science, Nippon Veterinary and Life Science University
kn-affil=
affil-num=2
en-affil=Laboratory of Veterinary Pathology, School of Veterinary Science, Nippon Veterinary and Life Science University
kn-affil=
affil-num=3
en-affil=Laboratory of Veterinary Pathology, School of Veterinary Science, Nippon Veterinary and Life Science University
kn-affil=
affil-num=4
en-affil=Laboratory of Veterinary Hygiene, School of Veterinary Science, Nippon Veterinary and Life Science University
kn-affil=
affil-num=5
en-affil=Laboratory of Veterinary Pharmacology, School of Veterinary Science, Nippon Veterinary and Life Science University
kn-affil=
affil-num=6
en-affil=Laboratory of Veterinary Reproduction, School of Veterinary Science, Nippon Veterinary and Life Science University
kn-affil=
affil-num=7
en-affil=Laboratory of Veterinary Clinical Pathology, School of Veterinary Science, Nippon Veterinary and Life Science University
kn-affil=
affil-num=8
en-affil=Laboratory of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Laboratory of Veterinary Hygiene, School of Veterinary Science, Nippon Veterinary and Life Science University
kn-affil=
affil-num=10
en-affil=Laboratory of Veterinary Hygiene, School of Veterinary Science, Nippon Veterinary and Life Science University
kn-affil=
en-keyword=autophosphorylation
kn-keyword=autophosphorylation
en-keyword=canine
kn-keyword=canine
en-keyword=c-kit
kn-keyword=c-kit
en-keyword=GIST
kn-keyword=GIST
en-keyword=KIT
kn-keyword=KIT
en-keyword=loss-of-function mutation
kn-keyword=loss-of-function mutation
END
start-ver=1.4
cd-journal=joma
no-vol=144-145
cd-vols=
no-issue=
article-no=
start-page=109001
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202505
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Investigating the fate of Zirconium-89 labelled antibody in cynomolgus macaques
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Preclinical pharmacokinetic studies of therapeutic antibodies in non-human primates are desired because of the difficulty in extrapolating ADME data from animal models to humans. We evaluated the pharmacokinetics of 89Zr (Zirconium-89) -labelled anti-KLH human IgG and its metabolites to confirm their non-specific/physiological accumulation in healthy cynomolgus macaques. The anti-KLH antibody was used as a negative control, ensuring that the observed distribution reflected general IgG behavior rather than antigen-specific accumulation. This provides a valuable reference for comparing the biodistribution of targeted antibodies.
Methods: Selected IgG was conjugated to desferrioxamine (DFO), labelled with 89Zr, and injected into healthy cynomolgus macaques. PET/CT images at the whole-body level were acquired at different time points, and standard uptake values (SUV) in regions of interest, such as the heart, liver, spleen, kidneys, bone, and muscles, were calculated. The distribution of a shortened antibody variant, 89Zr-labelled Fab, as well as that of [89Zr]Zr-DFO and [89Zr]Zr-oxalate, the expected metabolites of 89Zr- labelled IgG, was also assessed.
Results: After 89Zr-labelled IgG injection, the SUV in the heart, vertebral body, and muscle decreased, in line with the 89Zr concentration decrease in the circulation, whereas radioactivity increased over time in the kidneys and liver. Autoradiography of the renal sections indicated that most of the 89Zr- labelled IgG radioactivity accumulated in the renal cortex. Relatively high accumulation in the kidneys was also observed in 89Zr- labelled Fab-injected macaques, and renal autoradiographs of these animals showed that the renal cortex was the preferred accumulation site. However, [89Zr]Zr-DFO was rapidly excreted into the urine, whereas [89Zr]Zr-oxalate was highly accumulated in the epiphysis of the long bones and vertebral body.
Conclusion: In the non-human primate cynomolgus macaque, 89Zr- labelled IgG accumulated in the kidneys and the liver. However, [89Zr]Zr-DFO and 89Zr did not accumulate in these organs. This preclinical pharmacokinetic study performed with human IgG in a non-human primate model using PET is of great significance as it sheds light on the basic fate and distribution of 89Zr- labelled IgG.
en-copyright=
kn-copyright=
en-aut-name=SasakiTakanori
en-aut-sei=Sasaki
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KimuraSadaaki
en-aut-sei=Kimura
en-aut-mei=Sadaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NodaAkihiro
en-aut-sei=Noda
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MurakamiYoshihiro
en-aut-sei=Murakami
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MiyoshiSosuke
en-aut-sei=Miyoshi
en-aut-mei=Sosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AkehiMasaru
en-aut-sei=Akehi
en-aut-mei=Masaru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OchiaiKazuhiko
en-aut-sei=Ochiai
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=WatanabeMasami
en-aut-sei=Watanabe
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HiguchiTakahiro
en-aut-sei=Higuchi
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MatsuuraEiji
en-aut-sei=Matsuura
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Astellas Pharma Inc.
kn-affil=
affil-num=3
en-affil=Astellas Pharma Inc.
kn-affil=
affil-num=4
en-affil=Astellas Pharma Inc.
kn-affil=
affil-num=5
en-affil=Astellas Pharma Inc.
kn-affil=
affil-num=6
en-affil=Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=School of Veterinary Nursing and Technology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University
kn-affil=
affil-num=8
en-affil=Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=PET imaging
kn-keyword=PET imaging
en-keyword=Zirconium-89
kn-keyword=Zirconium-89
en-keyword=Therapeutic antibodies
kn-keyword=Therapeutic antibodies
en-keyword=Non-human primates
kn-keyword=Non-human primates
END
start-ver=1.4
cd-journal=joma
no-vol=5
cd-vols=
no-issue=1
article-no=
start-page=1
end-page=11
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Evaluating Pericoronary Adipose Tissue?Attenuation to Predict Cardiovascular Events
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Pericoronary adipose tissue attenuation (PCATA) is a novel imaging biomarker of pericoronary inflammation associated with coronary artery disease. Several studies have reported the usefulness of PCATA among people of European ethnicity; however, data are lacking concerning those of Asian ethnicity.
Objectives: This multicenter study aimed to evaluate the effect of PCATA on prognosis in East Asian patients.
Methods: Between August 2011 and December 2016, 2,172 patients underwent clinically indicated coronary computed tomography angiography (CTA) at 4 hospitals in Japan. Among them, 1,270 patients were analyzed. PCATA was evaluated using coronary CTA to measure pericoronary adipose tissue density surrounding the 3 major coronary arteries. The outcomes were composite cardiovascular events, including cardiovascular death and acute coronary syndrome; 33 cardiovascular events observed during a median follow-up of 6.0 years (Q1-Q3: 3.6-8.2 years).
Results: Right coronary artery (RCA)-PCATA was significantly higher in patients with cardiovascular events than in those without (?63.7 } 8.9 HU vs ?67.4 } 9.1 HU, respectively; P = 0.021). High RCA-PCATA was significantly associated with cardiovascular events in a model that included the Hisayama risk score and adverse coronary CTA findings (HR: 1.55; 95% CI: 1.07-2.24; P = 0.019).
Conclusions: High RCA-PCATA showed significant association with future cardiovascular events after adjusting conventional risk factors and adverse coronary CTA findings in East Asian patients who underwent clinically indicated coronary CTA.
en-copyright=
kn-copyright=
en-aut-name=NishiharaTakahiro
en-aut-sei=Nishihara
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyoshiToru
en-aut-sei=Miyoshi
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=EjiriKentaro
en-aut-sei=Ejiri
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OsawaKazuhiro
en-aut-sei=Osawa
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FukeSoichiro
en-aut-sei=Fuke
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SeiyamaKousuke
en-aut-sei=Seiyama
en-aut-mei=Kousuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=DoiMasayuki
en-aut-sei=Doi
en-aut-mei=Masayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakashimaMitsutaka
en-aut-sei=Nakashima
en-aut-mei=Mitsutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MikiTakashi
en-aut-sei=Miki
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YuasaShinsuke
en-aut-sei=Yuasa
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of General Internal Medicine 3, Kawasaki Medical School General Medicine Center
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Medicine, Japanese Red Cross Okayama Hospital
kn-affil=
affil-num=6
en-affil=Department of Cardiology, Kagawa Prefectural Central Hospital
kn-affil=
affil-num=7
en-affil=Department of Cardiology, Kagawa Prefectural Central Hospital
kn-affil=
affil-num=8
en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=acute coronary syndrome(s)
kn-keyword=acute coronary syndrome(s)
en-keyword=coronary computed tomography angiography
kn-keyword=coronary computed tomography angiography
en-keyword=high-risk plaque
kn-keyword=high-risk plaque
en-keyword=obstructive stenosis
kn-keyword=obstructive stenosis
en-keyword=pericoronary adipose tissue attenuation
kn-keyword=pericoronary adipose tissue attenuation
END
start-ver=1.4
cd-journal=joma
no-vol=10
cd-vols=
no-issue=6
article-no=
start-page=1711
end-page=1720
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Dotinurad Treatment for Patients With Hyperuricemia Complicating CKD
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction: The management of hyperuricemia is important to reduce cardiovascular risk and the progression of renal injury in chronic kidney disease (CKD). This study aimed to assess the efficacy and safety of dotinurad, a novel urate transporter-1 inhibitor, in patients with hyperuricemia and CKD.
Methods: In a nonrandomized, parallel interventional study, patients were grouped based on their estimated glomerular filtration rate (eGFR) at baseline. The starting dotinurad dose was 0.5 mg/d and titrated to a final dose of 2 mg/d to 4 mg/d. The primary end point was the noninferiority of the change in serum uric acid (UA) levels between the G1/G2 and G3/G4 groups at week 24. The main secondary end points were changes in eGFR and UA clearance-to-creatinine clearance ratio (CUA/CCr). Reported adverse events were also investigated.
Results: Ninety-eight patients continued the dose titration. The mean percentage reduction in serum UA level at week 24 were 47.2% and 42.8% for the G1/G2 and G3/G4 groups, respectively; the between-group difference was ?4.3% (95% confidence interval [CI], ?9.5% to 0.9%, noninferiority P = 0.0321), validating the noninferiority of treatment in the G3/G4 group to the G1/G2 group. eGFR tended to increase slightly through to week 24, suggesting that spontaneous eGFR decline was counteracted. Mean CUA/CCr generally increased over time from week 4 to week 24. No new safety issues of particular concern were identified; and there were no marked changes in urinary pH.
Conclusion: Dotinurad therapy may be well-tolerated in patients with hyperuricemia and may have efficacy comparable with existing standard treatment in patients with CKD stages G3/G4. Randomized controlled trials in larger patient groups are needed.
en-copyright=
kn-copyright=
en-aut-name=TanabeKatsuyuki
en-aut-sei=Tanabe
en-aut-mei=Katsuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NunoueTomokazu
en-aut-sei=Nunoue
en-aut-mei=Tomokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ItabashiNaoki
en-aut-sei=Itabashi
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KatayamaAkihiro
en-aut-sei=Katayama
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakamuraAkihiko
en-aut-sei=Nakamura
en-aut-mei=Akihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OhbayashiHiroyuki
en-aut-sei=Ohbayashi
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OnishiYasuhiro
en-aut-sei=Onishi
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=WatanabeKyoko
en-aut-sei=Watanabe
en-aut-mei=Kyoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MaruyamaKeisuke
en-aut-sei=Maruyama
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HosoyaTakeshi
en-aut-sei=Hosoya
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OkadaShinichi
en-aut-sei=Okada
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Nunoue Clinic
kn-affil=
affil-num=3
en-affil=Itabashi Diabetes and Dermatology Medical Clinic
kn-affil=
affil-num=4
en-affil=NHO Okayama Medical Center
kn-affil=
affil-num=5
en-affil=Osafune Clinic
kn-affil=
affil-num=6
en-affil=Tohno Chuo Clinic
kn-affil=
affil-num=7
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Japanese Red Cross Okayama Hospital
kn-affil=
affil-num=9
en-affil=Okayama Saiseikai Outpatient Center Hospital
kn-affil=
affil-num=10
en-affil=Hosoya Clinic
kn-affil=
affil-num=11
en-affil=Okada Medical Clinic
kn-affil=
affil-num=12
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=chronic kidney disease
kn-keyword=chronic kidney disease
en-keyword=dotinurad
kn-keyword=dotinurad
en-keyword=efficacy
kn-keyword=efficacy
en-keyword=hyperuricemia
kn-keyword=hyperuricemia
en-keyword=safety
kn-keyword=safety
en-keyword=serum uric acid
kn-keyword=serum uric acid
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=15
article-no=
start-page=7275
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250728
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Acquired Radioresistance Through Adaptive Evolution with Gamma Radiation as Selection Pressure: Increased Expression and Induction of Anti-Stress Genes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Elucidating the mechanisms of radioresistance in highly radiotolerant organisms can provide valuable insights into the adaptation and evolution of organisms. However, research has been limited on many naturally occurring radioresistant organisms due to a lack of information regarding their genetic and biochemical characteristics and the difficulty of handling them experimentally. To address this, we conducted an experiment on adaptive evolution using gamma radiation as the selection pressure to generate evolved Escherichia coli with gamma radiation resistance approximately one order of magnitude greater than that of wild-type E. coli. Gene expressions in all wild-type and evolved radioresistant E. coli in the presence or absence of gamma irradiation were analyzed and compared using RNA sequencing. Under steady-state conditions, the genes involved in survival, cell recovery, DNA repair, and response following stress exposure were upregulated in evolved E. coli compared with those in wild-type E. coli. Furthermore, the evolved E. coli induced these genes more efficiently following gamma irradiation and greater DNA repair activity than that in the wild-type E. coli. Our results indicate that an increased steady-state expression of various anti-stress genes, including DNA repair-related genes, and their highly efficient induction under irradiation are responsible for the remarkable radioresistance of evolved E. coli.
en-copyright=
kn-copyright=
en-aut-name=SaitoTakeshi
en-aut-sei=Saito
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TeratoHiroaki
en-aut-sei=Terato
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Division of Radiation Life Science, Institute for Integrated Radiation and Nuclear Science, Kyoto University
kn-affil=
affil-num=2
en-affil=Department of Radiation Research, Advanced Science Research Center, Okayama University
kn-affil=
en-keyword=radioresistant bacteria
kn-keyword=radioresistant bacteria
en-keyword=Escherichia coli
kn-keyword=Escherichia coli
en-keyword=adaptive evolution
kn-keyword=adaptive evolution
en-keyword=gene expression changes
kn-keyword=gene expression changes
en-keyword=anti-stress genes
kn-keyword=anti-stress genes
en-keyword=DNA repair
kn-keyword=DNA repair
en-keyword=cell recovery
kn-keyword=cell recovery
END
start-ver=1.4
cd-journal=joma
no-vol=52
cd-vols=
no-issue=14
article-no=
start-page=e2024GL114146
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250718
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Unraveling the Complex Features of the Seismic Scatterers in the Mid]Lower Mantle Through Phase Transition of (Al, H)]Bearing Stishovite
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Small-scale scatterers observed in the mid-lower mantle beneath the subduction zones are thought to result from the phase transition of stishovite within subducted oceanic crusts. Here we investigate the phase transition of (Al, H)-bearing stishovite with four compositions at simultaneously high P-T conditions combining Raman spectroscopy and X-ray diffraction. These experimental results reveal that the incorporation of 0.01 a.p.f.u Al into stishovite with H/Al ratio of ?1/3 lowers the transition pressure by 6.7(3) GPa. However, the Clapeyron slope of this transition is nearly unaffected by changes in the Al content and has a value of 12.2?12.5(3) MPa/K. According to our results, Al content variation ranging from 0 to 0.07 a.p.f.u in SiO2 can reasonably explain the depth distribution from 800 to 1,900 km of the seismic scatterers observed in the circum-Pacific region. These results deepen our understanding on the complex features of mid-lower mantle seismic scatterers and corresponding dynamic processes.
en-copyright=
kn-copyright=
en-aut-name=YuYingxin
en-aut-sei=Yu
en-aut-mei=Yingxin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ZhangYouyue
en-aut-sei=Zhang
en-aut-mei=Youyue
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=LiLuo
en-aut-sei=Li
en-aut-mei=Luo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ZhangXinyue
en-aut-sei=Zhang
en-aut-mei=Xinyue
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WangDenglei
en-aut-sei=Wang
en-aut-mei=Denglei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MaoZhu
en-aut-sei=Mao
en-aut-mei=Zhu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SunNingyu
en-aut-sei=Sun
en-aut-mei=Ningyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ZhangYanyao
en-aut-sei=Zhang
en-aut-mei=Yanyao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=LiXinyang
en-aut-sei=Li
en-aut-mei=Xinyang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=LiWancai
en-aut-sei=Li
en-aut-mei=Wancai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=SpezialeSergio
en-aut-sei=Speziale
en-aut-mei=Sergio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ZhangDongzhou
en-aut-sei=Zhang
en-aut-mei=Dongzhou
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=LinJung]Fu
en-aut-sei=Lin
en-aut-mei=Jung]Fu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=YoshinoTakashi
en-aut-sei=Yoshino
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Deep Space Exploration Laboratory, School of Earth and Space Sciences, University of Science and Technology of China
kn-affil=
affil-num=2
en-affil=Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=3
en-affil=Deep Space Exploration Laboratory, School of Earth and Space Sciences, University of Science and Technology of China
kn-affil=
affil-num=4
en-affil=Deep Space Exploration Laboratory, School of Earth and Space Sciences, University of Science and Technology of China
kn-affil=
affil-num=5
en-affil=Deep Space Exploration Laboratory, School of Earth and Space Sciences, University of Science and Technology of China
kn-affil=
affil-num=6
en-affil=Deep Space Exploration Laboratory, School of Earth and Space Sciences, University of Science and Technology of China
kn-affil=
affil-num=7
en-affil=Deep Space Exploration Laboratory, School of Earth and Space Sciences, University of Science and Technology of China
kn-affil=
affil-num=8
en-affil=Earth and Planetary Sciences, Stanford University
kn-affil=
affil-num=9
en-affil=State Key Laboratory of High Pressure and Superhard Materials, College of Physics, Jilin University
kn-affil=
affil-num=10
en-affil=CAS Key Laboratory of Crust]Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China
kn-affil=
affil-num=11
en-affil=GFZ German Research Centre for Geosciences
kn-affil=
affil-num=12
en-affil=GeoSoilEnviroCARS, University of Chicago
kn-affil=
affil-num=13
en-affil=Department of Earth and Planetary Sciences, Jackson School of Geosciences, The University of Texas at Austin
kn-affil=
affil-num=14
en-affil=Institute for Planetary Materials, Okayama University
kn-affil=
en-keyword=(Al, H)-bearing stishovite
kn-keyword=(Al, H)-bearing stishovite
en-keyword=phase transition
kn-keyword=phase transition
en-keyword=mid-lower mantle
kn-keyword=mid-lower mantle
en-keyword=small-scale seismic scatterers
kn-keyword=small-scale seismic scatterers
END
start-ver=1.4
cd-journal=joma
no-vol=104
cd-vols=
no-issue=3
article-no=
start-page=104810
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202503
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=An ultra-simplified protocol for PCR template preparation from both unsporulated and sporulated Eimeria oocysts
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Molecular biological techniques have enabled the accurate identification of the avian Eimeria parasite, however, the preparation of PCR template remains a bottleneck due to contaminants from feces and the robust oocyst's wall resistant to chemical and mechanical force. Generally, the preparation of PCR template involves three main steps: (1) pretreatment of oocysts; (2) disruption of oocysts; and (3) purification of genomic DNA. We prepared PCR templates from both unsporulated and sporulated E. tenella oocysts using various protocols, followed by species-specific PCR to define the limit of detection. Our data revealed that whereas neither pretreatment of oocysts with sodium hypochlorite nor purification of genomic DNA with commercial kits improved the limit of detection of PCR, disruption of oocysts was a critical step in the preparation of PCR templates. The most sensitive PCR assay was achieved with the template prepared by disrupting oocysts suspended in distilled water, followed by bead-beating and heating at 99C for 5 min, which detected 0.16 oocysts per PCR. This ultra-simplified protocol for preparation of PCR template, which does not require expensive reagents or equipment, will significantly enhance the sensitive and efficient molecular identification of Eimeria. It will improve our understanding of the prevalence of this parasite at the species level and contribute to the development of techniques for the control in the field.
en-copyright=
kn-copyright=
en-aut-name=TakanoAruto
en-aut-sei=Takano
en-aut-mei=Aruto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UmaliDennis V.
en-aut-sei=Umali
en-aut-mei=Dennis V.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WardhanaApril H.
en-aut-sei=Wardhana
en-aut-mei=April H.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SawitriDyah H.
en-aut-sei=Sawitri
en-aut-mei=Dyah H.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TeramotoIsao
en-aut-sei=Teramoto
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HatabuToshimitsu
en-aut-sei=Hatabu
en-aut-mei=Toshimitsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KidoYasutoshi
en-aut-sei=Kido
en-aut-mei=Yasutoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KanekoAkira
en-aut-sei=Kaneko
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SasaiKazumi
en-aut-sei=Sasai
en-aut-mei=Kazumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KatohHiromitsu
en-aut-sei=Katoh
en-aut-mei=Hiromitsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MatsubayashiMakoto
en-aut-sei=Matsubayashi
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Departments of Veterinary Immunology, Graduate School of Veterinary Medical Sciences, Osaka Metropolitan University
kn-affil=
affil-num=2
en-affil=Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of the Philippines Los Ba?os, College
kn-affil=
affil-num=3
en-affil=Research Center for Veterinary Science, National Research and Innovation Agency
kn-affil=
affil-num=4
en-affil=Research Center for Veterinary Science, National Research and Innovation Agency
kn-affil=
affil-num=5
en-affil=Departments of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University
kn-affil=
affil-num=6
en-affil=Laboratory of Animal Physiology, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Departments of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University
kn-affil=
affil-num=8
en-affil=Departments of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University
kn-affil=
affil-num=9
en-affil=Departments of Veterinary Immunology, Graduate School of Veterinary Medical Sciences, Osaka Metropolitan University
kn-affil=
affil-num=10
en-affil=Departments of Veterinary Immunology, Graduate School of Veterinary Medical Sciences, Osaka Metropolitan University
kn-affil=
affil-num=11
en-affil=Departments of Veterinary Immunology, Graduate School of Veterinary Medical Sciences, Osaka Metropolitan University
kn-affil=
en-keyword=Coccidian parasite
kn-keyword=Coccidian parasite
en-keyword=Eimeria tenella
kn-keyword=Eimeria tenella
en-keyword=Extraction
kn-keyword=Extraction
en-keyword=Molecular identification
kn-keyword=Molecular identification
en-keyword=Oocyst
kn-keyword=Oocyst
END
start-ver=1.4
cd-journal=joma
no-vol=37
cd-vols=
no-issue=7
article-no=
start-page=koaf142
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250610
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Pancentromere analysis of Allium species reveals diverse centromere positions in onion and gigantic centromeres in garlic
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In eukaryotes, centromeres interact with the kinetochore for distribution of genetic information in cell division, yet their sequence and size are diverse among species. However, their position on chromosomes is considered to be conserved within a species. In this study, we analyzed the centromeres of 3 Allium species, namely, Welsh onion (Allium fistulosum), onion (Allium cepa), and garlic (Allium sativum) via pancentromere analysis and repetitive sequence analysis of centromeres and their neighborhoods and revealed their mobility, sequence organization, and size. Among the 3 species, Welsh onion and garlic had stable centromeres, but the onion centromere appeared to be polymorphic and frequently differed in position by up to 28.0?Mb among cultivars and between multiple individuals of the same cultivar. This mobility was stabilized by hybridization with Welsh onions. Furthermore, these 3 species have very different centromere sequence organization, including differences in the existence and maturity of centromeric satellites, and differences in centromere size, with Welsh onion having a centromere of 1.9?Mb, and garlic having a centromere of ?10.6?Mb, the largest of any organism with monocentric chromosomes analyzed to date. Our pancentromere analysis of these Allium species reveals the variation in sequence organization, size, and position of this important chromosomal region.
en-copyright=
kn-copyright=
en-aut-name=NagakiKiyotaka
en-aut-sei=Nagaki
en-aut-mei=Kiyotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UshijimaKoichiro
en-aut-sei=Ushijima
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AkagiTakashi
en-aut-sei=Akagi
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanakaKeisuke
en-aut-sei=Tanaka
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KobayashiHisato
en-aut-sei=Kobayashi
en-aut-mei=Hisato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=4
en-affil=NODAI Genome Research Center, Tokyo University of Agriculture
kn-affil=
affil-num=5
en-affil=NODAI Genome Research Center, Tokyo University of Agriculture
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=10
article-no=
start-page=2401783
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241010
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Biocompatibility of Water-Dispersible Pristine Graphene and Graphene Oxide Using a Close-to-Human Animal Model: A Pilot Study on Swine
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Graphene-based materials (GBMs) are of considerable interest for biomedical applications, and the pilot study on the toxicological and immunological impact of pristine graphene (GR) and graphene oxide (GO) using swine as a close-to-human provides valuable insights. First, ex vivo experiments are conducted on swine blood cells, then GBMs are injected intraperitoneally (i.p.) into swine. Hematological and biochemical analyses at various intervals indicate that neither GO nor GR cause systemic inflammation, pro-coagulant responses, or renal or hepatic dysfunction. Importantly, no systemic toxicity is observed. Analysis of a panel of 84 immune-related genes shows minimal impact of GO and GR. The animals are sacrificed 21 days post-injection, and transient absorption imaging and Raman mapping show the presence of GO and GR in the mesentery only. Histological evaluation reveals no signs of alterations in other organs. Thus, clusters of both materials are detected in the mesentery, and GO aggregates are surrounded only by macrophages with the formation of granulomas. In contrast, modest local reactions are observed around the GR clusters. Overall, these results reveal that i.p. injection of GBMs resulted in a modest local tissue reaction without systemic toxicity. This study, performed in swine, provides essential guidance for future biomedical applications of graphene.
