start-ver=1.4 cd-journal=joma no-vol=26 cd-vols= no-issue=14 article-no= start-page=6927 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250718 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Inhibitory Effects of Vandetanib on Catecholamine Synthesis in Rat Pheochromocytoma PC12 Cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=Gain-of-function gene alterations in rearranged during transfection (RET), a receptor tyrosine kinase, are observed in both sporadic and hereditary medullary thyroid cancers (MTCs) and pheochromocytomas and paragangliomas (PPGLs). Several tyrosine kinase inhibitors (TKIs) that target RET have been proven to be effective on MTCs and PCCs. Recently, TKIs, namely, sunitinib and selpercatinib, which were clinically used to target PPGLs, have been reported to decrease catecholamine levels without reducing tumor size. Our clinical case of metastatic medullary thyroid cancer, which is associated with RET mutations undergoing treatment with vandetanib, also suggests that vandetanib can decrease catecholamine levels. Therefore, we investigated the effect of vandetanib, a representative multi-targeted TKI for RET-related MTC, on cell proliferation and catecholamine synthesis in rat pheochromocytoma PC12 cells. Vandetanib reduced viable cells in a concentration-dependent manner. The dopamine and noradrenaline levels of the cell lysate were reduced in a concentration-dependent manner. They also decreased more prominently at lower concentrations of vandetanib compared to the inhibition of cell proliferation. The RNA knockdown study of Ret revealed that this inhibitory effect on catecholamine synthesis is mainly mediated by the suppression of RET signaling. Next, we focused on two signaling pathways downstream of RET, namely, ERK and AKT signaling. Treatment with vandetanib reduced both ERK and AKT phosphorylation in PC12 cells. Moreover, both an MEK inhibitor U0126 and a PI3K/AKT inhibitor LY294002 suppressed catecholamine synthesis without decreasing viable cells. This study in rat pheochromocytoma PC12 cells reveals the direct inhibitory effects of vandetanib on catecholamine synthesis via the suppression of RET-ERK and RET-AKT signaling. en-copyright= kn-copyright= en-aut-name=ItohYoshihiko en-aut-sei=Itoh en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=InagakiKenichi en-aut-sei=Inagaki en-aut-mei=Kenichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TerasakaTomohiro en-aut-sei=Terasaka en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MorimotoEisaku en-aut-sei=Morimoto en-aut-mei=Eisaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IshiiTakahiro en-aut-sei=Ishii en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamaokaKimitomo en-aut-sei=Yamaoka en-aut-mei=Kimitomo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=FujisawaSatoshi en-aut-sei=Fujisawa en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=tyrosine kinase inhibitor kn-keyword=tyrosine kinase inhibitor en-keyword=multiple endocrine neoplasia type 2 kn-keyword=multiple endocrine neoplasia type 2 en-keyword=paraganglioma kn-keyword=paraganglioma en-keyword=RET kn-keyword=RET en-keyword=ERK kn-keyword=ERK en-keyword=AKT kn-keyword=AKT END start-ver=1.4 cd-journal=joma no-vol=65 cd-vols= no-issue=7 article-no= start-page=319 end-page=325 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250715 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Nationwide Survey of Middle Meningeal Artery Embolization for Chronic Subdural Hematoma in Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=Middle meningeal artery embolization has increasingly been used to treat chronic subdural hematoma. However, the current state of its application and outcomes in Japan remains unclear. We conducted a multicenter observational study involving facilities affiliated with the Japanese Society for Neuroendovascular Therapy to assess current practices and clarify the usefulness and safety of middle meningeal artery embolization for chronic subdural hematoma. A total of 466 patients from 40 facilities were included. The mean age of the patients was 78.0 } 10.5 years, and bleeding risks, including antithrombotic therapy or bleeding predisposition, were present in 36.1% of patients. The most common timing for middle meningeal artery embolization was after the second burr hole surgery, accounting for 34.8% of cases. N-butyl-2-cyanoacrylate was used as the embolic material in 67% of cases. The complication rate was 5.2%, with complication-related morbidity at 0.9%. Hematomas were stable in 91.5% of cases at 30 days post-middle meningeal artery embolization. The symptomatic recurrence rate was 8.9%. Cases that underwent middle meningeal artery embolization after the second or subsequent burr hole surgeries were significantly associated with symptomatic recurrence. This study is the first nationwide survey investigating the real-world clinical practice of middle meningeal artery embolization for chronic subdural hematoma in Japan. While it included many elderly patients, recurrent cases, and those with bleeding risks, the safety and usefulness of middle meningeal artery embolization were deemed acceptable. However, symptomatic recurrence was common even in cases with middle meningeal artery embolization when performed after the second or subsequent burr hole surgeries. A further prospective study will be warranted to clarify treatment indications, optimal timing, and treatment techniques of middle meningeal artery embolization. en-copyright= kn-copyright= en-aut-name=MURAISatoshi en-aut-sei=MURAI en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=EBISUDANIYuki en-aut-sei=EBISUDANI en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HARUMAJun en-aut-sei=HARUMA en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HIRAMATSUMasafumi en-aut-sei=HIRAMATSU en-aut-mei=Masafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HISHIKAWATomohito en-aut-sei=HISHIKAWA en-aut-mei=Tomohito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SATOWTetsu en-aut-sei=SATOW en-aut-mei=Tetsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SUGIUKenji en-aut-sei=SUGIU en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Neurosurgery, Kawasaki Medical School kn-affil= affil-num=2 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Neurosurgery, Kawasaki Medical School kn-affil= affil-num=6 en-affil=Department of Neurosurgery/Stroke Center, Kindai University Hospital kn-affil= affil-num=7 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=chronic subdural hematoma kn-keyword=chronic subdural hematoma en-keyword=endovascular therapy kn-keyword=endovascular therapy en-keyword=middle meningeal artery kn-keyword=middle meningeal artery END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue= article-no= start-page=115 end-page=119 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251231 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Safety of Adenosine-assisted Clipping Surgery for Unruptured Cerebral Aneurysms: Interim Results of a Single-center, Single-arm Study en-subtitle= kn-subtitle= en-abstract= kn-abstract=The aim of this single-center, single-arm study was to evaluate the safety of adenosine-assisted clipping surgery for unruptured cerebral aneurysms. Five patients underwent aneurysmal clipping during adenosine-induced hypotension at ?60 mmHg. The mean age of patients was 63.4}8.5 years, and the mean aneurysm size was 5.3}1.1 mm. The prevalence of patients with modified Rankin Scale scores of zero 30 days after surgery was 100%. The degree of aneurysm obliteration was complete in 4 patients and residual dome in 1 patient. The mean total dosage of adenosine was 37.4}18.8 mg. The mean duration of systolic blood pressure at ?60 mmHg was 64.2}28.3 secs. No patients exhibited paroxysmal atrial fibrillation within 24 hours after adenosine administration or elevation of high-sensitivity cardiac troponin T on postoperative day 1. There was no reduction in either motor-evoked or somatosensory-evoked potential amplitude during surgery. Adenosine-induced hypotension is a safe procedure in clipping surgery for unruptured cerebral aneurysms. en-copyright= kn-copyright= en-aut-name=HISHIKAWATomohito en-aut-sei=HISHIKAWA en-aut-mei=Tomohito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MURAISatoshi en-aut-sei=MURAI en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HIRAMATSUMasafumi en-aut-sei=HIRAMATSU en-aut-mei=Masafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HARUMAJun en-aut-sei=HARUMA en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=EBISUDANIYuki en-aut-sei=EBISUDANI en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YASUHARATakao en-aut-sei=YASUHARA en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SUGIUKenji en-aut-sei=SUGIU en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SHIMIZUKazuyoshi en-aut-sei=SHIMIZU en-aut-mei=Kazuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NAKAGAWAKoji en-aut-sei=NAKAGAWA en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KIMURA-ONOAya en-aut-sei=KIMURA-ONO en-aut-mei=Aya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=HOTTAKatsuyuki en-aut-sei=HOTTA en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MORIMATSUHiroshi en-aut-sei=MORIMATSU en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=DATEIsao en-aut-sei=DATE en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Neurosurgery, Kawasaki Medical School kn-affil= affil-num=3 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=11 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=12 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=adenosine kn-keyword=adenosine en-keyword=clipping kn-keyword=clipping en-keyword=safety kn-keyword=safety en-keyword=unruptured cerebral aneurysm kn-keyword=unruptured cerebral aneurysm END start-ver=1.4 cd-journal=joma no-vol=351 cd-vols= no-issue= article-no= start-page=199522 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Evidence for the replication of a plant rhabdovirus in its arthropod mite vector en-subtitle= kn-subtitle= en-abstract= kn-abstract=Transmission of plant viruses that replicate in the insect vector is known as persistent-propagative manner. However, it remains unclear whether such virus-vector relationships also occur between plant viruses and other biological vectors such as arthropod mites. In this study, we investigated the possible replication of orchid fleck virus (OFV), a segmented plant rhabdovirus, within its mite vector (Brevipalpus californicus s.l.) using quantitative RT-qPCR, western blotting and next-generation sequencing. Time-course RT-qPCR and western blot analyses showed an increasing OFV accumulation pattern in mites after virus acquisition. Since OFV genome expression requires the transcription of polyadenylated mRNAs, polyadenylated RNA fractions extracted from the viruliferous mite samples and OFV-infected plant leaves were used for RNA-seq analysis. In the mite and plant datasets, a large number of sequence reads were aligned to genomic regions of OFV RNA1 and RNA2 corresponding to transcribed viral gene mRNAs. This includes the short polyadenylated transcripts originating from the leader and trailer regions at the ends of the viral genome, which are believed to play a crucial role in viral transcription/replication. In contrast, a low number of reads were mapped to the non-transcribed regions (gene junctions). These results strongly suggested that OFV gene expression occurs both in mites and plants. Additionally, deep sequencing revealed the accumulation of OFV-derived small RNAs in mites, although their size profiles differ from those found in plants. Taken together, our results indicated that OFV replicates within a mite vector and is targeted by the RNA-silencing mechanism. en-copyright= kn-copyright= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujitaMiki en-aut-sei=Fujita en-aut-mei=Miki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TelengechPaul en-aut-sei=Telengech en-aut-mei=Paul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MaruyamKazuyuki en-aut-sei=Maruyam en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HyodoKiwamu en-aut-sei=Hyodo en-aut-mei=Kiwamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TassiAline Daniele en-aut-sei=Tassi en-aut-mei=Aline Daniele kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OchoaRonald en-aut-sei=Ochoa en-aut-mei=Ronald kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AndikaIda Bagus en-aut-sei=Andika en-aut-mei=Ida Bagus kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=6 en-affil=Tropical Research and Education Center, University of Florida kn-affil= affil-num=7 en-affil=Systematic Entomology Laboratory, USDA kn-affil= affil-num=8 en-affil=College of Plant Protection, Northwest A&F University kn-affil= affil-num=9 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= en-keyword=Rhabdovirus kn-keyword=Rhabdovirus en-keyword=Plant kn-keyword=Plant en-keyword=Mite kn-keyword=Mite en-keyword=Vector kn-keyword=Vector en-keyword=Replication kn-keyword=Replication en-keyword=mRNA kn-keyword=mRNA en-keyword=Small RNA kn-keyword=Small RNA END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=ncaf080 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250718 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Optimizing radiation dose and image quality in neonatal mobile radiography en-subtitle= kn-subtitle= en-abstract= kn-abstract=Children are more susceptible to radiation exposure than adults. Therefore, determining an appropriate radiation dose requires balancing and minimizing radiation exposure while maintaining image quality (IQ) for accurate diagnosis. We evaluated the optimal radiation dose parameters for neonatal chest and abdominal mobile radiography by assessing entrance surface dose and IQ indices. A range of exposure parameters was tested on neonatal and acrylic phantoms, and the optimal settings were determined through visual and physical evaluations. Overall, 65 kVp and 1.2 mAs provided the best balance between minimizing radiation exposure and maintaining high IQ for neonates. This study offers essential insights into optimizing radiographic conditions for neonatal care, contributing to safe and effective radiological practices. These optimized parameters can help guide future clinical applications by ensuring reduced radiation risk and enhanced diagnostic accuracy. en-copyright= kn-copyright= en-aut-name=MaedaTakahiko en-aut-sei=Maeda en-aut-mei=Takahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HaraMakoto en-aut-sei=Hara en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamasakiHiroyuki en-aut-sei=Yamasaki en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakaharaMakoto en-aut-sei=Nakahara en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TanabeYoshinori en-aut-sei=Tanabe en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Health Sciences, Department of Radiological Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Radiology, Hyogo Prefectural Kobe Childrenfs Hospital kn-affil= affil-num=3 en-affil=Department of Radiology, Hyogo Prefectural Kobe Childrenfs Hospital kn-affil= affil-num=4 en-affil=Department of Radiology, Hyogo Prefectural Tamba Medical Center kn-affil= affil-num=5 en-affil=Faculty of Medicine, Graduate School of Health Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=7 article-no= start-page=902 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250711 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Development of an Antimicrobial Coating Film for Denture Lining Materials en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/Objectives: Denture hygiene is essential for the prevention of oral candidiasis, a condition frequently associated with Candida albicans colonization on denture surfaces. Cetylpyridinium chloride (CPC)-loaded montmorillonite (CPC-Mont) has demonstrated antimicrobial efficacy in tissue conditioners and demonstrates potential for use in antimicrobial coatings. In this study, we aimed to develop and characterize CPC-Mont-containing coating films for dentures, focusing on their physicochemical behaviors and antifungal efficacies. Methods: CPC was intercalated into sodium-type montmorillonite to prepare CPC-Mont; thereafter, films containing CPC-Mont were fabricated using emulsions of different polymer types (nonionic, cationic, and anionic). CPC loading, release, and recharging behaviors were assessed at various temperatures, and activation energies were calculated using Arrhenius plots. Antimicrobial efficacy against Candida albicans was evaluated for each film using standard microbial assays. Results: X-ray diffraction analysis confirmed the expansion of montmorillonite interlayer spacing by approximately 3 nm upon CPC loading. CPC-Mont showed temperature-dependent release and recharging behavior, with higher temperatures enhancing its performance. The activation energy for CPC release was 38 kJ/mol, while that for recharging was 26 kJ/mol. Nonionic emulsions supported uniform CPC-Mont dispersion and successful film formation, while cationic and anionic emulsions did not. CPC-Mont-containing coatings maintained antimicrobial activity against Candida albicans on dentures. Conclusions: CPC-Mont can be effectively incorporated into nonionic emulsion-based films to create antimicrobial coatings for denture applications. The films exhibited temperature-responsive, reversible CPC release and recharging behaviors, while maintaining antifungal efficacy, findings which suggest the potential utility of CPC-Mont-containing films as a practical strategy to prevent denture-related candidiasis. en-copyright= kn-copyright= en-aut-name=YoshiharaKumiko en-aut-sei=Yoshihara en-aut-mei=Kumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KameyamaTakeru en-aut-sei=Kameyama en-aut-mei=Takeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NagaokaNoriyuki en-aut-sei=Nagaoka en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MaruoYukinori en-aut-sei=Maruo en-aut-mei=Yukinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YoshidaYasuhiro en-aut-sei=Yoshida en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=Van MeerbeekBart en-aut-sei=Van Meerbeek en-aut-mei=Bart kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OkiharaTakumi en-aut-sei=Okihara en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=National Institute of Advanced Industrial Science and Technology (AIST), Health and Medical Research Institute kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Dental School, Advanced Research Center for Oral and Craniofacial Science, Okayama University kn-affil= affil-num=4 en-affil=Department of Prosthodontics, Okayama University kn-affil= affil-num=5 en-affil=Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University kn-affil= affil-num=6 en-affil=BIOMAT, Department of Oral Health Sciences, KU Leuvem kn-affil= affil-num=7 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=antimicrobial kn-keyword=antimicrobial en-keyword=denture liner kn-keyword=denture liner en-keyword=cetylpyridiniumchloride kn-keyword=cetylpyridiniumchloride en-keyword=drug release kn-keyword=drug release en-keyword=drug recharge kn-keyword=drug recharge END start-ver=1.4 cd-journal=joma no-vol=121 cd-vols= no-issue=5 article-no= start-page=e70046 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250304 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Spider mite tetranins elicit different defense responses in different host habitats en-subtitle= kn-subtitle= en-abstract= kn-abstract=Spider mites (Tetranychus urticae) are a major threat to economically important crops. Here, we investigated the potential of tetranins, in particular Tet3 and Tet4, as T. urticae protein-type elicitors that stimulate plant defense. Truncated Tet3 and Tet4 proteins showed efficacy in activating the defense gene pathogenesis-related 1 (PR1) and inducing phytohormone production in leaves of Phaseolus vulgaris. In particular, Tet3 caused a drastically higher Ca2+ influx in leaves, but a lower reactive oxygen species (ROS) generation compared to other tetranins, whereas Tet4 caused a low Ca2+ influx and a high ROS generation in the host plants. Such specific and non-specific elicitor activities were examined by knockdown of Tet3 and Tet4 expressions in mites, confirming their respective activities and in particular showing that they function additively or synergistically to induce defense responses. Of great interest is the fact that Tet3 and Tet4 expression levels were higher in mites on their preferred host, P. vulgaris, compared to the levels in mites on the less-preferred host, Cucumis sativus, whereas Tet1 and Tet2 were constitutively expressed regardless of their host. Furthermore, mites that had been hosted on C. sativus induced lower levels of PR1 expression, Ca2+ influx and ROS generation, i.e., Tet3- and Tet4-responsive defense responses, in both P. vulgaris and C. sativus leaves compared to the levels induced by mites that had been hosted on P. vulgaris. Taken together, these findings show that selected tetranins respond to variable host cues that may optimize herbivore fitness by altering the anti-mite response of the host plant. en-copyright= kn-copyright= en-aut-name=EndoYukiko en-aut-sei=Endo en-aut-mei=Yukiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TanakaMiku en-aut-sei=Tanaka en-aut-mei=Miku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UemuraTakuya en-aut-sei=Uemura en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TanimuraKaori en-aut-sei=Tanimura en-aut-mei=Kaori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=DesakiYoshitake en-aut-sei=Desaki en-aut-mei=Yoshitake kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OzawaRika en-aut-sei=Ozawa en-aut-mei=Rika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=BonzanoSara en-aut-sei=Bonzano en-aut-mei=Sara kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MaffeiMassimo E. en-aut-sei=Maffei en-aut-mei=Massimo E. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ShinyaTomonori en-aut-sei=Shinya en-aut-mei=Tomonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=GalisIvan en-aut-sei=Galis en-aut-mei=Ivan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=ArimuraGen]ichiro en-aut-sei=Arimura en-aut-mei=Gen]ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science kn-affil= affil-num=2 en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science kn-affil= affil-num=3 en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science kn-affil= affil-num=4 en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science kn-affil= affil-num=5 en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science kn-affil= affil-num=6 en-affil=Center for Ecological Research, Kyoto University kn-affil= affil-num=7 en-affil=Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin kn-affil= affil-num=8 en-affil=Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin kn-affil= affil-num=9 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=10 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=11 en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science kn-affil= en-keyword=Cucumis sativus kn-keyword=Cucumis sativus en-keyword=elicitor kn-keyword=elicitor en-keyword=Phaseolus vulgaris kn-keyword=Phaseolus vulgaris en-keyword=spider mite (Tetranychus urticae) kn-keyword=spider mite (Tetranychus urticae) en-keyword=tetranin kn-keyword=tetranin END start-ver=1.4 cd-journal=joma no-vol=637 cd-vols= no-issue=8046 article-no= start-page=744 end-page=748 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250101 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Centrophilic retrotransposon integration via CENH3 chromatin in Arabidopsis en-subtitle= kn-subtitle= en-abstract= kn-abstract=In organisms ranging from vertebrates to plants, major components of centromeres are rapidly evolving repeat sequences, such as tandem repeats (TRs) and transposable elements (TEs), which harbour centromere-specific histone H3 (CENH3)1,2. Complete centromere structures recently determined in human and Arabidopsis suggest frequent integration and purging of retrotransposons within the TR regions of centromeres3,4,5. Despite the high impact of ecentrophilicf retrotransposons on the paradox of rapid centromere evolution, the mechanisms involved in centromere targeting remain poorly understood in any organism. Here we show that both Ty3 and Ty1 long terminal repeat retrotransposons rapidly turnover within the centromeric TRs of Arabidopsis species. We demonstrate that the Ty1/Copia element Tal1 (Transposon of Arabidopsis lyrata 1) integrates de novo into regions occupied by CENH3 in Arabidopsis thaliana, and that ectopic expansion of the CENH3 region results in spread of Tal1 integration regions. The integration spectra of chimeric TEs reveal the key structural variations responsible for contrasting chromatin-targeting specificities to centromeres versus gene-rich regions, which have recurrently converted during the evolution of these TEs. Our findings show the impact of centromeric chromatin on TE-mediated rapid centromere evolution, with relevance across eukaryotic genomes. en-copyright= kn-copyright= en-aut-name=TsukaharaSayuri en-aut-sei=Tsukahara en-aut-mei=Sayuri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=BousiosAlexandros en-aut-sei=Bousios en-aut-mei=Alexandros kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Perez-RomanEstela en-aut-sei=Perez-Roman en-aut-mei=Estela kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamaguchiSota en-aut-sei=Yamaguchi en-aut-mei=Sota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=LeduqueBasile en-aut-sei=Leduque en-aut-mei=Basile kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakanoAimi en-aut-sei=Nakano en-aut-mei=Aimi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NaishMatthew en-aut-sei=Naish en-aut-mei=Matthew kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OsakabeAkihisa en-aut-sei=Osakabe en-aut-mei=Akihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ToyodaAtsushi en-aut-sei=Toyoda en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ItoHidetaka en-aut-sei=Ito en-aut-mei=Hidetaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=EderaAlejandro en-aut-sei=Edera en-aut-mei=Alejandro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TominagaSayaka en-aut-sei=Tominaga en-aut-mei=Sayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=Juliarni en-aut-sei=Juliarni en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KatoKae en-aut-sei=Kato en-aut-mei=Kae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=OdaShoko en-aut-sei=Oda en-aut-mei=Shoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=InagakiSoichi en-aut-sei=Inagaki en-aut-mei=Soichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=Lorkovi?Zdravko en-aut-sei=Lorkovi? en-aut-mei=Zdravko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=NagakiKiyotaka en-aut-sei=Nagaki en-aut-mei=Kiyotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=BergerFr?d?ric en-aut-sei=Berger en-aut-mei=Fr?d?ric kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=KawabeAkira en-aut-sei=Kawabe en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=QuadranaLeandro en-aut-sei=Quadrana en-aut-mei=Leandro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=HendersonIan en-aut-sei=Henderson en-aut-mei=Ian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=KakutaniTetsuji en-aut-sei=Kakutani en-aut-mei=Tetsuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= affil-num=1 en-affil=Department of Biological Sciences, The University of Tokyo kn-affil= affil-num=2 en-affil=School of Life Sciences, University of Sussex kn-affil= affil-num=3 en-affil=School of Life Sciences, University of Sussex kn-affil= affil-num=4 en-affil=Department of Biological Sciences, The University of Tokyo kn-affil= affil-num=5 en-affil=Institute of Plant Sciences Paris]Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour lfAgriculture, lfAlimentation et lfEnvironnement, Universit? Evry, Universit? Paris kn-affil= affil-num=6 en-affil=Department of Biological Sciences, The University of Tokyo kn-affil= affil-num=7 en-affil=Department of Plant Sciences, University of Cambridge kn-affil= affil-num=8 en-affil=Department of Biological Sciences, The University of Tokyo kn-affil= affil-num=9 en-affil=Center for Genetic Resource Information, National Institute of Genetics kn-affil= affil-num=10 en-affil=Faculty of Science, Hokkaido University kn-affil= affil-num=11 en-affil=Institute of Plant Sciences Paris]Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour lfAgriculture, lfAlimentation et lfEnvironnement, Universit? Evry, Universit? Paris kn-affil= affil-num=12 en-affil=Department of Biological Sciences, The University of Tokyo kn-affil= affil-num=13 en-affil=Department of Biological Sciences, The University of Tokyo kn-affil= affil-num=14 en-affil=Department of Integrated Genetics, National Institute of Genetics kn-affil= affil-num=15 en-affil=Department of Biological Sciences, The University of Tokyo kn-affil= affil-num=16 en-affil=Department of Biological Sciences, The University of Tokyo kn-affil= affil-num=17 en-affil=Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC) kn-affil= affil-num=18 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=19 en-affil=Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC) kn-affil= affil-num=20 en-affil=Faculty of Life Sciences, Kyoto Sangyo University kn-affil= affil-num=21 en-affil=Institute of Plant Sciences Paris]Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour lfAgriculture, lfAlimentation et lfEnvironnement, Universit? Evry, Universit? Paris kn-affil= affil-num=22 en-affil=Department of Plant Sciences, University of Cambridge kn-affil= affil-num=23 en-affil=Department of Biological Sciences, The University of Tokyo kn-affil= END start-ver=1.4 cd-journal=joma no-vol=186 cd-vols= no-issue= article-no= start-page=118030 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202505 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=(+)-Terrein exerts anti-obesity and anti-diabetic effects by regulating the differentiation and thermogenesis of brown adipocytes in mice fed a high-fat diet en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objective: (+)-Terrein, a low-molecular-weight secondary metabolite from Aspergillus terreus, inhibits adipocyte differentiation in vitro. However, the precise mechanisms underlying the effects of (+)-terrein on adipocytes remain unclear. We hypothesized that (+)-terrein modulates adipogenesis and glucose homeostasis in obesity and diabetes via anti-inflammatory action and regulation of adipocyte differentiation. Hence, in this study, we aimed to investigate the in vivo anti-diabetic and anti-obesity effects of (+)-terrein.
Methods: Male C57BL/6?J mice were fed normal chow or high-fat (HF) diet and administered (+)-terrein (180?mg/kg) via intraperitoneal injection. Glucose and insulin tolerance tests, serum biochemical assays, and histological analyses were also performed. Rat brown preadipocytes, mouse brown preadipocytes (T37i cells), and inguinal white adipose tissue (ingWAT) preadipocytes were exposed to (+)-terrein during in vitro adipocyte differentiation. Molecular markers associated with thermogenesis and differentiation were quantified using real-time polymerase chain reaction and western blotting.
Results: (+)-Terrein-treated mice exhibited improved insulin sensitivity and reduced serum lipid and glucose levels, irrespective of the diet. Furthermore, (+)-terrein suppressed body weight gain and mitigated fat accumulation by activating brown adipose tissue in HF-fed mice. (+)-Terrein facilitated the in vitro differentiation of rat brown preadipocytes, T37i cells, and ingWAT preadipocytes by upregulating peroxisome proliferator-activated receptor-ƒÁ (PPARƒÁ). This effect was synergistic with that of a PPARƒÁ agonist.
Conclusion: This study demonstrated that (+)-terrein effectively induces PPARƒÁ expression and brown adipocyte differentiation, leading to reduced weight gain and improved glucose and lipid profiles in HF-fed mice. Thus, (+)-terrein is a potent novel agent with potential anti-obesity and anti-diabetic properties. en-copyright= kn-copyright= en-aut-name=Aoki-SaitoHaruka en-aut-sei=Aoki-Saito en-aut-mei=Haruka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MandaiHiroki en-aut-sei=Mandai en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakakuraTakashi en-aut-sei=Nakakura en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SasakiTsutomu en-aut-sei=Sasaki en-aut-mei=Tsutomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KitamuraTadahiro en-aut-sei=Kitamura en-aut-mei=Tadahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OmoriKazuhiro en-aut-sei=Omori en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HisadaTakeshi en-aut-sei=Hisada en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OkadaShuichi en-aut-sei=Okada en-aut-mei=Shuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SugaSeiji en-aut-sei=Suga en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YamadaMasanobu en-aut-sei=Yamada en-aut-mei=Masanobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SaitoTsugumichi en-aut-sei=Saito en-aut-mei=Tsugumichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine kn-affil= affil-num=2 en-affil=Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science kn-affil= affil-num=3 en-affil=Department of Anatomy, Teikyo University School of Medicine kn-affil= affil-num=4 en-affil=Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University kn-affil= affil-num=5 en-affil=Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University kn-affil= affil-num=6 en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Gunma University Graduate School of Health Sciences kn-affil= affil-num=8 en-affil=Department of Diabetes, Soleiyu Asahi Clinic kn-affil= affil-num=9 en-affil=Division of Applied Chemistry, Graduate School of Natural Sciences and Technology, Okayama University kn-affil= affil-num=10 en-affil=Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine kn-affil= affil-num=11 en-affil=Department of Health & Sports Sciences, Faculty of Education, Tokyo Gakugei University kn-affil= en-keyword=(+)-Terrein kn-keyword=(+)-Terrein en-keyword=Brown adipose tissue kn-keyword=Brown adipose tissue en-keyword=Thermogenesis kn-keyword=Thermogenesis en-keyword=Obesity kn-keyword=Obesity en-keyword=PPARƒÁ kn-keyword=PPARƒÁ END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=From Carboxylic Acids or Their Derivatives to Amines and Ethers: Modern Decarboxylative Approaches for Sustainable C?N and C?O Bond Formation en-subtitle= kn-subtitle= en-abstract= kn-abstract=Amines and ethers represent essential structural motifs in pharmaceuticals, natural products, organic materials, and catalytic systems. The development of novel, environmentally friendly, and cost-effective strategies for constructing C?N and C?O bonds is therefore of significant importance for the synthesis of these compounds. In recent years, carboxylic acids and their derivatives have emerged as attractive, inexpensive, non-toxic, and readily available synthetic building blocks, serving as promising alternatives to aryl halides. Growing evidence has demonstrated that decarboxylative amination and etherification of carboxylic acid derivatives offer a powerful approach for the synthesis of amines and ethers. These transformations proceed via three principal mechanistic pathways, each offering high atom economy. Specifically, carbanions (or organometallic species) generated through heterolytic decarboxylation can react with suitable electrophiles to form C?heteroatom bonds. In contrast, carbon-centred radicals produced through homolytic decarboxylation can couple with heteroatom-based reagents via radical recombination or oxidative trapping. Additionally, carbocations are typically formed via electrochemical oxidation of carboxylic acids: oxidative decarboxylation first yields a carbon radical, which is then further oxidized at the anode to generate a carbocation. This highly electrophilic intermediate can subsequently be intercepted by heteroatom nucleophiles to construct C?N or C?O bonds. This review highlights recent advances in the field, with a focus on transition metal catalysis, photoredox catalysis, and electrochemical methods for decarboxylative amination and etherification. en-copyright= kn-copyright= en-aut-name=YanWeidan en-aut-sei=Yan en-aut-mei=Weidan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TianTian en-aut-sei=Tian en-aut-mei=Tian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishiharaYasushi en-aut-sei=Nishihara en-aut-mei=Yasushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=e00678 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250623 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Alkoxy]Substituted Anthrabis(Thiadiazole)]Terthiophene Copolymers for Organic Photovoltaics: A Unique Wavy Backbone Enhances Aggregation, Molecular Order, and Device Efficiency en-subtitle= kn-subtitle= en-abstract= kn-abstract=Two polymer donors, PATz3T-o6BO and PATz3T-o6HD, incorporating alkoxy-substituted anthra[1,2-c:5,6-cŒ]bis([1,2,5]thiadiazole), were strategically designed and synthesized. The unique wavy backbone of these polymers effectively reduced aggregation, leading to enhanced solubility and significantly improved molecular ordering. Consequently, the PATz3T-o6HD:Y12-based solar cells achieved a power conversion efficiency (PCE) of 7.94%. These findings provide valuable insights into the molecular design of high-performance polymer donors for organic photovoltaics (OPVs). en-copyright= kn-copyright= en-aut-name=YanYi en-aut-sei=Yan en-aut-mei=Yi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MoriHiroki en-aut-sei=Mori en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YoshinoTomoki en-aut-sei=Yoshino en-aut-mei=Tomoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=InamiRyuki en-aut-sei=Inami en-aut-mei=Ryuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ChangJiaxin en-aut-sei=Chang en-aut-mei=Jiaxin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=GaoJunqing en-aut-sei=Gao en-aut-mei=Junqing kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NishiharaYasushi en-aut-sei=Nishihara en-aut-mei=Yasushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= en-keyword=Aggregation kn-keyword=Aggregation en-keyword=Backbone conformation kn-keyword=Backbone conformation en-keyword=Conjugated polymers kn-keyword=Conjugated polymers en-keyword=Organic solar cells kn-keyword=Organic solar cells en-keyword=Semiconducting polymers kn-keyword=Semiconducting polymers END start-ver=1.4 cd-journal=joma no-vol=39 cd-vols= no-issue=8 article-no= start-page=1653 end-page=1660 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250527 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Chemical composition of essential oil of Acacia crassicarpa Benth. (Fabaceae) from Vietnam en-subtitle= kn-subtitle= en-abstract= kn-abstract=This research aimed to identify the volatile compounds found in the fresh leaves of Acacia crassicarpa Benth. This is the first phytochemical investigation of this species. Essential oils from the leaves of A. crassicarpa were obtained by hydro-distillation and analyzed by gas chromatography coupled with mass spectrometry (GC/MS). Sixty-one compounds accounting for 95.8% of the leaf oil were identified. The classes of compounds identified in the oil sample were aldehydes (30.7%), sesquiterpene hydrocarbons (25.2%), alkanes (19.1%), oxygenated monoterpenes (3.6%) oxygenated sesquiterpenes (2.3%), monoterpene hydrocarbons (0.8%) and others (14.2%). The major constituents in the leaf oil were tridecanal (24.5%), (E)-caryophyllene (11.7%), n-heneicosane (7.2%), squalene (6.5%), and 7-tetradecenal (5.9%). en-copyright= kn-copyright= en-aut-name=Quoc DoanTuan en-aut-sei=Quoc Doan en-aut-mei=Tuan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=Tien DinhTai en-aut-sei=Tien Dinh en-aut-mei=Tai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=K. MatsumotoTetsuya en-aut-sei=K. Matsumoto en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=DinhDien en-aut-sei=Dinh en-aut-mei=Dien kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MikiNaoko en-aut-sei=Miki en-aut-mei=Naoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HirobeMuneto en-aut-sei=Hirobe en-aut-mei=Muneto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=Thi NguyenHoai en-aut-sei=Thi Nguyen en-aut-mei=Hoai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Hue Union of Science and Technology Associations (HUSTA) kn-affil= affil-num=3 en-affil=Graduate School of Science and Engineering, Ibaraki University kn-affil= affil-num=4 en-affil=Phong Dien Nature Reserve, Phong Dien district, Thua Thien Hue province kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University kn-affil= en-keyword=Acacia crassicarpa kn-keyword=Acacia crassicarpa en-keyword=Essential oil kn-keyword=Essential oil en-keyword=Tridecanal kn-keyword=Tridecanal en-keyword=(E)-Caryophyllene kn-keyword=(E)-Caryophyllene END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=10712 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241227 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Shoot-Silicon-Signal protein to regulate root silicon uptake in rice en-subtitle= kn-subtitle= en-abstract= kn-abstract=Plants accumulate silicon to protect them from biotic and abiotic stresses. Especially in rice (Oryza sativa), a typical Si-accumulator, tremendous Si accumulation is indispensable for healthy growth and productivity. Here, we report a shoot-expressed signaling protein, Shoot-Silicon-Signal (SSS), an exceptional homolog of the flowering hormone gflorigenh differentiated in Poaceae. SSS transcript is only detected in the shoot, whereas the SSS protein is also detected in the root and phloem sap. When Si is supplied from the root, the SSS transcript rapidly decreases, and then the SSS protein disappears. In sss mutants, root Si uptake and expression of Si transporters are decreased to a basal level regardless of the Si supply. The grain yield of the mutants is decreased to 1/3 due to insufficient Si accumulation. Thus, SSS is a key phloem-mobile protein for integrating root Si uptake and shoot Si accumulation underlying the terrestrial adaptation strategy of grasses. en-copyright= kn-copyright= en-aut-name=YamajiNaoki en-aut-sei=Yamaji en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=Mitani-UenoNamiki en-aut-sei=Mitani-Ueno en-aut-mei=Namiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujiiToshiki en-aut-sei=Fujii en-aut-mei=Toshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShinyaTomonori en-aut-sei=Shinya en-aut-mei=Tomonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShaoJi Feng en-aut-sei=Shao en-aut-mei=Ji Feng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=WatanukiShota en-aut-sei=Watanuki en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SaitohYasunori en-aut-sei=Saitoh en-aut-mei=Yasunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MaJian Feng en-aut-sei=Ma en-aut-mei=Jian Feng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=5 en-affil=State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture & Forestry University kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=12857 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250414 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=OsPIP2;4 aquaporin water channel primarily expressed in roots of rice mediates both water and nonselective Na+ and K+ conductance en-subtitle= kn-subtitle= en-abstract= kn-abstract=Aquaporin (AQP)-dependent water transport across membranes is indispensable in plants. Recent evidence shows that several AQPs, including plasma membrane intrinsic proteins (PIPs), facilitate the electrogenic transport of ions as well as water transport and are referred to as ion-conducting aquaporins (icAQPs). The present study attempted to identify icAQPs that exhibit cation transport activity among PIPs from rice. Electrophysiological experiments on 11 OsPIPs using Xenopus laevis oocytes revealed that OsPIP2;4 mediated the electrogenic transport of alkali monovalent cations with the selectivity sequence of Na+ ? K+ > Rb+ > Cs+ > Li+, suggesting non-selective cation conductance for Na+ and K+. Transcripts of OsPIP2;4 were abundant in the elongation and mature zones of roots with similar expression levels between the root stelar and remaining outer parts in the cultivar Nipponbare. Immunostaining using sections of the crown roots of Nipponbare plants revealed the expression of OsPIP2;4 in the exodermis and sclerenchyma of the surface region and in the endodermis and pericycle of the stelar region. The present results provide novel insights into OsPIP2;4-dependent non-selective Na+ and K+ transport and its physiological roles in rice. en-copyright= kn-copyright= en-aut-name=TranSen Thi Huong en-aut-sei=Tran en-aut-mei=Sen Thi Huong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KatsuharaMaki en-aut-sei=Katsuhara en-aut-mei=Maki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MitoYunosuke en-aut-sei=Mito en-aut-mei=Yunosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OnishiAya en-aut-sei=Onishi en-aut-mei=Aya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HigaAyaka en-aut-sei=Higa en-aut-mei=Ayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OnoShuntaro en-aut-sei=Ono en-aut-mei=Shuntaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=PaulNewton Chandra en-aut-sei=Paul en-aut-mei=Newton Chandra kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HorieRie en-aut-sei=Horie en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HaradaYoshihiko en-aut-sei=Harada en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HorieTomoaki en-aut-sei=Horie en-aut-mei=Tomoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=5 en-affil=Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University kn-affil= affil-num=6 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=7 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=8 en-affil=Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University kn-affil= affil-num=9 en-affil=Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University kn-affil= affil-num=10 en-affil=Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University kn-affil= en-keyword=Ion-conducting Aquaporins kn-keyword=Ion-conducting Aquaporins en-keyword=Non-selective cation channel kn-keyword=Non-selective cation channel en-keyword=Rice kn-keyword=Rice en-keyword=Roots kn-keyword=Roots END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=20715 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250701 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Trends in the incidence of severe fever with thrombocytopenia syndrome in Japan: an observational study from 2013 to 2022 en-subtitle= kn-subtitle= en-abstract= kn-abstract=We aimed to determine the 10-year trend in the incidence of Severe fever with thrombocytopenia syndrome (SFTS) in Japan. This retrospective observational study used a publicly available national database. Trends in the incidence of SFTS with annual percent changes (APC) were examined using Joinpoint regression analysis with stratification by patient age, season, and region. The association between disease incidence and environmental factors was investigated using Spearmanfs rank correlation. Between 2013 and 2022, there were 803 notified cases (397 males and 406 females) of SFTS, with 79.5% aged???65 years. The annual incidence rate increased continuously with an APC of 9.6%. The incidence peaked between May and June, with 80.8% of cases observed between May and October. The incidence was predominantly higher in western Japan, and the mean annual incidence rate was the highest in Miyazaki prefecture, with 0.89 per 100,000 people. Correlations between the SFTS incidence rates and environmental factors were observed in western Japan, with forest area (correlation coefficient, 0.80), followed by agricultural population rate (0.70). SFTS incidence is continuously increasing in Japan, especially among the elderly population. Environmental factors such as broader forest areas and increased agricultural population were possibly associated with the incidence. en-copyright= kn-copyright= en-aut-name=FukushimaShinnosuke en-aut-sei=Fukushima en-aut-mei=Shinnosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AkazawaHidemasa en-aut-sei=Akazawa en-aut-mei=Hidemasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KoyamaToshihiro en-aut-sei=Koyama en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HagiyaHideharu en-aut-sei=Hagiya en-aut-mei=Hideharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of General Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=2 en-affil=Department of General Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=3 en-affil=Department of Health Data Science, Dentistry, and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=4 en-affil=Department of Infectious Diseases, Okayama University Hospital kn-affil= en-keyword=Epidemiology kn-keyword=Epidemiology en-keyword=Severe fever with thrombocytopenia syndrome (SFTS) kn-keyword=Severe fever with thrombocytopenia syndrome (SFTS) en-keyword=Tick-borne infectious disease kn-keyword=Tick-borne infectious disease en-keyword=Joinpoint regression analysis kn-keyword=Joinpoint regression analysis END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=23758 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250715 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Automated identification of the origin of energy loss in nonoriented electrical steel by feature extended Ginzburg?Landau free energy framework en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study presents the automated identification of the complex magnetization reversal process in nonoriented electrical steel (NOES) using the feature extended Ginzburg?Landau (eX-GL) free energy framework. eX-GL provides a robust connection between microscopic magnetic domains and macroscopic magnetic hysteresis using a data science perspective. This method employs physically meaningful features to analyze the energy landscape, providing insights into the mechanisms behind function. We obtained features representing both the microstructure and energy of the domain wall. The causes of iron loss were traced to the original domain structure, through which we could successfully distinguish and visualize the role of pinning as a promoting and resisting factor. We found that the reversal process was governed not only by general grain boundary pinning but also by segmented magnetic domains within the grain. This method revealed the complex interplay between magnetism and metallography and introduced a new means for transformative material design, bridging structures and functions. en-copyright= kn-copyright= en-aut-name=TaniwakiMichiki en-aut-sei=Taniwaki en-aut-mei=Michiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NagaokaRyunosuke en-aut-sei=Nagaoka en-aut-mei=Ryunosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MasuzawaKen en-aut-sei=Masuzawa en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SatoShunsuke en-aut-sei=Sato en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FoggiattoAlexandre Lira en-aut-sei=Foggiatto en-aut-mei=Alexandre Lira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MitsumataChiharu en-aut-sei=Mitsumata en-aut-mei=Chiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamazakiTakahiro en-aut-sei=Yamazaki en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ObayashiIppei en-aut-sei=Obayashi en-aut-mei=Ippei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HiraokaYasuaki en-aut-sei=Hiraoka en-aut-mei=Yasuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=IgarashiYasuhiko en-aut-sei=Igarashi en-aut-mei=Yasuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MizutoriYuta en-aut-sei=Mizutori en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=HosseinSepehri Amin en-aut-sei=Hossein en-aut-mei=Sepehri Amin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=OhkuboTadakatsu en-aut-sei=Ohkubo en-aut-mei=Tadakatsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=MogiHisashi en-aut-sei=Mogi en-aut-mei=Hisashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=KotsugiMasato en-aut-sei=Kotsugi en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil=Tokyo University of Science kn-affil= affil-num=2 en-affil=Tokyo University of Science kn-affil= affil-num=3 en-affil=Tokyo University of Science kn-affil= affil-num=4 en-affil=Tokyo University of Science kn-affil= affil-num=5 en-affil=Tokyo University of Science kn-affil= affil-num=6 en-affil=Tokyo University of Science kn-affil= affil-num=7 en-affil=Tokyo University of Science kn-affil= affil-num=8 en-affil=Okayama University kn-affil= affil-num=9 en-affil=Kyoto University kn-affil= affil-num=10 en-affil=University of Tsukuba kn-affil= affil-num=11 en-affil=University of Tsukuba kn-affil= affil-num=12 en-affil=NIMS kn-affil= affil-num=13 en-affil=NIMS kn-affil= affil-num=14 en-affil=Nippon Steel kn-affil= affil-num=15 en-affil=Tokyo University of Science kn-affil= END start-ver=1.4 cd-journal=joma no-vol=653 cd-vols= no-issue= article-no= start-page=119205 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202503 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Meteoritic and asteroidal amino acid heterogeneity: Implications for planetesimal alteration conditions and sample return missions en-subtitle= kn-subtitle= en-abstract= kn-abstract=Carbonaceous chondrites (CC) and asteroid return samples contain amino acids (AA), which are essential for an origin of life on the early Earth and can provide important information concerning planetesimal alteration processes. While many studies have investigated AA from CC, separate studies have often found differing abundances for the same meteorite. Accordingly, analytical bias, differing terrestrial contamination levels and intrinsic sample heterogeneity have been proposed as potential reasons. However, current analytical techniques allow for the analysis of several mg-sized samples and can thus enable an investigation of AA heterogeneity within single meteorite specimens. Here, such an analytical technique is applied to characterise the AA in triplicate aliquots of three CCs. The results indicate that CCs are heterogenous in terms of their AA at the mm-scale. Furthermore, the results help to further constrain the effects of planetesimal alteration on organic matter and the requirements of future sample return missions that aim to obtain organic-bearing extraterrestrial materials. en-copyright= kn-copyright= en-aut-name=PotiszilChristian en-aut-sei=Potiszil en-aut-mei=Christian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OtaTsutomu en-aut-sei=Ota en-aut-mei=Tsutomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamanakaMasahiro en-aut-sei=Yamanaka en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KobayashiKatsura en-aut-sei=Kobayashi en-aut-mei=Katsura kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TanakaRyoji en-aut-sei=Tanaka en-aut-mei=Ryoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakamuraEizo en-aut-sei=Nakamura en-aut-mei=Eizo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University kn-affil= affil-num=2 en-affil=Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University kn-affil= affil-num=3 en-affil=Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University kn-affil= affil-num=4 en-affil=Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University kn-affil= affil-num=5 en-affil=Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University kn-affil= affil-num=6 en-affil=Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University kn-affil= en-keyword=Carbonaceous chondrite kn-keyword=Carbonaceous chondrite en-keyword=Heterogeneity kn-keyword=Heterogeneity en-keyword=Planetesimal kn-keyword=Planetesimal en-keyword=Aqueous alteration kn-keyword=Aqueous alteration en-keyword=Amino acid and meteorite kn-keyword=Amino acid and meteorite END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250603 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Amino Acid Substitutions in Loop C of Arabidopsis PIP2 Aquaporins Alters the Permeability of CO2 en-subtitle= kn-subtitle= en-abstract= kn-abstract=The transport of CO2 across biomembranes in plant cells is essential for efficient photosynthesis. Some aquaporins capable of CO2 transport, referred to as eCOOporinsf, are postulated to play a crucial role in leaf CO2 diffusion. However, the structural basis of CO2 permeation through aquaporins remains largely unknown. Here, we show that amino acids in loop C are critical for the CO2 permeability of Arabidopsis thaliana PIP2 aquaporins. We found that swapping tyrosine and serine in loop C to histidine and phenylalanine, which differ between AtPIP2;1 and AtPIP2;3, altered CO2 permeability when examined in the Xenopus laevis oocyte heterologous expression system. AlphaFold2 modelling indicated that these substitution induced a conformational shift in the sidechain of arginine in the aromatic/arginine (ar/R) selectivity filter and in lysine at the extracellular mouth of the monomeric pore in PIP2 aquaporins. Our findings demonstrate that distal amino acid substitutions can trigger conformational changes of the ar/R filter in the monomeric pore, modulating CO2 permeability. Additionally, phylogenetic analysis suggested that aquaporins capable of dual water/CO2 permeability are ancestral to those that are water-selective and CO2-impermeable, and CO2-selective and water impermeable. en-copyright= kn-copyright= en-aut-name=TaniaShaila Shermin en-aut-sei=Tania en-aut-mei=Shaila Shermin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UtsugiShigeko en-aut-sei=Utsugi en-aut-mei=Shigeko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TsuchiyaYoshiyuki en-aut-sei=Tsuchiya en-aut-mei=Yoshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SasanoShizuka en-aut-sei=Sasano en-aut-mei=Shizuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KatsuharaMaki en-aut-sei=Katsuhara en-aut-mei=Maki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MoriIzumi C. en-aut-sei=Mori en-aut-mei=Izumi C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=6 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=Arabidopsis thaliana kn-keyword=Arabidopsis thaliana en-keyword=CO2 transport kn-keyword=CO2 transport en-keyword=monomeric pore kn-keyword=monomeric pore en-keyword=PIP2 aquaporin kn-keyword=PIP2 aquaporin en-keyword=Xenopus laevis kn-keyword=Xenopus laevis END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=23 article-no= start-page=17720 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A meta-linked isomer of ITIC: influence of aggregation patterns on open-circuit voltage in organic solar cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=Improving the open-circuit voltage (VOC) of organic solar cells (OSCs) remains an important challenge. While it is known that the energy levels at the donor/acceptor (D/A) interface affect the VOC, the impact of aggregation patterns on the energy levels at the D/A interface has not been fully elucidated. Herein, we focus on ITIC, a widely used acceptor in OSCs, and designed a meta-linked isomer of ITIC (referred to as im-ITIC) to alter molecular symmetry and modify substitution arrangements. Concentration-dependent 1H NMR spectra revealed that im-ITIC shows stronger aggregation behavior in solution. Single-crystal X-ray analysis showed that im-ITIC forms both tail-to-tail (J-aggregation) and face-to-face (H-aggregation) stacking modes, whereas ITIC exclusively forms tail-to-tail stacking. OSCs based on PBDB-T:im-ITIC showed a high VOC value of 1.02 V, which is 0.12 V higher than that of those based on PBDB-T:ITIC. Time-resolved infrared measurements revealed the lifetime of free electrons for the pristine and blend films. The energy levels of the charge transfer state (ECT) for PBDB-T:im-ITIC- and PBDB-T:ITIC OSCs were determined to be 1.57 and 1.39 eV, respectively, correlating with the VOC values. Theoretical calculations indicated that pronounced H-aggregation in im-ITIC increases the ECT compared with J-aggregation, contributing to the improved VOC. This study underscores the critical impact of molecular aggregation patterns on energy alignment and VOC enhancement, offering insights into molecular design for achieving high VOC in OSCs. en-copyright= kn-copyright= en-aut-name=WangKai en-aut-sei=Wang en-aut-mei=Kai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=JinnaiSeihou en-aut-sei=Jinnai en-aut-mei=Seihou kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UesakaKaito en-aut-sei=Uesaka en-aut-mei=Kaito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamakataAkira en-aut-sei=Yamakata en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IeYutaka en-aut-sei=Ie en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=The Institute of Scientific and Industrial Research (SANKEN), The University of Osaka kn-affil= affil-num=2 en-affil=The Institute of Scientific and Industrial Research (SANKEN), The University of Osaka kn-affil= affil-num=3 en-affil=Graduate School of Natural Science & Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Natural Science & Technology, Okayama University kn-affil= affil-num=5 en-affil=The Institute of Scientific and Industrial Research (SANKEN), The University of Osaka kn-affil= END start-ver=1.4 cd-journal=joma no-vol=158 cd-vols= no-issue= article-no= start-page=107932 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202509 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Trends in nontuberculous mycobacterial disease mortality based on 2000-2022 data from 83 countries en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objectives: To examine the international trends for nontuberculous mycobacterial-associated mortality rates, as nontuberculous mycobacterial infections are becoming increasingly prevalent and pose a significant public health challenge, especially in older populations.
Methods: This retrospective observational study used data from the World Health Organization mortality database, which included patients with nontuberculous mycobacterial infection in 83 countries. We stratified the data by sex, age, and geographic region and calculated crude and age-standardized mortality rates to estimate long-term mortality trends.
Results: In total, 42,182 nontuberculous mycobacterial infection-associated deaths (58.1% in women) were reported in 83 countries between 2000 and 2022. The locally weighted regression model estimation for the nontuberculous mycobacterial infection-associated mortality rate more than doubled?from 0.36 deaths per 1000,000 individuals in 2000 to 0.77 deaths per 1000,000 individuals in 2022. Eighty-six percent of nontuberculous mycobacterial infection-associated deaths occurred in people aged ?65 years. The mortality rate was the highest in the Western Pacific Region.
Conclusion: This study highlights the impact of emerging nontuberculous mycobacterial diseases and the importance of targeted interventions for managing and reducing mortality, particularly in vulnerable older populations. Further studies are warranted to determine the factors contributing to geographical disparity and treatment options. en-copyright= kn-copyright= en-aut-name=HaradaKo en-aut-sei=Harada en-aut-mei=Ko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=VuQuynh Thi en-aut-sei=Vu en-aut-mei=Quynh Thi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishimuraYoshito en-aut-sei=Nishimura en-aut-mei=Yoshito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakedaTatsuaki en-aut-sei=Takeda en-aut-mei=Tatsuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HamanoHirofumi en-aut-sei=Hamano en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MinatoYusuke en-aut-sei=Minato en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ZamamiYoshito en-aut-sei=Zamami en-aut-mei=Yoshito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KoyamaToshihiro en-aut-sei=Koyama en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HagiyaHideharu en-aut-sei=Hagiya en-aut-mei=Hideharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Brookdale Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai kn-affil= affil-num=2 en-affil=Department of Health Data Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Division of Hematology/Oncology, Mayo Clinic kn-affil= affil-num=4 en-affil=Department of Education and Research Centre for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil= affil-num=6 en-affil=Center for Infectious Disease Research, Fujita Health University kn-affil= affil-num=7 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Health Data Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Infectious Diseases, Okayama University Hospital kn-affil= en-keyword=Population surveillance kn-keyword=Population surveillance en-keyword=Mortality kn-keyword=Mortality en-keyword=Nontuberculous mycobacterial infections kn-keyword=Nontuberculous mycobacterial infections END start-ver=1.4 cd-journal=joma no-vol=262 cd-vols= no-issue=2 article-no= start-page=385 end-page=395 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241023 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Analysis of the effect of permeant solutes on the hydraulic resistance of the plasma membrane in cells of Chara corallina en-subtitle= kn-subtitle= en-abstract= kn-abstract=In the cells of Chara corallina, permeant monohydric alcohols including methanol, ethanol and 1-propanol increased the hydraulic resistance of the membrane (Lpm?1). We found that the relative value of the hydraulic resistance (rLpm?1) was linearly dependent on the concentration (Cs) of the alcohol. The relationship is expressed in the equation: rLpm?1?=?ƒÏmCs?+?1, where ƒÏm is the hydraulic resistance modifier coefficient of the membrane. Ye et al. (2004) showed that membrane-permeant glycol ethers also increased Lp?1. We used their data to estimate Lpm?1 and rLpm?1. The values of rLpm?1 fit the above relation we found for alcohols. When we plotted the ƒÏm values of all the permeant alcohols and glycol ethers against their molecular weights (MW), we obtained a linear curve with a slope of 0.014 M?1/MW and with a correlation coefficient of 0.99. We analyzed the influence of the permeant solutes on the relative hydraulic resistance of the membrane (rLpm?1) as a function of the external (ƒÎ0) and internal (ƒÎi) osmotic pressures. The analysis showed that the hydraulic resistance modifier coefficients (ƒÏm) were linearly related to the MW of the permeant solutes with a slope of 0.012 M?1/MW and with a correlation coefficient of 0.84. The linear relationship between the effects of permeating solutes on the hydraulic resistance modifier coefficient (ƒÏm) and the MW can be explained in terms of the effect of the effective osmotic pressure on the hydraulic conductivity of water channels. The result of the analysis suggests that the osmotic pressure and not the size of the permeant solute as proposed by (Ye et al., J Exp Bot 55:449?461, 2004) is the decisive factor in a solutefs influence on hydraulic conductivity. Thus, characean water channels (aquaporins) respond to permeant solutes with essentially the same mechanism as to impermeant solutes. en-copyright= kn-copyright= en-aut-name=TazawaMasashi en-aut-sei=Tazawa en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WayneRandy en-aut-sei=Wayne en-aut-mei=Randy kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KatsuharaMaki en-aut-sei=Katsuhara en-aut-mei=Maki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Yoshida Biological Laboratory kn-affil= affil-num=2 en-affil=Laboratory of Natural Philosophy, Plant Biology Section, Cornell University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= en-keyword=Chara corallina kn-keyword=Chara corallina en-keyword=Effective osmotic pressure kn-keyword=Effective osmotic pressure en-keyword=Hydraulic resistance kn-keyword=Hydraulic resistance en-keyword=Plasma membrane kn-keyword=Plasma membrane en-keyword=Reflection coefficient kn-keyword=Reflection coefficient END start-ver=1.4 cd-journal=joma no-vol=169 cd-vols= no-issue= article-no= start-page=155745 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202510 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Recent progress on phenothiazine organophotoredox catalysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Photoredox catalysis has garnered significant attention in recent years due to its broad applicability in visible-light-induced organic transformations. While significant progress has been made in the development of highly oxidizing catalysts, such as acridinium catalysts, there remains a notable shortage of strongly reducing organophotoredox catalysts. Phenothiazines are widely used as photoredox catalysts owing to their unique redox potentials, particularly their low excited-state oxidation potentials (Eox* = ?1.35 V to ?3.51 V vs. SCE). Thus, they can be applied to a variety of photoredox reactions with oxidative-quenching cycles, and effectively reduce various organic molecules, such as aryl and alkyl halides, alkenes, malonyl peroxides, cobalt complexes, and redox-active esters. Due to their unique properties, this review focuses on the recent advances in phenothiazine organophotoredox catalysis. en-copyright= kn-copyright= en-aut-name=TanakaKenta en-aut-sei=Tanaka en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakamuraHiroyoshi en-aut-sei=Takamura en-aut-mei=Hiroyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KadotaIsao en-aut-sei=Kadota en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Phenothiazine kn-keyword=Phenothiazine en-keyword=Photoredox catalysis kn-keyword=Photoredox catalysis en-keyword=Visible light kn-keyword=Visible light en-keyword=Radical kn-keyword=Radical END start-ver=1.4 cd-journal=joma no-vol=965 cd-vols= no-issue=1 article-no= start-page=52 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240404 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Unraveling the Cr Isotopes of Ryugu: An Accurate Aqueous Alteration Age and the Least Thermally Processed Solar System Material en-subtitle= kn-subtitle= en-abstract= kn-abstract=The analysis of samples returned from the C-type asteroid Ryugu has drastically advanced our knowledge of the evolution of early solar system materials. However, no consensus has been obtained on the chronological data, which is important for understanding the evolution of the asteroid Ryugu. Here, the aqueous alteration age of Ryugu particles was determined by the Mn?Cr method using bulk samples, yielding an age of 4.13 + 0.62/?0.55 Myr after the formation of Ca?Al-rich inclusions (CAI). The age corresponds to 4563.17 + 0.60/?0.67 Myr ago. The higher 55Mn/52Cr, ƒÃ54Cr, and initial ƒÃ53Cr values of the Ryugu samples relative to any carbonaceous chondrite samples implies that its progenitor body formed from the least thermally processed precursors in the outermost region of the protoplanetary disk. Despite accreting at different distances from the Sun, the hydrous asteroids (Ryugu and the parent bodies of CI, CM, CR, and ungrouped C2 meteorites) underwent aqueous alteration during a period of limited duration (3.8 } 1.8 Myr after CAI). These ages are identical to the crystallization age of the carbonaceous achondirtes NWA 6704/6693 within the error. The ƒÃ54Cr and initial ƒÃ53Cr values of Ryugu and NWA 6704/6693 are also identical, while they show distinct ƒ¢'17O values. This suggests that the precursors that formed the progenitor bodies of Ryugu and NWA 6703/6693 were formed in close proximity and experienced a similar degree of thermal processing in the protosolar nebula. However, the progenitor body of Ryugu was formed by a higher ice/dust ratio, than NWA6703/6693, in the outer region of the protoplanetary disk. en-copyright= kn-copyright= en-aut-name=TanakaRyoji en-aut-sei=Tanaka en-aut-mei=Ryoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=RatnayakeDilan M. en-aut-sei=Ratnayake en-aut-mei=Dilan M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OtaTsutomu en-aut-sei=Ota en-aut-mei=Tsutomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MiklusicakNoah en-aut-sei=Miklusicak en-aut-mei=Noah kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KunihiroTak en-aut-sei=Kunihiro en-aut-mei=Tak kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=PotiszilChristian en-aut-sei=Potiszil en-aut-mei=Christian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SakaguchiChie en-aut-sei=Sakaguchi en-aut-mei=Chie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KobayashiKatsura en-aut-sei=Kobayashi en-aut-mei=Katsura kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KitagawaHiroshi en-aut-sei=Kitagawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YamanakaMasahiro en-aut-sei=Yamanaka en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=AbeMasanao en-aut-sei=Abe en-aut-mei=Masanao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MiyazakiAkiko en-aut-sei=Miyazaki en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NakatoAiko en-aut-sei=Nakato en-aut-mei=Aiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=NakazawaSatoru en-aut-sei=Nakazawa en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=NishimuraMasahiro en-aut-sei=Nishimura en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=OkadaTatsuaki en-aut-sei=Okada en-aut-mei=Tatsuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=SaikiTakanao en-aut-sei=Saiki en-aut-mei=Takanao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=TanakaSatoshi en-aut-sei=Tanaka en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=TeruiFuyuto en-aut-sei=Terui en-aut-mei=Fuyuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=TsudaYuichi en-aut-sei=Tsuda en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=UsuiTomohiro en-aut-sei=Usui en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=WatanabeSei-ichiro en-aut-sei=Watanabe en-aut-mei=Sei-ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=YadaToru en-aut-sei=Yada en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=YogataKasumi en-aut-sei=Yogata en-aut-mei=Kasumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=YoshikawaMakoto en-aut-sei=Yoshikawa en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=NakamuraEizo en-aut-sei=Nakamura en-aut-mei=Eizo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= affil-num=1 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=2 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=3 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=4 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=5 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=6 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=7 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=8 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=9 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=10 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=11 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=12 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=13 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=14 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=15 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=16 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=17 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=18 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=19 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=20 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=21 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=22 en-affil=Department of Earth and Planetary Sciences, Nagoya University kn-affil= affil-num=23 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=24 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=25 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=26 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=66 cd-vols= no-issue=5 article-no= start-page=705 end-page=721 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241220 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=SHORT AND CROOKED AWN, encoding the epigenetic regulator EMF1, promotes barley awn development en-subtitle= kn-subtitle= en-abstract= kn-abstract=The awn is a bristle-like extension from the tip of the lemma in grasses. In barley, the predominant cultivars possess long awns that contribute to grain yield and quality through photosynthesis. In addition, various awn morphological mutants are available in barley, rendering it a useful cereal crop to investigate the mechanims of awn development. Here, we identified the gene causative of the short and crooked awn (sca) mutant, which exhibits a short and curved awn phenotype. Intercrossing experiments revealed that the sca mutant induced in the Japanese cultivar (cv.) gAkashinrikih is allelic to the independently isolated moderately short-awn mutant breviaristatum-a (ari-a). Map-based cloning and sequencing revealed that SCA encodes the Polycomb group?associated protein EMBRYONIC FLOWER 1. We found that SCA affects awn development through the promotion of cell proliferation, elongation, and cell wall synthesis. RNA sequencing of cv. Bowman backcross-derived near-isogenic lines of sca and ari-a6 alleles showed that SCA is directly or indirectly involved in promoting the expression of genes related to awn development. Additionally, SCA represses various transcription factors essential for floral organ development and plant architecture, such as MADS-box and Knotted1-like homeobox genes. Notably, the repression of the C-class MADS-box gene HvMADS58 by SCA in awns is associated with the accumulation of the repressive histone modification H3K27me3. These findings highlight the potential role of SCA-mediated gene regulation, including histone modification, as a novel pathway in barley awn development. en-copyright= kn-copyright= en-aut-name=NakamuraKoki en-aut-sei=Nakamura en-aut-mei=Koki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KikuchiYuichi en-aut-sei=Kikuchi en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShiragaMizuho en-aut-sei=Shiraga en-aut-mei=Mizuho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KotakeToshihisa en-aut-sei=Kotake en-aut-mei=Toshihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HyodoKiwamu en-aut-sei=Hyodo en-aut-mei=Kiwamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TaketaShin en-aut-sei=Taketa en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IkedaYoko en-aut-sei=Ikeda en-aut-mei=Yoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Science and Engineering, Saitama University kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=6 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=7 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=barley kn-keyword=barley en-keyword=awn development kn-keyword=awn development en-keyword=EMBRYONIC FLOWER 1 (EMF1) kn-keyword=EMBRYONIC FLOWER 1 (EMF1) en-keyword=homeotic genes kn-keyword=homeotic genes en-keyword=H3K27 trimethylation kn-keyword=H3K27 trimethylation en-keyword=epigenetic regulation kn-keyword=epigenetic regulation END start-ver=1.4 cd-journal=joma no-vol=29 cd-vols= no-issue=8 article-no= start-page=379 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250709 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Clinical and microbiological effects of a propolis toothpaste in patients with periodontitis under supportive periodontal therapy: a randomized double-blind clinical trial en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objectives Propolis possesses antibacterial, anti-inflammatory, and antioxidant properties. While its application in oral care has garnered significant attention, evidence supporting its effectiveness against periodontal bacteria is limited. This study used a randomized double-blind protocol to assess the safety and efficacy of toothpaste containing propolis compared to a placebo in patients undergoing supportive periodontal therapy (SPT).