en-copyright=
kn-copyright=
en-aut-name=NicolussiPaola
en-aut-sei=Nicolussi
en-aut-mei=Paola
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=PiloGiovannantonio
en-aut-sei=Pilo
en-aut-mei=Giovannantonio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=CanceddaMaria Giovanna
en-aut-sei=Cancedda
en-aut-mei=Maria Giovanna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=PengGuotao
en-aut-sei=Peng
en-aut-mei=Guotao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ChauNgoc Do Quyen
en-aut-sei=Chau
en-aut-mei=Ngoc Do Quyen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=De la CadenaAlejandro
en-aut-sei=De la Cadena
en-aut-mei=Alejandro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=VannaRenzo
en-aut-sei=Vanna
en-aut-mei=Renzo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SamadYarjan Abdul
en-aut-sei=Samad
en-aut-mei=Yarjan Abdul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=AhmedTanweer
en-aut-sei=Ahmed
en-aut-mei=Tanweer
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MarcellinoJeremia
en-aut-sei=Marcellino
en-aut-mei=Jeremia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TeddeGiuseppe
en-aut-sei=Tedde
en-aut-mei=Giuseppe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=GiroLinda
en-aut-sei=Giro
en-aut-mei=Linda
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=YlmazerAcelya
en-aut-sei=Ylmazer
en-aut-mei=Acelya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=LoiFederica
en-aut-sei=Loi
en-aut-mei=Federica
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=CartaGavina
en-aut-sei=Carta
en-aut-mei=Gavina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=SecchiLoredana
en-aut-sei=Secchi
en-aut-mei=Loredana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=Dei GiudiciSilvia
en-aut-sei=Dei Giudici
en-aut-mei=Silvia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=MacciocuSimona
en-aut-sei=Macciocu
en-aut-mei=Simona
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=PolliDario
en-aut-sei=Polli
en-aut-mei=Dario
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=LigiosCiriaco
en-aut-sei=Ligios
en-aut-mei=Ciriaco
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=CerulloGiulio
en-aut-sei=Cerullo
en-aut-mei=Giulio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=FerrariAndrea
en-aut-sei=Ferrari
en-aut-mei=Andrea
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=BiancoAlberto
en-aut-sei=Bianco
en-aut-mei=Alberto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=FadeelBengt
en-aut-sei=Fadeel
en-aut-mei=Bengt
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=FranzoniGiulia
en-aut-sei=Franzoni
en-aut-mei=Giulia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=DeloguLucia Gemma
en-aut-sei=Delogu
en-aut-mei=Lucia Gemma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
affil-num=1
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=2
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=3
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=4
en-affil=Institute of Environmental Medicine, Karolinska Institutet
kn-affil=
affil-num=5
en-affil=CNRS, Immunology, Immunopathology and Therapeutic Chemistry
kn-affil=
affil-num=6
en-affil=Dipartimento di Fisica, Politecnico di Milano
kn-affil=
affil-num=7
en-affil=Istituto di Fotonica e Nanotecnologie ? CNR
kn-affil=
affil-num=8
en-affil=Cambridge Graphene Centre, University of Cambridge
kn-affil=
affil-num=9
en-affil=Cambridge Graphene Centre, University of Cambridge
kn-affil=
affil-num=10
en-affil=Cambridge Graphene Centre, University of Cambridge
kn-affil=
affil-num=11
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=12
en-affil=ImmuneNano Laboratory, Department of Biomedical Sciences
kn-affil=
affil-num=13
en-affil=Department of Biomedical Engineering, Ankara University
kn-affil=
affil-num=14
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=15
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=16
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=17
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=18
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=19
en-affil=Dipartimento di Fisica, Politecnico di Milano
kn-affil=
affil-num=20
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=21
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=22
en-affil=Dipartimento di Fisica, Politecnico di Milano
kn-affil=
affil-num=23
en-affil=Cambridge Graphene Centre, University of Cambridge
kn-affil=
affil-num=24
en-affil=CNRS, Immunology, Immunopathology and Therapeutic Chemistry
kn-affil=
affil-num=25
en-affil=Institute of Environmental Medicine, Karolinska Institutet
kn-affil=
affil-num=26
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=27
en-affil=ImmuneNano Laboratory, Department of Biomedical Sciences
kn-affil=
en-keyword=2D materials
kn-keyword=2D materials
en-keyword=biocompatibility
kn-keyword=biocompatibility
en-keyword=immune system
kn-keyword=immune system
en-keyword=porcine model
kn-keyword=porcine model
en-keyword=toxicity
kn-keyword=toxicity
END
start-ver=1.4
cd-journal=joma
no-vol=4
cd-vols=
no-issue=4
article-no=
start-page=263
end-page=272
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240607
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Light-Responsive and Antibacterial Graphenic Materials as a Holistic Approach to Tissue Engineering
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=While the continuous development of advanced bioprinting technologies is under fervent study, enhancing the regenerative potential of hydrogel-based constructs using external stimuli for wound dressing has yet to be tackled. Fibroblasts play a significant role in wound healing and tissue implants at different stages, including extracellular matrix production, collagen synthesis, and wound and tissue remodeling. This study explores the synergistic interplay between photothermal activity and nanomaterial-mediated cell proliferation. The use of different graphene-based materials (GBM) in the development of photoactive bioinks is investigated. In particular, we report the creation of a skin-inspired dressing for wound healing and regenerative medicine. Three distinct GBM, namely, graphene oxide (GO), reduced graphene oxide (rGO), and graphene platelets (GP), were rigorously characterized, and their photothermal capabilities were elucidated. Our investigations revealed that rGO exhibited the highest photothermal efficiency and antibacterial properties when irradiated, even at a concentration as low as 0.05 mg/mL, without compromising human fibroblast viability. Alginate-based bioinks alongside human fibroblasts were employed for the bioprinting with rGO. The scaffold did not affect the survival of fibroblasts for 3 days after bioprinting, as cell viability was not affected. Remarkably, the inclusion of rGO did not compromise the printability of the hydrogel, ensuring the successful fabrication of complex constructs. Furthermore, the presence of rGO in the final scaffold continued to provide the benefits of photothermal antimicrobial therapy without detrimentally affecting fibroblast growth. This outcome underscores the potential of rGO-enhanced hydrogels in tissue engineering and regenerative medicine applications. Our findings hold promise for developing game-changer strategies in 4D bioprinting to create smart and functional tissue constructs with high fibroblast proliferation and promising therapeutic capabilities in drug delivery and bactericidal skin-inspired dressings.
en-copyright=
kn-copyright=
en-aut-name=FerrerasAndrea
en-aut-sei=Ferreras
en-aut-mei=Andrea
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatesanzAna
en-aut-sei=Matesanz
en-aut-mei=Ana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MendizabalJabier
en-aut-sei=Mendizabal
en-aut-mei=Jabier
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ArtolaKoldo
en-aut-sei=Artola
en-aut-mei=Koldo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AcedoPablo
en-aut-sei=Acedo
en-aut-mei=Pablo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=JorcanoJos? L.
en-aut-sei=Jorcano
en-aut-mei=Jos? L.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=RuizAmalia
en-aut-sei=Ruiz
en-aut-mei=Amalia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ReinaGiacomo
en-aut-sei=Reina
en-aut-mei=Giacomo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=Mart?nCristina
en-aut-sei=Mart?n
en-aut-mei=Cristina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Bioengineering, Universidad Carlos III de Madrid
kn-affil=
affil-num=2
en-affil=Department of Electronic Technology, Universidad Carlos III de Madrid
kn-affil=
affil-num=3
en-affil=Domotek ingenier?a prototipado y formaci?n S.L.
kn-affil=
affil-num=4
en-affil=Domotek ingenier?a prototipado y formaci?n S.L.
kn-affil=
affil-num=5
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Electronic Technology, Universidad Carlos III de Madrid
kn-affil=
affil-num=7
en-affil=Department of Bioengineering, Universidad Carlos III de Madrid
kn-affil=
affil-num=8
en-affil=Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford
kn-affil=
affil-num=9
en-affil=Empa Swiss Federal Laboratories for Materials Science and Technology
kn-affil=
affil-num=10
en-affil=Department of Bioengineering, Universidad Carlos III de Madrid
kn-affil=
en-keyword=photothermal therapy
kn-keyword=photothermal therapy
en-keyword=graphene derivatives
kn-keyword=graphene derivatives
en-keyword=4D bioprinting
kn-keyword=4D bioprinting
en-keyword=alginate
kn-keyword=alginate
en-keyword=tissue engineering
kn-keyword=tissue engineering
END
start-ver=1.4
cd-journal=joma
no-vol=36
cd-vols=
no-issue=12
article-no=
start-page=4932
end-page=4951
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241021
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The leucine-rich repeat receptor kinase QSK1 regulates PRR-RBOHD complexes targeted by the bacterial effector HopF2Pto
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Plants detect pathogens using cell-surface pattern recognition receptors (PRRs) such as ELONGATION Factor-TU (EF-TU) RECEPTOR (EFR) and FLAGELLIN SENSING 2 (FLS2), which recognize bacterial EF-Tu and flagellin, respectively. These PRRs belong to the leucine-rich repeat receptor kinase (LRR-RK) family and activate the production of reactive oxygen species via the NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD). The PRR-RBOHD complex is tightly regulated to prevent unwarranted or exaggerated immune responses. However, certain pathogen effectors can subvert these regulatory mechanisms, thereby suppressing plant immunity. To elucidate the intricate dynamics of the PRR-RBOHD complex, we conducted a comparative coimmunoprecipitation analysis using EFR, FLS2, and RBOHD in Arabidopsis thaliana. We identified QIAN SHOU KINASE 1 (QSK1), an LRR-RK, as a PRR-RBOHD complex-associated protein. QSK1 downregulated FLS2 and EFR abundance, functioning as a negative regulator of PRR-triggered immunity (PTI). QSK1 was targeted by the bacterial effector HopF2Pto, a mono-ADP ribosyltransferase, reducing FLS2 and EFR levels through both transcriptional and transcription-independent pathways, thereby inhibiting PTI. Furthermore, HopF2Pto transcriptionally downregulated PROSCOOP genes encoding important stress-regulated phytocytokines and their receptor MALE DISCOVERER 1-INTERACTING RECEPTOR-LIKE KINASE 2. Importantly, HopF2Pto requires QSK1 for its accumulation and virulence functions within plants. In summary, our results provide insights into the mechanism by which HopF2Pto employs QSK1 to desensitize plants to pathogen attack.
en-copyright=
kn-copyright=
en-aut-name=GotoYukihisa
en-aut-sei=Goto
en-aut-mei=Yukihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KadotaYasuhiro
en-aut-sei=Kadota
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MbengueMalick
en-aut-sei=Mbengue
en-aut-mei=Malick
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=LewisJennifer D
en-aut-sei=Lewis
en-aut-mei=Jennifer D
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MatsuiHidenori
en-aut-sei=Matsui
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MakiNoriko
en-aut-sei=Maki
en-aut-mei=Noriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NgouBruno Pok Man
en-aut-sei=Ngou
en-aut-mei=Bruno Pok Man
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SklenarJan
en-aut-sei=Sklenar
en-aut-mei=Jan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=DerbyshirePaul
en-aut-sei=Derbyshire
en-aut-mei=Paul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ShibataArisa
en-aut-sei=Shibata
en-aut-mei=Arisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=IchihashiYasunori
en-aut-sei=Ichihashi
en-aut-mei=Yasunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=GuttmanDavid S
en-aut-sei=Guttman
en-aut-mei=David S
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=NakagamiHirofumi
en-aut-sei=Nakagami
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=SuzukiTakamasa
en-aut-sei=Suzuki
en-aut-mei=Takamasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=MenkeFrank L H
en-aut-sei=Menke
en-aut-mei=Frank L H
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=RobatzekSilke
en-aut-sei=Robatzek
en-aut-mei=Silke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=DesveauxDarrell
en-aut-sei=Desveaux
en-aut-mei=Darrell
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=ZipfelCyril
en-aut-sei=Zipfel
en-aut-mei=Cyril
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=ShirasuKen
en-aut-sei=Shirasu
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
affil-num=1
en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS)
kn-affil=
affil-num=2
en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS)
kn-affil=
affil-num=3
en-affil=The Sainsbury Laboratory, University of East Anglia
kn-affil=
affil-num=4
en-affil=Department of Cell and System Biology, Centre for the Analysis of Genome Function and Evolution, University of Toronto
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=6
en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS)
kn-affil=
affil-num=7
en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS)
kn-affil=
affil-num=8
en-affil=The Sainsbury Laboratory, University of East Anglia
kn-affil=
affil-num=9
en-affil=The Sainsbury Laboratory, University of East Anglia
kn-affil=
affil-num=10
en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS)
kn-affil=
affil-num=11
en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS)
kn-affil=
affil-num=12
en-affil=Department of Cell and System Biology, Centre for the Analysis of Genome Function and Evolution, University of Toronto
kn-affil=
affil-num=13
en-affil=Plant Proteomics Research Unit, RIKEN CSRS
kn-affil=
affil-num=14
en-affil=College of Bioscience and Biotechnology, Chubu University
kn-affil=
affil-num=15
en-affil=The Sainsbury Laboratory, University of East Anglia
kn-affil=
affil-num=16
en-affil=The Sainsbury Laboratory, University of East Anglia
kn-affil=
affil-num=17
en-affil=Department of Cell and System Biology, Centre for the Analysis of Genome Function and Evolution, University of Toronto
kn-affil=
affil-num=18
en-affil=Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich
kn-affil=
affil-num=19
en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS)
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250724
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Electrochemical Generation of Sulfonamidyl Radicals via Anodic Oxidation of Hydrogen Bonding Complexes: Applications to Electrosynthesis of Benzosultams
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Amidyl radicals and sulfonamidyl radicals are widely used in the field of organic synthesis. In particular, the electrochemical oxidation of amides in the presence of bases is one of the most practical methods for generating amidyl radicals. However, it is often difficult to observe the gtrueh radical precursor, such as an amide anion and/or a hydrogen bonding complex with an amide and a base. We found that a sulfonamide and Bu4NOAc form a 1:1 hydrogen bonding complex by spectroscopic experiments. Cyclic voltammetry suggested that 1:1 hydrogen bonding complexes should be oxidized predominantly under the optimized conditions to afford a sulfonamidyl radical via the proton-coupled electron transfer (PCET) process by the oxidation of the complex. Thus-generated sulfonamidyl radicals could be used in the electrochemical synthesis of a variety of benzosultams.
en-copyright=
kn-copyright=
en-aut-name=OkumuraYasuyuki
en-aut-sei=Okumura
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SatoEisuke
en-aut-sei=Sato
en-aut-mei=Eisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MitsudoKoichi
en-aut-sei=Mitsudo
en-aut-mei=Koichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SugaSeiji
en-aut-sei=Suga
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=electrochemical generation
kn-keyword=electrochemical generation
en-keyword=sulfonamidyl radicals
kn-keyword=sulfonamidyl radicals
en-keyword=hydrogen bonding complexes
kn-keyword=hydrogen bonding complexes
en-keyword=anodic oxidation
kn-keyword=anodic oxidation
en-keyword=proton-coupled electron transfer
kn-keyword=proton-coupled electron transfer
en-keyword=electrosynthesis
kn-keyword=electrosynthesis
en-keyword=benzosultams
kn-keyword=benzosultams
en-keyword=cyclization
kn-keyword=cyclization
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=7
article-no=
start-page=e88945
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250728
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Six-Year Remission With No Relapse After Four-Time Weekly Rituximab Only for Bilateral Ocular Adnexal Follicular Lymphoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Follicular lymphoma mostly takes an indolent course, and thus, observation with watchful waiting is a main therapeutic strategy. Recent long-term studies suggest earlier treatment with rituximab monotherapy may benefit patients by delaying the need for treatment in the later phase of exacerbation. In this study, we reported a patient with bilateral orbital follicular lymphoma who received four-time weekly rituximab monotherapy as an induction therapy only and maintained the remission for 5 years with no treatment. The patient was a 51-year-old woman who developed a right upper orbital mass and was diagnosed with follicular lymphoma grade 1 by the excisional biopsy. Two years later, at the age of 53 years, she developed a left lacrimal gland mass and underwent excision. The pathological diagnosis was follicular lymphoma grade 1. She did not have any other systemic lesions by fluorodeoxyglucose positron emission tomography. At the age of 54 years, she developed a new mass on the nasal side of the right orbit and underwent weekly rituximab monotherapy (375 mg/m2) four times a month, leading to the reduction of the mass in 3 months. Two high uptake sites on the temporal and nasal side of the right superior orbit by fluorodeoxyglucose positron emission tomography disappeared one year later at the age of 55 years. She was followed with no treatment for 6 years until the age of 60 years at the latest visit. In case of a local orbital relapse, local radiotherapy would be the standard, but rituximab monotherapy as an induction therapy only was chosen in the present patient. Rituximab monotherapy in place of local radiotherapy would be a treatment option for orbital follicular lymphoma.
en-copyright=
kn-copyright=
en-aut-name=MatsuoToshihiko
en-aut-sei=Matsuo
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FujiiNobuharu
en-aut-sei=Fujii
en-aut-mei=Nobuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Ophthalmology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, and Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Division of Transfusion and Cell Therapy, Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
en-keyword=claustrophobia
kn-keyword=claustrophobia
en-keyword=extranodal marginal zone b-cell lymphoma mucosa-associated lymphoid tissue (malt) type
kn-keyword=extranodal marginal zone b-cell lymphoma mucosa-associated lymphoid tissue (malt) type
en-keyword=fluorodeoxyglucose positron emission tomography
kn-keyword=fluorodeoxyglucose positron emission tomography
en-keyword=follicular lymphoma
kn-keyword=follicular lymphoma
en-keyword=magnetic resonance imaging
kn-keyword=magnetic resonance imaging
en-keyword=mucosaassociated lymphoid tissue (malt) lymphoma
kn-keyword=mucosaassociated lymphoid tissue (malt) lymphoma
en-keyword=ocular adnexa
kn-keyword=ocular adnexa
en-keyword=orbital mass
kn-keyword=orbital mass
en-keyword=radiotherapy
kn-keyword=radiotherapy
en-keyword=rituximab
kn-keyword=rituximab
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=11
article-no=
start-page=uhae248
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240904
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A low-cost dpMIG-seq method for elucidating complex inheritance in polysomic crops: a case study in tetraploid blueberry
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Next-generation sequencing (NGS) library construction often requires high-quality DNA extraction, precise adjustment of DNA concentration, and restriction enzyme digestion to reduce genome complexity, which results in increased time and cost in sample preparation and processing. To address these challenges, a PCR-based method for rapid NGS library preparation, named dpMIG-seq, has been developed and proven effective for high-throughput genotyping. However, the application of dpMIG-seq has been limited to diploid and polyploid species with disomic inheritance. In this study, we obtained genome-wide single nucleotide polymorphism (SNP) markers for tetraploid blueberry to evaluate genotyping and downstream analysis outcomes. Comparison of genotyping qualities inferred across samples with different DNA concentrations and multiple bioinformatics approaches revealed high accuracy and reproducibility of dpMIG-seq-based genotyping, with Pearson's correlation coefficients between replicates in the range of 0.91 to 0.98. Furthermore, we demonstrated that dpMIG-seq enables accurate genotyping of samples with low DNA concentrations. Subsequently, we applied dpMIG-seq to a tetraploid F1 population to examine the inheritance probability of parental alleles. Pairing configuration analysis supported the random meiotic pairing of homologous chromosomes on a genome-wide level. On the other hand, preferential pairing was observed on chr-11, suggesting that there may be an exception to the random pairing. Genotypic data suggested quadrivalent formation within the population, although the frequency of quadrivalent formation varied by chromosome and cultivar. Collectively, the results confirmed applicability of dpMIG-seq for allele dosage genotyping and are expected to catalyze the adoption of this cost-effective and rapid genotyping technology in polyploid studies.
en-copyright=
kn-copyright=
en-aut-name=NagasakaKyoka
en-aut-sei=Nagasaka
en-aut-mei=Kyoka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishimuraKazusa
en-aut-sei=Nishimura
en-aut-mei=Kazusa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MotokiKo
en-aut-sei=Motoki
en-aut-mei=Ko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamagataKeigo
en-aut-sei=Yamagata
en-aut-mei=Keigo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NishiyamaSoichiro
en-aut-sei=Nishiyama
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamaneHisayo
en-aut-sei=Yamane
en-aut-mei=Hisayo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TaoRyutaro
en-aut-sei=Tao
en-aut-mei=Ryutaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakanoRyohei
en-aut-sei=Nakano
en-aut-mei=Ryohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NakazakiTetsuya
en-aut-sei=Nakazaki
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=5
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=6
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=7
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=8
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=9
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=22
cd-vols=
no-issue=6
article-no=
start-page=271
end-page=285
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=2024
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effects of Sediment Microbial Fuel Cells on CH4 and CO2 Emissions from Straw Amended Paddy Soil
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Straw returning into paddy soil enhances soil organic matter which usually promotes the emission of greenhouse gases to the atmosphere. The application of sediment microbial fuel cells (SMFCs) to paddy soil activates power-generating microorganisms and enhances organic matter biodegradation. In the present study, rice straw addition in SMFCs was examined to determine its effect on CH4 and CO2 emissions. Columns (height, 25?cm; inner diameter, 9?cm) with four treatments: soil without and with rice straw under SMFC and without SMFC conditions were incubated at 25C for 70 days. Anodic potential values at 7?cm depth sediment were kept higher by SMFCs than those without SMFCs. Cumulative CH4 emission was significantly reduced by SMFC with straw amendment (p < 0.05) with no significant effect on CO2 emission. 16S rRNA gene analysis results showed that Firmicutes at the phylum, Closteridiales and Acidobacteriales at order level were dominant on the anode of straw-added SMFC, whereas Methanomicrobiales were in the treatment without SMFC, indicating that a certain group of methanogens were suppressed by SMFC. Our results suggest that the anodic redox environment together with the enrichment of straw-degrading bacteria contributed to a competitive advantage of electrogenesis over methanogenesis in straw-added SMFC system.
en-copyright=
kn-copyright=
en-aut-name=BekeleAdhena Tesfau
en-aut-sei=Bekele
en-aut-mei=Adhena Tesfau
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MaedaMorihiro
en-aut-sei=Maeda
en-aut-mei=Morihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AkaoSatoshi
en-aut-sei=Akao
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SomuraHiroaki
en-aut-sei=Somura
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakanoChiyu
en-aut-sei=Nakano
en-aut-mei=Chiyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Science and Engineering, Doshisha University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=5
en-affil=Organization for Research Strategy and Development, Okayama University
kn-affil=
affil-num=6
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
en-keyword=straw
kn-keyword=straw
en-keyword=methane mitigation
kn-keyword=methane mitigation
en-keyword=SMFC
kn-keyword=SMFC
en-keyword=microorganisms
kn-keyword=microorganisms
en-keyword=current generation
kn-keyword=current generation
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=7
article-no=
start-page=001430
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250707
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Genomic features of three major diarrhoeagenic Escherichia coli pathotypes in India
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background. Diarrhoea remains a major threat to children in developing nations, with diarrhoeagenic Escherichia coli (DEC) being the primary causative agent. Characterizing prevalent DEC strains is crucial, yet comprehensive genomic analyses of major DEC strains, including enteropathogenic E. coli (EPEC), enteroaggregative E. coli (EAEC) and enterotoxigenic E. coli (ETEC), are lacking in India.
Methods. We sequenced 24 EAEC and 23 EPEC strains from Indian patients with diarrhoea and conducted an extensive database search for DEC human isolates from India. Detailed phylogenetic analyses, virulence gene subtyping and examinations of accessory virulence and antimicrobial resistance (AMR) genes were performed.
Results. The analysed DEC strains included 32 EAEC, 25 EPEC, 32 ETEC and 1 each of the EPEC/ETEC-hybrid and ETEC/EAEC-hybrid pathotypes. These strains were predominantly classified into phylogroups A (35.2%) and B1 (41.8%) and dispersed within these phylogroups without pathotype-specific clustering. One ETEC strain was classified into cryptic clade 1. Subtypes of hallmark virulence genes varied substantially amongst strains in each pathotype, and 31 accessory virulence genes were detected either specifically within certain pathotypes or across multiple pathotypes at varying frequencies, indicating diversification of the virulence gene repertoire within each pathotype. Acquired AMR genes were found in 73.6% of the strains, with frequent identification of AMR genes for aminoglycosides (40.0%), À-lactams (64.8%), sulphonamides (49.5%) and trimethoprim (42.9%). Known quinolone-resistant mutations were found in 74.7% of the strains, whereas AMR genes for macrolide (30.8%), phenicol (11.0%) and tetracycline (27.4%) were less frequent.