Materials and methods Thirty-two participants in SPT were randomized into two groups: toothpaste containing 2.5% ethanol-extracted propolis (EEP) and a placebo without EEP. Participants brushed twice daily for four weeks, and clinical parameters, bacterial counts, and salivary characteristics were assessed before and after the intervention.
Results The propolis group showed a significant reduction in periodontal pocket depth (P?=?0.006), with a mean depth of 3.80 mm compared to 4.35 mm in the placebo group. Bleeding on probing was significantly reduced in both groups (P?=?0.032 in the propolis group and 0.0498 in the placebo group), but did not differ between groups. Total bacterial and Porphyromonas gingivalis (P. gingivalis) counts did not differ significantly between the groups; however, the number of patients with decreased P. gingivalis was slightly larger than those in the placebo group (not significant). Additionally, saliva acidity decreased significantly in the propolis group (P?=?0.041), suggesting a shift toward a less pathogenic oral environment. No adverse events were observed.
Conclusion These findings suggest that propolis may contribute to stabilizing periodontal disease during supportive periodontal therapy by modulating salivary acidity.
Clinical relevance Periodontal pocket depth and the rate of bleeding on probing are reduced, along with decreased saliva acidity. Meanwhile, the levels of P. gingivalis in the periodontal pockets remain low. Propolis-dentifrice may help alleviate gingival inflammation during SPT.
Clinical trial registration Registered in the University Hospital Medical Information Network Clinical Trial Registry (ID: UMIN000029554). en-copyright= kn-copyright= en-aut-name=Takeuchi-HatanakaKazu en-aut-sei=Takeuchi-Hatanaka en-aut-mei=Kazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ItoMasahiro en-aut-sei=Ito en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HayashiYoshihiro en-aut-sei=Hayashi en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MaruyamaHiroe en-aut-sei=Maruyama en-aut-mei=Hiroe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KonoHiroyuki en-aut-sei=Kono en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=Shinoda-ItoYuki en-aut-sei=Shinoda-Ito en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OmoriKazuhiro en-aut-sei=Omori en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakashibaShogo en-aut-sei=Takashiba en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Periodontics and Endodontics, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Periodontics and Endodontics, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Periodontics and Endodontics, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Periodontics and Endodontics, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Periodontics and Endodontics, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Pathophysiology?Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Pathophysiology?Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Pathophysiology?Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Propolis kn-keyword=Propolis en-keyword=Toothpaste kn-keyword=Toothpaste en-keyword=Periodontitis kn-keyword=Periodontitis en-keyword=Periodontal pocket kn-keyword=Periodontal pocket en-keyword=Saliva kn-keyword=Saliva en-keyword=Randomized controlled trial kn-keyword=Randomized controlled trial END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250710 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Tumor Microvessels with Specific Morphology as a Prognostic Factor in Esophageal Squamous Cell Carcinoma en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Angiogenesis is essential for tumor progression. Microvessel density (MVD) is a widely used histological method to assess angiogenesis using immunostained sections, but its prognostic significance in esophageal cancer remains controversial. Recently, the evaluation of microvascular architecture has gained importance as a method to assess tumor aggressiveness. The present study aimed to identify the histological characteristics of tumor microvessels that are associated with the aggressiveness of esophageal squamous cell carcinoma.
Patients and Methods A total of 108 esophageal squamous cell carcinoma tissues were immunohistochemically stained with blood vessel markers and angiogenesis-related markers, including CD31, alpha smooth muscle actin, vascular endothelial growth factor A (VEGF-A), CD206, and D2-40. MVD, microvessel pericyte coverage index (MPI), and tumor vascular morphology were evaluated by microscopy.
Results MVD was significantly associated with patient outcomes, whereas neither MPI nor VEGF-A expression throughout the tumor showed a significant correlation. In addition, the presence of blood vessels encircling clusters of tumor cells, termed C-shaped microvessels, and excessively branching microvessels, termed X-shaped microvessels, was significantly associated with poor prognosis. These vessel types were also correlated with clinicopathological parameters, including deeper invasion of the primary tumor, presence of lymph node metastasis, advanced pathological stage, and distant metastasis. Focal VEGF-A immunoexpression in tumor cells was higher in areas containing C-shaped or X-shaped microvessels compared with areas lacking these vessel morphologies.
Conclusions The data suggest that tumor microvessels with specific morphologies (C-shaped and X-shaped microvessels) may serve as a promising prognostic factor in esophageal squamous cell carcinoma. en-copyright= kn-copyright= en-aut-name=TunHnin Thida en-aut-sei=Tun en-aut-mei=Hnin Thida kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujisawaMasayoshi en-aut-sei=Fujisawa en-aut-mei=Masayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OharaToshiaki en-aut-sei=Ohara en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishimuraSeitaro en-aut-sei=Nishimura en-aut-mei=Seitaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KunitomoTomoyoshi en-aut-sei=Kunitomo en-aut-mei=Tomoyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NomaKazuhiro en-aut-sei=Noma en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsukawaAkihiro en-aut-sei=Matsukawa en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Esophageal neoplasms kn-keyword=Esophageal neoplasms en-keyword=Angiogenesis kn-keyword=Angiogenesis en-keyword=Microvessel density kn-keyword=Microvessel density en-keyword=Pericytes kn-keyword=Pericytes en-keyword=VEGF-A kn-keyword=VEGF-A en-keyword=Immunohistochemistry kn-keyword=Immunohistochemistry en-keyword=Prognosis kn-keyword=Prognosis END start-ver=1.4 cd-journal=joma no-vol=177 cd-vols= no-issue=4 article-no= start-page=e70396 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202507 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=CNGC2 Negatively Regulates Stomatal Closure and Is Not Required for flg22- and H2O2-Induced Guard Cell [Ca2+]cyt Elevation in Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract=In guard cells, cytosolic Ca2+ acts as a second messenger that mediates abscisic acid (ABA)- and pathogen-associated molecular pattern (PAMP)-induced stomatal closure. It was reported that Arabidopsis cyclic nucleotide-gated ion channel 2 (CNGC2) functions as hydrogen peroxide (H2O2)- and PAMP-activated Ca2+-permeable channels at the plasma membrane of mesophyll cells and mediates Ca2+-dependent PAMP-triggered immunity. In this study, we examined the role of CNGC2 in the regulation of stomatal movement because CNGC2 is also expressed in guard cells. We found that stomata of the CNGC2 disruption mutant cngc2-3 are constitutively closed even in the absence of ABA or the flagellar-derived PAMP, flg22. Consistently, leaf temperatures of the cngc2-3 mutant were higher than those of wild-type (WT) plants. The stomatal phenotype of the cngc2-3 mutant was restored by complementation with wild-type CNGC2 under the control of the guard cell preferential promoter, pGC1. Elevation of cytosolic free Ca2+ concentration in guard cells induced by flg22 and H2O2 remained intact in the cngc2-3 mutant. The introduction of the ost1-3 mutation into the cngc2-3 background did not alter the stomatal phenotype. However, the stomatal phenotype of the cngc2-3 mutant was successfully rescued in the double disruption mutant cngc2-3aba2-2. Taken together, these results suggest that CNGC2 negatively regulates stomatal closure response and does not function as flg22? and H2O2-activated Ca2+ channels in guard cells. Though CNGC2 is responsive for H2O2- and flg22-induced [Ca2+]cyt elevation in mesophyll cells, the involvement of CNGC2 in the response to H2O2 and flg22 in guard cells is questionable. en-copyright= kn-copyright= en-aut-name=AkterRojina en-aut-sei=Akter en-aut-mei=Rojina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=InoueYasuhiro en-aut-sei=Inoue en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MasumotoSaori en-aut-sei=Masumoto en-aut-mei=Saori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MimataYoshiharu en-aut-sei=Mimata en-aut-mei=Yoshiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MatsuuraTakakazu en-aut-sei=Matsuura en-aut-mei=Takakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MoriIzumi C. en-aut-sei=Mori en-aut-mei=Izumi C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakamuraToshiyuki en-aut-sei=Nakamura en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakamuraYoshimasa en-aut-sei=Nakamura en-aut-mei=Yoshimasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MurataYoshiyuki en-aut-sei=Murata en-aut-mei=Yoshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MunemasaShintaro en-aut-sei=Munemasa en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Agriculture, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=6 en-affil= kn-affil= affil-num=7 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=10 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=calcium signaling kn-keyword=calcium signaling en-keyword=CNGC kn-keyword=CNGC en-keyword=stomata kn-keyword=stomata END start-ver=1.4 cd-journal=joma no-vol=8 cd-vols= no-issue=13 article-no= start-page=9595 end-page=9603 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250616 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Microagglomerate of VO2 Particles Packing Paraffin Wax Using Capillary Force as a Latent Thermal Energy Storage Medium en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study proposed a material to retain paraffin wax with vanadium dioxide (VO2) particles as a latent thermal energy storage medium, an alternative to core?shell microcapsules containing phase change materials. VO2 microparticles, which were synthesized through a sol?gel method and annealing process, were dispersed in the oil-in-water microemulsion to obtain microagglomerates of VO2 microparticles. The average diameter of microagglomerates was 5 ƒÊm, and they retained paraffin wax at the vacancies among VO2 particles. Although the microagglomerates had no complete shells similar to core?shell microcapsules, the microagglomerates successfully trapped paraffin wax droplets without any leakage even in a high-temperature environment. It was because capillary forces acting among VO2 particles strictly prevented any leakage of paraffin waxes. The differential scanning calorimetry revealed that the microagglomerates contained only 16.5 wt % of n-octadecane, used as a paraffin wax. However, since VO2 particles can release or absorb latent heat due to their metal?insulator phase transition, the proposed microagglomerates exhibited higher thermal energy storage densities than phase change microcapsules whose shells do not show phase transitions. Moreover, the microagglomerates exhibited higher thermal conductivity than microcapsules with amorphous inorganic shells because the VO2 particles were crystallized through annealing. The proposed microagglomerate is a promising form for further improving the thermal energy storage density and thermal performance of the latent thermal energy storage medium, especially in the temperature range of 30 to 70 ‹C. en-copyright= kn-copyright= en-aut-name=IsobeKazuma en-aut-sei=Isobe en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamauchiKaketo en-aut-sei=Yamauchi en-aut-mei=Kaketo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamadaYutaka en-aut-sei=Yamada en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HoribeAkihiko en-aut-sei=Horibe en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=microagglomerate kn-keyword=microagglomerate en-keyword=vanadium dioxide kn-keyword=vanadium dioxide en-keyword=paraffin wax kn-keyword=paraffin wax en-keyword=latent thermal energy storage medium kn-keyword=latent thermal energy storage medium en-keyword=capillary force kn-keyword=capillary force en-keyword=thermal energy storage density kn-keyword=thermal energy storage density en-keyword=thermal conductivity kn-keyword=thermal conductivity END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=26 article-no= start-page=12024 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Collective motions in the primary coordination sphere: a critical functional framework for catalytic activity of the oxygen-evolving complex of photosystem II en-subtitle= kn-subtitle= en-abstract= kn-abstract=Photosynthetic water oxidation, vital for dioxygen production and light energy conversion, is catalyzed by the oxygen-evolving complex of photosystem II, where the inorganic Mn4CaO5 cluster acts as the catalytic core. In this study, we investigate the functional significance of collective motions of amino acid side chains within the primary coordination sphere of the Mn cluster, focusing on their role in modulating the energetic demands for catalytic transformations in the S3 state. We applied regularized canonical correlation analysis to quantitatively correlate the three-dimensional arrangement of coordinating atoms with catalytic driving forces computed via density functional theory. Our analysis reveals that distinct collective side chain motions profoundly influence the energetic requirements for structural reconfigurations of the Mn cluster, achieved through expansion and contraction of the ligand cavity while fine-tuning its geometry to stabilize key intermediates. Complementary predictions from a neural network-based machine learning model indicate that the coordination sphere exerts a variable energetic impact on the catalytic transformations of the Mn cluster, depending on the S-state environment. Integrated computational analyses suggest that the extended lifetime of the S3YZ? state, consistently observed after three flash illuminations, may result from slow, progressive protein dynamics that continuously reshape the energy landscape, thereby shifting the equilibrium positions of rapid, reversible chemical processes over time. Overall, our findings demonstrate that collective motions in the primary coordination sphere constitute an active, dynamic framework essential for the efficient execution of multi-electron catalysis under ambient conditions, while simultaneously achieving a high selectivity with irreversible nature required for effective 3O2 evolution. en-copyright= kn-copyright= en-aut-name=IsobeHiroshi en-aut-sei=Isobe en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SuzukiTakayoshi en-aut-sei=Suzuki en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SugaMichihiro en-aut-sei=Suga en-aut-mei=Michihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamaguchiKizashi en-aut-sei=Yamaguchi en-aut-mei=Kizashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil= kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=5 en-affil=Center for Quantum Information and Quantum Biology, Osaka University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=1 article-no= start-page=2 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250128 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effect of temperature cycles on the sleep-like state in Hydra vulgaris en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Sleep is a conserved physiological phenomenon across species. It is mainly controlled by two processes: a circadian clock that regulates the timing of sleep and a homeostat that regulates the sleep drive. Even cnidarians, such as Hydra and jellyfish, which lack a brain, display sleep-like states. However, the manner in which environmental cues affect sleep-like states in these organisms remains unknown. In the present study, we investigated the effects of light and temperature cycles on the sleep-like state in Hydra vulgaris.
Results Our findings indicate that Hydra responds to temperature cycles with a difference of up to 5‹ C, resulting in decreased sleep duration under light conditions and increased sleep duration in dark conditions. Furthermore, our results reveal that Hydra prioritizes temperature changes over light as an environmental cue. Additionally, our body resection experiments show tissue-specific responsiveness in the generation ofthe sleep-like state under different environmental cues. Specifically, the upper body can generate the sleep-like state in response to a single environmental cue. In contrast, the lower body did not respond to 12-h light?dark cycles at a constant temperature.
Conclusions These findings indicate that both light and temperature influence the regulation of the sleep-like state in Hydra. Moreover, these observations highlight the existence of distinct regulatory mechanisms that govern patterns of the sleep-like state in brainless organisms, suggesting the potential involvement of specific regions for responsiveness of environmental cues for regulation of the sleep-like state. en-copyright= kn-copyright= en-aut-name=SatoAya en-aut-sei=Sato en-aut-mei=Aya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SekiguchiManabu en-aut-sei=Sekiguchi en-aut-mei=Manabu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakadaKoga en-aut-sei=Nakada en-aut-mei=Koga kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YoshiiTaishi en-aut-sei=Yoshii en-aut-mei=Taishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ItohTaichi Q. en-aut-sei=Itoh en-aut-mei=Taichi Q. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Faculty of Arts and Science, Kyushu University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Systems Life Sciences, Kyushu University kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Faculty of Arts and Science, Kyushu University kn-affil= en-keyword=Hydra kn-keyword=Hydra en-keyword=Sleep kn-keyword=Sleep en-keyword=Temperature kn-keyword=Temperature en-keyword=Environmental cues kn-keyword=Environmental cues END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=10819 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241230 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A high-protein diet-responsive gut hormone regulates behavioral and metabolic optimization in Drosophila melanogaster en-subtitle= kn-subtitle= en-abstract= kn-abstract=Protein is essential for all living organisms; however, excessive protein intake can have adverse effects, such as hyperammonemia. Although mechanisms responding to protein deficiency are well-studied, there is a significant gap in our understanding of how organisms adaptively suppress excessive protein intake. In the present study, utilizing the fruit fly, Drosophila melanogaster, we discover that the peptide hormone CCHamide1 (CCHa1), secreted by enteroendocrine cells in response to a high-protein diet (HPD), is vital for suppressing overconsumption of protein. Gut-derived CCHa1 is received by a small subset of enteric neurons that produce short neuropeptide F, thereby modulating protein-specific satiety. Importantly, impairment of the CCHa1-mediated gut-enteric neuronal axis results in ammonia accumulation and a shortened lifespan under HPD conditions. Collectively, our findings unravel the crosstalk of gut hormone and neuronal pathways that orchestrate physiological responses to prevent and adapt to dietary protein overload. en-copyright= kn-copyright= en-aut-name=YoshinariYuto en-aut-sei=Yoshinari en-aut-mei=Yuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishimuraTakashi en-aut-sei=Nishimura en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YoshiiTaishi en-aut-sei=Yoshii en-aut-mei=Taishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KondoShu en-aut-sei=Kondo en-aut-mei=Shu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TanimotoHiromu en-aut-sei=Tanimoto en-aut-mei=Hiromu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KobayashiTomoe en-aut-sei=Kobayashi en-aut-mei=Tomoe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsuyamaMakoto en-aut-sei=Matsuyama en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NiwaRyusuke en-aut-sei=Niwa en-aut-mei=Ryusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University kn-affil= affil-num=2 en-affil=Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science kn-affil= affil-num=5 en-affil=Graduate School of Life Sciences, Tohoku University kn-affil= affil-num=6 en-affil=Division of Molecular Genetics, Shigei Medical Research Institute kn-affil= affil-num=7 en-affil=Division of Molecular Genetics, Shigei Medical Research Institute kn-affil= affil-num=8 en-affil=Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba kn-affil= END start-ver=1.4 cd-journal=joma no-vol=41 cd-vols= no-issue=7 article-no= start-page=1073 end-page=1082 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250520 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Direct insertion of an ion channel immobilized on a soft agarose gel bead into a lipid bilayer: an optimized method en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this paper, we report the development of a device that improves the conventional artificial lipid bilayer method and can measure channel currents more efficiently. Ion channel proteins are an attractive research target in biophysics, because their functions can be measured at the single-molecule level with high time resolution. In addition, they have attracted attention as targets for drug discovery because of their crucial roles in vivo. Although electrophysiological methods are powerful tools for studying channel proteins, they suffer from low measurement efficiency and require considerable skill. In our previous paper, we reported that by immobilizing channel proteins on agarose gel beads and forming an artificial lipid bilayer on the bead surface, we simultaneously solved two problems that had been hindering the efficiency of the artificial bilayer method: the time-consuming formation of artificial lipid bilayers and the time-consuming incorporation of channels into artificial bilayers. Previous studies have utilized crosslinked hard beads; however, here we show that channel current measurement can be achieved more simply and efficiently using non-crosslinked soft beads. In this study, we detailed the process of immobilizing channel proteins on the surface of non-crosslinked beads through chemical modification, allowing us to measure their channel activity. This method enables current measurements without the need for stringent bead size selection or high negative pressure. en-copyright= kn-copyright= en-aut-name=AsakuraMami en-aut-sei=Asakura en-aut-mei=Mami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WangShuyan en-aut-sei=Wang en-aut-mei=Shuyan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HiranoMinako en-aut-sei=Hirano en-aut-mei=Minako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IdeToru en-aut-sei=Ide en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=Ion channel kn-keyword=Ion channel en-keyword=Artificial lipid bilayer kn-keyword=Artificial lipid bilayer en-keyword=Suction fixation kn-keyword=Suction fixation en-keyword=Soft agarose bead kn-keyword=Soft agarose bead en-keyword=Current recording kn-keyword=Current recording END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=5 article-no= start-page=489 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250430 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Mutagenesis Targeting the S153 Residue Within the Transmembrane ƒÀ-Hairpin of Mosquito-Larvicidal Mpp46Ab Affects Its Toxicity and the Synergistic Toxicity with Cry4Aa en-subtitle= kn-subtitle= en-abstract= kn-abstract=We constructed a library of Mpp46Ab mutants, in which S153 within the transmembrane ƒÀ-hairpin was randomly replaced by other amino acids. Mutagenesis and subsequent primary screening yielded 10 different Mpp46Ab mutants in addition to the wild type. Remarkably, S153 was replaced with a more hydrophobic amino acid in most of the mutants, and the S153I mutant in particular exhibited significantly increased toxicity. Electrophysiologic analysis using artificial lipid bilayers revealed that the single-channel conductance and PK/PCl permeability ratio were significantly increased for S153I pores. This suggests that the formation of highly ion-permeable and highly cation-selective toxin pores increases the influx of cations and water into cells, thereby facilitating osmotic shock. In addition, the S153F, S153L, and S153I mutants exhibited significantly reduced synergistic toxicity with Cry4Aa. Electrophysiologic analysis showed that the S153F, S153L, and S153I mutants form toxin pores with a significantly reduced PK/PNa permeability ratio and a significantly increased PK/PCa permeability ratio compared to wild-type pores. Thus, our results suggest that pore formation is central to the insecticidal activity of Mpp46Ab and that the ion permeability of toxin pores is a potential indicator correlated with both toxicity and synergistic toxicity with other toxins. en-copyright= kn-copyright= en-aut-name=HayakawaTohru en-aut-sei=Hayakawa en-aut-mei=Tohru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamaokaSyun en-aut-sei=Yamaoka en-aut-mei=Syun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AsakuraMami en-aut-sei=Asakura en-aut-mei=Mami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HiranoMinako en-aut-sei=Hirano en-aut-mei=Minako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IdeToru en-aut-sei=Ide en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=Bacillus thuringiensis kn-keyword=Bacillus thuringiensis en-keyword=mosquito-larvicidal proteins kn-keyword=mosquito-larvicidal proteins en-keyword=synergistic toxicity kn-keyword=synergistic toxicity en-keyword=Culex pipiens mosquito larvae kn-keyword=Culex pipiens mosquito larvae en-keyword=side-directed mutagenesis kn-keyword=side-directed mutagenesis en-keyword=electrophysiologic analysis kn-keyword=electrophysiologic analysis END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=18 article-no= start-page=2413456 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250320 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Cryo-EM Analysis of a Tri-Heme Cytochrome-Associated RC-LH1 Complex from the Marine Photoheterotrophic Bacterium Dinoroseobacter Shibae en-subtitle= kn-subtitle= en-abstract= kn-abstract=The reaction center-light harvesting 1 (RC-LH1) complex converts solar energy into electrical energy, driving the initiation of photosynthesis. The authors present a cryo-electron microscopy structure of the RC-LH1 isolated from a marine photoheterotrophic bacterium Dinoroseobacter shibae. The RC comprises four subunits, including a three-heme cytochrome (Cyt) c protein, and is surrounded by a closed LH ring composed of 17 pairs of antenna subunits. Notably, a novel subunit with an N-terminal ghelix-turn-helixh motif embedded in the gap between the RC and the LH ring is identified. The purified RC-LH1 complex exhibits high stability in solutions containing Mg2+ or Ca2+. The periplasmic Cyt c2 is predicted to bind at the junction between the Cyt subunit and the membrane plane, enabling electron transfer from Cyt c2 to the proximal heme of the tri-heme Cyt, and subsequently to the special pair of bacteriochlorophylls. These findings provide structural insights into the efficient energy and electron transfer processes within a distinct type of RC-LH1, and shed light on evolutionary adaptations of photosynthesis. en-copyright= kn-copyright= en-aut-name=WangWeiwei en-aut-sei=Wang en-aut-mei=Weiwei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=LiuYanting en-aut-sei=Liu en-aut-mei=Yanting kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=GuJiayi en-aut-sei=Gu en-aut-mei=Jiayi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AnShaoya en-aut-sei=An en-aut-mei=Shaoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MaCheng en-aut-sei=Ma en-aut-mei=Cheng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=GaoHaichun en-aut-sei=Gao en-aut-mei=Haichun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=JiaoNianzhi en-aut-sei=Jiao en-aut-mei=Nianzhi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShenJian]Ren en-aut-sei=Shen en-aut-mei=Jian]Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=BeattyJohn Thomas en-aut-sei=Beatty en-aut-mei=John Thomas kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=Kobl??ekMichal en-aut-sei=Kobl??ek en-aut-mei=Michal kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=ZhangXing en-aut-sei=Zhang en-aut-mei=Xing kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=ZhengQiang en-aut-sei=Zheng en-aut-mei=Qiang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=ChenJing]Hua en-aut-sei=Chen en-aut-mei=Jing]Hua kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=College of Life Sciences, Zhejiang University kn-affil= affil-num=2 en-affil=State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University kn-affil= affil-num=3 en-affil=College of Life Sciences, Zhejiang University kn-affil= affil-num=4 en-affil=Department of Pathology of Sir Run Run Shaw Hospital, Department of Biophysics, Zhejiang University School of Medicine kn-affil= affil-num=5 en-affil=Department of Pathology of Sir Run Run Shaw Hospital, Department of Biophysics, Zhejiang University School of Medicine kn-affil= affil-num=6 en-affil=College of Life Sciences, Zhejiang University kn-affil= affil-num=7 en-affil=State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University kn-affil= affil-num=8 en-affil=Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=9 en-affil=Department of Microbiology & Immunology, University of British Columbia kn-affil= affil-num=10 en-affil=Laboratory of Anoxygenic Phototrophs, Institute of Microbiology, Czech Academy of Science kn-affil= affil-num=11 en-affil=Department of Pathology of Sir Run Run Shaw Hospital, Department of Biophysics, Zhejiang University School of Medicine kn-affil= affil-num=12 en-affil=State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University kn-affil= affil-num=13 en-affil=College of Life Sciences, Zhejiang University kn-affil= en-keyword=energy transfer kn-keyword=energy transfer en-keyword=photoheterotrophic bacteria kn-keyword=photoheterotrophic bacteria en-keyword=photosynthesis kn-keyword=photosynthesis en-keyword=reaction center kn-keyword=reaction center en-keyword=structure kn-keyword=structure END start-ver=1.4 cd-journal=joma no-vol=297 cd-vols= no-issue= article-no= start-page=128540 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2026 dt-pub=202601 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Microfluidic paper-based analytical devices for antioxidant vitamins C and E in foods en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this study, we developed microfluidic paper-based analytical devices (ƒÊPADs) for the determination of antioxidant vitamins. The proposed ƒÊPADs utilize the reduction of metal ions by hydrophilic and hydrophobic antioxidant vitamins, which is followed by colorimetric reactions with chelating reagents. Hydrophilic vitamin C reduces Fe(III) to Fe(II) and forms a stable Fe(II)-bathophenanthroline complex in an aqueous solution. By contrast, this complex is unstable in organic solvents, and hydrophobic vitamin E requires Fe(III) and bathophenanthroline to be replaced with Cu(II) and bathocuproine. In these results, the relationship between the logarithm of a vitamin's concentration and its color intensity was linear and ranged from 4.4 to 35 mg L?1 for ascorbic acid and 50?200 mg L?1 for ƒ¿-tocopherol. The limits of detection, estimated from the standard deviation of blank samples, were 3.1 mg L?1 for ascorbic acid and either 27 mg L?1 (in hexane) or 48 mg L?1 (in ethanol) for ƒ¿-tocopherol. The proposed method was used to quantify vitamin C in bell peppers, mandarin oranges, kiwifruit, and lemons, as well as vitamin E in almonds, almond milk, and dietary supplements. The results demonstrate the effectiveness of these ƒÊPADs for the practical analysis of antioxidant vitamins in food samples. en-copyright= kn-copyright= en-aut-name=KawaharaMana en-aut-sei=Kawahara en-aut-mei=Mana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=DanchanaKaewta en-aut-sei=Danchana en-aut-mei=Kaewta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KanetaTakashi en-aut-sei=Kaneta en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Chemistry, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemistry, Okayama University kn-affil= affil-num=3 en-affil=Department of Chemistry, Okayama University kn-affil= en-keyword=Microfluidic paper-based analytical device kn-keyword=Microfluidic paper-based analytical device en-keyword=Vitamin C kn-keyword=Vitamin C en-keyword=Vitamin E kn-keyword=Vitamin E en-keyword=Antioxidant vitamin kn-keyword=Antioxidant vitamin en-keyword=Metal complex kn-keyword=Metal complex END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250418 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Innovations in paper-based analytical devices and portable absorption photometers for onsite analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Two types of analytical instruments and devices?one sophisticated high-performance instrument and another portable device?have been the focus of recent trends in analytical science. The necessity of point-of-care testing and onsite analysis has accelerated the advancement of high-performance, user-friendly portable analytical devices such as paper-based analytical devices (PADs) and light-emitting diode-based portable photometers. In this review, we summarize our achievements in the study of PADs and portable photometers. Several types of PADs are capable of performing titrations, metal ion analysis, and food analysis, while photometers, which consist of paired emitter?detector light-emitting diode (PEDD) photometers, are used for thiocyanate and herbicide analysis. These PADs and photometers permit the onsite determination of real environmental, body fluid, and food samples when an equipped laboratory is unavailable. en-copyright= kn-copyright= en-aut-name=SeetasangSasikarn en-aut-sei=Seetasang en-aut-mei=Sasikarn kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UmedaMika I. en-aut-sei=Umeda en-aut-mei=Mika I. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=RenJianchao en-aut-sei=Ren en-aut-mei=Jianchao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KanetaTakashi en-aut-sei=Kaneta en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Chemistry, Faculty of Science and Technology, Thammasat University kn-affil= affil-num=2 en-affil=Department of Chemistry, Okayama University kn-affil= affil-num=3 en-affil=Department of Chemistry, Okayama University kn-affil= affil-num=4 en-affil=Department of Chemistry, Okayama University kn-affil= en-keyword=Point-of-care testing kn-keyword=Point-of-care testing en-keyword=Onsite analysis kn-keyword=Onsite analysis en-keyword=Paper-based analytical device kn-keyword=Paper-based analytical device en-keyword=Paired emitter?detector light-emitting diode kn-keyword=Paired emitter?detector light-emitting diode en-keyword=Photometer kn-keyword=Photometer en-keyword=Environmental analysis kn-keyword=Environmental analysis en-keyword=Food analysis kn-keyword=Food analysis END start-ver=1.4 cd-journal=joma no-vol=35 cd-vols= no-issue=12 article-no= start-page=2916 end-page=2926.e3 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Oxytocin facilitates human touch-induced play behavior in rats en-subtitle= kn-subtitle= en-abstract= kn-abstract=Pleasant touch sensations play a fundamental role in social bonding, yet the neural mechanisms underlying affinity-like behaviors remain poorly understood. Here, we demonstrate that juvenile-adolescent rats, which naturally engage in social play with peers characterized by rough-and-tumble interactions and 50 kHz ultrasonic vocalizations indicating pleasant sensations, develop a strong affinity for human hands through similar playful contact achieved by repeated tickling with human hands. Using this rat with tickling-induced high affinity for human hands, we discovered that repeated tickling mimicking rough-and-tumble play led to increased oxytocin receptor (OTR) expression in the ventrolateral part of the ventromedial hypothalamus (VMHvl). Inhibition of oxytocin signaling in the VMHvl reduced affinity-like behaviors from rats to human hands. These findings suggest that OTR neurons in VMHvl play an important role in the increase in affinity for human hands induced by pleasant touch sensation with human touch-induced play behavior. Based on retrograde and anterograde tracing studies examining the supraoptic nucleus (SON) and the paraventricular nucleus (PVN) as primary sources of oxytocin, we demonstrate that a subset of oxytocin fibers in the VMHvl originate from the SON, suggesting that affinity-like behavior from rats to human hands may be controlled by oxytocin signaling from magnocellular neurons. Together, this work advances our understanding of how oxytocin shapes social behavior and may inform the development of therapeutic strategies to promote positive social interactions. en-copyright= kn-copyright= en-aut-name=HayashiHimeka en-aut-sei=Hayashi en-aut-mei=Himeka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TateishiSayaka en-aut-sei=Tateishi en-aut-mei=Sayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=InutsukaAyumu en-aut-sei=Inutsuka en-aut-mei=Ayumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MaejimaSho en-aut-sei=Maejima en-aut-mei=Sho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HagiwaraDaisuke en-aut-sei=Hagiwara en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SakumaYasuo en-aut-sei=Sakuma en-aut-mei=Yasuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OnakaTatsushi en-aut-sei=Onaka en-aut-mei=Tatsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=GrinevichValery en-aut-sei=Grinevich en-aut-mei=Valery kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SakamotoHirotaka en-aut-sei=Sakamoto en-aut-mei=Hirotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Biology, Faculty of Environmental, Life, Natural Science and Technology, Okayama University, kn-affil= affil-num=2 en-affil=Ushimado Marine Institute (UMI), Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University kn-affil= affil-num=4 en-affil=Ushimado Marine Institute (UMI), Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, German Center for Psychiatry (DZPG), Medical Faculty Mannheim, University of Heidelberg kn-affil= affil-num=6 en-affil=Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Nippon Medical School kn-affil= affil-num=7 en-affil=Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University kn-affil= affil-num=8 en-affil=Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, German Center for Psychiatry (DZPG), Medical Faculty Mannheim, University of Heidelberg kn-affil= affil-num=9 en-affil=Department of Biology, Faculty of Environmental, Life, Natural Science and Technology, Okayama University, kn-affil= en-keyword=tickling kn-keyword=tickling en-keyword=oxytocin kn-keyword=oxytocin en-keyword=oxytocin receptor kn-keyword=oxytocin receptor en-keyword=ventrolateral part of the ventromedial hypothalamus kn-keyword=ventrolateral part of the ventromedial hypothalamus en-keyword=affinity-like behaviors kn-keyword=affinity-like behaviors END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue= article-no= start-page=100242 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202504 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Photochemical internalization of mRNA using a photosensitizer and nucleic acid carriers en-subtitle= kn-subtitle= en-abstract= kn-abstract=mRNA has great potential for therapeutic applications because it can encode a variety of proteins and antigens, in addition to advantages over DNA in terms of gene expression without genomic integration, nuclear localization, or transcription. However, therapeutic applications of mRNA require safe and effective delivery into target cells. Therefore, we aimed to investigate photochemical internalization (PCI) as a promising strategy for delivering mRNA to target cells. In this strategy, mRNA is taken up into cells by endocytosis, accumulates in endosomes, and is released in a light-dependent manner from the endosomes using an endosome-accumulating photosensitizer, aluminum phthalocyanine disulfonate (AlPcS2a), in combination with nucleic acid carrier molecules. We compared the efficacy of various nucleic acid carriers, including branched polyethyleneimine (bPEI) and poly{N'-[N-(2-aminoethyl)-2-aminoethyl] aspartamide} (PAsp(DET)) under the same conditions for PCI-based mRNA delivery. Our results indicated that bPEI and PAsp(DET) at low N/P ratios exhibited efficient light-enhancement of mRNA expression by PCI with AlPcS2a. Notably, bPEI exhibited the highest light-dependent mRNA delivery among the carriers evaluated (including cationic polymers, cationic peptides, and lipids), whereas PAsp(DET) showed promise for clinical use because of its lower toxicity compared with bPEI. This PCI strategy allows effective cytosolic mRNA delivery at low N/P ratios, thereby reducing cationic carrier molecule-induced cytotoxicity. This method allows spatiotemporal control of protein expression and holds potential for novel light-dependent mRNA therapies. Overall, this study provided valuable insights into optimizing mRNA delivery systems for therapeutic applications. en-copyright= kn-copyright= en-aut-name=MaemotoHayaki en-aut-sei=Maemoto en-aut-mei=Hayaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SuzakiRyohei en-aut-sei=Suzaki en-aut-mei=Ryohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WatanabeKazunori en-aut-sei=Watanabe en-aut-mei=Kazunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ItakaKeiji en-aut-sei=Itaka en-aut-mei=Keiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OhtsukiTakashi en-aut-sei=Ohtsuki en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=3 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=4 en-affil=Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University kn-affil= affil-num=5 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=mRNA kn-keyword=mRNA en-keyword=Photochemical internalization kn-keyword=Photochemical internalization en-keyword=Photosensitizer kn-keyword=Photosensitizer END start-ver=1.4 cd-journal=joma no-vol=41 cd-vols= no-issue=4 article-no= start-page=329 end-page=334 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241220 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Efficient single-channel current measurements of the human BK channel using a liposome-immobilized gold probe en-subtitle= kn-subtitle= en-abstract= kn-abstract=The human BK channel (hBK) is an essential membrane protein that regulates various biological functions, and its dysfunction leads to serious diseases. Understanding the biophysical properties of hBK channels is crucial for drug development. Artificial lipid bilayer recording is used to measure biophysical properties at the single-channel level. However, this technique is time-consuming and complicated; thus, its measurement efficiency is very low. Previously, we developed a novel technique to improve the measurement efficiency by rapidly forming lipid bilayer membranes and incorporating ion channels into the membrane using a hydrophilically modified gold probe. To further improve our technique for application to the hBK channel, we combined it using the gold probe with a liposome fusion method. Using a probe on which liposomes containing hBK channels were immobilized, the channels were efficiently incorporated into the lipid bilayer membrane, and the measured channel currents showed the current characteristics of the hBK channel. This technique will be useful for the efficient measurements of the channel properties of hBK and other biologically important channels. en-copyright= kn-copyright= en-aut-name=HiranoMinako en-aut-sei=Hirano en-aut-mei=Minako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AsakuraMami en-aut-sei=Asakura en-aut-mei=Mami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IdeToru en-aut-sei=Ide en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=Human BK channel kn-keyword=Human BK channel en-keyword=Artificial lipid bilayer recording kn-keyword=Artificial lipid bilayer recording en-keyword=Ion channel current kn-keyword=Ion channel current en-keyword=Single-channel recording kn-keyword=Single-channel recording END start-ver=1.4 cd-journal=joma no-vol=3 cd-vols= no-issue=1 article-no= start-page=32 end-page=35 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250627 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The relationship between sleep disorder and dairy intake in university students of the nursing department in Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study was conducted to clarify the relationship between sleep disorders and frequency, or timing of dairy intake with 192 university students in Japan. Pearsonfs chi-squared test was carried out to find the relationship between two groups of sleep disorders and the timing of dairy product intake (p = 0.034, df = 4, ƒÔ2 = 10.38). The sleep disorder occurred significantly less if participants took a dairy product in the morning (p = 0.004) and significantly more when participants took a dairy product in the afternoon (p = 0.028). The findings showed that consuming dairy products in the morning is effective in treating sleep disorders. en-copyright= kn-copyright= en-aut-name=EdahiroShiho en-aut-sei=Edahiro en-aut-mei=Shiho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakebayashiMaho en-aut-sei=Takebayashi en-aut-mei=Maho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KobayashiYui en-aut-sei=Kobayashi en-aut-mei=Yui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakahataYoko en-aut-sei=Takahata en-aut-mei=Yoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Nursing, Faculty of Medicine, Okayama University kn-affil= affil-num=2 en-affil=Department of Nursing, Faculty of Medicine, Okayama University kn-affil= affil-num=3 en-affil=Department of Nursing, Faculty of Medicine, Okayama University kn-affil= affil-num=4 en-affil=Department of Nursing, Faculty of Medicine, Okayama University kn-affil= en-keyword=sleep disorder kn-keyword=sleep disorder en-keyword=the frequency of dairy products kn-keyword=the frequency of dairy products en-keyword=the timing of dairy products kn-keyword=the timing of dairy products en-keyword=nursing students kn-keyword=nursing students END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=1 article-no= start-page=311 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250703 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Co-occurrence of interstitial lung disease and pulmonary embolism as adverse events of adjuvant osimertinib treatment for EGFR mutant non-small cell lung cancer: a case report en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Postoperative osimertinib for EGFR mutant non-small cell lung cancer has become the standard of care. However, its adverse events in clinical practice remain unclear. We report a case of interstitial lung disease and pulmonary embolism occurring simultaneously as adverse events during adjuvant osimertinib treatment.
Case presentation A 74-year-old woman, diagnosed with left lower lobe lung adenocarcinoma harboring an EGFR mutation, underwent a left lower lobectomy with lymph node dissection. During adjuvant osimertinib therapy, the patient developed respiratory distress with hypoxia, leading to the diagnosis of interstitial lung disease. Despite immediate steroid therapy, respiratory distress persisted, the patient developed leg edema. She was diagnosed with deep vein thrombosis and pulmonary embolism via contrast-enhanced computed tomography scan. Following treatment with steroid and anticoagulation, her clinical symptoms improved rapidly, and she showed no recurrence of interstitial lung disease, pulmonary embolism, or lung cancer over the following nine months.
Conclusions We encountered a case of interstitial lung disease and pulmonary embolism occurring simultaneously as adverse events during adjuvant osimertinib treatment. In patients with osimertinib-induced interstitial lung disease, particularly when respiratory symptoms show poor improvement with steroid treatment, the possibility of pulmonary embolism complications should be suspected. en-copyright= kn-copyright= en-aut-name=ManabeKenta en-aut-sei=Manabe en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShienKazuhiko en-aut-sei=Shien en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FurukawaShinichi en-aut-sei=Furukawa en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SenoTomoya en-aut-sei=Seno en-aut-mei=Tomoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IshimuraKousei en-aut-sei=Ishimura en-aut-mei=Kousei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TanakaShin en-aut-sei=Tanaka en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SuzawaKen en-aut-sei=Suzawa en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OkazakiMikio en-aut-sei=Okazaki en-aut-mei=Mikio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SugimotoSeiichiro en-aut-sei=Sugimoto en-aut-mei=Seiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Thoracic Surgery, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Thoracic Surgery, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Thoracic Surgery, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Thoracic Surgery, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Thoracic Surgery, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Thoracic Surgery, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Thoracic Surgery, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Thoracic Surgery, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Thoracic Surgery, Okayama University Hospital kn-affil= affil-num=10 en-affil=Department of Thoracic Surgery, Okayama University Hospital kn-affil= en-keyword=Osimertinib kn-keyword=Osimertinib en-keyword=Lung cancer kn-keyword=Lung cancer en-keyword=Interstitial lung disease kn-keyword=Interstitial lung disease en-keyword=Pulmonary embolism kn-keyword=Pulmonary embolism END start-ver=1.4 cd-journal=joma no-vol=3 cd-vols= no-issue=1 article-no= start-page=11 end-page=21 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250627 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Relationship between media literacy and searching skills on report assignments in nursing students in Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objective: This study evaluates the relationship between information access and media literacy attitudes. We also assessed the impact of gMedical Literature Readingh on media literacy among Japanese university students. Methods: A cross-sectional study was conducted from April 2?16 and from August 2?16, 2024. A self-reporting questionnaire, including the school year, was used to determine if participants had taken the gMedical Literature Readingh course and to identify the sources often used for reporting assignments and media literacy. Results: This study included 195 subjects. The differences in media literacy scores between school years were analyzed. The total scores of fourth-year students were significantly higher than those of first-year on the media literacy scale (p = 0.014). The differences in media literacy scores among students enrolled in gMedical Literature Readingh were analyzed. The scores on the media literacy scale (p = 0.006) were significantly higher in participants than in non-participants. The relationships among the three groups by sources used for report assignments, school years (ƒÔ2(6) = 42.101, p < 0.0001), and history of taking gMedical Literature Readingh (ƒÔ2(2) = 7.048, p = 0.030) were also analyzed. Conclusions: Media literacy improved with schooling. Certain report assignments and subjects related to information literacy were found to have affected media literacy. Combining continuing experience and knowledge can lead to improvements in media literacy. en-copyright= kn-copyright= en-aut-name=NagaoYurii en-aut-sei=Nagao en-aut-mei=Yurii kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YanoWakana en-aut-sei=Yano en-aut-mei=Wakana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakahataYoko en-aut-sei=Takahata en-aut-mei=Yoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Nursing, Faculty of Medicine, Okayama University kn-affil= affil-num=2 en-affil=Department of Nursing, Faculty of Medicine, Okayama University kn-affil= affil-num=3 en-affil=Department of Nursing, Faculty of Medicine, Okayama University kn-affil= en-keyword=Media literacy kn-keyword=Media literacy en-keyword=Media literacy education kn-keyword=Media literacy education en-keyword=Nursing department kn-keyword=Nursing department en-keyword=University students kn-keyword=University students END start-ver=1.4 cd-journal=joma no-vol=40 cd-vols= no-issue=2 article-no= start-page=99 end-page=108 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250620 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Evaluation of Drying Process of a Slurry Droplet Containing Water-soluble Polymer kn-title=…—n«‚•ªŽqŠÜ—LƒXƒ‰ƒŠ[‰t“HŠ£‘‡‰ß’ö‚Ì•]‰¿ en-subtitle= kn-subtitle= en-abstract= kn-abstract=The granulation process of a slurry droplet containing a water-soluble polymer in a spray dryer is investigated. Although there have been many studies on the drying behavior of a single-component slurry droplet, there have been few reports for a multicomponent slurry droplet. This is due to the complexity and difficulty in evaluating the drying behavior of a multicomponent slurry droplet. Therefore, for the production of granules from multicomponent materials by a spray dryer, its operating conditions are usually determined by trial and error. To optimize the practical granule production process, the drying behavior of multicomponent slurry droplets should be studied. In this study, the drying behavior of a silica slurry droplet containing polyvinyl alcohol (PVA) is investigated. The drying behavior of a droplet suspended on the tip of a needle was observed. The effect of the volume fraction of PVA on the drying behavior and the morphology of a dried granule is studied. The effect of drying condition on the granule formation process is also investigated. As a result, the structure of dried granules was strongly influenced by PVA concentration. Segregation of PVA in the dried granules was observed. Based on the results, the drying process diagram is presented. en-copyright= kn-copyright= en-aut-name=NakasoKoichi en-aut-sei=Nakaso en-aut-mei=Koichi kn-aut-name=’†‘]_ˆê kn-aut-sei=’†‘] kn-aut-mei=_ˆê aut-affil-num=1 ORCID= en-aut-name=YamashitaDaichi en-aut-sei=Yamashita en-aut-mei=Daichi kn-aut-name=ŽR‰º‘å’q kn-aut-sei=ŽR‰º kn-aut-mei=‘å’q aut-affil-num=2 ORCID= en-aut-name=AoyamaYutaro en-aut-sei=Aoyama en-aut-mei=Yutaro kn-aut-name=ÂŽR—S‘Ÿ˜Y kn-aut-sei=ÂŽR kn-aut-mei=—S‘Ÿ˜Y aut-affil-num=3 ORCID= en-aut-name=MinoYasushi en-aut-sei=Mino en-aut-mei=Yasushi kn-aut-name=ŽO–ì‘׎u kn-aut-sei=ŽO–ì kn-aut-mei=‘׎u aut-affil-num=4 ORCID= en-aut-name=GotohKuniaki en-aut-sei=Gotoh en-aut-mei=Kuniaki kn-aut-name=Œã“¡–M² kn-aut-sei=Œã“¡ kn-aut-mei=–M² aut-affil-num=5 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil=‰ªŽR‘åŠwŠwpŒ€‹†‰@ŠÂ‹«¶–œŽ©‘R‰ÈŠwŠwˆæ affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil=‰ªŽR‘åŠw‘åŠw‰@Ž©‘R‰ÈŠwŒ€‹†‰È affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil=‰ªŽR‘åŠw‘åŠw‰@Ž©‘R‰ÈŠwŒ€‹†‰È affil-num=4 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil=‰ªŽR‘åŠwŠwpŒ€‹†‰@ŠÂ‹«¶–œŽ©‘R‰ÈŠwŠwˆæ affil-num=5 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil=‰ªŽR‘åŠwŠwpŒ€‹†‰@ŠÂ‹«¶–œŽ©‘R‰ÈŠwŠwˆæ en-keyword=Spray Dryer kn-keyword=Spray Dryer en-keyword=Drying kn-keyword=Drying en-keyword=Droplet kn-keyword=Droplet en-keyword=Slurry kn-keyword=Slurry en-keyword=Water-Soluble Polymer kn-keyword=Water-Soluble Polymer END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=7 article-no= start-page=808 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250630 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Carnosol, a Rosemary Ingredient Discovered in a Screen for Inhibitors of SARM1-NAD+ Cleavage Activity, Ameliorates Symptoms of Peripheral Neuropathy en-subtitle= kn-subtitle= en-abstract= kn-abstract=Sterile alpha and Toll/interleukin receptor motif-containing protein 1 (SARM1) is a nicotinamide adenine dinucleotide (NAD+) hydrolase involved in axonal degeneration and neuronal cell death. SARM1 plays a pivotal role in triggering the neurodegenerative processes that underlie peripheral neuropathies, traumatic brain injury, and neurodegenerative diseases. Importantly, SARM1 knockdown or knockout prevents the degeneration; as a result, SARM1 has been attracting attention as a potent therapeutic target. In recent years, the development of several SARM1 inhibitors derived from synthetic chemical compounds has been reported; however, no dietary ingredients with SARM1 inhibitory activity have been identified. Therefore, we here focused on dietary ingredients and found that carnosol, an antioxidant contained in rosemary, inhibits the NAD+-cleavage activity of SARM1. Purified carnosol inhibited the enzymatic activity of SARM1 and suppressed neurite degeneration and cell death induced by the anti-cancer medicine vincristine (VCR). Carnosol also inhibited VCR-induced hyperalgesia symptoms, suppressed the loss of intra-epidermal nerve fibers in vivo, and reduced the blood fluid level of phosphorylated neurofilament-H caused by an axonal degeneration event. These results indicate that carnosol has a neuroprotective effect via SARM1 inhibition in addition to its previously known antioxidant effect via NF-E2-related factor 2 and thus suppresses neurotoxin-induced peripheral neuropathy. en-copyright= kn-copyright= en-aut-name=MurataHitoshi en-aut-sei=Murata en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OgawaKazuki en-aut-sei=Ogawa en-aut-mei=Kazuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YasuiYu en-aut-sei=Yasui en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OchiToshiki en-aut-sei=Ochi en-aut-mei=Toshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TomonobuNahoko en-aut-sei=Tomonobu en-aut-mei=Nahoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamamotoKen-Ichi en-aut-sei=Yamamoto en-aut-mei=Ken-Ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KinoshitaRie en-aut-sei=Kinoshita en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=WadaYoji en-aut-sei=Wada en-aut-mei=Yoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NakamuraHiromichi en-aut-sei=Nakamura en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NishiboriMasahiro en-aut-sei=Nishibori en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SakaguchiMasakiyo en-aut-sei=Sakaguchi en-aut-mei=Masakiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Tama Biochemical Co., Ltd. kn-affil= affil-num=3 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Tama Biochemical Co., Ltd. kn-affil= affil-num=9 en-affil=Tama Biochemical Co., Ltd. kn-affil= affil-num=10 en-affil=Department of Translational Research and Drug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=SARM1 kn-keyword=SARM1 en-keyword=carnosol kn-keyword=carnosol en-keyword=NAD+ kn-keyword=NAD+ en-keyword=axon degeneration kn-keyword=axon degeneration en-keyword=peripheral neuropathy kn-keyword=peripheral neuropathy END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=e202510319 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250626 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Development of a Vinylated Cyclic Allene: A Fleeting Strained Diene for the Diels?Alder Reaction en-subtitle= kn-subtitle= en-abstract= kn-abstract=Fleeting molecules possessing strained multiple bonds are important components in organic synthesis due to their ability to undergo various chemical reactions driven by the release of strain energy. Although the use of strained ƒÎ-bonds as 2ƒÎ components, represented by dienophiles in Diels?Alder reactions, has been well studied, gthe strained diene (4ƒÎ component) approachh for molecular construction remains underexplored. Herein, we report the design of a vinyl cyclic allene (1-vinyl-1,2-cyclohexadiene) as a highly reactive strained diene and the development of its Diels?Alder reactions. Experimental and computational studies of vinyl cyclic allenes revealed that this diene system undergoes cycloaddition with dienophiles regio- and stereoselectively under mild reaction conditions. These studies also provide insight into the reactivity and selectivity of the system. The strained diene approach enables the convergent construction of polycyclic molecules through bond disconnections distinct from conventional retrosynthetic analysis, thus offering an efficient strategy for the assembly of functional molecules. en-copyright= kn-copyright= en-aut-name=MizoguchiHaruki en-aut-sei=Mizoguchi en-aut-mei=Haruki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ObataTakumi en-aut-sei=Obata en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HiraiTaiki en-aut-sei=Hirai en-aut-mei=Taiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KomatsuManaka en-aut-sei=Komatsu en-aut-mei=Manaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SakakuraAkira en-aut-sei=Sakakura en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Activation strain model kn-keyword=Activation strain model en-keyword=Carbocycles kn-keyword=Carbocycles en-keyword=Diels?Alder reaction kn-keyword=Diels?Alder reaction en-keyword=Strained diene kn-keyword=Strained diene en-keyword=Vinylated cyclic allene kn-keyword=Vinylated cyclic allene END start-ver=1.4 cd-journal=joma no-vol=34 cd-vols= no-issue=3 article-no= start-page=152 end-page=161 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Osteogenesis imperfecta: pathogenesis, classification, and treatment en-subtitle= kn-subtitle= en-abstract= kn-abstract=Osteogenesis imperfecta (OI) is a congenital skeletal disorder characterized by varying degrees of bone fragility and deformities. Extraskeletal manifestations, such as blue sclera, dentinogenesis imperfecta, growth disturbance, hearing impairment, and muscle weakness, occasionally accompany OI. Many genes have been identified as causative of OI, such as the type I collagen gene and genes involved in the folding, processing, and crosslinking of type I collagen molecules, osteoblast differentiation, and bone mineralization. According to the discovery of the causative gene of OI, nosology and classifications have also been revised and the gdyadic approachh based nomenclature according to the severity and each causative gene of OI was recently adopted. Intravenous or oral bisphosphonates have been administered to treat bone fragility in children with OI and a reduction in the frequency of bone fractures has been reported. However, despite the increase of bone mineral density, evidence of bone fracture prevention is limited. Recently, excessive transforming growth factor ƒÀ signaling pathway and excessive endoplasmic reticulum stress have been reported as the pathogenesis of OI, and treatment strategies based on these pathogeneses have been developed. This review summarizes the molecular basis, transition of nosology and classification, status of bisphosphonate therapy, and development of treatment strategies. en-copyright= kn-copyright= en-aut-name=HasegawaKosei en-aut-sei=Hasegawa en-aut-mei=Kosei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= en-keyword=fracture kn-keyword=fracture en-keyword=child kn-keyword=child en-keyword=bisphosphonate kn-keyword=bisphosphonate en-keyword=classification kn-keyword=classification en-keyword=treatment kn-keyword=treatment END start-ver=1.4 cd-journal=joma no-vol=89 cd-vols= no-issue=7 article-no= start-page=930 end-page=938 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250625 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Hemodynamic Changes After Wire Frame Occluders vs. Metal Mesh Devices for Atrial Septal Defect en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Transcatheter atrial septal defect (ASD) closure is the first treatment option for secundum ASD, but parameters for optimal device selection have not been established. We compared outcomes between occluders with a wire frame and metal mesh devices.
Methods and Results: This study included secundum ASD patients implanted with a wire frame occluder (GORE?CARDIOFORM ASD occluder [GCA]; W.L. Gore & Associates) or metal mesh devices (Amplatzer septal occluder device [Abbott] and Occlutech Figulla Flex II device [Occlutech]). The presence of residual shunt and B-type natriuretic peptide (BNP) levels after implantation were compared. Of the 970 patients with either GCA (n=48) or a metal mesh device (n=922; control), 42 patients from each group were analyzed after propensity score matching. The prevalence of residual shunt was significantly lower in the GCA group 1 day and 1 month after implantation (P<0.001 and P=0.017, respectively), whereas there was no significant difference between the 2 groups 6 months later (P=0.088). BNP levels at 1 month were significantly higher in the GCA group (ratio of change 1.36; 95% confidence interval [CI] 1.01?1.83), but did not differ significantly between the 2 groups at 6 months (ratio of change 1.04; 95% CI 0.65?1.65).
Conclusions: Patients implanted with a wire frame occluder had a lower prevalence of residual shunt and a greater increase in BNP levels in the early period after implantation. en-copyright= kn-copyright= en-aut-name=NakashimaMitsutaka en-aut-sei=Nakashima en-aut-mei=Mitsutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakayaYoichi en-aut-sei=Takaya en-aut-mei=Yoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=EjiriKentaro en-aut-sei=Ejiri en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MikiTakashi en-aut-sei=Miki en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakayamaRie en-aut-sei=Nakayama en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakagawaKoji en-aut-sei=Nakagawa en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AkagiTeiji en-aut-sei=Akagi en-aut-mei=Teiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YuasaShinsuke en-aut-sei=Yuasa en-aut-mei=Shinsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Amplatzer septal occluder kn-keyword=Amplatzer septal occluder en-keyword=GORE? CARDIOFORM ASD occluder kn-keyword=GORE? CARDIOFORM ASD occluder en-keyword=Occlutech Figulla Flex II kn-keyword=Occlutech Figulla Flex II en-keyword=Transcatheter atrial septal defect closure kn-keyword=Transcatheter atrial septal defect closure END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250604 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Efficacy of transcatheter patent foramen ovale closure for drug-resistant migraine: initial experience in Japan and long-term outcome en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study evaluates the efficacy and safety of transcatheter patent foramen ovale (PFO) closure for the treatment of drug-resistant migraine in Japan. Previous studies have suggested a potential benefit for migraine with aura, although large-scale trials in the United States and Europe have failed to confirm efficacy as a primary endpoint. The study included 27 patients (mean age 36.4 years, 15 female, 21 with aura) who had more than two migraine attacks per month despite medication. All had PFO confirmed by transesophageal echocardiography and underwent transcatheter closure with the Amplatzer PFO Occluder. Patients were followed up to 12 months with migraine severity monitored by headache specialist. The procedure was successful and without complications in all cases. One patient required a larger occluder (35 mm) due to the size of PFO. At 12 months, 22 of 27 (81%) patients reported either complete resolution or improvement of migraine. Specifically, 10 of 21 (48%) patients with aura experienced complete resolution of migraine at one year. Patients without aura had a lower response rate, with only one case of complete resolution. Despite limitations such as the lack of a control group and potential patient selection bias, the study demonstrated that PFO closure may provide significant relief for patients with drug-resistant migraine, particularly those with aura. These findings support further investigation to better define its clinical indications and potential benefits. en-copyright= kn-copyright= en-aut-name=AkagiTeiji en-aut-sei=Akagi en-aut-mei=Teiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakayaYoichi en-aut-sei=Takaya en-aut-mei=Yoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MikiTakashi en-aut-sei=Miki en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakayamaRie en-aut-sei=Nakayama en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakagawaKoji en-aut-sei=Nakagawa en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakashimaMitsuki en-aut-sei=Nakashima en-aut-mei=Mitsuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakahashiYoshiaki en-aut-sei=Takahashi en-aut-mei=Yoshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HishikawaNozomi en-aut-sei=Hishikawa en-aut-mei=Nozomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YuasaShinsuke en-aut-sei=Yuasa en-aut-mei=Shinsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Patent foramen ovale kn-keyword=Patent foramen ovale en-keyword=Migraine kn-keyword=Migraine en-keyword=Headache kn-keyword=Headache en-keyword=Stroke kn-keyword=Stroke en-keyword=Catheter kn-keyword=Catheter END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=1 article-no= start-page=e70055 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250107 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Short]process incudo]stapedioplasty in congenital ear malformation en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objectives: Although various stapedotomy and stapedectomy techniques exist, anchoring the piston can be challenging. We present a novel surgical approach for treating congenital stapes malformations with an atypical facial nerve trajectory.
Methods: This is a case of a 7-year-old boy presenting with bilateral conductive hearing loss. Prior attempts at tympanoplasty had proven unsuccessful in improving his hearing. Presurgical imaging studies revealed an unusual anatomical configuration, with the facial nerve positioned inferior to the oval window. This anatomical variation precluded the use of conventional prosthesis-anchoring techniques typically employed in stapedotomies. Thus, we devised an innovative approach, opting to anchor the prosthesis to the short process of the incus.
Results: This novel technique circumvented the atypical course of the facial nerve, allowing for successful reconstruction of the ossicular chain. The patient demonstrated an acceptable improvement (30?dB gain) in hearing 1-year post-surgery, with no reported complications.
Conclusion: This case underscores the critical importance of adapting surgical techniques to address the unique anatomical challenges that may arise in the context of congenital ear malformations. It also highlights the potential of the short process of the incus as a viable alternative anchoring site for stapes prostheses, thereby improving the outcomes of such complex cases. This technique not only restored the patient's hearing but also contributed valuable insights into the management of similar cases, potentially improving the quality of life for individuals with rare and challenging anatomical variations.
Level of evidence: 5. en-copyright= kn-copyright= en-aut-name=OmichiRyotaro en-aut-sei=Omichi en-aut-mei=Ryotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KariyaShin en-aut-sei=Kariya en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SugayaAkiko en-aut-sei=Sugaya en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AndoMizuo en-aut-sei=Ando en-aut-mei=Mizuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Otolaryngology-Head and Neck Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=2 en-affil=Department of Otolaryngology-Head and Neck Surgery, Kawasaki Medical School kn-affil= affil-num=3 en-affil=Department of Otolaryngology-Head and Neck Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=4 en-affil=Department of Otolaryngology-Head and Neck Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= en-keyword=congenital ear malformation kn-keyword=congenital ear malformation en-keyword=incus kn-keyword=incus en-keyword=prosthesis kn-keyword=prosthesis en-keyword=stapedectomy kn-keyword=stapedectomy en-keyword=stapedotomy kn-keyword=stapedotomy END start-ver=1.4 cd-journal=joma no-vol=32 cd-vols= no-issue=4 article-no= start-page=773 end-page=782 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250508 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Japanese translation of the Functional Assessment of Cancer Therapy-Breast?+?4 (FACT-B?+?4) following international guidelines: a verification of linguistic validity en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background For breast cancer patients, postoperative lymphedema and upper limb movement disorders are serious complications that absolutely reduce their quality of life (QOL). To evaluate this serious complication, we used gQuick Dashh or gFACT-Bh, which can assess a patient's physical, social, emotional, and functional health status. To evaluate their breast cancer surgery-related dysfunction correctly, gFACT-B?+?4h was created by adding four questions about garm swelling'' and gtendernessh. We have translated it into Japanese according to international translation guidelines.
Methods At the beginning, we contacted FACT headquarters that we would like to create a Japanese version of FACT-B?+?4. They formed the FACIT Trans Team (FACIT) following international translation procedures, and then, we began translating according to them. The steps are 1: perform gForward and Reverse translationsh to create a gPreliminary Japanese versionh, 2: request the cooperation of 5 breast cancer patients and gconduct a pilot studyh and gquestionnaire surveyh, and 3: amendments and final approval based on pilot study results and clinical perspectives.
Result In Step1, FACIT requested faithful translation of the words, verbs, and nouns from the original text. In Step2, patients reported that they felt uncomfortable with the Japanese version words such as gnumb'' and gstiffness'' and felt that it might be difficult to describe their symptoms accurately. In Step3, we readjusted the translation to be more concise and closer to common Japanese language, and performed gStep1h again to ensure that the translation definitely retained the meaning of the original.
Conclusion A Japanese version of FACT has existed until now, but there was no Japanese version of FACT-B?+?4, which adds four additional items to evaluate swelling and pain in the upper limbs. This time, we have created a Japanese version that has been approved by FACT. en-copyright= kn-copyright= en-aut-name=TsukiokiTakahiro en-aut-sei=Tsukioki en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakataNozomu en-aut-sei=Takata en-aut-mei=Nozomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=DennisSaya R. en-aut-sei=Dennis en-aut-mei=Saya R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TerataKaori en-aut-sei=Terata en-aut-mei=Kaori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SagaraYasuaki en-aut-sei=Sagara en-aut-mei=Yasuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SakaiTakehiko en-aut-sei=Sakai en-aut-mei=Takehiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakayamaShin en-aut-sei=Takayama en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KitagawaDai en-aut-sei=Kitagawa en-aut-mei=Dai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KikawaYuichiro en-aut-sei=Kikawa en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TakahashiYuko en-aut-sei=Takahashi en-aut-mei=Yuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=IwataniTsuguo en-aut-sei=Iwatani en-aut-mei=Tsuguo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=HaraFumikata en-aut-sei=Hara en-aut-mei=Fumikata kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=FujisawaTomomi en-aut-sei=Fujisawa en-aut-mei=Tomomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=ShienTadahiko en-aut-sei=Shien en-aut-mei=Tadahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital kn-affil= affil-num=2 en-affil=Simpson Querrey Biomedical Research Center, Northwestern University kn-affil= affil-num=3 en-affil=Department of Preventive Medicine Feinberg School of Medicine, Northwestern University kn-affil= affil-num=4 en-affil=Department of Breast and Endocrine Surgery, Akita University Hospital kn-affil= affil-num=5 en-affil=Department of Breast Surgical Oncology, Social Medical Corporation Hakuaikai Sagara Hospital kn-affil= affil-num=6 en-affil=Department of Surgical Oncology, Breast Oncology Center, Cancer Institute Hospital of JFCR kn-affil= affil-num=7 en-affil=Department of Breast Surgery, National Cancer Center Hospital kn-affil= affil-num=8 en-affil=Department of Breast Surgical Oncology, National Center for Global Health and Medicine kn-affil= affil-num=9 en-affil=Department of Breast Surgery, Kansai Medical University Hospital kn-affil= affil-num=10 en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital kn-affil= affil-num=11 en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital kn-affil= affil-num=12 en-affil=Department of Breast Oncology, Aichi Cancer Center Hospital kn-affil= affil-num=13 en-affil=Department of Breast Cancer, Gunma Prefectural Cancer Center kn-affil= affil-num=14 en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital kn-affil= en-keyword=Breast cancer kn-keyword=Breast cancer en-keyword=FACT-B kn-keyword=FACT-B en-keyword=FACT-B+4 kn-keyword=FACT-B+4 en-keyword=QOL kn-keyword=QOL END start-ver=1.4 cd-journal=joma no-vol=71 cd-vols= no-issue=3 article-no= start-page=321 end-page=343 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250220 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Physiological and Biochemical Traits of Dormancy Release and Growth Resumption in Japanese Cedar in the Warm-Temperate Zone en-subtitle= kn-subtitle= en-abstract= kn-abstract=Global warming will disturb dormancy release and growth resumption of trees. To better understand this process, it is important to investigate physiological and biochemical traits related to these stages. We examined dormancy release and growth resumption in Japanese cedar (Cryptomeria japonica [L.] D. Don), an evergreen needle-leaved tree, in the warm-temperate zone by evaluating budbreak under growth-promoting conditions, and simultaneously examining respiration rates and contents of carbohydrates and phytohormones in shoots from November 2022 to March 2023. A long time to budbreak and the lowest budbreak rates of 75% in November indicated shallow dormancy. Budbreak rates of 98%, short time to budbreak, and first appearance of budbreak in the field in March indicated growth resumption. Continuous changes in budbreak rates and time to budbreak between dormancy and growth resumption indicated dormancy was gradually released. Surges in budbreak rates in December indicated dormancy was almost completely released by early winter. Contents of abscisic acid (ABA) and salicylic acid (SA) decreased from November, remained low in March, and were strongly associated with budbreak rates according to principal component analysis. It was suggested that the depletion of SA led to the depletion of ABA, contributing to dormancy release and growth resumption. Fructose and trans-zeatin accumulated until February, and low levels of starch, indole-3-acetic acid, jasmonic acid, and jasmonic acid-isoleucine during winter was followed by accumulation in March. Although these biochemical traits were less related to budbreak rates compared to ABA and SA, they seemed to assist either dormancy release or growth resumption. en-copyright= kn-copyright= en-aut-name=HiejimaShoma en-aut-sei=Hiejima en-aut-mei=Shoma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SeinoHiroto en-aut-sei=Seino en-aut-mei=Hiroto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HachisukaRico en-aut-sei=Hachisuka en-aut-mei=Rico kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WatanabeYuka en-aut-sei=Watanabe en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MatsuuraTakakazu en-aut-sei=Matsuura en-aut-mei=Takakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MoriIzumi C. en-aut-sei=Mori en-aut-mei=Izumi C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=UgawaShin en-aut-sei=Ugawa en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=The United Graduate School of Agricultural Sciences, Kagoshima University kn-affil= affil-num=2 en-affil=Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University kn-affil= affil-num=3 en-affil=The United Graduate School of Agricultural Sciences, Kagoshima University kn-affil= affil-num=4 en-affil=Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=6 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=7 en-affil=The United Graduate School of Agricultural Sciences, Kagoshima University kn-affil= en-keyword=Japanese cedar kn-keyword=Japanese cedar en-keyword=Warm-temperate zone kn-keyword=Warm-temperate zone en-keyword=Dormancy release kn-keyword=Dormancy release en-keyword=Growth resumption kn-keyword=Growth resumption en-keyword=Physio-biochemical traits kn-keyword=Physio-biochemical traits END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=5434-25 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Secondary aortoduodenal fistula in a patient with vascular Beh?et's disease en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=HagiyaHideharu en-aut-sei=Hagiya en-aut-mei=Hideharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HondaHiroyuki en-aut-sei=Honda en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Infectious Diseases, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Aortoduodenal fistula kn-keyword=Aortoduodenal fistula en-keyword=repeated bacteremia kn-keyword=repeated bacteremia en-keyword=polymicrobial bacteremia kn-keyword=polymicrobial bacteremia en-keyword=graft infection kn-keyword=graft infection END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=10 article-no= start-page=1692 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250516 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Clinical Characteristics of Vitamin D Deficiency Detected in Long COVID Patients During the Omicron Phase en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: To characterize the clinical significance of vitamin D deficiency (VDD) detected in long COVID, a retrospective observational study was performed for outpatients who visited our clinic during the period from May 2024 to November 2024. Methods: Clinical trends in long COVID patients diagnosed with VDD who showed serum concentrations of 25-hydroxyvitamin D (25-OHD) lower than 20 ng/mL were compared with those in long COVID patients in a non-deficient vitamin D (NDD) group. Results: Of 126 patients with long COVID, 97 patients (female: 50) who had been infected during the Omicron phase were included. Sixty-six patients (68%) were classified in the VDD group. The median serum concentrations of 25-OHD were 14.8 ng/mL in the VDD group and 22.9 ng/mL in the NDD group. There were no significant differences between the two groups in terms of age, gender, BMI, severity of COVID-19, period after infection and vaccination history. Although the levels of serum calcium and phosphate were not significantly different between the two groups, the percentages of patients in the VDD group who complained of dizziness, memory impairment, palpitation and appetite loss were larger than those in the NDD group. Of note, the patients who complained of palpitation showed significantly lower concentrations of serum 25-OHD than those in the patients without palpitation (median: 11.9 vs. 17.3 ng/mL). Moreover, patients in the VDD group had significantly higher scores for physical and mental fatigue as well as higher scores for depressive symptoms. Conclusions: Collectively, VDD is involved in clinical manifestations of long COVID, particularly symptoms of palpitation, fatigue and depression. en-copyright= kn-copyright= en-aut-name=MatsudaYui en-aut-sei=Matsuda en-aut-mei=Yui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SakuradaYasue en-aut-sei=Sakurada en-aut-mei=Yasue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakanoYasuhiro en-aut-sei=Nakano en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OtsukaYuki en-aut-sei=Otsuka en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TokumasuKazuki en-aut-sei=Tokumasu en-aut-mei=Kazuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HondaHiroyuki en-aut-sei=Honda en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SoejimaYoshiaki en-aut-sei=Soejima en-aut-mei=Yoshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YokotaYuya en-aut-sei=Yokota en-aut-mei=Yuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TakaseRyosuke en-aut-sei=Takase en-aut-mei=Ryosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OmuraDaisuke en-aut-sei=Omura en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=COVID-19 kn-keyword=COVID-19 en-keyword=25-hydroxyvitamin D kn-keyword=25-hydroxyvitamin D en-keyword=long COVID kn-keyword=long COVID en-keyword=palpitation kn-keyword=palpitation en-keyword=vitamin D deficiency kn-keyword=vitamin D deficiency END start-ver=1.4 cd-journal=joma no-vol=7 cd-vols= no-issue=1 article-no= start-page=e000923 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250427 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Reversible cerebral vasoconstriction syndrome in idiopathic multicentric Castleman disease under treatment with tocilizumab en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Idiopathic multicentric Castleman disease (iMCD) is a rare polyclonal lymphoproliferative disorder characterised by systemic inflammation resulting from overproduction of interleukin 6 (IL-6). While iMCD primarily affects the lymph nodes and related tissues, it can also rarely involve the central nervous system.
Case presentation We report the case of a 58-year-old female patient with at least a 3-year history of iMCD, who experienced acute thunderclap headaches due to reversible cerebral vasoconstriction syndrome (RCVS). RCVS occurred 3?months after initiating treatment with tocilizumab, a humanised anti-IL-6 receptor monoclonal antibody, and was accompanied by focal cortical subarachnoid haemorrhage (SAH). Elevated IL-6 levels were found in both serum and cerebrospinal fluid. MR angiography revealed multiple diffuse stenotic lesions in the bilateral middle and posterior cerebral arteries, which, along with bilateral cerebral oedema, resolved within 3?months. The diffuse nature of the cerebral vasospasm and the presence of bilateral brain oedema suggested that cerebral vasospasm was due to RCVS rather than SAH.
Conclusions In patients with Castleman disease, RCVS may occur due to IL-6-dependent chronic cerebral vascular inflammation, either as a primary condition or as a complication of tocilizumab treatment. en-copyright= kn-copyright= en-aut-name=KamimuraNaoya en-aut-sei=Kamimura en-aut-mei=Naoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UedaNaohisa en-aut-sei=Ueda en-aut-mei=Naohisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KimuraKatsuo en-aut-sei=Kimura en-aut-mei=Katsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishikoriAsami en-aut-sei=Nishikori en-aut-mei=Asami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SatoYasuharu en-aut-sei=Sato en-aut-mei=Yasuharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KishidaHitaru en-aut-sei=Kishida en-aut-mei=Hitaru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TanakaFumiaki en-aut-sei=Tanaka en-aut-mei=Fumiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Neurology, Yokohama City University Medical Center kn-affil= affil-num=2 en-affil=Department of Neurology, Yokohama City University Medical Center kn-affil= affil-num=3 en-affil=Department of Neurology, Yokohama City University Medical Center kn-affil= affil-num=4 en-affil= kn-affil= affil-num=5 en-affil= kn-affil= affil-num=6 en-affil=Department of Neurology, Yokohama City University Medical Center kn-affil= affil-num=7 en-affil=Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine kn-affil= END start-ver=1.4 cd-journal=joma no-vol=22 cd-vols= no-issue=4 article-no= start-page=510 end-page=524 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250626 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=C1orf50 Drives Malignant Melanoma Progression Through the Regulation of Stemness en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/Aim: Recent advancements in omics analysis have significantly enhanced our understanding of the molecular pathology of malignant melanoma, leading to the development of novel therapeutic strategies that target specific vulnerabilities within the disease. Despite these improvements, the factors contributing to the poor prognosis of patients with malignant melanoma remain incompletely understood. The aim of this study was to investigate the role of C1orf50 (Chromosome 1 open reading frame 50), a gene previously of unknown function, as a prognostic biomarker in melanoma.
Materials and Methods: We performed comprehensive transcriptome data analysis and subsequent functional validation of the human Skin Cutaneous Melanoma project from The Cancer Genome Atlas (TCGA).
Results: Elevated expression levels of C1orf50 correlated with worse survival outcomes. Mechanistically, we revealed that C1orf50 plays a significant role in the regulation of cell cycle processes and cancer cell stemness, providing a potential avenue for novel therapeutic interventions in melanoma.
Conclusion: This study is the first to identify C1orf50 as a prognostic biomarker in melanoma. The clinical relevance of our results sheds light on the importance of further investigation into the biological mechanisms underpinning C1orf50fs impact on melanoma progression and patient prognosis. en-copyright= kn-copyright= en-aut-name=OTANIYUSUKE en-aut-sei=OTANI en-aut-mei=YUSUKE kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MAEKAWAMASAKI en-aut-sei=MAEKAWA en-aut-mei=MASAKI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TANAKAATSUSHI en-aut-sei=TANAKA en-aut-mei=ATSUSHI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=PE?ATIRSO en-aut-sei=PE?A en-aut-mei=TIRSO kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=CHINVANESSA D. en-aut-sei=CHIN en-aut-mei=VANESSA D. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ROGACHEVSKAYAANNA en-aut-sei=ROGACHEVSKAYA en-aut-mei=ANNA kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TOYOOKASHINICHI en-aut-sei=TOYOOKA en-aut-mei=SHINICHI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ROEHRLMICHAEL H. en-aut-sei=ROEHRL en-aut-mei=MICHAEL H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=FUJIMURAATSUSHI en-aut-sei=FUJIMURA en-aut-mei=ATSUSHI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Pathology, Beth Israel Deaconess Medical Center kn-affil= affil-num=2 en-affil=Department of Pathology, Beth Israel Deaconess Medical Center kn-affil= affil-num=3 en-affil=Department of Pathology, Beth Israel Deaconess Medical Center kn-affil= affil-num=4 en-affil=Department of Pathology, Beth Israel Deaconess Medical Center kn-affil= affil-num=5 en-affil=UMass Chan Medical School, UMass Memorial Medical Center kn-affil= affil-num=6 en-affil=Department of Pathology, Beth Israel Deaconess Medical Center kn-affil= affil-num=7 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Pathology, Beth Israel Deaconess Medical Center kn-affil= affil-num=9 en-affil=Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=C1orf50 kn-keyword=C1orf50 en-keyword=melanoma kn-keyword=melanoma en-keyword=cancer stem cells kn-keyword=cancer stem cells en-keyword=YAP/TAZ kn-keyword=YAP/TAZ END start-ver=1.4 cd-journal=joma no-vol=91 cd-vols= no-issue=946 article-no= start-page=24-00128 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Development of a guideline proposal system for correcting cutting conditions based on the overhang length of ball end-mills kn-title=ƒ{[ƒ‹ƒGƒ“ƒhƒ~ƒ‹‚̓˂«o‚µ’·‚³‚ɉž‚¶‚œØíðŒ•␳ƒVƒXƒeƒ€‚ÌŠJ”­ en-subtitle= kn-subtitle= en-abstract= kn-abstract=In the field of die and mold machining, determining appropriate cutting conditions is crucial. Factors such as tool geometry, machining path, work material characteristics, machining efficiency, and finishing accuracy must be taken into consideration. However, the current method of determining cutting conditions relies heavily on the intuition and experience of skilled engineers, and there is a need for a system to replace such knowledge. One of the critical factors affecting machining accuracy and efficiency is the tool overhang length, which is directly related to tool geometry. Unfortunately, there is no clear guideline for its determination. In a previous study, researchers developed a system to quickly derive cutting conditions using a data mining method and Random Forest Regression (RFR) applied to a tool catalog database. In this study, we constructed a new cutting condition compensation system based on the existing model, which accounts for the tool overhang length. The results of cutting experiments under high aspect ratio overhang lengths confirm that the correction coefficients proposed by the system are significant. en-copyright= kn-copyright= en-aut-name=KODAMAHiroyuki en-aut-sei=KODAMA en-aut-mei=Hiroyuki kn-aut-name=Ž™‹ÊhK kn-aut-sei=Ž™‹Ê kn-aut-mei=hK aut-affil-num=1 ORCID= en-aut-name=MORIYAYuki en-aut-sei=MORIYA en-aut-mei=Yuki kn-aut-name=Žç‰®—S‹P kn-aut-sei=Žç‰® kn-aut-mei=—S‹P aut-affil-num=2 ORCID= en-aut-name=MORIMOTOTatsuo en-aut-sei=MORIMOTO en-aut-mei=Tatsuo kn-aut-name=·Œ³’B—Y kn-aut-sei=·Œ³ kn-aut-mei=’B—Y aut-affil-num=3 ORCID= en-aut-name=OHASHIKazuhito en-aut-sei=OHASHI en-aut-mei=Kazuhito kn-aut-name=‘勎ˆêm kn-aut-sei=‘勎 kn-aut-mei=ˆêm aut-affil-num=4 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil=‰ªŽR‘åŠw ŠwpŒ€‹†‰@ŠÂ‹«¶–œŽ©‘R‰ÈŠwŠwˆæ affil-num=2 en-affil=Graduate school of Environmental, Life, Natural Science and Technology, Okayama University kn-affil=‰ªŽR‘åŠw ‘åŠw‰@ŠÂ‹«¶–œŽ©‘R‰ÈŠwŒ€‹†‰È affil-num=3 en-affil=Graduate school of Environmental, Life, Natural Science and Technology, Okayama University kn-affil=‰ªŽR‘åŠw ‘åŠw‰@ŠÂ‹«¶–œŽ©‘R‰ÈŠwŒ€‹†‰È affil-num=4 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil=‰ªŽR‘åŠw ŠwpŒ€‹†‰@ŠÂ‹«¶–œŽ©‘R‰ÈŠwŠwˆæ en-keyword=Data mining kn-keyword=Data mining en-keyword=Cutting conditions kn-keyword=Cutting conditions en-keyword=Machine learning kn-keyword=Machine learning en-keyword=Random Forest Regression kn-keyword=Random Forest Regression en-keyword=Ball end-mill kn-keyword=Ball end-mill en-keyword=Tool overhang length kn-keyword=Tool overhang length END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250624 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Dual functions of SNAP25 in mouse taste buds en-subtitle= kn-subtitle= en-abstract= kn-abstract=Type III cells in mouse taste buds are considered to transmit aversive stimuli, such as sourness, to the gustatory nerve through vesicular synapses. Synaptosome-associated protein 25 (SNAP25) might contribute to synaptic vesicular release in sour sensation, although direct evidence has been lacking. Here, we demonstrated that epithelia-specific Snap25 conditional knockout (cKO) mice exhibited a significant reduction in the number of type III cells. Notably, the proportion of 5-ethynyl 2Œ-deoxyuridine-positive post-mitotic type III cells in Snap25 cKO mice was significantly lower on tracing day 14, but not at day 7, which suggests that SNAP25 contributes to the maintenance of type III cells. In a short-term lick test, Snap25 cKO (sour taste absent) and Snap25/ transient receptor potential vanilloid 1 double KO (sour taste and somatosensory absent) mice exhibit a significantly higher lick response to sour tastants, confirming the role of SNAP25 for sour sensation. Electrophysiological recordings of the chorda tympani nerve reveal nearly abolished ammonium and sour taste responses in Snap25 cKO mice, which concludes sour-dependent synapse transmission in type III cells. Overall, these data suggest that vesicular synapses in taste buds are indispensable for transmission of information from, and the replenishment of, sour-sensitive type III taste cells. en-copyright= kn-copyright= en-aut-name=HorieKengo en-aut-sei=Horie en-aut-mei=Kengo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WangKuanyu en-aut-sei=Wang en-aut-mei=Kuanyu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HuangHai en-aut-sei=Huang en-aut-mei=Hai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YasumatsuKeiko en-aut-sei=Yasumatsu en-aut-mei=Keiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NinomiyaYuzo en-aut-sei=Ninomiya en-aut-mei=Yuzo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MitohYoshihiro en-aut-sei=Mitoh en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YoshidaRyusuke en-aut-sei=Yoshida en-aut-mei=Ryusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Tokyo Dental Junior College kn-affil= affil-num=5 en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=sour taste kn-keyword=sour taste en-keyword=synapse kn-keyword=synapse en-keyword=taste buds kn-keyword=taste buds en-keyword=taste nerve kn-keyword=taste nerve en-keyword=Type III cells kn-keyword=Type III cells END start-ver=1.4 cd-journal=joma no-vol=19 cd-vols= no-issue=3 article-no= start-page=337 end-page=345 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250505 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Study on the Grinding Temperature of Workpiece in Side Plunge Grinding Process en-subtitle= kn-subtitle= en-abstract= kn-abstract=Grinding is used to finish thrust metal attachment parts, such as crankshafts, which have both journal and thrust surfaces. In side plunge grinding, a thrust surface and a cylindrical surface of a shaft workpiece with collars are finished in a single plunge grinding process. However, the surface quality near the ground internal corner, where grinding fluid may not penetrate, can deteriorate, causing high residual stress and cracks owing to grinding heat. While it has been reported that quality issues at the inner corners of the ground surface can be mitigated by reducing the grinding point temperature through efficient cooling fluid supply, the mechanisms of grinding phenomena and heat generation in side plunge grinding are not yet fully understood. In this study, the variations in the grinding temperature at the thrust surface of a workpiece with a collar were experimentally investigated using a wire/workpiece thermocouple to clarify these phenomena. The results revealed a significant increase in the grinding temperature at the corners of the grinding zone. However, it slightly decreases as the thermocouple output approaches the center of the workpiece, indicating a slight effect of the grinding speed. The surface temperature of the workpiece in side plunge grinding is primarily influenced by the wheel depth-of-cut in the thrust direction. Additionally, the effect of workpiece rotational speed and grinding infeed speed on temperature distribution has been demonstrated. en-copyright= kn-copyright= en-aut-name=GaoLingxiao en-aut-sei=Gao en-aut-mei=Lingxiao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KuidaMotoki en-aut-sei=Kuida en-aut-mei=Motoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KodamaHiroyuki en-aut-sei=Kodama en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OhashiKazuhito en-aut-sei=Ohashi en-aut-mei=Kazuhito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=grinding kn-keyword=grinding en-keyword=thrust surface kn-keyword=thrust surface en-keyword=grinding temperature kn-keyword=grinding temperature en-keyword=thermocouple kn-keyword=thermocouple END start-ver=1.4 cd-journal=joma no-vol=27 cd-vols= no-issue=6 article-no= start-page=e70126 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Sulphur]Acquisition Pathways for Cysteine Synthesis Confer a Fitness Advantage to Bacteria in Plant Extracts en-subtitle= kn-subtitle= en-abstract= kn-abstract=Bacteria and plants are closely associated with human society, in fields such as agriculture, public health, the food industry, and waste disposal. Bacteria have evolved nutrient-utilisation systems adapted to achieve the most efficient growth in their major habitats. However, empirical evidence to support the significance of bacterial nutrient utilisation in adaptation to plants is limited. Therefore, we investigated the genetic and nutritional factors required for bacterial growth in plant extracts by screening an Escherichia coli gene-knockout library in vegetable-based medium. Mutants lacking genes involved in sulphur assimilation, whereby sulphur is transferred from sulphate to cysteine, exhibited negligible growth in vegetable-based medium or plant extracts, owing to the low cysteine levels. The reverse transsulphuration pathway from methionine, another pathway for donating sulphur to cysteine, occurring in bacteria such as Bacillus subtilis, also played an important role in growth in plant extracts. These two sulphur-assimilation pathways were more frequently observed in plant-associated than in animal-associated bacteria. Sulphur-acquisition pathways for cysteine synthesis thus play a key role in bacterial growth in plant-derived environments such as plant residues and plant exudates. en-copyright= kn-copyright= en-aut-name=IshikawaKazuya en-aut-sei=Ishikawa en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamaguchiSaki en-aut-sei=Yamaguchi en-aut-mei=Saki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TsukaokaTaketo en-aut-sei=Tsukaoka en-aut-mei=Taketo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TsunodaMakoto en-aut-sei=Tsunoda en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FurutaKazuyuki en-aut-sei=Furuta en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KaitoChikara en-aut-sei=Kaito en-aut-mei=Chikara kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Pharmaceutical Sciences, The University of Tokyo kn-affil= affil-num=5 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Bacillus subtilis kn-keyword=Bacillus subtilis en-keyword=bacterial nutrient utilisation kn-keyword=bacterial nutrient utilisation en-keyword=cysteine synthesis kn-keyword=cysteine synthesis en-keyword=Escherichia coli kn-keyword=Escherichia coli en-keyword=plant-derived environments kn-keyword=plant-derived environments en-keyword=sulphur acquisition pathway kn-keyword=sulphur acquisition pathway END start-ver=1.4 cd-journal=joma no-vol=227 cd-vols= no-issue= article-no= start-page=110168 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202510 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The hidden cation-selective pore in ion-conducting aquaporin OsPIP2;4 from rice en-subtitle= kn-subtitle= en-abstract= kn-abstract=Ion-conducting aquaporins (icAQPs) transport ions as well as water. Although the molecular mechanism of how AQPs establish selective permeability for water molecules is well understood, the ion-transporting mechanism in icAQPs has not yet been fully elucidated. In this study, we investigated the molecular mechanism of cation transport in OsPIP2;4, an icAQP in rice, by homology modeling and the electrophysiological analysis using Xenopus laevis oocytes. Water and ion transport assays using OsPIP2;4 T227M and G278K mutants strongly suggested that water- and cation-transporting pathways are independent of each other. Data from amino acid substitutions V54I and A143G in OsPIP2;4 led to the identification of a novel hidden pathway for cation transport located on the side surfaces of the tetramer channel, where two protomers are in contact, which is distinct from conventional monomeric pores and the tetrameric central pore in AQPs. Moreover, the present results provide the possibility that this hypothetical hidden pore also functions in the barley icAQP HvPIP2;8. The overall structure of this novel pathway appears to differ from the structure of general cation channels. However, the arrangement of hydrophilic amino acids at the entrance of the pathway of OsPIP2;4 was found to be comparable to that of some cation channels, which implies that the molecular mechanism of dehydration of hydrated ions might resemble that of the channels. Although direct structural evidence is needed to confirm the proposed pathway, the present study can be a stepping stone toward unraveling the mechanism of dual water and ion transport through icAQPs in plants. en-copyright= kn-copyright= en-aut-name=OnoShuntaro en-aut-sei=Ono en-aut-mei=Shuntaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TranSen Thi Huong en-aut-sei=Tran en-aut-mei=Sen Thi Huong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SaitohYasunori en-aut-sei=Saitoh en-aut-mei=Yasunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=UtsugiShigeko en-aut-sei=Utsugi en-aut-mei=Shigeko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HorieTomoaki en-aut-sei=Horie en-aut-mei=Tomoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KatsuharaMaki en-aut-sei=Katsuhara en-aut-mei=Maki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=5 en-affil=Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University kn-affil= affil-num=6 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=Rice kn-keyword=Rice en-keyword=Barley kn-keyword=Barley en-keyword=Ion transport kn-keyword=Ion transport en-keyword=Ion-conducting aquaporin (icAQP) kn-keyword=Ion-conducting aquaporin (icAQP) en-keyword=Plasma membrane intrinsic protein (PIP) kn-keyword=Plasma membrane intrinsic protein (PIP) END start-ver=1.4 cd-journal=joma no-vol=301 cd-vols= no-issue=7 article-no= start-page=110291 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202507 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A repertoire of visible light?sensitive opsins in the deep-sea hydrothermal vent shrimp Rimicaris hybisae en-subtitle= kn-subtitle= en-abstract= kn-abstract=Unlike terrestrial environments, where humans reside, there is no sunlight in the deep sea. Instead, dim visible light from black-body radiation and bioluminescence illuminates hydrothermal vent areas in the deep sea. A deep-sea hydrothermal vent shrimp, Rimicaris hybisae, is thought to detect this dim light using its enlarged dorsal eye; however, the molecular basis of its photoreception remains unexplored. Here, we characterized the molecular properties of opsins, universal photoreceptive proteins in animals, found in R. hybisae. Transcriptomic analysis identified six opsins: three Gq-coupled opsins, one Opn3, one Opn5, and one peropsin. Functional analysis revealed that five of these opsins exhibited light-dependent G protein activity, whereas peropsin exhibited the ability to convert all-trans-retinal to 11-cis-retinal like photoisomerases. Notably, all the R. hybisae opsins, including Opn5, convergently show visible light sensitivity (around 457?517 nm), whereas most opsins categorized as Opn5 have been demonstrated to be UV sensitive. Mutational analysis revealed that the unique visible light sensitivity of R. hybisae Opn5 is achieved through the stabilization of a protonated Schiff base by a counterion residue at position 83 (Asp83), which differs from the position identified in other opsins. These findings suggest that the vent shrimp R. hybisae has adapted its photoreceptive devices to dim deep-sea hydrothermal light by selectively maintaining a repertoire of visible light?sensitive opsins, including the uniquely tuned Opn5. en-copyright= kn-copyright= en-aut-name=NagataYuya en-aut-sei=Nagata en-aut-mei=Yuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyamotoNorio en-aut-sei=Miyamoto en-aut-mei=Norio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SatoKeita en-aut-sei=Sato en-aut-mei=Keita kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishimuraYosuke en-aut-sei=Nishimura en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TaniokaYuki en-aut-sei=Tanioka en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamanakaYuji en-aut-sei=Yamanaka en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YoshizawaSusumu en-aut-sei=Yoshizawa en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakahashiKuto en-aut-sei=Takahashi en-aut-mei=Kuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ObayashiKohei en-aut-sei=Obayashi en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TsukamotoHisao en-aut-sei=Tsukamoto en-aut-mei=Hisao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TakaiKen en-aut-sei=Takai en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=OhuchiHideyo en-aut-sei=Ohuchi en-aut-mei=Hideyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YamashitaTakahiro en-aut-sei=Yamashita en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=SudoYuki en-aut-sei=Sudo en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=KojimaKeiichi en-aut-sei=Kojima en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-Star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC) kn-affil= affil-num=3 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Research Center for Bioscience and Nanoscience (CeBN), Research Institute for Marine Resources Utilization, Japan Agency for Marine-Earth Science and Technology (JAMSTEC) kn-affil= affil-num=5 en-affil=School of Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=School of Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Atmosphere and Ocean Research Institute, The University of Tokyo kn-affil= affil-num=8 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Biology, Graduate School of Science, Kobe University kn-affil= affil-num=10 en-affil=Department of Biology, Graduate School of Science, Kobe University kn-affil= affil-num=11 en-affil=Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-Star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC) kn-affil= affil-num=12 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Department of Biophysics, Graduate School of Science, Kyoto University kn-affil= affil-num=14 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=15 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=rhodopsin kn-keyword=rhodopsin en-keyword=opsin kn-keyword=opsin en-keyword=G protein?coupled receptor kn-keyword=G protein?coupled receptor en-keyword=signal transduction kn-keyword=signal transduction en-keyword=photoreceptor kn-keyword=photoreceptor en-keyword=vision kn-keyword=vision en-keyword=photobiology kn-keyword=photobiology en-keyword=vent shrimp kn-keyword=vent shrimp en-keyword=deep sea kn-keyword=deep sea en-keyword=molecular evolution kn-keyword=molecular evolution END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250620 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=International Consensus Histopathological Criteria for Subtyping Idiopathic Multicentric Castleman Disease Based on Machine Learning Analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Idiopathic multicentric Castleman disease (iMCD) is a rare lymphoproliferative disorder classified into three recognized clinical subtypes?idiopathic plasmacytic lymphadenopathy (IPL), TAFRO, and NOS. Although clinical criteria are available for subtyping, diagnostically challenging cases with overlapping histopathological features highlight the need for an improved classification system integrating clinical and histopathological findings. We aimed to develop an objective histopathological subtyping system for iMCD that closely correlates with the clinical subtypes. Excisional lymph node specimens from 94 Japanese iMCD patients (54 IPL, 28 TAFRO, 12 NOS) were analyzed for five key histopathological parameters: germinal center (GC) status, plasmacytosis, vascularity, hemosiderin deposition, and gwhirlpoolh vessel formation in GC. Using hierarchical clustering, we visualized subgroups and developed a machine learning-based decision tree to differentiate the clinical subtypes and validated it in an external cohort of 12 patients with iMCD. Hierarchical cluster analysis separated the IPL and TAFRO cases into mutually exclusive clusters, whereas the NOS cases were interspersed between them. Decision tree modeling identified plasmacytosis, vascularity, and whirlpool vessel formation as key features distinguishing IPL from TAFRO, achieving 91% and 92% accuracy in the training and test sets, respectively. External validation correctly classified all IPL and TAFRO cases, confirming the reproducibility of the system. Our histopathological classification system closely aligns with the clinical subtypes, offering a more precise approach to iMCD subtyping. It may enhance diagnostic accuracy, guide clinical decision-making for predicting treatment response in challenging cases, and improve patient selection for future research. Further validation of its versatility and clinical utility is required. en-copyright= kn-copyright= en-aut-name=NishimuraMidori Filiz en-aut-sei=Nishimura en-aut-mei=Midori Filiz kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HaratakeTomoka en-aut-sei=Haratake en-aut-mei=Tomoka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishimuraYoshito en-aut-sei=Nishimura en-aut-mei=Yoshito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishikoriAsami en-aut-sei=Nishikori en-aut-mei=Asami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SumiyoshiRemi en-aut-sei=Sumiyoshi en-aut-mei=Remi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=UjiieHideki en-aut-sei=Ujiie en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KawaharaYuri en-aut-sei=Kawahara en-aut-mei=Yuri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KogaTomohiro en-aut-sei=Koga en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=UekiMasao en-aut-sei=Ueki en-aut-mei=Masao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=LaczkoDorottya en-aut-sei=Laczko en-aut-mei=Dorottya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OksenhendlerEric en-aut-sei=Oksenhendler en-aut-mei=Eric kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=FajgenbaumDavid C. en-aut-sei=Fajgenbaum en-aut-mei=David C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=van RheeFrits en-aut-sei=van Rhee en-aut-mei=Frits kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KawakamiAtsushi en-aut-sei=Kawakami en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=SatoYasuharu en-aut-sei=Sato en-aut-mei=Yasuharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=2 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=3 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=5 en-affil=The Research Program for Intractable Disease by Ministry of Health, Labor and Welfare, Castleman Disease, TAFRO and Related Ddisease Research Group kn-affil= affil-num=6 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=7 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=8 en-affil=The Research Program for Intractable Disease by Ministry of Health, Labor and Welfare, Castleman Disease, TAFRO and Related Ddisease Research Group kn-affil= affil-num=9 en-affil=School of Information and Data Sciences, Nagasaki University kn-affil= affil-num=10 en-affil=Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania kn-affil= affil-num=11 en-affil=Department of Clinical Immunology, H?pital Saint-Louis kn-affil= affil-num=12 en-affil=Center for Cytokine Storm Treatment and Laboratory, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania kn-affil= affil-num=13 en-affil=Myeloma Center, University of Arkansas for Medical Sciences kn-affil= affil-num=14 en-affil=The Research Program for Intractable Disease by Ministry of Health, Labor and Welfare, Castleman Disease, TAFRO and Related Ddisease Research Group kn-affil= affil-num=15 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= en-keyword=clinical subtype kn-keyword=clinical subtype en-keyword=histopathological criteria kn-keyword=histopathological criteria en-keyword=idiopathic multicentric castleman disease kn-keyword=idiopathic multicentric castleman disease en-keyword=lymphoproliferative disease kn-keyword=lymphoproliferative disease en-keyword=machine-learning kn-keyword=machine-learning END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=7 article-no= start-page=1152 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240717 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Metatranscriptomic Sequencing of Sheath Blight-Associated Isolates of Rhizoctonia solani Revealed Multi-Infection by Diverse Groups of RNA Viruses en-subtitle= kn-subtitle= en-abstract= kn-abstract=Rice sheath blight, caused by the soil-borne fungus Rhizoctonia solani (teleomorph: Thanatephorus cucumeris, Basidiomycota), is one of the most devastating phytopathogenic fungal diseases and causes yield loss. Here, we report on a very high prevalence (100%) of potential virus-associated double-stranded RNA (dsRNA) elements for a collection of 39 fungal strains of R. solani from the rice sheath blight samples from at least four major rice-growing areas in the Philippines and a reference isolate from the International Rice Research Institute, showing different colony phenotypes. Their dsRNA profiles suggested the presence of multiple viral infections among these Philippine R. solani populations. Using next-generation sequencing, the viral sequences of the three representative R. solani strains (Ilo-Rs-6, Tar-Rs-3, and Tar-Rs-5) from different rice-growing areas revealed the presence of at least 36 viruses or virus-like agents, with the Tar-Rs-3 strain harboring the largest number of viruses (at least 20 in total). These mycoviruses or their candidates are believed to have single-stranded RNA or dsRNA genomes and they belong to or are associated with the orders Martellivirales, Hepelivirales, Durnavirales, Cryppavirales, Ourlivirales, and Ghabrivirales based on their coding-complete RNA-dependent RNA polymerase sequences. The complete genome sequences of two novel RNA viruses belonging to the proposed family Phlegiviridae and family Mitoviridae were determined. en-copyright= kn-copyright= en-aut-name=UrzoMichael Louie R. en-aut-sei=Urzo en-aut-mei=Michael Louie R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=GuintoTimothy D. en-aut-sei=Guinto en-aut-mei=Timothy D. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Eusebio-CopeAna en-aut-sei=Eusebio-Cope en-aut-mei=Ana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=BudotBernard O. en-aut-sei=Budot en-aut-mei=Bernard O. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YanoriaMary Jeanie T. en-aut-sei=Yanoria en-aut-mei=Mary Jeanie T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=JonsonGilda B. en-aut-sei=Jonson en-aut-mei=Gilda B. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ArakawaMasao en-aut-sei=Arakawa en-aut-mei=Masao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Ba?os kn-affil= affil-num=2 en-affil=Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Ba?os kn-affil= affil-num=3 en-affil=Fit-for-Future Genetic Resources Unit, Rice Breeding Innovations Department, International Rice Research Institute (IRRI), University of the Philippines Los Ba?os kn-affil= affil-num=4 en-affil=Institute of Weed Science, Entomology, and Plant Pathology, College of Agriculture and Food Science, University of the Philippines Los Ba?os kn-affil= affil-num=5 en-affil=Traits for Challenged Environments Unit, Rice Breeding Innovations Department, International Rice Research Institute (IRRI), University of the Philippines Los Ba?os kn-affil= affil-num=6 en-affil=Traits for Challenged Environments Unit, Rice Breeding Innovations Department, International Rice Research Institute (IRRI), University of the Philippines Los Ba?os kn-affil= affil-num=7 en-affil=Faculty of Agriculture, Meijo University kn-affil= affil-num=8 en-affil=Plant-Microbe Interactions Group, Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=9 en-affil=Plant-Microbe Interactions Group, Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= en-keyword=Rhizoctonia solani kn-keyword=Rhizoctonia solani en-keyword=dsRNA kn-keyword=dsRNA en-keyword=mycovirus kn-keyword=mycovirus en-keyword=RNA virus kn-keyword=RNA virus en-keyword=metatranscriptome kn-keyword=metatranscriptome END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=12 article-no= start-page=3780 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250617 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effects of Sampling Frequency on Human Activity Recognition with Machine Learning Aiming at Clinical Applications en-subtitle= kn-subtitle= en-abstract= kn-abstract=Human activity recognition using wearable accelerometer data can be a useful digital biomarker for severity assessment and the diagnosis of diseases, where the relationship between onset and patient activity is crucial. For long-term monitoring in clinical settings, the volume of data collected over time should be minimized to reduce power consumption, computational load, and communication volume. This study aimed to determine the lowest sampling frequency that maintains recognition accuracy for each activity. Thirty healthy participants wore nine-axis accelerometer sensors at five body locations and performed nine activities. Machine-learning-based activity recognition was conducted using data sampled at 100, 50, 25, 20, 10, and 1 Hz. Data from the non-dominant wrist and chest, which have previously shown high recognition accuracy, were used. Reducing the sampling frequency to 10 Hz did not significantly affect the recognition accuracy for either location. However, lowering the frequency to 1 Hz decreases the accuracy of many activities, particularly brushing teeth. Using data with a 10 Hz sampling frequency can maintain recognition accuracy while decreasing data volume, enabling long-term patient monitoring and device miniaturization for clinical applications. en-copyright= kn-copyright= en-aut-name=YamaneTakahiro en-aut-sei=Yamane en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KimuraMoeka en-aut-sei=Kimura en-aut-mei=Moeka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoritaMizuki en-aut-sei=Morita en-aut-mei=Mizuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Biomedical Informatics, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Health Sciences, Okayama University Medical School kn-affil= affil-num=3 en-affil=Department of Biomedical Informatics, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=wearable devices kn-keyword=wearable devices en-keyword=machine learning kn-keyword=machine learning en-keyword=human activity recognition kn-keyword=human activity recognition en-keyword=sampling frequency kn-keyword=sampling frequency en-keyword=digital health kn-keyword=digital health en-keyword=digital biomarkers kn-keyword=digital biomarkers END start-ver=1.4 cd-journal=joma no-vol=166 cd-vols= no-issue=8 article-no= start-page=bqaf102 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250605 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Neuromedin U Deficiency Disrupts Daily Testosterone Fluctuation and Reduces Wheel-running Activity in Rats en-subtitle= kn-subtitle= en-abstract= kn-abstract=The objective of this study was to elucidate the role of endogenous Neuromedin U (NMU) in rats by performing NMU knockout (KO). Male, but not female NMU KO rats exhibited decreased wheel-running activity vs wildtype (WT), although overall home cage activity was not affected. Plasma testosterone in WT rats varied significantly over the course of a day, with a peak at ZT1 and a nadir at ZT18, whereas in NMU KO rats testosterone remained stable throughout the day. Chronic administration of testosterone restored wheel-running activity in NMU KO rats to the same level as in WT rats, suggesting that the decrease in wheel-running activity in NMU KO rats is due to the disruption of the diurnal change of testosterone. Accordingly, expression of the luteinizing hormone beta subunit (Lhb) mRNA in the pars distalis of anterior pituitary was significantly lower in NMU KO rats; immunostaining revealed that the size of luteinizing hormone (LH)?expressing cells was also relatively small in those animals. In the brain of male WT rats, Nmu was highly expressed in the pars tuberalis, and the NMU receptor Nmur2 was highly expressed in the ependymal cell layer of the third ventricle. This study reveals a novel function of NMU and indicates that endogenous NMU in rats plays a role in the regulation of motivated activity via regulation of testosterone. en-copyright= kn-copyright= en-aut-name=OtsukaMai en-aut-sei=Otsuka en-aut-mei=Mai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakeuchiYu en-aut-sei=Takeuchi en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoriyamaMaho en-aut-sei=Moriyama en-aut-mei=Maho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=EgoshiSakura en-aut-sei=Egoshi en-aut-mei=Sakura kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=GotoYuki en-aut-sei=Goto en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=GuTingting en-aut-sei=Gu en-aut-mei=Tingting kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KimuraAtsushi P en-aut-sei=Kimura en-aut-mei=Atsushi P kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HaraguchiShogo en-aut-sei=Haraguchi en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YoshiiTaishi en-aut-sei=Yoshii en-aut-mei=Taishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TakeuchiSakae en-aut-sei=Takeuchi en-aut-mei=Sakae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MatsuyamaMakoto en-aut-sei=Matsuyama en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=BentleyGeorge E en-aut-sei=Bentley en-aut-mei=George E kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=AizawaSayaka en-aut-sei=Aizawa en-aut-mei=Sayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Department of Biology, Faculty of Science, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Department of Biological Sciences, Faculty of Science, Hokkaido University kn-affil= affil-num=8 en-affil=Department of Biochemistry, Showa University School of Medicine kn-affil= affil-num=9 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=10 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=11 en-affil=Division of Molecular Genetics, Shigei Medical Research Institute kn-affil= affil-num=12 en-affil=Department of Integrative Biology and Helen Wills Neuroscience Institute, University of California at Berkeley kn-affil= affil-num=13 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Neuromedin U kn-keyword=Neuromedin U en-keyword=rat kn-keyword=rat en-keyword=motivation kn-keyword=motivation en-keyword=activity kn-keyword=activity en-keyword=testosterone kn-keyword=testosterone en-keyword=wheel-running kn-keyword=wheel-running END start-ver=1.4 cd-journal=joma no-vol=121 cd-vols= no-issue=2 article-no= start-page=232 end-page=243 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241216 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Outcomes of allogeneic SCT versus tisagenlecleucel in patients with R/R LBCL and poor prognostic factors en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study investigated the efficacy of tisagenlecleucel (tisa-cel) and allogeneic hematopoietic stem cell transplantation (allo-SCT) for patients with relapsed and/or refractory (r/r) large B-cell lymphoma (LBCL) with poor prognostic factors, defined as performance status (PS)???2, multiple extranodal lesions (EN), chemorefractory disease, or higher lactate dehydrogenase (LDH). Overall, the allo-SCT group demonstrated worse progression-free survival (PFS), higher non-relapse mortality, and a similar relapse/progression rate. Notably, the tisa-cel group showed better PFS than the allo-SCT group among patients with chemorefractory disease (3.2 vs. 2.0 months, p?