Conclusions. The diverse virulence potential and trends in AMR gene prevalence amongst major DEC strains in India are highlighted in this study. Continuous monitoring of DEC strain characteristics is essential for the effective control and treatment of DEC infections in India.
en-copyright=
kn-copyright=
en-aut-name=HoshikoYuki
en-aut-sei=Hoshiko
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ChowdhuryGoutam
en-aut-sei=Chowdhury
en-aut-mei=Goutam
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KitaharaKei
en-aut-sei=Kitahara
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=GhoshDebjani
en-aut-sei=Ghosh
en-aut-mei=Debjani
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NaganoDebora Satie
en-aut-sei=Nagano
en-aut-mei=Debora Satie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OhnoAyumu
en-aut-sei=Ohno
en-aut-mei=Ayumu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MiyoshiShin-ichi
en-aut-sei=Miyoshi
en-aut-mei=Shin-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OkunoMiki
en-aut-sei=Okuno
en-aut-mei=Miki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YamamotoTakeshi
en-aut-sei=Yamamoto
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=DuttaShanta
en-aut-sei=Dutta
en-aut-mei=Shanta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MukhopadhyayAsish K.
en-aut-sei=Mukhopadhyay
en-aut-mei=Asish K.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=OguraYoshitoshi
en-aut-sei=Ogura
en-aut-mei=Yoshitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=?Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine
kn-affil=
affil-num=2
en-affil=Collaborative Research Centre of Okayama University for Infectious Diseases, ICMR-National Institute of Cholera and Enteric Diseases
kn-affil=
affil-num=3
en-affil=Collaborative Research Centre of Okayama University for Infectious Diseases, ICMR-National Institute of Cholera and Enteric Diseases
kn-affil=
affil-num=4
en-affil=Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases
kn-affil=
affil-num=5
en-affil=?Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine
kn-affil=
affil-num=6
en-affil=Collaborative Research Centre of Okayama University for Infectious Diseases, ICMR-National Institute of Cholera and Enteric Diseases
kn-affil=
affil-num=7
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=?Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine
kn-affil=
affil-num=9
en-affil=?Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine
kn-affil=
affil-num=10
en-affil=?Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases
kn-affil=
affil-num=11
en-affil=?Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases
kn-affil=
affil-num=12
en-affil=?Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine
kn-affil=
en-keyword=antimicrobial resistance
kn-keyword=antimicrobial resistance
en-keyword=diarrhoeagenic Escherichia coli
kn-keyword=diarrhoeagenic Escherichia coli
en-keyword=genome
kn-keyword=genome
en-keyword=India
kn-keyword=India
en-keyword=virulence gene
kn-keyword=virulence gene
END
start-ver=1.4
cd-journal=joma
no-vol=93
cd-vols=
no-issue=4
article-no=
start-page=335
end-page=343
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=2024
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Elucidation of Low-temperature Regulated Flavone Synthesis in Dahlia Variabilis and its Effects on Flower Color
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Dahlia (Dahlia variabilis) flower colors are diverse and are determined by the accumulation of flavonoids. Cultivars with dark red flowers accumulate more anthocyanins in their petals. Flower color changes such as color fading often occur in some cultivars. In this study, low minimum temperature regulated flower color fading and flavonoid synthesis in dahlia eNesshof were investigated. The pigment contents and expression levels of flavonoid biosynthesis genes were investigated in detail under several growing environments in which color fading occurs. Flavones accumulate more in color-faded orange flowers than in dark red ray florets. The expression analysis of the anthocyanin synthesis pathway genes indicated that the upregulation of flavone synthase (DvFNS) gene expression correlated with the high accumulation of flavones in color-faded petals. DvFNS expression was also detected in young leaves, and the expression level was higher in winter than in summer. Seasonal changes in DvFNS expression in young leaves significantly correlated with color fading in petals. The change in DvFNS expression in young unexpanded leaves of relatively high-sensitive plants was significantly higher than that of low-sensitive plants before and after treatment under inductive conditions. In conclusion, low-temperature-inducible changes in the flavonoid accumulation in petals was suggested to reflect a change in DvFNS expression occurring in the meristem prior to flower bud formation. This temporal DvFNS expression in young unexpanded leaves of eNesshof dahlia could be an insight for the selection and breeding of non-color fading plants.
en-copyright=
kn-copyright=
en-aut-name=K. MuthamiaEdna
en-aut-sei=K. Muthamia
en-aut-mei=Edna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NaitoKoji
en-aut-sei=Naito
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OkadaHiromasa
en-aut-sei=Okada
en-aut-mei=Hiromasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KarasawaYukino
en-aut-sei=Karasawa
en-aut-mei=Yukino
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KikumuraTokuyu
en-aut-sei=Kikumura
en-aut-mei=Tokuyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NaraTakuya
en-aut-sei=Nara
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HamauzuYasunori
en-aut-sei=Hamauzu
en-aut-mei=Yasunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MotokiKo
en-aut-sei=Motoki
en-aut-mei=Ko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YasubaKen-ichiro
en-aut-sei=Yasuba
en-aut-mei=Ken-ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YoshidaYuichi
en-aut-sei=Yoshida
en-aut-mei=Yuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KitamuraYoshikuni
en-aut-sei=Kitamura
en-aut-mei=Yoshikuni
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=GotoTanjuro
en-aut-sei=Goto
en-aut-mei=Tanjuro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Agriculture, Shinshu University
kn-affil=
affil-num=4
en-affil=Faculty of Agriculture, Shinshu University
kn-affil=
affil-num=5
en-affil=Faculty of Agriculture, Shinshu University
kn-affil=
affil-num=6
en-affil=Faculty of Agriculture, Shinshu University
kn-affil=
affil-num=7
en-affil=Faculty of Agriculture, Shinshu University
kn-affil=
affil-num=8
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=9
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=10
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=11
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=12
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=anthocyanin
kn-keyword=anthocyanin
en-keyword=dahlia
kn-keyword=dahlia
en-keyword=flavone synthase
kn-keyword=flavone synthase
en-keyword=seasonal color fading
kn-keyword=seasonal color fading
en-keyword=young unexpanded leaves
kn-keyword=young unexpanded leaves
END
start-ver=1.4
cd-journal=joma
no-vol=238
cd-vols=
no-issue=
article-no=
start-page=120296
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250505
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Grafting-through functionalization of graphene oxide with cationic polymers for enhanced adsorption of anionic dyes and viruses
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Graphene oxide (GO) is a sheet-like carbon material with abundant oxygen-containing functional groups on its surface. GO has been extensively studied as an adsorbent for heavy metals and organic compounds. However, effective strategies for negatively charged materials have yet to be established. This study aimed to synthesize composites of GO and cationic polymers for the selective adsorption of negatively charged materials; a challenge in this approach is the strong electrostatic interactions between GO and cationic polymers, which can lead to aggregation. This study addresses this issue by employing the grafting-through method. GO was initially modified with allylamine to introduce a polymerizable site, followed by radical polymerization to covalently bond polymers to the GO surface, effectively preventing aggregation. Adsorption experiments demonstrated that the GO-polymer composite selectively adsorbs anionic dye, such as methyl orange. Virus adsorption tests showed significantly enhanced performance compared to pristine GO. These results emphasize the critical role of controlled surface modification and charge manipulation in optimizing the adsorption performance of GO. This study establishes a simple and effective approach for synthesizing GO-cationic polymer composites, contributing to the development of advanced materials for water purification applications.
en-copyright=
kn-copyright=
en-aut-name=KimuraRyota
en-aut-sei=Kimura
en-aut-mei=Ryota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=Ferr?-PujolPilar
en-aut-sei=Ferr?-Pujol
en-aut-mei=Pilar
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Research Core for Interdisciplinary Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Graphene oxide
kn-keyword=Graphene oxide
en-keyword=Virus adsorption
kn-keyword=Virus adsorption
en-keyword=Dye adsorption
kn-keyword=Dye adsorption
en-keyword=Cationic polymer composites
kn-keyword=Cationic polymer composites
en-keyword=Adsorbent
kn-keyword=Adsorbent
en-keyword=Aggregation
kn-keyword=Aggregation
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250723
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Impact of differences in computed tomography value-electron density/physical density conversion tables on calculate dose in low-density areas
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In radiotherapy treatment planning, the extrapolation of computed tomography (CT) values for low-density areas without known materials may differ between CT scanners, resulting in different calculated doses. We evaluated the differences in the percentage depth dose (PDD) calculated using eight CT scanners. Heterogeneous virtual phantoms were created using LN-300 lung and ??900 HU. For the two types of virtual phantoms, the PDD on the central axis was calculated using five energies, two irradiation field sizes, and two calculation algorithms (the anisotropic analytical algorithm and Acuros XB). For the LN-300 lung, the maximum CT value difference between the eight CT scanners was 51 HU for an electron density (ED) of 0.29 and 8.8 HU for an extrapolated ED of 0.05. The LN-300 lung CT values showed little variation in the CT-ED/physical density data among CT scanners. The difference in the point depth for the PDD in the LN-300 lung between the CT scanners was?0.5% for all energies and calculation algorithms. Using Acuros XB, the PDD at ? 900 HU had a maximum difference between facilities of?>?5%, and the dose difference corresponding to an LN-300 lung CT value difference of?>?20 HU was?>?1% at a field size of 2?~?2 cm2. The study findings suggest that the calculated dose of low-density regions without known materials in the CT-ED conversion table introduces a risk of dose differences between facilities because of the calibration of the CT values, even when the same CT-ED phantom radiation treatment planning and treatment devices are used.
en-copyright=
kn-copyright=
en-aut-name=NomuraMia
en-aut-sei=Nomura
en-aut-mei=Mia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=GotoShunsuke
en-aut-sei=Goto
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshiokaMizuki
en-aut-sei=Yoshioka
en-aut-mei=Mizuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KatoYuiko
en-aut-sei=Kato
en-aut-mei=Yuiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TsunodaAyaka
en-aut-sei=Tsunoda
en-aut-mei=Ayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NishiokaKunio
en-aut-sei=Nishioka
en-aut-mei=Kunio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TanabeYoshinori
en-aut-sei=Tanabe
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Faculty of Health Sciences, Department of Radiological Technology, Okayama University Medical School, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Health Sciences, Department of Radiological Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Health Sciences, Department of Radiological Technology, Okayama University Medical School, Okayama University
kn-affil=
affil-num=4
en-affil=Faculty of Health Sciences, Department of Radiological Technology, Okayama University Medical School, Okayama University
kn-affil=
affil-num=5
en-affil=Faculty of Health Sciences, Department of Radiological Technology, Okayama University Medical School, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Radiology, Tokuyama Central Hospital
kn-affil=
affil-num=7
en-affil=Faculty of Medicine, Graduate School of Health Sciences, Okayama University
kn-affil=
en-keyword=Computed tomography
kn-keyword=Computed tomography
en-keyword=Dose calculation
kn-keyword=Dose calculation
en-keyword=Inter-facility variation
kn-keyword=Inter-facility variation
en-keyword=Low-density regions
kn-keyword=Low-density regions
en-keyword=Percentage depth dose
kn-keyword=Percentage depth dose
en-keyword=Radiation therapy planning system
kn-keyword=Radiation therapy planning system
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=14
article-no=
start-page=6927
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250718
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Inhibitory Effects of Vandetanib on Catecholamine Synthesis in Rat Pheochromocytoma PC12 Cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Gain-of-function gene alterations in rearranged during transfection (RET), a receptor tyrosine kinase, are observed in both sporadic and hereditary medullary thyroid cancers (MTCs) and pheochromocytomas and paragangliomas (PPGLs). Several tyrosine kinase inhibitors (TKIs) that target RET have been proven to be effective on MTCs and PCCs. Recently, TKIs, namely, sunitinib and selpercatinib, which were clinically used to target PPGLs, have been reported to decrease catecholamine levels without reducing tumor size. Our clinical case of metastatic medullary thyroid cancer, which is associated with RET mutations undergoing treatment with vandetanib, also suggests that vandetanib can decrease catecholamine levels. Therefore, we investigated the effect of vandetanib, a representative multi-targeted TKI for RET-related MTC, on cell proliferation and catecholamine synthesis in rat pheochromocytoma PC12 cells. Vandetanib reduced viable cells in a concentration-dependent manner. The dopamine and noradrenaline levels of the cell lysate were reduced in a concentration-dependent manner. They also decreased more prominently at lower concentrations of vandetanib compared to the inhibition of cell proliferation. The RNA knockdown study of Ret revealed that this inhibitory effect on catecholamine synthesis is mainly mediated by the suppression of RET signaling. Next, we focused on two signaling pathways downstream of RET, namely, ERK and AKT signaling. Treatment with vandetanib reduced both ERK and AKT phosphorylation in PC12 cells. Moreover, both an MEK inhibitor U0126 and a PI3K/AKT inhibitor LY294002 suppressed catecholamine synthesis without decreasing viable cells. This study in rat pheochromocytoma PC12 cells reveals the direct inhibitory effects of vandetanib on catecholamine synthesis via the suppression of RET-ERK and RET-AKT signaling.
en-copyright=
kn-copyright=
en-aut-name=ItohYoshihiko
en-aut-sei=Itoh
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=InagakiKenichi
en-aut-sei=Inagaki
en-aut-mei=Kenichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TerasakaTomohiro
en-aut-sei=Terasaka
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MorimotoEisaku
en-aut-sei=Morimoto
en-aut-mei=Eisaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IshiiTakahiro
en-aut-sei=Ishii
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamaokaKimitomo
en-aut-sei=Yamaoka
en-aut-mei=Kimitomo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=FujisawaSatoshi
en-aut-sei=Fujisawa
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=tyrosine kinase inhibitor
kn-keyword=tyrosine kinase inhibitor
en-keyword=multiple endocrine neoplasia type 2
kn-keyword=multiple endocrine neoplasia type 2
en-keyword=paraganglioma
kn-keyword=paraganglioma
en-keyword=RET
kn-keyword=RET
en-keyword=ERK
kn-keyword=ERK
en-keyword=AKT
kn-keyword=AKT
END
start-ver=1.4
cd-journal=joma
no-vol=65
cd-vols=
no-issue=7
article-no=
start-page=319
end-page=325
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250715
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Nationwide Survey of Middle Meningeal Artery Embolization for Chronic Subdural Hematoma in Japan
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Middle meningeal artery embolization has increasingly been used to treat chronic subdural hematoma. However, the current state of its application and outcomes in Japan remains unclear. We conducted a multicenter observational study involving facilities affiliated with the Japanese Society for Neuroendovascular Therapy to assess current practices and clarify the usefulness and safety of middle meningeal artery embolization for chronic subdural hematoma. A total of 466 patients from 40 facilities were included. The mean age of the patients was 78.0 } 10.5 years, and bleeding risks, including antithrombotic therapy or bleeding predisposition, were present in 36.1% of patients. The most common timing for middle meningeal artery embolization was after the second burr hole surgery, accounting for 34.8% of cases. N-butyl-2-cyanoacrylate was used as the embolic material in 67% of cases. The complication rate was 5.2%, with complication-related morbidity at 0.9%. Hematomas were stable in 91.5% of cases at 30 days post-middle meningeal artery embolization. The symptomatic recurrence rate was 8.9%. Cases that underwent middle meningeal artery embolization after the second or subsequent burr hole surgeries were significantly associated with symptomatic recurrence. This study is the first nationwide survey investigating the real-world clinical practice of middle meningeal artery embolization for chronic subdural hematoma in Japan. While it included many elderly patients, recurrent cases, and those with bleeding risks, the safety and usefulness of middle meningeal artery embolization were deemed acceptable. However, symptomatic recurrence was common even in cases with middle meningeal artery embolization when performed after the second or subsequent burr hole surgeries. A further prospective study will be warranted to clarify treatment indications, optimal timing, and treatment techniques of middle meningeal artery embolization.
en-copyright=
kn-copyright=
en-aut-name=MURAISatoshi
en-aut-sei=MURAI
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=EBISUDANIYuki
en-aut-sei=EBISUDANI
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HARUMAJun
en-aut-sei=HARUMA
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HIRAMATSUMasafumi
en-aut-sei=HIRAMATSU
en-aut-mei=Masafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HISHIKAWATomohito
en-aut-sei=HISHIKAWA
en-aut-mei=Tomohito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SATOWTetsu
en-aut-sei=SATOW
en-aut-mei=Tetsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SUGIUKenji
en-aut-sei=SUGIU
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Neurosurgery, Kawasaki Medical School
kn-affil=
affil-num=2
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Neurosurgery, Kawasaki Medical School
kn-affil=
affil-num=6
en-affil=Department of Neurosurgery/Stroke Center, Kindai University Hospital
kn-affil=
affil-num=7
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=chronic subdural hematoma
kn-keyword=chronic subdural hematoma
en-keyword=endovascular therapy
kn-keyword=endovascular therapy
en-keyword=middle meningeal artery
kn-keyword=middle meningeal artery
END
start-ver=1.4
cd-journal=joma
no-vol=351
cd-vols=
no-issue=
article-no=
start-page=199522
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Evidence for the replication of a plant rhabdovirus in its arthropod mite vector
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Transmission of plant viruses that replicate in the insect vector is known as persistent-propagative manner. However, it remains unclear whether such virus-vector relationships also occur between plant viruses and other biological vectors such as arthropod mites. In this study, we investigated the possible replication of orchid fleck virus (OFV), a segmented plant rhabdovirus, within its mite vector (Brevipalpus californicus s.l.) using quantitative RT-qPCR, western blotting and next-generation sequencing. Time-course RT-qPCR and western blot analyses showed an increasing OFV accumulation pattern in mites after virus acquisition. Since OFV genome expression requires the transcription of polyadenylated mRNAs, polyadenylated RNA fractions extracted from the viruliferous mite samples and OFV-infected plant leaves were used for RNA-seq analysis. In the mite and plant datasets, a large number of sequence reads were aligned to genomic regions of OFV RNA1 and RNA2 corresponding to transcribed viral gene mRNAs. This includes the short polyadenylated transcripts originating from the leader and trailer regions at the ends of the viral genome, which are believed to play a crucial role in viral transcription/replication. In contrast, a low number of reads were mapped to the non-transcribed regions (gene junctions). These results strongly suggested that OFV gene expression occurs both in mites and plants. Additionally, deep sequencing revealed the accumulation of OFV-derived small RNAs in mites, although their size profiles differ from those found in plants. Taken together, our results indicated that OFV replicates within a mite vector and is targeted by the RNA-silencing mechanism.
en-copyright=
kn-copyright=
en-aut-name=KondoHideki
en-aut-sei=Kondo
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujitaMiki
en-aut-sei=Fujita
en-aut-mei=Miki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TelengechPaul
en-aut-sei=Telengech
en-aut-mei=Paul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MaruyamKazuyuki
en-aut-sei=Maruyam
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HyodoKiwamu
en-aut-sei=Hyodo
en-aut-mei=Kiwamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TassiAline Daniele
en-aut-sei=Tassi
en-aut-mei=Aline Daniele
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OchoaRonald
en-aut-sei=Ochoa
en-aut-mei=Ronald
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AndikaIda Bagus
en-aut-sei=Andika
en-aut-mei=Ida Bagus
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SuzukiNobuhiro
en-aut-sei=Suzuki
en-aut-mei=Nobuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources (IPSR), Okayama University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources (IPSR), Okayama University
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources (IPSR), Okayama University
kn-affil=
affil-num=4
en-affil=Institute of Plant Science and Resources (IPSR), Okayama University
kn-affil=
affil-num=5
en-affil=Institute of Plant Science and Resources (IPSR), Okayama University
kn-affil=
affil-num=6
en-affil=Tropical Research and Education Center, University of Florida
kn-affil=
affil-num=7
en-affil=Systematic Entomology Laboratory, USDA
kn-affil=
affil-num=8
en-affil=College of Plant Protection, Northwest A&F University
kn-affil=
affil-num=9
en-affil=Institute of Plant Science and Resources (IPSR), Okayama University
kn-affil=
en-keyword=Rhabdovirus
kn-keyword=Rhabdovirus
en-keyword=Plant
kn-keyword=Plant
en-keyword=Mite
kn-keyword=Mite
en-keyword=Vector
kn-keyword=Vector
en-keyword=Replication
kn-keyword=Replication
en-keyword=mRNA
kn-keyword=mRNA
en-keyword=Small RNA
kn-keyword=Small RNA
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=7
article-no=
start-page=902
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250711
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Development of an Antimicrobial Coating Film for Denture Lining Materials
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Objectives: Denture hygiene is essential for the prevention of oral candidiasis, a condition frequently associated with Candida albicans colonization on denture surfaces. Cetylpyridinium chloride (CPC)-loaded montmorillonite (CPC-Mont) has demonstrated antimicrobial efficacy in tissue conditioners and demonstrates potential for use in antimicrobial coatings. In this study, we aimed to develop and characterize CPC-Mont-containing coating films for dentures, focusing on their physicochemical behaviors and antifungal efficacies. Methods: CPC was intercalated into sodium-type montmorillonite to prepare CPC-Mont; thereafter, films containing CPC-Mont were fabricated using emulsions of different polymer types (nonionic, cationic, and anionic). CPC loading, release, and recharging behaviors were assessed at various temperatures, and activation energies were calculated using Arrhenius plots. Antimicrobial efficacy against Candida albicans was evaluated for each film using standard microbial assays. Results: X-ray diffraction analysis confirmed the expansion of montmorillonite interlayer spacing by approximately 3 nm upon CPC loading. CPC-Mont showed temperature-dependent release and recharging behavior, with higher temperatures enhancing its performance. The activation energy for CPC release was 38 kJ/mol, while that for recharging was 26 kJ/mol. Nonionic emulsions supported uniform CPC-Mont dispersion and successful film formation, while cationic and anionic emulsions did not. CPC-Mont-containing coatings maintained antimicrobial activity against Candida albicans on dentures. Conclusions: CPC-Mont can be effectively incorporated into nonionic emulsion-based films to create antimicrobial coatings for denture applications. The films exhibited temperature-responsive, reversible CPC release and recharging behaviors, while maintaining antifungal efficacy, findings which suggest the potential utility of CPC-Mont-containing films as a practical strategy to prevent denture-related candidiasis.
en-copyright=
kn-copyright=
en-aut-name=YoshiharaKumiko
en-aut-sei=Yoshihara
en-aut-mei=Kumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KameyamaTakeru
en-aut-sei=Kameyama
en-aut-mei=Takeru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NagaokaNoriyuki
en-aut-sei=Nagaoka
en-aut-mei=Noriyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MaruoYukinori
en-aut-sei=Maruo
en-aut-mei=Yukinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YoshidaYasuhiro
en-aut-sei=Yoshida
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=Van MeerbeekBart
en-aut-sei=Van Meerbeek
en-aut-mei=Bart
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OkiharaTakumi
en-aut-sei=Okihara
en-aut-mei=Takumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=National Institute of Advanced Industrial Science and Technology (AIST), Health and Medical Research Institute
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Dental School, Advanced Research Center for Oral and Craniofacial Science, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Prosthodontics, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University
kn-affil=
affil-num=6
en-affil=BIOMAT, Department of Oral Health Sciences, KU Leuvem
kn-affil=
affil-num=7
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=antimicrobial
kn-keyword=antimicrobial
en-keyword=denture liner
kn-keyword=denture liner
en-keyword=cetylpyridiniumchloride
kn-keyword=cetylpyridiniumchloride
en-keyword=drug release
kn-keyword=drug release
en-keyword=drug recharge
kn-keyword=drug recharge
END
start-ver=1.4
cd-journal=joma
no-vol=121
cd-vols=
no-issue=5
article-no=
start-page=e70046
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250304
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Spider mite tetranins elicit different defense responses in different host habitats
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Spider mites (Tetranychus urticae) are a major threat to economically important crops. Here, we investigated the potential of tetranins, in particular Tet3 and Tet4, as T. urticae protein-type elicitors that stimulate plant defense. Truncated Tet3 and Tet4 proteins showed efficacy in activating the defense gene pathogenesis-related 1 (PR1) and inducing phytohormone production in leaves of Phaseolus vulgaris. In particular, Tet3 caused a drastically higher Ca2+ influx in leaves, but a lower reactive oxygen species (ROS) generation compared to other tetranins, whereas Tet4 caused a low Ca2+ influx and a high ROS generation in the host plants. Such specific and non-specific elicitor activities were examined by knockdown of Tet3 and Tet4 expressions in mites, confirming their respective activities and in particular showing that they function additively or synergistically to induce defense responses. Of great interest is the fact that Tet3 and Tet4 expression levels were higher in mites on their preferred host, P. vulgaris, compared to the levels in mites on the less-preferred host, Cucumis sativus, whereas Tet1 and Tet2 were constitutively expressed regardless of their host. Furthermore, mites that had been hosted on C. sativus induced lower levels of PR1 expression, Ca2+ influx and ROS generation, i.e., Tet3- and Tet4-responsive defense responses, in both P. vulgaris and C. sativus leaves compared to the levels induced by mites that had been hosted on P. vulgaris. Taken together, these findings show that selected tetranins respond to variable host cues that may optimize herbivore fitness by altering the anti-mite response of the host plant.
en-copyright=
kn-copyright=
en-aut-name=EndoYukiko
en-aut-sei=Endo
en-aut-mei=Yukiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaMiku
en-aut-sei=Tanaka
en-aut-mei=Miku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UemuraTakuya
en-aut-sei=Uemura
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanimuraKaori
en-aut-sei=Tanimura
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=DesakiYoshitake
en-aut-sei=Desaki
en-aut-mei=Yoshitake
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OzawaRika
en-aut-sei=Ozawa
en-aut-mei=Rika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=BonzanoSara
en-aut-sei=Bonzano
en-aut-mei=Sara
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MaffeiMassimo E.
en-aut-sei=Maffei
en-aut-mei=Massimo E.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ShinyaTomonori
en-aut-sei=Shinya
en-aut-mei=Tomonori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=GalisIvan
en-aut-sei=Galis
en-aut-mei=Ivan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=ArimuraGen]ichiro
en-aut-sei=Arimura
en-aut-mei=Gen]ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science
kn-affil=
affil-num=2
en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science
kn-affil=
affil-num=3
en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science
kn-affil=
affil-num=4
en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science
kn-affil=
affil-num=5
en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science
kn-affil=
affil-num=6
en-affil=Center for Ecological Research, Kyoto University
kn-affil=
affil-num=7
en-affil=Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin
kn-affil=
affil-num=8
en-affil=Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin
kn-affil=
affil-num=9
en-affil=Institute of Plant Science and Resources (IPSR), Okayama University
kn-affil=
affil-num=10
en-affil=Institute of Plant Science and Resources (IPSR), Okayama University
kn-affil=
affil-num=11
en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science
kn-affil=
en-keyword=Cucumis sativus
kn-keyword=Cucumis sativus
en-keyword=elicitor
kn-keyword=elicitor
en-keyword=Phaseolus vulgaris
kn-keyword=Phaseolus vulgaris
en-keyword=spider mite (Tetranychus urticae)
kn-keyword=spider mite (Tetranychus urticae)
en-keyword=tetranin
kn-keyword=tetranin
END
start-ver=1.4
cd-journal=joma
no-vol=637
cd-vols=
no-issue=8046
article-no=
start-page=744
end-page=748
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Centrophilic retrotransposon integration via CENH3 chromatin in Arabidopsis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In organisms ranging from vertebrates to plants, major components of centromeres are rapidly evolving repeat sequences, such as tandem repeats (TRs) and transposable elements (TEs), which harbour centromere-specific histone H3 (CENH3)1,2. Complete centromere structures recently determined in human and Arabidopsis suggest frequent integration and purging of retrotransposons within the TR regions of centromeres3,4,5. Despite the high impact of ecentrophilicf retrotransposons on the paradox of rapid centromere evolution, the mechanisms involved in centromere targeting remain poorly understood in any organism. Here we show that both Ty3 and Ty1 long terminal repeat retrotransposons rapidly turnover within the centromeric TRs of Arabidopsis species. We demonstrate that the Ty1/Copia element Tal1 (Transposon of Arabidopsis lyrata 1) integrates de novo into regions occupied by CENH3 in Arabidopsis thaliana, and that ectopic expansion of the CENH3 region results in spread of Tal1 integration regions. The integration spectra of chimeric TEs reveal the key structural variations responsible for contrasting chromatin-targeting specificities to centromeres versus gene-rich regions, which have recurrently converted during the evolution of these TEs. Our findings show the impact of centromeric chromatin on TE-mediated rapid centromere evolution, with relevance across eukaryotic genomes.
en-copyright=
kn-copyright=
en-aut-name=TsukaharaSayuri
en-aut-sei=Tsukahara
en-aut-mei=Sayuri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=BousiosAlexandros
en-aut-sei=Bousios
en-aut-mei=Alexandros
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=Perez-RomanEstela
en-aut-sei=Perez-Roman
en-aut-mei=Estela
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamaguchiSota
en-aut-sei=Yamaguchi
en-aut-mei=Sota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=LeduqueBasile
en-aut-sei=Leduque
en-aut-mei=Basile
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakanoAimi
en-aut-sei=Nakano
en-aut-mei=Aimi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NaishMatthew
en-aut-sei=Naish
en-aut-mei=Matthew
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OsakabeAkihisa
en-aut-sei=Osakabe
en-aut-mei=Akihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ToyodaAtsushi
en-aut-sei=Toyoda
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ItoHidetaka
en-aut-sei=Ito
en-aut-mei=Hidetaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=EderaAlejandro
en-aut-sei=Edera
en-aut-mei=Alejandro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TominagaSayaka
en-aut-sei=Tominaga
en-aut-mei=Sayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=Juliarni
en-aut-sei=Juliarni
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KatoKae
en-aut-sei=Kato
en-aut-mei=Kae
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=OdaShoko
en-aut-sei=Oda
en-aut-mei=Shoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=InagakiSoichi
en-aut-sei=Inagaki
en-aut-mei=Soichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=Lorkovi?Zdravko
en-aut-sei=Lorkovi?
en-aut-mei=Zdravko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=NagakiKiyotaka
en-aut-sei=Nagaki
en-aut-mei=Kiyotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=BergerFr?d?ric
en-aut-sei=Berger
en-aut-mei=Fr?d?ric
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=KawabeAkira
en-aut-sei=Kawabe
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=QuadranaLeandro
en-aut-sei=Quadrana
en-aut-mei=Leandro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=HendersonIan
en-aut-sei=Henderson
en-aut-mei=Ian
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=KakutaniTetsuji
en-aut-sei=Kakutani
en-aut-mei=Tetsuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
affil-num=1
en-affil=Department of Biological Sciences, The University of Tokyo
kn-affil=
affil-num=2
en-affil=School of Life Sciences, University of Sussex
kn-affil=
affil-num=3
en-affil=School of Life Sciences, University of Sussex
kn-affil=
affil-num=4
en-affil=Department of Biological Sciences, The University of Tokyo
kn-affil=
affil-num=5
en-affil=Institute of Plant Sciences Paris]Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour lfAgriculture, lfAlimentation et lfEnvironnement, Universit? Evry, Universit? Paris
kn-affil=
affil-num=6
en-affil=Department of Biological Sciences, The University of Tokyo
kn-affil=
affil-num=7
en-affil=Department of Plant Sciences, University of Cambridge
kn-affil=
affil-num=8
en-affil=Department of Biological Sciences, The University of Tokyo
kn-affil=
affil-num=9
en-affil=Center for Genetic Resource Information, National Institute of Genetics
kn-affil=
affil-num=10
en-affil=Faculty of Science, Hokkaido University
kn-affil=
affil-num=11
en-affil=Institute of Plant Sciences Paris]Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour lfAgriculture, lfAlimentation et lfEnvironnement, Universit? Evry, Universit? Paris
kn-affil=
affil-num=12
en-affil=Department of Biological Sciences, The University of Tokyo
kn-affil=
affil-num=13
en-affil=Department of Biological Sciences, The University of Tokyo
kn-affil=
affil-num=14
en-affil=Department of Integrated Genetics, National Institute of Genetics
kn-affil=
affil-num=15
en-affil=Department of Biological Sciences, The University of Tokyo
kn-affil=
affil-num=16
en-affil=Department of Biological Sciences, The University of Tokyo
kn-affil=
affil-num=17
en-affil=Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC)
kn-affil=
affil-num=18
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=19
en-affil=Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC)
kn-affil=
affil-num=20
en-affil=Faculty of Life Sciences, Kyoto Sangyo University
kn-affil=
affil-num=21
en-affil=Institute of Plant Sciences Paris]Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour lfAgriculture, lfAlimentation et lfEnvironnement, Universit? Evry, Universit? Paris
kn-affil=
affil-num=22
en-affil=Department of Plant Sciences, University of Cambridge
kn-affil=
affil-num=23
en-affil=Department of Biological Sciences, The University of Tokyo
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=186
cd-vols=
no-issue=
article-no=
start-page=118030
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202505
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=(+)-Terrein exerts anti-obesity and anti-diabetic effects by regulating the differentiation and thermogenesis of brown adipocytes in mice fed a high-fat diet
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective: (+)-Terrein, a low-molecular-weight secondary metabolite from Aspergillus terreus, inhibits adipocyte differentiation in vitro. However, the precise mechanisms underlying the effects of (+)-terrein on adipocytes remain unclear. We hypothesized that (+)-terrein modulates adipogenesis and glucose homeostasis in obesity and diabetes via anti-inflammatory action and regulation of adipocyte differentiation. Hence, in this study, we aimed to investigate the in vivo anti-diabetic and anti-obesity effects of (+)-terrein.