=?0.092) or higher LDH (4.0 vs. 2.0 months, p =?0.018), whereas PFS in the two cellular therapy groups was similar among those with PS???2 or multiple EN. Survival time after relapse post-cellular therapy in patients with poor prognostic factors was 1.6 with allo-SCT and 4.6 months with tisa-cel. These findings were confirmed in a propensity score matching cohort. In conclusion, tisa-cel resulted in better survival than allo-SCT in patients with poor prognostic factors. However, patients who relapsed post-cellular therapy had dismal outcomes regardless of therapy. Further strategies are warranted to improve outcomes in these patients. en-copyright= kn-copyright= en-aut-name=HayashinoKenta en-aut-sei=Hayashino en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TeraoToshiki en-aut-sei=Terao en-aut-mei=Toshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishimoriHisakazu en-aut-sei=Nishimori en-aut-mei=Hisakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KitamuraWataru en-aut-sei=Kitamura en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KobayashiHiroki en-aut-sei=Kobayashi en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KamoiChihiro en-aut-sei=Kamoi en-aut-mei=Chihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SeikeKeisuke en-aut-sei=Seike en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=FujiwaraHideaki en-aut-sei=Fujiwara en-aut-mei=Hideaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=AsadaNoboru en-aut-sei=Asada en-aut-mei=Noboru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=EnnishiDaisuke en-aut-sei=Ennishi en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=FujiiKeiko en-aut-sei=Fujii en-aut-mei=Keiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=FujiiNobuharu en-aut-sei=Fujii en-aut-mei=Nobuharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MatsuokaKen-ichi en-aut-sei=Matsuoka en-aut-mei=Ken-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University kn-affil= affil-num=2 en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University kn-affil= affil-num=3 en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University kn-affil= affil-num=4 en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University kn-affil= affil-num=5 en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University kn-affil= affil-num=6 en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University kn-affil= affil-num=7 en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University kn-affil= affil-num=8 en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University kn-affil= affil-num=9 en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University kn-affil= affil-num=10 en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University kn-affil= affil-num=11 en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University kn-affil= affil-num=12 en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University kn-affil= affil-num=13 en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University kn-affil= affil-num=14 en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University kn-affil= en-keyword=Large B-cell lymphoma kn-keyword=Large B-cell lymphoma en-keyword=Allogeneic hematopoietic stem cell transplantation kn-keyword=Allogeneic hematopoietic stem cell transplantation en-keyword=CAR-T cell therapy kn-keyword=CAR-T cell therapy en-keyword=Tisagenlecleucel kn-keyword=Tisagenlecleucel en-keyword=Poor prognostic factors kn-keyword=Poor prognostic factors END start-ver=1.4 cd-journal=joma no-vol=64 cd-vols= no-issue=5 article-no= start-page=759 end-page=762 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250301 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Novel De Novo Variant in KCNH5 in a Patient with Refractory Epileptic Encephalopathy en-subtitle= kn-subtitle= en-abstract= kn-abstract=We herein report a novel de novo KCNH5 variant in a patient with refractory epileptic encephalopathy. The patient exhibited seizures at 1 year and 7 months old, which gradually worsened, leading to a bedridden status. Brain magnetic resonance imaging (MRI) showed cerebral atrophy and cerebellar hypoplasia. A trio whole-exome sequence analysis identified a de novo heterozygous c.640A>C, p.Lys214Gln variant in KCNH5 that was predicted to be deleterious. Recent studies have linked KCNH5 to various epileptic encephalopathies, with many patients showing normal MRI findings. The present case expands the clinical spectrum of the disease, as it is characterized by severe neurological prognosis, cerebral atrophy, and cerebellar hypoplasia. en-copyright= kn-copyright= en-aut-name=MitsutakeAkihiko en-aut-sei=Mitsutake en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsukawaTakashi en-aut-sei=Matsukawa en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NaitoTatsuhiko en-aut-sei=Naito en-aut-mei=Tatsuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IshiuraHiroyuki en-aut-sei=Ishiura en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MitsuiJun en-aut-sei=Mitsui en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HaradaHiroaki en-aut-sei=Harada en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=FujioKeishi en-aut-sei=Fujio en-aut-mei=Keishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=FujishiroJun en-aut-sei=Fujishiro en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MoriHarushi en-aut-sei=Mori en-aut-mei=Harushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MorishitaShinichi en-aut-sei=Morishita en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TsujiShoji en-aut-sei=Tsuji en-aut-mei=Shoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TodaTatsushi en-aut-sei=Toda en-aut-mei=Tatsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=2 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=3 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=4 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=6 en-affil=Department of Rheumatology and Allergy, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=7 en-affil=Department of Rheumatology and Allergy, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=8 en-affil=Department of Pediatric Surgery, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=9 en-affil=Department of Radiology, School of Medicine, Jichi Medical University kn-affil= affil-num=10 en-affil=Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo kn-affil= affil-num=11 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=12 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= en-keyword=epileptic encephalopathy kn-keyword=epileptic encephalopathy en-keyword=whole-exome sequencing kn-keyword=whole-exome sequencing en-keyword=KCNH5 kn-keyword=KCNH5 en-keyword=de novo variant kn-keyword=de novo variant END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250303 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Recent progress in oculopharyngodistal myopathy research from clinical and genetic viewpoints en-subtitle= kn-subtitle= en-abstract= kn-abstract=Oculopharyngodistal myopathy (OPDM) is a rare muscular disorder characterized by ocular symptoms, pharyngeal symptoms, facial weakness, and distal predominant limb muscle weakness. The cause of the disease was unknown for a long time. Recently, however, it has been reported that expansions of CGG or CCG repeats in LRP12, LOC642361/NUTM2B-AS1, GIPC1, NOTCH2NLC, RILPL1, and ABCD3 are the causes of the disease. Cases sometimes present with neurological symptoms, and the clinical spectrum of diseases caused by expansions of CGG or CCG repeats has been proposed to be called FNOP-spectrum disorder after the names of fragile X-associated tremor/ataxia syndrome, neuronal intranuclear inclusion disease, oculopharyngeal myopathy with leukoencephalopathy, and OPDM. In this article, the recent progress in the field of OPDM is reviewed, and remaining issues in OPDM are discussed. en-copyright= kn-copyright= en-aut-name=IshiuraHiroyuki en-aut-sei=Ishiura en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=oculopharyngodistal myopathy kn-keyword=oculopharyngodistal myopathy en-keyword=CGG repeat kn-keyword=CGG repeat en-keyword=CCG repeat kn-keyword=CCG repeat en-keyword=repeat motif?phenotype correlation kn-keyword=repeat motif?phenotype correlation en-keyword=FNOP-spectrum disorder kn-keyword=FNOP-spectrum disorder END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=5602-25 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Two Cases of Autosomal Recessive Spinocerebellar Ataxia-8 Showing Two Novel Variants of SYNE1 in Japanese Families en-subtitle= kn-subtitle= en-abstract= kn-abstract=Autosomal recessive spinocerebellar ataxia-8 (SCAR8) is a neurodegenerative disorder caused by the biallelic pathogenic variants of SYNE1. It is characterized by slowly progressive cerebellar ataxia and atrophy. We identified two SCAR8 families using exome analyses and two novel variants, c.2127delG (p.Met709Ilefs) and c.15943G>T (p.Gly5315*), in SYNE1 (NM_182961.4). Pathogenic variants of SYNE1 cause various symptoms, including cerebellar ataxia, pyramidal tract disorders, and joint disorders, and the pathogenic variants discovered in this study were located in a region prone to cerebellar ataxia. en-copyright= kn-copyright= en-aut-name=YunokiTaijun en-aut-sei=Yunoki en-aut-mei=Taijun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsuokaChika en-aut-sei=Matsuoka en-aut-mei=Chika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OsakadaYosuke en-aut-sei=Osakada en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FukuiYusuke en-aut-sei=Fukui en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakemotoMami en-aut-sei=Takemoto en-aut-mei=Mami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MoriharaRyuta en-aut-sei=Morihara en-aut-mei=Ryuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamashitaToru en-aut-sei=Yamashita en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IshiuraHiroyuki en-aut-sei=Ishiura en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=SCAR8 kn-keyword=SCAR8 en-keyword=SCAR kn-keyword=SCAR en-keyword=cerebellar ataxia kn-keyword=cerebellar ataxia en-keyword=whole-exome sequencing analysis kn-keyword=whole-exome sequencing analysis END start-ver=1.4 cd-journal=joma no-vol=31 cd-vols= no-issue=6 article-no= start-page=388.e1 end-page=388.e14 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Clinical effects of granulocyte colony-stimulating factor administration and the timing of its initiation on allogeneic hematopoietic cell transplantation outcomes for myelodysplastic syndrome en-subtitle= kn-subtitle= en-abstract= kn-abstract=Granulocyte colony-stimulating factor (G-CSF) accelerates neutrophil recovery after allogeneic hematopoietic cell transplantation (HCT). However, the optimal use of G-CSF and the timing of its initiation after allogeneic HCT for myelodysplastic syndrome (MDS) according to graft type have not been determined. This retrospective study aimed to investigate the effects of using G-CSF administration and the timing of its initiation on transplant outcomes in adult patients with MDS undergoing allogeneic HCT. Using Japanese registry data, we retrospectively investigated the effects of G-CSF administration and the timing of its initiation on transplant outcomes among 4140 adults with MDS after bone marrow transplantation (BMT), peripheral blood stem cell transplantation (PBSCT), or single-unit cord blood transplantation (CBT) between 2013 and 2022. Multivariate analysis showed that early (days 0 to 4) and late (days 5 to 10) G-CSF administration significantly accelerated neutrophil recovery compared with no G-CSF administration following BMT, PBSCT, and CBT, but there was no benefit of early G-CSF initiation for early neutrophilic recovery regardless of graft type. Late G-CSF initiation was significantly associated with a higher risk of overall chronic GVHD following PBSCT (hazard ratio [HR], 1.63; 95% confidence interval [CI], 1.18 to 2.24; P = .002) and CBT (HR, 2.09; 95% CI, 1.21 to 3.60; P = .007) compared with no G-CSF administration. Late G-CSF initiation significantly improved OS compared with no G-CSF administration only following PBSCT (HR, 0.74; 95% CI, 0.58 to 0.94; P = .015). However, G-CSF administration and the timing of its initiation did not affect acute GVHD, relapse, or non-relapse mortality, irrespective of graft type. These results suggest that G-CSF administration significantly accelerated neutrophil recovery after BMT, PBSCT, and CBT, but increased risk of overall chronic GVHD after PBSCT and CBT. However, the effect of early and late G-CSF initiation on transplant outcomes needs further study in adult patients with MDS. en-copyright= kn-copyright= en-aut-name=KonumaTakaaki en-aut-sei=Konuma en-aut-mei=Takaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujiokaMachiko en-aut-sei=Fujioka en-aut-mei=Machiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FuseKyoko en-aut-sei=Fuse en-aut-mei=Kyoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HosoiHiroki en-aut-sei=Hosoi en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MasamotoYosuke en-aut-sei=Masamoto en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=DokiNoriko en-aut-sei=Doki en-aut-mei=Noriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=UchidaNaoyuki en-aut-sei=Uchida en-aut-mei=Naoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TanakaMasatsugu en-aut-sei=Tanaka en-aut-mei=Masatsugu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SawaMasashi en-aut-sei=Sawa en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NishidaTetsuya en-aut-sei=Nishida en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=IshikawaJun en-aut-sei=Ishikawa en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=AsadaNoboru en-aut-sei=Asada en-aut-mei=Noboru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NakamaeHirohisa en-aut-sei=Nakamae en-aut-mei=Hirohisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=HasegawaYuta en-aut-sei=Hasegawa en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=OnizukaMakoto en-aut-sei=Onizuka en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=MaedaTakeshi en-aut-sei=Maeda en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=FukudaTakahiro en-aut-sei=Fukuda en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=KawamuraKoji en-aut-sei=Kawamura en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=KandaYoshinobu en-aut-sei=Kanda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=OhbikiMarie en-aut-sei=Ohbiki en-aut-mei=Marie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=AtsutaYoshiko en-aut-sei=Atsuta en-aut-mei=Yoshiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=ItonagaHidehiro en-aut-sei=Itonaga en-aut-mei=Hidehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= affil-num=1 en-affil=Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo kn-affil= affil-num=2 en-affil=Department of Hematology, Sasebo City General Hospital kn-affil= affil-num=3 en-affil=Faculty of Medicine, Department of Hematology, Endocrinology and Metabolism, Niigata University kn-affil= affil-num=4 en-affil=Department of Hematology/Oncology, Wakayama Medical University kn-affil= affil-num=5 en-affil=Department of Cell Therapy and Transplantation Medicine, The University of Tokyo Hospital kn-affil= affil-num=6 en-affil=Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital kn-affil= affil-num=7 en-affil=Department of Hematology, Toranomon Hospital kn-affil= affil-num=8 en-affil=Department of Hematology, Kanagawa Cancer Center kn-affil= affil-num=9 en-affil=Department of Hematology and Oncology, Anjo Kosei Hospital kn-affil= affil-num=10 en-affil=Department of Hematology, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital kn-affil= affil-num=11 en-affil=Department of Hematology, Osaka International Cancer Institute kn-affil= affil-num=12 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=13 en-affil=Department of Hematology, Osaka Metropolitan University Graduate School of Medicine kn-affil= affil-num=14 en-affil=Department of Hematology, Hokkaido University Hospital kn-affil= affil-num=15 en-affil=Department of Hematology and Oncology, Tokai University School of Medicine kn-affil= affil-num=16 en-affil=Department of Hematology and oncology, Kurashiki Central Hospital kn-affil= affil-num=17 en-affil=Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital kn-affil= affil-num=18 en-affil=Department of Hematology, Tottori University Hospital kn-affil= affil-num=19 en-affil=Division of Hematology, Jichi Medical University kn-affil= affil-num=20 en-affil=Japanese Data Center for Hematopoietic Cell Transplantation kn-affil= affil-num=21 en-affil=Japanese Data Center for Hematopoietic Cell Transplantation kn-affil= affil-num=22 en-affil=Transfusion and Cell Therapy Unit, Nagasaki University Hospital kn-affil= en-keyword=Granulocyte colony-stimulating factor kn-keyword=Granulocyte colony-stimulating factor en-keyword=Graft-versus-host disease kn-keyword=Graft-versus-host disease en-keyword=Bone marrow transplantation kn-keyword=Bone marrow transplantation en-keyword=Peripheral blood stem cell transplantation kn-keyword=Peripheral blood stem cell transplantation en-keyword=Cord blood transplantation kn-keyword=Cord blood transplantation en-keyword=Myelodysplastic syndrome kn-keyword=Myelodysplastic syndrome END start-ver=1.4 cd-journal=joma no-vol=58 cd-vols= no-issue=2 article-no= start-page=145 end-page=148 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250630 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The trochlea for the intermediate tendon of the digastric muscle: a review en-subtitle= kn-subtitle= en-abstract= kn-abstract=This review explores the novel perspective that the intermediate tendon of the digastric muscle may function as an anatomical trochlear pulley system within the human body, challenging the traditional understanding of trochlear systems. While widely recognized trochlear units include structures like the medial part of the humerus and the superior oblique muscle of the orbit, the review focuses on the unique anatomical arrangement of the intermediate tendon of the digastric muscle in connection with the anterior and posterior bellies of the digastric muscles. Despite current debates within the anatomical community about labeling the digastric muscles as having a trochlea, this paper delves into the scientific definition of a trochlear pulley system, presenting the intermediate tendon of the digastric muscle as a potential trochlea. en-copyright= kn-copyright= en-aut-name=du PlooyXander en-aut-sei=du Plooy en-aut-mei=Xander kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KunisadaYuki en-aut-sei=Kunisada en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=CardonaJuan J. en-aut-sei=Cardona en-aut-mei=Juan J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TabiraYoko en-aut-sei=Tabira en-aut-mei=Yoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=BubbKathleen Carol en-aut-sei=Bubb en-aut-mei=Kathleen Carol kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=RaeburnKazzara en-aut-sei=Raeburn en-aut-mei=Kazzara kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IbaragiSoichiro en-aut-sei=Ibaragi en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IwanagaJoe en-aut-sei=Iwanaga en-aut-mei=Joe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TubbsR. Shane en-aut-sei=Tubbs en-aut-mei=R. Shane kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Tulane University School of Medicine kn-affil= affil-num=2 en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine kn-affil= affil-num=4 en-affil=Division of Gross and Clinical Anatomy, Department of Anatomy, Kurume University School of Medicine kn-affil= affil-num=5 en-affil=Anatomy Division, Department of Radiology, Weill Cornell Medical College kn-affil= affil-num=6 en-affil=Department of Anatomical Sciences, St. Georgefs University kn-affil= affil-num=7 en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine kn-affil= affil-num=9 en-affil=Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine kn-affil= en-keyword=Digastric muscles kn-keyword=Digastric muscles en-keyword=Intermediate tendon kn-keyword=Intermediate tendon en-keyword=Trochlea kn-keyword=Trochlea en-keyword=Anatomy kn-keyword=Anatomy en-keyword=Fascia kn-keyword=Fascia END start-ver=1.4 cd-journal=joma no-vol=137 cd-vols= no-issue=23 article-no= start-page=235104 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250617 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Imaging valley-vortex edge modes in a phononic crystal at ultrahigh frequencies en-subtitle= kn-subtitle= en-abstract= kn-abstract=We perform optical measurements and numerical simulations of guided phonon propagation in novel topological phononic crystal structures at ultrahigh frequencies. The structures support valley-polarized states that exhibit an energy vortex nature and propagate with high efficiency at domain boundaries because backscattering is suppressed due to conservation of time reversal symmetry. We extract frequency- and time-resolved spatial mode patterns and k-space images, together with dispersion relations. We investigate the conditions required for robust propagation along interfaces and thereby observe very high efficiency waveguiding. en-copyright= kn-copyright= en-aut-name=OtsukaP. H. en-aut-sei=Otsuka en-aut-mei=P. H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TomodaM. en-aut-sei=Tomoda en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HatanakaD. en-aut-sei=Hatanaka en-aut-mei=D. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamaguchiH. en-aut-sei=Yamaguchi en-aut-mei=H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TsurutaK. en-aut-sei=Tsuruta en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MatsudaO. en-aut-sei=Matsuda en-aut-mei=O. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Division of Applied Physics, Graduate School of Engineering, Hokkaido University kn-affil= affil-num=2 en-affil=Division of Applied Physics, Graduate School of Engineering, Hokkaido University kn-affil= affil-num=3 en-affil=NTT Basic Research Laboratories, NTT Corporation kn-affil= affil-num=4 en-affil=NTT Basic Research Laboratories, NTT Corporation kn-affil= affil-num=5 en-affil=Department of Electrical and Electronic Engineering, Okayama University kn-affil= affil-num=6 en-affil=Division of Applied Physics, Graduate School of Engineering, Hokkaido University kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250612 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Sulfur dioxide-induced guard cell death and stomatal closure are attenuated in nitrate/proton antiporter AtCLCa mutants en-subtitle= kn-subtitle= en-abstract= kn-abstract=Guard cells surrounding the stomata play a crucial role in regulating the entrance of hazardous gases such as SO2 into leaves. Stomatal closure could be a plant response to mitigate SO2 damage, although the mechanism for SO2-induced closure remains controversial. Proposed mediators for SO2-induced stomatal closure include phytohormones, reactive oxygen species, gasotransmitters, and cytosolic acidification. In this study, we investigated the mechanism of stomatal closure in Arabidopsis in response to SO2. Despite an increment in auxin and jasmonates after SO2 exposure, the addition of auxin did not cause stomatal closure and jasmonate-insensitive mutants exhibited SO2-induced stomatal closure suggesting auxin and jasmonates are not mediators leading to the closure. In addition, supplementation of scavenging reagents for reactive oxygen species and gasotransmitters did not inhibit SO2-induced closure. Instead, we found that cytosolic acidification is a credible mechanism for SO2-induced stomatal closure in Arabidopsis. CLCa mutants coding H+/nitrate antiporter, involved in cytosolic pH homeostasis, showed less sensitive stomatal phenotype against SO2. These results suggest that cytosolic pH homeostasis plays a tenable role in SO2 response in guard cells. en-copyright= kn-copyright= en-aut-name=OoiLia en-aut-sei=Ooi en-aut-mei=Lia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsuuraTakakazu en-aut-sei=Matsuura en-aut-mei=Takakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoriIzumi C. en-aut-sei=Mori en-aut-mei=Izumi C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=airborne pollutants kn-keyword=airborne pollutants en-keyword=cytosolic acidification kn-keyword=cytosolic acidification en-keyword=stomatal closure kn-keyword=stomatal closure en-keyword=sulfur dioxide kn-keyword=sulfur dioxide END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=1 article-no= start-page=32 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250512 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Stability and water solubility of calcium ferrite-type aluminum-rich phase: implications for deep water cycle caused by subducting basaltic crusts en-subtitle= kn-subtitle= en-abstract= kn-abstract=The subducting crustal materials serve as a crucial channel for transporting water to the lower mantle. Recent experimental studies suggest that crustal materials such as basaltic crust can be a main water carrier and reservoir playing an important role on water cycling in the lower mantle. Despite being a primary mineral in crustal materials, the water solubility of calcium ferrite-type (CF) phase and its stability are unclear yet. A recent phase relation study of hydrous basalts showed Na-depletion in lower-mantle minerals, suggesting the presence of fluid possibly with high Na concentration and the absence of CF phase along the low-temperature slab geotherms, where Al-rich hydrous phase H and ferropericlase appear instead. These phases could consequently produce Na-depleted CF phase when reaching the dehydration temperature of Al-rich hydrous phase H. In this study, we investigated the stability and water solubility of CF-type MgAl2O4, which is a main CF component in a hydrous basalt, in water-bearing systems at 26?32 GPa and 1200?1900 ‹C using a Kawai-type multi-anvil press. Our results indicate that the stability of the CF phase is strongly influenced by water content in the system. Water contents of recovered CF phases estimated by Fourier-transform infrared spectroscopy show a limited variation between 73 and 87 ppm wt at a pressure of 26 GPa and temperatures of 1500?1900 ‹C. We suggest that CF phase could not be a primary water carrier at lower mantle depths. This emphasizes contributions of hydrous aluminous silica minerals to Earthfs deep water cycling and heterogeneous structures in the lower mantle due to the strong water partitioning to this phase compared with other constituent minerals. en-copyright= kn-copyright= en-aut-name=ZhangXinyue en-aut-sei=Zhang en-aut-mei=Xinyue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MashinoIzumi en-aut-sei=Mashino en-aut-mei=Izumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IshiiTakayuki en-aut-sei=Ishii en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Deep Space Exploration Laboratory/School of Earth and Space Sciences, University of Science and Technology of China kn-affil= affil-num=2 en-affil=Institute for Planetary Materials, Okayama University kn-affil= affil-num=3 en-affil=Institute for Planetary Materials, Okayama University kn-affil= en-keyword=Water solubility kn-keyword=Water solubility en-keyword=CF phase kn-keyword=CF phase en-keyword=Single crystal kn-keyword=Single crystal en-keyword=FTIR kn-keyword=FTIR en-keyword=MORB kn-keyword=MORB END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=1 article-no= start-page=5 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250228 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=In-frame deletion variant of ABCD1 in a sporadic case of adrenoleukodystrophy en-subtitle= kn-subtitle= en-abstract= kn-abstract=Adrenoleukodystrophy (ALD), an X-linked leukodystrophy caused by pathogenic variants in ABCD1, exhibits a broad range of phenotypes from childhood-onset cerebral forms to adult-onset adrenomyeloneuropathy (AMN). We report a rare in-frame ABCD1 deletion c.1469_71delTGG (p.Val490del) in a man with AMN. Although this variant has been interpreted as euncertain significancef in ClinVar, biochemical analysis along with clinical evaluation confirmed the pathogenicity of this variant, underscoring the importance of functional assessment of in-frame deletions. en-copyright= kn-copyright= en-aut-name=MatsukawaTakashi en-aut-sei=Matsukawa en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SudoAtsushi en-aut-sei=Sudo en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KakumotoToshiyuki en-aut-sei=Kakumoto en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HaoAkihito en-aut-sei=Hao en-aut-mei=Akihito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KainagaMitsuhiro en-aut-sei=Kainaga en-aut-mei=Mitsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ChangHyangri en-aut-sei=Chang en-aut-mei=Hyangri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ManoTatsuo en-aut-sei=Mano en-aut-mei=Tatsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IshiuraHiroyuki en-aut-sei=Ishiura en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MitsuiJun en-aut-sei=Mitsui en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HayashiToshihiro en-aut-sei=Hayashi en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MorishitaShinichi en-aut-sei=Morishita en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TsujiShoji en-aut-sei=Tsuji en-aut-mei=Shoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TodaTatsushi en-aut-sei=Toda en-aut-mei=Tatsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=2 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=3 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=4 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=5 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=6 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=7 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=8 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=10 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=11 en-affil=Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo kn-affil= affil-num=12 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=13 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= END start-ver=1.4 cd-journal=joma no-vol=26 cd-vols= no-issue=6 article-no= start-page=e70119 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250519 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Quantitative quality control of 3D water tank using image analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background and objective: Accurate beam data acquisition using three-dimensional (3D) water tanks is essential for beam commissioning and quality control (QC) in clinical radiation therapy. This study introduces a novel method for quantitative QC of the system, utilizing MV images and webcam videos. The stability of the motor drive speed and the positional accuracy of the fixture were evaluated under two measurement modes: gcontinuous modeh and gstep-by-step mode.h
Methods: A TRUFIX mounting system (PTW Freiburg Inc., Germany) was used to attach the center of the steel ball to its top, ensuring alignment with the water surface of the tank. To assess deviations from the radiation isocenter, MV images were acquired and compared with digitally reconstructed radiographs (DRRs). These evaluations were performed at different speed settings (slow, medium, and fast) using ET CT Body Marker (BRAINLAB Inc., USA) mounted on the drive unit. A webcam was utilized to capture the images, and custom-developed tracking software was employed to analyze deviations in driving speed and positional errors.
Results: The mean error of the radiation isocenter was 0.37 } 0.09 mm. As the motor drive speed increased, the discrepancy between the set speed and the actual speed observed in the analysis also became larger. In gcontinuous mode,h the deviation from the displayed value was greater than that observed in gstep-by-step mode.h
Conclusion: It is demonstrated that the proposed analysis method can quantitatively evaluate radiation isocenter misalignment, tank setup position deviation, and both the indicated drive speed values and their stability. At higher drive speeds, the gstep-by-step modeh showed smaller deviations from the indicated values. en-copyright= kn-copyright= en-aut-name=TanimotoYuki en-aut-sei=Tanimoto en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SugimotoKohei en-aut-sei=Sugimoto en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KoshiKazunobu en-aut-sei=Koshi en-aut-mei=Kazunobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HiroshigeAkira en-aut-sei=Hiroshige en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YoshidaShohei en-aut-sei=Yoshida en-aut-mei=Shohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FujitaYoshiki en-aut-sei=Fujita en-aut-mei=Yoshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakahiraAtsuki en-aut-sei=Nakahira en-aut-mei=Atsuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakanishiDaiki en-aut-sei=Nakanishi en-aut-mei=Daiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HondaHirofumi en-aut-sei=Honda en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OitaMasataka en-aut-sei=Oita en-aut-mei=Masataka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Radiology, NHO Kure Medical Center and Chugoku Cancer Center kn-affil= affil-num=2 en-affil=Department of Radiological Technology, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare kn-affil= affil-num=3 en-affil=Department of Radiology, NHO Fukuyama Medical Center kn-affil= affil-num=4 en-affil=Department of Radiology, NHO Shikoku Cancer Center kn-affil= affil-num=5 en-affil=Department of Radiology, NHO Shikoku Cancer Center kn-affil= affil-num=6 en-affil=Department of Radiology, NHO Shikoku Cancer Center kn-affil= affil-num=7 en-affil=Department of Radiology, NHO Shikoku Cancer Center kn-affil= affil-num=8 en-affil=Division of Radiology, Department of Medical Technology, Kyushu University Hospital kn-affil= affil-num=9 en-affil=Department of Radiological Technology, Ehime University Hospital kn-affil= affil-num=10 en-affil=Department of Healthcare Science, Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=3D water tank kn-keyword=3D water tank en-keyword=drive speed stability kn-keyword=drive speed stability en-keyword=quality control kn-keyword=quality control en-keyword=radiation isocenter kn-keyword=radiation isocenter en-keyword=x-ray image analysis kn-keyword=x-ray image analysis END start-ver=1.4 cd-journal=joma no-vol=18 cd-vols= no-issue=1 article-no= start-page=78 end-page=85 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241118 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Standardization of radiation therapy quality control system through mutual quality control based on failure mode and effects analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=The advancement of irradiation technology has increased the demand for quality control of radiation therapy equipment. Consequently, the number of quality control items and required personnel have also increased. However, differences in the proportion of qualified personnel to irradiation techniques have caused bias in quality control systems among institutions. To standardize the quality across institutions, researchers should conduct mutual quality control by analyzing the quality control data of one institution at another institution and comparing the results with those of their own institutions. This study uses failure mode and effects analysis (FMEA) to identify potential risks in 12 radiation therapy institutions, compares the results before and after implementation of mutual quality control, and examines the utility of mutual quality control in risk reduction. Furthermore, a cost-effectiveness factor is introduced into FMEA to evaluate the utility of mutual quality control. en-copyright= kn-copyright= en-aut-name=TanimotoYuki en-aut-sei=Tanimoto en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OitaMasataka en-aut-sei=Oita en-aut-mei=Masataka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KoshiKazunobu en-aut-sei=Koshi en-aut-mei=Kazunobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IshiwakiKiyoshi en-aut-sei=Ishiwaki en-aut-mei=Kiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HiramatsuFutoshi en-aut-sei=Hiramatsu en-aut-mei=Futoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SasakiToshihisa en-aut-sei=Sasaki en-aut-mei=Toshihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IseHiroki en-aut-sei=Ise en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MiyagawaTakashi en-aut-sei=Miyagawa en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MaedaTakeshi en-aut-sei=Maeda en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OkahiraShinsuke en-aut-sei=Okahira en-aut-mei=Shinsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=HamaguchiTakashi en-aut-sei=Hamaguchi en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KawaguchiTatsuya en-aut-sei=Kawaguchi en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=FunadaNorihiro en-aut-sei=Funada en-aut-mei=Norihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=YamamotoShuhei en-aut-sei=Yamamoto en-aut-mei=Shuhei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=HiroshigeAkira en-aut-sei=Hiroshige en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=MukaiYuki en-aut-sei=Mukai en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=YoshidaShohei en-aut-sei=Yoshida en-aut-mei=Shohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=FujitaYoshiki en-aut-sei=Fujita en-aut-mei=Yoshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=NakahiraAtsuki en-aut-sei=Nakahira en-aut-mei=Atsuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=HondaHirofumi en-aut-sei=Honda en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= affil-num=1 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Interdisciplinary Science and Engineering in Health Systems, Department of Healthcare Science, Okayama University kn-affil= affil-num=3 en-affil=Department of Radiology, NHO Fukuyama Medical Center kn-affil= affil-num=4 en-affil=Department of Radiology, NHO Iwakuni Medical Center kn-affil= affil-num=5 en-affil=Department of Radiology, NHO Hamada Medical Center kn-affil= affil-num=6 en-affil=Department of Radiology, NHO Higashi-Hiroshima Medical Center kn-affil= affil-num=7 en-affil=Department of Radiology, NHO Iwakuni Medical Center kn-affil= affil-num=8 en-affil=Department of Radiology, NHO Kanmon Medical Center kn-affil= affil-num=9 en-affil=Department of Radiology, NHO Kochi National Hospital kn-affil= affil-num=10 en-affil=Department of Radiology, NHO Yamaguchi-Ube Medical Center kn-affil= affil-num=11 en-affil=Department of Radiology, NHO Okayama Medical Center kn-affil= affil-num=12 en-affil=Department of Radiology, NHO Shikoku Medical Center for Children and Adults kn-affil= affil-num=13 en-affil=Department of Radiology, NHO Hamada Medical Center kn-affil= affil-num=14 en-affil=Department of Radiology, NHO Fukuyama Medical Center kn-affil= affil-num=15 en-affil=Department of Radiology, NHO Shikoku Cancer Center kn-affil= affil-num=16 en-affil=Department of Radiology, NHO Shikoku Cancer Center kn-affil= affil-num=17 en-affil=Department of Radiology, NHO Shikoku Cancer Center kn-affil= affil-num=18 en-affil=Department of Radiology, NHO Shikoku Cancer Center kn-affil= affil-num=19 en-affil=Department of Radiology, NHO Shikoku Cancer Center kn-affil= affil-num=20 en-affil=Department of Radiological Technology, Ehime University Hospital kn-affil= en-keyword=Radiation therapy kn-keyword=Radiation therapy en-keyword=Quality control kn-keyword=Quality control en-keyword=Failure mode and effects analysis kn-keyword=Failure mode and effects analysis en-keyword=Cost-effectiveness kn-keyword=Cost-effectiveness END start-ver=1.4 cd-journal=joma no-vol=58 cd-vols= no-issue=3 article-no= start-page=976 end-page=991 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Enhanced estimation method for partial scattering functions in contrast variation small-angle neutron scattering via Gaussian process regression with prior knowledge of smoothness en-subtitle= kn-subtitle= en-abstract= kn-abstract=Contrast variation small-angle neutron scattering (CV-SANS) is a powerful tool for evaluating the structure of multi-component systems. In CV-SANS, the scattering intensities I(Q) measured with different scattering contrasts are de?com?posed into partial scattering functions S(Q) of the self- and cross-correlations between components. Since the measurement has a measurement error, S(Q) must be estimated statistically from I(Q). If no prior knowledge about S(Q) is available, the least-squares method is best, and this is the most popular estimation method. However, if prior knowledge is available, the estimation can be improved using Bayesian inference in a statistically authorized way. In this paper, we propose a novel method to improve the estimation of S(Q), based on Gaussian process regression using prior knowledge about the smoothness and flatness of S(Q). We demonstrate the method using synthetic core?shell and experimental polyrotaxane SANS data. en-copyright= kn-copyright= en-aut-name=ObayashiIppei en-aut-sei=Obayashi en-aut-mei=Ippei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyajimaShinya en-aut-sei=Miyajima en-aut-mei=Shinya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanakaKazuaki en-aut-sei=Tanaka en-aut-mei=Kazuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MayumiKoichi en-aut-sei=Mayumi en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Center for Artificial Intelligence and Mathematical Data Science, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Science and Engineering, Iwate University kn-affil= affil-num=3 en-affil=Global Center for Science and Engineering, Waseda University kn-affil= affil-num=4 en-affil=Institute for Solid State Physics, University of Tokyo kn-affil= en-keyword=contrast variation small-angle neutron scattering kn-keyword=contrast variation small-angle neutron scattering en-keyword=CV-SANS kn-keyword=CV-SANS en-keyword=partial scattering functions kn-keyword=partial scattering functions en-keyword=multi-component systems kn-keyword=multi-component systems en-keyword=statistical methods kn-keyword=statistical methods en-keyword=Bayesian inference kn-keyword=Bayesian inference en-keyword=contrast variation kn-keyword=contrast variation en-keyword=Gaussian process regression kn-keyword=Gaussian process regression END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250616 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Leg-biting fights reduce the number of sperm transferred by the loser and in draws in Zophobas atratus en-subtitle= kn-subtitle= en-abstract= kn-abstract=Intra-sexual selection has been observed across a wide range of species. Male-male combat can not only determine the winner and loser but also affect subsequent reproductive success. The effects of combat outcomes on reproduction are thought to depend on the reproductive ecology of the target species. However, to our knowledge, studies examining the impact of combat outcomes on sperm competition and fitness remain limited. In the giant mealworm (Zophobas atratus), malefs combat involves biting each other's hind legs. Females mated to the losers of leg-biting contests had significantly fewer eggs and fewer offspring than females mated to males that were not in a contest. Possible explanations for this fitness reduction include the inability of males to transfer sperm effectively due to the combat outcome or the inability of their sperm to fertilize eggs due to female cryptic sperm choice, and the mechanisms underlying this reduction remain unclear. Previous studies have observed distorted mating postures in losing males, leading us to hypothesize that leg-biting during combat might affect sperm transfer. To test this, we allowed uncontested males, winners, losers, and males with a draw outcome to mate with females and compared the number of sperm within the femalefs spermatheca. Additionally, we examined the correlation between combat duration and sperm count. Results showed that losers and males with draw transferred fewer sperm than non-combat males. Moreover, the longer the combat duration, the fewer sperm males were able to transfer. These findings suggest that the reduction in sperm transferred was affected by both losing in combat and prolonged combat duration in leg-biting encounters. en-copyright= kn-copyright= en-aut-name=MatsuuraTeruhisa en-aut-sei=Matsuura en-aut-mei=Teruhisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyatakeTakahisa en-aut-sei=Miyatake en-aut-mei=Takahisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Male combat kn-keyword=Male combat en-keyword=Male-male competition kn-keyword=Male-male competition en-keyword=Sperm transfer kn-keyword=Sperm transfer en-keyword=Sperm biology kn-keyword=Sperm biology END start-ver=1.4 cd-journal=joma no-vol=70 cd-vols= no-issue=5 article-no= start-page=733 end-page=747 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202503 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A PRA-Rab trafficking machinery modulates NLR immune receptor plasma membrane microdomain anchoring and blast resistance in rice en-subtitle= kn-subtitle= en-abstract= kn-abstract=Nucleotide-binding leucine-rich repeat (NLR) receptors mediate pathogen effector-triggered immunity (ETI) in plants, and a subclass of NLRs are hypothesized to function at the plasma membrane (PM). However, how NLR traffic and PM delivery are regulated during immune responses remains largely unknown. The rice NLR PigmR confers broad-spectrum resistance to the blast fungus Magnaporthe oryzae. Here, we report that a PRA (Prenylated Rab acceptor) protein, PIBP4 (PigmR-INTERACTING and BLAST RESISTANCE PROTEIN 4), interacts with both PigmR and the active form of the Rab GTPase, OsRab5a, thereby loads a portion of PigmR on trafficking vesicles that target to PM microdomains. Microdomain-localized PigmR interacts with and activates the small GTPase OsRac1, which triggers reactive oxygen species signaling and hypersensitive response, leading to immune responses against blast infection. Thus, our study discovers a previously unknown mechanism that deploys a PRA-Rab protein delivering hub to ensure ETI, linking the membrane trafficking machinery with NLR function and immune activation in plants. en-copyright= kn-copyright= en-aut-name=LiangDi en-aut-sei=Liang en-aut-mei=Di kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YangDongyong en-aut-sei=Yang en-aut-mei=Dongyong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=LiTai en-aut-sei=Li en-aut-mei=Tai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ZhuZhe en-aut-sei=Zhu en-aut-mei=Zhe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YanBingxiao en-aut-sei=Yan en-aut-mei=Bingxiao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HeYang en-aut-sei=He en-aut-mei=Yang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=LiXiaoyuan en-aut-sei=Li en-aut-mei=Xiaoyuan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ZhaiKeran en-aut-sei=Zhai en-aut-mei=Keran kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=LiuJiyun en-aut-sei=Liu en-aut-mei=Jiyun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KawanoYoji en-aut-sei=Kawano en-aut-mei=Yoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=DengYiwen en-aut-sei=Deng en-aut-mei=Yiwen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=WuXu Na en-aut-sei=Wu en-aut-mei=Xu Na kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=LiuJunzhong en-aut-sei=Liu en-aut-mei=Junzhong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=HeZuhua en-aut-sei=He en-aut-mei=Zuhua kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences kn-affil= affil-num=2 en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences kn-affil= affil-num=3 en-affil=Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University kn-affil= affil-num=4 en-affil=Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University kn-affil= affil-num=5 en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences kn-affil= affil-num=6 en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences kn-affil= affil-num=7 en-affil=School of Life Science and Technology, ShanghaiTech University kn-affil= affil-num=8 en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences kn-affil= affil-num=9 en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences kn-affil= affil-num=10 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=11 en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences kn-affil= affil-num=12 en-affil=Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University kn-affil= affil-num=13 en-affil=Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University kn-affil= affil-num=14 en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences kn-affil= en-keyword=Prenylated Rab acceptor kn-keyword=Prenylated Rab acceptor en-keyword=PigmR kn-keyword=PigmR en-keyword=Trafficking vesicles kn-keyword=Trafficking vesicles en-keyword=OsRab5a kn-keyword=OsRab5a en-keyword=Blast resistance kn-keyword=Blast resistance END start-ver=1.4 cd-journal=joma no-vol=695 cd-vols= no-issue= article-no= start-page=137727 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202510 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Tunable interlayer distance in graphene oxide through alkylamine surface coverage and chain length en-subtitle= kn-subtitle= en-abstract= kn-abstract=Layered materials have unique structures that can be modified by adjusting the space between layers through pillaring or surface functionalization. Unlike typical crystalline layered materials, graphene oxide (GO) possesses reactive oxygenated functional groups, which lead to spontaneous reduction and stacking upon thermal treatment. Here, we investigated the functionalization of GO with different amounts of hexylamine to control the degree of surface coverage. Furthermore, octylamine and dodecylamine were employed to confirm the effect of the alkyl chain length on the interlayer distance of the resultant GO derivatives. Subsequent thermal treatment produced reduced GO (rGO) functionalized with alkylamines, demonstrating the retention of the interlayer distance. Additionally, amine-functionalized rGOs exhibited varying porous structures. en-copyright= kn-copyright= en-aut-name=Ortiz-AnayaIsrael en-aut-sei=Ortiz-Anaya en-aut-mei=Israel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ObataSeiji en-aut-sei=Obata en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishinaYuta en-aut-sei=Nishina en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Natural Sciences and Technology, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= en-keyword=Graphene oxide kn-keyword=Graphene oxide en-keyword=Layered material kn-keyword=Layered material en-keyword=Interlayer distance kn-keyword=Interlayer distance en-keyword=Functionalization kn-keyword=Functionalization en-keyword=Alkylamines kn-keyword=Alkylamines en-keyword=Nitrogen physisorption kn-keyword=Nitrogen physisorption END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250609 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The maxillary vein: an anatomical narrative review with clinical implications for oral and maxillofacial surgeons en-subtitle= kn-subtitle= en-abstract= kn-abstract=The maxillary vein, despite its clinical significance, remains underexplored in anatomical literature. It plays a crucial role in venous drainage of the maxillofacial region and is closely associated with surgical procedures such as sagittal split ramus osteotomy, mandibuloplasty, and condylar or parotid surgeries. Due to its variable anatomy and proximity to critical structures, the maxillary vein poses a risk of significant hemorrhage if injured. Its small size and deep location make preoperative identification challenging, especially without contrast-enhanced imaging. Embryologically, the maxillary vein originates from the primitive maxillary vein and develops through complex anastomoses with other craniofacial veins. Anatomical studies have revealed several variations, including the presence of accessory mandibular foramina and unusual venous connections, which may increase surgical risk. Understanding the detailed anatomy and potential variations of the maxillary vein is essential for minimizing complications and improving surgical outcomes. Despite its importance, more anatomical and clinical research is needed to better define its course, variations, and implications in oral and maxillofacial surgery. en-copyright= kn-copyright= en-aut-name=RaeburnKazzara en-aut-sei=Raeburn en-aut-mei=Kazzara kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakeshitaYohei en-aut-sei=Takeshita en-aut-mei=Yohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakakuraHiroaki en-aut-sei=Takakura en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KikutaShogo en-aut-sei=Kikuta en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KunisadaYuki en-aut-sei=Kunisada en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IbaragiSoichiro en-aut-sei=Ibaragi en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SamridRarinthorn en-aut-sei=Samrid en-aut-mei=Rarinthorn kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=LoukasMarios en-aut-sei=Loukas en-aut-mei=Marios kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TubbsR. Shane en-aut-sei=Tubbs en-aut-mei=R. Shane kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=IwanagaJoe en-aut-sei=Iwanaga en-aut-mei=Joe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Anatomical Sciences, St. Georgefs University kn-affil= affil-num=2 en-affil=Department of Oral and Maxillofacial Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Dental and Oral Medical Center, Kurume University School of Medicine kn-affil= affil-num=5 en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil= kn-affil= affil-num=8 en-affil=Department of Anatomical Sciences, St. Georgefs University kn-affil= affil-num=9 en-affil=Department of Anatomical Sciences, St. Georgefs University kn-affil= affil-num=10 en-affil=Dental and Oral Medical Center, Kurume University School of Medicine kn-affil= en-keyword=Embryology kn-keyword=Embryology en-keyword=Anatomy kn-keyword=Anatomy en-keyword=Radiology kn-keyword=Radiology en-keyword=Cadaver kn-keyword=Cadaver en-keyword=Mandible kn-keyword=Mandible END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250526 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Lytic Transglycosylase Deficiency Increases Susceptibility to ƒÀ-lactam Antibiotics But Reduces Susceptibility to Vancomycin in Escherichia coli en-subtitle= kn-subtitle= en-abstract= kn-abstract=In Staphylococcus aureus, a gram-positive pathogen, vancomycin-resistant strains become susceptible to ƒÀ-lactam antibiotics, referred to as the gseesaw effect.h However, in gram-negative bacteria, the phenomenon is less clear. Here, we analyzed the gene-knockout effects of eight lytic transglycosylases (slt, mltA, mltB, mltC, mltD, mltE, mltF, mltG) on antibiotic sensitivity in Escherichia coli. Knockout of both slt and mltG increased sensitivity to ƒÀ-lactam antibiotics and reduced sensitivity to vancomycin. The ƒÀ-lactam antibiotic sensitivity and vancomycin resistance of the slt-knockout mutant were abolished by the introduction of the wild-type slt gene but remained unchanged by the introduction of the mutant slt gene encoding an amino acid substitution variant of the transglycosylase catalytic centre. The double-knockout strain for slt and mltB was more sensitive to ampicillin and more resistant to vancomycin than each single-knockout strain. The double-knockout strain for slt and mltG was more sensitive to ampicillin and more resistant to vancomycin than each single-knockout strain. These results suggest that loss of lytic transglycosylase activity causes ƒÀ-lactam antibiotic sensitivity and vancomycin resistance in E. coli. en-copyright= kn-copyright= en-aut-name=KimuraTakahiko en-aut-sei=Kimura en-aut-mei=Takahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IshikawaKazuya en-aut-sei=Ishikawa en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakagawaRyosuke en-aut-sei=Nakagawa en-aut-mei=Ryosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FurutaKazuyuki en-aut-sei=Furuta en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KaitoChikara en-aut-sei=Kaito en-aut-mei=Chikara kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Laboratory of Molecular Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Laboratory of Molecular Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Laboratory of Molecular Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Laboratory of Molecular Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Laboratory of Molecular Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Escherichia coli kn-keyword=Escherichia coli en-keyword=lytic transglycosylase kn-keyword=lytic transglycosylase en-keyword=seesaw effect kn-keyword=seesaw effect en-keyword=vancomycin kn-keyword=vancomycin en-keyword=ƒÀ]lactam antibiotics kn-keyword=ƒÀ]lactam antibiotics END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue= article-no= start-page=RP99858 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241031 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structural basis for molecular assembly of fucoxanthin chlorophyll a/c-binding proteins in a diatom photosystem I supercomplex en-subtitle= kn-subtitle= en-abstract= kn-abstract=Photosynthetic organisms exhibit remarkable diversity in their light-harvesting complexes (LHCs). LHCs are associated with photosystem I (PSI), forming a PSI-LHCI supercomplex. The number of LHCI subunits, along with their protein sequences and pigment compositions, has been found to differ greatly among the PSI-LHCI structures. However, the mechanisms by which LHCIs recognize their specific binding sites within the PSI core remain unclear. In this study, we determined the cryo-electron microscopy structure of a PSI supercomplex incorporating fucoxanthin chlorophyll a/c-binding proteins (FCPs), designated as PSI-FCPI, isolated from the diatom Thalassiosira pseudonana CCMP1335. Structural analysis of PSI-FCPI revealed five FCPI subunits associated with a PSI monomer; these subunits were identified as RedCAP, Lhcr3, Lhcq10, Lhcf10, and Lhcq8. Through structural and sequence analyses, we identified specific protein?protein interactions at the interfaces between FCPI and PSI subunits, as well as among FCPI subunits themselves. Comparative structural analyses of PSI-FCPI supercomplexes, combined with phylogenetic analysis of FCPs from T. pseudonana and the diatom Chaetoceros gracilis, underscore the evolutionary conservation of protein motifs crucial for the selective binding of individual FCPI subunits. These findings provide significant insights into the molecular mechanisms underlying the assembly and selective binding of FCPIs in diatoms. en-copyright= kn-copyright= en-aut-name=KatoKoji en-aut-sei=Kato en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakajimaYoshiki en-aut-sei=Nakajima en-aut-mei=Yoshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=XingJian en-aut-sei=Xing en-aut-mei=Jian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KumazawaMinoru en-aut-sei=Kumazawa en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OgawaHaruya en-aut-sei=Ogawa en-aut-mei=Haruya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IfukuKentaro en-aut-sei=Ifuku en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NagaoRyo en-aut-sei=Nagao en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=4 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=5 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=8 en-affil=Faculty of Agriculture, Shizuoka University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=18981 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250530 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Role of galectin-9 in the development of gestational diabetes mellitus en-subtitle= kn-subtitle= en-abstract= kn-abstract=Galectin-9 (Gal-9) is highly expressed in trophoblasts in placenta. Interaction between Gal-9 and T-cell immunoglobulin and mucin-domain containing-3 (Tim-3) is important for the differentiation of tissue resident natural killer (trNK) cells in placenta and maintenance of normal pregnancy. Furthermore, the enhanced maternal systemic inflammation associated with increased proinflammatory cytokines in preeclampsia is mediated by enhanced interaction between Gal-9 and Tim-3. However, the role of Gal-9 in gestational diabetes (GDM) remains unexplored. Plasma Gal-9 levels were elevated at 3rd trimester in pregnant women with GDM and positively correlated with placenta and newborn weight. Lgals9 knockout pregnant mice fed with high fat diet (HFD KO) demonstrated maternal glucose intolerance and fetus macrosomia compared with controls (HFD WT). In HFD KO, increased proliferating cells, reduced apoptosis, and autophagy impairment were observed in junctional zones. The number of trNK cells and percentage of Tim-3?+?trNK increased, while early apoptosis percentage in Tim-3?+?trNK was reduced in placenta of HFD KO. The elevation of plasma Gal-9 may be a biomarker for prediction of maternal glucose intolerance and fetal macrosomia in pregnant women with GDM and Gal-9 functions as a compensation factor for GDM by inducing apoptosis in Tim-3?+?trNK cells. en-copyright= kn-copyright= en-aut-name=AlbuayjanHaya Hamed Hassan en-aut-sei=Albuayjan en-aut-mei=Haya Hamed Hassan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WatanabeMayu en-aut-sei=Watanabe en-aut-mei=Mayu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SugawaraRyosuke en-aut-sei=Sugawara en-aut-mei=Ryosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KatsuyamaEri en-aut-sei=Katsuyama en-aut-mei=Eri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MiseKoki en-aut-sei=Mise en-aut-mei=Koki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OiYukiko en-aut-sei=Oi en-aut-mei=Yukiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KannoAyaka en-aut-sei=Kanno en-aut-mei=Ayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YangBoXuan en-aut-sei=Yang en-aut-mei=BoXuan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TaharaToshihisa en-aut-sei=Tahara en-aut-mei=Toshihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NojimaIchiro en-aut-sei=Nojima en-aut-mei=Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NakatsukaAtsuko en-aut-sei=Nakatsuka en-aut-mei=Atsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=EguchiJun en-aut-sei=Eguchi en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MakiJota en-aut-sei=Maki en-aut-mei=Jota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=EtoEriko en-aut-sei=Eto en-aut-mei=Eriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=HayataKei en-aut-sei=Hayata en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=MasuyamaHisashi en-aut-sei=Masuyama en-aut-mei=Hisashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=14 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=15 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=16 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=17 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=1 article-no= start-page=745 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250521 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Exploring the relationship between posture-dependent airway assessment in orthodontics: insights from kinetic MRI, cephalometric data, and three-dimensional MRI analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Previous studies have assessed the upper airway using various examination methods, such as cephalometric imaging and magnetic resonance imaging (MRI). However, there is a significant gap in the research regarding the relationship between these different imaging modalities. This study compares airway assessments using kinetic MRI and cephalometric scans, examining their correlation with three dimensional (3D) MRI data.
Materials and methods Kinetic MRI, cephalometric scans, and 3D MRI of forty-seven participants were used in the present study. Airway areas and widths were measured at the retropalatal, retroglossal, and hypopharyngeal levels in both kinetic MRI and cephalometric scans. Airway volumes were calculated from 3D MRI data. Statistical analyses, including the Wilcoxon Signed Rank test, Spearman correlation, and multiple linear regression, were performed to evaluate the data and identify significant differences, correlations, and prediction models, respectively.
Results Significant differences were found between kinetic MRI and cephalometric scans. Cephalometric data showed larger airway areas and widths compared to kinetic MRI measurements. Although both cephalometric and kinetic MRI showed a correlation with 3D MRI, kinetic MRI demonstrated stronger correlations with 3D MRI airway volumes than cephalometric scans. According to our linear regression model equations, RPA-Max (maximum retropalatal airway area) and RPA (retropalatal airway area) can elucidate variations in RPV (retropalatal airway volume). RGA-Med (median retroglossal airway area) and RGA-Min (minimum retroglossal airway area) can explain variations in RGV (retroglossal airway volume). HPA (hypopharyngeal airway area) and ULHPAW-Max (maximum upper limit hypopharyngeal airway width) account for variations in HPV (hypopharyngeal airway volume). Additionally, TA-Max (maximum total airway area) can account for variations in TPV (total pharyngeal airway volume).ConclusionBoth cephalometric data and kinetic MRI data showed correlations with 3D MRI data. The shared posture of kinetic MRI and 3D MRI led to stronger correlations between these two modalities. Although cephalometric data had fewer correlations with 3D MRI and predictors for 3D airway volume, they were still significant. Our study highlights the complementary nature of kinetic MRI and cephalometric imaging, as both provide valuable information for airway assessment and exhibit significant correlations with 3D MRI data. en-copyright= kn-copyright= en-aut-name=OkaNaoki en-aut-sei=Oka en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HabumugishaJanvier en-aut-sei=Habumugisha en-aut-mei=Janvier kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakamuraMasahiro en-aut-sei=Nakamura en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KataokaTomoki en-aut-sei=Kataoka en-aut-mei=Tomoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FujisawaAtsuro en-aut-sei=Fujisawa en-aut-mei=Atsuro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KawanabeNoriaki en-aut-sei=Kawanabe en-aut-mei=Noriaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IzawaTakashi en-aut-sei=Izawa en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KamiokaHiroshi en-aut-sei=Kamioka en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Division of Oral and Maxillofacial Surgery, Tottori University kn-affil= affil-num=5 en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Kinetic MRI kn-keyword=Kinetic MRI en-keyword=Posture kn-keyword=Posture en-keyword=Airway assessment kn-keyword=Airway assessment END start-ver=1.4 cd-journal=joma no-vol=7 cd-vols= no-issue=1 article-no= start-page=vdaf036 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250209 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Evaluating short-term survivors of glioblastoma: A proposal based on SEER registry data en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Glioblastomas (GBMs) are central nervous system tumors with a poor prognosis and limited treatment options. Although small subsets of GBM patients survive longer than 3 years, there is little evidence regarding the prognostic factors of GBM. Therefore, we conducted a thorough characterization of GBM in the United States.
Methods: We queried the Surveillance, Epidemiology, and End Results database between 2000 and 2021 to extract age-adjusted incidence rates (AAIRs), age-adjusted mortality rates (AAMRs), and survival data for GBM. We compared trends in AAIR, AAMR, and survival time across age groups 0?14, 15?39, 40?69, and 70+ years. Also, we employed the Fine?Gray competing risk model among short-term survivors (STSs), defined as those with a survival time of 6 months or less, and long-term survivors (LTSs), defined as those with a survival time of 3 years or more.
Results: This study included 60 615 incident GBM cases, 54 998 GBM-specific deaths, and 47 207 GBM patients with available survival time between 2000 and 2021. The mortality-to-incidence ratio was constant among STSs, whereas it increased with age among LTSs. Higher age and male sex were significantly associated with GBM-specific death among LTSs, whereas non-Hispanic White and less intensive treatments were associated with GBM-specific deaths among STSs. Interestingly, higher age was significantly associated with other causes of death among STSs.
Conclusions: STSs partially consist of populations who died from causes other than GBM. It is important to include only GBM-specific deaths in STS groups to conduct reproducible research comparing STSs and LTSs. en-copyright= kn-copyright= en-aut-name=TomitaYusuke en-aut-sei=Tomita en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OtaniYoshihiro en-aut-sei=Otani en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OmaeRyo en-aut-sei=Omae en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MizutaRyo en-aut-sei=Mizuta en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IshidaJoji en-aut-sei=Ishida en-aut-mei=Joji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HirotsuneNobuyuki en-aut-sei=Hirotsune en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TanakaShota en-aut-sei=Tanaka en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Neurological Surgery, Okayama University Medical School kn-affil= affil-num=2 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Neurosurgery and Neuroendovascular Surgery, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=7 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=glioblastoma kn-keyword=glioblastoma en-keyword=long-term survivor kn-keyword=long-term survivor en-keyword=SEER kn-keyword=SEER en-keyword=short-term survivor kn-keyword=short-term survivor en-keyword=United States kn-keyword=United States END start-ver=1.4 cd-journal=joma no-vol=38 cd-vols= no-issue=8 article-no= start-page=100782 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202508 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Involvement of PI3K?Akt Signaling in the Clinical and Pathological Findings of Idiopathic Multicentric Castleman Disease?Thrombocytopenia, Anasarca, Fever, Reticulin Fibrosis, and Organomegaly and Not Otherwise Specified Subtypes en-subtitle= kn-subtitle= en-abstract= kn-abstract=Idiopathic multicentric Castleman disease is a rare lymphoproliferative disorder that is clinically classified into idiopathic plasmacytic lymphadenopathy (IPL); thrombocytopenia, anasarca, fever, reticulin fibrosis, and organomegaly (TAFRO); and not otherwise specified (NOS). Although each subtype shows varying degrees of hypervascularity, no statistical data on the degree of vascularization have been reported. Additionally, the mechanisms underlying vascularization in each clinical subtype are poorly understood. Here, we aimed to clarify these mechanisms by evaluating the histopathological characteristics of each clinical subtype across 37 patients and performing a whole-transcriptome analysis focusing on angiogenesis-related gene expression. Histologically, TAFRO and NOS exhibited a significantly higher degree of vascularization than IPL (IPL vs TAFRO, P < .001; IPL vs NOS, P = .002). In addition, the germinal centers (GCs) were significantly more atrophic in TAFRO than in IPL. In TAFRO and NOS, gwhirlpool vesselsh in GCs were seen in most cases (TAFRO, 9/9, 100%; NOS, 6/8, 75%) but not in IPL (IPL vs TAFRO, P < .001; IPL vs NOS, P = .007). Likewise, immunostaining for Ets-related gene revealed higher levels in endothelial cells of GCs in TAFRO than in IPL (P = .014), and TAFRO and NOS were associated with a significantly higher number of endothelial cells in interfollicular areas compared with that in IPL (TAFRO vs IPL, P < .001; NOS vs IPL, P = .002). Gene expression analysis revealed that the PI3K?Akt signaling pathway was significantly enriched in the TAFRO and NOS (TAFRO/NOS) groups. This pathway, which may be activated by vascular endothelial growth factor A and some integrins, is known to affect angiogenesis by increasing vascular permeability, which may explain the clinical manifestations of anasarca and/or fluid retention in TAFRO/NOS. These results suggest that the PI3K?Akt pathway plays an important role in the pathogenesis of TAFRO/NOS. en-copyright= kn-copyright= en-aut-name=HaratakeTomoka en-aut-sei=Haratake en-aut-mei=Tomoka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishimuraMidori Filiz en-aut-sei=Nishimura en-aut-mei=Midori Filiz kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishikoriAsami en-aut-sei=Nishikori en-aut-mei=Asami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=GonzalezMichael V. en-aut-sei=Gonzalez en-aut-mei=Michael V. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=EnnishiDaisuke en-aut-sei=Ennishi en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=LaiYou Cheng en-aut-sei=Lai en-aut-mei=You Cheng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OchiSayaka en-aut-sei=Ochi en-aut-mei=Sayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TsunodaManaka en-aut-sei=Tsunoda en-aut-mei=Manaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=FajgenbaumDavid C. en-aut-sei=Fajgenbaum en-aut-mei=David C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=van RheeFrits en-aut-sei=van Rhee en-aut-mei=Frits kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MomoseShuji en-aut-sei=Momose en-aut-mei=Shuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SatoYasuharu en-aut-sei=Sato en-aut-mei=Yasuharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=2 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=3 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=4 en-affil=Center for Cytokine Storm Treatment and Laboratory, Department of Medicine, Perelman School of Medicine, University of Pennsylvania kn-affil= affil-num=5 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Medical Biotechnology and Laboratory Science, Chang Gung University kn-affil= affil-num=7 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=8 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=9 en-affil=Center for Cytokine Storm Treatment and Laboratory, Department of Medicine, Perelman School of Medicine, University of Pennsylvania kn-affil= affil-num=10 en-affil=Center for Cytokine Storm Treatment and Laboratory, Department of Medicine, Perelman School of Medicine, University of Pennsylvania kn-affil= affil-num=11 en-affil=Department of Pathology, Saitama Medical Center, Saitama Medical University kn-affil= affil-num=12 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= en-keyword=idiopathic multicentric Castleman disease kn-keyword=idiopathic multicentric Castleman disease en-keyword=integrin subunit alpha 5 kn-keyword=integrin subunit alpha 5 en-keyword=PI3K?Akt signaling pathway kn-keyword=PI3K?Akt signaling pathway en-keyword=platelet-derived growth factor receptor beta kn-keyword=platelet-derived growth factor receptor beta en-keyword=vascular endothelial growth factor A kn-keyword=vascular endothelial growth factor A en-keyword=vascularity kn-keyword=vascularity END start-ver=1.4 cd-journal=joma no-vol=295 cd-vols= no-issue= article-no= start-page=128303 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251201 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Using a microfluidic paper-based analytical device and solid-phase extraction to determine phosphate concentration en-subtitle= kn-subtitle= en-abstract= kn-abstract=Phosphate is an essential nutrient, but in high concentrations it contributes to water pollution. Traditional methods for phosphate measurement, such as absorption spectrophotometry and ion chromatography, require expensive equipment and skilled operators. This study introduces a microfluidic paper-based analytical device (ƒÊPAD) that is designed to accomplish field-based, low-concentration phosphate measurements. This ƒÊPAD utilizes colorimetric detection based on the molybdenum blue method. Herein, we describe how the conditions were optimized in terms of design and sensitivity by adjusting reagent concentrations, paper thickness, and the time frames for sample introduction, and reaction. The operation consists of simply dipping the ƒÊPAD into a sample, capturing images in a home-made photo studio box, and processing the images with ImageJ software to measure RGB intensity. An additional preconcentration step involves solid-phase extraction with an anion exchange resin that achieves a 10-fold enrichment, which enables detection that ranges from 0.05 to 1 mg L?1 with a detection limit of 0.089 mg L?1 and a quantification limit of 0.269 mg L?1. The replicated measurements showed good reproducibility both intraday and interday (five different days) as 4.7 % and 3.0 % of relative standard deviations, respectively. After storage in a refrigerator for as long as 26 days, this ƒÊPAD delivered stable and accurate results for real-world samples of natural water, soil, and toothpaste. The results produced using this system correlate well with those produced via spectrophotometry. This ƒÊPAD-based method is a cost-effective, portable, rapid, and simple approach that allows relatively unskilled operators to monitor phosphate concentrations in field applications. en-copyright= kn-copyright= en-aut-name=DanchanaKaewta en-aut-sei=Danchana en-aut-mei=Kaewta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NambaHaruka en-aut-sei=Namba en-aut-mei=Haruka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KanetaTakashi en-aut-sei=Kaneta en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Chemistry, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemistry, Okayama University kn-affil= affil-num=3 en-affil=Department of Chemistry, Okayama University kn-affil= en-keyword=Phosphate kn-keyword=Phosphate en-keyword=Microfluidic paper-based analytical device kn-keyword=Microfluidic paper-based analytical device en-keyword=Solid-phase extraction kn-keyword=Solid-phase extraction en-keyword=Anion exchanger kn-keyword=Anion exchanger en-keyword=Molybdenum blue method kn-keyword=Molybdenum blue method END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250519 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Novel method of leukocytapheresis using a highly concentrated sodium citrate solution alternative to acid citrate dextrose solution A en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Large-volume leukocytapheresis is time consuming. The upper limit of the inlet flow rate is determined by the inlet: anticoagulant (AC) ratio and can be changed by combining the AC with heparin. Here, we devised a protocol to increase the AC ratio using a highly concentrated sodium citrate solution without heparin.