Methods: Male C57BL/6?J mice were fed normal chow or high-fat (HF) diet and administered (+)-terrein (180?mg/kg) via intraperitoneal injection. Glucose and insulin tolerance tests, serum biochemical assays, and histological analyses were also performed. Rat brown preadipocytes, mouse brown preadipocytes (T37i cells), and inguinal white adipose tissue (ingWAT) preadipocytes were exposed to (+)-terrein during in vitro adipocyte differentiation. Molecular markers associated with thermogenesis and differentiation were quantified using real-time polymerase chain reaction and western blotting.
Results: (+)-Terrein-treated mice exhibited improved insulin sensitivity and reduced serum lipid and glucose levels, irrespective of the diet. Furthermore, (+)-terrein suppressed body weight gain and mitigated fat accumulation by activating brown adipose tissue in HF-fed mice. (+)-Terrein facilitated the in vitro differentiation of rat brown preadipocytes, T37i cells, and ingWAT preadipocytes by upregulating peroxisome proliferator-activated receptor-Á (PPARÁ). This effect was synergistic with that of a PPARÁ agonist.
Conclusion: This study demonstrated that (+)-terrein effectively induces PPARÁ expression and brown adipocyte differentiation, leading to reduced weight gain and improved glucose and lipid profiles in HF-fed mice. Thus, (+)-terrein is a potent novel agent with potential anti-obesity and anti-diabetic properties.
en-copyright=
kn-copyright=
en-aut-name=Aoki-SaitoHaruka
en-aut-sei=Aoki-Saito
en-aut-mei=Haruka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MandaiHiroki
en-aut-sei=Mandai
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakakuraTakashi
en-aut-sei=Nakakura
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SasakiTsutomu
en-aut-sei=Sasaki
en-aut-mei=Tsutomu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KitamuraTadahiro
en-aut-sei=Kitamura
en-aut-mei=Tadahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OmoriKazuhiro
en-aut-sei=Omori
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HisadaTakeshi
en-aut-sei=Hisada
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OkadaShuichi
en-aut-sei=Okada
en-aut-mei=Shuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SugaSeiji
en-aut-sei=Suga
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YamadaMasanobu
en-aut-sei=Yamada
en-aut-mei=Masanobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=SaitoTsugumichi
en-aut-sei=Saito
en-aut-mei=Tsugumichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science
kn-affil=
affil-num=3
en-affil=Department of Anatomy, Teikyo University School of Medicine
kn-affil=
affil-num=4
en-affil=Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=5
en-affil=Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University
kn-affil=
affil-num=6
en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Gunma University Graduate School of Health Sciences
kn-affil=
affil-num=8
en-affil=Department of Diabetes, Soleiyu Asahi Clinic
kn-affil=
affil-num=9
en-affil=Division of Applied Chemistry, Graduate School of Natural Sciences and Technology, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Health & Sports Sciences, Faculty of Education, Tokyo Gakugei University
kn-affil=
en-keyword=(+)-Terrein
kn-keyword=(+)-Terrein
en-keyword=Brown adipose tissue
kn-keyword=Brown adipose tissue
en-keyword=Thermogenesis
kn-keyword=Thermogenesis
en-keyword=Obesity
kn-keyword=Obesity
en-keyword=PPARÁ
kn-keyword=PPARÁ
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=e00678
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250623
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Alkoxy]Substituted Anthrabis(Thiadiazole)]Terthiophene Copolymers for Organic Photovoltaics: A Unique Wavy Backbone Enhances Aggregation, Molecular Order, and Device Efficiency
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Two polymer donors, PATz3T-o6BO and PATz3T-o6HD, incorporating alkoxy-substituted anthra[1,2-c:5,6-c]bis([1,2,5]thiadiazole), were strategically designed and synthesized. The unique wavy backbone of these polymers effectively reduced aggregation, leading to enhanced solubility and significantly improved molecular ordering. Consequently, the PATz3T-o6HD:Y12-based solar cells achieved a power conversion efficiency (PCE) of 7.94%. These findings provide valuable insights into the molecular design of high-performance polymer donors for organic photovoltaics (OPVs).
en-copyright=
kn-copyright=
en-aut-name=YanYi
en-aut-sei=Yan
en-aut-mei=Yi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MoriHiroki
en-aut-sei=Mori
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshinoTomoki
en-aut-sei=Yoshino
en-aut-mei=Tomoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=InamiRyuki
en-aut-sei=Inami
en-aut-mei=Ryuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ChangJiaxin
en-aut-sei=Chang
en-aut-mei=Jiaxin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=GaoJunqing
en-aut-sei=Gao
en-aut-mei=Junqing
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NishiharaYasushi
en-aut-sei=Nishihara
en-aut-mei=Yasushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
en-keyword=Aggregation
kn-keyword=Aggregation
en-keyword=Backbone conformation
kn-keyword=Backbone conformation
en-keyword=Conjugated polymers
kn-keyword=Conjugated polymers
en-keyword=Organic solar cells
kn-keyword=Organic solar cells
en-keyword=Semiconducting polymers
kn-keyword=Semiconducting polymers
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=10712
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241227
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Shoot-Silicon-Signal protein to regulate root silicon uptake in rice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Plants accumulate silicon to protect them from biotic and abiotic stresses. Especially in rice (Oryza sativa), a typical Si-accumulator, tremendous Si accumulation is indispensable for healthy growth and productivity. Here, we report a shoot-expressed signaling protein, Shoot-Silicon-Signal (SSS), an exceptional homolog of the flowering hormone gflorigenh differentiated in Poaceae. SSS transcript is only detected in the shoot, whereas the SSS protein is also detected in the root and phloem sap. When Si is supplied from the root, the SSS transcript rapidly decreases, and then the SSS protein disappears. In sss mutants, root Si uptake and expression of Si transporters are decreased to a basal level regardless of the Si supply. The grain yield of the mutants is decreased to 1/3 due to insufficient Si accumulation. Thus, SSS is a key phloem-mobile protein for integrating root Si uptake and shoot Si accumulation underlying the terrestrial adaptation strategy of grasses.
en-copyright=
kn-copyright=
en-aut-name=YamajiNaoki
en-aut-sei=Yamaji
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=Mitani-UenoNamiki
en-aut-sei=Mitani-Ueno
en-aut-mei=Namiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FujiiToshiki
en-aut-sei=Fujii
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ShinyaTomonori
en-aut-sei=Shinya
en-aut-mei=Tomonori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShaoJi Feng
en-aut-sei=Shao
en-aut-mei=Ji Feng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=WatanukiShota
en-aut-sei=Watanuki
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SaitohYasunori
en-aut-sei=Saitoh
en-aut-mei=Yasunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MaJian Feng
en-aut-sei=Ma
en-aut-mei=Jian Feng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=4
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=5
en-affil=State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture & Forestry University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=12857
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250414
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=OsPIP2;4 aquaporin water channel primarily expressed in roots of rice mediates both water and nonselective Na+ and K+ conductance
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Aquaporin (AQP)-dependent water transport across membranes is indispensable in plants. Recent evidence shows that several AQPs, including plasma membrane intrinsic proteins (PIPs), facilitate the electrogenic transport of ions as well as water transport and are referred to as ion-conducting aquaporins (icAQPs). The present study attempted to identify icAQPs that exhibit cation transport activity among PIPs from rice. Electrophysiological experiments on 11 OsPIPs using Xenopus laevis oocytes revealed that OsPIP2;4 mediated the electrogenic transport of alkali monovalent cations with the selectivity sequence of Na+ ? K+ > Rb+ > Cs+ > Li+, suggesting non-selective cation conductance for Na+ and K+. Transcripts of OsPIP2;4 were abundant in the elongation and mature zones of roots with similar expression levels between the root stelar and remaining outer parts in the cultivar Nipponbare. Immunostaining using sections of the crown roots of Nipponbare plants revealed the expression of OsPIP2;4 in the exodermis and sclerenchyma of the surface region and in the endodermis and pericycle of the stelar region. The present results provide novel insights into OsPIP2;4-dependent non-selective Na+ and K+ transport and its physiological roles in rice.
en-copyright=
kn-copyright=
en-aut-name=TranSen Thi Huong
en-aut-sei=Tran
en-aut-mei=Sen Thi Huong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KatsuharaMaki
en-aut-sei=Katsuhara
en-aut-mei=Maki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MitoYunosuke
en-aut-sei=Mito
en-aut-mei=Yunosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OnishiAya
en-aut-sei=Onishi
en-aut-mei=Aya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HigaAyaka
en-aut-sei=Higa
en-aut-mei=Ayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OnoShuntaro
en-aut-sei=Ono
en-aut-mei=Shuntaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=PaulNewton Chandra
en-aut-sei=Paul
en-aut-mei=Newton Chandra
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HorieRie
en-aut-sei=Horie
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HaradaYoshihiko
en-aut-sei=Harada
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HorieTomoaki
en-aut-sei=Horie
en-aut-mei=Tomoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University
kn-affil=
affil-num=4
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=5
en-affil=Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University
kn-affil=
affil-num=6
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=7
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=8
en-affil=Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University
kn-affil=
affil-num=9
en-affil=Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University
kn-affil=
affil-num=10
en-affil=Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University
kn-affil=
en-keyword=Ion-conducting Aquaporins
kn-keyword=Ion-conducting Aquaporins
en-keyword=Non-selective cation channel
kn-keyword=Non-selective cation channel
en-keyword=Rice
kn-keyword=Rice
en-keyword=Roots
kn-keyword=Roots
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250603
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Amino Acid Substitutions in Loop C of Arabidopsis PIP2 Aquaporins Alters the Permeability of CO2
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The transport of CO2 across biomembranes in plant cells is essential for efficient photosynthesis. Some aquaporins capable of CO2 transport, referred to as eCOOporinsf, are postulated to play a crucial role in leaf CO2 diffusion. However, the structural basis of CO2 permeation through aquaporins remains largely unknown. Here, we show that amino acids in loop C are critical for the CO2 permeability of Arabidopsis thaliana PIP2 aquaporins. We found that swapping tyrosine and serine in loop C to histidine and phenylalanine, which differ between AtPIP2;1 and AtPIP2;3, altered CO2 permeability when examined in the Xenopus laevis oocyte heterologous expression system. AlphaFold2 modelling indicated that these substitution induced a conformational shift in the sidechain of arginine in the aromatic/arginine (ar/R) selectivity filter and in lysine at the extracellular mouth of the monomeric pore in PIP2 aquaporins. Our findings demonstrate that distal amino acid substitutions can trigger conformational changes of the ar/R filter in the monomeric pore, modulating CO2 permeability. Additionally, phylogenetic analysis suggested that aquaporins capable of dual water/CO2 permeability are ancestral to those that are water-selective and CO2-impermeable, and CO2-selective and water impermeable.
en-copyright=
kn-copyright=
en-aut-name=TaniaShaila Shermin
en-aut-sei=Tania
en-aut-mei=Shaila Shermin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UtsugiShigeko
en-aut-sei=Utsugi
en-aut-mei=Shigeko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TsuchiyaYoshiyuki
en-aut-sei=Tsuchiya
en-aut-mei=Yoshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SasanoShizuka
en-aut-sei=Sasano
en-aut-mei=Shizuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KatsuharaMaki
en-aut-sei=Katsuhara
en-aut-mei=Maki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MoriIzumi C.
en-aut-sei=Mori
en-aut-mei=Izumi C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=4
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=5
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=6
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
en-keyword=Arabidopsis thaliana
kn-keyword=Arabidopsis thaliana
en-keyword=CO2 transport
kn-keyword=CO2 transport
en-keyword=monomeric pore
kn-keyword=monomeric pore
en-keyword=PIP2 aquaporin
kn-keyword=PIP2 aquaporin
en-keyword=Xenopus laevis
kn-keyword=Xenopus laevis
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=23
article-no=
start-page=17720
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A meta-linked isomer of ITIC: influence of aggregation patterns on open-circuit voltage in organic solar cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Improving the open-circuit voltage (VOC) of organic solar cells (OSCs) remains an important challenge. While it is known that the energy levels at the donor/acceptor (D/A) interface affect the VOC, the impact of aggregation patterns on the energy levels at the D/A interface has not been fully elucidated. Herein, we focus on ITIC, a widely used acceptor in OSCs, and designed a meta-linked isomer of ITIC (referred to as im-ITIC) to alter molecular symmetry and modify substitution arrangements. Concentration-dependent 1H NMR spectra revealed that im-ITIC shows stronger aggregation behavior in solution. Single-crystal X-ray analysis showed that im-ITIC forms both tail-to-tail (J-aggregation) and face-to-face (H-aggregation) stacking modes, whereas ITIC exclusively forms tail-to-tail stacking. OSCs based on PBDB-T:im-ITIC showed a high VOC value of 1.02 V, which is 0.12 V higher than that of those based on PBDB-T:ITIC. Time-resolved infrared measurements revealed the lifetime of free electrons for the pristine and blend films. The energy levels of the charge transfer state (ECT) for PBDB-T:im-ITIC- and PBDB-T:ITIC OSCs were determined to be 1.57 and 1.39 eV, respectively, correlating with the VOC values. Theoretical calculations indicated that pronounced H-aggregation in im-ITIC increases the ECT compared with J-aggregation, contributing to the improved VOC. This study underscores the critical impact of molecular aggregation patterns on energy alignment and VOC enhancement, offering insights into molecular design for achieving high VOC in OSCs.
en-copyright=
kn-copyright=
en-aut-name=WangKai
en-aut-sei=Wang
en-aut-mei=Kai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=JinnaiSeihou
en-aut-sei=Jinnai
en-aut-mei=Seihou
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UesakaKaito
en-aut-sei=Uesaka
en-aut-mei=Kaito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamakataAkira
en-aut-sei=Yamakata
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IeYutaka
en-aut-sei=Ie
en-aut-mei=Yutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=The Institute of Scientific and Industrial Research (SANKEN), The University of Osaka
kn-affil=
affil-num=2
en-affil=The Institute of Scientific and Industrial Research (SANKEN), The University of Osaka
kn-affil=
affil-num=3
en-affil=Graduate School of Natural Science & Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Natural Science & Technology, Okayama University
kn-affil=
affil-num=5
en-affil=The Institute of Scientific and Industrial Research (SANKEN), The University of Osaka
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=158
cd-vols=
no-issue=
article-no=
start-page=107932
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Trends in nontuberculous mycobacterial disease mortality based on 2000-2022 data from 83 countries
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objectives: To examine the international trends for nontuberculous mycobacterial-associated mortality rates, as nontuberculous mycobacterial infections are becoming increasingly prevalent and pose a significant public health challenge, especially in older populations.
Methods: This retrospective observational study used data from the World Health Organization mortality database, which included patients with nontuberculous mycobacterial infection in 83 countries. We stratified the data by sex, age, and geographic region and calculated crude and age-standardized mortality rates to estimate long-term mortality trends.
Results: In total, 42,182 nontuberculous mycobacterial infection-associated deaths (58.1% in women) were reported in 83 countries between 2000 and 2022. The locally weighted regression model estimation for the nontuberculous mycobacterial infection-associated mortality rate more than doubled?from 0.36 deaths per 1000,000 individuals in 2000 to 0.77 deaths per 1000,000 individuals in 2022. Eighty-six percent of nontuberculous mycobacterial infection-associated deaths occurred in people aged ?65 years. The mortality rate was the highest in the Western Pacific Region.
Conclusion: This study highlights the impact of emerging nontuberculous mycobacterial diseases and the importance of targeted interventions for managing and reducing mortality, particularly in vulnerable older populations. Further studies are warranted to determine the factors contributing to geographical disparity and treatment options.
en-copyright=
kn-copyright=
en-aut-name=HaradaKo
en-aut-sei=Harada
en-aut-mei=Ko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=VuQuynh Thi
en-aut-sei=Vu
en-aut-mei=Quynh Thi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishimuraYoshito
en-aut-sei=Nishimura
en-aut-mei=Yoshito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakedaTatsuaki
en-aut-sei=Takeda
en-aut-mei=Tatsuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HamanoHirofumi
en-aut-sei=Hamano
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MinatoYusuke
en-aut-sei=Minato
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ZamamiYoshito
en-aut-sei=Zamami
en-aut-mei=Yoshito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KoyamaToshihiro
en-aut-sei=Koyama
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HagiyaHideharu
en-aut-sei=Hagiya
en-aut-mei=Hideharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Brookdale Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai
kn-affil=
affil-num=2
en-affil=Department of Health Data Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Division of Hematology/Oncology, Mayo Clinic
kn-affil=
affil-num=4
en-affil=Department of Education and Research Centre for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Center for Infectious Disease Research, Fujita Health University
kn-affil=
affil-num=7
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Health Data Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Infectious Diseases, Okayama University Hospital
kn-affil=
en-keyword=Population surveillance
kn-keyword=Population surveillance
en-keyword=Mortality
kn-keyword=Mortality
en-keyword=Nontuberculous mycobacterial infections
kn-keyword=Nontuberculous mycobacterial infections
END
start-ver=1.4
cd-journal=joma
no-vol=262
cd-vols=
no-issue=2
article-no=
start-page=385
end-page=395
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241023
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Analysis of the effect of permeant solutes on the hydraulic resistance of the plasma membrane in cells of Chara corallina
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In the cells of Chara corallina, permeant monohydric alcohols including methanol, ethanol and 1-propanol increased the hydraulic resistance of the membrane (Lpm?1). We found that the relative value of the hydraulic resistance (rLpm?1) was linearly dependent on the concentration (Cs) of the alcohol. The relationship is expressed in the equation: rLpm?1?=?ÏmCs?+?1, where Ïm is the hydraulic resistance modifier coefficient of the membrane. Ye et al. (2004) showed that membrane-permeant glycol ethers also increased Lp?1. We used their data to estimate Lpm?1 and rLpm?1. The values of rLpm?1 fit the above relation we found for alcohols. When we plotted the Ïm values of all the permeant alcohols and glycol ethers against their molecular weights (MW), we obtained a linear curve with a slope of 0.014 M?1/MW and with a correlation coefficient of 0.99. We analyzed the influence of the permeant solutes on the relative hydraulic resistance of the membrane (rLpm?1) as a function of the external (Î0) and internal (Îi) osmotic pressures. The analysis showed that the hydraulic resistance modifier coefficients (Ïm) were linearly related to the MW of the permeant solutes with a slope of 0.012 M?1/MW and with a correlation coefficient of 0.84. The linear relationship between the effects of permeating solutes on the hydraulic resistance modifier coefficient (Ïm) and the MW can be explained in terms of the effect of the effective osmotic pressure on the hydraulic conductivity of water channels. The result of the analysis suggests that the osmotic pressure and not the size of the permeant solute as proposed by (Ye et al., J Exp Bot 55:449?461, 2004) is the decisive factor in a solutefs influence on hydraulic conductivity. Thus, characean water channels (aquaporins) respond to permeant solutes with essentially the same mechanism as to impermeant solutes.
en-copyright=
kn-copyright=
en-aut-name=TazawaMasashi
en-aut-sei=Tazawa
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WayneRandy
en-aut-sei=Wayne
en-aut-mei=Randy
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KatsuharaMaki
en-aut-sei=Katsuhara
en-aut-mei=Maki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Yoshida Biological Laboratory
kn-affil=
affil-num=2
en-affil=Laboratory of Natural Philosophy, Plant Biology Section, Cornell University
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources (IPSR), Okayama University
kn-affil=
en-keyword=Chara corallina
kn-keyword=Chara corallina
en-keyword=Effective osmotic pressure
kn-keyword=Effective osmotic pressure
en-keyword=Hydraulic resistance
kn-keyword=Hydraulic resistance
en-keyword=Plasma membrane
kn-keyword=Plasma membrane
en-keyword=Reflection coefficient
kn-keyword=Reflection coefficient
END
start-ver=1.4
cd-journal=joma
no-vol=599
cd-vols=
no-issue=13
article-no=
start-page=1914
end-page=1924
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250525
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Characterization of molecular mechanisms of CaMKK¿/1 oligomerization
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Calcium/calmodulin-dependent protein kinase kinase (CaMKK) is an activating kinase for calcium/calmodulin-dependent protein kinase type 1 (CaMKI), calcium/calmodulin-dependent protein kinase type IV (CaMKIV), RAC-alpha serine/threonine-protein kinase (PKB), and AMP-activated protein kinase (AMPK) that has been reported to form an active oligomer in cells. Glutathione S-transferase (GST) pulldown assay from the extracts of COS-7 cells expressing GST- and His6-CaMKK¿/1 mutants showed that the C-terminal region containing the autoinhibitory and calmodulin (CaM)-binding sequence (residues 438?463) is required for CaMKK¿/1 homo-oligomerization. This was confirmed by the fact that the GST-CaMKK¿/1 C-terminal domain (residues 435?505) directly interacted with EGFP-CaMKK¿/1 residues 435?505 as well as with wild-type CaMKK¿/1. Notably, once oligomerized in cells, CaMKK¿/1 is neither exchangeable between the oligomeric complexes nor dissociated by Ca2+/CaM binding. These results support stable oligomerization of CaMKK in the cells by intermolecular self-association of its C-terminal region containing a regulatory domain.
en-copyright=
kn-copyright=
en-aut-name=UenoyamaShun
en-aut-sei=Uenoyama
en-aut-mei=Shun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NittaHayato
en-aut-sei=Nitta
en-aut-mei=Hayato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OhtsukaSatomi
en-aut-sei=Ohtsuka
en-aut-mei=Satomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MagariMasaki
en-aut-sei=Magari
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SuizuFutoshi
en-aut-sei=Suizu
en-aut-mei=Futoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TokumitsuHiroshi
en-aut-sei=Tokumitsu
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Okayama University
kn-affil=
affil-num=3
en-affil=Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=4
en-affil=Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Medical Technology, Kagawa Prefectural University of Health Sciences
kn-affil=
affil-num=6
en-affil=
kn-affil=
en-keyword=calmodulin
kn-keyword=calmodulin
en-keyword=calmodulin-kinase cascade
kn-keyword=calmodulin-kinase cascade
en-keyword=CaMKKa/
kn-keyword=CaMKKa/
en-keyword=oligomerization
kn-keyword=oligomerization
en-keyword=protein?protein interaction
kn-keyword=protein?protein interaction
en-keyword=regulatory domain
kn-keyword=regulatory domain
END
start-ver=1.4
cd-journal=joma
no-vol=66
cd-vols=
no-issue=5
article-no=
start-page=705
end-page=721
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241220
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=SHORT AND CROOKED AWN, encoding the epigenetic regulator EMF1, promotes barley awn development
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The awn is a bristle-like extension from the tip of the lemma in grasses. In barley, the predominant cultivars possess long awns that contribute to grain yield and quality through photosynthesis. In addition, various awn morphological mutants are available in barley, rendering it a useful cereal crop to investigate the mechanims of awn development. Here, we identified the gene causative of the short and crooked awn (sca) mutant, which exhibits a short and curved awn phenotype. Intercrossing experiments revealed that the sca mutant induced in the Japanese cultivar (cv.) gAkashinrikih is allelic to the independently isolated moderately short-awn mutant breviaristatum-a (ari-a). Map-based cloning and sequencing revealed that SCA encodes the Polycomb group?associated protein EMBRYONIC FLOWER 1. We found that SCA affects awn development through the promotion of cell proliferation, elongation, and cell wall synthesis. RNA sequencing of cv. Bowman backcross-derived near-isogenic lines of sca and ari-a6 alleles showed that SCA is directly or indirectly involved in promoting the expression of genes related to awn development. Additionally, SCA represses various transcription factors essential for floral organ development and plant architecture, such as MADS-box and Knotted1-like homeobox genes. Notably, the repression of the C-class MADS-box gene HvMADS58 by SCA in awns is associated with the accumulation of the repressive histone modification H3K27me3. These findings highlight the potential role of SCA-mediated gene regulation, including histone modification, as a novel pathway in barley awn development.
en-copyright=
kn-copyright=
en-aut-name=NakamuraKoki
en-aut-sei=Nakamura
en-aut-mei=Koki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KikuchiYuichi
en-aut-sei=Kikuchi
en-aut-mei=Yuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShiragaMizuho
en-aut-sei=Shiraga
en-aut-mei=Mizuho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KotakeToshihisa
en-aut-sei=Kotake
en-aut-mei=Toshihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HyodoKiwamu
en-aut-sei=Hyodo
en-aut-mei=Kiwamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TaketaShin
en-aut-sei=Taketa
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IkedaYoko
en-aut-sei=Ikeda
en-aut-mei=Yoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Science and Engineering, Saitama University
kn-affil=
affil-num=5
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=6
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=7
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
en-keyword=barley
kn-keyword=barley
en-keyword=awn development
kn-keyword=awn development
en-keyword=EMBRYONIC FLOWER 1 (EMF1)
kn-keyword=EMBRYONIC FLOWER 1 (EMF1)
en-keyword=homeotic genes
kn-keyword=homeotic genes
en-keyword=H3K27 trimethylation
kn-keyword=H3K27 trimethylation
en-keyword=epigenetic regulation
kn-keyword=epigenetic regulation
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250710
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Tumor Microvessels with Specific Morphology as a Prognostic Factor in Esophageal Squamous Cell Carcinoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Angiogenesis is essential for tumor progression. Microvessel density (MVD) is a widely used histological method to assess angiogenesis using immunostained sections, but its prognostic significance in esophageal cancer remains controversial. Recently, the evaluation of microvascular architecture has gained importance as a method to assess tumor aggressiveness. The present study aimed to identify the histological characteristics of tumor microvessels that are associated with the aggressiveness of esophageal squamous cell carcinoma.
Patients and Methods A total of 108 esophageal squamous cell carcinoma tissues were immunohistochemically stained with blood vessel markers and angiogenesis-related markers, including CD31, alpha smooth muscle actin, vascular endothelial growth factor A (VEGF-A), CD206, and D2-40. MVD, microvessel pericyte coverage index (MPI), and tumor vascular morphology were evaluated by microscopy.
Results MVD was significantly associated with patient outcomes, whereas neither MPI nor VEGF-A expression throughout the tumor showed a significant correlation. In addition, the presence of blood vessels encircling clusters of tumor cells, termed C-shaped microvessels, and excessively branching microvessels, termed X-shaped microvessels, was significantly associated with poor prognosis. These vessel types were also correlated with clinicopathological parameters, including deeper invasion of the primary tumor, presence of lymph node metastasis, advanced pathological stage, and distant metastasis. Focal VEGF-A immunoexpression in tumor cells was higher in areas containing C-shaped or X-shaped microvessels compared with areas lacking these vessel morphologies.
Conclusions The data suggest that tumor microvessels with specific morphologies (C-shaped and X-shaped microvessels) may serve as a promising prognostic factor in esophageal squamous cell carcinoma.
en-copyright=
kn-copyright=
en-aut-name=TunHnin Thida
en-aut-sei=Tun
en-aut-mei=Hnin Thida
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujisawaMasayoshi
en-aut-sei=Fujisawa
en-aut-mei=Masayoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OharaToshiaki
en-aut-sei=Ohara
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NishimuraSeitaro
en-aut-sei=Nishimura
en-aut-mei=Seitaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KunitomoTomoyoshi
en-aut-sei=Kunitomo
en-aut-mei=Tomoyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NomaKazuhiro
en-aut-sei=Noma
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsukawaAkihiro
en-aut-sei=Matsukawa
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Esophageal neoplasms
kn-keyword=Esophageal neoplasms
en-keyword=Angiogenesis
kn-keyword=Angiogenesis
en-keyword=Microvessel density
kn-keyword=Microvessel density
en-keyword=Pericytes
kn-keyword=Pericytes
en-keyword=VEGF-A
kn-keyword=VEGF-A
en-keyword=Immunohistochemistry
kn-keyword=Immunohistochemistry
en-keyword=Prognosis
kn-keyword=Prognosis
END
start-ver=1.4
cd-journal=joma
no-vol=177
cd-vols=
no-issue=4
article-no=
start-page=e70396
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202507
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=CNGC2 Negatively Regulates Stomatal Closure and Is Not Required for flg22- and H2O2-Induced Guard Cell [Ca2+]cyt Elevation in Arabidopsis thaliana
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In guard cells, cytosolic Ca2+ acts as a second messenger that mediates abscisic acid (ABA)- and pathogen-associated molecular pattern (PAMP)-induced stomatal closure. It was reported that Arabidopsis cyclic nucleotide-gated ion channel 2 (CNGC2) functions as hydrogen peroxide (H2O2)- and PAMP-activated Ca2+-permeable channels at the plasma membrane of mesophyll cells and mediates Ca2+-dependent PAMP-triggered immunity. In this study, we examined the role of CNGC2 in the regulation of stomatal movement because CNGC2 is also expressed in guard cells. We found that stomata of the CNGC2 disruption mutant cngc2-3 are constitutively closed even in the absence of ABA or the flagellar-derived PAMP, flg22. Consistently, leaf temperatures of the cngc2-3 mutant were higher than those of wild-type (WT) plants. The stomatal phenotype of the cngc2-3 mutant was restored by complementation with wild-type CNGC2 under the control of the guard cell preferential promoter, pGC1. Elevation of cytosolic free Ca2+ concentration in guard cells induced by flg22 and H2O2 remained intact in the cngc2-3 mutant. The introduction of the ost1-3 mutation into the cngc2-3 background did not alter the stomatal phenotype. However, the stomatal phenotype of the cngc2-3 mutant was successfully rescued in the double disruption mutant cngc2-3aba2-2. Taken together, these results suggest that CNGC2 negatively regulates stomatal closure response and does not function as flg22? and H2O2-activated Ca2+ channels in guard cells. Though CNGC2 is responsive for H2O2- and flg22-induced [Ca2+]cyt elevation in mesophyll cells, the involvement of CNGC2 in the response to H2O2 and flg22 in guard cells is questionable.
en-copyright=
kn-copyright=
en-aut-name=AkterRojina
en-aut-sei=Akter
en-aut-mei=Rojina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=InoueYasuhiro
en-aut-sei=Inoue
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MasumotoSaori
en-aut-sei=Masumoto
en-aut-mei=Saori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MimataYoshiharu
en-aut-sei=Mimata
en-aut-mei=Yoshiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MatsuuraTakakazu
en-aut-sei=Matsuura
en-aut-mei=Takakazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MoriIzumi C.
en-aut-sei=Mori
en-aut-mei=Izumi C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakamuraToshiyuki
en-aut-sei=Nakamura
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakamuraYoshimasa
en-aut-sei=Nakamura
en-aut-mei=Yoshimasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MurataYoshiyuki
en-aut-sei=Murata
en-aut-mei=Yoshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MunemasaShintaro
en-aut-sei=Munemasa
en-aut-mei=Shintaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Agriculture, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=5
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=6
en-affil=
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=8
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=9
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=10
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=calcium signaling
kn-keyword=calcium signaling
en-keyword=CNGC
kn-keyword=CNGC
en-keyword=stomata
kn-keyword=stomata
END
start-ver=1.4
cd-journal=joma
no-vol=8
cd-vols=
no-issue=13
article-no=
start-page=9595
end-page=9603
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250616
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Microagglomerate of VO2 Particles Packing Paraffin Wax Using Capillary Force as a Latent Thermal Energy Storage Medium
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study proposed a material to retain paraffin wax with vanadium dioxide (VO2) particles as a latent thermal energy storage medium, an alternative to core?shell microcapsules containing phase change materials. VO2 microparticles, which were synthesized through a sol?gel method and annealing process, were dispersed in the oil-in-water microemulsion to obtain microagglomerates of VO2 microparticles. The average diameter of microagglomerates was 5 Êm, and they retained paraffin wax at the vacancies among VO2 particles. Although the microagglomerates had no complete shells similar to core?shell microcapsules, the microagglomerates successfully trapped paraffin wax droplets without any leakage even in a high-temperature environment. It was because capillary forces acting among VO2 particles strictly prevented any leakage of paraffin waxes. The differential scanning calorimetry revealed that the microagglomerates contained only 16.5 wt % of n-octadecane, used as a paraffin wax. However, since VO2 particles can release or absorb latent heat due to their metal?insulator phase transition, the proposed microagglomerates exhibited higher thermal energy storage densities than phase change microcapsules whose shells do not show phase transitions. Moreover, the microagglomerates exhibited higher thermal conductivity than microcapsules with amorphous inorganic shells because the VO2 particles were crystallized through annealing. The proposed microagglomerate is a promising form for further improving the thermal energy storage density and thermal performance of the latent thermal energy storage medium, especially in the temperature range of 30 to 70 C.
en-copyright=
kn-copyright=
en-aut-name=IsobeKazuma
en-aut-sei=Isobe
en-aut-mei=Kazuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamauchiKaketo
en-aut-sei=Yamauchi
en-aut-mei=Kaketo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamadaYutaka
en-aut-sei=Yamada
en-aut-mei=Yutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HoribeAkihiko
en-aut-sei=Horibe
en-aut-mei=Akihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=microagglomerate
kn-keyword=microagglomerate
en-keyword=vanadium dioxide
kn-keyword=vanadium dioxide
en-keyword=paraffin wax
kn-keyword=paraffin wax
en-keyword=latent thermal energy storage medium
kn-keyword=latent thermal energy storage medium
en-keyword=capillary force
kn-keyword=capillary force
en-keyword=thermal energy storage density
kn-keyword=thermal energy storage density
en-keyword=thermal conductivity
kn-keyword=thermal conductivity
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=1
article-no=
start-page=2
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250128
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effect of temperature cycles on the sleep-like state in Hydra vulgaris
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Sleep is a conserved physiological phenomenon across species. It is mainly controlled by two processes: a circadian clock that regulates the timing of sleep and a homeostat that regulates the sleep drive. Even cnidarians, such as Hydra and jellyfish, which lack a brain, display sleep-like states. However, the manner in which environmental cues affect sleep-like states in these organisms remains unknown. In the present study, we investigated the effects of light and temperature cycles on the sleep-like state in Hydra vulgaris.
Results Our findings indicate that Hydra responds to temperature cycles with a difference of up to 5 C, resulting in decreased sleep duration under light conditions and increased sleep duration in dark conditions. Furthermore, our results reveal that Hydra prioritizes temperature changes over light as an environmental cue. Additionally, our body resection experiments show tissue-specific responsiveness in the generation ofthe sleep-like state under different environmental cues. Specifically, the upper body can generate the sleep-like state in response to a single environmental cue. In contrast, the lower body did not respond to 12-h light?dark cycles at a constant temperature.
Conclusions These findings indicate that both light and temperature influence the regulation of the sleep-like state in Hydra. Moreover, these observations highlight the existence of distinct regulatory mechanisms that govern patterns of the sleep-like state in brainless organisms, suggesting the potential involvement of specific regions for responsiveness of environmental cues for regulation of the sleep-like state.
en-copyright=
kn-copyright=
en-aut-name=SatoAya
en-aut-sei=Sato
en-aut-mei=Aya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SekiguchiManabu
en-aut-sei=Sekiguchi
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakadaKoga
en-aut-sei=Nakada
en-aut-mei=Koga
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YoshiiTaishi
en-aut-sei=Yoshii
en-aut-mei=Taishi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ItohTaichi Q.
en-aut-sei=Itoh
en-aut-mei=Taichi Q.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Faculty of Arts and Science, Kyushu University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Systems Life Sciences, Kyushu University
kn-affil=
affil-num=4
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Faculty of Arts and Science, Kyushu University
kn-affil=
en-keyword=Hydra
kn-keyword=Hydra
en-keyword=Sleep
kn-keyword=Sleep
en-keyword=Temperature
kn-keyword=Temperature
en-keyword=Environmental cues
kn-keyword=Environmental cues
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=10819
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241230
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A high-protein diet-responsive gut hormone regulates behavioral and metabolic optimization in Drosophila melanogaster
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Protein is essential for all living organisms; however, excessive protein intake can have adverse effects, such as hyperammonemia. Although mechanisms responding to protein deficiency are well-studied, there is a significant gap in our understanding of how organisms adaptively suppress excessive protein intake. In the present study, utilizing the fruit fly, Drosophila melanogaster, we discover that the peptide hormone CCHamide1 (CCHa1), secreted by enteroendocrine cells in response to a high-protein diet (HPD), is vital for suppressing overconsumption of protein. Gut-derived CCHa1 is received by a small subset of enteric neurons that produce short neuropeptide F, thereby modulating protein-specific satiety. Importantly, impairment of the CCHa1-mediated gut-enteric neuronal axis results in ammonia accumulation and a shortened lifespan under HPD conditions. Collectively, our findings unravel the crosstalk of gut hormone and neuronal pathways that orchestrate physiological responses to prevent and adapt to dietary protein overload.
en-copyright=
kn-copyright=
en-aut-name=YoshinariYuto
en-aut-sei=Yoshinari
en-aut-mei=Yuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishimuraTakashi
en-aut-sei=Nishimura
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshiiTaishi
en-aut-sei=Yoshii
en-aut-mei=Taishi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KondoShu
en-aut-sei=Kondo
en-aut-mei=Shu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TanimotoHiromu
en-aut-sei=Tanimoto
en-aut-mei=Hiromu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KobayashiTomoe
en-aut-sei=Kobayashi
en-aut-mei=Tomoe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsuyamaMakoto
en-aut-sei=Matsuyama
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NiwaRyusuke
en-aut-sei=Niwa
en-aut-mei=Ryusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University
kn-affil=
affil-num=2
en-affil=Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science
kn-affil=
affil-num=5
en-affil=Graduate School of Life Sciences, Tohoku University
kn-affil=
affil-num=6
en-affil=Division of Molecular Genetics, Shigei Medical Research Institute
kn-affil=
affil-num=7
en-affil=Division of Molecular Genetics, Shigei Medical Research Institute
kn-affil=
affil-num=8
en-affil=Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=41
cd-vols=
no-issue=7
article-no=
start-page=1073
end-page=1082
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250520
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Direct insertion of an ion channel immobilized on a soft agarose gel bead into a lipid bilayer: an optimized method
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this paper, we report the development of a device that improves the conventional artificial lipid bilayer method and can measure channel currents more efficiently. Ion channel proteins are an attractive research target in biophysics, because their functions can be measured at the single-molecule level with high time resolution. In addition, they have attracted attention as targets for drug discovery because of their crucial roles in vivo. Although electrophysiological methods are powerful tools for studying channel proteins, they suffer from low measurement efficiency and require considerable skill. In our previous paper, we reported that by immobilizing channel proteins on agarose gel beads and forming an artificial lipid bilayer on the bead surface, we simultaneously solved two problems that had been hindering the efficiency of the artificial bilayer method: the time-consuming formation of artificial lipid bilayers and the time-consuming incorporation of channels into artificial bilayers. Previous studies have utilized crosslinked hard beads; however, here we show that channel current measurement can be achieved more simply and efficiently using non-crosslinked soft beads. In this study, we detailed the process of immobilizing channel proteins on the surface of non-crosslinked beads through chemical modification, allowing us to measure their channel activity. This method enables current measurements without the need for stringent bead size selection or high negative pressure.
en-copyright=
kn-copyright=
en-aut-name=AsakuraMami
en-aut-sei=Asakura
en-aut-mei=Mami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WangShuyan
en-aut-sei=Wang
en-aut-mei=Shuyan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HiranoMinako
en-aut-sei=Hirano
en-aut-mei=Minako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IdeToru
en-aut-sei=Ide
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=Ion channel
kn-keyword=Ion channel
en-keyword=Artificial lipid bilayer
kn-keyword=Artificial lipid bilayer
en-keyword=Suction fixation
kn-keyword=Suction fixation
en-keyword=Soft agarose bead
kn-keyword=Soft agarose bead
en-keyword=Current recording
kn-keyword=Current recording
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=5
article-no=
start-page=489
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250430
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Mutagenesis Targeting the S153 Residue Within the Transmembrane À-Hairpin of Mosquito-Larvicidal Mpp46Ab Affects Its Toxicity and the Synergistic Toxicity with Cry4Aa
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We constructed a library of Mpp46Ab mutants, in which S153 within the transmembrane À-hairpin was randomly replaced by other amino acids. Mutagenesis and subsequent primary screening yielded 10 different Mpp46Ab mutants in addition to the wild type. Remarkably, S153 was replaced with a more hydrophobic amino acid in most of the mutants, and the S153I mutant in particular exhibited significantly increased toxicity. Electrophysiologic analysis using artificial lipid bilayers revealed that the single-channel conductance and PK/PCl permeability ratio were significantly increased for S153I pores. This suggests that the formation of highly ion-permeable and highly cation-selective toxin pores increases the influx of cations and water into cells, thereby facilitating osmotic shock. In addition, the S153F, S153L, and S153I mutants exhibited significantly reduced synergistic toxicity with Cry4Aa. Electrophysiologic analysis showed that the S153F, S153L, and S153I mutants form toxin pores with a significantly reduced PK/PNa permeability ratio and a significantly increased PK/PCa permeability ratio compared to wild-type pores. Thus, our results suggest that pore formation is central to the insecticidal activity of Mpp46Ab and that the ion permeability of toxin pores is a potential indicator correlated with both toxicity and synergistic toxicity with other toxins.
en-copyright=
kn-copyright=
en-aut-name=HayakawaTohru
en-aut-sei=Hayakawa
en-aut-mei=Tohru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamaokaSyun
en-aut-sei=Yamaoka
en-aut-mei=Syun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AsakuraMami
en-aut-sei=Asakura
en-aut-mei=Mami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HiranoMinako
en-aut-sei=Hirano
en-aut-mei=Minako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IdeToru
en-aut-sei=Ide
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=Bacillus thuringiensis
kn-keyword=Bacillus thuringiensis
en-keyword=mosquito-larvicidal proteins
kn-keyword=mosquito-larvicidal proteins
en-keyword=synergistic toxicity
kn-keyword=synergistic toxicity
en-keyword=Culex pipiens mosquito larvae
kn-keyword=Culex pipiens mosquito larvae
en-keyword=side-directed mutagenesis
kn-keyword=side-directed mutagenesis
en-keyword=electrophysiologic analysis
kn-keyword=electrophysiologic analysis
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=18
article-no=
start-page=2413456
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250320
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Cryo-EM Analysis of a Tri-Heme Cytochrome-Associated RC-LH1 Complex from the Marine Photoheterotrophic Bacterium Dinoroseobacter Shibae
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The reaction center-light harvesting 1 (RC-LH1) complex converts solar energy into electrical energy, driving the initiation of photosynthesis. The authors present a cryo-electron microscopy structure of the RC-LH1 isolated from a marine photoheterotrophic bacterium Dinoroseobacter shibae. The RC comprises four subunits, including a three-heme cytochrome (Cyt) c protein, and is surrounded by a closed LH ring composed of 17 pairs of antenna subunits. Notably, a novel subunit with an N-terminal ghelix-turn-helixh motif embedded in the gap between the RC and the LH ring is identified. The purified RC-LH1 complex exhibits high stability in solutions containing Mg2+ or Ca2+. The periplasmic Cyt c2 is predicted to bind at the junction between the Cyt subunit and the membrane plane, enabling electron transfer from Cyt c2 to the proximal heme of the tri-heme Cyt, and subsequently to the special pair of bacteriochlorophylls. These findings provide structural insights into the efficient energy and electron transfer processes within a distinct type of RC-LH1, and shed light on evolutionary adaptations of photosynthesis.
en-copyright=
kn-copyright=
en-aut-name=WangWeiwei
en-aut-sei=Wang
en-aut-mei=Weiwei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=LiuYanting
en-aut-sei=Liu
en-aut-mei=Yanting
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=GuJiayi
en-aut-sei=Gu
en-aut-mei=Jiayi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AnShaoya
en-aut-sei=An
en-aut-mei=Shaoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MaCheng
en-aut-sei=Ma
en-aut-mei=Cheng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=GaoHaichun
en-aut-sei=Gao
en-aut-mei=Haichun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=JiaoNianzhi
en-aut-sei=Jiao
en-aut-mei=Nianzhi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ShenJian]Ren
en-aut-sei=Shen
en-aut-mei=Jian]Ren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=BeattyJohn Thomas
en-aut-sei=Beatty
en-aut-mei=John Thomas
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=Kobl??ekMichal
en-aut-sei=Kobl??ek
en-aut-mei=Michal
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=ZhangXing
en-aut-sei=Zhang
en-aut-mei=Xing
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ZhengQiang
en-aut-sei=Zheng
en-aut-mei=Qiang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=ChenJing]Hua
en-aut-sei=Chen
en-aut-mei=Jing]Hua
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=College of Life Sciences, Zhejiang University
kn-affil=
affil-num=2
en-affil=State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University
kn-affil=
affil-num=3
en-affil=College of Life Sciences, Zhejiang University
kn-affil=
affil-num=4
en-affil=Department of Pathology of Sir Run Run Shaw Hospital, Department of Biophysics, Zhejiang University School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Pathology of Sir Run Run Shaw Hospital, Department of Biophysics, Zhejiang University School of Medicine
kn-affil=
affil-num=6
en-affil=College of Life Sciences, Zhejiang University
kn-affil=
affil-num=7
en-affil=State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University
kn-affil=
affil-num=8
en-affil=Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Microbiology & Immunology, University of British Columbia
kn-affil=
affil-num=10
en-affil=Laboratory of Anoxygenic Phototrophs, Institute of Microbiology, Czech Academy of Science
kn-affil=
affil-num=11
en-affil=Department of Pathology of Sir Run Run Shaw Hospital, Department of Biophysics, Zhejiang University School of Medicine
kn-affil=
affil-num=12
en-affil=State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University
kn-affil=
affil-num=13
en-affil=College of Life Sciences, Zhejiang University
kn-affil=
en-keyword=energy transfer
kn-keyword=energy transfer
en-keyword=photoheterotrophic bacteria
kn-keyword=photoheterotrophic bacteria
en-keyword=photosynthesis
kn-keyword=photosynthesis
en-keyword=reaction center
kn-keyword=reaction center
en-keyword=structure
kn-keyword=structure
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250710
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Neurotransmitter and Receptor Mapping in Drosophila Circadian Clock Neurons via T2A-GAL4 Screening
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The circadian neuronal network in the brain comprises central pacemaker neurons and associated input and output pathways. These components work together to generate coherent rhythmicity, synchronize with environmental time cues, and convey circadian information to downstream neurons that regulate behaviors such as the sleep/wake cycle. To mediate these functions, neurotransmitters and neuromodulators play essential roles in transmitting and modulating signals between neurons. In Drosophila melanogaster, approximately 240 brain neurons function as clock neurons. Previous studies have identified several neurotransmitters and neuromodulators, including the Pigment-dispersing factor (PDF) neuropeptide, along with their corresponding receptors in clock neurons. However, our understanding of the neurotransmitters and receptors involved in the circadian system remains incomplete. In this study, we conducted a T2A-GAL4-based screening for neurotransmitter and receptor genes expressed in clock neurons. We identified 2 neurotransmitter-related genes and 22 receptor genes. Notably, while previous studies had reported the expression of 6 neuropeptide receptor genes in large ventrolateral neurons (l-LNv), we also found that 14 receptor genes?including those for dopamine, serotonin, and Á-aminobutyric acid?are expressed in l-LNv neurons. These findings suggest that l-LNv neurons serve as key integrative hubs within the circadian network, receiving diverse external signals.
en-copyright=
kn-copyright=
en-aut-name=FukudaAyumi
en-aut-sei=Fukuda
en-aut-mei=Ayumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SaitoAika
en-aut-sei=Saito
en-aut-mei=Aika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshiiTaishi
en-aut-sei=Yoshii
en-aut-mei=Taishi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=clock neurons
kn-keyword=clock neurons
en-keyword=neurotransmitter
kn-keyword=neurotransmitter
en-keyword=T2A-GAL4
kn-keyword=T2A-GAL4
en-keyword=immunostaining
kn-keyword=immunostaining
en-keyword=Drosophila
kn-keyword=Drosophila
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250418
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Innovations in paper-based analytical devices and portable absorption photometers for onsite analysis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Two types of analytical instruments and devices?one sophisticated high-performance instrument and another portable device?have been the focus of recent trends in analytical science. The necessity of point-of-care testing and onsite analysis has accelerated the advancement of high-performance, user-friendly portable analytical devices such as paper-based analytical devices (PADs) and light-emitting diode-based portable photometers. In this review, we summarize our achievements in the study of PADs and portable photometers. Several types of PADs are capable of performing titrations, metal ion analysis, and food analysis, while photometers, which consist of paired emitter?detector light-emitting diode (PEDD) photometers, are used for thiocyanate and herbicide analysis. These PADs and photometers permit the onsite determination of real environmental, body fluid, and food samples when an equipped laboratory is unavailable.
en-copyright=
kn-copyright=
en-aut-name=SeetasangSasikarn
en-aut-sei=Seetasang
en-aut-mei=Sasikarn
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UmedaMika I.
en-aut-sei=Umeda
en-aut-mei=Mika I.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=RenJianchao
en-aut-sei=Ren
en-aut-mei=Jianchao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KanetaTakashi
en-aut-sei=Kaneta
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Chemistry, Faculty of Science and Technology, Thammasat University
kn-affil=
affil-num=2
en-affil=Department of Chemistry, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Chemistry, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Chemistry, Okayama University
kn-affil=
en-keyword=Point-of-care testing
kn-keyword=Point-of-care testing
en-keyword=Onsite analysis
kn-keyword=Onsite analysis
en-keyword=Paper-based analytical device
kn-keyword=Paper-based analytical device
en-keyword=Paired emitter?detector light-emitting diode
kn-keyword=Paired emitter?detector light-emitting diode
en-keyword=Photometer
kn-keyword=Photometer
en-keyword=Environmental analysis
kn-keyword=Environmental analysis
en-keyword=Food analysis
kn-keyword=Food analysis
END
start-ver=1.4
cd-journal=joma
no-vol=35
cd-vols=
no-issue=12
article-no=
start-page=2916
end-page=2926.e3
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Oxytocin facilitates human touch-induced play behavior in rats
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Pleasant touch sensations play a fundamental role in social bonding, yet the neural mechanisms underlying affinity-like behaviors remain poorly understood. Here, we demonstrate that juvenile-adolescent rats, which naturally engage in social play with peers characterized by rough-and-tumble interactions and 50 kHz ultrasonic vocalizations indicating pleasant sensations, develop a strong affinity for human hands through similar playful contact achieved by repeated tickling with human hands. Using this rat with tickling-induced high affinity for human hands, we discovered that repeated tickling mimicking rough-and-tumble play led to increased oxytocin receptor (OTR) expression in the ventrolateral part of the ventromedial hypothalamus (VMHvl). Inhibition of oxytocin signaling in the VMHvl reduced affinity-like behaviors from rats to human hands. These findings suggest that OTR neurons in VMHvl play an important role in the increase in affinity for human hands induced by pleasant touch sensation with human touch-induced play behavior. Based on retrograde and anterograde tracing studies examining the supraoptic nucleus (SON) and the paraventricular nucleus (PVN) as primary sources of oxytocin, we demonstrate that a subset of oxytocin fibers in the VMHvl originate from the SON, suggesting that affinity-like behavior from rats to human hands may be controlled by oxytocin signaling from magnocellular neurons. Together, this work advances our understanding of how oxytocin shapes social behavior and may inform the development of therapeutic strategies to promote positive social interactions.