Study Design and Methods: We collected data from 40 consecutive apheresis procedures performed using the Spectra Optia system on 40 donors for allogeneic peripheral blood stem cells between June 2022 and June 2023. We used AC containing 2.2% sodium citrate (normal concentrated sodium citrate [NSC]) and 5.32% sodium citrate (highly concentrated sodium citrate [HSC]). The AC ratios were set to 12:1 and 24:1 for the NSC and HSC, respectively.
Results: The processed volume was not different; the maximum inlet flow rate increased, the total processing time was reduced, the AC solution used was reduced, and the product volume was reduced in the HSC group, compared to the NSC group. Although the CD34+ cell CE2 was reduced in the HSC group, no difference was observed in the number of collected CD34+ cells. The incidences of citrate-related reactions were similar.
Discussion: We propose a novel leukocytapheresis method using HSC that shortens the procedure time and reduces the amount of AC solution used compared to the conventional method en-copyright= kn-copyright= en-aut-name=AbeMasaya en-aut-sei=Abe en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujiiKeiko en-aut-sei=Fujii en-aut-mei=Keiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MitsuhashiToshiharu en-aut-sei=Mitsuhashi en-aut-mei=Toshiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KitamuraWataru en-aut-sei=Kitamura en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IkeuchiKazuhiro en-aut-sei=Ikeuchi en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FukumiTakuya en-aut-sei=Fukumi en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=WashioKana en-aut-sei=Washio en-aut-mei=Kana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=FujiiNobuharu en-aut-sei=Fujii en-aut-mei=Nobuharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Division of Transfusion and Cell Therapy, Okayama University Hospital kn-affil= affil-num=2 en-affil=Division of Clinical Laboratory, Okayama University Hospital kn-affil= affil-num=3 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=4 en-affil=Division of Transfusion and Cell Therapy, Okayama University Hospital kn-affil= affil-num=5 en-affil=Division of Transfusion and Cell Therapy, Okayama University Hospital kn-affil= affil-num=6 en-affil=Division of Transfusion and Cell Therapy, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Pediatric Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=8 en-affil=Division of Clinical Laboratory, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=10 en-affil=Division of Transfusion and Cell Therapy, Okayama University Hospital kn-affil= en-keyword=anticoagulant kn-keyword=anticoagulant en-keyword=apheresis kn-keyword=apheresis en-keyword=high sodium citrate concentration kn-keyword=high sodium citrate concentration en-keyword=Spectra Optia kn-keyword=Spectra Optia END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=20 article-no= start-page=eadv7488 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250516 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structure of a photosystem I supercomplex from Galdieria sulphuraria close to an ancestral red alga en-subtitle= kn-subtitle= en-abstract= kn-abstract=Red algae exhibit unique photosynthetic adaptations, characterized by photosystem I (PSI) supercomplexes containing light-harvesting complexes (LHCs), forming PSI-LHCI supercomplexes. In this study, we solved the PSI-LHCI structure of Galdieria sulphuraria NIES-3638 at 2.19-angstrom resolution using cryo-electron microscopy, revealing a PSI monomer core associated with seven LHCI subunits. Structural analysis uncovered the absence of phylloquinones, the common secondary electron acceptor in PSI of photosynthetic organisms, suggesting adaptation to a benzoquinone-like molecule. Phylogenetic analysis suggests that G. sulphuraria retains traits characteristic of an ancestral red alga, including distinctive LHCI binding and interaction patterns. Variations in LHCI composition and interactions across red algae, particularly in red-lineage chlorophyll a/b-binding-like protein and red algal LHCs, highlight evolutionary divergence and specialization. These findings not only deepen our understanding of red algal PSI-LHCI diversification but also enable us to predict features of an ancestral red algal PSI-LHCI supercomplex, providing a framework to explore evolutionary adaptations from an ancestral red alga. en-copyright= kn-copyright= en-aut-name=KatoKoji en-aut-sei=Kato en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KumazawaMinoru en-aut-sei=Kumazawa en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakajimaYoshiki en-aut-sei=Nakajima en-aut-mei=Yoshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SuzukiTakehiro en-aut-sei=Suzuki en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=DohmaeNaoshi en-aut-sei=Dohmae en-aut-mei=Naoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IfukuKentaro en-aut-sei=Ifuku en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NagaoRyo en-aut-sei=Nagao en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Research institute for interdisciplinary Science and Graduate School of environ-mental, life, natural Science and technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=3 en-affil=Research institute for interdisciplinary Science and Graduate School of environ-mental, life, natural Science and technology, Okayama University kn-affil= affil-num=4 en-affil=Biomolecular characterization Unit, RiKen center for Sustainable Resource Science kn-affil= affil-num=5 en-affil=Biomolecular characterization Unit, RiKen center for Sustainable Resource Science kn-affil= affil-num=6 en-affil=Research institute for interdisciplinary Science and Graduate School of environ-mental, life, natural Science and technology, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=8 en-affil=Faculty of Agriculture, Shizuoka University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=20 cd-vols= no-issue=5 article-no= start-page=e0320426 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250519 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=LeFood-set: Baseline performance of predicting level of leftovers food dataset in a hospital using MT learning en-subtitle= kn-subtitle= en-abstract= kn-abstract=Monitoring the remaining food in patients' trays is a routine activity in healthcare facilities as it provides valuable insights into the patients' dietary intake. However, estimating food leftovers through visual observation is time-consuming and biased. To tackle this issue, we have devised an efficient deep learning-based approach that promises to revolutionize how we estimate food leftovers. Our first step was creating the LeFoodSet dataset, a pioneering large-scale open dataset explicitly designed for estimating food leftovers. This dataset is unique in its ability to estimate leftover rates and types of food. To the best of our knowledge, this is the first comprehensive dataset for this type of analysis. The dataset comprises 524 image pairs representing 34 Indonesian food categories, each with images captured before and after consumption. Our prediction models employed a combined visual feature extraction and late fusion approach utilizing soft parameter sharing. Here, we used multi-task (MT) models that simultaneously predict leftovers and food types in training. In the experiments, we tested the single task (ST) model, the ST Model with Ground Truth (ST-GT), the MT model, and the MT model with Inter-task Connection (MT-IC). Our AI-based models, particularly the MT and MT-IC models, have shown promising results, outperforming human observation in predicting leftover food. These findings show the best with the ResNet101 model, where the Mean Average Error (MAE) of leftover task and food classification accuracy task is 0.0801 and 90.44% in the MT Model and 0.0817 and 92.56% in the MT-IC Model, respectively. It is proved that the proposed solution has a bright future for AI-based approaches in medical and nursing applications. en-copyright= kn-copyright= en-aut-name=SariYuita Arum en-aut-sei=Sari en-aut-mei=Yuita Arum kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakazawaAtsushi en-aut-sei=Nakazawa en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WaniYudi Arimba en-aut-sei=Wani en-aut-mei=Yudi Arimba kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=3 en-affil=Nutrition Department, Faculty of Health Sciences, Brawijaya University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=1 article-no= start-page=364 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250513 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Efficient diagnosis for endoscopic remission in Crohn's diseases by the combination of three non-invasive markers en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Serum C-reactive protein (CRP), leucine-rich alpha-2 glycoprotein (LRG), and fecal calprotectin (Fcal) are non-invasive markers used to assess Crohn's disease (CD) severity. However, the accuracy of these markers alone is often limited, and most previous reports have evaluated the efficacy of each marker individually. We aimed to improve the diagnostic performance of endoscopic remission (ER) of CD by combining these 3 markers.
Methods We tested the diagnostic ability of various combinations of these 3 markers for endoscopic severity in 230 consecutive patients with CD from September 2014 to July 2023. The modified Simple Endoscopic Score for Crohn's disease (mSES-CD) was used to determine endoscopic severity.
Results Each of the 3 markers was correlated with mSED-CD (LRG: r = 0.69, CRP: r = 0.60, and Fcal: r = 0.67). A combination of 2 of the 3 markers did not increase the diagnostic accuracy of ER. However, by combining all 3 markers, the diagnostic ability for ER was improved in comparison to the diagnostic ability of the 3 individual markers, assuming that ER was obtained if 2 or 3 markers were negative. The sensitivity, specificity, and accuracy were 89%, 83%, and 86%, respectively. Additionally, we established a 2-step method using Fcal values after evaluating the 2 serum markers. This method was most useful for reducing both the patient burden and costs.
Conclusions The newly established 2-step method allowed for a higher accuracy in the non-invasive diagnosis of ER when the 3 markers were combined. en-copyright= kn-copyright= en-aut-name=TakeiKensuke en-aut-sei=Takei en-aut-mei=Kensuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=InokuchiToshihiro en-aut-sei=Inokuchi en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HiraokaSakiko en-aut-sei=Hiraoka en-aut-mei=Sakiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IshiguroMikako en-aut-sei=Ishiguro en-aut-mei=Mikako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ToyosawaJunki en-aut-sei=Toyosawa en-aut-mei=Junki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AoyamaYuki en-aut-sei=Aoyama en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IgawaShoko en-aut-sei=Igawa en-aut-mei=Shoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakeuchiKeiko en-aut-sei=Takeuchi en-aut-mei=Keiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YamasakiYasushi en-aut-sei=Yamasaki en-aut-mei=Yasushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KinugasaHideaki en-aut-sei=Kinugasa en-aut-mei=Hideaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TakaharaMasahiro en-aut-sei=Takahara en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KawanoSeiji en-aut-sei=Kawano en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MitsuhashiToshiharu en-aut-sei=Mitsuhashi en-aut-mei=Toshiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=OtsukaMotoyuki en-aut-sei=Otsuka en-aut-mei=Motoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Research Center for Intestinal Health Science, Okayama University kn-affil= affil-num=3 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=14 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=CD, Crohn's disease kn-keyword=CD, Crohn's disease en-keyword=LRG, Leucine-rich alpha-2 glycoprotein kn-keyword=LRG, Leucine-rich alpha-2 glycoprotein en-keyword=Fcal, Fecal calprotectin kn-keyword=Fcal, Fecal calprotectin en-keyword=CRP, C-reactive protein kn-keyword=CRP, C-reactive protein en-keyword=ER, Endoscopic remission kn-keyword=ER, Endoscopic remission END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=1 article-no= start-page=4175 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250505 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structure of a photosystem II-FCPII supercomplex from a haptophyte reveals a distinct antenna organization en-subtitle= kn-subtitle= en-abstract= kn-abstract=Haptophytes are unicellular algae that produce 30 to 50% of biomass in oceans. Among haptophytes, a subset named coccolithophores is characterized by calcified scales. Despite the importance of coccolithophores in global carbon fixation and CaCO3 production, their energy conversion system is still poorly known. Here we report a cryo-electron microscopic structure of photosystem II (PSII)-fucoxanthin chlorophyll c-binding protein (FCPII) supercomplex from Chyrostila roscoffensis, a representative of coccolithophores. This complex has two sets of six dimeric and monomeric FCPIIs, with distinct orientations. Interfaces of both FCPII/FCPII and FCPII/core differ from previously reported. We also determine the sequence of Psb36, a subunit previously found in diatoms and red algae. The principal excitation energy transfer (EET) pathways involve mainly 5 FCPIIs, where one FCPII monomer mediates EET to CP47. Our findings provide a solid structural basis for EET and energy dissipation pathways occurring in coccolithophores. en-copyright= kn-copyright= en-aut-name=La RoccaRomain en-aut-sei=La Rocca en-aut-mei=Romain kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KatoKoji en-aut-sei=Kato en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TsaiPi-Cheng en-aut-sei=Tsai en-aut-mei=Pi-Cheng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakajimaYoshiki en-aut-sei=Nakajima en-aut-mei=Yoshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AkitaFusamichi en-aut-sei=Akita en-aut-mei=Fusamichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, and Advanced Research Field, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, and Advanced Research Field, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, and Advanced Research Field, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, and Advanced Research Field, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Research Institute for Interdisciplinary Science, and Advanced Research Field, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science, and Advanced Research Field, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=192 cd-vols= no-issue=5 article-no= start-page=58 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250416 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Intertwining Property for Laguerre Processes with a Fixed Parameter en-subtitle= kn-subtitle= en-abstract= kn-abstract=We investigate the intertwining of Laguerre processes of parameter ƒ¿ in different dimensions. We introduce a Feller kernel that depends on ƒ¿ and intertwines the ƒ¿-Laguerre process in N + 1 dimensions and that in N dimensions. When ƒ¿ is a non-negative integer, the new kernel is interpreted in terms of the conditional distribution of the squared singular values: if the singular values of a unitarily invariant random matrix of order (N+ƒ¿+1)~(N+1) are fixed, then the those of its (N+ƒ¿) ~ N truncation matrix are given by the new kernel. en-copyright= kn-copyright= en-aut-name=BufetovAlexander I. en-aut-sei=Bufetov en-aut-mei=Alexander I. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawamotoYosuke en-aut-sei=Kawamoto en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Steklov Mathematical Institute of RAS kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Random matrices kn-keyword=Random matrices en-keyword=Intertwining relation kn-keyword=Intertwining relation en-keyword=Interacting Brownian motions kn-keyword=Interacting Brownian motions END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Outcomes of ultra-high-pressure balloon angioplasty for congenital heart disease in single-center experience en-subtitle= kn-subtitle= en-abstract= kn-abstract=Angioplasty using ultra-high-pressure (UHP) balloons may successfully treat stenotic lesions refractory to high-pressure dilation. The use of UHP balloons in patients with congenital heart disease is mostly for dilation of the pulmonary artery, and there have been few reports on the effectiveness and safety of balloons for other sites. We retrospectively evaluated the efficacy and safety of the ultra-high-pressure balloon angioplasty (UHP-BA) for stenotic lesions in patients with congenital heart disease between January 2020 and December 2022 at Okayama University Hospital. A total of 78 UHP-BAs were performed in 44 patients, with a median age of 6.6 years and a median weight of 17.6 kg. The balloon types used in the UHP-BAs were Yoroi? and Conquest?. UHP-BA performed 39 procedures for the pulmonary artery (PA), 24 for fenestration, 8 for SVC, 4 for shunt, and three for others. The lesion-specific acute procedural success rates for PA, Fontan fenestration, SVC, and shunt were 77%, 75%, 88%, and 75%, respectively. A complication of UHP-BA occurred in 3.8% (3/78). Two of the three patients had pulmonary hemorrhage, and the remaining patients had pulmonary artery embolization due to the migration of a thrombus. There were no fatal complications. Balloon dilation with UHP balloons was safe and effective not only for pulmonary artery stenotic lesions but also for SVC, Fontan fenestration, shunt, and other dilation sites in patients with congenital heart disease. en-copyright= kn-copyright= en-aut-name=KondoMaiko en-aut-sei=Kondo en-aut-mei=Maiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KuritaYoshihiko en-aut-sei=Kurita en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FukushimaYosuke en-aut-sei=Fukushima en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShigemitsuYusuke en-aut-sei=Shigemitsu en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HiraiKenta en-aut-sei=Hirai en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KawamotoYuya en-aut-sei=Kawamoto en-aut-mei=Yuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HaraMayuko en-aut-sei=Hara en-aut-mei=Mayuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KanazawaTomoyuki en-aut-sei=Kanazawa en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IwasakiTatsuo en-aut-sei=Iwasaki en-aut-mei=Tatsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KotaniYasuhiro en-aut-sei=Kotani en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KasaharaShingo en-aut-sei=Kasahara en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TsukaharaHirokazu en-aut-sei=Tsukahara en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=BabaKenji en-aut-sei=Baba en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Pediatric Anesthesiology, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Pediatric Anesthesiology, Okayama University Hospital kn-affil= affil-num=10 en-affil=Department of Cardiovascular Surgery, Okayama University Hospital kn-affil= affil-num=11 en-affil=Department of Cardiovascular Surgery, Okayama University Hospital kn-affil= affil-num=12 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= affil-num=13 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= en-keyword=Ultra-high-pressure balloon kn-keyword=Ultra-high-pressure balloon en-keyword=Balloon angioplasty kn-keyword=Balloon angioplasty en-keyword=Congenital heart disease kn-keyword=Congenital heart disease END start-ver=1.4 cd-journal=joma no-vol=29 cd-vols= no-issue=3 article-no= start-page=459 end-page=470 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250326 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Text mining for case report articles on gperitoneal dialysish from PubMed database en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction: The number of published medical articles on peritoneal dialysis (PD) has been increasing, and efficiently selecting information from numerous articles can be difficult. In this study, we examined whether artificial intelligence (AI) text mining can be a good support for efficiently collecting PD information.
Methods: We performed text mining and analyzed all the abstracts of case reports on PD in the PubMed database. In total, 3137 case reports with abstracts related to gperitoneal dialysish published from 1970 to 2021 were identified.
Results: A total of 280?347 relevant words were extracted from all the abstracts. Word frequency analysis, word dependency analysis, and word frequency transition analysis showed that peritonitis, encapsulating peritoneal sclerosis, and child have been important keywords. Theseanalyses not only reflected historical background but also anticipated future trends of PD study.
Conclusion: These suggest that text mining can be a good support for efficiently collecting PD information. en-copyright= kn-copyright= en-aut-name=FukushimaKazuhiko en-aut-sei=Fukushima en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TsujiKenji en-aut-sei=Tsuji en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakanohHiroyuki en-aut-sei=Nakanoh en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=UchidaNaruhiko en-aut-sei=Uchida en-aut-mei=Naruhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HaraguchiSoichiro en-aut-sei=Haraguchi en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KitamuraShinji en-aut-sei=Kitamura en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=artificial intelligence kn-keyword=artificial intelligence en-keyword=case reports kn-keyword=case reports en-keyword=peritoneal dialysis kn-keyword=peritoneal dialysis en-keyword=text mining kn-keyword=text mining END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250220 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Supplement-induced acute kidney injury reproduced in kidney organoids en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction: Acute kidney injury associated with the consumption of Beni-koji CholesteHelp supplements, which contain red yeast rice (Beni-Koji), has become a significant public health concern in Japan. While renal biopsy findings from several case reports have suggested tubular damage, no definitive causal relationship has been established, and the underlying mechanisms of kidney injury remain poorly understood. The complexity of identifying toxic substances in supplements containing various bioactive compounds makes conventional investigative approaches both time-consuming and challenging. This highlights an urgent need to establish a reliable platform for assessing organ-specific toxicity in such supplements. In this study, we utilized a kidney organoid model derived from adult rat kidney stem cells (KS cells) to assess the potential tubular toxicity of these supplements. Methods: KS cell clusters were cultured in three-dimensional system supplemented with growth factors to promote kidney organoids. The organoids were subsequently exposed to Beni-koji CholesteHelp supplements or cisplatin, followed by histological and molecular analyses to evaluate structural impacts. Results: Established organoids had the kidney-like structures including tubular-like structures and glomerulus-like structures at the tips of multiple tubules. Treatment with Beni-koji CholesteHelp supplements induced significant tubular damage in the organoids, characterized by epithelial cell thinning, structural disruption, and increase in cleaved-caspase 3-positive apoptotic tubular cells, similar to the organoids treated with cisplatin. Conclusion: These findings provide the first evidence suggesting that certain toxicants in specific batches of Beni-koji CholesteHelp supplements cause direct renal tubular injury. This KS cell-based organoid system represents a cost-effective, reproducible, and technically simple platform for nephrotoxicity screening. en-copyright= kn-copyright= en-aut-name=NakanohHiroyuki en-aut-sei=Nakanoh en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TsujiKenji en-aut-sei=Tsuji en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FukushimaKazuhiko en-aut-sei=Fukushima en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HaraguchiSoichiro en-aut-sei=Haraguchi en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KitamuraShinji en-aut-sei=Kitamura en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Acute kidney injury kn-keyword=Acute kidney injury en-keyword=Drug-induced nephrotoxicity kn-keyword=Drug-induced nephrotoxicity en-keyword=Kidney organoid kn-keyword=Kidney organoid en-keyword=Kidney stem cell kn-keyword=Kidney stem cell END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Xenopus laevis as an infection model for human pathogenic bacteria en-subtitle= kn-subtitle= en-abstract= kn-abstract=Animal infection models are essential for understanding bacterial pathogenicity and corresponding host immune responses. In this study, we investigated whether juvenile Xenopus laevis could be used as an infection model for human pathogenic bacteria. Xenopus frogs succumbed to intraperitoneal injection containing the human pathogenic bacteria Staphylococcus aureus, Pseudomonas aeruginosa, and Listeria monocytogenes. In contrast, non-pathogenic bacteria Bacillus subtilis and Escherichia coli did not induce mortality in Xenopus frogs. The administration of appropriate antibiotics suppressed mortality caused by S. aureus and P. aeruginosa. Strains lacking the agr locus, cvfA (rny) gene, or hemolysin genes in S. aureus, LIPI-1-deleted mutant of L. monocytogenes, which attenuate virulence within mammals, exhibited reduced virulence in Xenopus frogs compared with their respective wild-type counterparts. Bacterial distribution analysis revealed that S. aureus persisted in the blood, liver, heart, and muscles of Xenopus frogs until death. These results suggested that intraperitoneal injection of human pathogenic bacteria induces sepsis-like symptoms in Xenopus frogs, supporting their use as a valuable animal model for evaluating antimicrobial efficacy and identifying virulence genes in various human pathogenic bacteria. en-copyright= kn-copyright= en-aut-name=KuriuAyano en-aut-sei=Kuriu en-aut-mei=Ayano kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IshikawaKazuya en-aut-sei=Ishikawa en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TsuchiyaKohsuke en-aut-sei=Tsuchiya en-aut-mei=Kohsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FurutaKazuyuki en-aut-sei=Furuta en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KaitoChikara en-aut-sei=Kaito en-aut-mei=Chikara kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Division of Molecular Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Division of Molecular Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University kn-affil= affil-num=4 en-affil=Division of Molecular Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Division of Molecular Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=animal infection model kn-keyword=animal infection model en-keyword=Staphylococcus aureus kn-keyword=Staphylococcus aureus en-keyword=Listeria monocytogenes kn-keyword=Listeria monocytogenes en-keyword=Pseudomonas aeruginosa kn-keyword=Pseudomonas aeruginosa en-keyword=antibiotics efficacy kn-keyword=antibiotics efficacy en-keyword=virulence genes kn-keyword=virulence genes en-keyword=hemolysin kn-keyword=hemolysin END start-ver=1.4 cd-journal=joma no-vol=120 cd-vols= no-issue=1 article-no= start-page=241001 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Metamorphic pressure-temperature conditions of garnet granulite from the Eastern Iratsu body in the Sambagawa belt, SW Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=Several coarse-grained mafic bodies with evidence for eclogite-facies metamorphism are present in the Besshi area of the Sambagawa subduction-type metamorphic belt, SW Japan. Among them the granulite-bearing Eastern Iratsu metagabbro body involves an unresolved problem of whether it originated in the hanging-wall or footwall side of the subduction zone. The key to settle this problem is its relationship with the adjacent Western Iratsu metabasaltic body, which includes thick marble layer and certainly has the footwall ocean-floor origin. Several previous studies consider that the Western and Eastern Iratsu bodies were originally coherent in the footwall side and formed the shallower and deeper parts of a thick oceanic crust, respectively. The validity of this hypothesis may be assessed by deriving pressure-temperature history of the Eastern Iratsu body, or especially the pressure (depth) condition of the granulite-facies metamorphism before the eclogite-facies overprinting because, if the pressure was relatively high, the oceanic crust assumed in the above hypothesis might be too thick to tectonically achieve the present-day adjacence of the two bodies on the geological map. This study petrologically analyzes a garnet-bearing granulite from the Eastern Iratsu body and newly reports stable coexistence of garnet and orthopyroxene in the sample. By utilizing a garnet-orthopyroxene geothermobarometer, the minimum P-T conditions of the granulite-facies stage was estimated to be 0.8 GPa (? 27 km in depth) and 780 ‹C. If the Western and Eastern Iratsu bodies were assumed to have formed a coherent oceanic crust before their subduction, the original thickness of it was >27 km and this demands unusually strong ductile shortening (<1/9) or unrealistically large vertical displacement on intraplate faulting, suggesting invalidity of the assumption. The Western and Eastern Iratsu bodies, therefore, are originally bounded by subduction-boundary fault and the obtained pressure of 0.8 GPa can be interpreted to represent that of the hanging-wall lower continental crust in the subduction zone, where the Eastern Iratsu body originated. After the granulite-facies metamorphism, the Western Iratsu body, which was located near the footwall surface, initiated subduction and was subsequently juxtaposed with the above-located Eastern Iratsu body at the corresponding depth (? 27 km or greater) along the subduction boundary. en-copyright= kn-copyright= en-aut-name=NAKAMURADaisuke en-aut-sei=NAKAMURA en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AOYAMutsuki en-aut-sei=AOYA en-aut-mei=Mutsuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OKAMURATomoki en-aut-sei=OKAMURA en-aut-mei=Tomoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Technology, Industrial and Social Sciences, Tokushima University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Sambagawa belt kn-keyword=Sambagawa belt en-keyword=Iratsu body kn-keyword=Iratsu body en-keyword=Metagabbro kn-keyword=Metagabbro en-keyword=Granulite kn-keyword=Granulite en-keyword=Hanging wall kn-keyword=Hanging wall END start-ver=1.4 cd-journal=joma no-vol=26 cd-vols= no-issue=5 article-no= start-page=e70087 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250512 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Genomic Islands of Pseudomonas syringae pv. tabaci 6605: Identification of PtaGI-1 as a Pathogenicity Island With Effector Genes and a Tabtoxin Cluster en-subtitle= kn-subtitle= en-abstract= kn-abstract=Genomic islands (GIs) are 20-500 kb DNA regions that are thought to be acquired by horizontal gene transfer. GIs that confer pathogenicity and environmental adaptation have been reported in Pseudomonas species; however, GIs that enhance bacterial virulence have not. Here, we identified 110 kb and 103 kb GIs in P. syringae pv. tabaci 6605 (Pta6605), the causative agent of tobacco wildfire disease, which has the ability to produce tabtoxin as a phytotoxin. These GIs are partially homologous to known genomic islands in Pseudomonas aeruginosa and P. syringae pv. phaseolicola and were designated PtaGI-1 and PtaGI-2. Both PtaGIs conserve core genes, whereas each GI possesses different accessory genes. PtaGI-1 contains a tabtoxin biosynthetic gene cluster and three type III effector genes among its accessory genes, whereas PtaGI-2 also contains homologous genes to hsvABC, pathogenicity-related genes in Erwinia amylovora. Inoculation revealed that the PtaGI-1 mutant, but not the PtaGI-2 mutant, lost the ability to biosynthesise tabtoxin and to cause disease. Therefore, PtaGI-1 is thought to be a pathogenicity island. Both PtaGI-1 and PtaGI-2 have a pseudogene of tRNALys on the left border and an intact tRNALys gene on the right border. In a colony of Pta6605, both GIs can be excised at tRNALys, and PtaGI-1 and PtaGI-2 exist in a circular form. These results indicate that tabtoxin biosynthesis genes in PtaGI-1 are required for disease development, and PtaGI-1 is necessary for Pta6605 virulence. en-copyright= kn-copyright= en-aut-name=WatanabeYuta en-aut-sei=Watanabe en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KunishiKotomi en-aut-sei=Kunishi en-aut-mei=Kotomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SakataNanami en-aut-sei=Sakata en-aut-mei=Nanami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Agriculture,Okayama University kn-affil= affil-num=3 en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=horizontal gene transfer kn-keyword=horizontal gene transfer en-keyword=integrative and conjugative elements kn-keyword=integrative and conjugative elements en-keyword=pathogenicity island kn-keyword=pathogenicity island en-keyword=Pseudomonas syringae kn-keyword=Pseudomonas syringae en-keyword=tabtoxin kn-keyword=tabtoxin END start-ver=1.4 cd-journal=joma no-vol=22 cd-vols= no-issue=6 article-no= start-page=97 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250411 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effects of aged garlic extract on experimental periodontitis in mice en-subtitle= kn-subtitle= en-abstract= kn-abstract=Aged garlic extract (AGE) has been reported to exert anti?inflammatory effects. AGE has been recently found to reduce the inflammatory symptoms of periodontitis, a widespread chronic inflammatory disease caused by oral bacterial infection. However, the mechanisms underlying these effects remain unclear. In the present study, it was aimed to determine the effects of AGE on experimental periodontitis and the related inflammatory factors. AGE (2 g/kg/day) was orally administered to 15 mice during the experimental period, while a control group consisted of 15 mice that received pure water. A total of 3 days after initiation of administration, the left maxillary second molar was ligated with a 5?0 silk thread for 7 days. Blood biochemical tests were performed to monitor the systemic effects of AGE. Alveolar bone loss was measured morphometrically using a stereomicroscope, and reverse transcription?quantitative PCR was performed to assay mRNAs of proinflammatory cytokines in gingival tissues. A histological survey was also performed to identify osteoclasts in periodontitis lesions (five mice per group). The total protein and albumin levels showed no significant differences between the AGE and control groups. However, ligation?induced bone resorption was lower in the AGE group than in the control group (P=0.01). Additionally, ligature increased the mRNA expression of inflammatory cytokines, whereas AGE administration tended to suppress them. Remarkably, tumor necrosis factor gene expression was significantly suppressed (P=0.04). The number of osteoclasts in periodontitis lesions was reduced in the AGE?treated group. These results indicate that AGE prevents alveolar bone loss by suppressing the inflammatory responses related to osteoclast differentiation in the periodontal tissue. Further research is needed to elucidate the role of AGE in reducing inflammatory bone resorption. en-copyright= kn-copyright= en-aut-name=KuangCanyan en-aut-sei=Kuang en-aut-mei=Canyan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HiraiAnna en-aut-sei=Hirai en-aut-mei=Anna kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Kamei?ƒ«agataChiaki en-aut-sei=Kamei?ƒ«agata en-aut-mei=Chiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NangoHiroshi en-aut-sei=Nango en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OhtaniMasahiro en-aut-sei=Ohtani en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OmoriKazuhiro en-aut-sei=Omori en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakashibaShogo en-aut-sei=Takashiba en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Pathophysiology?Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Division of Periodontics and Endodontics, Department of Dentistry, Okayama University Hospital kn-affil= affil-num=3 en-affil=Division of Periodontics and Endodontics, Department of Dentistry, Okayama University Hospital kn-affil= affil-num=4 en-affil=Central Research Institute, Wakunaga Pharmaceutical Co., Ltd. kn-affil= affil-num=5 en-affil=Central Research Institute, Wakunaga Pharmaceutical Co., Ltd. kn-affil= affil-num=6 en-affil=Department of Pathophysiology?Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Pathophysiology?Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=AGE kn-keyword=AGE en-keyword=experimental periodontitis kn-keyword=experimental periodontitis en-keyword=bone resorption kn-keyword=bone resorption en-keyword=inflammation kn-keyword=inflammation en-keyword=osteoclasts kn-keyword=osteoclasts END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250429 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Comparative inhibitory effects of bepotastine and diphenhydramine on rituximab-induced infusion reactions en-subtitle= kn-subtitle= en-abstract= kn-abstract=Purpose Infusion-related reaction (IRR) is a common adverse event induced by rituximab. Although first-generation histamine 1 receptor antagonists (H1RAs) are commonly used to prevent IRR, evidence on IRR suppression by the second-generation H1RA bepotastine is scarce. In this study, we assessed the inhibitory effects of bepotastine on rituximab-induced IRR and compared them with those of the first-generation H1RA diphenhydramine.
Methods We retrospectively evaluated IRR incidence in patients with B-cell non-Hodgkin lymphoma who received their first dose of rituximab.
Results The incidence of any grade IRR was 9.8% in the bepotastine group (n?=?92), which was significantly lower than the 30.2% rate in the diphenhydramine group (n?=?96; p? Conclusion Bepotastine may be more effective than diphenhydramine in reducing the incidence of rituximab-induced IRR, particularly low-grade reactions. en-copyright= kn-copyright= en-aut-name=HoriTomoki en-aut-sei=Hori en-aut-mei=Tomoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamamotoKazuhiro en-aut-sei=Yamamoto en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakagawaTomoaki en-aut-sei=Nakagawa en-aut-mei=Tomoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakagawaRinako en-aut-sei=Nakagawa en-aut-mei=Rinako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OkayamaMasami en-aut-sei=Okayama en-aut-mei=Masami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SudouTamika en-aut-sei=Sudou en-aut-mei=Tamika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HamasakiMoe en-aut-sei=Hamasaki en-aut-mei=Moe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YasudaMai en-aut-sei=Yasuda en-aut-mei=Mai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KobayashiShinya en-aut-sei=Kobayashi en-aut-mei=Shinya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NakamuraFumihiko en-aut-sei=Nakamura en-aut-mei=Fumihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YagiHideo en-aut-sei=Yagi en-aut-mei=Hideo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KitahiroYumi en-aut-sei=Kitahiro en-aut-mei=Yumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=IkushimaShigeki en-aut-sei=Ikushima en-aut-mei=Shigeki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=YanoIkuko en-aut-sei=Yano en-aut-mei=Ikuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Pharmacy, Nara Prefecture General Medical Center kn-affil= affil-num=2 en-affil=Department of Integrated Clinical and Basic Pharmaceutical Sciences, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Pharmacy, Nara Prefecture General Medical Center kn-affil= affil-num=4 en-affil=Department of Pharmacy, Nara Prefecture General Medical Center kn-affil= affil-num=5 en-affil=Department of Pharmacy, Nara Prefecture General Medical Center kn-affil= affil-num=6 en-affil=Department of Pharmacy, Nara Prefecture General Medical Center kn-affil= affil-num=7 en-affil=Department of Pharmacy, Nara Prefecture General Medical Center kn-affil= affil-num=8 en-affil=Department of Pharmacy, Nara Prefecture General Medical Center kn-affil= affil-num=9 en-affil=Department of Hematology and Oncology, Nara Prefecture General Medical Center kn-affil= affil-num=10 en-affil=Department of Laboratory Medicine, Nara Prefecture General Medical Center kn-affil= affil-num=11 en-affil=Department of Hematology and Oncology, Nara Prefecture General Medical Center kn-affil= affil-num=12 en-affil=Department of Pharmacy, Kobe University Hospital kn-affil= affil-num=13 en-affil=Department of Pharmacy, Nara Prefecture General Medical Center kn-affil= affil-num=14 en-affil=Department of Pharmacy, Kobe University Hospital kn-affil= en-keyword=Rituximab kn-keyword=Rituximab en-keyword=Infusion reaction kn-keyword=Infusion reaction en-keyword=Bepotastine kn-keyword=Bepotastine en-keyword=Diphenhydramine kn-keyword=Diphenhydramine END start-ver=1.4 cd-journal=joma no-vol=19 cd-vols= no-issue=2 article-no= start-page=94 end-page=100 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effects of different management approaches on unmet water demand in coffee-producing areas during wet and dry years: a case study of the Srepok River Watershed, Vietnam en-subtitle= kn-subtitle= en-abstract= kn-abstract=The primary cause of conflicts over water allocation is growing demand and limited supply, which has become an increasingly serious issue in many watersheds. To alleviate water disputes, effective management strategies can be employed, particularly in the context of intensifying agricultural production and unpredictable changes in weather. In this study, two models, SWAT and WEAP, and the modified surface water supply index (MSWSI) were utilized to evaluate water allocation in the Srepok River Watershed (SRW), considering the prioritization of demand and various irrigation methods, during both wet and dry years. The crop irrigation was chosen to be the main focus in relation to the unmet water demand (UWD). The results indicated that coffee was the primary cause of UWD in the middle of the watershed during the second half of the dry season, and annual crops (AC) were the secondary cause. This research further elucidated that while prioritizing demand had an insignificant impact, transitioning from hose irrigation to sprinkler irrigation could be remarkably effective in mitigating the issues of UWD in coffee crops during both wet and dry years. en-copyright= kn-copyright= en-aut-name=SamTruong Thao en-aut-sei=Sam en-aut-mei=Truong Thao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SomuraHiroaki en-aut-sei=Somura en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoroizumiToshitsugu en-aut-sei=Moroizumi en-aut-mei=Toshitsugu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=hydrological model kn-keyword=hydrological model en-keyword=drought kn-keyword=drought en-keyword=coffee irrigation kn-keyword=coffee irrigation en-keyword=water-saving technique kn-keyword=water-saving technique en-keyword=water allocation kn-keyword=water allocation END start-ver=1.4 cd-journal=joma no-vol=74 cd-vols= no-issue=7 article-no= start-page=193 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250509 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Osteosarcoma cell-derived CCL2 facilitates lung metastasis via accumulation of tumor-associated macrophages en-subtitle= kn-subtitle= en-abstract= kn-abstract=Osteosarcoma (OS) is the most common malignant tumor of bone in children and adolescents. Although lung metastasis is a major obstacle to improving the prognosis of OS patients, the underlying mechanism of lung metastasis of OS is poorly understood. Tumor-associated macrophages (TAMs) with M2-like characteristics are reportedly associated with lung metastasis and poor prognosis in OS patients. In this study, we investigated the metastasis-associated tumor microenvironment (TME) in orthotopic OS tumor models with non-metastatic and metastatic OS cells. Non-metastatic and metastatic tumor cells derived from mouse OS (Dunn and LM8) and human OS (HOS and 143B) were used to analyze the TME associated with lung metastasis in orthotopic OS tumor models. OS cell-derived secretion factors were identified by cytokine array and enzyme-linked immunosorbent assay (ELISA). Orthotopic tumor models with metastatic LM8 and 143B cells were analyzed to evaluate the therapeutic potential of a neutralizing antibody in the development of primary and metastatic tumors. Metastatic OS cells developed metastatic tumors with infiltration of M2-like TAMs in the lungs. Cytokine array and ELISA demonstrated that metastatic mouse and human OS cells commonly secreted CCL2, which was partially encapsulated in extracellular vesicles. In vivo experiments demonstrated that while primary tumor growth was unaffected, administration of CCL2-neutralizing antibody led to a significant suppression of lung metastasis and infiltration of M2-like TAMs in the lung tissue. Our results suggest that CCL2 plays a crucial role in promoting the lung metastasis of OS cells via accumulation of M2-like TAMs. en-copyright= kn-copyright= en-aut-name=KondoHiroya en-aut-sei=Kondo en-aut-mei=Hiroya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TazawaHiroshi en-aut-sei=Tazawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujiwaraTomohiro en-aut-sei=Fujiwara en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YoshidaAki en-aut-sei=Yoshida en-aut-mei=Aki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KureMiho en-aut-sei=Kure en-aut-mei=Miho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=DemiyaKoji en-aut-sei=Demiya en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KanayaNobuhiko en-aut-sei=Kanaya en-aut-mei=Nobuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HataToshiaki en-aut-sei=Hata en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=UotaniKoji en-aut-sei=Uotani en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HaseiJoe en-aut-sei=Hasei en-aut-mei=Joe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KunisadaToshiyuki en-aut-sei=Kunisada en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KagawaShunsuke en-aut-sei=Kagawa en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YoshiokaYusuke en-aut-sei=Yoshioka en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=OzakiToshifumi en-aut-sei=Ozaki en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Departments of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Departments of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Departments of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Molecular and Cellular Medicine, Tokyo Medical University kn-affil= affil-num=14 en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=15 en-affil=Departments of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Osteosarcoma kn-keyword=Osteosarcoma en-keyword=Lung metastasis kn-keyword=Lung metastasis en-keyword=Tumor-associated macrophage kn-keyword=Tumor-associated macrophage en-keyword=CCL2 kn-keyword=CCL2 en-keyword=Extracellular vesicle kn-keyword=Extracellular vesicle END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=9 article-no= start-page=1559 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250503 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Impacts of Dental Follicle Cells and Periodontal Ligament Cells on the Bone Invasion of Well-Differentiated Oral Squamous Cell Carcinoma en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Oral squamous cell carcinoma (OSCC) frequently invades the jawbone, leading to diagnostic and therapeutic challenges. While tumor-bone interactions have been studied, the specific roles of dental follicle cells (DFCs) and periodontal ligament cells (PDLCs) in OSCC-associated bone resorption remain unclear. This study aimed to compare the effects of DFCs and PDLCs on OSCC-induced bone invasion and elucidate the underlying mechanisms. Methods: Primary human DFCs and PDLCs were isolated from extracted third molars and characterized by Giemsa and immunofluorescence staining. An in vitro co-culture system and an in vivo xenograft mouse model were established using the HSC-2 OSCC cell line. Tumor invasion and osteoclast activation were assessed by hematoxylin and eosin (HE) and tartrate-resistant acid phosphatase (TRAP) staining. Immunohistochemical analysis was performed to evaluate the expression of receptor activator of NF-kappa B ligand (RANKL) and parathyroid hormone-related peptide (PTHrP). Results: DFCs significantly enhanced OSCC-induced bone resorption by promoting osteoclastogenesis and upregulating RANKL and PTHrP expression. In contrast, PDLCs suppressed RANKL expression and partially modulated PTHrP levels, thereby reducing osteoclast activity. Conclusions: DFCs and PDLCs exert opposite regulatory effects on OSCC-associated bone destruction. These findings underscore the importance of stromal heterogeneity and highlight the therapeutic potential of targeting specific stromal-tumor interactions to mitigate bone-invasive OSCC. en-copyright= kn-copyright= en-aut-name=ChangAnqi en-aut-sei=Chang en-aut-mei=Anqi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakabatakeKiyofumi en-aut-sei=Takabatake en-aut-mei=Kiyofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=PiaoTianyan en-aut-sei=Piao en-aut-mei=Tianyan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ArashimaTakuma en-aut-sei=Arashima en-aut-mei=Takuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KawaiHotaka en-aut-sei=Kawai en-aut-mei=Hotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=EainHtoo Shwe en-aut-sei=Eain en-aut-mei=Htoo Shwe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SoeYamin en-aut-sei=Soe en-aut-mei=Yamin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MinZin Zin en-aut-sei=Min en-aut-mei=Zin Zin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NakanoKeisuke en-aut-sei=Nakano en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NagatsukaHitoshi en-aut-sei=Nagatsuka en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Oral Pathology and Medicine, Okayama University kn-affil= affil-num=2 en-affil=Department of Oral Pathology and Medicine, Okayama University kn-affil= affil-num=3 en-affil=Department of Oral Pathology and Medicine, Okayama University kn-affil= affil-num=4 en-affil=Department of Oral Pathology and Medicine, Okayama University kn-affil= affil-num=5 en-affil=Department of Oral Pathology and Medicine, Okayama University kn-affil= affil-num=6 en-affil=Department of Oral Pathology and Medicine, Okayama University kn-affil= affil-num=7 en-affil=Department of Oral Pathology and Medicine, Okayama University kn-affil= affil-num=8 en-affil=Department of Oral Pathology and Medicine, Okayama University kn-affil= affil-num=9 en-affil=Department of Oral Pathology and Medicine, Okayama University kn-affil= affil-num=10 en-affil=Department of Oral Pathology and Medicine, Okayama University kn-affil= en-keyword=oral squamous cell carcinoma kn-keyword=oral squamous cell carcinoma en-keyword=dental follicle cells kn-keyword=dental follicle cells en-keyword=periodontal ligament cells kn-keyword=periodontal ligament cells en-keyword=bone invasion kn-keyword=bone invasion en-keyword=receptor activator of NF-kappa B ligand kn-keyword=receptor activator of NF-kappa B ligand en-keyword=parathyroid hormone-related peptide kn-keyword=parathyroid hormone-related peptide END start-ver=1.4 cd-journal=joma no-vol=74 cd-vols= no-issue=7 article-no= start-page=192 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250509 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=HIF-PH inhibitors induce pseudohypoxia in T cells and suppress the growth of microsatellite stable colorectal cancer by enhancing antitumor immune responses en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Recent studies have revealed that CD8+ T cells can be activated via genetic upregulation of HIF-1 alpha, thereby augmenting antitumor effector functions. HIF-1 alpha upregulation can be attained by inhibiting HIF-prolyl hydroxylase (HIF-PH) under normoxic conditions, termed pseudohypoxia. This study investigated whether pseudohypoxia induced by HIF-PH inhibitors suppresses Microsatellite stable (MSS) colorectal cancer (CRC) by affecting tumor immune response.
Methods The HIF-PH inhibitors Roxadustat and Vadadustat were utilized in this study. In vitro, we assessed the effects of HIF-PH inhibitors on human and murine colon cancer cell lines (SW480, HT29, Colon26) and murine T cells. In vivo experiments were performed with mice bearing Colon26 tumors to evaluate the effect of these inhibitors on tumor immune responses. Tumor and spleen samples were analyzed using immunohistochemistry, RT-qPCR, and flow cytometry to elucidate potential mechanisms.
Results HIF-PH inhibitors demonstrated antitumor effects in vivo but not in vitro. These inhibitors enhanced the tumor immune response by increasing the infiltration of CD8+ and CD4+ tumor-infiltrating lymphocytes (TILs). HIF-PH inhibitors induced IL-2 production in splenic and intratumoral CD4+ T cells, promoting T cell proliferation, differentiation, and immune responses. Roxadustat synergistically enhanced the efficacy of anti-PD-1 antibody for MSS cancer by increasing the recruitment of TILs and augmenting effector-like CD8+ T cells.
Conclusion Pseudohypoxia induced by HIF-PH inhibitors activates antitumor immune responses, at least in part, through the induction of IL-2 secretion from CD4+ T cells in the spleen and tumor microenvironment, thereby enhancing immune efficacy against MSS CRC. en-copyright= kn-copyright= en-aut-name=ChenYuehua en-aut-sei=Chen en-aut-mei=Yuehua kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OharaToshiaki en-aut-sei=Ohara en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HamadaYusuke en-aut-sei=Hamada en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WangYuze en-aut-sei=Wang en-aut-mei=Yuze kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TianMiao en-aut-sei=Tian en-aut-mei=Miao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NomaKazuhiro en-aut-sei=Noma en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TazawaHiroshi en-aut-sei=Tazawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=FujisawaMasayoshi en-aut-sei=Fujisawa en-aut-mei=Masayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YoshimuraTeizo en-aut-sei=Yoshimura en-aut-mei=Teizo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MatsukawaAkihiro en-aut-sei=Matsukawa en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=7 en-affil=Department of Gastroenterological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=8 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Colorectal cancer kn-keyword=Colorectal cancer en-keyword=Microsatellite stable kn-keyword=Microsatellite stable en-keyword=Hypoxia-inducible factor kn-keyword=Hypoxia-inducible factor en-keyword=Immune checkpoint inhibitors kn-keyword=Immune checkpoint inhibitors END start-ver=1.4 cd-journal=joma no-vol=4 cd-vols= no-issue=5 article-no= start-page=101685 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202505 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Prognostic Value of Pericoronary Fat Attenuation Index on Computed Tomography for Hospitalization for Heart Failure en-subtitle= kn-subtitle= en-abstract= kn-abstract=BACKGROUND Pericoronary fat attenuation index (FAI) assessed on computed tomography is associated with the inflammation of the pericoronary artery.
OBJECTIVES This study aimed to investigate whether pericoronary FAI predicts hospitalization for heart failure with preserved ejection fraction (HFpEF).
METHODS This retrospective single-center study included 1,196 consecutive patients who underwent clinically indicated coronary computed tomography angiography (CCTA) and transthoracic echocardiography. We assessed the FAI of proximal 40-mm segments for each major epicardial coronary vessel. The primary outcome was the incidence of hospitalization for HFpEF. Patients were divided into groups based on the optimal cutoff value for predicting hospitalization for HFpEF by receiver operating characteristic curve analysis.
RESULTS During a median follow-up of 4.3 years, 29 hospitalizations for HFpEF occurred. Multivariable Cox regression analysis revealed that a left anterior descending artery (LAD)-FAI >=-63.4 HU and a left circumflex artery-FAI >=-61.6 HU were significantly associated with hospitalization for HF after adjustment for age and sex (HR: 4.8; 95% CI: 2.1-10.8 and HR: 4.5; 95% CI: 2.1-9.4, respectively). The addition of LAD-FAI >-63.4 HU to a model incorporating other risk factors, including hypertension, estimated glomerular filtration rate <60 mL/min/1.73 m2, and significant stenosis on CCTA, increased the C-statistic for predicting hospitalization for HFpEF from 0.646 to 0.750 (P = 0.010).