en-copyright=
kn-copyright=
en-aut-name=HayashiHimeka
en-aut-sei=Hayashi
en-aut-mei=Himeka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TateishiSayaka
en-aut-sei=Tateishi
en-aut-mei=Sayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=InutsukaAyumu
en-aut-sei=Inutsuka
en-aut-mei=Ayumu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MaejimaSho
en-aut-sei=Maejima
en-aut-mei=Sho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HagiwaraDaisuke
en-aut-sei=Hagiwara
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SakumaYasuo
en-aut-sei=Sakuma
en-aut-mei=Yasuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OnakaTatsushi
en-aut-sei=Onaka
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=GrinevichValery
en-aut-sei=Grinevich
en-aut-mei=Valery
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SakamotoHirotaka
en-aut-sei=Sakamoto
en-aut-mei=Hirotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Biology, Faculty of Environmental, Life, Natural Science and Technology, Okayama University,
kn-affil=
affil-num=2
en-affil=Ushimado Marine Institute (UMI), Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University
kn-affil=
affil-num=4
en-affil=Ushimado Marine Institute (UMI), Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, German Center for Psychiatry (DZPG), Medical Faculty Mannheim, University of Heidelberg
kn-affil=
affil-num=6
en-affil=Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Nippon Medical School
kn-affil=
affil-num=7
en-affil=Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University
kn-affil=
affil-num=8
en-affil=Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, German Center for Psychiatry (DZPG), Medical Faculty Mannheim, University of Heidelberg
kn-affil=
affil-num=9
en-affil=Department of Biology, Faculty of Environmental, Life, Natural Science and Technology, Okayama University,
kn-affil=
en-keyword=tickling
kn-keyword=tickling
en-keyword=oxytocin
kn-keyword=oxytocin
en-keyword=oxytocin receptor
kn-keyword=oxytocin receptor
en-keyword=ventrolateral part of the ventromedial hypothalamus
kn-keyword=ventrolateral part of the ventromedial hypothalamus
en-keyword=affinity-like behaviors
kn-keyword=affinity-like behaviors
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=
article-no=
start-page=100242
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Photochemical internalization of mRNA using a photosensitizer and nucleic acid carriers
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=mRNA has great potential for therapeutic applications because it can encode a variety of proteins and antigens, in addition to advantages over DNA in terms of gene expression without genomic integration, nuclear localization, or transcription. However, therapeutic applications of mRNA require safe and effective delivery into target cells. Therefore, we aimed to investigate photochemical internalization (PCI) as a promising strategy for delivering mRNA to target cells. In this strategy, mRNA is taken up into cells by endocytosis, accumulates in endosomes, and is released in a light-dependent manner from the endosomes using an endosome-accumulating photosensitizer, aluminum phthalocyanine disulfonate (AlPcS2a), in combination with nucleic acid carrier molecules. We compared the efficacy of various nucleic acid carriers, including branched polyethyleneimine (bPEI) and poly{N'-[N-(2-aminoethyl)-2-aminoethyl] aspartamide} (PAsp(DET)) under the same conditions for PCI-based mRNA delivery. Our results indicated that bPEI and PAsp(DET) at low N/P ratios exhibited efficient light-enhancement of mRNA expression by PCI with AlPcS2a. Notably, bPEI exhibited the highest light-dependent mRNA delivery among the carriers evaluated (including cationic polymers, cationic peptides, and lipids), whereas PAsp(DET) showed promise for clinical use because of its lower toxicity compared with bPEI. This PCI strategy allows effective cytosolic mRNA delivery at low N/P ratios, thereby reducing cationic carrier molecule-induced cytotoxicity. This method allows spatiotemporal control of protein expression and holds potential for novel light-dependent mRNA therapies. Overall, this study provided valuable insights into optimizing mRNA delivery systems for therapeutic applications.
en-copyright=
kn-copyright=
en-aut-name=MaemotoHayaki
en-aut-sei=Maemoto
en-aut-mei=Hayaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SuzakiRyohei
en-aut-sei=Suzaki
en-aut-mei=Ryohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WatanabeKazunori
en-aut-sei=Watanabe
en-aut-mei=Kazunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ItakaKeiji
en-aut-sei=Itaka
en-aut-mei=Keiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OhtsukiTakashi
en-aut-sei=Ohtsuki
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
kn-affil=
affil-num=5
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=mRNA
kn-keyword=mRNA
en-keyword=Photochemical internalization
kn-keyword=Photochemical internalization
en-keyword=Photosensitizer
kn-keyword=Photosensitizer
END
start-ver=1.4
cd-journal=joma
no-vol=41
cd-vols=
no-issue=4
article-no=
start-page=329
end-page=334
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241220
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Efficient single-channel current measurements of the human BK channel using a liposome-immobilized gold probe
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The human BK channel (hBK) is an essential membrane protein that regulates various biological functions, and its dysfunction leads to serious diseases. Understanding the biophysical properties of hBK channels is crucial for drug development. Artificial lipid bilayer recording is used to measure biophysical properties at the single-channel level. However, this technique is time-consuming and complicated; thus, its measurement efficiency is very low. Previously, we developed a novel technique to improve the measurement efficiency by rapidly forming lipid bilayer membranes and incorporating ion channels into the membrane using a hydrophilically modified gold probe. To further improve our technique for application to the hBK channel, we combined it using the gold probe with a liposome fusion method. Using a probe on which liposomes containing hBK channels were immobilized, the channels were efficiently incorporated into the lipid bilayer membrane, and the measured channel currents showed the current characteristics of the hBK channel. This technique will be useful for the efficient measurements of the channel properties of hBK and other biologically important channels.
en-copyright=
kn-copyright=
en-aut-name=HiranoMinako
en-aut-sei=Hirano
en-aut-mei=Minako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AsakuraMami
en-aut-sei=Asakura
en-aut-mei=Mami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IdeToru
en-aut-sei=Ide
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=Human BK channel
kn-keyword=Human BK channel
en-keyword=Artificial lipid bilayer recording
kn-keyword=Artificial lipid bilayer recording
en-keyword=Ion channel current
kn-keyword=Ion channel current
en-keyword=Single-channel recording
kn-keyword=Single-channel recording
END
start-ver=1.4
cd-journal=joma
no-vol=25
cd-vols=
no-issue=1
article-no=
start-page=311
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250703
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Co-occurrence of interstitial lung disease and pulmonary embolism as adverse events of adjuvant osimertinib treatment for EGFR mutant non-small cell lung cancer: a case report
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Postoperative osimertinib for EGFR mutant non-small cell lung cancer has become the standard of care. However, its adverse events in clinical practice remain unclear. We report a case of interstitial lung disease and pulmonary embolism occurring simultaneously as adverse events during adjuvant osimertinib treatment.
Case presentation A 74-year-old woman, diagnosed with left lower lobe lung adenocarcinoma harboring an EGFR mutation, underwent a left lower lobectomy with lymph node dissection. During adjuvant osimertinib therapy, the patient developed respiratory distress with hypoxia, leading to the diagnosis of interstitial lung disease. Despite immediate steroid therapy, respiratory distress persisted, the patient developed leg edema. She was diagnosed with deep vein thrombosis and pulmonary embolism via contrast-enhanced computed tomography scan. Following treatment with steroid and anticoagulation, her clinical symptoms improved rapidly, and she showed no recurrence of interstitial lung disease, pulmonary embolism, or lung cancer over the following nine months.
Conclusions We encountered a case of interstitial lung disease and pulmonary embolism occurring simultaneously as adverse events during adjuvant osimertinib treatment. In patients with osimertinib-induced interstitial lung disease, particularly when respiratory symptoms show poor improvement with steroid treatment, the possibility of pulmonary embolism complications should be suspected.
en-copyright=
kn-copyright=
en-aut-name=ManabeKenta
en-aut-sei=Manabe
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShienKazuhiko
en-aut-sei=Shien
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FurukawaShinichi
en-aut-sei=Furukawa
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SenoTomoya
en-aut-sei=Seno
en-aut-mei=Tomoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IshimuraKousei
en-aut-sei=Ishimura
en-aut-mei=Kousei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TanakaShin
en-aut-sei=Tanaka
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SuzawaKen
en-aut-sei=Suzawa
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OkazakiMikio
en-aut-sei=Okazaki
en-aut-mei=Mikio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SugimotoSeiichiro
en-aut-sei=Sugimoto
en-aut-mei=Seiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
en-keyword=Osimertinib
kn-keyword=Osimertinib
en-keyword=Lung cancer
kn-keyword=Lung cancer
en-keyword=Interstitial lung disease
kn-keyword=Interstitial lung disease
en-keyword=Pulmonary embolism
kn-keyword=Pulmonary embolism
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=7
article-no=
start-page=808
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250630
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Carnosol, a Rosemary Ingredient Discovered in a Screen for Inhibitors of SARM1-NAD+ Cleavage Activity, Ameliorates Symptoms of Peripheral Neuropathy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Sterile alpha and Toll/interleukin receptor motif-containing protein 1 (SARM1) is a nicotinamide adenine dinucleotide (NAD+) hydrolase involved in axonal degeneration and neuronal cell death. SARM1 plays a pivotal role in triggering the neurodegenerative processes that underlie peripheral neuropathies, traumatic brain injury, and neurodegenerative diseases. Importantly, SARM1 knockdown or knockout prevents the degeneration; as a result, SARM1 has been attracting attention as a potent therapeutic target. In recent years, the development of several SARM1 inhibitors derived from synthetic chemical compounds has been reported; however, no dietary ingredients with SARM1 inhibitory activity have been identified. Therefore, we here focused on dietary ingredients and found that carnosol, an antioxidant contained in rosemary, inhibits the NAD+-cleavage activity of SARM1. Purified carnosol inhibited the enzymatic activity of SARM1 and suppressed neurite degeneration and cell death induced by the anti-cancer medicine vincristine (VCR). Carnosol also inhibited VCR-induced hyperalgesia symptoms, suppressed the loss of intra-epidermal nerve fibers in vivo, and reduced the blood fluid level of phosphorylated neurofilament-H caused by an axonal degeneration event. These results indicate that carnosol has a neuroprotective effect via SARM1 inhibition in addition to its previously known antioxidant effect via NF-E2-related factor 2 and thus suppresses neurotoxin-induced peripheral neuropathy.
en-copyright=
kn-copyright=
en-aut-name=MurataHitoshi
en-aut-sei=Murata
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OgawaKazuki
en-aut-sei=Ogawa
en-aut-mei=Kazuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YasuiYu
en-aut-sei=Yasui
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OchiToshiki
en-aut-sei=Ochi
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TomonobuNahoko
en-aut-sei=Tomonobu
en-aut-mei=Nahoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamamotoKen-Ichi
en-aut-sei=Yamamoto
en-aut-mei=Ken-Ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KinoshitaRie
en-aut-sei=Kinoshita
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=WadaYoji
en-aut-sei=Wada
en-aut-mei=Yoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NakamuraHiromichi
en-aut-sei=Nakamura
en-aut-mei=Hiromichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NishiboriMasahiro
en-aut-sei=Nishibori
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Tama Biochemical Co., Ltd.
kn-affil=
affil-num=3
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Tama Biochemical Co., Ltd.
kn-affil=
affil-num=9
en-affil=Tama Biochemical Co., Ltd.
kn-affil=
affil-num=10
en-affil=Department of Translational Research and Drug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=SARM1
kn-keyword=SARM1
en-keyword=carnosol
kn-keyword=carnosol
en-keyword=NAD+
kn-keyword=NAD+
en-keyword=axon degeneration
kn-keyword=axon degeneration
en-keyword=peripheral neuropathy
kn-keyword=peripheral neuropathy
END
start-ver=1.4
cd-journal=joma
no-vol=34
cd-vols=
no-issue=3
article-no=
start-page=152
end-page=161
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Osteogenesis imperfecta: pathogenesis, classification, and treatment
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Osteogenesis imperfecta (OI) is a congenital skeletal disorder characterized by varying degrees of bone fragility and deformities. Extraskeletal manifestations, such as blue sclera, dentinogenesis imperfecta, growth disturbance, hearing impairment, and muscle weakness, occasionally accompany OI. Many genes have been identified as causative of OI, such as the type I collagen gene and genes involved in the folding, processing, and crosslinking of type I collagen molecules, osteoblast differentiation, and bone mineralization. According to the discovery of the causative gene of OI, nosology and classifications have also been revised and the gdyadic approachh based nomenclature according to the severity and each causative gene of OI was recently adopted. Intravenous or oral bisphosphonates have been administered to treat bone fragility in children with OI and a reduction in the frequency of bone fractures has been reported. However, despite the increase of bone mineral density, evidence of bone fracture prevention is limited. Recently, excessive transforming growth factor À signaling pathway and excessive endoplasmic reticulum stress have been reported as the pathogenesis of OI, and treatment strategies based on these pathogeneses have been developed. This review summarizes the molecular basis, transition of nosology and classification, status of bisphosphonate therapy, and development of treatment strategies.
en-copyright=
kn-copyright=
en-aut-name=HasegawaKosei
en-aut-sei=Hasegawa
en-aut-mei=Kosei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
en-keyword=fracture
kn-keyword=fracture
en-keyword=child
kn-keyword=child
en-keyword=bisphosphonate
kn-keyword=bisphosphonate
en-keyword=classification
kn-keyword=classification
en-keyword=treatment
kn-keyword=treatment
END
start-ver=1.4
cd-journal=joma
no-vol=71
cd-vols=
no-issue=3
article-no=
start-page=321
end-page=343
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250220
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Physiological and Biochemical Traits of Dormancy Release and Growth Resumption in Japanese Cedar in the Warm-Temperate Zone
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Global warming will disturb dormancy release and growth resumption of trees. To better understand this process, it is important to investigate physiological and biochemical traits related to these stages. We examined dormancy release and growth resumption in Japanese cedar (Cryptomeria japonica [L.] D. Don), an evergreen needle-leaved tree, in the warm-temperate zone by evaluating budbreak under growth-promoting conditions, and simultaneously examining respiration rates and contents of carbohydrates and phytohormones in shoots from November 2022 to March 2023. A long time to budbreak and the lowest budbreak rates of 75% in November indicated shallow dormancy. Budbreak rates of 98%, short time to budbreak, and first appearance of budbreak in the field in March indicated growth resumption. Continuous changes in budbreak rates and time to budbreak between dormancy and growth resumption indicated dormancy was gradually released. Surges in budbreak rates in December indicated dormancy was almost completely released by early winter. Contents of abscisic acid (ABA) and salicylic acid (SA) decreased from November, remained low in March, and were strongly associated with budbreak rates according to principal component analysis. It was suggested that the depletion of SA led to the depletion of ABA, contributing to dormancy release and growth resumption. Fructose and trans-zeatin accumulated until February, and low levels of starch, indole-3-acetic acid, jasmonic acid, and jasmonic acid-isoleucine during winter was followed by accumulation in March. Although these biochemical traits were less related to budbreak rates compared to ABA and SA, they seemed to assist either dormancy release or growth resumption.
en-copyright=
kn-copyright=
en-aut-name=HiejimaShoma
en-aut-sei=Hiejima
en-aut-mei=Shoma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SeinoHiroto
en-aut-sei=Seino
en-aut-mei=Hiroto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HachisukaRico
en-aut-sei=Hachisuka
en-aut-mei=Rico
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=WatanabeYuka
en-aut-sei=Watanabe
en-aut-mei=Yuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MatsuuraTakakazu
en-aut-sei=Matsuura
en-aut-mei=Takakazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MoriIzumi C.
en-aut-sei=Mori
en-aut-mei=Izumi C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=UgawaShin
en-aut-sei=Ugawa
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=The United Graduate School of Agricultural Sciences, Kagoshima University
kn-affil=
affil-num=2
en-affil=Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University
kn-affil=
affil-num=3
en-affil=The United Graduate School of Agricultural Sciences, Kagoshima University
kn-affil=
affil-num=4
en-affil=Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University
kn-affil=
affil-num=5
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=6
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=7
en-affil=The United Graduate School of Agricultural Sciences, Kagoshima University
kn-affil=
en-keyword=Japanese cedar
kn-keyword=Japanese cedar
en-keyword=Warm-temperate zone
kn-keyword=Warm-temperate zone
en-keyword=Dormancy release
kn-keyword=Dormancy release
en-keyword=Growth resumption
kn-keyword=Growth resumption
en-keyword=Physio-biochemical traits
kn-keyword=Physio-biochemical traits
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=10
article-no=
start-page=1692
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250516
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Clinical Characteristics of Vitamin D Deficiency Detected in Long COVID Patients During the Omicron Phase
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: To characterize the clinical significance of vitamin D deficiency (VDD) detected in long COVID, a retrospective observational study was performed for outpatients who visited our clinic during the period from May 2024 to November 2024. Methods: Clinical trends in long COVID patients diagnosed with VDD who showed serum concentrations of 25-hydroxyvitamin D (25-OHD) lower than 20 ng/mL were compared with those in long COVID patients in a non-deficient vitamin D (NDD) group. Results: Of 126 patients with long COVID, 97 patients (female: 50) who had been infected during the Omicron phase were included. Sixty-six patients (68%) were classified in the VDD group. The median serum concentrations of 25-OHD were 14.8 ng/mL in the VDD group and 22.9 ng/mL in the NDD group. There were no significant differences between the two groups in terms of age, gender, BMI, severity of COVID-19, period after infection and vaccination history. Although the levels of serum calcium and phosphate were not significantly different between the two groups, the percentages of patients in the VDD group who complained of dizziness, memory impairment, palpitation and appetite loss were larger than those in the NDD group. Of note, the patients who complained of palpitation showed significantly lower concentrations of serum 25-OHD than those in the patients without palpitation (median: 11.9 vs. 17.3 ng/mL). Moreover, patients in the VDD group had significantly higher scores for physical and mental fatigue as well as higher scores for depressive symptoms. Conclusions: Collectively, VDD is involved in clinical manifestations of long COVID, particularly symptoms of palpitation, fatigue and depression.
en-copyright=
kn-copyright=
en-aut-name=MatsudaYui
en-aut-sei=Matsuda
en-aut-mei=Yui
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SakuradaYasue
en-aut-sei=Sakurada
en-aut-mei=Yasue
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakanoYasuhiro
en-aut-sei=Nakano
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OtsukaYuki
en-aut-sei=Otsuka
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TokumasuKazuki
en-aut-sei=Tokumasu
en-aut-mei=Kazuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HondaHiroyuki
en-aut-sei=Honda
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SoejimaYoshiaki
en-aut-sei=Soejima
en-aut-mei=Yoshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YokotaYuya
en-aut-sei=Yokota
en-aut-mei=Yuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TakaseRyosuke
en-aut-sei=Takase
en-aut-mei=Ryosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OmuraDaisuke
en-aut-sei=Omura
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OtsukaFumio
en-aut-sei=Otsuka
en-aut-mei=Fumio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=COVID-19
kn-keyword=COVID-19
en-keyword=25-hydroxyvitamin D
kn-keyword=25-hydroxyvitamin D
en-keyword=long COVID
kn-keyword=long COVID
en-keyword=palpitation
kn-keyword=palpitation
en-keyword=vitamin D deficiency
kn-keyword=vitamin D deficiency
END
start-ver=1.4
cd-journal=joma
no-vol=7
cd-vols=
no-issue=1
article-no=
start-page=e000923
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250427
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Reversible cerebral vasoconstriction syndrome in idiopathic multicentric Castleman disease under treatment with tocilizumab
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Idiopathic multicentric Castleman disease (iMCD) is a rare polyclonal lymphoproliferative disorder characterised by systemic inflammation resulting from overproduction of interleukin 6 (IL-6). While iMCD primarily affects the lymph nodes and related tissues, it can also rarely involve the central nervous system.
Case presentation We report the case of a 58-year-old female patient with at least a 3-year history of iMCD, who experienced acute thunderclap headaches due to reversible cerebral vasoconstriction syndrome (RCVS). RCVS occurred 3?months after initiating treatment with tocilizumab, a humanised anti-IL-6 receptor monoclonal antibody, and was accompanied by focal cortical subarachnoid haemorrhage (SAH). Elevated IL-6 levels were found in both serum and cerebrospinal fluid. MR angiography revealed multiple diffuse stenotic lesions in the bilateral middle and posterior cerebral arteries, which, along with bilateral cerebral oedema, resolved within 3?months. The diffuse nature of the cerebral vasospasm and the presence of bilateral brain oedema suggested that cerebral vasospasm was due to RCVS rather than SAH.
Conclusions In patients with Castleman disease, RCVS may occur due to IL-6-dependent chronic cerebral vascular inflammation, either as a primary condition or as a complication of tocilizumab treatment.
en-copyright=
kn-copyright=
en-aut-name=KamimuraNaoya
en-aut-sei=Kamimura
en-aut-mei=Naoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UedaNaohisa
en-aut-sei=Ueda
en-aut-mei=Naohisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KimuraKatsuo
en-aut-sei=Kimura
en-aut-mei=Katsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NishikoriAsami
en-aut-sei=Nishikori
en-aut-mei=Asami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SatoYasuharu
en-aut-sei=Sato
en-aut-mei=Yasuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KishidaHitaru
en-aut-sei=Kishida
en-aut-mei=Hitaru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TanakaFumiaki
en-aut-sei=Tanaka
en-aut-mei=Fumiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Neurology, Yokohama City University Medical Center
kn-affil=
affil-num=2
en-affil=Department of Neurology, Yokohama City University Medical Center
kn-affil=
affil-num=3
en-affil=Department of Neurology, Yokohama City University Medical Center
kn-affil=
affil-num=4
en-affil=
kn-affil=
affil-num=5
en-affil=
kn-affil=
affil-num=6
en-affil=Department of Neurology, Yokohama City University Medical Center
kn-affil=
affil-num=7
en-affil=Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=22
cd-vols=
no-issue=4
article-no=
start-page=510
end-page=524
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250626
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=C1orf50 Drives Malignant Melanoma Progression Through the Regulation of Stemness
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Aim: Recent advancements in omics analysis have significantly enhanced our understanding of the molecular pathology of malignant melanoma, leading to the development of novel therapeutic strategies that target specific vulnerabilities within the disease. Despite these improvements, the factors contributing to the poor prognosis of patients with malignant melanoma remain incompletely understood. The aim of this study was to investigate the role of C1orf50 (Chromosome 1 open reading frame 50), a gene previously of unknown function, as a prognostic biomarker in melanoma.
Materials and Methods: We performed comprehensive transcriptome data analysis and subsequent functional validation of the human Skin Cutaneous Melanoma project from The Cancer Genome Atlas (TCGA).
Results: Elevated expression levels of C1orf50 correlated with worse survival outcomes. Mechanistically, we revealed that C1orf50 plays a significant role in the regulation of cell cycle processes and cancer cell stemness, providing a potential avenue for novel therapeutic interventions in melanoma.
Conclusion: This study is the first to identify C1orf50 as a prognostic biomarker in melanoma. The clinical relevance of our results sheds light on the importance of further investigation into the biological mechanisms underpinning C1orf50fs impact on melanoma progression and patient prognosis.
en-copyright=
kn-copyright=
en-aut-name=OTANIYUSUKE
en-aut-sei=OTANI
en-aut-mei=YUSUKE
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MAEKAWAMASAKI
en-aut-sei=MAEKAWA
en-aut-mei=MASAKI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TANAKAATSUSHI
en-aut-sei=TANAKA
en-aut-mei=ATSUSHI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=PE?ATIRSO
en-aut-sei=PE?A
en-aut-mei=TIRSO
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=CHINVANESSA D.
en-aut-sei=CHIN
en-aut-mei=VANESSA D.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ROGACHEVSKAYAANNA
en-aut-sei=ROGACHEVSKAYA
en-aut-mei=ANNA
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TOYOOKASHINICHI
en-aut-sei=TOYOOKA
en-aut-mei=SHINICHI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ROEHRLMICHAEL H.
en-aut-sei=ROEHRL
en-aut-mei=MICHAEL H.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=FUJIMURAATSUSHI
en-aut-sei=FUJIMURA
en-aut-mei=ATSUSHI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center
kn-affil=
affil-num=2
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center
kn-affil=
affil-num=3
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center
kn-affil=
affil-num=4
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center
kn-affil=
affil-num=5
en-affil=UMass Chan Medical School, UMass Memorial Medical Center
kn-affil=
affil-num=6
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center
kn-affil=
affil-num=7
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center
kn-affil=
affil-num=9
en-affil=Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=C1orf50
kn-keyword=C1orf50
en-keyword=melanoma
kn-keyword=melanoma
en-keyword=cancer stem cells
kn-keyword=cancer stem cells
en-keyword=YAP/TAZ
kn-keyword=YAP/TAZ
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250624
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Dual functions of SNAP25 in mouse taste buds
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Type III cells in mouse taste buds are considered to transmit aversive stimuli, such as sourness, to the gustatory nerve through vesicular synapses. Synaptosome-associated protein 25 (SNAP25) might contribute to synaptic vesicular release in sour sensation, although direct evidence has been lacking. Here, we demonstrated that epithelia-specific Snap25 conditional knockout (cKO) mice exhibited a significant reduction in the number of type III cells. Notably, the proportion of 5-ethynyl 2-deoxyuridine-positive post-mitotic type III cells in Snap25 cKO mice was significantly lower on tracing day 14, but not at day 7, which suggests that SNAP25 contributes to the maintenance of type III cells. In a short-term lick test, Snap25 cKO (sour taste absent) and Snap25/ transient receptor potential vanilloid 1 double KO (sour taste and somatosensory absent) mice exhibit a significantly higher lick response to sour tastants, confirming the role of SNAP25 for sour sensation. Electrophysiological recordings of the chorda tympani nerve reveal nearly abolished ammonium and sour taste responses in Snap25 cKO mice, which concludes sour-dependent synapse transmission in type III cells. Overall, these data suggest that vesicular synapses in taste buds are indispensable for transmission of information from, and the replenishment of, sour-sensitive type III taste cells.
en-copyright=
kn-copyright=
en-aut-name=HorieKengo
en-aut-sei=Horie
en-aut-mei=Kengo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WangKuanyu
en-aut-sei=Wang
en-aut-mei=Kuanyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HuangHai
en-aut-sei=Huang
en-aut-mei=Hai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YasumatsuKeiko
en-aut-sei=Yasumatsu
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NinomiyaYuzo
en-aut-sei=Ninomiya
en-aut-mei=Yuzo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MitohYoshihiro
en-aut-sei=Mitoh
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YoshidaRyusuke
en-aut-sei=Yoshida
en-aut-mei=Ryusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Tokyo Dental Junior College
kn-affil=
affil-num=5
en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=sour taste
kn-keyword=sour taste
en-keyword=synapse
kn-keyword=synapse
en-keyword=taste buds
kn-keyword=taste buds
en-keyword=taste nerve
kn-keyword=taste nerve
en-keyword=Type III cells
kn-keyword=Type III cells
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=6
article-no=
start-page=e86695
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250624
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Managing Persistent Pupillary Membranes With Surgery or Medication: A Report of Three Cases
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The persistent pupillary membrane, as a congenital anomaly, is a remnant of a network of feeding blood vessels for the lens of the eye, called tunica vasculosa lentis. This study reports three patients with persistent pupillary membrane in both eyes who presented in different situations and were managed differently to achieve better vision. The first child (Case 1) who had been seen initially at the age of two years complained of severe photophobia even though he had good visual acuity, and hence, he and his family chose surgical resection of the pupillary membrane in both eyes at the age of six years just before the admission to an elementary school. He did not develop any surgical complications, such as cataract and glaucoma, and maintained the visual acuity in decimals of 1.2 in both eyes at the age of 17 years.
The second child (Case 2), who was seen first at the age of one month, had persistent pupillary membranes in both eyes, together with Peters' anomaly in the left eye. The iris process adhesion to the corneal inner surface was visualized later by optical coherence tomography. She wore full-correction glasses and obtained the visual acuity of 0.7 in the right eye, so she had no problem studying at an elementary school. She used topical 1% atropine once a week in both eyes to maintain pupillary dilation and also used 0.5% timolol and 1% brinzolamide as pressure-lowering eye drops in the left eye with Peters' anomaly.
The third patient (Case 3) with persistent pupillary membranes in both eyes complained of vision problems for the first time at the age of 49 years when she developed cataract. Surgical resection of the pupillary membrane was done in the initial phase of cataract surgery with intraocular lens implantation in both eyes. At surgical resection of the pupillary membrane, a safe and efficient way was to cut the root of the pupillary membrane on the iris surface with scissors, and then the isolated tissues of the pupillary membrane were pulled out with forceps from the side port at the corneal limbus. Pathological examinations of the excised tissues showed blood vessels with red blood cells in the lumen. In such a rare congenital disease as the persistent pupillary membrane, a case-based approach to choose a better option in different conditions from individual to individual is still required to have a better vision in learning at school and in daily working life.
en-copyright=
kn-copyright=
en-aut-name=MatsuoToshihiko
en-aut-sei=Matsuo
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Division of Healthcare Science, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=anterior segment dysgenesis
kn-keyword=anterior segment dysgenesis
en-keyword=cataract
kn-keyword=cataract
en-keyword=forceps
kn-keyword=forceps
en-keyword=optical coherence tomography
kn-keyword=optical coherence tomography
en-keyword=persistent pupillary membrane
kn-keyword=persistent pupillary membrane
en-keyword=peters anomaly
kn-keyword=peters anomaly
en-keyword=resection
kn-keyword=resection
en-keyword=scissors
kn-keyword=scissors
en-keyword=vitrectomy cutter
kn-keyword=vitrectomy cutter
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=6
article-no=
start-page=e85680
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250610
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Whole-Eye Radiation for the Local Control of Choroidal Lymphoma in Primary Central Nervous System Lymphoma: A 14-Year Case Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Involved-site radiation therapy is effective for curative and palliative treatments of cancers, including lymphoma. This case study describes the use of whole-eye radiation for primary intraocular lymphoma occurring during primary central nervous system lymphoma. The patient, a 68-year-old man, developed personality changes and apathy two weeks after cataract surgery combined with vitrectomy for vitreous opacity in the left eye. Magnetic resonance imaging revealed a mass lesion in the left frontal lobe, and biopsy by craniotomy confirmed diffuse large B-cell lymphoma. He underwent chemotherapy using rituximab combined with high-dose methotrexate and high-dose cytarabine in association with intrathecal methotrexate and cytarabine injections, leading to complete remission. At age 75, he noticed forgetfulness, and fluorodeoxyglucose positron emission tomography and magnetic resonance imaging revealed a relapse of lymphoma in the splenium of the corpus callosum. He underwent chemotherapy using rituximab combined with high-dose methotrexate, followed by monthly rituximab monotherapy for one year and then rituximab monotherapy every two months for one year. He maintained complete remission with no treatment until age 78, when he developed subretinal choroidal lesions in the left eye and underwent whole-eye radiation at 40 Gy. One year later, he developed subretinal choroidal lesions in the right eye and underwent whole-eye radiation at 40 Gy. At age 81, he had lower limb weakness with disorientation. Magnetic resonance imaging showed a relapse of lymphoma in the right frontal to temporal lobe. The brain lesions showed a marked response to four weeks of oral tirabrutinib as a salvage therapy, but the lesions regrew, and the patient died seven months later. Throughout the treatment, he maintained a visual acuity of 0.7 (decimal scale) in both eyes. In conclusion, whole-eye radiation should be considered as a treatment option for the local control of active intraocular lymphoma, especially choroidal lesions, for patients with primary central nervous system lymphoma with no active brain lesions and without systemic treatment.
en-copyright=
kn-copyright=
en-aut-name=MatsuoToshihiko
en-aut-sei=Matsuo
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YanoTomofumi
en-aut-sei=Yano
en-aut-mei=Tomofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshioKotaro
en-aut-sei=Yoshio
en-aut-mei=Kotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NishimuraHirotake
en-aut-sei=Nishimura
en-aut-mei=Hirotake
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MatsuokaKen-ichi
en-aut-sei=Matsuoka
en-aut-mei=Ken-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Internal Medicine, Okayama Rosai Hospital
kn-affil=
affil-num=3
en-affil=Department of Radiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Pathology, Kawasaki Medical School
kn-affil=
affil-num=6
en-affil=Department of Hematology and Oncology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=brain biopsy
kn-keyword=brain biopsy
en-keyword=bruton tyrosine kinase (btk) inhibitor
kn-keyword=bruton tyrosine kinase (btk) inhibitor
en-keyword=chemotherapy
kn-keyword=chemotherapy
en-keyword=diffuse large b-cell lymphoma
kn-keyword=diffuse large b-cell lymphoma
en-keyword=fluorodeoxyglucose positron emission tomography
kn-keyword=fluorodeoxyglucose positron emission tomography
en-keyword=primary central nervous system lymphoma
kn-keyword=primary central nervous system lymphoma
en-keyword=primary intraocular (vitreoretinal) lymphoma
kn-keyword=primary intraocular (vitreoretinal) lymphoma
en-keyword=radiation therapy (radiotherapy)
kn-keyword=radiation therapy (radiotherapy)
en-keyword=tirabrutinib
kn-keyword=tirabrutinib
en-keyword=whole-eye radiation
kn-keyword=whole-eye radiation
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=5
article-no=
start-page=164
end-page=173
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202505
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Nephronophthisis and Retinitis Pigmentosa (Senior-Loken Syndrome) After Living-Donor Kidney Transplantation: Twelve-Year Follow-Up in a Young Woman
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Senior-Loken syndrome is a hereditary ciliopathy with recessive trait that manifests as nephronophthisis and retinitis pigmentosa. This report described an 18-year-old woman who was referred to a University Hospital to set up a treatment plan for chronic renal failure of an unknown cause. She had experienced nocturnal polyurea from the age of 12 years and was found to have an elevated level of serum creatinine at 3 mg/dL at the age of 15 years. She underwent renal biopsy at a hometown regional hospital which showed global glomerulosclerosis in six of the 13 glomeruli examined, renal tubular dilation in irregular shape, and marked interstitial fibrosis with lymphocytic infiltration. At the age of 19 years, she received a living-donor kidney transplant from her 46-year-old father as a preemptive therapy. At surgery, biopsy of the fatherfs donor kidney showed two glomeruli with global sclerosis out of 24 glomeruli examined, in association with minimal interstitial fibrosis and lymphocytic infiltration. She began to have extended-release tacrolimus 4 mg daily and mycophenolate mofetil 1,000 mg daily. According to the standard protocol, she underwent biopsy of the transplanted donor kidney to reveal interstitial fibrosis and lymphocytic infiltration, in addition to no sign of rejection and no glomerular deposition of immunoglobulins and complements, both 4 weeks and 14 months after the kidney transplantation. At the age of 23 years, 4 years after the kidney transplantation, she was, for the first time, diagnosed retinitis pigmentosa, and hence, Senior-Loken syndrome. She was followed up in the stable condition with basal doses of tacrolimus 5 mg daily, mycophenolate mofetil 1,000 mg daily, and prednisolone 5 mg daily up until now in 12 years after the kidney transplantation. The interstitial fibrosis with lymphocytic infiltration in the donor kidney might be a milder presentation of the disease with recessive inheritance.
en-copyright=
kn-copyright=
en-aut-name=MatsuoToshihiko
en-aut-sei=Matsuo
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OnishiYasuhiro
en-aut-sei=Onishi
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MorinagaHiroshi
en-aut-sei=Morinaga
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Urology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Retinitis pigmentosa
kn-keyword=Retinitis pigmentosa
en-keyword=Nephronophthisis
kn-keyword=Nephronophthisis
en-keyword=Senior-Loken syndrome
kn-keyword=Senior-Loken syndrome
en-keyword=Kidney transplantation
kn-keyword=Kidney transplantation
en-keyword=Living donor
kn-keyword=Living donor
en-keyword=Kidney biopsy
kn-keyword=Kidney biopsy
en-keyword=Pathology
kn-keyword=Pathology
en-keyword=Computed tomography scan
kn-keyword=Computed tomography scan
en-keyword=Ciliopathy
kn-keyword=Ciliopathy
en-keyword=Optical coherence tomography
kn-keyword=Optical coherence tomography
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=5
article-no=
start-page=e83484
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Detailed Ophthalmic and Pathological Features of Choroidal Metastasis From Breast Cancer: A Case Series of Five Patients
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Breast cancer causes choroidal metastases on rare occasions. This study presented the eye manifestations of choroidal metastases from breast cancer and their response to treatments in detail as well as their pathological correlation in five patients. The patients' age at the diagnosis of breast cancer ranged from 24 to 69 years (median: 37 years). The time from the diagnosis of breast cancer to the detection of metastases was concurrent in one patient, two years later in three patients, and six years later in the other patient. The time from the detection of systemic metastases to the detection of choroidal metastases was the same in one patient, while it ranged from one to seven years later in four patients. Choroidal metastases were in the unilateral eye of four patients, whereas they were in both eyes of one patient. Choroidal metastases manifested as one or a few nodular or flat choroidal lesions with serous retinal detachment. As for the treatment of choroidal metastases, enucleation of the right eye was chosen based on the patient's wish as well as the family's wish in the earliest patient when cancer notification was not the norm in Japan. In the other four patients, whole-eye radiation was performed to reduce the choroidal metastatic lesions. As regards the prognosis, which was available in four patients, three patients died within one year from the diagnosis of choroidal metastases, while one patient died one year and eight months later. Regarding the pathology of breast cancer, which was available in four patients, immunostaining of the preserved enucleated eye in the earliest patient revealed that breast cancer cells in the choroidal metastatic lesion were positive for estrogen receptor and negative for progesterone receptor and human epidermal growth factor receptor 2 (HER2). Invasive ductal carcinoma in two patients was positive for estrogen receptor and negative for HER2, while invasive ductal carcinoma in the other patient was triple-negative for estrogen receptor, progesterone receptor, and HER2 with a high Ki-67 index. In conclusion, the prognosis for life was poor in patients with breast cancer who developed choroidal metastases. Choroidal metastatic lesions showed a response to whole-eye radiation to improve the quality of vision at the end of life. Vision-related symptoms should be monitored in the course of chemotherapy for systemic metastases.
en-copyright=
kn-copyright=
en-aut-name=MatsuoToshihiko
en-aut-sei=Matsuo
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShienTadahiko
en-aut-sei=Shien
en-aut-mei=Tadahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MuraokaAtsushi
en-aut-sei=Muraoka
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=DoiharaHiroyoshi
en-aut-sei=Doihara
en-aut-mei=Hiroyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Division of Healthcare Science, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Surgery, Kagawa Rosai Hospital
kn-affil=
affil-num=5
en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital
kn-affil=
en-keyword=breast cancer
kn-keyword=breast cancer
en-keyword=chemotherapy
kn-keyword=chemotherapy
en-keyword=choroidal metastasis
kn-keyword=choroidal metastasis
en-keyword=estrogen receptor
kn-keyword=estrogen receptor
en-keyword=her2
kn-keyword=her2
en-keyword=immunostaining
kn-keyword=immunostaining
en-keyword=invasive ductal carcinoma
kn-keyword=invasive ductal carcinoma
en-keyword=ki-67
kn-keyword=ki-67
en-keyword=progesterone receptor
kn-keyword=progesterone receptor
en-keyword=radiation
kn-keyword=radiation
END
start-ver=1.4
cd-journal=joma
no-vol=27
cd-vols=
no-issue=6
article-no=
start-page=e70126
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Sulphur]Acquisition Pathways for Cysteine Synthesis Confer a Fitness Advantage to Bacteria in Plant Extracts
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Bacteria and plants are closely associated with human society, in fields such as agriculture, public health, the food industry, and waste disposal. Bacteria have evolved nutrient-utilisation systems adapted to achieve the most efficient growth in their major habitats. However, empirical evidence to support the significance of bacterial nutrient utilisation in adaptation to plants is limited. Therefore, we investigated the genetic and nutritional factors required for bacterial growth in plant extracts by screening an Escherichia coli gene-knockout library in vegetable-based medium. Mutants lacking genes involved in sulphur assimilation, whereby sulphur is transferred from sulphate to cysteine, exhibited negligible growth in vegetable-based medium or plant extracts, owing to the low cysteine levels. The reverse transsulphuration pathway from methionine, another pathway for donating sulphur to cysteine, occurring in bacteria such as Bacillus subtilis, also played an important role in growth in plant extracts. These two sulphur-assimilation pathways were more frequently observed in plant-associated than in animal-associated bacteria. Sulphur-acquisition pathways for cysteine synthesis thus play a key role in bacterial growth in plant-derived environments such as plant residues and plant exudates.
en-copyright=
kn-copyright=
en-aut-name=IshikawaKazuya
en-aut-sei=Ishikawa
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamaguchiSaki
en-aut-sei=Yamaguchi
en-aut-mei=Saki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TsukaokaTaketo
en-aut-sei=Tsukaoka
en-aut-mei=Taketo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TsunodaMakoto
en-aut-sei=Tsunoda
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FurutaKazuyuki
en-aut-sei=Furuta
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KaitoChikara
en-aut-sei=Kaito
en-aut-mei=Chikara
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Pharmaceutical Sciences, The University of Tokyo
kn-affil=
affil-num=5
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Bacillus subtilis
kn-keyword=Bacillus subtilis
en-keyword=bacterial nutrient utilisation
kn-keyword=bacterial nutrient utilisation
en-keyword=cysteine synthesis
kn-keyword=cysteine synthesis
en-keyword=Escherichia coli
kn-keyword=Escherichia coli
en-keyword=plant-derived environments
kn-keyword=plant-derived environments
en-keyword=sulphur acquisition pathway
kn-keyword=sulphur acquisition pathway
END
start-ver=1.4
cd-journal=joma
no-vol=227
cd-vols=
no-issue=
article-no=
start-page=110168
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202510
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The hidden cation-selective pore in ion-conducting aquaporin OsPIP2;4 from rice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Ion-conducting aquaporins (icAQPs) transport ions as well as water. Although the molecular mechanism of how AQPs establish selective permeability for water molecules is well understood, the ion-transporting mechanism in icAQPs has not yet been fully elucidated. In this study, we investigated the molecular mechanism of cation transport in OsPIP2;4, an icAQP in rice, by homology modeling and the electrophysiological analysis using Xenopus laevis oocytes. Water and ion transport assays using OsPIP2;4 T227M and G278K mutants strongly suggested that water- and cation-transporting pathways are independent of each other. Data from amino acid substitutions V54I and A143G in OsPIP2;4 led to the identification of a novel hidden pathway for cation transport located on the side surfaces of the tetramer channel, where two protomers are in contact, which is distinct from conventional monomeric pores and the tetrameric central pore in AQPs. Moreover, the present results provide the possibility that this hypothetical hidden pore also functions in the barley icAQP HvPIP2;8. The overall structure of this novel pathway appears to differ from the structure of general cation channels. However, the arrangement of hydrophilic amino acids at the entrance of the pathway of OsPIP2;4 was found to be comparable to that of some cation channels, which implies that the molecular mechanism of dehydration of hydrated ions might resemble that of the channels. Although direct structural evidence is needed to confirm the proposed pathway, the present study can be a stepping stone toward unraveling the mechanism of dual water and ion transport through icAQPs in plants.
en-copyright=
kn-copyright=
en-aut-name=OnoShuntaro
en-aut-sei=Ono
en-aut-mei=Shuntaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TranSen Thi Huong
en-aut-sei=Tran
en-aut-mei=Sen Thi Huong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SaitohYasunori
en-aut-sei=Saitoh
en-aut-mei=Yasunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=UtsugiShigeko
en-aut-sei=Utsugi
en-aut-mei=Shigeko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HorieTomoaki
en-aut-sei=Horie
en-aut-mei=Tomoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KatsuharaMaki
en-aut-sei=Katsuhara
en-aut-mei=Maki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=4
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=5
en-affil=Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University
kn-affil=
affil-num=6
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
en-keyword=Rice
kn-keyword=Rice
en-keyword=Barley
kn-keyword=Barley
en-keyword=Ion transport
kn-keyword=Ion transport
en-keyword=Ion-conducting aquaporin (icAQP)
kn-keyword=Ion-conducting aquaporin (icAQP)
en-keyword=Plasma membrane intrinsic protein (PIP)
kn-keyword=Plasma membrane intrinsic protein (PIP)
END
start-ver=1.4
cd-journal=joma
no-vol=301
cd-vols=
no-issue=7
article-no=
start-page=110291
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202507
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A repertoire of visible light?sensitive opsins in the deep-sea hydrothermal vent shrimp Rimicaris hybisae
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Unlike terrestrial environments, where humans reside, there is no sunlight in the deep sea. Instead, dim visible light from black-body radiation and bioluminescence illuminates hydrothermal vent areas in the deep sea. A deep-sea hydrothermal vent shrimp, Rimicaris hybisae, is thought to detect this dim light using its enlarged dorsal eye; however, the molecular basis of its photoreception remains unexplored. Here, we characterized the molecular properties of opsins, universal photoreceptive proteins in animals, found in R. hybisae. Transcriptomic analysis identified six opsins: three Gq-coupled opsins, one Opn3, one Opn5, and one peropsin. Functional analysis revealed that five of these opsins exhibited light-dependent G protein activity, whereas peropsin exhibited the ability to convert all-trans-retinal to 11-cis-retinal like photoisomerases. Notably, all the R. hybisae opsins, including Opn5, convergently show visible light sensitivity (around 457?517 nm), whereas most opsins categorized as Opn5 have been demonstrated to be UV sensitive. Mutational analysis revealed that the unique visible light sensitivity of R. hybisae Opn5 is achieved through the stabilization of a protonated Schiff base by a counterion residue at position 83 (Asp83), which differs from the position identified in other opsins. These findings suggest that the vent shrimp R. hybisae has adapted its photoreceptive devices to dim deep-sea hydrothermal light by selectively maintaining a repertoire of visible light?sensitive opsins, including the uniquely tuned Opn5.
en-copyright=
kn-copyright=
en-aut-name=NagataYuya
en-aut-sei=Nagata
en-aut-mei=Yuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyamotoNorio
en-aut-sei=Miyamoto
en-aut-mei=Norio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SatoKeita
en-aut-sei=Sato
en-aut-mei=Keita
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NishimuraYosuke
en-aut-sei=Nishimura
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TaniokaYuki
en-aut-sei=Tanioka
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamanakaYuji
en-aut-sei=Yamanaka
en-aut-mei=Yuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YoshizawaSusumu
en-aut-sei=Yoshizawa
en-aut-mei=Susumu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakahashiKuto
en-aut-sei=Takahashi
en-aut-mei=Kuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ObayashiKohei
en-aut-sei=Obayashi
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TsukamotoHisao
en-aut-sei=Tsukamoto
en-aut-mei=Hisao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TakaiKen
en-aut-sei=Takai
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=OhuchiHideyo
en-aut-sei=Ohuchi
en-aut-mei=Hideyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=YamashitaTakahiro
en-aut-sei=Yamashita
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=SudoYuki
en-aut-sei=Sudo
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KojimaKeiichi
en-aut-sei=Kojima
en-aut-mei=Keiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-Star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
kn-affil=
affil-num=3
en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Research Center for Bioscience and Nanoscience (CeBN), Research Institute for Marine Resources Utilization, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
kn-affil=
affil-num=5
en-affil=School of Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=School of Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Atmosphere and Ocean Research Institute, The University of Tokyo
kn-affil=
affil-num=8
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Biology, Graduate School of Science, Kobe University
kn-affil=
affil-num=10
en-affil=Department of Biology, Graduate School of Science, Kobe University
kn-affil=
affil-num=11
en-affil=Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-Star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
kn-affil=
affil-num=12
en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Biophysics, Graduate School of Science, Kyoto University
kn-affil=
affil-num=14
en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=15
en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=rhodopsin
kn-keyword=rhodopsin
en-keyword=opsin
kn-keyword=opsin
en-keyword=G protein?coupled receptor
kn-keyword=G protein?coupled receptor
en-keyword=signal transduction
kn-keyword=signal transduction
en-keyword=photoreceptor
kn-keyword=photoreceptor
en-keyword=vision
kn-keyword=vision
en-keyword=photobiology
kn-keyword=photobiology
en-keyword=vent shrimp
kn-keyword=vent shrimp
en-keyword=deep sea
kn-keyword=deep sea
en-keyword=molecular evolution
kn-keyword=molecular evolution
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250620
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=International Consensus Histopathological Criteria for Subtyping Idiopathic Multicentric Castleman Disease Based on Machine Learning Analysis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Idiopathic multicentric Castleman disease (iMCD) is a rare lymphoproliferative disorder classified into three recognized clinical subtypes?idiopathic plasmacytic lymphadenopathy (IPL), TAFRO, and NOS. Although clinical criteria are available for subtyping, diagnostically challenging cases with overlapping histopathological features highlight the need for an improved classification system integrating clinical and histopathological findings. We aimed to develop an objective histopathological subtyping system for iMCD that closely correlates with the clinical subtypes. Excisional lymph node specimens from 94 Japanese iMCD patients (54 IPL, 28 TAFRO, 12 NOS) were analyzed for five key histopathological parameters: germinal center (GC) status, plasmacytosis, vascularity, hemosiderin deposition, and gwhirlpoolh vessel formation in GC. Using hierarchical clustering, we visualized subgroups and developed a machine learning-based decision tree to differentiate the clinical subtypes and validated it in an external cohort of 12 patients with iMCD. Hierarchical cluster analysis separated the IPL and TAFRO cases into mutually exclusive clusters, whereas the NOS cases were interspersed between them. Decision tree modeling identified plasmacytosis, vascularity, and whirlpool vessel formation as key features distinguishing IPL from TAFRO, achieving 91% and 92% accuracy in the training and test sets, respectively. External validation correctly classified all IPL and TAFRO cases, confirming the reproducibility of the system. Our histopathological classification system closely aligns with the clinical subtypes, offering a more precise approach to iMCD subtyping. It may enhance diagnostic accuracy, guide clinical decision-making for predicting treatment response in challenging cases, and improve patient selection for future research. Further validation of its versatility and clinical utility is required.
en-copyright=
kn-copyright=
en-aut-name=NishimuraMidori Filiz
en-aut-sei=Nishimura
en-aut-mei=Midori Filiz
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HaratakeTomoka
en-aut-sei=Haratake
en-aut-mei=Tomoka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishimuraYoshito
en-aut-sei=Nishimura
en-aut-mei=Yoshito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NishikoriAsami
en-aut-sei=Nishikori
en-aut-mei=Asami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SumiyoshiRemi
en-aut-sei=Sumiyoshi
en-aut-mei=Remi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UjiieHideki
en-aut-sei=Ujiie
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KawaharaYuri
en-aut-sei=Kawahara
en-aut-mei=Yuri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KogaTomohiro
en-aut-sei=Koga
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=UekiMasao
en-aut-sei=Ueki
en-aut-mei=Masao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=LaczkoDorottya
en-aut-sei=Laczko
en-aut-mei=Dorottya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OksenhendlerEric
en-aut-sei=Oksenhendler
en-aut-mei=Eric
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=FajgenbaumDavid C.
en-aut-sei=Fajgenbaum
en-aut-mei=David C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=van RheeFrits
en-aut-sei=van Rhee
en-aut-mei=Frits
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KawakamiAtsushi
en-aut-sei=Kawakami
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=SatoYasuharu
en-aut-sei=Sato
en-aut-mei=Yasuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=2
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=3
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=5
en-affil=The Research Program for Intractable Disease by Ministry of Health, Labor and Welfare, Castleman Disease, TAFRO and Related Ddisease Research Group
kn-affil=
affil-num=6
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=7
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=8
en-affil=The Research Program for Intractable Disease by Ministry of Health, Labor and Welfare, Castleman Disease, TAFRO and Related Ddisease Research Group
kn-affil=
affil-num=9
en-affil=School of Information and Data Sciences, Nagasaki University
kn-affil=
affil-num=10
en-affil=Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania
kn-affil=
affil-num=11
en-affil=Department of Clinical Immunology, H?pital Saint-Louis
kn-affil=
affil-num=12
en-affil=Center for Cytokine Storm Treatment and Laboratory, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania
kn-affil=
affil-num=13
en-affil=Myeloma Center, University of Arkansas for Medical Sciences
kn-affil=
affil-num=14
en-affil=The Research Program for Intractable Disease by Ministry of Health, Labor and Welfare, Castleman Disease, TAFRO and Related Ddisease Research Group
kn-affil=
affil-num=15
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
en-keyword=clinical subtype
kn-keyword=clinical subtype
en-keyword=histopathological criteria
kn-keyword=histopathological criteria
en-keyword=idiopathic multicentric castleman disease
kn-keyword=idiopathic multicentric castleman disease
en-keyword=lymphoproliferative disease
kn-keyword=lymphoproliferative disease
en-keyword=machine-learning
kn-keyword=machine-learning
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=7
article-no=
start-page=1152
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240717
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Metatranscriptomic Sequencing of Sheath Blight-Associated Isolates of Rhizoctonia solani Revealed Multi-Infection by Diverse Groups of RNA Viruses
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Rice sheath blight, caused by the soil-borne fungus Rhizoctonia solani (teleomorph: Thanatephorus cucumeris, Basidiomycota), is one of the most devastating phytopathogenic fungal diseases and causes yield loss. Here, we report on a very high prevalence (100%) of potential virus-associated double-stranded RNA (dsRNA) elements for a collection of 39 fungal strains of R. solani from the rice sheath blight samples from at least four major rice-growing areas in the Philippines and a reference isolate from the International Rice Research Institute, showing different colony phenotypes. Their dsRNA profiles suggested the presence of multiple viral infections among these Philippine R. solani populations. Using next-generation sequencing, the viral sequences of the three representative R. solani strains (Ilo-Rs-6, Tar-Rs-3, and Tar-Rs-5) from different rice-growing areas revealed the presence of at least 36 viruses or virus-like agents, with the Tar-Rs-3 strain harboring the largest number of viruses (at least 20 in total). These mycoviruses or their candidates are believed to have single-stranded RNA or dsRNA genomes and they belong to or are associated with the orders Martellivirales, Hepelivirales, Durnavirales, Cryppavirales, Ourlivirales, and Ghabrivirales based on their coding-complete RNA-dependent RNA polymerase sequences. The complete genome sequences of two novel RNA viruses belonging to the proposed family Phlegiviridae and family Mitoviridae were determined.
en-copyright=
kn-copyright=
en-aut-name=UrzoMichael Louie R.
en-aut-sei=Urzo
en-aut-mei=Michael Louie R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=GuintoTimothy D.
en-aut-sei=Guinto
en-aut-mei=Timothy D.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=Eusebio-CopeAna
en-aut-sei=Eusebio-Cope
en-aut-mei=Ana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=BudotBernard O.
en-aut-sei=Budot
en-aut-mei=Bernard O.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YanoriaMary Jeanie T.