CONCLUSIONS LAD-and left circumflex artery-FAI can predict hospitalization for HFpEF in patients undergoing clinically indicated CCTA. Pericoronary inflammation may be useful for identifying patients at high risk of developing HFpEF. en-copyright= kn-copyright= en-aut-name=NakashimaMitsutaka en-aut-sei=Nakashima en-aut-mei=Mitsutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishiharaTakahiro en-aut-sei=Nishihara en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MikiTakashi en-aut-sei=Miki en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=EjiriKentaro en-aut-sei=Ejiri en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HaraShohei en-aut-sei=Hara en-aut-mei=Shohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakayaYoichi en-aut-sei=Takaya en-aut-mei=Yoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakayamaRie en-aut-sei=Nakayama en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IchikawaKeishi en-aut-sei=Ichikawa en-aut-mei=Keishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OsawaKazuhiro en-aut-sei=Osawa en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YuasaShinsuke en-aut-sei=Yuasa en-aut-mei=Shinsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of General Internal Medicine 3, Kawasaki Medical School General Medicine Centre kn-affil= affil-num=11 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=coronary computed tomography angiography kn-keyword=coronary computed tomography angiography en-keyword=fat attenuation index kn-keyword=fat attenuation index en-keyword=heart failure kn-keyword=heart failure en-keyword=inflammation kn-keyword=inflammation END start-ver=1.4 cd-journal=joma no-vol=18 cd-vols= no-issue=9 article-no= start-page=1983 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250427 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Initial Bonding Performance to CAD/CAM Restorative Materials: The Impact of Stepwise Concentration Variation in 8-Methacryloxyoctyl Trimethoxy Silane and 3-Methacryloxypropyl Trimethoxy Silane on Feldspathic Ceramic, Lithium Disilicate Glass-Ceramic, and Polymer-Infiltrated Ceramic en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study investigated the effects of varying concentrations of two distinct silane agents, 8-methacryloxyoctyl trimethoxy silane (8-MOTS) and 3-methacryloxypropyl trimethoxy silane (ƒÁ-MPTS), on their initial bonding efficacy to feldspathic ceramic (FC), lithium disilicate glass-ceramic (LD) and polymer-infiltrated ceramic (PIC) specimens, in 10% increments for concentrations ranging from 10% to 40%. Shear bond strengths between the ceramic substrates and the luting material were assessed following 24 h incubation in distilled water. For FC, the median value of shear bond strength peaked at 20% of ƒÁ-MPTS (7.4 MPa), while 8-MOTS exhibited a concentration-dependent increase, reaching its highest value at 40% (13.1 MPa). For LD, ƒÁ-MPTS above 10% yielded similar strength median values (10.2 MPa), whereas 8-MOTS at 30% (15.8 MPa) and 40% (13.4 MPa) yielded higher strength values than at 10% (2.9 MPa) and 20% (4.1 MPa), with the highest median value exhibited at 30%. For PIC, both ƒÁ-MPTS and 8-MOTS demonstrated similarly low bond strength values which were not significantly different from the non-silane-treated specimens. When applied on silica-based FC and LD, silane revealed a concentration-dependent bonding effect, with 8-MOTS exhibiting superior bond strength to ƒÁ-MPTS. However, PIC, characterized by a high inorganic filler content, demonstrated limited bondability with both silanes. en-copyright= kn-copyright= en-aut-name=MaruoYukinori en-aut-sei=Maruo en-aut-mei=Yukinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KuwaharaMiho en-aut-sei=Kuwahara en-aut-mei=Miho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YoshiharaKumiko en-aut-sei=Yoshihara en-aut-mei=Kumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IrieMasao en-aut-sei=Irie en-aut-mei=Masao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NagaokaNoriyuki en-aut-sei=Nagaoka en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YoshizaneMai en-aut-sei=Yoshizane en-aut-mei=Mai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsumotoTakuya en-aut-sei=Matsumoto en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AkiyamaKentaro en-aut-sei=Akiyama en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Prosthodontics, Okayama University kn-affil= affil-num=2 en-affil=Department of Occlusal and Oral Functional Rehabilitation, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Health Research Institute, National Institute of Advanced Industrial Science and Technology kn-affil= affil-num=4 en-affil=Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School kn-affil= affil-num=6 en-affil=Department of Occlusal and Oral Functional Rehabilitation, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Occlusal and Oral Functional Rehabilitation, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=silane coupling kn-keyword=silane coupling en-keyword=bond strength kn-keyword=bond strength en-keyword=ceramic kn-keyword=ceramic en-keyword=feldspathic kn-keyword=feldspathic en-keyword=lithium kn-keyword=lithium en-keyword=polymer-infiltrated ceramic kn-keyword=polymer-infiltrated ceramic en-keyword=CAD/CAM kn-keyword=CAD/CAM END start-ver=1.4 cd-journal=joma no-vol=8 cd-vols= no-issue=1 article-no= start-page=715 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250508 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=TRPV2 mediates stress resilience in mouse cardiomyocytes en-subtitle= kn-subtitle= en-abstract= kn-abstract=The heart dynamically compensates for haemodynamic stress, but how this resilience forms during cardiac growth is not clear. Using a temporally inducible, cardiac-specific knockout in mice we show that the Transient receptor potential vanilloid family 2 (TRPV2) channel is crucial for the maturation of cardiomyocyte stress resilience. TRPV2 defects in growing hearts lead to small morphology, abnormal intercalated discs, weak contractility, and low expression of serum response factor and Insulin-like growth factor-1 (IGF-1) signalling. Individual cardiomyocytes of TRPV2-deficient hearts show reduced contractility with abnormal Ca2+ handling. In cultured neonatal cardiomyocytes, mechanical Ca2+ response, excitation-contraction coupling, sarcoplasmic reticulum Ca2+ content, actin formation, nuclear localisation of Myocyte enhancer factor 2c, and IGF-1 expression require TRPV2. TRPV2-deficient hearts show a defective response to dobutamine stress and no compensatory hypertrophic response to phenylephrine administration, but no stress response to pressure overload. These data suggest TRPV2 mediates the maturation of cardiomyocyte stress resilience, and will advance therapeutic interventions and drug discovery for heart disease. en-copyright= kn-copyright= en-aut-name=DongYubing en-aut-sei=Dong en-aut-mei=Yubing kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WangGuohao en-aut-sei=Wang en-aut-mei=Guohao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UjiharaYoshihiro en-aut-sei=Ujihara en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ChenYanzhu en-aut-sei=Chen en-aut-mei=Yanzhu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YoshidaMasashi en-aut-sei=Yoshida en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KatanosakaKimiaki en-aut-sei=Katanosaka en-aut-mei=Kimiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NaruseKeiji en-aut-sei=Naruse en-aut-mei=Keiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KatanosakaYuki en-aut-sei=Katanosaka en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology kn-affil= affil-num=4 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University kn-affil= affil-num=8 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=26 cd-vols= no-issue=5 article-no= start-page=e70091 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250507 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Pseudomonas syringae pv. tabaci 6605 Requires Seven Type III Effectors to Infect Nicotiana benthamiana en-subtitle= kn-subtitle= en-abstract= kn-abstract=Type III effectors (T3Es), virulence factors injected into plant cells via the type III secretion system (T3SS), play essential roles in the infection of host plants. Pseudomonas syringae pv. tabaci 6605 (Pta 6605) is the causal agent of wildfire disease in tobacco and harbours at least 22 T3Es in its genome. However, the specific T3Es required by Pta 6605 to infect Nicotiana benthamiana remain unidentified. In this study, we investigated the T3Es that contribute to Pta 6605 infection of N. benthamiana. We constructed Pta 6605 poly-T3E-deficient mutants (Pta DxE) and inoculated them into N. benthamiana. Flood assay, which mimics natural opening-based entry, showed that mutant strains lacking 14-22 T3Es, namely, Pta D14E-D22E mutants, exhibited reduced disease symptoms. By contrast, infiltration inoculation, which involves direct injection into leaves, showed that the Pta D14E to Pta D20E mutants developed disease symptoms. Notably, the Pta D20E, containing AvrE1 and HopM1, induced weak but observable symptoms upon infiltration inoculation. Conversely, no symptoms were observed in either the flood assay or infiltration inoculation for Pta D21E and Pta D22E. Taken together, these findings indicate that the many T3Es such as AvrPto4/AvrPtoB, HopW1/HopAE1, and HopM1/AvrE1 in Pta 6605 collectively contribute to invasion through natural openings and symptom development in N. benthamiana. This study provides the basis for understanding virulence in the host by identifying the minimum T3E repertoire required by Pta 6605 to infect N. benthamiana. en-copyright= kn-copyright= en-aut-name=KuroeKana en-aut-sei=Kuroe en-aut-mei=Kana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishimuraTakafumi en-aut-sei=Nishimura en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KashiharaSachi en-aut-sei=Kashihara en-aut-mei=Sachi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SakataNanami en-aut-sei=Sakata en-aut-mei=Nanami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamamotoMikihiro en-aut-sei=Yamamoto en-aut-mei=Mikihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=poly T3E mutant kn-keyword=poly T3E mutant en-keyword=type III effector kn-keyword=type III effector en-keyword=type III secretion system kn-keyword=type III secretion system END start-ver=1.4 cd-journal=joma no-vol=27 cd-vols= no-issue=4 article-no= start-page=043024 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250428 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Characterization of the thorium-229 defect structure in CaF2 crystals en-subtitle= kn-subtitle= en-abstract= kn-abstract=Recent advancements in laser excitation of the low-energy thorium-229 (229Th) nuclear isomeric state in calcium fluoride (CaF2) single crystals render this system a promising candidate for a solid-state nuclear clock. Nonetheless, the precise experimental determination of the microscopic ion configuration surrounding the doped 229Th and its electronic charge state remains a critical challenge. Such characterization is essential for precisely controlling the clock transition and evaluating the performance of this solid-state nuclear clock system. In this study, we use x-ray absorption fine structure spectroscopy of 229Th:CaF2 to investigate the charge state and coordination environment of doped 229Th. The results indicate that 229Th displays a 4+ oxidation state at the substitutional site of a Ca2+ ion, with charge compensated provided by two F? ions positioned at interstitial sites adjacent to 229Th. en-copyright= kn-copyright= en-aut-name=TakatoriS. en-aut-sei=Takatori en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=PimonM. en-aut-sei=Pimon en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=PollittS. en-aut-sei=Pollitt en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=BartokosM. en-aut-sei=Bartokos en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=BeeksK. en-aut-sei=Beeks en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=GrueneisA. en-aut-sei=Grueneis en-aut-mei=A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HirakiT. en-aut-sei=Hiraki en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HonmaT. en-aut-sei=Honma en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HosseiniN. en-aut-sei=Hosseini en-aut-mei=N. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=LeitnerA. en-aut-sei=Leitner en-aut-mei=A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MasudaT. en-aut-sei=Masuda en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MorawetzI en-aut-sei=Morawetz en-aut-mei=I kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NittaK. en-aut-sei=Nitta en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=OkaiK. en-aut-sei=Okai en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=RiebnerT. en-aut-sei=Riebner en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=SchadenF. en-aut-sei=Schaden en-aut-mei=F. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=SchummT. en-aut-sei=Schumm en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=SekizawaO. en-aut-sei=Sekizawa en-aut-mei=O. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=SikorskyT. en-aut-sei=Sikorsky en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=TakahashiY. en-aut-sei=Takahashi en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=De ColCol, L. Toscani en-aut-sei=De Col en-aut-mei=Col, L. Toscani kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=YamamotoR. en-aut-sei=Yamamoto en-aut-mei=R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=YomogidaT. en-aut-sei=Yomogida en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=YoshimiA. en-aut-sei=Yoshimi en-aut-mei=A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=YoshimuraK. en-aut-sei=Yoshimura en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University kn-affil= affil-num=2 en-affil=Faculty of Physics, TU Wien kn-affil= affil-num=3 en-affil=Faculty of Physics, TU Wien kn-affil= affil-num=4 en-affil=Faculty of Physics, TU Wien kn-affil= affil-num=5 en-affil=Faculty of Physics, TU Wien kn-affil= affil-num=6 en-affil=Faculty of Physics, TU Wien kn-affil= affil-num=7 en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University kn-affil= affil-num=8 en-affil=Japan Synchrotron Radiation Research Institute kn-affil= affil-num=9 en-affil=Faculty of Physics, TU Wien kn-affil= affil-num=10 en-affil=Faculty of Physics, TU Wien kn-affil= affil-num=11 en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University kn-affil= affil-num=12 en-affil=Faculty of Physics, TU Wien kn-affil= affil-num=13 en-affil=Japan Synchrotron Radiation Research Institute kn-affil= affil-num=14 en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University kn-affil= affil-num=15 en-affil=Faculty of Physics, TU Wien kn-affil= affil-num=16 en-affil=Faculty of Physics, TU Wien kn-affil= affil-num=17 en-affil=Faculty of Physics, TU Wien kn-affil= affil-num=18 en-affil=Japan Synchrotron Radiation Research Institute kn-affil= affil-num=19 en-affil=Faculty of Physics, TU Wien kn-affil= affil-num=20 en-affil=Department of Earth and Planetary Science, The University of Tokyo kn-affil= affil-num=21 en-affil=Faculty of Physics, TU Wien kn-affil= affil-num=22 en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University kn-affil= affil-num=23 en-affil=Department of Earth and Planetary Science, The University of Tokyo kn-affil= affil-num=24 en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University kn-affil= affil-num=25 en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University kn-affil= en-keyword=solid-state nuclear clock kn-keyword=solid-state nuclear clock en-keyword=thorium-229 kn-keyword=thorium-229 en-keyword=XAFS kn-keyword=XAFS END start-ver=1.4 cd-journal=joma no-vol=116 cd-vols= no-issue=5 article-no= start-page=1214 end-page=1226 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250227 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=High Antigenicity for Treg Cells Confers Resistance to PD-1 Blockade Therapy via High PD-1 Expression in Treg Cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=Regulatory T (Treg) cells have an immunosuppressive function, and programmed death-1 (PD-1)-expressing Treg cells reportedly induce resistance to PD-1 blockade therapies through their reactivation. However, the effects of antigenicity on PD-1 expression in Treg cells and the resistance to PD-1 blockade therapy remain unclear. Here, we show that Treg cells gain high PD-1 expression through an antigen with high antigenicity. Additionally, tumors with high antigenicity for Treg cells were resistant to PD-1 blockade in vivo due to PD-1+ Treg-cell infiltration. Because such PD-1+ Treg cells have high cytotoxic T lymphocyte antigen (CTLA)-4 expression, resistance could be overcome by combination with an anti-CTLA-4 monoclonal antibody (mAb). Patients who responded to combination therapy with anti-PD-1 and anti-CTLA-4 mAbs sequentially after primary resistance to PD-1 blockade monotherapy showed high Treg cell infiltration. We propose that the high antigenicity of Treg cells confers resistance to PD-1 blockade therapy via high PD-1 expression in Treg cells, which can be overcome by combination therapy with an anti-CTLA-4 mAb. en-copyright= kn-copyright= en-aut-name=MatsuuraHiroaki en-aut-sei=Matsuura en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IshinoTakamasa en-aut-sei=Ishino en-aut-mei=Takamasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NinomiyaToshifumi en-aut-sei=Ninomiya en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NinomiyaKiichiro en-aut-sei=Ninomiya en-aut-mei=Kiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TachibanaKota en-aut-sei=Tachibana en-aut-mei=Kota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=Honobe-TabuchiAkiko en-aut-sei=Honobe-Tabuchi en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MutoYoshinori en-aut-sei=Muto en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=InozumeTakashi en-aut-sei=Inozume en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=UedaYouki en-aut-sei=Ueda en-aut-mei=Youki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OhashiKadoaki en-aut-sei=Ohashi en-aut-mei=Kadoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NagasakiJoji en-aut-sei=Nagasaki en-aut-mei=Joji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TogashiYosuke en-aut-sei=Togashi en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Tumor Microenvironment, Okayama University kn-affil= affil-num=2 en-affil=Department of Tumor Microenvironment, Okayama University kn-affil= affil-num=3 en-affil=Department of Tumor Microenvironment, Okayama University kn-affil= affil-num=4 en-affil=Department of Hematology, Oncology and Respiratory Medicine,Okayama University kn-affil= affil-num=5 en-affil=Department of Dermatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Dermatology, University of Yamanashi kn-affil= affil-num=7 en-affil=Department of Dermatology, University of Yamanashi kn-affil= affil-num=8 en-affil=Department of Dermatology, University of Yamanashi kn-affil= affil-num=9 en-affil=Department of Tumor Microenvironment, Okayama University kn-affil= affil-num=10 en-affil=Department of Hematology, Oncology and Respiratory Medicine,Okayama University kn-affil= affil-num=11 en-affil=Department of Hematology, Oncology and Respiratory Medicine,Okayama University kn-affil= affil-num=12 en-affil=Department of Tumor Microenvironment, Okayama University kn-affil= affil-num=13 en-affil=Department of Tumor Microenvironment, Okayama University kn-affil= en-keyword=antigenicity kn-keyword=antigenicity en-keyword=cancer immunotherapy kn-keyword=cancer immunotherapy en-keyword=CTLA-4 kn-keyword=CTLA-4 en-keyword=PD-1 kn-keyword=PD-1 en-keyword=regulatory T cell kn-keyword=regulatory T cell END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250430 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=High-Resolution HPLC for Separating Peptide-Oligonucleotide Conjugates en-subtitle= kn-subtitle= en-abstract= kn-abstract=Peptide-oligonucleotide conjugates (POCs) are chimeric molecules that combine the specificity of oligonucleotides with the functionality of peptides, improving the delivery and therapeutic potential of nucleic acid-based drugs. However, the analysis of POCs, particularly those containing arginine-rich sequences, poses major challenges because of aggregation caused by electrostatic interactions. In this study, we developed an optimized high-performance liquid chromatography (HPLC) method for analyzing POCs. Using a conjugate of DNA and nona-arginine as a model compound, we systematically investigated the effects of various analytical parameters, including column type, column temperature, mobile-phase composition, and pH. A column packed with C18 resin with wide pores combined with butylammonium acetate as the ion-pairing reagent and an optimal column temperature of 80 degrees C provided superior peak resolution and sensitivity. The optimized conditions gave clear separation of POCs from unlinked oligonucleotides and enabled the detection of nucleic acid fragments lacking an alkyne moiety as a linkage part, which is critical for quality control. Our HPLC method is robust and reproducible and substantially reduces the complexity, time, and cost associated with the POC analysis. The method may improve the efficiency of quality control in the production of POCs, thereby supporting their development as promising therapeutic agents for clinical applications. en-copyright= kn-copyright= en-aut-name=NaganumaMiyako en-aut-sei=Naganuma en-aut-mei=Miyako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TsujiGenichiro en-aut-sei=Tsuji en-aut-mei=Genichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AmiyaMisato en-aut-sei=Amiya en-aut-mei=Misato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HiraiReira en-aut-sei=Hirai en-aut-mei=Reira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HiguchiYuki en-aut-sei=Higuchi en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HataNaoko en-aut-sei=Hata en-aut-mei=Naoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NozawaSaoko en-aut-sei=Nozawa en-aut-mei=Saoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=WatanabeDaishi en-aut-sei=Watanabe en-aut-mei=Daishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NakajimaTaeko en-aut-sei=Nakajima en-aut-mei=Taeko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=DemizuYosuke en-aut-sei=Demizu en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Division of Organic Chemistry, National Institute of Health Sciences kn-affil= affil-num=2 en-affil=Division of Organic Chemistry, National Institute of Health Sciences kn-affil= affil-num=3 en-affil=YMC CO., LTD. kn-affil= affil-num=4 en-affil=YMC CO., LTD. kn-affil= affil-num=5 en-affil=YMC CO., LTD. kn-affil= affil-num=6 en-affil=YMC CO., LTD. kn-affil= affil-num=7 en-affil=YMC CO., LTD. kn-affil= affil-num=8 en-affil=Division of Organic Chemistry, National Institute of Health Sciences kn-affil= affil-num=9 en-affil=YMC CO., LTD. kn-affil= affil-num=10 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Division of Pharmaceutical Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=33 cd-vols= no-issue=8 article-no= start-page=18515 end-page=18529 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250418 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Demonstration of enhanced Raman scattering in high-Q silicon nanocavities operating below the silicon band-gap wavelength en-subtitle= kn-subtitle= en-abstract= kn-abstract=We experimentally determined the quality factor (Q) and the intensity of the Raman scattered light for different silicon photonic-crystal nanocavities operating at wavelengths shorter than the silicon band-gap wavelength. Despite the relatively large absorption of silicon in this wavelength region, we observed Q values greater than 10,000 for cavities with a resonance wavelength of 1.05 mu m, and Q values greater than 30,000 for cavities with a resonance wavelength of 1.10 mu m. Additionally, we measured the Raman scattering spectra of cavities with resonance wavelengths of 1.10 mu m and 1.21 mu m. On average, the generation efficiency of the Raman scattered light in a 1.10-mu m nanocavity is 6.5 times higher than that in a 1.21-mu m nanocavity. These findings suggest that silicon nanocavities operating below the silicon band-gap wavelength could be useful in the development of silicon-based light sources. en-copyright= kn-copyright= en-aut-name=ShimomuraYu en-aut-sei=Shimomura en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AsanoTakashi en-aut-sei=Asano en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IshiharaAyumi en-aut-sei=Ishihara en-aut-mei=Ayumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NodaSusumu en-aut-sei=Noda en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakahashiYasushi en-aut-sei=Takahashi en-aut-mei=Yasushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Physics and Electronics, Osaka Metropolitan University kn-affil= affil-num=2 en-affil=Department of Electronic Science and Engineering, Kyoto University kn-affil= affil-num=3 en-affil=Department of Physics and Electronics, Osaka Metropolitan University kn-affil= affil-num=4 en-affil=Department of Electronic Science and Engineering, Kyoto University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=214 cd-vols= no-issue= article-no= start-page=32 end-page=41 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202505 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Medaka approach to evolutionary social neuroscience en-subtitle= kn-subtitle= en-abstract= kn-abstract=Previously, the integration of comparative biological and neuroscientific approaches has led to significant advancements in social neuroscience. This review highlights the potential and future directions of evolutionary social neuroscience research utilizing medaka fishes (the family Adrianichthyidae) including Japanese medaka (Oryzias latipes). We focus on medaka social cognitive capabilities and mate choice behavior, particularly emphasizing mate preference using visual cues. Medaka fishes are also advantageous due to their abundant genetic resources, extensive genomic information, and the relative ease of laboratory breeding and genetic manipulation. Here we present some research examples of both the conventional neuroscience approach and evolutionary approach involving medaka fishes and other species. We also discuss the prospects of uncovering the molecular and cellular mechanisms underlying the diversity of visual mate preference among species. Especially, we introduce that the single-cell transcriptome technology, particularly in conjunction with 'Adaptive Circuitry Census', is an innovative tool that bridges comparative biological methods and neuroscientific approaches. Evolutionary social neuroscience research using medaka has the potential to unveil fundamental principles in neuroscience and elucidate the mechanisms responsible for generating diversity in mating strategies. en-copyright= kn-copyright= en-aut-name=AnsaiSatoshi en-aut-sei=Ansai en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=Hiraki-KajiyamaTowako en-aut-sei=Hiraki-Kajiyama en-aut-mei=Towako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UedaRyutaro en-aut-sei=Ueda en-aut-mei=Ryutaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SekiTakahide en-aut-sei=Seki en-aut-mei=Takahide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YokoiSaori en-aut-sei=Yokoi en-aut-mei=Saori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KatsumuraTakafumi en-aut-sei=Katsumura en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakeuchiHideaki en-aut-sei=Takeuchi en-aut-mei=Hideaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Ushimado Marine Institute, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Life Sciences, Tohoku University kn-affil= affil-num=3 en-affil=Graduate School of Life Sciences, Tohoku University kn-affil= affil-num=4 en-affil=Graduate School of Life Sciences, Tohoku University kn-affil= affil-num=5 en-affil=School of Pharmaceutical Sciences, Hokkaido University kn-affil= affil-num=6 en-affil=School of Medicine, Kitasato University kn-affil= affil-num=7 en-affil=Graduate School of Life Sciences, Tohoku University kn-affil= en-keyword=Evolutionary neuroscience kn-keyword=Evolutionary neuroscience en-keyword=Comparative neuroscience kn-keyword=Comparative neuroscience en-keyword=Medaka bioresource kn-keyword=Medaka bioresource en-keyword=Visual mate preference kn-keyword=Visual mate preference en-keyword=Sexual selection kn-keyword=Sexual selection en-keyword=Genetic manipulation kn-keyword=Genetic manipulation END start-ver=1.4 cd-journal=joma no-vol=4 cd-vols= no-issue=2 article-no= start-page=e70091 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250427 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Olanzapine enabled rechallenge after lorlatinib-induced psychosis: A case report en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Lorlatinib is a third-generation tyrosine kinase inhibitor for anaplastic lymphoma kinase (ALK)-positive non-small cell lung cancer (NSCLC). While it has a high intracranial lesion control rate, it can also cause central nervous system complications, including psychotic symptoms. We present a case of lorlatinib-induced psychosis successfully managed with olanzapine, enabling lorlatinib rechallenge.
Case Presentation: A 32-year-old woman with ALK-positive NSCLC and brain metastases was started on lorlatinib. After 18 months, she developed hallucinations and delusions. Despite treatment with risperidone, her psychotic symptoms persisted, leading to hospitalization. Her symptoms resolved upon lorlatinib discontinuation while risperidone was continued. Given the critical role of lorlatinib in controlling brain metastases, rechallenge was considered. To mitigate concerns regarding drug interactions, risperidone was replaced with olanzapine. Following lorlatinib rechallenge with olanzapine, no recurrence of psychiatric symptoms was observed, allowing continued lorlatinib treatment. Additionally, no progression of lung cancer was noted.
Conclusion: Lorlatinib is an essential drug for controlling brain metastases in ALK-positive NSCLC. However, it can induce psychotic symptoms. When psychiatrists are involved in managing adverse effects during cancer treatment, close collaboration among oncologists, psychiatrists, and patients is essential. en-copyright= kn-copyright= en-aut-name=YokodeAkiyoshi en-aut-sei=Yokode en-aut-mei=Akiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujiwaraMasaki en-aut-sei=Fujiwara en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakamuraYuko en-aut-sei=Nakamura en-aut-mei=Yuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OhashiKadoaki en-aut-sei=Ohashi en-aut-mei=Kadoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SakamotoShinji en-aut-sei=Sakamoto en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakakiManabu en-aut-sei=Takaki en-aut-mei=Manabu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Neuropsychiatry, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Neuropsychiatry, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Neuropsychiatry, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Neuropsychiatry, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine,Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=psycho-oncology kn-keyword=psycho-oncology en-keyword=lorlatinib kn-keyword=lorlatinib en-keyword=lung cancer kn-keyword=lung cancer en-keyword=medication-induced psychosis kn-keyword=medication-induced psychosis END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=14323 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250424 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Lymphatic flow dynamics under exercise load assessed with thoracic duct ultrasonography en-subtitle= kn-subtitle= en-abstract= kn-abstract=The thoracic duct (TD) is the largest lymphatic vessel proximal to the venous system. It undergoes morphological changes in response to lymph flow from the periphery, with automatic contraction controlling the dynamics to propel lymph toward the venous system. Recent advancements in ultrasonography have facilitated non-invasive observations of the TDfs terminal, including its valve and wall motions. Observations of TD movements allow predictions of lymphatic flow dynamics. However, no studies have yet documented the changes in the TD under exercise-induced lymph flow enhancement in humans. Here, using 18-MHz high-frequency ultrasonography, we demonstrate for the first time that the TD diameter significantly expands under exercise load. This study analyzed 20 participants; the maximum TD diameters at rest and post-exercise were 2.69?}?1.06 mm and 3.41?}?1.32 mm, respectively (p?=?0.00000056). While various methods exist for observing the TD, our approach?dynamically monitoring the TD diameter using sonography in real time and correlating it with lymphatic flow dynamics?offers a novel contribution. en-copyright= kn-copyright= en-aut-name=ShinaokaAkira en-aut-sei=Shinaoka en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KimataYoshihiro en-aut-sei=Kimata en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Lymphatics and Edematology, Dentistry and Pharmaceutical Science, Okayama University Graduate School of Medicine kn-affil= affil-num=2 en-affil=Department of Plastic and Reconstructive surgery, Dentistry and Pharmaceutical Science, Okayama University Graduate School of Medicine kn-affil= en-keyword=Lymphedema kn-keyword=Lymphedema en-keyword=Lymphatic function kn-keyword=Lymphatic function en-keyword=Lymph flow kn-keyword=Lymph flow en-keyword=Chylothorax kn-keyword=Chylothorax en-keyword=Chylous ascites,lymph velocity kn-keyword=Chylous ascites,lymph velocity END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=1 article-no= start-page=2323 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250308 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A mini-hairpin shaped nascent peptide blocks translation termination by a distinct mechanism en-subtitle= kn-subtitle= en-abstract= kn-abstract=Protein synthesis by ribosomes produces functional proteins but also serves diverse regulatory functions, which depend on the coding amino acid sequences. Certain nascent peptides interact with the ribosome exit tunnel to arrest translation and modulate themselves or the expression of downstream genes. However, a comprehensive understanding of the mechanisms of such ribosome stalling and its regulation remains elusive. In this study, we systematically screen for unidentified ribosome arrest peptides through phenotypic evaluation, proteomics, and mass spectrometry analyses, leading to the discovery of the arrest peptides PepNL and NanCL in E. coli. Our cryo-EM study on PepNL reveals a distinct arrest mechanism, in which the N-terminus of PepNL folds back towards the tunnel entrance to prevent the catalytic GGQ motif of the release factor from accessing the peptidyl transferase center, causing translation arrest at the UGA stop codon. Furthermore, unlike sensory arrest peptides that require an arrest inducer, PepNL uses tryptophan as an arrest inhibitor, where Trp-tRNATrp reads through the stop codon. Our findings illuminate the mechanism and regulatory framework of nascent peptide-induced translation arrest, paving the way for exploring regulatory nascent peptides. en-copyright= kn-copyright= en-aut-name=AndoYushin en-aut-sei=Ando en-aut-mei=Yushin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KoboAkinao en-aut-sei=Kobo en-aut-mei=Akinao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NiwaTatsuya en-aut-sei=Niwa en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamakawaAyako en-aut-sei=Yamakawa en-aut-mei=Ayako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KonomaSuzuna en-aut-sei=Konoma en-aut-mei=Suzuna kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KobayashiYuki en-aut-sei=Kobayashi en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NurekiOsamu en-aut-sei=Nureki en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TaguchiHideki en-aut-sei=Taguchi en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ItohYuzuru en-aut-sei=Itoh en-aut-mei=Yuzuru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ChadaniYuhei en-aut-sei=Chadani en-aut-mei=Yuhei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Biological Sciences, Graduate School of Science, The University of Tokyo kn-affil= affil-num=2 en-affil=School of Life Science and Technology, Institute of Science Tokyo kn-affil= affil-num=3 en-affil=School of Life Science and Technology, Institute of Science Tokyo kn-affil= affil-num=4 en-affil=School of Life Science and Technology, Institute of Science Tokyo kn-affil= affil-num=5 en-affil=School of Life Science and Technology, Institute of Science Tokyo kn-affil= affil-num=6 en-affil=School of Life Science and Technology, Institute of Science Tokyo kn-affil= affil-num=7 en-affil=Department of Biological Sciences, Graduate School of Science, The University of Tokyo kn-affil= affil-num=8 en-affil=School of Life Science and Technology, Institute of Science Tokyo kn-affil= affil-num=9 en-affil=Department of Biological Sciences, Graduate School of Science, The University of Tokyo kn-affil= affil-num=10 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=4 article-no= start-page=e9631 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250422 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Case of a Metal Foreign Object Remaining in the Maxillary Bone for an Extended Period: A Case Report en-subtitle= kn-subtitle= en-abstract= kn-abstract=We report a rare case in which a metallic foreign body remained undetected in a patient's maxilla for nearly 40 years after a childhood bicycle accident. Despite the accident, the implant remained in place without causing infection due to the lack of imaging studies at the time. The metal was accidentally discovered during a routine dental imaging examination 40 years later and subsequently surgically removed. This case highlights the importance of comprehensive imaging and the dangers of overlooking foreign bodies, especially in the vulnerable head and neck region. The patient, 53 years old at the time of discovery, presented to the dentist due to discomfort in the palate and nasal cavity. During this visit, radiographs were taken and a foreign body was discovered. Surgical removal of the foreign body revealed significant corrosion and surrounding granulation tissue indicative of foreign body granuloma. Elemental analysis of the foreign body confirmed that it was an iron-based metal, unlike biocompatible materials such as titanium. These findings reinforce the need for close post-trauma evaluation and follow-up, especially in cases of pediatric trauma, to avoid the possibility of long-term complications arising from unnoticed foreign bodies in anatomically significant areas. en-copyright= kn-copyright= en-aut-name=KadoyaKoichi en-aut-sei=Kadoya en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KunisadaYuki en-aut-sei=Kunisada en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ObataKyoichi en-aut-sei=Obata en-aut-mei=Kyoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakakuraHiroaki en-aut-sei=Takakura en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OgawaTatsuo en-aut-sei=Ogawa en-aut-mei=Tatsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IbaragiSoichiro en-aut-sei=Ibaragi en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=case report kn-keyword=case report en-keyword=dentistry kn-keyword=dentistry en-keyword=foreign body kn-keyword=foreign body en-keyword=oral cavity kn-keyword=oral cavity en-keyword=trauma kn-keyword=trauma END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=4 article-no= start-page=139 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250402 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=An Implementation of Creep Test Assisting System with Dial Gauge Needle Reading and Smart Lighting Function for Laboratory Automation en-subtitle= kn-subtitle= en-abstract= kn-abstract=For decades, analog dial gauges have been essential for measuring and monitoring data at various industrial instruments including production machines and laboratory equipment. Among them, we focus on the instrument for creep test in a mechanical engineering laboratory, which evaluates material strength under sustained stress. Manual reading of gauges imposes significant labor demands, especially in long-duration tests. This burden further increases under low-lighting environments, where poor visibility can lead to misreading data points, potentially compromising the accuracy of test results. In this paper, to address the challenges, we implement a creep test assisting system that possesses the following features: (1) to save the installation cost, a web camera and Raspberry Pi are employed to capture images of the dial gauge and automate the needle reading by image processing in real time, (2) to ensure reliability under low-lighting environments, a smart lighting mechanism is integrated to turn on a supplementary light when the dial gauge is not clearly visible, and (3) to allow a user to stay in a distant place from the instrument during a creep test, material break is detected and the corresponding message is notified to a laboratory staff using LINE automatically. For evaluations, we install the implemented system into a material strength measuring instrument at Okayama University, Japan, and confirm the effectiveness and accuracy through conducting experiments under various lighting conditions. en-copyright= kn-copyright= en-aut-name=KongDezheng en-aut-sei=Kong en-aut-mei=Dezheng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FangShihao en-aut-sei=Fang en-aut-mei=Shihao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NopriantoMitsuhiro en-aut-sei=Noprianto en-aut-mei=Mitsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OkayasuMitsuhiro en-aut-sei=Okayasu en-aut-mei=Mitsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=PuspitaningayuPradini en-aut-sei=Puspitaningayu en-aut-mei=Pradini kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Department of Electrical Engineering, Universitas Negeri Surabaya kn-affil= en-keyword=creep test kn-keyword=creep test en-keyword=Raspberry Pi kn-keyword=Raspberry Pi en-keyword=dial gauge kn-keyword=dial gauge en-keyword=needle reading kn-keyword=needle reading en-keyword=smart lighting kn-keyword=smart lighting END start-ver=1.4 cd-journal=joma no-vol=4 cd-vols= no-issue=2 article-no= start-page=e70108 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250421 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A case report of ineffective electroconvulsive therapy for chronic pain en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Somatic symptom disorder (SSD), which includes chronic pain, is a common mental disorder characterized by significant functional impairment and other psychiatric comorbidities. Electroconvulsive therapy (ECT) has been proposed as a potential treatment for refractory chronic pain. However, evidence supporting its efficacy is limited and/or low quality. We present a case of SSD with chronic pain in which ECT was ineffective.
Case Presentation: The patient was a 63-year-old man with chronic pain in the lower back, buttocks, thighs, and soles of the feet. The duration of his chronic pain was 3.8 years. He was diagnosed with Bertolotti's syndrome and SSD. He did not meet the criteria for major depressive disorder. He kept physically active by walking and doing exercises to distract himself from his pain. He strongly perceived pain as a physical issue and preferred ECT over psychotherapy. Despite undergoing 10 ECT sessions with adequate seizures, his pain persisted. After four sessions, he experienced despair over the lack of improvement in pain, which temporarily intensified his suicidal ideation. After undergoing ECT, he continued to maintain his activities, including walking and exercise, while his catastrophic thinking about pain persisted.
Conclusion: The ineffectiveness of ECT in this case highlights the need for balanced counseling, particularly for patients who consider ECT a last-resort treatment. Psychological monitoring and depression screening are essential, especially given the risk of heightened despair or suicidal ideation when ECT is ineffective. Therefore, collaborative decision-making based on accurate information is vital. en-copyright= kn-copyright= en-aut-name=FukaoTakashi en-aut-sei=Fukao en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujiwaraMasaki en-aut-sei=Fujiwara en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamadaYuto en-aut-sei=Yamada en-aut-mei=Yuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AsadaKazushi en-aut-sei=Asada en-aut-mei=Kazushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AsadaTakahiro en-aut-sei=Asada en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=RiHirotoshi en-aut-sei=Ri en-aut-mei=Hirotoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SakamotoShinji en-aut-sei=Sakamoto en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakakiManabu en-aut-sei=Takaki en-aut-mei=Manabu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Neuropsychiatry, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Neuropsychiatry, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Neuropsychiatry, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Neuropsychiatry, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Neuropsychiatry, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Neuropsychiatry, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Neuropsychiatry, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Neuropsychiatry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=chronic pain kn-keyword=chronic pain en-keyword=electroconvulsive therapy kn-keyword=electroconvulsive therapy en-keyword=pain disorder kn-keyword=pain disorder en-keyword=somatic symptom disorder kn-keyword=somatic symptom disorder END start-ver=1.4 cd-journal=joma no-vol=7 cd-vols= no-issue=2 article-no= start-page=43 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250317 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Molecular Iodine-Catalyzed Synthesis of 3,3-Disubstituted Isatins: Total Synthesis of Indole Alkaloid, 3,3-Dimethoxy-2-oxindole en-subtitle= kn-subtitle= en-abstract= kn-abstract=3,3-Dialkoxy-2-oxindoles are prevalent in natural products and exhibit unique biological activities. Among them, acyclic alkoxy analogues show instability in acidic conditions, making access to acyclic isatin ketals highly challenging. Conventional methods for the synthesis of 3,3-dialkoxy-2-oxindoles usually require strongly acidic and harsh reaction conditions, resulting in a low overall efficiency. Herein, we report on an acid- and metal-free protocol for the synthesis of 3,3-dialkoxy-2-oxindoles from isatins through an iodine-catalyzed ketalization. This photochemical protocol does not require the use of any specific reagents such as metal catalysts. Furthermore, the total synthesis of an unprecedented 2-oxindole alkaloid bearing 3,3-dimethoxy moiety is achieved. en-copyright= kn-copyright= en-aut-name=TokushigeKeisuke en-aut-sei=Tokushige en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AsaiShota en-aut-sei=Asai en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AbeTakumi en-aut-sei=Abe en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=School of Pharmacy, Shujitsu University kn-affil= affil-num=3 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=3,3-dialkoxyisatins kn-keyword=3,3-dialkoxyisatins en-keyword=isatins kn-keyword=isatins en-keyword=ketalization kn-keyword=ketalization en-keyword=iodine kn-keyword=iodine en-keyword=indole alkaloid kn-keyword=indole alkaloid END start-ver=1.4 cd-journal=joma no-vol=23 cd-vols= no-issue=1 article-no= start-page=36 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250416 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Anticoagulant effects of edoxaban in cancer and noncancer patients with venous thromboembolism en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Edoxaban, a direct oral anticoagulant (DOAC), is a first-line treatment for venous thromboembolism (VTE) and the suppression of VTE recurrence. In patients with cancer, however, recurrent VTE after DOAC treatment may be more common than in noncancer patients. To evaluate our hypothesis that the anticoagulation effect of edoxaban is lower in VTE patients with cancer than in noncancer patients.
Methods This study was a prospective, multicenter, observational study including patients treated with edoxaban for VTE in Japan. The primary outcome was the difference in the prothrombin time (PT), activated partial thromboplastin time (APTT), and D-dimer level at 5 h after initial edoxaban administration between the cancer and noncancer groups. An additional outcome was the longitudinal change in PT and APTT from 5 h to overnight after edoxaban administration. The incidence of adverse events was further investigated.
Results PT and APTT at 5 h after initial edoxaban administration were not significantly different between the cancer (n = 84) and noncancer groups (n = 138) (e.g., log-transformed APTT 3.55 vs. 3.55, p = 0.45). However, D-dimer in the cancer groups was significantly greater than that in the noncancer groups (log-transformed 1.83 vs. 1.79, p = 0.009). PT and APTT significantly decreased from 5 h to overnight after edoxaban, but a similar pattern was observed in each group. All adverse events after edoxaban administration were also similar between patients with cancer and noncancer.
Conclusion PT and APTT after edoxaban administration were similar between VTE patients with cancer and noncancer groups, suggesting that edoxaban has anticoagulation effects on cancer-associated VTE similar to those of noncancer patients.
Trial registration UMIN000041973; Registration Date: 2020.10.5. en-copyright= kn-copyright= en-aut-name=YoshidaMasashi en-aut-sei=Yoshida en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=EjiriKentaro en-aut-sei=Ejiri en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsuoNaoaki en-aut-sei=Matsuo en-aut-mei=Naoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NaitoTakanori en-aut-sei=Naito en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KurodaKazuhiro en-aut-sei=Kuroda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TokiokaKoji en-aut-sei=Tokioka en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HatanakaKunihiko en-aut-sei=Hatanaka en-aut-mei=Kunihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=FujimotoRyohei en-aut-sei=Fujimoto en-aut-mei=Ryohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YamaokaHidenaru en-aut-sei=Yamaoka en-aut-mei=Hidenaru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KajikawaYutaka en-aut-sei=Kajikawa en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SurugaKazuki en-aut-sei=Suruga en-aut-mei=Kazuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SugiyamaHiroki en-aut-sei=Sugiyama en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MiyajiTsuyoshi en-aut-sei=Miyaji en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=MorimotoYoshimasa en-aut-sei=Morimoto en-aut-mei=Yoshimasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=OkamuraNobuhiro en-aut-sei=Okamura en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=SarashinaToshihiro en-aut-sei=Sarashina en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=AkagiSatoshi en-aut-sei=Akagi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=YuasaShinsuke en-aut-sei=Yuasa en-aut-mei=Shinsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of General Internal Medicine 3, Kawasaki Medical School kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Japanese Red Cross Okayama Hospital kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Okayama City Hospital kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Japanese Red Cross Society Himeji Hospital kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Tsuyama Chuo Hospital kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Okayama Rosai Hospital kn-affil= affil-num=10 en-affil=Department of Cardiovascular Medicine, NHO Fukuyama Medical Center kn-affil= affil-num=11 en-affil=Department of Cardiovascular Medicine, Okayama Medical Center kn-affil= affil-num=12 en-affil=Department of Cardiovascular Medicine, Okayama Saiseikai General Hospital kn-affil= affil-num=13 en-affil=Hosogi Hospital kn-affil= affil-num=14 en-affil=Department of Cardiovascular Medicine, Fukuyama City Hospital kn-affil= affil-num=15 en-affil=Okamura Isshindow Hospital kn-affil= affil-num=16 en-affil=Kuroda Clinic kn-affil= affil-num=17 en-affil=Department of Cardiovascular Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=18 en-affil=Department of Cardiovascular Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=19 en-affil=Department of Cardiovascular Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=20 en-affil=Department of General Internal Medicine 3, Kawasaki Medical School kn-affil= affil-num=21 en-affil=Department of Cardiovascular Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Factor Xa inhibitors kn-keyword=Factor Xa inhibitors en-keyword=Anticoagulation effects kn-keyword=Anticoagulation effects en-keyword=Cancer kn-keyword=Cancer en-keyword=Venous thromboembolism kn-keyword=Venous thromboembolism END start-ver=1.4 cd-journal=joma no-vol=24 cd-vols= no-issue=1 article-no= start-page=116 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250416 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=ADAR1-high tumor-associated macrophages induce drug resistance and are therapeutic targets in colorectal cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Colorectal cancer (CRC) is considered the third most common type of cancer worldwide. Tumor-associated macrophages (TAMs) have been shown to promote drug resistance. Adenosine-to-inosine RNA-editing, as regulated by adenosine deaminase acting on RNA (ADAR), is a process that induces the posttranscriptional modification of critical oncogenes. The aim of this study is to determine whether the signals from cancer cells would induce RNA-editing in macrophages.
Methods The effects of RNA-editing on phenotypes in macrophages were analyzed using clinical samples and in vitro and in vivo models.
Results The intensity of the RNA-editing enzyme ADAR1 (Adenosine deaminase acting on RNA 1) in cancer and mononuclear cells indicated a strong positive correlation between the nucleus and cytoplasm. The ADAR1-positive mononuclear cells were positive for CD68 and CD163, a marker for M2 macrophages. Cancer cells transport pro-inflammatory cytokines or ADAR1 protein directly to macrophages via the exosomes, promoting RNA-editing in AZIN1 (Antizyme Inhibitor 1) and GLI1 (Glioma-Associated Oncogene Homolog 1) and resulting in M2 macrophage polarization. GLI1 RNA-editing in the macrophages induced by cancer cells promotes the secretion of SPP1, which is supplied to the cancer cells. This activates the NF kappa B pathway in cancer cells, promoting oxaliplatin resistance. When the JAK inhibitors were administered, oncogenic RNA-editing in the macrophages was suppressed. This altered the macrophage polarization from M2 to M1 and decreased oxaliplatin resistance in cancer cells.
Conclusions This study revealed that ADAR1-high TAMs are crucial in regulating drug resistance in CRC and that targeting ADAR1 in TAMs could be a promising treatment approach for overcoming drug resistance in CRC. en-copyright= kn-copyright= en-aut-name=UmedaHibiki en-aut-sei=Umeda en-aut-mei=Hibiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShigeyasuKunitoshi en-aut-sei=Shigeyasu en-aut-mei=Kunitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakahashiToshiaki en-aut-sei=Takahashi en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MoriwakeKazuya en-aut-sei=Moriwake en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KondoYoshitaka en-aut-sei=Kondo en-aut-mei=Yoshitaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YoshidaKazuhiro en-aut-sei=Yoshida en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakedaSho en-aut-sei=Takeda en-aut-mei=Sho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YanoShuya en-aut-sei=Yano en-aut-mei=Shuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MatsumiYuki en-aut-sei=Matsumi en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KishimotoHiroyuki en-aut-sei=Kishimoto en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=FujiTomokazu en-aut-sei=Fuji en-aut-mei=Tomokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=YasuiKazuya en-aut-sei=Yasui en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YamamotoHideki en-aut-sei=Yamamoto en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=TakagiKosei en-aut-sei=Takagi en-aut-mei=Kosei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=KayanoMasashi en-aut-sei=Kayano en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=MichiueHiroyuki en-aut-sei=Michiue en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=NakamuraKeiichiro en-aut-sei=Nakamura en-aut-mei=Keiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=MoriYoshiko en-aut-sei=Mori en-aut-mei=Yoshiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=TeraishiFuminori en-aut-sei=Teraishi en-aut-mei=Fuminori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=TazawaHiroshi en-aut-sei=Tazawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=UmedaYuzo en-aut-sei=Umeda en-aut-mei=Yuzo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=KagawaShunsuke en-aut-sei=Kagawa en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=GoelAjay en-aut-sei=Goel en-aut-mei=Ajay kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=15 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Neutron Therapy Research Center, Okayama University kn-affil= affil-num=17 en-affil=Department of Obstetrics and Gynecology, Okayama University Gradu?ate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=18 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=19 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=20 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=21 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=22 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=23 en-affil=Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute, City of Hope Comprehensive Cancer Center kn-affil= affil-num=24 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=RNA-editing kn-keyword=RNA-editing en-keyword=Macrophage kn-keyword=Macrophage en-keyword=Chemoresistance kn-keyword=Chemoresistance en-keyword=Biomarker kn-keyword=Biomarker en-keyword=Colorectal cancer kn-keyword=Colorectal cancer END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=8 article-no= start-page=e70793 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250418 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Genomic Differences and Distinct TP53 Mutation Site-Linked Chemosensitivity in Early- and Late-Onset Gastric Cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Gastric cancer (GC) in younger patients often exhibits aggressive behavior and a poorer prognosis than that in older patients. Although the clinical differences may stem from oncogenic gene variations, it is unclear whether genetic differences exist between these groups. This study compared the genetic profiles of early- and late-onset GC and evaluated their impact on treatment outcomes.
Methods: We analyzed genetic data from 1284 patients with GC in the Japanese nationwide Center for Cancer Genomics and Advanced Therapeutics (C-CAT) database, comparing early-onset (<= 39 years; n = 143) and late-onset (>= 65 years; n = 1141) groups. The influence of TP53 mutations on the time to treatment failure (TTF) with platinum-based chemotherapy and the sensitivity of cancer cells with different TP53 mutation sites to oxaliplatin were assessed in vitro.
Results: Early- and late-onset GC showed distinct genetic profiles, with fewer neoantigen-associated genetic changes observed in early-onset cases. In particular, TP53 has distinct mutation sites; R175H and R273 mutations are more frequent in early- and late-onset GC, respectively. The R175H mutation showed higher sensitivity to oxaliplatin in vitro, consistent with the longer TTF in early-onset patients (17.3 vs. 7.0 months, p = 0.013) when focusing on the patients with TP53 mutations.
Conclusion: Genomic differences, particularly in TP53 mutation sites, between early- and late-onset GC support the need for age-specific treatment strategies. en-copyright= kn-copyright= en-aut-name=KamioTomohiro en-aut-sei=Kamio en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KonoYoshiyasu en-aut-sei=Kono en-aut-mei=Yoshiyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HirosunaKensuke en-aut-sei=Hirosuna en-aut-mei=Kensuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OzatoToshiki en-aut-sei=Ozato en-aut-mei=Toshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamamotoHideki en-aut-sei=Yamamoto en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HirasawaAkira en-aut-sei=Hirasawa en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=EnnishiDaisuke en-aut-sei=Ennishi en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TomidaShuta en-aut-sei=Tomida en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OtsukaMotoyuki en-aut-sei=Otsuka en-aut-mei=Motoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterology, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Clinical Genomic Medicine, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Clinical Genomic Medicine, Okayama University Hospital kn-affil= affil-num=7 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital kn-affil= affil-num=8 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital kn-affil= affil-num=9 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital kn-affil= affil-num=10 en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=comprehensive genomic profiling kn-keyword=comprehensive genomic profiling en-keyword=early-onset gastric cancer kn-keyword=early-onset gastric cancer en-keyword=oxaliplatin kn-keyword=oxaliplatin en-keyword=TP53 kn-keyword=TP53 END start-ver=1.4 cd-journal=joma no-vol=64 cd-vols= no-issue=3 article-no= start-page=343 end-page=350 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250201 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Characteristics of Early Gastric Cancer in a Patient with a History of Helicobacter pylori Infection and No History of Eradication Therapy en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objective The characteristics of gastric cancer in patients with atrophic mucosa and no apparent history of Helicobacter pylori eradication have not been thoroughly investigated. Therefore, this study examined the clinicopathological characteristics of gastric cancer in these patients.
Methods We retrospectively examined the endoscopic and pathological characteristics of gastric cancer in patients who underwent endoscopic submucosal dissection.
Patients We divided the patients into 2 groups: those with gastric atrophy and no history of eradication (group A; n=102) and those with a history of eradication (group B; n=161). In group A, patients were further divided into mild atrophy (group C) and severe atrophy (group D) groups, while group B was further divided into those who underwent eradication treatment >5 years ago (group E) and those who underwent eradication 1-5 years ago (group F).
Results Group A comprised significantly older individuals (75}8.0 vs. 71}7.5 years old, p<0.001) with a higher frequency of elevated gastric cancer than group B (32.4% vs. 17.4%, p=0.006). Compared with group E, group A was older and had a greater incidence of elevated gastric cancer. The incidence of gastric cancer in the U or M region was lower in group C than in group D.
Conclusion Gastric cancer in patients with gastric atrophy and no history of eradication was associated with an older age and higher frequency of elevated-type morphology than in those with a history of eradication. en-copyright= kn-copyright= en-aut-name=KuraokaSakiko en-aut-sei=Kuraoka en-aut-mei=Sakiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawanoSeiji en-aut-sei=Kawano en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=InoShoko en-aut-sei=Ino en-aut-mei=Shoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SatomiTakuya en-aut-sei=Satomi en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HamadaKenta en-aut-sei=Hamada en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KonoYoshiyasu en-aut-sei=Kono en-aut-mei=Yoshiyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IwamuroMasaya en-aut-sei=Iwamuro en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KawaharaYoshiro en-aut-sei=Kawahara en-aut-mei=Yoshiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TanakaTakehiro en-aut-sei=Tanaka en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OkadaHiroyuki en-aut-sei=Okada en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OtsukaMotoyuki en-aut-sei=Otsuka en-aut-mei=Motoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Practical Gastrointestinal Endoscopy, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Practical Gastrointestinal Endoscopy, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=autoimmune gastritis kn-keyword=autoimmune gastritis en-keyword=eradication kn-keyword=eradication en-keyword=gastric cancer kn-keyword=gastric cancer en-keyword=Helicobacter pylori kn-keyword=Helicobacter pylori END start-ver=1.4 cd-journal=joma no-vol=71 cd-vols= no-issue=1 article-no= start-page=19 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250419 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Quantitative assessment of adhesive effects on partial and full compressive strength of LVL in the edge-wise direction en-subtitle= kn-subtitle= en-abstract= kn-abstract=Laminated wood-based materials have been widely developed, and the laminating process and adhesive itself have been reported to enhance performance beyond the sum of the individual layers' performance. This phenomenon is particularly notable under loads applied in the "edge-wise direction", where each layer bears stress collectively. These combined effects are referred to as the "adhesive effect". Strength under partial compressive loads is critical in timber engineering, as partial compressive stress generates complex stress distributions influenced by boundary conditions. The adhesive effect may also be impacted by these conditions. The aim of this study was to quantitatively and directly evaluate the adhesive effect under partial and full compressive loads using various parameters. The strength of laminated veneer lumber (LVL) with adhesive was compared to that of simply layered veneers without adhesive to assess the adhesive effect. Three mechanisms contributing to the adhesive effect were proposed: Mechanism I, caused by the deformation of the adhesive layer independently from the veneers; Mechanism II, resulting from the adhesive impregnating the veneers; and Mechanism III, arising from the reinforcement provided by adjacent veneers. The results suggested the following: (i) Mechanism I had minimal impact, as the fiber direction and the presence of additional length showed strong and slight effects on the adhesive effect, respectively; (ii) Mechanism II contributed to preventing crack propagation and altering the relationships among mechanical properties, with its effectiveness increasing as the adhesive weight increased; and (iii) Mechanism III functioned as a crossband effect, reinforcing weaknesses caused by the slope of the grain and the angle of the annual rings. en-copyright= kn-copyright= en-aut-name=SudoRyutaro en-aut-sei=Sudo en-aut-mei=Ryutaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyamotoKohta en-aut-sei=Miyamoto en-aut-mei=Kohta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IdoHirofumi en-aut-sei=Ido en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Okayama University, Graduate School of Environmental, Life, Natural Science and Technology kn-affil= affil-num=2 en-affil=Forestry and Forest Products Research Institute kn-affil= affil-num=3 en-affil=Forestry and Forest Products Research Institute kn-affil= en-keyword=Laminated veneer lumber (LVL) kn-keyword=Laminated veneer lumber (LVL) en-keyword=Partial compressive load kn-keyword=Partial compressive load en-keyword=Bearing strength kn-keyword=Bearing strength en-keyword=Embedment strength kn-keyword=Embedment strength en-keyword=Partial compression perpendicular to grain (PCPG) kn-keyword=Partial compression perpendicular to grain (PCPG) en-keyword=Adhesive layer kn-keyword=Adhesive layer END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=4 article-no= start-page=e70151 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250416 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Frequency and Characteristics of Gastrointestinal Diseases in Patients With Neurofibromatosis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background and Aim: Patients with neurofibromatosis (NF) frequently experience gastrointestinal symptoms, but the specific characteristics of these lesions are not well understood.
Methods: To investigate the prevalence and nature of gastrointestinal diseases in this population, we analyzed the gastrointestinal lesions identified through endoscopic examinations in patients with NF.
Results: We included 225 patients with NF type 1 (NF1) and 15 with NF type 2 (NF2). None of the NF2 patients underwent endoscopy. Among the NF1 patients, 27 received endoscopies, and 13 (59%) had gastrointestinal lesions. These 13 patients were predominantly male (10 males and three females), with a median age of 53 years (range: 19-76 years). The identified lesions included colorectal polyps (n = 6), gastrointestinal stromal tumors ([GIST], n = 4), subepithelial lesions (n = 3), gastric fundic gland polyps (n = 3), diffuse intestinal ganglioneuromatosis (n = 2), esophageal polyps (n = 2), a Schwann cell hamartoma (n = 1), esophageal cancer (n = 1), and a gastric hyperplastic polyp (n = 1). All GISTs and one case of diffuse intestinal ganglioneuromatosis were surgically resected. Interestingly, six out of 13 patients were asymptomatic. Additionally, all patients who required surgery were 40 years of age or older.
Conclusions: These findings suggest that routine endoscopic examinations, along with imaging techniques like computed tomography and magnetic resonance imaging, could be beneficial for the early detection of gastrointestinal lesions in NF1 patients aged 40 and above. en-copyright= kn-copyright= en-aut-name=HondaManami en-aut-sei=Honda en-aut-mei=Manami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IwamuroMasaya en-aut-sei=Iwamuro en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanakaTakehiro en-aut-sei=Tanaka en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamasakiYasushi en-aut-sei=Yamasaki en-aut-mei=Yasushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KawanoSeiji en-aut-sei=Kawano en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HiraokaSakiko en-aut-sei=Hiraoka en-aut-mei=Sakiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KawaharaYoshiro en-aut-sei=Kawahara en-aut-mei=Yoshiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OtsukaMotoyuki en-aut-sei=Otsuka en-aut-mei=Motoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Practical Gastrointestinal Endoscopy,Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=colonoscopy kn-keyword=colonoscopy en-keyword=esophagogastroduodenoscopy kn-keyword=esophagogastroduodenoscopy en-keyword=gastrointestinal neoplasms kn-keyword=gastrointestinal neoplasms en-keyword=gastrointestinal stromal tumor kn-keyword=gastrointestinal stromal tumor en-keyword=neurofibromatosis kn-keyword=neurofibromatosis END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=12633 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250412 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Association of emergency intensive care unit occupancy due to brain-dead organ donors with ambulance diversion en-subtitle= kn-subtitle= en-abstract= kn-abstract=Our study aims to explore how intensive care unit (ICU) occupancy by brain-dead organ donors affects emergency ambulance diversions. In this retrospective, single-center study at an emergency ICU (EICU), brain-dead organ donors were managed until organ procurement. We classified each day between August 1, 2021, and July 31, 2023, as either an exposure day (any day with a brain-dead organ donor in the EICU from admission to organ procurement) or a control day (all other days). The study compared these days and used multiple logistic regression analysis to assess the impact of EICU occupancy by brain-dead organ donors on ambulance diversions. Over two years, 6,058 emergency patients were transported by ambulance, with 1327 admitted to the EICU, including 13 brain-dead organ donors. Brain-dead donors had longer EICU stays (17 vs. 2 days, P < 0.001). With 168 exposure and 562 control days, EICU occupancy was higher on exposure days (75% vs. 67%, P = 0.003), leading to more ambulance diversions. Logistic regression showed exposure days significantly increased ambulance diversions, with an odds ratio of 1.79 (95% CIs 1.10-2.88). This study shows that managing brain-dead organ donors in the EICU leads to longer stays and higher occupancy, resulting in more frequent ambulance diversions. These findings highlight the critical need for policies that optimize ICU resource allocation while maintaining the infrastructure necessary to support organ donation programs and ensuring continued care for brain-dead donors, who play an essential role in addressing the organ shortage crisis. en-copyright= kn-copyright= en-aut-name=YumotoTetsuya en-aut-sei=Yumoto en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ObaraTakafumi en-aut-sei=Obara en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HongoTakashi en-aut-sei=Hongo en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NojimaTsuyoshi en-aut-sei=Nojima en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TsukaharaKohei en-aut-sei=Tsukahara en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HisamuraMasaki en-aut-sei=Hisamura en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakaoAtsunori en-aut-sei=Nakao en-aut-mei=Atsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YorifujiTakashi en-aut-sei=Yorifuji en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NaitoHiromichi en-aut-sei=Naito en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Ambulance diversion kn-keyword=Ambulance diversion en-keyword=Bed occupancy kn-keyword=Bed occupancy en-keyword=Brain death kn-keyword=Brain death en-keyword=Emergency medical services kn-keyword=Emergency medical services en-keyword=Intensive care units kn-keyword=Intensive care units en-keyword=Organ donation kn-keyword=Organ donation END start-ver=1.4 cd-journal=joma no-vol=23 cd-vols= no-issue=1 article-no= start-page=124 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250407 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Surgical protocol of robotic liver resection using a two-surgeon technique (TAKUMI-3): a technical note and initial outcomes en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Internationally, evidence supporting robotic liver resection (RLR) has gradually increased in recent years. However, a standardized protocol for RLR remains lacking. This study describes a surgical protocol and the initial outcomes of RLR in a high-volume center for robotic hepatopancreatobiliary surgery in Japan.
Methods Patients were placed in the reverse Trendelenburg position, with a supine position for anterolateral tumors and left lateral position for posterosuperior tumors. Our standard RLR protocol involved a two-surgeon technique. Liver parenchymal transection was performed by an assistant using the clamp crush technique with a console, with or without a laparoscopic Cavitron ultrasonic surgical aspirator (CUSA). Surgical techniques, including the tips, tricks, and pitfalls of RLR, are also demonstrated.
Results We performed 113 RLR at our institution for common primary diseases, including hepatocellular carcinoma (n = 52, 46.0%) and metastatic tumors (n = 48, 42.5%) between July 2022 and December 2024. The median operative time and estimated blood loss were 156 min (interquartile range [IQR], 121-209 min) and 20 mL (IQR, 0-100 mL), respectively. During liver parenchymal transection, a laparoscopic CUSA was used in 59 patients (52.2%), and a water-jet scalpel was used in 12 patients (10.6%). The incidence of mortality, major complications, and bile leakage was 0%, 6.2%, and 2.7%, respectively. The median hospital stay was 7 days (IQR, 6-9 days).
Conclusions We successfully introduced an RLR program using the two-surgeon technique. Safe implementation of RLR can be achieved upon completion of the training program and thorough understanding of the surgical protocols. en-copyright= kn-copyright= en-aut-name=TakagiKosei en-aut-sei=Takagi en-aut-mei=Kosei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujiTomokazu en-aut-sei=Fuji en-aut-mei=Tomokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YasuiKazuya en-aut-sei=Yasui en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=UmedaYuzo en-aut-sei=Umeda en-aut-mei=Yuzo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamadaMotohiko en-aut-sei=Yamada en-aut-mei=Motohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NishiyamaTakeyoshi en-aut-sei=Nishiyama en-aut-mei=Takeyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NagaiYasuo en-aut-sei=Nagai en-aut-mei=Yasuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KanehiraNoriyuki en-aut-sei=Kanehira en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Dentistry, and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=2 en-affil=Department of Gastroenterological Surgery, Dentistry, and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery, Dentistry, and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=4 en-affil=Department of Hepatobiliary Pancreatic Surgery, Ehime University Graduate School of Medicine kn-affil= affil-num=5 en-affil=Department of Gastroenterological Surgery, Dentistry, and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Dentistry, and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=7 en-affil=Department of Gastroenterological Surgery, Dentistry, and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=8 en-affil=Department of Gastroenterological Surgery, Dentistry, and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=9 en-affil=Department of Gastroenterological Surgery, Dentistry, and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= en-keyword=Liver resection kn-keyword=Liver resection en-keyword=Robotic surgery kn-keyword=Robotic surgery en-keyword=Training kn-keyword=Training en-keyword=Outcomes kn-keyword=Outcomes END start-ver=1.4 cd-journal=joma no-vol=34 cd-vols= no-issue=2 article-no= start-page=131 end-page=136 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effect of calcium supplementation on bone deformity and histopathological findings of skin papules in a pediatric patient with vitamin D?dependent rickets type 2A: A case report en-subtitle= kn-subtitle= en-abstract= kn-abstract=Vitamin D?dependent rickets type 2A (VDDR2A) is an autosomal recessive disease caused by pathogenic variants of the vitamin D receptor (VDR) gene. VDDR2A rickets are usually resistant to native or active vitamin D treatment because of impaired active calcium absorption against the calcium concentration gradient, which is a ligand-dependent VDR action in the small intestine. Alopecia due to an impaired skin follicular cycle is occasionally observed in patients with VDDR2A. Among the pathogenic VDR variants, most in the DNA-binding domain and some in the ligand-binding domain, which affect the dimerization of VDR with the retinoic X receptor, are associated with alopecia. Herein, we report a case of VDDR2A caused by compound heterozygous pathogenic variants of the DNA-binding domain of VDR. Active vitamin D treatment did not ameliorate genu varum, rachitic changes in the roentgenogram, or abnormal laboratory findings. However, oral administration of calcium lactate dramatically improved these findings. The patient also experienced hair loss at two months of age and multiple papules on the skin at two yr of age, which did not improve with vitamin D or calcium supplementation. We also report the histopathological findings of skin papules in this patient. en-copyright= kn-copyright= en-aut-name=HasegawaKosei en-aut-sei=Hasegawa en-aut-mei=Kosei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyakeTomoko en-aut-sei=Miyake en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KobashiMina en-aut-sei=Kobashi en-aut-mei=Mina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TetsunagaTomonori en-aut-sei=Tetsunaga en-aut-mei=Tomonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AgoYuko en-aut-sei=Ago en-aut-mei=Yuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FutagawaNatsuko en-aut-sei=Futagawa en-aut-mei=Natsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MiyaharaHiroyuki en-aut-sei=Miyahara en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HiguchiYousuke en-aut-sei=Higuchi en-aut-mei=Yousuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MorizaneShin en-aut-sei=Morizane en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TsukaharaHirokazu en-aut-sei=Tsukahara en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Dermatology, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Dermatology, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Dermatology, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=rickets kn-keyword=rickets en-keyword=receptor kn-keyword=receptor en-keyword=alopecia kn-keyword=alopecia en-keyword=papules kn-keyword=papules en-keyword=calcium kn-keyword=calcium END start-ver=1.4 cd-journal=joma no-vol=29 cd-vols= no-issue=2 article-no= start-page=156 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250411 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Clinical-level screening of sleep apnea syndrome with single-lead ECG alone is achievable using machine learning with appropriate time windows en-subtitle= kn-subtitle= en-abstract= kn-abstract=Purpose To establish a simple and noninvasive screening test for sleep apnea (SA) that imposes less burden on potential patients. The specific objective of this study was to verify the effectiveness of past and future single-lead electrocardiogram (ECG) data from SA occurrence sites in improving the estimation accuracy of SA and sleep apnea syndrome (SAS) using machine learning.
Methods The Apnea-ECG dataset comprising 70 ECG recordings was used to construct various machine-learning models. The time window size was adjusted based on the accuracy of SA detection, and the performance of SA detection and SAS diagnosis (apnea?hypopnea index???5 was considered SAS) was compared.
Results Using ECG data from a few minutes before and after the occurrence of SAs improved the estimation accuracy of SA and SAS in all machine learning models. The optimal range of the time window and achieved accuracy for SAS varied by model; however, the sensitivity ranged from 95.7 to 100%, and the specificity ranged from 91.7 to 100%.