en-aut-sei=Yanoria
en-aut-mei=Mary Jeanie T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=JonsonGilda B.
en-aut-sei=Jonson
en-aut-mei=Gilda B.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ArakawaMasao
en-aut-sei=Arakawa
en-aut-mei=Masao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KondoHideki
en-aut-sei=Kondo
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SuzukiNobuhiro
en-aut-sei=Suzuki
en-aut-mei=Nobuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Ba?os
kn-affil=
affil-num=2
en-affil=Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Ba?os
kn-affil=
affil-num=3
en-affil=Fit-for-Future Genetic Resources Unit, Rice Breeding Innovations Department, International Rice Research Institute (IRRI), University of the Philippines Los Ba?os
kn-affil=
affil-num=4
en-affil=Institute of Weed Science, Entomology, and Plant Pathology, College of Agriculture and Food Science, University of the Philippines Los Ba?os
kn-affil=
affil-num=5
en-affil=Traits for Challenged Environments Unit, Rice Breeding Innovations Department, International Rice Research Institute (IRRI), University of the Philippines Los Ba?os
kn-affil=
affil-num=6
en-affil=Traits for Challenged Environments Unit, Rice Breeding Innovations Department, International Rice Research Institute (IRRI), University of the Philippines Los Ba?os
kn-affil=
affil-num=7
en-affil=Faculty of Agriculture, Meijo University
kn-affil=
affil-num=8
en-affil=Plant-Microbe Interactions Group, Institute of Plant Science and Resources (IPSR), Okayama University
kn-affil=
affil-num=9
en-affil=Plant-Microbe Interactions Group, Institute of Plant Science and Resources (IPSR), Okayama University
kn-affil=
en-keyword=Rhizoctonia solani
kn-keyword=Rhizoctonia solani
en-keyword=dsRNA
kn-keyword=dsRNA
en-keyword=mycovirus
kn-keyword=mycovirus
en-keyword=RNA virus
kn-keyword=RNA virus
en-keyword=metatranscriptome
kn-keyword=metatranscriptome
END
start-ver=1.4
cd-journal=joma
no-vol=166
cd-vols=
no-issue=8
article-no=
start-page=bqaf102
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250605
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Neuromedin U Deficiency Disrupts Daily Testosterone Fluctuation and Reduces Wheel-running Activity in Rats
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The objective of this study was to elucidate the role of endogenous Neuromedin U (NMU) in rats by performing NMU knockout (KO). Male, but not female NMU KO rats exhibited decreased wheel-running activity vs wildtype (WT), although overall home cage activity was not affected. Plasma testosterone in WT rats varied significantly over the course of a day, with a peak at ZT1 and a nadir at ZT18, whereas in NMU KO rats testosterone remained stable throughout the day. Chronic administration of testosterone restored wheel-running activity in NMU KO rats to the same level as in WT rats, suggesting that the decrease in wheel-running activity in NMU KO rats is due to the disruption of the diurnal change of testosterone. Accordingly, expression of the luteinizing hormone beta subunit (Lhb) mRNA in the pars distalis of anterior pituitary was significantly lower in NMU KO rats; immunostaining revealed that the size of luteinizing hormone (LH)?expressing cells was also relatively small in those animals. In the brain of male WT rats, Nmu was highly expressed in the pars tuberalis, and the NMU receptor Nmur2 was highly expressed in the ependymal cell layer of the third ventricle. This study reveals a novel function of NMU and indicates that endogenous NMU in rats plays a role in the regulation of motivated activity via regulation of testosterone.
en-copyright=
kn-copyright=
en-aut-name=OtsukaMai
en-aut-sei=Otsuka
en-aut-mei=Mai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakeuchiYu
en-aut-sei=Takeuchi
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MoriyamaMaho
en-aut-sei=Moriyama
en-aut-mei=Maho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=EgoshiSakura
en-aut-sei=Egoshi
en-aut-mei=Sakura
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=GotoYuki
en-aut-sei=Goto
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=GuTingting
en-aut-sei=Gu
en-aut-mei=Tingting
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KimuraAtsushi P
en-aut-sei=Kimura
en-aut-mei=Atsushi P
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HaraguchiShogo
en-aut-sei=Haraguchi
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YoshiiTaishi
en-aut-sei=Yoshii
en-aut-mei=Taishi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TakeuchiSakae
en-aut-sei=Takeuchi
en-aut-mei=Sakae
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MatsuyamaMakoto
en-aut-sei=Matsuyama
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=BentleyGeorge E
en-aut-sei=Bentley
en-aut-mei=George E
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=AizawaSayaka
en-aut-sei=Aizawa
en-aut-mei=Sayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Biology, Faculty of Science, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Biological Sciences, Faculty of Science, Hokkaido University
kn-affil=
affil-num=8
en-affil=Department of Biochemistry, Showa University School of Medicine
kn-affil=
affil-num=9
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=10
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=11
en-affil=Division of Molecular Genetics, Shigei Medical Research Institute
kn-affil=
affil-num=12
en-affil=Department of Integrative Biology and Helen Wills Neuroscience Institute, University of California at Berkeley
kn-affil=
affil-num=13
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Neuromedin U
kn-keyword=Neuromedin U
en-keyword=rat
kn-keyword=rat
en-keyword=motivation
kn-keyword=motivation
en-keyword=activity
kn-keyword=activity
en-keyword=testosterone
kn-keyword=testosterone
en-keyword=wheel-running
kn-keyword=wheel-running
END
start-ver=1.4
cd-journal=joma
no-vol=121
cd-vols=
no-issue=2
article-no=
start-page=232
end-page=243
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241216
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Outcomes of allogeneic SCT versus tisagenlecleucel in patients with R/R LBCL and poor prognostic factors
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study investigated the efficacy of tisagenlecleucel (tisa-cel) and allogeneic hematopoietic stem cell transplantation (allo-SCT) for patients with relapsed and/or refractory (r/r) large B-cell lymphoma (LBCL) with poor prognostic factors, defined as performance status (PS)???2, multiple extranodal lesions (EN), chemorefractory disease, or higher lactate dehydrogenase (LDH). Overall, the allo-SCT group demonstrated worse progression-free survival (PFS), higher non-relapse mortality, and a similar relapse/progression rate. Notably, the tisa-cel group showed better PFS than the allo-SCT group among patients with chemorefractory disease (3.2 vs. 2.0 months, p?=?0.092) or higher LDH (4.0 vs. 2.0 months, p =?0.018), whereas PFS in the two cellular therapy groups was similar among those with PS???2 or multiple EN. Survival time after relapse post-cellular therapy in patients with poor prognostic factors was 1.6 with allo-SCT and 4.6 months with tisa-cel. These findings were confirmed in a propensity score matching cohort. In conclusion, tisa-cel resulted in better survival than allo-SCT in patients with poor prognostic factors. However, patients who relapsed post-cellular therapy had dismal outcomes regardless of therapy. Further strategies are warranted to improve outcomes in these patients.
en-copyright=
kn-copyright=
en-aut-name=HayashinoKenta
en-aut-sei=Hayashino
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TeraoToshiki
en-aut-sei=Terao
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishimoriHisakazu
en-aut-sei=Nishimori
en-aut-mei=Hisakazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KitamuraWataru
en-aut-sei=Kitamura
en-aut-mei=Wataru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KobayashiHiroki
en-aut-sei=Kobayashi
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KamoiChihiro
en-aut-sei=Kamoi
en-aut-mei=Chihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SeikeKeisuke
en-aut-sei=Seike
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=FujiwaraHideaki
en-aut-sei=Fujiwara
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=AsadaNoboru
en-aut-sei=Asada
en-aut-mei=Noboru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=EnnishiDaisuke
en-aut-sei=Ennishi
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=FujiiKeiko
en-aut-sei=Fujii
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=FujiiNobuharu
en-aut-sei=Fujii
en-aut-mei=Nobuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MatsuokaKen-ichi
en-aut-sei=Matsuoka
en-aut-mei=Ken-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=MaedaYoshinobu
en-aut-sei=Maeda
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=14
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
en-keyword=Large B-cell lymphoma
kn-keyword=Large B-cell lymphoma
en-keyword=Allogeneic hematopoietic stem cell transplantation
kn-keyword=Allogeneic hematopoietic stem cell transplantation
en-keyword=CAR-T cell therapy
kn-keyword=CAR-T cell therapy
en-keyword=Tisagenlecleucel
kn-keyword=Tisagenlecleucel
en-keyword=Poor prognostic factors
kn-keyword=Poor prognostic factors
END
start-ver=1.4
cd-journal=joma
no-vol=64
cd-vols=
no-issue=5
article-no=
start-page=759
end-page=762
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250301
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Novel De Novo Variant in KCNH5 in a Patient with Refractory Epileptic Encephalopathy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We herein report a novel de novo KCNH5 variant in a patient with refractory epileptic encephalopathy. The patient exhibited seizures at 1 year and 7 months old, which gradually worsened, leading to a bedridden status. Brain magnetic resonance imaging (MRI) showed cerebral atrophy and cerebellar hypoplasia. A trio whole-exome sequence analysis identified a de novo heterozygous c.640A>C, p.Lys214Gln variant in KCNH5 that was predicted to be deleterious. Recent studies have linked KCNH5 to various epileptic encephalopathies, with many patients showing normal MRI findings. The present case expands the clinical spectrum of the disease, as it is characterized by severe neurological prognosis, cerebral atrophy, and cerebellar hypoplasia.
en-copyright=
kn-copyright=
en-aut-name=MitsutakeAkihiko
en-aut-sei=Mitsutake
en-aut-mei=Akihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsukawaTakashi
en-aut-sei=Matsukawa
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NaitoTatsuhiko
en-aut-sei=Naito
en-aut-mei=Tatsuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MitsuiJun
en-aut-sei=Mitsui
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HaradaHiroaki
en-aut-sei=Harada
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=FujioKeishi
en-aut-sei=Fujio
en-aut-mei=Keishi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=FujishiroJun
en-aut-sei=Fujishiro
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MoriHarushi
en-aut-sei=Mori
en-aut-mei=Harushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MorishitaShinichi
en-aut-sei=Morishita
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TsujiShoji
en-aut-sei=Tsuji
en-aut-mei=Shoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TodaTatsushi
en-aut-sei=Toda
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=2
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=3
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=4
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=6
en-affil=Department of Rheumatology and Allergy, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=7
en-affil=Department of Rheumatology and Allergy, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=8
en-affil=Department of Pediatric Surgery, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=9
en-affil=Department of Radiology, School of Medicine, Jichi Medical University
kn-affil=
affil-num=10
en-affil=Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo
kn-affil=
affil-num=11
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=12
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
en-keyword=epileptic encephalopathy
kn-keyword=epileptic encephalopathy
en-keyword=whole-exome sequencing
kn-keyword=whole-exome sequencing
en-keyword=KCNH5
kn-keyword=KCNH5
en-keyword=de novo variant
kn-keyword=de novo variant
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250303
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Recent progress in oculopharyngodistal myopathy research from clinical and genetic viewpoints
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Oculopharyngodistal myopathy (OPDM) is a rare muscular disorder characterized by ocular symptoms, pharyngeal symptoms, facial weakness, and distal predominant limb muscle weakness. The cause of the disease was unknown for a long time. Recently, however, it has been reported that expansions of CGG or CCG repeats in LRP12, LOC642361/NUTM2B-AS1, GIPC1, NOTCH2NLC, RILPL1, and ABCD3 are the causes of the disease. Cases sometimes present with neurological symptoms, and the clinical spectrum of diseases caused by expansions of CGG or CCG repeats has been proposed to be called FNOP-spectrum disorder after the names of fragile X-associated tremor/ataxia syndrome, neuronal intranuclear inclusion disease, oculopharyngeal myopathy with leukoencephalopathy, and OPDM. In this article, the recent progress in the field of OPDM is reviewed, and remaining issues in OPDM are discussed.
en-copyright=
kn-copyright=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=oculopharyngodistal myopathy
kn-keyword=oculopharyngodistal myopathy
en-keyword=CGG repeat
kn-keyword=CGG repeat
en-keyword=CCG repeat
kn-keyword=CCG repeat
en-keyword=repeat motif?phenotype correlation
kn-keyword=repeat motif?phenotype correlation
en-keyword=FNOP-spectrum disorder
kn-keyword=FNOP-spectrum disorder
END
start-ver=1.4
cd-journal=joma
no-vol=31
cd-vols=
no-issue=6
article-no=
start-page=388.e1
end-page=388.e14
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Clinical effects of granulocyte colony-stimulating factor administration and the timing of its initiation on allogeneic hematopoietic cell transplantation outcomes for myelodysplastic syndrome
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Granulocyte colony-stimulating factor (G-CSF) accelerates neutrophil recovery after allogeneic hematopoietic cell transplantation (HCT). However, the optimal use of G-CSF and the timing of its initiation after allogeneic HCT for myelodysplastic syndrome (MDS) according to graft type have not been determined. This retrospective study aimed to investigate the effects of using G-CSF administration and the timing of its initiation on transplant outcomes in adult patients with MDS undergoing allogeneic HCT. Using Japanese registry data, we retrospectively investigated the effects of G-CSF administration and the timing of its initiation on transplant outcomes among 4140 adults with MDS after bone marrow transplantation (BMT), peripheral blood stem cell transplantation (PBSCT), or single-unit cord blood transplantation (CBT) between 2013 and 2022. Multivariate analysis showed that early (days 0 to 4) and late (days 5 to 10) G-CSF administration significantly accelerated neutrophil recovery compared with no G-CSF administration following BMT, PBSCT, and CBT, but there was no benefit of early G-CSF initiation for early neutrophilic recovery regardless of graft type. Late G-CSF initiation was significantly associated with a higher risk of overall chronic GVHD following PBSCT (hazard ratio [HR], 1.63; 95% confidence interval [CI], 1.18 to 2.24; P = .002) and CBT (HR, 2.09; 95% CI, 1.21 to 3.60; P = .007) compared with no G-CSF administration. Late G-CSF initiation significantly improved OS compared with no G-CSF administration only following PBSCT (HR, 0.74; 95% CI, 0.58 to 0.94; P = .015). However, G-CSF administration and the timing of its initiation did not affect acute GVHD, relapse, or non-relapse mortality, irrespective of graft type. These results suggest that G-CSF administration significantly accelerated neutrophil recovery after BMT, PBSCT, and CBT, but increased risk of overall chronic GVHD after PBSCT and CBT. However, the effect of early and late G-CSF initiation on transplant outcomes needs further study in adult patients with MDS.
en-copyright=
kn-copyright=
en-aut-name=KonumaTakaaki
en-aut-sei=Konuma
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujiokaMachiko
en-aut-sei=Fujioka
en-aut-mei=Machiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FuseKyoko
en-aut-sei=Fuse
en-aut-mei=Kyoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HosoiHiroki
en-aut-sei=Hosoi
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MasamotoYosuke
en-aut-sei=Masamoto
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=DokiNoriko
en-aut-sei=Doki
en-aut-mei=Noriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=UchidaNaoyuki
en-aut-sei=Uchida
en-aut-mei=Naoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TanakaMasatsugu
en-aut-sei=Tanaka
en-aut-mei=Masatsugu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SawaMasashi
en-aut-sei=Sawa
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NishidaTetsuya
en-aut-sei=Nishida
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=IshikawaJun
en-aut-sei=Ishikawa
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=AsadaNoboru
en-aut-sei=Asada
en-aut-mei=Noboru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=NakamaeHirohisa
en-aut-sei=Nakamae
en-aut-mei=Hirohisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=HasegawaYuta
en-aut-sei=Hasegawa
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=OnizukaMakoto
en-aut-sei=Onizuka
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=MaedaTakeshi
en-aut-sei=Maeda
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=FukudaTakahiro
en-aut-sei=Fukuda
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=KawamuraKoji
en-aut-sei=Kawamura
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=KandaYoshinobu
en-aut-sei=Kanda
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=OhbikiMarie
en-aut-sei=Ohbiki
en-aut-mei=Marie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=AtsutaYoshiko
en-aut-sei=Atsuta
en-aut-mei=Yoshiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=ItonagaHidehiro
en-aut-sei=Itonaga
en-aut-mei=Hidehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
affil-num=1
en-affil=Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo
kn-affil=
affil-num=2
en-affil=Department of Hematology, Sasebo City General Hospital
kn-affil=
affil-num=3
en-affil=Faculty of Medicine, Department of Hematology, Endocrinology and Metabolism, Niigata University
kn-affil=
affil-num=4
en-affil=Department of Hematology/Oncology, Wakayama Medical University
kn-affil=
affil-num=5
en-affil=Department of Cell Therapy and Transplantation Medicine, The University of Tokyo Hospital
kn-affil=
affil-num=6
en-affil=Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital
kn-affil=
affil-num=7
en-affil=Department of Hematology, Toranomon Hospital
kn-affil=
affil-num=8
en-affil=Department of Hematology, Kanagawa Cancer Center
kn-affil=
affil-num=9
en-affil=Department of Hematology and Oncology, Anjo Kosei Hospital
kn-affil=
affil-num=10
en-affil=Department of Hematology, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital
kn-affil=
affil-num=11
en-affil=Department of Hematology, Osaka International Cancer Institute
kn-affil=
affil-num=12
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=13
en-affil=Department of Hematology, Osaka Metropolitan University Graduate School of Medicine
kn-affil=
affil-num=14
en-affil=Department of Hematology, Hokkaido University Hospital
kn-affil=
affil-num=15
en-affil=Department of Hematology and Oncology, Tokai University School of Medicine
kn-affil=
affil-num=16
en-affil=Department of Hematology and oncology, Kurashiki Central Hospital
kn-affil=
affil-num=17
en-affil=Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital
kn-affil=
affil-num=18
en-affil=Department of Hematology, Tottori University Hospital
kn-affil=
affil-num=19
en-affil=Division of Hematology, Jichi Medical University
kn-affil=
affil-num=20
en-affil=Japanese Data Center for Hematopoietic Cell Transplantation
kn-affil=
affil-num=21
en-affil=Japanese Data Center for Hematopoietic Cell Transplantation
kn-affil=
affil-num=22
en-affil=Transfusion and Cell Therapy Unit, Nagasaki University Hospital
kn-affil=
en-keyword=Granulocyte colony-stimulating factor
kn-keyword=Granulocyte colony-stimulating factor
en-keyword=Graft-versus-host disease
kn-keyword=Graft-versus-host disease
en-keyword=Bone marrow transplantation
kn-keyword=Bone marrow transplantation
en-keyword=Peripheral blood stem cell transplantation
kn-keyword=Peripheral blood stem cell transplantation
en-keyword=Cord blood transplantation
kn-keyword=Cord blood transplantation
en-keyword=Myelodysplastic syndrome
kn-keyword=Myelodysplastic syndrome
END
start-ver=1.4
cd-journal=joma
no-vol=58
cd-vols=
no-issue=2
article-no=
start-page=145
end-page=148
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250630
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The trochlea for the intermediate tendon of the digastric muscle: a review
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This review explores the novel perspective that the intermediate tendon of the digastric muscle may function as an anatomical trochlear pulley system within the human body, challenging the traditional understanding of trochlear systems. While widely recognized trochlear units include structures like the medial part of the humerus and the superior oblique muscle of the orbit, the review focuses on the unique anatomical arrangement of the intermediate tendon of the digastric muscle in connection with the anterior and posterior bellies of the digastric muscles. Despite current debates within the anatomical community about labeling the digastric muscles as having a trochlea, this paper delves into the scientific definition of a trochlear pulley system, presenting the intermediate tendon of the digastric muscle as a potential trochlea.
en-copyright=
kn-copyright=
en-aut-name=du PlooyXander
en-aut-sei=du Plooy
en-aut-mei=Xander
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KunisadaYuki
en-aut-sei=Kunisada
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=CardonaJuan J.
en-aut-sei=Cardona
en-aut-mei=Juan J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TabiraYoko
en-aut-sei=Tabira
en-aut-mei=Yoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=BubbKathleen Carol
en-aut-sei=Bubb
en-aut-mei=Kathleen Carol
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=RaeburnKazzara
en-aut-sei=Raeburn
en-aut-mei=Kazzara
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IbaragiSoichiro
en-aut-sei=Ibaragi
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IwanagaJoe
en-aut-sei=Iwanaga
en-aut-mei=Joe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TubbsR. Shane
en-aut-sei=Tubbs
en-aut-mei=R. Shane
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Tulane University School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine
kn-affil=
affil-num=4
en-affil=Division of Gross and Clinical Anatomy, Department of Anatomy, Kurume University School of Medicine
kn-affil=
affil-num=5
en-affil=Anatomy Division, Department of Radiology, Weill Cornell Medical College
kn-affil=
affil-num=6
en-affil=Department of Anatomical Sciences, St. Georgefs University
kn-affil=
affil-num=7
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine
kn-affil=
en-keyword=Digastric muscles
kn-keyword=Digastric muscles
en-keyword=Intermediate tendon
kn-keyword=Intermediate tendon
en-keyword=Trochlea
kn-keyword=Trochlea
en-keyword=Anatomy
kn-keyword=Anatomy
en-keyword=Fascia
kn-keyword=Fascia
END
start-ver=1.4
cd-journal=joma
no-vol=137
cd-vols=
no-issue=23
article-no=
start-page=235104
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250617
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Imaging valley-vortex edge modes in a phononic crystal at ultrahigh frequencies
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We perform optical measurements and numerical simulations of guided phonon propagation in novel topological phononic crystal structures at ultrahigh frequencies. The structures support valley-polarized states that exhibit an energy vortex nature and propagate with high efficiency at domain boundaries because backscattering is suppressed due to conservation of time reversal symmetry. We extract frequency- and time-resolved spatial mode patterns and k-space images, together with dispersion relations. We investigate the conditions required for robust propagation along interfaces and thereby observe very high efficiency waveguiding.
en-copyright=
kn-copyright=
en-aut-name=OtsukaP. H.
en-aut-sei=Otsuka
en-aut-mei=P. H.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TomodaM.
en-aut-sei=Tomoda
en-aut-mei=M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HatanakaD.
en-aut-sei=Hatanaka
en-aut-mei=D.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamaguchiH.
en-aut-sei=Yamaguchi
en-aut-mei=H.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TsurutaK.
en-aut-sei=Tsuruta
en-aut-mei=K.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MatsudaO.
en-aut-sei=Matsuda
en-aut-mei=O.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Division of Applied Physics, Graduate School of Engineering, Hokkaido University
kn-affil=
affil-num=2
en-affil=Division of Applied Physics, Graduate School of Engineering, Hokkaido University
kn-affil=
affil-num=3
en-affil=NTT Basic Research Laboratories, NTT Corporation
kn-affil=
affil-num=4
en-affil=NTT Basic Research Laboratories, NTT Corporation
kn-affil=
affil-num=5
en-affil=Department of Electrical and Electronic Engineering, Okayama University
kn-affil=
affil-num=6
en-affil=Division of Applied Physics, Graduate School of Engineering, Hokkaido University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250612
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Sulfur dioxide-induced guard cell death and stomatal closure are attenuated in nitrate/proton antiporter AtCLCa mutants
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Guard cells surrounding the stomata play a crucial role in regulating the entrance of hazardous gases such as SO2 into leaves. Stomatal closure could be a plant response to mitigate SO2 damage, although the mechanism for SO2-induced closure remains controversial. Proposed mediators for SO2-induced stomatal closure include phytohormones, reactive oxygen species, gasotransmitters, and cytosolic acidification. In this study, we investigated the mechanism of stomatal closure in Arabidopsis in response to SO2. Despite an increment in auxin and jasmonates after SO2 exposure, the addition of auxin did not cause stomatal closure and jasmonate-insensitive mutants exhibited SO2-induced stomatal closure suggesting auxin and jasmonates are not mediators leading to the closure. In addition, supplementation of scavenging reagents for reactive oxygen species and gasotransmitters did not inhibit SO2-induced closure. Instead, we found that cytosolic acidification is a credible mechanism for SO2-induced stomatal closure in Arabidopsis. CLCa mutants coding H+/nitrate antiporter, involved in cytosolic pH homeostasis, showed less sensitive stomatal phenotype against SO2. These results suggest that cytosolic pH homeostasis plays a tenable role in SO2 response in guard cells.
en-copyright=
kn-copyright=
en-aut-name=OoiLia
en-aut-sei=Ooi
en-aut-mei=Lia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsuuraTakakazu
en-aut-sei=Matsuura
en-aut-mei=Takakazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MoriIzumi C.
en-aut-sei=Mori
en-aut-mei=Izumi C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
en-keyword=airborne pollutants
kn-keyword=airborne pollutants
en-keyword=cytosolic acidification
kn-keyword=cytosolic acidification
en-keyword=stomatal closure
kn-keyword=stomatal closure
en-keyword=sulfur dioxide
kn-keyword=sulfur dioxide
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=1
article-no=
start-page=32
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250512
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Stability and water solubility of calcium ferrite-type aluminum-rich phase: implications for deep water cycle caused by subducting basaltic crusts
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The subducting crustal materials serve as a crucial channel for transporting water to the lower mantle. Recent experimental studies suggest that crustal materials such as basaltic crust can be a main water carrier and reservoir playing an important role on water cycling in the lower mantle. Despite being a primary mineral in crustal materials, the water solubility of calcium ferrite-type (CF) phase and its stability are unclear yet. A recent phase relation study of hydrous basalts showed Na-depletion in lower-mantle minerals, suggesting the presence of fluid possibly with high Na concentration and the absence of CF phase along the low-temperature slab geotherms, where Al-rich hydrous phase H and ferropericlase appear instead. These phases could consequently produce Na-depleted CF phase when reaching the dehydration temperature of Al-rich hydrous phase H. In this study, we investigated the stability and water solubility of CF-type MgAl2O4, which is a main CF component in a hydrous basalt, in water-bearing systems at 26?32 GPa and 1200?1900 C using a Kawai-type multi-anvil press. Our results indicate that the stability of the CF phase is strongly influenced by water content in the system. Water contents of recovered CF phases estimated by Fourier-transform infrared spectroscopy show a limited variation between 73 and 87 ppm wt at a pressure of 26 GPa and temperatures of 1500?1900 C. We suggest that CF phase could not be a primary water carrier at lower mantle depths. This emphasizes contributions of hydrous aluminous silica minerals to Earthfs deep water cycling and heterogeneous structures in the lower mantle due to the strong water partitioning to this phase compared with other constituent minerals.
en-copyright=
kn-copyright=
en-aut-name=ZhangXinyue
en-aut-sei=Zhang
en-aut-mei=Xinyue
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MashinoIzumi
en-aut-sei=Mashino
en-aut-mei=Izumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IshiiTakayuki
en-aut-sei=Ishii
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Deep Space Exploration Laboratory/School of Earth and Space Sciences, University of Science and Technology of China
kn-affil=
affil-num=2
en-affil=Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=3
en-affil=Institute for Planetary Materials, Okayama University
kn-affil=
en-keyword=Water solubility
kn-keyword=Water solubility
en-keyword=CF phase
kn-keyword=CF phase
en-keyword=Single crystal
kn-keyword=Single crystal
en-keyword=FTIR
kn-keyword=FTIR
en-keyword=MORB
kn-keyword=MORB
END