Conclusions ECG data from a few minutes before and after SA occurrence were effective in SA detection and SAS diagnosis, confirming that SA is a continuous phenomenon and that SA affects heart function over a few minutes before and after SA occurrence. Screening tests for SAS, using data obtained from single-lead ECGs with appropriate past and future time windows, should be performed with clinical-level accuracy. en-copyright= kn-copyright= en-aut-name=YamaneTakahiro en-aut-sei=Yamane en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujiiMasanori en-aut-sei=Fujii en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoritaMizuki en-aut-sei=Morita en-aut-mei=Mizuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Biomedical Informatics, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Geriatric Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Biomedical Informatics, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=Disease screening kn-keyword=Disease screening en-keyword=Sleep apnea syndrome (SAS) kn-keyword=Sleep apnea syndrome (SAS) en-keyword=Single-lead ECG kn-keyword=Single-lead ECG en-keyword=Artificial intelligence kn-keyword=Artificial intelligence en-keyword=Machine learning kn-keyword=Machine learning END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250410 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Enterobacterial common antigen repeat-unit flippase WzxE is required for Escherichia coli growth under acidic conditions, low temperature, and high osmotic stress conditions en-subtitle= kn-subtitle= en-abstract= kn-abstract=Colanic acid and enterobacterial common antigen (ECA) are cell-surface polysaccharides that are produced by many Escherichia coli isolates. Colanic acid is induced under acidic, low temperature, and high-salt conditions and is important for E. coli resistance to these stresses; however, the role of ECA in these stresses is less clear. Here, we observed that knockout of flippase wzxE, which translocates lipid-linked ECA repeat units from the cytoplasmic side of the inner membrane to the periplasmic side, resulted in the sensitivity of E. coli BW25113 to acidic conditions. The wzxE-knockout mutant showed reduced growth potential and viable counts in vegetable extracts with acidic environments, including cherry tomatoes, carrots, celery, lettuce, and spinach. A double-knockout strain of wzxE and wecF (glycosyltransferase that adds the third-and-final sugar of the lipid-linked ECA repeat unit) was not sensitive to acidic conditions, with similar results obtained for a double-knockout strain of wzxE and wcaJ (glycosyltransferase that initiates colanic acid lipid-linked repeat-unit biosynthesis). The wzxE-knockout mutant was sensitive to low temperatures or high-salt conditions, which induced colanic acid synthesis, and these sensitivities were abolished by the additional knockout of wcaJ. These results suggest that lipid-linked ECA repeat units confer E. coli susceptibility to acidic, low temperatures, and high-salt conditions in a colanic acid-dependent manner and that wzxE suppresses this negative effect. en-copyright= kn-copyright= en-aut-name=YamaguchiSaki en-aut-sei=Yamaguchi en-aut-mei=Saki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IshikawaKazuya en-aut-sei=Ishikawa en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FurutaKazuyuki en-aut-sei=Furuta en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KaitoChikara en-aut-sei=Kaito en-aut-mei=Chikara kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=wzxE flippase kn-keyword=wzxE flippase en-keyword=enterobacterial common antigen kn-keyword=enterobacterial common antigen en-keyword=low pH kn-keyword=low pH en-keyword=low temperature kn-keyword=low temperature en-keyword=hyperosmotic stress kn-keyword=hyperosmotic stress END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=7 article-no= start-page=2221 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250401 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Length Estimation of Pneumatic Artificial Muscle with Optical Fiber Sensor Using Machine Learning en-subtitle= kn-subtitle= en-abstract= kn-abstract=A McKibben artificial muscle is a soft actuator driven by air pressure, characterized by its flexibility, lightweight design, and high power-to-weight ratio. We have developed a smart artificial muscle that is capable of sensing its motion. To enable this sensing function, an optical fiber was integrated into the sleeve consisting of multiple fibers and serving as a component of the McKibben artificial muscle. By measuring the macrobending loss of the optical fiber, the length of the smart artificial muscle is expected to be estimated. However, experimental results indicated that the sensor's characteristics depend not only on the length but also on the load and the applied air pressure. This dependency arises because the stress applied to the optical fiber increases, causing microbending loss. In this study, we employed a machine learning model, primarily composed of Long Short-Term Memory (LSTM) neural networks, to estimate the length of the smart artificial muscle. The experimental results demonstrate that the length estimation obtained through machine learning exhibits a smaller error. This suggests that machine learning is a feasible approach to enhancing the length measurement accuracy of the smart artificial muscle. en-copyright= kn-copyright= en-aut-name=NiYilei en-aut-sei=Ni en-aut-mei=Yilei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WakimotoShuichi en-aut-sei=Wakimoto en-aut-mei=Shuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TianWeihang en-aut-sei=Tian en-aut-mei=Weihang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TodaYuichiro en-aut-sei=Toda en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KandaTakefumi en-aut-sei=Kanda en-aut-mei=Takefumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamaguchiDaisuke en-aut-sei=Yamaguchi en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=McKibben artificial muscle kn-keyword=McKibben artificial muscle en-keyword=machine learning kn-keyword=machine learning en-keyword=optical fiber kn-keyword=optical fiber en-keyword=motion estimation kn-keyword=motion estimation END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=7 article-no= start-page=2287 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250327 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Comparison of Midazolam and Diazepam for Sedation in Patients Undergoing Double-Balloon Endoscopic Retrograde Cholangiopancreatography: A Propensity Score-Matched Analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objective: The sedation method used in double-balloon endoscopic retrograde cholangiopancreatography (DB-ERCP) varies across countries and between healthcare facilities. No previous studies have compared the effects of different benzodiazepines on sedation during endoscopic procedures. This study aimed to compare the effects of midazolam and diazepam sedation on DB-ERCP outcomes. Methods: This retrospective cohort study analyzed consecutive patients who underwent DB-ERCP between January 2017 and February 2024. A total of 203 patients who were sedated with diazepam (n = 94) or midazolam (n = 109) were analyzed. Propensity score matching was applied to adjust for baseline group differences. The primary outcome was the incidence of sedation-related adverse events (AEs). Secondary outcomes included inadequate sedation requiring additional sedatives and risk factors for sedation-related AEs. Results: Sedation-related AEs were more frequent with diazepam (28% [21/75]) than with midazolam (14% [11/75]; p = 0.046). Hypoxia occurred more frequently with diazepam (19% [14/75]) than with midazolam (5% [4/75]; p = 0.012). However, no significant differences were observed between the two groups for hypotension (p = 0.41) and bradycardia (p = 1.0). Poor sedation requiring other sedatives occurred significantly more often with diazepam (8% [6/75]) compared with midazolam sedation (0% [0/75], p = 0.012). Multivariate analysis identified diazepam sedation (odds ratio, 2.3; 95% confidence interval, 1.0-5.3; p = 0.048) as the sole risk factor for sedation-related AEs. Conclusions: Midazolam is safer and more effective than diazepam sedation in patients undergoing DB-ERCP. en-copyright= kn-copyright= en-aut-name=FujiiYuki en-aut-sei=Fujii en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsumotoKazuyuki en-aut-sei=Matsumoto en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsumiAkihiro en-aut-sei=Matsumi en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MiyamotoKazuya en-aut-sei=Miyamoto en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=UchidaDaisuke en-aut-sei=Uchida en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HoriguchiShigeru en-aut-sei=Horiguchi en-aut-mei=Shigeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TsutsumiKoichiro en-aut-sei=Tsutsumi en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MitsuhashiToshiharu en-aut-sei=Mitsuhashi en-aut-mei=Toshiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OtsukaMotoyuki en-aut-sei=Otsuka en-aut-mei=Motoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=3 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=4 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=5 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=6 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=7 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=8 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= en-keyword=adverse events kn-keyword=adverse events en-keyword=balloon-assisted ERCP kn-keyword=balloon-assisted ERCP en-keyword=benzodiazepine kn-keyword=benzodiazepine en-keyword=sedation kn-keyword=sedation END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=7 article-no= start-page=2242 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Impact of Lifestyle Changes on Body Weight Gain During Nationwide Lockdown Due to COVID-19 Pandemic en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: During the coronavirus disease 2019 (COVID-19) pandemic, people in Japan were urged to stay at home as much as possible, and this resulted in significant changes in lifestyle behavior. The new lifestyle included factors affecting both energy intake and energy consumption, and it is now thought that weight gain during the lockdown was the result of complex effects. The aim of this study was to determine the relationships among lifestyle habits, laboratory data, and body weight gain during the lockdown using medical check-up data. Methods: A total of 3789 individuals who had undergone consecutive medical check-ups during the period from 2018 to 2020 were included in this study. Participants whose body weight had increased by 5% or more were divided into two groups: a before-lockdown group (participants who had gained weight between 2018 and 2019) and an after-lockdown group (participants who had gained weight between 2019 and 2020). Physical measurements, laboratory data, and answers to six questions about lifestyle habits, for which information was obtained from the records from medical check-ups, were compared in the two groups. Results: There was no significant difference between the distribution of weight changes in 2018-2019 before the lockdown and the distribution of weight changes in 2019-2020 after the lockdown. The before-lockdown and after-lockdown groups both included about 7% of the total participants (279 and 273 participants, respectively). Diastolic blood pressure and levels of AST, ALT, and LDL-C were significantly higher in the after-lockdown group than in the before-lockdown group. The percentages of participants with alcohol consumption and exercise habits were significantly higher in the after-lockdown group than in the before-lockdown group, and an analysis by gender showed that the differences were significant for women but not for men. Conclusions: The distributions of weight changes before and during the COVID-19 pandemic were similar. Exercise habits and alcohol consumption might have been unique factors causing weight gain during the COVID-19 pandemic, particularly in women. Our findings suggest that the impact of behavioral restrictions and lifestyle changes during a pandemic may be different in men and women. en-copyright= kn-copyright= en-aut-name=NishidaChisa en-aut-sei=Nishida en-aut-mei=Chisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HondaHiroyuki en-aut-sei=Honda en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OtsukaYuki en-aut-sei=Otsuka en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HagiyaHideharu en-aut-sei=Hagiya en-aut-mei=Hideharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakanoYasuhiro en-aut-sei=Nakano en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OguniKohei en-aut-sei=Oguni en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TokumasuKazuki en-aut-sei=Tokumasu en-aut-mei=Kazuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SakuradaYasue en-aut-sei=Sakurada en-aut-mei=Yasue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ObikaMikako en-aut-sei=Obika en-aut-mei=Mikako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=COVID-19 pandemic kn-keyword=COVID-19 pandemic en-keyword=lockdown kn-keyword=lockdown en-keyword=weight gain kn-keyword=weight gain en-keyword=medical check-ups kn-keyword=medical check-ups en-keyword=lifestyle kn-keyword=lifestyle END start-ver=1.4 cd-journal=joma no-vol=75 cd-vols= no-issue=2 article-no= start-page=100016 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202507 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Changes in adrenoceptor expression level contribute to the cellular plasticity of glioblastoma cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=Glioblastoma cells are known to regulate their cellular plasticity in response to their surrounding microenvironment, but it is not fully understood what factors contribute to the cells' changing plasticity. Here, we found that glioblastoma cells alter the expression level of adrenoreceptors depending on their differentiation stage. Catecholamines are abundant in the central nervous system, and we found that noradrenaline, in particular, enhances the stemness of glioblastoma cells and promotes the dedifferentiation potential of already differentiated glioblastoma cells. Antagonist and RNAi experiments revealed that signaling through alpha 1D-adrenoreceptor is important for noradrenaline action on glioblastoma cells. We also found that high alpha 1Dadrenoreceptor expression was associated with poor prognosis in patients with gliomas. These data suggest that glioblastoma cells increase the expression level of their own adrenoreceptors to alter the surrounding tumor microenvironment favorably for survival. We believe that our findings will contribute to the development of new therapeutic strategies for glioblastoma. en-copyright= kn-copyright= en-aut-name=AsakaYutaro en-aut-sei=Asaka en-aut-mei=Yutaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MasumotoToshio en-aut-sei=Masumoto en-aut-mei=Toshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UnedaAtsuhito en-aut-sei=Uneda en-aut-mei=Atsuhito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ChinVanessa D. en-aut-sei=Chin en-aut-mei=Vanessa D. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OtaniYusuke en-aut-sei=Otani en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=PenaTirso en-aut-sei=Pena en-aut-mei=Tirso kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KatayamaHaruyoshi en-aut-sei=Katayama en-aut-mei=Haruyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ItanoTakuto en-aut-sei=Itano en-aut-mei=Takuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=AndoTeruhiko en-aut-sei=Ando en-aut-mei=Teruhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HuangRongsheng en-aut-sei=Huang en-aut-mei=Rongsheng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=FujimuraAtsushi en-aut-sei=Fujimura en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Division of Health Administration and Promotion, Department of Social Medicine, Faculty of Medicine, Tottori University kn-affil= affil-num=3 en-affil=Department of Neurosurgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=UMass Chan Medical School, UMass Memorial Medical Center kn-affil= affil-num=5 en-affil=Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School kn-affil= affil-num=6 en-affil=Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School kn-affil= affil-num=7 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Trauma Orthopedics, The Second Hospital of Dalian Medical University kn-affil= affil-num=11 en-affil=Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=Adrenoceptors kn-keyword=Adrenoceptors en-keyword=Glioma stem-like cells kn-keyword=Glioma stem-like cells en-keyword=Differentiated glioma cells kn-keyword=Differentiated glioma cells en-keyword=Noradrenaline kn-keyword=Noradrenaline en-keyword=Cellular plasticity kn-keyword=Cellular plasticity END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250403 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The association between objectively measured physical activity and home blood pressure: a population-based real-world data analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Few studies have examined the association of objectively measured habitual physical activity (PA) and sedentary behavior with out-of-office blood pressure (BP). We investigated the associations of objectively measured PA intensity time, sedentary time, and step count with at-home BP. Using accelerometer-recorded PA indices and self-measured BP in 368 participants (mean age, 53.8 years; 58.7% women), we analyzed 115,575 records of each parameter between May 2019 and April 2024. PA intensities were categorized as light (2.0?2.9 metabolic equivalents [METs]); moderate (3.0?5.9 METs); vigorous (?6.0 METs), or sedentary (<2.0 METs): the median [interquartile ranges] for these variables was 188 [146?232], 83 [59?114], 1 [0?2], 501 [428?579] minutes, respectively, and for step count, was 6040 [4164?8457]. Means [standard deviations] for systolic and diastolic BP were 116.4 [14.2] and 75.2 [9.3] mmHg, respectively. A mixed-effect model adjusted for possible confounders showed that 1-h longer in vigorous PA was associated with lower systolic and diastolic BP (?1.69 and ?1.09?mmHg, respectively). A 1000-step increase in step count was associated with lower systolic and diastolic BP (?0.05 and ?0.02?mmHg, respectively). Associations were more pronounced among men and participants aged <60 years. Sedentary time was positively associated with BP in men and participants aged <60 years, but inversely associated with BP in women and participants aged ?60 years. Our findings suggest that more PA and less sedentary behavior were associated with BP reduction, particularly among men and participants aged <60 years. However, the clinical relevance of this effect remains uncertain because of its modest magnitude. en-copyright= kn-copyright= en-aut-name=KinutaMinako en-aut-sei=Kinuta en-aut-mei=Minako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HisamatsuTakashi en-aut-sei=Hisamatsu en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TaniguchiKaori en-aut-sei=Taniguchi en-aut-mei=Kaori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FukudaMari en-aut-sei=Fukuda en-aut-mei=Mari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakahataNoriko en-aut-sei=Nakahata en-aut-mei=Noriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KandaHideyuki en-aut-sei=Kanda en-aut-mei=Hideyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Environmental Medicine and Public Health, Izumo, Shimane University Faculty of Medicine kn-affil= affil-num=4 en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Health and Nutrition, The University of Shimane Faculty of Nursing and Nutrition kn-affil= affil-num=6 en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=213 cd-vols= no-issue= article-no= start-page=128 end-page=137 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202504 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The potential mechanism maintaining transactive response DNA binding protein 43?kDa in the mouse stroke model en-subtitle= kn-subtitle= en-abstract= kn-abstract=The disruption of transactive response DNA binding protein 43?kDa (TDP-43) shuttling leads to the depletion of nuclear localization and the cytoplasmic accumulation of TDP-43. We aimed to evaluate the mechanism underlying the behavior of TDP-43 in ischemic stroke. Adult male C57BL/6?J mice were subjected to 30 or 60?min of transient middle cerebral artery occlusion (tMCAO), and examined at 1, 6, and 24?h post reperfusion. Immunostaining was used to evaluate the expression of TDP-43, G3BP1, HDAC6, and RAD23B. The total and cytoplasmic number of TDP-43?positive cells increased compared with sham operation group and peaked at 6?h post reperfusion after tMCAO. The elevated expression of G3BP1 protein peaked at 6?h after reperfusion and decreased at 24?h after reperfusion in ischemic mice brains. We also observed an increase of expression level of HDAC6 and the number of RAD23B-positive cells increased after tMCAO. RAD23B was colocalized with TDP-43 24?h after tMCAO. We proposed that the formation of stress granules might be involved in the mislocalization of TDP-43, based on an evaluation of G3BP1 and HDAC6. Subsequently, RAD23B, may also contribute to the downstream degradation of mislocalized TDP-43 in mice tMCAO model. en-copyright= kn-copyright= en-aut-name=BianYuting en-aut-sei=Bian en-aut-mei=Yuting kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FukuiYusuke en-aut-sei=Fukui en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Ota-ElliottRicardo Satoshi en-aut-sei=Ota-Elliott en-aut-mei=Ricardo Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HuXinran en-aut-sei=Hu en-aut-mei=Xinran kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SunHongming en-aut-sei=Sun en-aut-mei=Hongming kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=BianZhihong en-aut-sei=Bian en-aut-mei=Zhihong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ZhaiYun en-aut-sei=Zhai en-aut-mei=Yun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YuHaibo en-aut-sei=Yu en-aut-mei=Haibo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HuXiao en-aut-sei=Hu en-aut-mei=Xiao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=AnHangping en-aut-sei=An en-aut-mei=Hangping kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=LiuHongzhi en-aut-sei=Liu en-aut-mei=Hongzhi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MoriharaRyuta en-aut-sei=Morihara en-aut-mei=Ryuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=IshiuraHiroyuki en-aut-sei=Ishiura en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=YamashitaToru en-aut-sei=Yamashita en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=14 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=TDP-43 kn-keyword=TDP-43 en-keyword=ALS kn-keyword=ALS en-keyword=RNA-binding protein kn-keyword=RNA-binding protein en-keyword=Mislocalization kn-keyword=Mislocalization en-keyword=G3BP1 kn-keyword=G3BP1 en-keyword=HDAC6 kn-keyword=HDAC6 en-keyword=RAD23B kn-keyword=RAD23B en-keyword=tMCAO kn-keyword=tMCAO END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=4 article-no= start-page=e82348 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250416 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Bilateral Scleritis and Neutrophilic Dermatosis With Cytogenetic Chromosomal Aberrancy Related to Pyoderma Gangrenosum: A Case Report of a 20-Year Follow-Up en-subtitle= kn-subtitle= en-abstract= kn-abstract=Pyoderma gangrenosum is a non-infectious autoimmune disease with skin plaques and ulcers in the entity of neutrophilic dermatosis and may have a background of myelodysplastic syndromes. This study reported a 20-year follow-up of a patient with pyoderma gangrenosum and scleritis who showed chromosomal aberrancy from the initial phase and later in the course developed thrombocythemia. A 51-year-old man presented with widespread indurated erythematous plaques with scaling and pustules on the forehead, bilateral eyelids, and nasal bridge, in addition to nodular scleritis in the left eye and ulcer formation of the plaques in the lower legs. Skin biopsy revealed massive dermal infiltration mainly with neutrophils in the absence of neutrophilic vasculitis. Suspected of myelodysplastic syndromes, bone marrow biopsy was normal, while chromosomal aberrancy, 46, XY, del (20) (q11q13.3), was detected. In the diagnosis of neutrophilic dermatosis, probably of pyoderma gangrenosum, he began to have oral prednisolone 20 mg daily and colchicine 1 mg daily, leading to the subsidence of skin lesions. Four months later, he developed nodular scleritis in the right eye and began to use topical 0.1% betamethasone in both eyes. He was stable with only prednisolone 12.5 mg daily until the age of 55.5 years, when he showed an increase of serum lactate dehydrogenase. The bone marrow aspirate disclosed neither blast cell increase nor atypical cells. The same chromosomal aberrancy was repeatedly detected. One year later, he developed breathing difficulty and underwent tracheostomy. Laryngeal lesion biopsy disclosed squamous cell papilloma with human papillomavirus-6. At 60 years old, he showed marginal corneal infiltration in the left eye, and at 61 years old, hypopyon in the right eye. Platelets tended to increase up to 1000 ~ 103/?L, and bone marrow examinations were recommended but refused by the patient. At the latest follow-up at 71 years old, he was ambulatory in health and stable with a tracheostomy cannula. In conclusion, pyoderma gangrenosum with scleritis occurred in an undetermined hematological malignancy with chromosomal aberrancy. en-copyright= kn-copyright= en-aut-name=MatsuoToshihiko en-aut-sei=Matsuo en-aut-mei=Toshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TanakaTakehiro en-aut-sei=Tanaka en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AsadaNoboru en-aut-sei=Asada en-aut-mei=Noboru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ObikaMikako en-aut-sei=Obika en-aut-mei=Mikako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OmichiRyotaro en-aut-sei=Omichi en-aut-mei=Ryotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IwatsukiKeiji en-aut-sei=Iwatsuki en-aut-mei=Keiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Ophthalmology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Hematology and Oncology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of General Internal Medicine, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Dermatology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=corneal infiltration kn-keyword=corneal infiltration en-keyword=hypopyon kn-keyword=hypopyon en-keyword=myelodysplastic syndromes kn-keyword=myelodysplastic syndromes en-keyword=neutrophilic dermatosis kn-keyword=neutrophilic dermatosis en-keyword=peripheral keratitis kn-keyword=peripheral keratitis en-keyword=pyoderma gangrenosum kn-keyword=pyoderma gangrenosum en-keyword=scleritis kn-keyword=scleritis en-keyword=sweet syndrome kn-keyword=sweet syndrome END start-ver=1.4 cd-journal=joma no-vol=35 cd-vols= no-issue=1 article-no= start-page=141 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250401 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Primary chest wall sarcoma: advances in surgical management and outcomes en-subtitle= kn-subtitle= en-abstract= kn-abstract=Purpose Although rare, primary chest wall sarcomas are complex malignancies necessitating optimal local control and comprehensive treatment. This study aimed to review 9 years of cases of primary chest wall sarcomas at a single institution, focusing on their histology, surgical management, and prognosis.
Methods A retrospective analysis was performed on 19 patients undergoing chest wall resection for sarcoma from 2012 to 2020. Data on demographics, tumor specifics, resection extent, and adjuvant therapies were collected. Surgical and postoperative outcomes were also assessed.
Results The median patient age was 64 years. Chondrosarcoma was the most common histology. R0 resection was achieved in all patients, with early postoperative complications occurring in 11% of the patients. Robust chest wall reconstruction was performed, resulting in minimal respiratory complications. The 5-year overall survival and disease-free survival rates were 94% and 68%, respectively. Tumor size and patient age were significant prognostic factors for local recurrence.
Conclusion Comprehensive surgical resection, coupled with multidisciplinary preoperative planning, achieves favorable outcomes. Patients aged???70 years and with tumor size???5 cm (P?=?.047) should be carefully followed up for local recurrence. en-copyright= kn-copyright= en-aut-name=TanakaShin en-aut-sei=Tanaka en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakataEiji en-aut-sei=Nakata en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=RyukoTsuyoshi en-aut-sei=Ryuko en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ItanoTakuto en-aut-sei=Itano en-aut-mei=Takuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TomiokaYasuaki en-aut-sei=Tomioka en-aut-mei=Yasuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShienKazuhiko en-aut-sei=Shien en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SuzawaKen en-aut-sei=Suzawa en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MiyoshiKentaroh en-aut-sei=Miyoshi en-aut-mei=Kentaroh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OkazakiMikio en-aut-sei=Okazaki en-aut-mei=Mikio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SugimotoSeiichiro en-aut-sei=Sugimoto en-aut-mei=Seiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OzakiToshifumi en-aut-sei=Ozaki en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil= kn-affil= affil-num=3 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Orthopedic Surgery, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Orthopedic Surgery, Okayama University Hospital kn-affil= affil-num=12 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Primary chest wall sarcomas kn-keyword=Primary chest wall sarcomas en-keyword=Chest wall resection kn-keyword=Chest wall resection en-keyword=Chondrosarcoma kn-keyword=Chondrosarcoma en-keyword=Robust chest wall reconstruction kn-keyword=Robust chest wall reconstruction END start-ver=1.4 cd-journal=joma no-vol=2024 cd-vols= no-issue=12 article-no= start-page=135 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241217 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Elliptic virtual structure constants and generalizations of BCOV-Zinger formula to projective Fano hypersurfaces en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this paper, we propose a method for computing genus 1 Gromov-Witten invariants of Calabi-Yau and Fano projective hypersurfaces using the B-model. Our formalism is applicable to both Calabi-Yau and Fano cases. In the Calabi-Yau case, significant cancellation of terms within our formalism occurs, resulting in an alternative representation of the BCOV-Zinger formula for projective Calabi-Yau hypersurfaces. en-copyright= kn-copyright= en-aut-name=JinzenjiMasao en-aut-sei=Jinzenji en-aut-mei=Masao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KuwataKen en-aut-sei=Kuwata en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Mathematics, Okayama University kn-affil= affil-num=2 en-affil=Department of General Education, National Institute of Technology, Kagawa College kn-affil= en-keyword=Nonperturbative Effects kn-keyword=Nonperturbative Effects en-keyword=String Duality kn-keyword=String Duality en-keyword=Topological Field Theories kn-keyword=Topological Field Theories en-keyword=Topological Strings kn-keyword=Topological Strings END start-ver=1.4 cd-journal=joma no-vol=37 cd-vols= no-issue=1 article-no= start-page=16 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250403 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The preoperative flexion tear gap affects postoperative meniscus stability after pullout repair for medial meniscus posterior root tear en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background We investigated whether the preoperative flexion tear gap (FTG) observed in open magnetic resonance imaging (MRI) affects meniscus stability after medial meniscus (MM) posterior root (MMPR) repairs. Furthermore, time-correlated MRI findings from MMPR tear occurrence were evaluated.
Methods This retrospective observational study included 54 patients (mean age, 64.6 years; 13 males and 41 females) who underwent pullout repair for radial degenerative MMPR tear. Meniscus stability (scored 0-4 points) was assessed using a semi-quantitative arthroscopic scoring system during second-look arthroscopy 1 year postoperatively. The FTG was evaluated on preoperative axial MRI at 90 degrees knee flexion. Other MRI measurements included MM extrusion (MME) at 10 degrees knee flexion, MM posterior extrusion (MMPE) at 90 degrees knee flexion, and MM posteromedial extrusion (MMpmE) at 90 degrees knee flexion preoperatively and 1 year postoperatively. The correlation between the arthroscopic stability score and MRI findings was investigated. A receiver-operating characteristic curve was calculated to predict a good meniscus healing score (3-4 points). The correlation between the FTG and patient demographics, including time from injury to MRI, was analyzed.
Results At 1 year postoperatively, MME increased by 1.1 mm, while MMpmE and MMPE decreased by 0.4 mm and 1.0 mm, respectively. The meniscus stability score was negatively correlated with the preoperative FTG (r = -0.61, p < 0.01). The time from injury to MRI was significantly correlated with the preoperative FTG. The receiver-operating characteristic curve identified an FTG cut-off value of 8.7 mm for predicting good postoperative stability, with sensitivity and specificity of 67% and 85%, respectively.
Conclusions FTG evaluated with open MRI at 90 degrees knee flexion was associated with time from injury and affected meniscus stability following pullout repair. MMPR tears should be treated in the early phase to increase meniscus healing stability. en-copyright= kn-copyright= en-aut-name=TamuraMasanori en-aut-sei=Tamura en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FurumatsuTakayuki en-aut-sei=Furumatsu en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KitayamaTakahiro en-aut-sei=Kitayama en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YokoyamaYusuke en-aut-sei=Yokoyama en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OkazakiYuki en-aut-sei=Okazaki en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KawadaKoki en-aut-sei=Kawada en-aut-mei=Koki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OzakiToshifumi en-aut-sei=Ozaki en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=Medial meniscus kn-keyword=Medial meniscus en-keyword=Posterior root tear kn-keyword=Posterior root tear en-keyword=Distance kn-keyword=Distance en-keyword=Pullout repair kn-keyword=Pullout repair en-keyword=Second-look arthroscopy kn-keyword=Second-look arthroscopy END start-ver=1.4 cd-journal=joma no-vol=20 cd-vols= no-issue=3 article-no= start-page=e0320482 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Serum uric acid level is associated with renal arteriolar hyalinosis and predicts post-donation renal function in living kidney donors en-subtitle= kn-subtitle= en-abstract= kn-abstract=Major guidelines for living-donor kidney transplantation underscore the need for pre-donation evaluation of renal function, hypertension, obesity, diabetes mellitus, and albuminuria to minimize the risk of donation from marginal donors. However, validity is yet to be established. We retrospectively investigated the relationship between clinical characteristics and histological indices in baseline renal biopsies (0-h biopsies) and whether these parameters could predict renal function in living kidney donors one year post-donation. Seventy-six living kidney donors were recruited for this study. In histological analyses, glomerulosclerosis, arteriosclerosis, arteriolosclerosis, arteriolar hyalinosis, and interstitial fibrosis and tubular atrophy scores/indices were evaluated. Post-donation serum creatinine levels in kidney donors with arteriolar hyalinosis were significantly higher than those in individuals without arteriolar hyalinosis. There was a significant correlation between baseline serum uric acid levels and the arteriolar hyalinosis index, with baseline uric acid level identified as an independent factor for hyalinosis in multiple regression analysis. Additionally, the serum uric acid level was a significant prognostic factor for post-donation serum creatinine after adjustment for baseline clinical parameters. These data demonstrate that pre-donation serum uric acid levels are associated with arteriolar hyalinosis in the kidney and could predict a decline in renal function during the first year after donation in living kidney donors. en-copyright= kn-copyright= en-aut-name=KanoYuzuki en-aut-sei=Kano en-aut-mei=Yuzuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TanabeKatsuyuki en-aut-sei=Tanabe en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KitagawaMasashi en-aut-sei=Kitagawa en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SugiyamaHitoshi en-aut-sei=Sugiyama en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamanoiTomoaki en-aut-sei=Yamanoi en-aut-mei=Tomoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YoshinagaKasumi en-aut-sei=Yoshinaga en-aut-mei=Kasumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=BekkuKensuke en-aut-sei=Bekku en-aut-mei=Kensuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NishimuraShingo en-aut-sei=Nishimura en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ArakiMotoo en-aut-sei=Araki en-aut-mei=Motoo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Medicine, Kawasaki Medical School General Medical Center and Department of Medical Care Work, Kawasaki College of Health Professions kn-affil= affil-num=5 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=4 article-no= start-page=e70139 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250402 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Induction Therapy With Oral Tacrolimus Provides Long-Term Benefit in Thiopurine-Na?ve Refractory Ulcerative Colitis Patients Despite Low Serum Albumin Levels en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background and Aim: Oral tacrolimus is an effective treatment for refractory ulcerative colitis (UC). However, tacrolimus is underutilized because of the difficulties in transitioning to subsequent maintenance therapy and concerns about adverse events.
Methods: We evaluated the clinical outcomes, adverse events, and accumulated medication costs in consecutive 72 UC patients treated with tacrolimus.
Results: Fifty-five (76%) patients with pancolitis and 43 (60%) patients with acute severe disease were entered. Fifty-four (75%) achieved clinical remission 8 weeks after starting tacrolimus. At the last visit, 62 (86%) patients had colectomy-free remission, and 55 (76%) patients had corticosteroid-free remission. Eighteen (25%) patients maintained remission without additional treatment after tacrolimus discontinuation. Patients with continuous remission had a significantly lower history of thiopurine use and lower serum albumin levels at the induction of tacrolimus than patients with failure to induce or maintain remission. No severe adverse events due to tacrolimus treatment were observed. The accumulated medication costs over 3 years in patients with continuous remission after the start of tacrolimus were lower than those in patients with induction and maintenance of infliximab (p < 0.001).
Conclusions: Tacrolimus could have an irreplaceable role in the era of biologic therapies, especially for refractory UC patients with thiopurine-na & iuml;ve and low serum albumin levels. en-copyright= kn-copyright= en-aut-name=IgawaShoko en-aut-sei=Igawa en-aut-mei=Shoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=InokuchiToshihiro en-aut-sei=Inokuchi en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HiraokaSakiko en-aut-sei=Hiraoka en-aut-mei=Sakiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ToyosawaJunki en-aut-sei=Toyosawa en-aut-mei=Junki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AoyamaYuki en-aut-sei=Aoyama en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamasakiYasushi en-aut-sei=Yamasaki en-aut-mei=Yasushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KinugasaHideaki en-aut-sei=Kinugasa en-aut-mei=Hideaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakaharaMasahiro en-aut-sei=Takahara en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OkadaHiroyuki en-aut-sei=Okada en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OtsukaMotoyuki en-aut-sei=Otsuka en-aut-mei=Motoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=biologics therapy kn-keyword=biologics therapy en-keyword=tacrolimus kn-keyword=tacrolimus en-keyword=thiopurine kn-keyword=thiopurine en-keyword=ulcerative colitis kn-keyword=ulcerative colitis END start-ver=1.4 cd-journal=joma no-vol=50 cd-vols= no-issue=1 article-no= start-page=100 end-page=107 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Investigating the Effects of Reconstruction Conditions on Image Quality and Radiomic Analysis in Photon-counting Computed Tomography en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction:Photon-counting computed tomography (CT) is equipped with an adaptive iterative reconstruction method called quantum iterative reconstruction (QIR), which allows the intensity to be changed during image reconstruction. It is known that the reconstruction conditions of CT images affect the analysis results when performing radiomic analysis. The aim of this study is to investigate the effect of QIR intensity on image quality and radiomic analysis of renal cell carcinoma (RCC).
Materials and Methods:The QIR intensities were selected as off, 2 and 4. The image quality evaluation items considered were task-based transfer function (TTF), noise power spectrum (NPS), and low-contrast object specific contrast-to-noise ratio (CNRLO). The influence on radiomic analysis was assessed using the discrimination accuracy of clear cell RCC.
Results:For image quality evaluation, TTF and NPS values were lower and CNRLO values were higher with increasing QIR intensity; for radiomic analysis, sensitivity, specificity, and accuracy were higher with increasing QIR intensity. Principal component analysis and receiver operating characteristics analysis also showed higher values with increasing QIR intensity.
Conclusion:It was confirmed that the intensity of the QIR intensity affects both the image quality and the radiomic analysis. en-copyright= kn-copyright= en-aut-name=OhataMiyu en-aut-sei=Ohata en-aut-mei=Miyu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FukuiRyohei en-aut-sei=Fukui en-aut-mei=Ryohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MorimitsuYusuke en-aut-sei=Morimitsu en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KobayashiDaichi en-aut-sei=Kobayashi en-aut-mei=Daichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamauchiTakatsugu en-aut-sei=Yamauchi en-aut-mei=Takatsugu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AkagiNoriaki en-aut-sei=Akagi en-aut-mei=Noriaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HondaMitsugi en-aut-sei=Honda en-aut-mei=Mitsugi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HayashiAiko en-aut-sei=Hayashi en-aut-mei=Aiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HasegawaKoshi en-aut-sei=Hasegawa en-aut-mei=Koshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KidaKatsuhiro en-aut-sei=Kida en-aut-mei=Katsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=GotoSachiko en-aut-sei=Goto en-aut-mei=Sachiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=HirakiTakao en-aut-sei=Hiraki en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University kn-affil= affil-num=3 en-affil=Division of Radiological Technology, Okayama University Hospital kn-affil= affil-num=4 en-affil=Division of Radiological Technology, Okayama University Hospital kn-affil= affil-num=5 en-affil=Division of Radiological Technology, Okayama University Hospital kn-affil= affil-num=6 en-affil=Division of Radiological Technology, Okayama University Hospital kn-affil= affil-num=7 en-affil=Division of Radiological Technology, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Radiology, Hiroshima University Hospital kn-affil= affil-num=9 en-affil=Department of Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical, Okayama University kn-affil= en-keyword=Image quality kn-keyword=Image quality en-keyword=photon-counting computed tomography kn-keyword=photon-counting computed tomography en-keyword=quantum iterative reconstruction kn-keyword=quantum iterative reconstruction en-keyword=radiomics kn-keyword=radiomics en-keyword=renal cell carcinoma kn-keyword=renal cell carcinoma END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=10462 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250326 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Gingipain regulates isoform switches of PD-L1 in macrophages infected with Porphyromonas gingivalis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Periodontal pathogen Porphyromonas gingivalis (P. gingivalis) is believed to possess immune evasion capabilities, but it remains unclear whether this immune evasion is related to host gene alternative splicing (AS). In this study, RNA-sequencing revealed significant changes in both AS landscape and transcriptomic profile of macrophages following P. gingivalis infection with/without knockout of gingipain (a unique toxic protease of P. gingivalis). P. gingivalis infection increased the PD-L1 transcripts expression and selectively upregulated a specific coding isoform that more effectively binds to PD-1 on T cells, thereby inhibiting immune function. Biological experiments also detected AS switch of PD-L1 in P. gingivalis-infected or gingipain-treated macrophages. AlphaFold 3 predictions indicated that the protein docking compatibility between PD-1 and P. gingivalis-upregulated PD-L1 isoform was over 80% higher than another coding isoform. These findings suggest that P. gingivalis employs gingipain to modulate the AS of PD-L1, facilitating immune evasion. en-copyright= kn-copyright= en-aut-name=ZhengYilin en-aut-sei=Zheng en-aut-mei=Yilin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WangZiyi en-aut-sei=Wang en-aut-mei=Ziyi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WengYao en-aut-sei=Weng en-aut-mei=Yao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SitosariHeriati en-aut-sei=Sitosari en-aut-mei=Heriati kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HeYuhan en-aut-sei=He en-aut-mei=Yuhan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ZhangXiu en-aut-sei=Zhang en-aut-mei=Xiu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ShiotsuNoriko en-aut-sei=Shiotsu en-aut-mei=Noriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=FukuharaYoko en-aut-sei=Fukuhara en-aut-mei=Yoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IkegameMika en-aut-sei=Ikegame en-aut-mei=Mika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OkamuraHirohiko en-aut-sei=Okamura en-aut-mei=Hirohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Hospital, Okayama University kn-affil= affil-num=2 en-affil=Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Hospital, Okayama University kn-affil= affil-num=4 en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Hospital, Okayama University kn-affil= affil-num=5 en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Hospital, Okayama University kn-affil= affil-num=6 en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Hospital, Okayama University kn-affil= affil-num=7 en-affil=Comprehensive Dental Clinic, Okayama University Hospital, Okayama University kn-affil= affil-num=8 en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Hospital, Okayama University kn-affil= affil-num=9 en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Hospital, Okayama University kn-affil= affil-num=10 en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Hospital, Okayama University kn-affil= en-keyword=Porphyromonas gingivalis kn-keyword=Porphyromonas gingivalis en-keyword=Gingipain kn-keyword=Gingipain en-keyword=Macrophage kn-keyword=Macrophage en-keyword=Alternative splicing kn-keyword=Alternative splicing en-keyword=PD-L1 kn-keyword=PD-L1 en-keyword=Immune evasion kn-keyword=Immune evasion END start-ver=1.4 cd-journal=joma no-vol=18 cd-vols= no-issue=3 article-no= start-page=143 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250304 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Hair Drawing Evaluation Algorithm for Exactness Assessment Method in Portrait Drawing Learning Assistant System en-subtitle= kn-subtitle= en-abstract= kn-abstract=Nowadays, portrait drawing has become increasingly popular as a means of developing artistic skills and nurturing emotional expression. However, it is challenging for novices to start learning it, as they usually lack a solid grasp of proportions and structural foundations of the five senses. To address this problem, we have studied Portrait Drawing Learning Assistant System (PDLAS) for guiding novices by providing auxiliary lines of facial features, generated by utilizing OpenPose and OpenCV libraries. For PDLAS, we have also presented the exactness assessment method to evaluate drawing accuracy using the Normalized Cross-Correlation (NCC) algorithm. It calculates the similarity score between the drawing result and the initial portrait photo. Unfortunately, the current method does not assess the hair drawing, although it occupies a large part of a portrait and often determines its quality. In this paper, we present a hair drawing evaluation algorithm for the exactness assessment method to offer comprehensive feedback to users in PDLAS. To emphasize hair lines, this algorithm extracts the texture of the hair region by computing the eigenvalues and eigenvectors of the hair image. For evaluations, we applied the proposal to drawing results by seven students from Okayama University, Japan and confirmed the validity. In addition, we observed the NCC score improvement in PDLAS by modifying the face parts with low similarity scores from the exactness assessment method. en-copyright= kn-copyright= en-aut-name=ZhangYue en-aut-sei=Zhang en-aut-mei=Yue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FebriantiErita Cicilia en-aut-sei=Febrianti en-aut-mei=Erita Cicilia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SudarsonoAmang en-aut-sei=Sudarsono en-aut-mei=Amang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HsuChenchien en-aut-sei=Hsu en-aut-mei=Chenchien kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=3 en-affil=Department of Electrical Engineering, Politeknik Elektronika Negeri Surabaya kn-affil= affil-num=4 en-affil=Department of Electrical Engineering, Politeknik Elektronika Negeri Surabaya kn-affil= affil-num=5 en-affil=Department of Electrical Engineering, National Taiwan Normal University kn-affil= en-keyword=portrait drawing kn-keyword=portrait drawing en-keyword=auxiliary lines kn-keyword=auxiliary lines en-keyword=OpenPose kn-keyword=OpenPose en-keyword=OpenCV kn-keyword=OpenCV en-keyword=normalized cross-correlation (NCC) kn-keyword=normalized cross-correlation (NCC) en-keyword=hair texture kn-keyword=hair texture en-keyword=exactness assessment method kn-keyword=exactness assessment method END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250317 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Novel Therapeutic Algorism in Patients With Anterior Cutaneous Nerve Entrapment Syndrome en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Anterior cutaneous nerve entrapment syndrome (ACNES) is often overlooked as a cause of chronic abdominal pain. Trigger point injections (TPIs) serve as both a diagnostic and therapeutic tool. Although neurectomy is frequently chosen for patients with severe ACNES, its surgical outcomes remain unclear.
Aim: This study aims to evaluate both the short- and long-term outcomes for neurectomy and propose a novel therapeutic algorithm.
Methods: A cohort of postoperative patients presenting with ACNES between 2016 and 2023 was retrospectively evaluated. Patients received a single diagnostic TPI. When the pain subsided, an anterior neurectomy was performed using either an anterior or laparoscopic approach. Pain scores were assessed using the numeric rating scale (NRS).
Results: Among 37 patients (60% females, mean age 33.8?}?3.4?years), 29 patients (78.4%) experienced pain recurrence following initial neurectomy. Of these, 22 patients underwent repeat neurectomies, resulting in complete remission in 15 patients and no benefit in 7 patients. Long-term outcomes showed that 62.2% achieved clinical remission (NRS?=?0), whereas 8.1% reported reduced but persistent pain (NRS 1?2). Preoperative TPI effectiveness was a strong predictor of surgical success, with patients achieving post-TPI NRS (0?1) significantly more likely to attain remission (p?=?0.0074). Older age was also associated with higher remission rates (p?=?0.0476).
Conclusion: TPI is critical for predicting neurectomy success. These findings support the integration of preoperative TPI evaluation and tailored surgical strategies to optimize outcomes for patients with ACNES. en-copyright= kn-copyright= en-aut-name=KondoYoshitaka en-aut-sei=Kondo en-aut-mei=Yoshitaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KanayaNobuhiko en-aut-sei=Kanaya en-aut-mei=Nobuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KobayashiAmi en-aut-sei=Kobayashi en-aut-mei=Ami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ArakawaKyosuke en-aut-sei=Arakawa en-aut-mei=Kyosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MatsuokaYoshikazu en-aut-sei=Matsuoka en-aut-mei=Yoshikazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MimataYudai en-aut-sei=Mimata en-aut-mei=Yudai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KakiuchiYoshihiko en-aut-sei=Kakiuchi en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShigeyasuKunitoshi en-aut-sei=Shigeyasu en-aut-mei=Kunitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KurodaShinji en-aut-sei=Kuroda en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KagawaShunsuke en-aut-sei=Kagawa en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Neurology, Brigham and Women's Hospital, Harvard Medical School kn-affil= affil-num=4 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine kn-affil= affil-num=5 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=anterior cutaneous nerve entrapment syndrome (ACNES) kn-keyword=anterior cutaneous nerve entrapment syndrome (ACNES) en-keyword=neurectomy kn-keyword=neurectomy en-keyword=trigger point injections (TPIs) kn-keyword=trigger point injections (TPIs) END start-ver=1.4 cd-journal=joma no-vol=33 cd-vols= no-issue=4 article-no= start-page=283 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250315 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Cancer-related alopecia and wig acquisition: how age, sex, and treatment affect patient choices en-subtitle= kn-subtitle= en-abstract= kn-abstract=Purpose This study aimed to explore the prevalence and cost of wig purchases among patients with cancer in Okayama Prefecture, Japan, and examine the relationship between wig purchases and various demographic, social, and clinical factors. The findings aim to provide insights into appearance care and support systems for patients with cancer, particularly wig subsidies.
Methods A survey was conducted between July and August 2023 among 3000 patients with cancer at 13 designated cancer care hospitals in Okayama Prefecture. Data on demographics, cancer treatment status, and wig purchase details were collected. Statistical analyses, including the Mann?Whitney U test, chi-square test, and logistic regression, were performed to identify factors significantly associated with wig purchases.
Results Among the 863 respondents, 31.4% (271 patients) reported purchasing wigs. Factors significantly associated with wig purchase included young age (odds ratio [OR]?=?1.04), female sex (OR?=?1.61), and current cancer treatment (OR?=?1.16). No significant correlation was found between wig purchase and household income, although higher-income patients tended to purchase more expensive wigs.
Conclusion The findings suggest that younger female patients with cancer and those undergoing treatment were more likely to purchase wigs, highlighting the importance of appearance care and the need for enhanced financial support for low-income patients. en-copyright= kn-copyright= en-aut-name=KatayamaHideki en-aut-sei=Katayama en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IchiharaEiki en-aut-sei=Ichihara en-aut-mei=Eiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoritaAyako en-aut-sei=Morita en-aut-mei=Ayako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MakimotoGo en-aut-sei=Makimoto en-aut-mei=Go kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KagawaShunsuke en-aut-sei=Kagawa en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IshiiAyano en-aut-sei=Ishii en-aut-mei=Ayano kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TabataMasahiro en-aut-sei=Tabata en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Palliative and Supportive Care, Okayama University Hospital kn-affil= affil-num=2 en-affil=Center for Clinical Oncology, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Allergy and Respiratory Medicine , Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Allergy and Respiratory Medicine , Okayama University Hospital kn-affil= affil-num=5 en-affil=Center for Clinical Oncology, Okayama University Hospital kn-affil= affil-num=6 en-affil=Integrated Support Center for Patients and Self-Learning , Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Palliative and Supportive Care, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= en-keyword=Cancer kn-keyword=Cancer en-keyword=Alopecia kn-keyword=Alopecia en-keyword=Wig purchases kn-keyword=Wig purchases en-keyword=Appearance care kn-keyword=Appearance care en-keyword=Patient support kn-keyword=Patient support END start-ver=1.4 cd-journal=joma no-vol=26 cd-vols= no-issue=6 article-no= start-page=2485 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250311 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Vesicular Glutamate Transporter 3 Is Involved in Glutamatergic Signalling in Podocytes en-subtitle= kn-subtitle= en-abstract= kn-abstract=Glomerular podocytes act as a part of the filtration barrier in the kidney. The activity of this filter is regulated by ionotropic and metabotropic glutamate receptors. Adjacent podocytes can potentially release glutamate into the intercellular space; however, little is known about how podocytes release glutamate. Here, we demonstrated vesicular glutamate transporter 3 (VGLUT3)-dependent glutamate release from podocytes. Immunofluorescence analysis revealed that rat glomerular podocytes and an immortal mouse podocyte cell line (MPC) express VGLUT1 and VGLUT3. Consistent with this finding, quantitative RT-PCR revealed the expression of VGLUT1 and VGLUT3 mRNA in undifferentiated and differentiated MPCs. In addition, the exocytotic proteins vesicle-associated membrane protein 2, synapsin 1, and synaptophysin 1 were present in punctate patterns and colocalized with VGLUT3 in MPCs. Interestingly, approximately 30% of VGLUT3 colocalized with VGLUT1. By immunoelectron microscopy, VGLUT3 was often observed around clear vesicle-like structures in differentiated MPCs. Differentiated MPCs released glutamate following depolarization with high potassium levels and after stimulation with the muscarinic agonist pilocarpine. The depletion of VGLUT3 in MPCs by RNA interference reduced depolarization-dependent glutamate release. These results strongly suggest that VGLUT3 is involved in glutamatergic signalling in podocytes and may be a new drug target for various kidney diseases. en-copyright= kn-copyright= en-aut-name=NishiiNaoko en-aut-sei=Nishii en-aut-mei=Naoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawaiTomoko en-aut-sei=Kawai en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YasuokaHiroki en-aut-sei=Yasuoka en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AbeTadashi en-aut-sei=Abe en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TatsumiNanami en-aut-sei=Tatsumi en-aut-mei=Nanami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HaradaYuika en-aut-sei=Harada en-aut-mei=Yuika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MiyajiTakaaki en-aut-sei=Miyaji en-aut-mei=Takaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=LiShunai en-aut-sei=Li en-aut-mei=Shunai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TsukanoMoemi en-aut-sei=Tsukano en-aut-mei=Moemi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=WatanabeMasami en-aut-sei=Watanabe en-aut-mei=Masami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OgawaDaisuke en-aut-sei=Ogawa en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TakeiKohji en-aut-sei=Takei en-aut-mei=Kohji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=YamadaHiroshi en-aut-sei=Yamada en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cell Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Genomics and Proteomics, Advanced Science Research Center, Okayama University kn-affil= affil-num=7 en-affil=Department of Genomics and Proteomics, Advanced Science Research Center, Okayama University kn-affil= affil-num=8 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=9 en-affil=Central Research Laboratory, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=11 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=VGLUT3 kn-keyword=VGLUT3 en-keyword=glutamate kn-keyword=glutamate en-keyword=podocyte kn-keyword=podocyte en-keyword=glutamatergic transmission kn-keyword=glutamatergic transmission END start-ver=1.4 cd-journal=joma no-vol=6 cd-vols= no-issue= article-no= start-page=1547222 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250311 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Interleukin-6/soluble IL-6 receptor-induced secretion of cathepsin B and L from human gingival fibroblasts is regulated by caveolin-1 and ERK1/2 pathways en-subtitle= kn-subtitle= en-abstract= kn-abstract=Aims: Cathepsins are essential lysosomal enzymes that maintain organismal homeostasis by degrading extracellular substrates. The inflammatory cytokine interleukin-6 (IL-6) increases the production of cathepsins through the caveolin-1 (Cav-1) and c-Jun N-terminal kinase (JNK) signaling pathways, which have been implicated in the destruction of periodontal tissue. This study investigated the effect of the IL-6/soluble IL-6 receptor (sIL-6R) complex on the extracellular secretion of cathepsins in human gingival fibroblasts (HGFs) and examined the function of extracellularly secreted cathepsins B and L under acidic culture conditions in vitro.
Methods: HGFs were isolated from healthy volunteer donors. The expression of Cav-1 was suppressed via transfection with small interfering RNA (siRNA) targeting Cav-1. The expression levels of cathepsins B and L induced by extracellular IL-6/sIL-6R were measured using western blotting and enzyme-linked immunosorbent assay. Extracellular cathepsin activity following IL-6/sIL-6R stimulation was assessed using a methylcoumarylamide substrate in a fluorescence-based assay. IL-6/sIL-6R-induced expression of cathepsins B and L in HGFs was quantified under inhibitory conditions for extracellular signal-regulated kinase (ERK) 1/2 and/or JNK signaling, both of which are transduction pathways activated by IL-6/sIL-6R. This quantification was also performed in HGFs with suppressed Cav-1 expression using western blotting.
Results: Cathepsins B and L were secreted in their precursor forms from HGFs, with significantly elevated protein levels observed at 24, 48, and 72 h post-IL-6/sIL-6R stimulation. Under acidic culture conditions, cathepsin B activity increased at 48 and 72 h. Cav-1 suppression inhibited the secretion of cathepsin B regardless of IL-6/sIL-6R stimulation, whereas the secretion of cathepsin L was reduced only after 48 h of IL-6/sIL-6R stimulation. Inhibition of ERK1/2 and JNK pathways decreased the secretion of cathepsin B after 48 h of IL-6/sIL-6R stimulation, and JNK inhibition reduced the secretion of cathepsin L under similar conditions.
Conclusion: IL-6/sIL-6R stimulation increased the extracellular secretion of cathepsin B and L precursors in HGFs, and these precursors became activated under acidic conditions. Cav-1 and ERK1/2 are involved in regulating the secretion of cathepsin B precursors. en-copyright= kn-copyright= en-aut-name=GotoAyaka en-aut-sei=Goto en-aut-mei=Ayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OmoriKazuhiro en-aut-sei=Omori en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Yamaguchi-TomikawaTomoko en-aut-sei=Yamaguchi-Tomikawa en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KobayashiHiroya en-aut-sei=Kobayashi en-aut-mei=Hiroya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=Shinoda-ItoYuki en-aut-sei=Shinoda-Ito en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HiraiKimito en-aut-sei=Hirai en-aut-mei=Kimito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IkedaAtsushi en-aut-sei=Ikeda en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakashibaShogo en-aut-sei=Takashiba en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Periodontics & Endodontics, Division of Dentistry, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=cathepsin B kn-keyword=cathepsin B en-keyword=cathepsin L kn-keyword=cathepsin L en-keyword=human gingival fibroblast kn-keyword=human gingival fibroblast en-keyword=interleukin-6 kn-keyword=interleukin-6 en-keyword=caveolin kn-keyword=caveolin END start-ver=1.4 cd-journal=joma no-vol=301 cd-vols= no-issue=4 article-no= start-page=108334 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202504 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Roles of basic amino acid residues in substrate binding and transport of the light-driven anion pump Synechocystis halorhodopsin (SyHR) en-subtitle= kn-subtitle= en-abstract= kn-abstract=Microbial rhodopsins are photoreceptive seventransmembrane a-helical proteins, many of which function as ion transporters, primarily for small monovalent ions such as Na+, K+, Cl-, Br-, and I-. Synechocystis halorhodopsin (SyHR), identified from the cyanobacterium Synechocystis sp. PCC 7509, uniquely transports the polyatomic divalent SO42- inward, in addition to monovalent anions (Cl- and Br-). In this study, we conducted alanine-scanning mutagenesis on twelve basic amino acid residues to investigate the anion transport mechanism of SyHR. We quantitatively evaluated the Cl-and SO42- transport activities of the WT SyHR and its mutants. The results showed a strong correlation between the Cl-and SO42- transport activities among them (R = 0.94), suggesting a shared pathway for both anions. Notably, the R71A mutation selectively abolished SO42- transport activity while maintaining Cl- transport, whereas the H167A mutation significantly impaired both Cl-and SO42- transport. Furthermore, spectroscopic analysis revealed that the R71A mutant lost its ability to bind SO42- due to the absence of a positive charge, while the H167A mutant failed to accumulate the O intermediate during the photoreaction cycle (photocycle) due to reduced hydrophilicity. Additionally, computational analysis revealed the SO42- binding modes and clarified the roles of residues involved in its binding around the retinal chromophore. Based on these findings and previous structural information, we propose that the positive charge and hydrophilicity of Arg71 and His167 are crucial for the formation of the characteristic initial and transient anion-binding site of SyHR, enabling its unique ability to bind and transport both Cl-and SO42-. en-copyright= kn-copyright= en-aut-name=NakamaMasaki en-aut-sei=Nakama en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NojiTomoyasu en-aut-sei=Noji en-aut-mei=Tomoyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KojimaKeiichi en-aut-sei=Kojima en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YoshizawaSusumu en-aut-sei=Yoshizawa en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IshikitaHiroshi en-aut-sei=Ishikita en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SudoYuki en-aut-sei=Sudo en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Applied Chemistry, The University of Tokyo kn-affil= affil-num=3 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Atmosphere and Ocean Research Institute, The University of Tokyo kn-affil= affil-num=5 en-affil=Department of Applied Chemistry, The University of Tokyo kn-affil= affil-num=6 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=microbial rhodopsin kn-keyword=microbial rhodopsin en-keyword=anion transport kn-keyword=anion transport en-keyword=retinal kn-keyword=retinal en-keyword=membrane protein kn-keyword=membrane protein en-keyword=photobiology kn-keyword=photobiology END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=3 article-no= start-page=124 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250311 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Facial Privacy Protection with Dynamic Multi-User Access Control for Online Photo Platforms en-subtitle= kn-subtitle= en-abstract= kn-abstract=In the digital age, sharing moments through photos has become a daily habit. However, every face captured in these photos is vulnerable to unauthorized identification and potential misuse through AI-powered synthetic content generation. Previously, we introduced SnapSafe, a secure system for enabling selective image privacy focusing on facial regions for single-party scenarios. Recognizing that group photos with multiple subjects are a more common scenario, we extend SnapSafe to support multi-user facial privacy protection with dynamic access control designed for online photo platforms. Our approach introduces key splitting for access control, an owner-centric permission system for granting and revoking access to facial regions, and a request-based mechanism allowing subjects to initiate access permissions. These features ensure that facial regions remain protected while maintaining the visibility of non-facial content for general viewing. To ensure reproducibility and isolation, we implemented our solution using Docker containers. Our experimental assessment covered diverse scenarios, categorized as "Single", "Small", "Medium", and "Large", based on the number of faces in the photos. The results demonstrate the system's effectiveness across all test scenarios, consistently performing face encryption operations in under 350 ms and achieving average face decryption times below 286 ms across various group sizes. The key-splitting operations maintained a 100% success rate across all group configurations, while revocation operations were executed efficiently with server processing times remaining under 16 ms. These results validate the system's capability in managing facial privacy while maintaining practical usability in online photo sharing contexts. en-copyright= kn-copyright= en-aut-name=SantosoAndri en-aut-sei=Santoso en-aut-mei=Andri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HudaSamsul en-aut-sei=Huda en-aut-mei=Samsul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KoderaYuta en-aut-sei=Kodera en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NogamiYasuyuki en-aut-sei=Nogami en-aut-mei=Yasuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Green Innovation Center, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=facial privacy protection kn-keyword=facial privacy protection en-keyword=selective facial encryption kn-keyword=selective facial encryption en-keyword=multi-user access control kn-keyword=multi-user access control en-keyword=deep-learning applications kn-keyword=deep-learning applications en-keyword=online photo platform kn-keyword=online photo platform END start-ver=1.4 cd-journal=joma no-vol=26 cd-vols= no-issue=6 article-no= start-page=2713 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250318 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Involvement of a Novel Variant of FGFR1 Detected in an Adult Patient with Kallmann Syndrome in Regulation of Gonadal Steroidogenesis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Fibroblast growth factor receptor 1 (FGFR1), also known as KAL2, is a tyrosine kinase receptor, and variants of FGFR1 have been detected in patients with Kallmann syndrome (KS), which is a congenital developmental disorder characterized by central hypogonadism and anosmia. Herein, we report an adult case of KS with a novel variant of FGFR1. A middle-aged male was referred for a compression fracture of a lumbar vertebra. It was shown that he had severe osteoporosis, anosmia, gynecomastia, and a past history of operations for cryptorchidism. Endocrine workup using pituitary and gonadal stimulation tests revealed the presence of both primary and central hypogonadism. Genetic testing revealed a novel variant of FGFR1 (c.2197_2199dup, p.Met733dup). To identify the pathogenicity of the novel variant and the clinical significance for the gonads, we investigated the effects of the FGFR1 variant on the downstream signaling of FGFR1 and gonadal steroidogenesis by using human steroidogenic granulosa cells. It was revealed that the transfection of the variant gene significantly impaired FGFR1 signaling, detected through the downregulation of SPRY2, compared with that of the case of the forced expression of wild-type FGFR1, and that the existence of the variant gene apparently altered the expression of key steroidogenic factors, including StAR and aromatase, in the gonad. The results suggested that the novel variant of FGFR1 detected in the patient with KS was linked to the impairment of FGFR1 signaling, as well as the alteration of gonadal steroidogenesis, leading to the pathogenesis of latent primary hypogonadism. en-copyright= kn-copyright= en-aut-name=SoejimaYoshiaki en-aut-sei=Soejima en-aut-mei=Yoshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OtsukaYuki en-aut-sei=Otsuka en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KawaguchiMarina en-aut-sei=Kawaguchi en-aut-mei=Marina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OguniKohei en-aut-sei=Oguni en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamamotoKoichiro en-aut-sei=Yamamoto en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakanoYasuhiro en-aut-sei=Nakano en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YasudaMiho en-aut-sei=Yasuda en-aut-mei=Miho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TokumasuKazuki en-aut-sei=Tokumasu en-aut-mei=Kazuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=UedaKeigo en-aut-sei=Ueda en-aut-mei=Keigo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HasegawaKosei en-aut-sei=Hasegawa en-aut-mei=Kosei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=IwataNahoko en-aut-sei=Iwata en-aut-mei=Nahoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= affil-num=11 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=fibroblast growth factor receptor 1 (FGFR1) kn-keyword=fibroblast growth factor receptor 1 (FGFR1) en-keyword=gynecomastia kn-keyword=gynecomastia en-keyword=Kallmann syndrome (KS) kn-keyword=Kallmann syndrome (KS) en-keyword=osteoporosis and steroidogenesis kn-keyword=osteoporosis and steroidogenesis END start-ver=1.4 cd-journal=joma no-vol=21 cd-vols= no-issue= article-no= start-page=670 end-page=679 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250324 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Photochemically assisted synthesis of phenacenes fluorinated at the terminal benzene rings and their electronic spectra en-subtitle= kn-subtitle= en-abstract= kn-abstract=[n]Phenacenes ([n] = 5-7), octafluorinated at the terminal benzene rings (F8-phenacenes: F8PIC, F8FUL, and F87PHEN), were photochemically synthesized, and their electronic spectra were investigated to reveal the effects of the fluorination on the electronic features of phenacene molecules. F8-Phenacenes were conveniently synthesized by the Mallory photoreaction of the corresponding fluorinated diarylethenes as the key step. Upon fluorination on the phenacene cores, the absorption and fluorescence bands of the F8-phenacenes in CHCl3 systematically red-shifted by ca. 3-5 nm compared to those of the corresponding parent phenacenes. The vibrational progressions of the absorption and fluorescence bands were little affected by the fluorination in the solution phase. In the solid state, the absorption band of F8-phenacenes appeared in the similar wavelength region for the corresponding parent phenacenes whereas their fluorescence bands markedly red-shifted and broadened. These observations suggest that the intermolecular interactions of excited-state F8-phenacene molecules are significantly different from those of the corresponding parent molecules, most likely due to different crystalline packing motifs. en-copyright= kn-copyright= en-aut-name=IshiiYuuki en-aut-sei=Ishii en-aut-mei=Yuuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamajiMinoru en-aut-sei=Yamaji en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TaniFumito en-aut-sei=Tani en-aut-mei=Fumito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=GotoKenta en-aut-sei=Goto en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KubozonoYoshihiro en-aut-sei=Kubozono en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OkamotoHideki en-aut-sei=Okamoto en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Division of Molecular Science, Graduate School of Science and Engineering, Gunma University kn-affil= affil-num=3 en-affil=Institute for Materials Chemistry and Engineering, Kyushu University kn-affil= affil-num=4 en-affil=Institute for Materials Chemistry and Engineering, Kyushu University kn-affil= affil-num=5 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=fluorescence kn-keyword=fluorescence en-keyword=fluorinated aromatics kn-keyword=fluorinated aromatics en-keyword=phenacene kn-keyword=phenacene en-keyword=photoreaction kn-keyword=photoreaction END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue= article-no= start-page=1537615 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250311 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=PARylation-mediated post-transcriptional modifications in cancer immunity and immunotherapy en-subtitle= kn-subtitle= en-abstract= kn-abstract=Poly-ADP-ribosylation (PARylation) is a post-translational modification in which ADP-ribose is added to substrate proteins. PARylation is mediated by a superfamily of ADP-ribosyl transferases known as PARPs and influences a wide range of cellular functions, including genome integrity maintenance, and the regulation of proliferation and differentiation. We and others have recently reported that PARylation of SH3 domain-binding protein 2 (3BP2) plays a role in bone metabolism, immune system regulation, and cytokine production. Additionally, PARylation has recently gained attention as a target for cancer treatment. In this review, we provide an overview of PARylation, its involvement in several signaling pathways related to cancer immunity, and the potential of combination therapies with PARP inhibitors and immune checkpoint inhibitors. en-copyright= kn-copyright= en-aut-name=MatsumotoKazuya en-aut-sei=Matsumoto en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsumotoYoshinori en-aut-sei=Matsumoto en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=PARylation kn-keyword=PARylation en-keyword=cancer kn-keyword=cancer en-keyword=post-transcriptional regulation kn-keyword=post-transcriptional regulation en-keyword=ubiquitylation kn-keyword=ubiquitylation en-keyword=immune system kn-keyword=immune system END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=6 article-no= start-page=668 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250310 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Robustness of Machine Learning Predictions for Determining Whether Deep Inspiration Breath-Hold Is Required in Breast Cancer Radiation Therapy en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/Objectives: Deep inspiration breath-hold (DIBH) is a commonly used technique to reduce the mean heart dose (MHD), which is critical for minimizing late cardiac side effects in breast cancer patients undergoing radiation therapy (RT). Although previous studies have explored the potential of machine learning (ML) to predict which patients might benefit from DIBH, none have rigorously assessed ML model performance across various MHD thresholds and parameter settings. This study aims to evaluate the robustness of ML models in predicting the need for DIBH across different clinical scenarios. Methods: Using data from 207 breast cancer patients treated with RT, we developed and tested ML models at three MHD cut-off values (240, 270, and 300 cGy), considering variations in the number of independent variables (three vs. six) and folds in the cross-validation (three, four, and five). Robustness was defined as achieving high F2 scores and low instability in predictive performance. Results: Our findings indicate that the decision tree (DT) model demonstrated consistently high robustness at 240 and 270 cGy, while the random forest model performed optimally at 300 cGy. At 240 cGy, a threshold critical to minimize late cardiac risks, the DT model exhibited stable predictive power, reducing the risk of overestimating DIBH necessity. Conclusions: These results suggest that the DT model, particularly at lower MHD thresholds, may be the most reliable for clinical applications. By providing a tool for targeted DIBH implementation, this model has the potential to enhance patient-specific treatment planning and improve clinical outcomes in RT. en-copyright= kn-copyright= en-aut-name=Al-HammadWlla E. en-aut-sei=Al-Hammad en-aut-mei=Wlla E. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KurodaMasahiro en-aut-sei=Kuroda en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Al JamalJamal, Ghaida en-aut-sei=Al Jamal en-aut-mei=Jamal, Ghaida kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FujikuraMamiko en-aut-sei=Fujikura en-aut-mei=Mamiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KamizakiRyo en-aut-sei=Kamizaki en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KurodaKazuhiro en-aut-sei=Kuroda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YoshidaSuzuka en-aut-sei=Yoshida en-aut-mei=Suzuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakamuraYoshihide en-aut-sei=Nakamura en-aut-mei=Yoshihide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OitaMasataka en-aut-sei=Oita en-aut-mei=Masataka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TanabeYoshinori en-aut-sei=Tanabe en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SugimotoKohei en-aut-sei=Sugimoto en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SugiantoIrfan en-aut-sei=Sugianto en-aut-mei=Irfan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=BarhamMajd en-aut-sei=Barham en-aut-mei=Majd kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=TekikiNouha en-aut-sei=Tekiki en-aut-mei=Nouha kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=HisatomiMiki en-aut-sei=Hisatomi en-aut-mei=Miki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=AsaumiJunichi en-aut-sei=Asaumi en-aut-mei=Junichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= affil-num=1 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Oral Medicine and Oral Surgery, Faculty of Dentistry, Jordan University of Science and Technology kn-affil= affil-num=4 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=6 en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Interdisciplinary Sciences and Engineering in Health Systems, Okayama University kn-affil= affil-num=10 en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=11 en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Oral Radiology, Faculty of Dentistry, Hasanuddin University kn-affil= affil-num=13 en-affil=Department of Dentistry and Dental Surgery, College of Medicine and Health Sciences, An-Najah National University kn-affil= affil-num=14 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=15 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=16 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=breast cancer kn-keyword=breast cancer en-keyword=radiation therapy kn-keyword=radiation therapy en-keyword=heart dose kn-keyword=heart dose en-keyword=cut-off value kn-keyword=cut-off value en-keyword=machine learning kn-keyword=machine learning en-keyword=robustness kn-keyword=robustness en-keyword=instability kn-keyword=instability en-keyword=F2 score kn-keyword=F2 score en-keyword=deep inspiration breath-hold technique kn-keyword=deep inspiration breath-hold technique en-keyword=computed tomography kn-keyword=computed tomography END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=6 article-no= start-page=790 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250320 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Improving Diagnostic Performance for Head and Neck Tumors with Simple Diffusion Kurtosis Imaging and Machine Learning Bi-Parameter Analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/Objectives: Mean kurtosis (MK) values in simple diffusion kurtosis imaging (SDI)-a type of diffusion kurtosis imaging (DKI)-have been reported to be useful in the diagnosis of head and neck malignancies, for which pre-processing with smoothing filters has been reported to improve the diagnostic accuracy. Multi-parameter analysis using DKI in combination with other image types has recently been reported to improve the diagnostic performance. The purpose of this study was to evaluate the usefulness of machine learning (ML)-based multi-parameter analysis using the MK and apparent diffusion coefficient (ADC) values-which can be acquired simultaneously through SDI-for the differential diagnosis of benign and malignant head and neck tumors, which is important for determining the treatment strategy, as well as examining the usefulness of filter pre-processing. Methods: A total of 32 pathologically diagnosed head and neck tumors were included in the study, and a Gaussian filter was used for image pre-processing. MK and ADC values were extracted from pixels within the tumor area and used as explanatory variables. Five ML algorithms were used to create models for the prediction of tumor status (benign or malignant), which were evaluated through ROC analysis. Results: Bi-parameter analysis with gradient boosting achieved the best diagnostic performance, with an AUC of 0.81. Conclusions: The usefulness of bi-parameter analysis with ML methods for the differential diagnosis of benign and malignant head and neck tumors using SDI data were demonstrated. en-copyright= kn-copyright= en-aut-name=YoshidaSuzuka en-aut-sei=Yoshida en-aut-mei=Suzuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KurodaMasahiro en-aut-sei=Kuroda en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakamuraYoshihide en-aut-sei=Nakamura en-aut-mei=Yoshihide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FukumuraYuka en-aut-sei=Fukumura en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakamitsuYuki en-aut-sei=Nakamitsu en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=Al-HammadWlla E. en-aut-sei=Al-Hammad en-aut-mei=Wlla E. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KurodaKazuhiro en-aut-sei=Kuroda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShimizuYudai en-aut-sei=Shimizu en-aut-mei=Yudai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TanabeYoshinori en-aut-sei=Tanabe en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OitaMasataka en-aut-sei=Oita en-aut-mei=Masataka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SugiantoIrfan en-aut-sei=Sugianto en-aut-mei=Irfan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=BarhamMajd en-aut-sei=Barham en-aut-mei=Majd kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TekikiNouha en-aut-sei=Tekiki en-aut-mei=Nouha kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KamaruddinNurul N. en-aut-sei=Kamaruddin en-aut-mei=Nurul N. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=HisatomiMiki en-aut-sei=Hisatomi en-aut-mei=Miki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=YanagiYoshinobu en-aut-sei=Yanagi en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=AsaumiJunichi en-aut-sei=Asaumi en-aut-mei=Junichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= affil-num=1 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=10 en-affil=Graduate School of Interdisciplinary Sciences and Engineering in Health Systems, Okayama University kn-affil= affil-num=11 en-affil=Department of Oral Radiology, Faculty of Dentistry, Hasanuddin University kn-affil= affil-num=12 en-affil=Department of Dentistry and Dental Surgery, College of Medicine and Health Sciences, An-Najah National University kn-affil= affil-num=13 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=14 en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=15 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=16 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=17 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=head and neck tumors kn-keyword=head and neck tumors en-keyword=mean kurtosis kn-keyword=mean kurtosis en-keyword=simple diffusion kurtosis imaging kn-keyword=simple diffusion kurtosis imaging en-keyword=magnetic resonance imaging kn-keyword=magnetic resonance imaging en-keyword=apparent diffusion coefficient value kn-keyword=apparent diffusion coefficient value en-keyword=diffusion kurtosis imaging kn-keyword=diffusion kurtosis imaging en-keyword=machine learning kn-keyword=machine learning en-keyword=bi-parameter analysis kn-keyword=bi-parameter analysis en-keyword=gradient boosting kn-keyword=gradient boosting en-keyword=differential diagnosis of benign and malignant kn-keyword=differential diagnosis of benign and malignant END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=1 article-no= start-page=e70053 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250323 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Association of blood carboxyhemoglobin levels with mortality and neurological outcomes in out-of-hospital cardiac arrest en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Carbon monoxide (CO), produced endogenously by heme oxygenase-1, plays a crucial role in the immune system by mitigating cellular damage under stress. However, the significance of carboxyhemoglobin (COHb) levels after out-of-hospital cardiac arrest (OHCA) is not well understood. This study aimed to explore the association between COHb levels at hospital arrival and within the first 24 h post-arrival with 30-day mortality and neurological outcomes in patients who experienced OHCA.
Methods: This single-center, retrospective study analyzed data from adult patients who experienced OHCA seen at Okayama University Hospital from 2019 to 2023. The patients were assigned to one of two study groups based on COHb levels (0.0% or >= 0.1%) upon hospital arrival. The primary outcome was 30-day mortality.
Results: Among the 560 eligible patients who experienced OHCA, 284 (50.7%) were in the COHb 0.0% group and 276 (49.3%) were in the COHb >= 0.1% group. The 30-day mortality was significantly higher in the COHb 0.0% group compared to the COHb >= 0.1% group (264 [92.9%] vs. 233 [84.4%]). Multivariable logistic regression showed that the COHb 0.0% group was associated with 30-day mortality (adjusted ORs: 2.24, 95% CIs: 1.10-4.56). Non-survivors at 30 days who were admitted to the intensive care unit had lower COHb levels at hospital arrival (0.0% vs. 0.2%) and lower mean COHb levels during the first 24 h post-arrival (0.7% vs. 0.9%) compared to survivors.
Conclusions: COHb levels of 0.0% were linked to worse outcomes in patients experiencing OHCA, warranting further research on the prognostic implications of COHb in this context. en-copyright= kn-copyright= en-aut-name=HongoTakashi en-aut-sei=Hongo en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YumotoTetsuya en-aut-sei=Yumoto en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NaitoHiromichi en-aut-sei=Naito en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HiraokaTomohiro en-aut-sei=Hiraoka en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MurakamiYuya en-aut-sei=Murakami en-aut-mei=Yuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ObaraTakafumi en-aut-sei=Obara en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NojimaTsuyoshi en-aut-sei=Nojima en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AokageToshiyuki en-aut-sei=Aokage en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NakaoAtsunori en-aut-sei=Nakao en-aut-mei=Atsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=brain injury kn-keyword=brain injury en-keyword=carbon monoxide kn-keyword=carbon monoxide en-keyword=carboxyhemoglobin kn-keyword=carboxyhemoglobin en-keyword=cardiac arrest kn-keyword=cardiac arrest en-keyword=resuscitation kn-keyword=resuscitation END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=6 article-no= start-page=619 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250313 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effects of Trehalose on Halitosis: A Randomized Cross-Over Clinical Trial en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/Objectives: Halitosis is a condition characterized by an unpleasant malodor. Intra-oral halitosis is caused by volatile sulfur compounds (VSCs) and can be associated with oral dryness. Trehalose is one of the materials used to relieve oral dryness. The aim of the present study was to investigate the effect of trehalose on halitosis. Methods: This prospective, double-blinded, placebo-controlled, cross-over study enrolled volunteers from Okayama University Hospital. The participants were randomly divided into two groups, with one group receiving trehalose (a 10% trehalose solution) and the other receiving a placebo (distilled water) in a 1:1 allocation. The primary study outcome was the subjective organoleptic test. The secondary outcomes were the concentrations of the VSCs, which were measured using a portable gas chromatography device, and the oral moisture status, which was measured using an oral moisture meter. The planned sample size was 10 participants based on the previous study. Results: The final intention-to-treat analysis was performed using the data from 9 participants. After applying 10% trehalose as an oral spray, the organoleptic score decreased in a time-dependent manner. However, no significant differences were seen between the trehalose and placebo groups. In terms of secondary outcomes, the oral moisture levels increased immediately after the trehalose spray application, and significant differences in the amount of change from the baseline were seen between the trehalose and placebo groups (p = 0.047). No significant differences were seen in any of the other variables (p > 0.05). Conclusions: We could not identify any positive effects on halitosis from a one-time 10% trehalose application as an oral spray in this prospective, double-blinded, placebo-controlled, cross-over study. However, the trehalose application immediately improved the oral moisture levels and was useful for treating oral dryness. en-copyright= kn-copyright= en-aut-name=MiyaiHisataka en-aut-sei=Miyai en-aut-mei=Hisataka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TomofujiTakaaki en-aut-sei=Tomofuji en-aut-mei=Takaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MizunoHirofumi en-aut-sei=Mizuno en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MoritaManabu en-aut-sei=Morita en-aut-mei=Manabu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakaharaMomoko en-aut-sei=Nakahara en-aut-mei=Momoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KataokaKota en-aut-sei=Kataoka en-aut-mei=Kota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SumitaIchiro en-aut-sei=Sumita en-aut-mei=Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=UchidaYurika en-aut-sei=Uchida en-aut-mei=Yurika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ToyamaNaoki en-aut-sei=Toyama en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YokoiAya en-aut-sei=Yokoi en-aut-mei=Aya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=Yamanaka-KohnoReiko en-aut-sei=Yamanaka-Kohno en-aut-mei=Reiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TakeuchiNoriko en-aut-sei=Takeuchi en-aut-mei=Noriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MaruyamaTakayuki en-aut-sei=Maruyama en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=EkuniDaisuke en-aut-sei=Ekuni en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Community Oral Health, School of Dentistry, Asahi University kn-affil= affil-num=3 en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Oral Health Sciences, Faculty of Health Care Sciences, Takarazuka University of Medical and Health Care kn-affil= affil-num=5 en-affil=Department of Preventive Dentistry, Division of Dentistry, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Preventive Dentistry, Division of Dentistry, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Preventive Dentistry, Division of Dentistry, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Preventive Dentistry, Division of Dentistry, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Preventive Dentistry, Division of Dentistry, Okayama University Hospital kn-affil= affil-num=12 en-affil=Department of Preventive Dentistry, Division of Dentistry, Okayama University Hospital kn-affil= affil-num=13 en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=14 en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=halitosis kn-keyword=halitosis en-keyword=trehalose kn-keyword=trehalose en-keyword=oral dryness kn-keyword=oral dryness en-keyword=cross-over study kn-keyword=cross-over study en-keyword=randomized trial kn-keyword=randomized trial END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=8366 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250311 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Local-structure insight into the improved superconducting properties of Pb-substituted La(O, F)BiS2: a photoelectron holography study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Pb-substituted La(O, F)BiS2 (Pb-LaOFBiS2) exhibits improved superconducting properties and a resistivity anomaly around 100 K that is attributed to a structural transition. We have performed temperature(T)-dependent photoelectron holography (PEH) to study dopant incorporation sites and the local structure change across the anomaly. The PEH study of Pb-LaOFBiS2 provided evidence for the dominant incorporation sites of Pb and F: Pb atoms are incorporated into the Bi sites and F atoms are incorporated into the O site. No remarkable difference in the local structures around Pb and Bi atoms was observed. Across the temperature of the resistivity anomaly (T*), photoelectron holograms of Bi 4f changed. Comparisons of holograms with those of non-substituted LaOFBiS2 sample, as well as simulated holograms, suggested that (1), above T*, the tetragonal structure of Pb-LaOFBiS2 is different from the tetragonal structure of LaOFBiS2 and (2), below T*, the tetragonal structure still remains in Pb-LaOFBiS2. We discuss a possible origin of the difference in the structure above T* and the implication of the result below T*, which are necessary ingredients to understand the physical properties of Pb-LaOFBiS2. en-copyright= kn-copyright= en-aut-name=LiYajun en-aut-sei=Li en-aut-mei=Yajun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HashimotoYusuke en-aut-sei=Hashimoto en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KataokaNoriyuki en-aut-sei=Kataoka en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SunZexu en-aut-sei=Sun en-aut-mei=Zexu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KawamuraSota en-aut-sei=Kawamura en-aut-mei=Sota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TomitaHiroto en-aut-sei=Tomita en-aut-mei=Hiroto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SetoguchiTaro en-aut-sei=Setoguchi en-aut-mei=Taro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakeuchiSoichiro en-aut-sei=Takeuchi en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KogaShunjo en-aut-sei=Koga en-aut-mei=Shunjo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YamagamiKohei en-aut-sei=Yamagami en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KotaniYoshinori en-aut-sei=Kotani en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=DemuraSatoshi en-aut-sei=Demura en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NoguchiKanako en-aut-sei=Noguchi en-aut-mei=Kanako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=SakataHideaki en-aut-sei=Sakata en-aut-mei=Hideaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=MatsushitaTomohiro en-aut-sei=Matsushita en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=WakitaTakanori en-aut-sei=Wakita en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=MuraokaYuji en-aut-sei=Muraoka en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=YokoyaTakayoshi en-aut-sei=Yokoya en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Nara Institute of Science and Technology (NAIST) kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Nara Institute of Science and Technology (NAIST) kn-affil= affil-num=5 en-affil=Nara Institute of Science and Technology (NAIST) kn-affil= affil-num=6 en-affil=Nara Institute of Science and Technology (NAIST) kn-affil= affil-num=7 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Nara Institute of Science and Technology (NAIST) kn-affil= affil-num=9 en-affil=Nara Institute of Science and Technology (NAIST) kn-affil= affil-num=10 en-affil=Japan Synchrotron Radiation Research Institute (JASRI) kn-affil= affil-num=11 en-affil=Japan Synchrotron Radiation Research Institute (JASRI) kn-affil= affil-num=12 en-affil=Department of Physics, College of Science and Technology(CST), Nihon University kn-affil= affil-num=13 en-affil=Tokyo University of Science kn-affil= affil-num=14 en-affil=Tokyo University of Science kn-affil= affil-num=15 en-affil=Nara Institute of Science and Technology (NAIST) kn-affil= affil-num=16 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=17 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=18 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=19 cd-vols= no-issue= article-no= start-page=1551700 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250305 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Acetoacetate, a ketone body, attenuates neuronal bursts in acutely-induced epileptiform slices of the mouse hippocampus en-subtitle= kn-subtitle= en-abstract= kn-abstract=The ketogenic diet increases ketone bodies (beta-hydroxybutyrate and acetoacetate) in the brain, and ameliorates epileptic seizures in vivo. However, ketone bodies exert weak or no effects on electrical activity in rodent hippocampal slices. Especially, it remains unclear what kinds of conditions are required to strengthen the actions of ketone bodies in hippocampal slices. In the present study, we examined the effects of acetoacetate on hippocampal pyramidal cells in normal slices and epileptiform slices of mice. By using patch-clamp recordings from CA1 pyramidal cells, we first confirmed that acetoacetate did not change the membrane potentials and intrinsic properties of pyramidal cells in normal slices. However, we found that acetoacetate weakened spontaneous epileptiform bursts in pyramidal cells of epileptiform slices, which were acutely induced by applying convulsants to normal slices. Interestingly, acetoacetate did not change the frequency of the epileptiform bursts, but attenuated individual epileptiform bursts. We finally examined the effects of acetoacetate on excitatory synaptic barrages during epileptiform activity, and found that acetoacetate weakened epileptiform bursts by reducing synchronous synaptic inputs. These results show that acetoacetate attenuated neuronal bursts in epileptiform slices, but did not affect neuronal activity in normal slices, which leads to seizure-selective actions of ketone bodies. en-copyright= kn-copyright= en-aut-name=WenHao en-aut-sei=Wen en-aut-mei=Hao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SadaNagisa en-aut-sei=Sada en-aut-mei=Nagisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=InoueTsuyoshi en-aut-sei=Inoue en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Biophysical Chemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Biophysical Chemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Biophysical Chemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=epilepsy kn-keyword=epilepsy en-keyword=ketone body kn-keyword=ketone body en-keyword=ketogenic diet kn-keyword=ketogenic diet en-keyword=hippocampus kn-keyword=hippocampus en-keyword=slice physiology kn-keyword=slice physiology en-keyword=patch-clamp recording kn-keyword=patch-clamp recording END start-ver=1.4 cd-journal=joma no-vol=18 cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Clipping closure length is a crucial factor for delayed bleeding after endoscopic papillectomy: a retrospective multicenter cohort study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Bleeding is a serious and frequent adverse event that occurs during and after endoscopic papillectomy (EP). Previous studies have highlighted the effectiveness of preventive clipping closure of the resection site in preventing post-EP bleeding. However, the optimal length of closure remained unclear.
Objectives: We aimed to clarify the optimal clipping length at the post-EP resection site to prevent delayed bleeding.
Design: This study was a multicenter retrospective cohort study.
] Methods: We retrospectively analyzed patients who were consecutively admitted to nine high-volume centers for EP between November 2003 and October 2023. The primary outcome was the frequency of delayed bleeding based on the closure length. The optimal closure length rate of the resected site to prevent delayed bleeding was determined using a receiver operating characteristic curve. Secondary outcomes were the incidence, treatment outcomes, and risk factors for post-EP delayed bleeding.
Results: A total of 130 patients who underwent EP were analyzed. Delayed bleeding was observed in 22 (17%) patients, occurring more frequently in cases without clipping closure than in those with clipping closure (28% (13/47) vs 11% (9/83); p = 0.014). Among 83 patients who underwent clipping closure, delayed bleeding occurred more frequently with a closure length rate <65% than in those with a closure rate >= 65% (25% (5/20) vs 6% (4/63); p = 0.019). Multivariate analysis showed that a closure rate <65% was the risk factor for delayed bleeding (odds ratio, 6.3; 95% confidence interval, 1.2-33; p = 0.030) in cases with clipping.
Conclusion: Clipping closure was effective in preventing delayed bleeding, and closure length rate >= 65% of the resected site significantly reduced post-EP delayed bleeding. en-copyright= kn-copyright= en-aut-name=FujiiYuki en-aut-sei=Fujii en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsumotoKazuyuki en-aut-sei=Matsumoto en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OchiKiyoaki en-aut-sei=Ochi en-aut-mei=Kiyoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HimeiHitomi en-aut-sei=Himei en-aut-mei=Hitomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SakakiharaIchiro en-aut-sei=Sakakihara en-aut-mei=Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=UetaEijiro en-aut-sei=Ueta en-aut-mei=Eijiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ToyokawaTatsuya en-aut-sei=Toyokawa en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HaradaRyo en-aut-sei=Harada en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OgawaTaiji en-aut-sei=Ogawa en-aut-mei=Taiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TomodaTakeshi en-aut-sei=Tomoda en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KatoHironari en-aut-sei=Kato en-aut-mei=Hironari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SatoRyosuke en-aut-sei=Sato en-aut-mei=Ryosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=ObataTaisuke en-aut-sei=Obata en-aut-mei=Taisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=MatsumiAkihiro en-aut-sei=Matsumi en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=MiyamotoKazuya en-aut-sei=Miyamoto en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=UchidaDaisuke en-aut-sei=Uchida en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=HoriguchiShigeru en-aut-sei=Horiguchi en-aut-mei=Shigeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=TsutsumiKoichiro en-aut-sei=Tsutsumi en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=OtsukaMotoyuki en-aut-sei=Otsuka en-aut-mei=Motoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Gastroenterology, Fukuyama City Hospital kn-affil= affil-num=4 en-affil=Department of Gastroenterology, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=5 en-affil=Department of Gastroenterology, Kagawa Prefectural Central Hospital kn-affil= affil-num=6 en-affil=Department of Gastroenterology, National Hospital Organization, Iwakuni Clinical Center kn-affil= affil-num=7 en-affil=Department of Gastroenterology, National Hospital Organization, Fukuyama Medical Center kn-affil= affil-num=8 en-affil=Department of Gastroenterology, Japanese Red Cross Okayama Hospital kn-affil= affil-num=9 en-affil=Department of Gastroenterology, Tsuyama Chuo Hospital kn-affil= affil-num=10 en-affil=Department of Gastroenterology, Okayama City Hospital kn-affil= affil-num=11 en-affil=Department of Gastroenterology, Okayama City Hospital kn-affil= affil-num=12 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=13 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=14 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=15 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=16 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=17 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=18 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=19 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= en-keyword=clipping closure kn-keyword=clipping closure en-keyword=delayed bleeding kn-keyword=delayed bleeding en-keyword=endoscopic papillectomy kn-keyword=endoscopic papillectomy END start-ver=1.4 cd-journal=joma no-vol=20 cd-vols= no-issue=1 article-no= start-page=2480231 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Specific enhancement of the translation of thermospermine-responsive uORF-containing mRNAs by ribosomal mutations in Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract=Auxin-induced xylem formation in angiosperms is negatively regulated by thermospermine, whose biosynthesis is also induced by auxin. In Arabidopsis thaliana, loss-of-function mutants of ACL5, which encodes thermospermine synthase, exhibit a dwarf phenotype accompanied by excessive xylem formation. Studies of suppressor mutants that recover from the acl5 dwarf phenotype suggest that thermospermine alleviates the inhibitory effect of an upstream open-reading frame (uORF) on the main ORF translation of SAC51 mRNA. Many suppressor mutations for acl5 have been mapped to the uORF conserved in the SAC51 family or to ribosomal protein genes, such as RPL10A, RPL4A, and RACK1A. In this study, we identified newly isolated acl5 suppressors, sac501, sac504, and sac506, which are additional alleles of RPL10A and the uORFs of SAC51 family members, SACL1 and SACL3, respectively. To investigate whether acl5-suppressor alleles of ribosomal genes broadly affect translation of uORF-containing mRNAs, we examined GUS activity in several 5'-GUS fusion constructs. Our results showed that these alleles enhanced GUS activity in SAC51 and SACL3 5'-fusion constructs but had no effect on other 5'-fusion constructs unrelated to thermospermine response. This suggests that these ribosomal proteins are specifically involved in the thermospermine-mediated regulation of mRNA translation. en-copyright= kn-copyright= en-aut-name=MutsudaKoki en-aut-sei=Mutsuda en-aut-mei=Koki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishiiYuichi en-aut-sei=Nishii en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ToyoshimaTomohiko en-aut-sei=Toyoshima en-aut-mei=Tomohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FukushimaHiroko en-aut-sei=Fukushima en-aut-mei=Hiroko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MotoseHiroyasu en-aut-sei=Motose en-aut-mei=Hiroyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakahashiTaku en-aut-sei=Takahashi en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=mRNA translation kn-keyword=mRNA translation en-keyword=RPL10 kn-keyword=RPL10 en-keyword=suppressor mutant kn-keyword=suppressor mutant en-keyword=thermospermine kn-keyword=thermospermine en-keyword=uORF kn-keyword=uORF END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250316 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Novel pulmonary abdominal normothermic regional perfusion circuit for simultaneous in-donor evaluation and preservation of lungs and abdominal organs in donation after circulatory death en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objective To overcome limitations of traditional ex vivo lung perfusion (EVLP) for controlled donation after circulatory death (cDCD) lungs, this study aimed to evaluate a novel pulmonary abdominal normothermic regional perfusion (PANRP) technique, which we uniquely designed, for in situ assessment of lungs from cDCD donors.
Methods We modified the abdominal normothermic regional perfusion circuit for simultaneous lung and abdominal organ assessment using independent extracorporeal membrane oxygenation components. Blood was oxygenated via a membrane oxygenator and returned to the body, with pulmonary flow adjusted to maintain pressure? Results PANRP maintained stable lung function, with P/F ratios above 300, and preserved abdominal organ parameters, including stable AST, ALT, BUN, and Cr levels. Adequate urine output was observed, indicating normal renal function. Pulmonary artery pressure remained? Conclusions PANRP offers a promising alternative to traditional EVLP for cDCD lung evaluation, allowing in situ assessment of multiple organs simultaneously. This approach may overcome logistical and economic challenges associated with ex vivo techniques, enabling a more efficient evaluation process. Further studies are warranted to confirm its clinical applicability and impact on long-term outcomes. en-copyright= kn-copyright= en-aut-name=TanakaShin en-aut-sei=Tanaka en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UmedaMasashi en-aut-sei=Umeda en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UjikeHiroyuki en-aut-sei=Ujike en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=RyukoTsuyoshi en-aut-sei=Ryuko en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TomiokaYasuaki en-aut-sei=Tomioka en-aut-mei=Yasuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MiyoshiKentaroh en-aut-sei=Miyoshi en-aut-mei=Kentaroh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OkazakiMikio en-aut-sei=Okazaki en-aut-mei=Mikio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SugimotoSeiichiro en-aut-sei=Sugimoto en-aut-mei=Seiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of General Thoracic and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=2 en-affil=Department of General Thoracic and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=3 en-affil=Department of General Thoracic Surgery, Shimane University Graduate School of Medicine kn-affil= affil-num=4 en-affil=Department of General Thoracic and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=5 en-affil=Department of General Thoracic and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=6 en-affil=Department of General Thoracic and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=7 en-affil=Department of General Thoracic and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=8 en-affil=Department of General Thoracic and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=9 en-affil=Department of General Thoracic and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= en-keyword=Lung preservation kn-keyword=Lung preservation en-keyword=Donation after circulatory death kn-keyword=Donation after circulatory death en-keyword=Abdominal normothermic regional perfusion kn-keyword=Abdominal normothermic regional perfusion END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=8502 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250312 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Age-specific assessment of initial hemoglobin levels and shock index for predicting life-saving interventions in pediatric blunt liver and spleen injuries en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study aimed to evaluate the effectiveness of combining initial hemoglobin levels with the shock index for predicting the need for life-saving interventions (LSI) in pediatric patients with blunt liver and spleen injuries (BLSI), specifically tailored to different age groups. This was a multicenter retrospective cohort study of pediatric patients with BLSI in Japan. The area under the receiver operating characteristic curve (AUROC) were used to assess predictive accuracy. The study included 1,370 patients. LSI was required in 59 of 247 (23.9%) aged 1 to 6 years, 100 of 402 (24.9%) aged 7 to 12 years, and 125 of 297 (42.1%) patients aged 13 to 16 years. Within each specific age group, the predictability was categorized as fair and appeared higher than that of the entire cohort or when using either parameter alone. Notably, in the 1 to 6-year age group, the combined values showed the highest predictability, which was statistically superior to the shock index alone (AUROC of 0.770 vs. 0.671, P = 0.025). Tailoring initial hemoglobin levels and shock index to specific age groups enhances predictability of LSI in pediatric BLSI, showing a fair level of predictive accuracy. en-copyright= kn-copyright= en-aut-name=YumotoTetsuya en-aut-sei=Yumoto en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ObaraTakafumi en-aut-sei=Obara en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HongoTakashi en-aut-sei=Hongo en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IidaAtsuyoshi en-aut-sei=Iida en-aut-mei=Atsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TsukaharaKohei en-aut-sei=Tsukahara en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KatsuraMorihiro en-aut-sei=Katsura en-aut-mei=Morihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KondoYutaka en-aut-sei=Kondo en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YasudaHideto en-aut-sei=Yasuda en-aut-mei=Hideto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KushimotoShigeki en-aut-sei=Kushimoto en-aut-mei=Shigeki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YorifujiTakashi en-aut-sei=Yorifuji en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NaitoHiromichi en-aut-sei=Naito en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NakaoAtsunori en-aut-sei=Nakao en-aut-mei=Atsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=SHIPPs Study Group en-aut-sei=SHIPPs Study Group en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Surgery, Okinawa Chubu Hospital kn-affil= affil-num=7 en-affil=Department of Emergency and Critical Care Medicine, Juntendo University Urayasu Hospital kn-affil= affil-num=8 en-affil=Department of Emergency and Critical Care Medicine, Jichi Medical University Saitama Medical Center kn-affil= affil-num=9 en-affil=Division of Emergency and Critical Care Medicine, Tohoku University Graduate School of Medicine kn-affil= affil-num=10 en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil= kn-affil= en-keyword=Abdominal injuries kn-keyword=Abdominal injuries en-keyword=Blood transfusions kn-keyword=Blood transfusions en-keyword=Hemoglobin kn-keyword=Hemoglobin en-keyword=Hemostasis kn-keyword=Hemostasis en-keyword=Shock index kn-keyword=Shock index END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=1 article-no= start-page=1757 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250224 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Keratinocyte-driven dermal collagen formation in the axolotl skin en-subtitle= kn-subtitle= en-abstract= kn-abstract=Type I collagen is a major component of the dermis and is formed by dermal fibroblasts. The development of dermal collagen structures has not been fully elucidated despite the major presence and importance of the dermis. This lack of understanding is due in part to the opacity of mammalian skin and it has been an obstacle to cosmetic and medical developments. We reveal the process of dermal collagen formation using the highly transparent skin of the axolotl and fluorescent collagen probes. We clarify that epidermal cells, not dermal fibroblasts, contribute to dermal collagen formation. Mesenchymal cells (fibroblasts) play a role in modifying the collagen fibers already built by keratinocytes. We confirm that collagen production by keratinocytes is a widely conserved mechanism in other model organisms. Our findings warrant a change in the current consensus about dermal collagen formation and could lead to innovations in cosmetology and skin medication. en-copyright= kn-copyright= en-aut-name=OhashiAyaka en-aut-sei=Ohashi en-aut-mei=Ayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SakamotoHirotaka en-aut-sei=Sakamoto en-aut-mei=Hirotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KurodaJunpei en-aut-sei=Kuroda en-aut-mei=Junpei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KondoYohei en-aut-sei=Kondo en-aut-mei=Yohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KameiYasuhiro en-aut-sei=Kamei en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NonakaShigenori en-aut-sei=Nonaka en-aut-mei=Shigenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=FurukawaSaya en-aut-sei=Furukawa en-aut-mei=Saya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamamotoSakiya en-aut-sei=Yamamoto en-aut-mei=Sakiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SatohAkira en-aut-sei=Satoh en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Graduate School of Environment, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environment, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Frontier Biosciences, Osaka University kn-affil= affil-num=4 en-affil=Center for One Medicine Innovative Translational Research (COMIT), Nagoya University kn-affil= affil-num=5 en-affil=Laboratory for Biothermology, National Institute for Basic Biology kn-affil= affil-num=6 en-affil=The Graduate University for Advanced Studies (SOKENDAI) kn-affil= affil-num=7 en-affil=Graduate School of Environment, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Environment, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Environment, Life, Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=7506 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250303 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A glucocorticoid-regulating molecule, Fkbp5, may interact with mitogen-activated protein kinase signaling in the organ of Corti of mice cochleae en-subtitle= kn-subtitle= en-abstract= kn-abstract=FKBP5 is a 51-Da FK506-binding protein and member of the immunophilin family involved in controlling the signaling of glucocorticoid receptor from the cytosol to nucleus. Fkbp5 has previously been shown to be expressed in murine cochlear tissue, including the organ of Corti (i.e., the sensory epithelium of the cochlea). Fkbp5-/- mice as used in this study show hearing loss in the low-frequency (8-kHz) range and click-evoked auditory brainstem response (ABR) threshold compared to wild-type mice. Both Fkbp5-/- and wild-type mice showed hearing loss at all frequencies and click-ABR thresholds at 24 h and 14 days following acoustic overexposure (AO). Tissues of the organ of Corti were subjected to RNA sequencing and KEGG pathway analysis. In Fkbp5-/- mice before AO, the mitogen-activated protein kinase (MAPK) signaling pathway was dysregulated compared to wild-type mice. In wild-type mice at 12 h following AO, the most significantly modulated KEGG pathway was the TNF signaling pathway and major MAPK molecules p38 and Jun were involved in the TNF signaling pathway. In Fkbp5-/- mice at 12 h following AO, the MAPK signaling pathway was dysregulated compared to wild-type mice following AO. In conclusion, Fkbp5 interacts with MAPK signaling in the organ of Corti in mice cochleae. en-copyright= kn-copyright= en-aut-name=SatoAsuka en-aut-sei=Sato en-aut-mei=Asuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OmichiRyotaro en-aut-sei=Omichi en-aut-mei=Ryotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MaedaYukihide en-aut-sei=Maeda en-aut-mei=Yukihide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AndoMizuo en-aut-sei=Ando en-aut-mei=Mizuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Otolaryngology-Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Otolaryngology-Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Otolaryngology-Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Otolaryngology-Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=The organ of Corti kn-keyword=The organ of Corti en-keyword=Acoustic trauma kn-keyword=Acoustic trauma en-keyword=RNA sequencing kn-keyword=RNA sequencing en-keyword=51-Da FK506-binding protein kn-keyword=51-Da FK506-binding protein en-keyword=Mitogen-activated protein kinase signaling kn-keyword=Mitogen-activated protein kinase signaling en-keyword=Tumor necrosis factor signaling kn-keyword=Tumor necrosis factor signaling END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=5 article-no= start-page=577 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250306 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Efficacy of Oral Intake of Hydrogen-Rich Jelly Intake on Gingival Inflammation: A Double-Blind, Placebo-Controlled and Exploratory Randomized Clinical Trial en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/Objectives: Initiation and progression of periodontal disease include oxidative stress. Systemic application of antioxidants may provide clinical benefits against periodontal disease including gingivitis. Recently, a jelly containing a high concentration of hydrogen (40 ppm) was developed. We hypothesized that oral intake of this hydrogen-rich jelly may be safe and effective on gingivitis. This clinical trial was designed to investigate the safety and efficacy of oral intake of hydrogen-rich jelly against gingival inflammation. Methods: Participants with gingivitis were instructed to orally ingest 30 g of hydrogen-rich jelly (experimental group) or placebo jelly (control group) three times a day for 14 consecutive days. The primary outcome of this trial was the percentage of bleeding on probing (BOP) sites. Secondary outcomes were oral parameters, serum reactive oxygen metabolites, antioxidant capacity, oxidative index, concentrations of cytokine (interleukin [IL]-1ƒÀ, IL-6, IL-10, IL-17, and tumor necrosis factor-alpha) in gingival crevicular fluid, and adverse events. For all parameters, Mann?Whitney U test was used for comparison between experimental and control groups. Analysis of covariance, controlling for baseline periodontal inflamed surface area, was performed to evaluate the association between the effect of the hydrogen-rich jelly and gingival inflammation. Results: In the experiment and control groups, the percentage of sites with BOP and PISA significantly decreased at the end of the experiment compared to the baseline. However, no significant differences were found between groups (p > 0.05). Conclusions: Administration of hydrogen-rich jelly for 14 days decreased gingival inflammation. However, no significant differences were identified compared to the control group. en-copyright= kn-copyright= en-aut-name=MaruyamaTakayuki en-aut-sei=Maruyama en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakayamaEiji en-aut-sei=Takayama en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TokunoShinichi en-aut-sei=Tokuno en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MoritaManabu en-aut-sei=Morita en-aut-mei=Manabu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=EkuniDaisuke en-aut-sei=Ekuni en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Oral Biochemistry, Asahi University School of Dentistry kn-affil= affil-num=3 en-affil=Graduate School of Health Innovation, Kanagawa University of Human Services kn-affil= affil-num=4 en-affil=Department of Oral Health, Takarazuka University of Medical and Health Care kn-affil= affil-num=5 en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=periodontal disease kn-keyword=periodontal disease en-keyword=oxidative stress kn-keyword=oxidative stress en-keyword=hydrogen kn-keyword=hydrogen en-keyword=randomized controlled trial kn-keyword=randomized controlled trial END start-ver=1.4 cd-journal=joma no-vol=195 cd-vols= no-issue= article-no= start-page=123743 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202503 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Utility of Surgical Simulation for Tubular Retractor Surgery Using Three-Dimensional Printed Intraventricular Tumor Models: Case Series en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objective: The utility of the tubular retractor for deep-seated tumors, including intraventricular tumors, has recently been reported. However, the surgical fieldfs depth and narrowness can lead to blind spots, and it is crucial to prevent damage to the cortex and white matter fibers in eloquent areas. Therefore, preoperative simulation is critical for tubular retractor surgery. In this study, we investigated the benefits of threedimensional (3D)-printed intraventricular tumor models for tubular retractor surgery.
Methods: Nine patients with intraventricular central neurocytoma who underwent tubular retractor surgery at our institution between March 2013 and August 2023 were retrospectively reviewed. Fusion images and 3D-printed intraventricular tumor models were developed from preoperative computed tomography (CT) and magnetic resonance imaging (MRI). The puncture points of the tubular retractor were simulated using fusion images and 3D-printed intraventricular tumor models by 11 neurosurgeons (3 experts in brain tumors, 2 experts in areas other than brain tumors, and 6 residents). The dispersion of puncture points among 8 neurosurgeons (excluding brain tumor experts) was compared in each simulation model.
Results: These cases were categorized into two groups based on the dispersion of puncture points simulated by fusion images. Puncture point dispersion was markedly smaller in all cases when using 3D-printed intraventricular tumor models compared to simulations solely based on fusion images.
Conclusions: In intraventricular tumor surgery using a tubular retractor, 3D-printed intraventricular tumor models proved more beneficial in preoperative simulation compared to fusion images. en-copyright= kn-copyright= en-aut-name=OmaeRyo en-aut-sei=Omae en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KimuraRyu en-aut-sei=Kimura en-aut-mei=Ryu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OtaniYoshihiro en-aut-sei=Otani en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HarumaJun en-aut-sei=Haruma en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SaijoTomoya en-aut-sei=Saijo en-aut-mei=Tomoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FujitaJuntaro en-aut-sei=Fujita en-aut-mei=Juntaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NishigakiShohei en-aut-sei=Nishigaki en-aut-mei=Shohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IkemachiRyosuke en-aut-sei=Ikemachi en-aut-mei=Ryosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HiranoShuichiro en-aut-sei=Hirano en-aut-mei=Shuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=IshidaJoji en-aut-sei=Ishida en-aut-mei=Joji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=FujiiKentaro en-aut-sei=Fujii en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=YasuharaTakao en-aut-sei=Yasuhara en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TanakaShota en-aut-sei=Tanaka en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=3D-printed model kn-keyword=3D-printed model en-keyword=Case series kn-keyword=Case series en-keyword=Intraventricular tumors kn-keyword=Intraventricular tumors en-keyword=Preoperative surgical simulation kn-keyword=Preoperative surgical simulation en-keyword=Tubular retractor kn-keyword=Tubular retractor END start-ver=1.4 cd-journal=joma no-vol=33 cd-vols= no-issue=4 article-no= start-page=252 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250305 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Characteristics of oral mucositis in patients undergoing haploidentical stem cell transplantation with posttransplant cyclophosphamide: marked difference between busulfan and melphalan regimens en-subtitle= kn-subtitle= en-abstract= kn-abstract=Purpose This study was performed to examine the effects of conditioning regimens on oral mucositis in haploidentical (haplo) donor hematopoietic stem cell transplantation (HSCT) with posttransplant cyclophosphamide (PTCy).
Methods Thirty consecutive patients (male, 23; female, 7; 18?68 years, median, 59 years) undergoing haplo-HSCT with PTCy using one of three conditioning regimens?reduced intensity conditioning (RIC)-melphalan (Mel); RIC-Busulfan (Bu); and myeloablative conditioning (MAC)-Bu?were enrolled in this study. Data on the WHO grade of oral mucositis (day???7 to?+?20) were collected retrospectively. The incidences of ulcerative and severe mucositis (Grade 2?4 and Grade 3?4, respectively) were compared between the three groups.
Results Ulcerative mucositis occurred in 0% (0/10) of patients in the RIC-Mel group, 57.1% (4/7) in the RIC-Bu group, and 100% (13/13) in the MAC-Bu group. The differences between the RIC-Mel and RIC-Bu groups and between the RIC-Bu and MAC-Bu groups were significant (all P? Conclusion The risk of oral mucositis in patients undergoing haplo-HSCT with PTCy is highest with the MAC-Bu conditioning regimen, followed by RIC-Bu, and lowest with RIC-Mel. en-copyright= kn-copyright= en-aut-name=OguraSaki en-aut-sei=Ogura en-aut-mei=Saki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SogaYoshihiko en-aut-sei=Soga en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujiwaraHideaki en-aut-sei=Fujiwara en-aut-mei=Hideaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MiuraRumi en-aut-sei=Miura en-aut-mei=Rumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MatsuokaKen-ichi en-aut-sei=Matsuoka en-aut-mei=Ken-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KubokiTakuo en-aut-sei=Kuboki en-aut-mei=Takuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Division of Dental Hygienist, Okayama University Hospital kn-affil= affil-num=2 en-affil=Division of Hospital Dentistry, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=4 en-affil=Division of Dental Hygienist, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Division of Dental Hygienist, Okayama University Hospital kn-affil= en-keyword=Oral mucositis kn-keyword=Oral mucositis en-keyword=Hematopoietic cell transplantation kn-keyword=Hematopoietic cell transplantation en-keyword=Posttransplant cyclophosphamide kn-keyword=Posttransplant cyclophosphamide en-keyword=Busulfan kn-keyword=Busulfan en-keyword=Melphalan kn-keyword=Melphalan END start-ver=1.4 cd-journal=joma no-vol=45 cd-vols= no-issue=3 article-no= start-page=32 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250307 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Rapid development of naked malting barley germplasm through targeted mutagenesis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Covered barley (Hordeum vulgare) has historically been preferred for malting, as the husk in this plant protects the embryo during harvest and acts as a filter during brewing. Naked barley, which is typically used as food, has the potential to be used in brewing due to recent technical advances, but the grains contain higher levels of ƒÀ-glucan and polyphenols, which are undesirable in brewing. Introducing the naked trait into brewing cultivars through crossing is time-consuming due to the need to eliminate these undesirable traits. In this study, we rapidly developed naked barley that is potentially suitable for malting by introducing targeted mutations into Nudum (NUD) using CRISPR/Cas9-mediated targeted mutagenesis. The doubled haploid line eDH120366f, which was used as the parental line, was derived from a cross between two covered malting barley cultivars. We generated CRISPR/Cas9-mediated targeted mutagenized barley harboring mutations in NUD via Agrobacterium tumefaciens-mediated transformation and confirmed the presence of mosaic mutations in one individual from among 16 T0 transformants. We sowed T1 grains exhibiting the naked trait and sequenced the NUD gene in these T1 seedlings, identifying two types of mutations. Shotgun high-throughput whole-genome sequencing confirmed the absence of the transgene in at least one nud mutant line following k-mer-based analysis. Cultivation in a closed growth chamber revealed no significant differences in agronomic traits between the nud mutants and the wild type. This study demonstrates the feasibility of rapidly developing naked barley with potential use for malting and brewing by targeting only NUD via targeted mutagenesis. en-copyright= kn-copyright= en-aut-name=HisanoHiroshi en-aut-sei=Hisano en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SakaiHiroaki en-aut-sei=Sakai en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HamaokaMika en-aut-sei=Hamaoka en-aut-mei=Mika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MunemoriHiromi en-aut-sei=Munemori en-aut-mei=Hiromi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AbeFumitaka en-aut-sei=Abe en-aut-mei=Fumitaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MeintsBrigid en-aut-sei=Meints en-aut-mei=Brigid kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SatoKazuhiro en-aut-sei=Sato en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HayesPatrick M. en-aut-sei=Hayes en-aut-mei=Patrick M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Research Center for Advanced Analysis, National Agriculture and Food Research Organization kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=5 en-affil=Institute of Crop Science, National Agriculture and Food Research Organization kn-affil= affil-num=6 en-affil=Department Crop and Soil Science, Oregon State University kn-affil= affil-num=7 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=8 en-affil=Department Crop and Soil Science, Oregon State University kn-affil= en-keyword=Hordeum vulgare kn-keyword=Hordeum vulgare en-keyword=Covered (hulled) kn-keyword=Covered (hulled) en-keyword=Naked (hull-less) kn-keyword=Naked (hull-less) en-keyword=Genome editing kn-keyword=Genome editing en-keyword=CRISPR/Cas9 kn-keyword=CRISPR/Cas9 en-keyword=Transformation amenability kn-keyword=Transformation amenability END start-ver=1.4 cd-journal=joma no-vol=61 cd-vols= no-issue=25 article-no= start-page=4757 end-page=4773 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Recent development of azahelicenes showing circularly polarized luminescence en-subtitle= kn-subtitle= en-abstract= kn-abstract=Recently, a variety of circularly polarized luminescence (CPL) dyes have been developed as next-generation chiroptical materials. Helicenes, ortho-fused aromatics, have been recognized as some of the most promising CPL dyes. Although typical carbohelicenes show CPL, weak fluorescence is often emitted in the blue region. In contrast, heteroatom-embedded helicenes (heterohelicenes) can show intense fluorescence and CPL in the visible region because heteroatoms alter the electronic states of helicene frameworks. Among various heterohelicenes, nitrogen-embedded helicenes (azahelicenes) have unique features such as facile functionalization and sensitive responses to acid/base or metal ions. Furthermore, polycyclic aromatic hydrocarbons (PAHs) containing azaborine units have been recognized as excellent luminescent materials, and the helical derivatives, B,N-embedded helicenes, have been rapidly growing recently. In this feature article, we review and summarize the synthesis and chiroptical properties of azahelicenes, which are classified into imine-type and amine-type azahelicenes and B,N-embedded helicenes. CPL switching systems of azahelicenes are also reviewed. en-copyright= kn-copyright= en-aut-name=MaedaChihiro en-aut-sei=Maeda en-aut-mei=Chihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=EmaTadashi en-aut-sei=Ema en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Examining the Long-Term Impact of COVID-19-Induced Clinical Practice Changes on Problem-Solving Behaviors Among Newly Graduated Nurses: A Longitudinal Study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objective: This study aimed to longitudinally examine how the cancellation or modification of the clinical practicum due to COVID-19 affected the nursing practice competence of newly graduated nurses in Japan.
Methods: A survey was conducted across three periods-June, September, and December 2022-to seek responses from participants. A total of 73 participants (two men and 71 women) who responded in all periods were included in the analysis. The survey included questions on the impact of the integrated and specific clinical practicums, including a self-assessment scale for nursing problem-solving behaviors.
Results: During all response periods, those whose practicums were entirely clinical scored significantly higher in nursing problem-solving behaviors. Furthermore, by December, "psychological support to patients for overcoming challenges" improved alongside the clinical experience of newly graduated nurses. However, their practical skills related to aggregating information, identifying improvements in nursing problems, facilitating smooth patient interactions, and individualizing assistance were challenging to improve along with clinical experience.
Conclusion: This study revealed that canceling or modifying the clinical practicum owing to COVID-19 impacted the problem-solving behaviors of newly graduated nurses. en-copyright= kn-copyright= en-aut-name=OhueTakashi en-aut-sei=Ohue en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OhueYuka en-aut-sei=Ohue en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HaradaHiroe en-aut-sei=Harada en-aut-mei=Hiroe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Health Sciences and Faculty of Health Sciences, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Nursing, Department of Nursing, Hyogo University kn-affil= affil-num=3 en-affil=Faculty of Nursing, Department of Nursing, Hyogo University kn-affil= en-keyword=COVID-19 kn-keyword=COVID-19 en-keyword=clinical practice kn-keyword=clinical practice en-keyword=newly graduated nurses kn-keyword=newly graduated nurses en-keyword=nursing practice skills kn-keyword=nursing practice skills en-keyword=longitudinal study kn-keyword=longitudinal study END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=5 article-no= start-page=2421 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250224 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Deep Reinforcement Learning for Dynamic Pricing and Ordering Policies in Perishable Inventory Management en-subtitle= kn-subtitle= en-abstract= kn-abstract=Perishable goods have a limited shelf life, and inventory should be discarded once it exceeds its shelf life. Finding optimal inventory management policies is essential since inefficient policies can lead to increased waste and higher costs. While many previous studies assume the perishable inventory is processed following the First In, First Out rule, it does not reflect customer purchasing behavior. In practice, customers' preferences are influenced by the shelf life and price of products. This study optimizes inventory and pricing policies for a perishable inventory management problem considering age-dependent probabilistic demand. However, introducing dynamic pricing significantly increases the complexity of the problem. To tackle this challenge, we propose eliminating irrational actions in dynamic programming without sacrificing optimality. To solve this problem more efficiently, we also implement a deep reinforcement learning algorithm, proximal policy optimization, to solve this problem. The results show that dynamic programming with action reduction achieved an average of 63.1% reduction in computation time compared to vanilla dynamic programming. In most cases, proximal policy optimization achieved an optimality gap of less than 10%. Sensitivity analysis of the demand model revealed a negative correlation between customer sensitivity to shelf lives or prices and total profits. en-copyright= kn-copyright= en-aut-name=NomuraYusuke en-aut-sei=Nomura en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=LiuZiang en-aut-sei=Liu en-aut-mei=Ziang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishiTatsushi en-aut-sei=Nishi en-aut-mei=Tatsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=reinforcement learning kn-keyword=reinforcement learning en-keyword=supply chain kn-keyword=supply chain en-keyword=inventory management kn-keyword=inventory management en-keyword=perishable inventory kn-keyword=perishable inventory en-keyword=dynamic pricing kn-keyword=dynamic pricing END start-ver=1.4 cd-journal=joma no-vol=19 cd-vols= no-issue=1 article-no= start-page=36 end-page=43 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Evaluation of the temporal behavior of fulvic acid iron in Asahi River, Okayama, Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=Iron is essential for biogeochemical processes in aquatic ecosystems, but its riverine concentration can be affected by environmental conditions. This study assessed weekly fulvic acid iron (FAFe) concentration at a single sampling site in Asahi River from 2022?2023 to explore the differences in the temporal scales. The objectives of this study were to evaluate the effects of physicochemical properties of the river on the concentration of FAFe, analyze the concentration of FAFe in spring, summer, autumn and winter, and assess the relationship between FAFe concentration and land use types of the watershed. The results indicated that physicochemical parameters, such as pH and surface water temperature (SWT) seemed to influence FAFe concentration (p < 0.05). Hydrological dynamics influenced FAFe concentration and transport, revealing an increasing trend during spring (p < 0.001) and summer (p = 0.05), with non-significant trends during autumn and winter (p > 0.05). FAFe exhibited a strong positive correlation with total organic carbon (TOC) (p < 0.001). Upland fields significantly influenced FAFe concentration (p < 0.01) through runoff with abundant NO3? and PO43? into the river. Thus, FAFe concentration in Asahi River was influenced by pH, SWT, TOC, hydrological regime, and agricultural runoff. en-copyright= kn-copyright= en-aut-name=YengehRohdof Lactem en-aut-sei=Yengeh en-aut-mei=Rohdof Lactem kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SomuraHiroaki en-aut-sei=Somura en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoroizumiToshitsugu en-aut-sei=Moroizumi en-aut-mei=Toshitsugu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MoriYasushi en-aut-sei=Mori en-aut-mei=Yasushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MaedaMorihiro en-aut-sei=Maeda en-aut-mei=Morihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=dissolved iron kn-keyword=dissolved iron en-keyword=seasonal variation kn-keyword=seasonal variation en-keyword=dissolved organic matter kn-keyword=dissolved organic matter en-keyword=fulvic acid iron kn-keyword=fulvic acid iron END start-ver=1.4 cd-journal=joma no-vol=429 cd-vols= no-issue= article-no= start-page=529 end-page=565 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250605 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Polyhedral entire solutions in reaction-diffusion equations en-subtitle= kn-subtitle= en-abstract= kn-abstract=This paper studies polyhedral entire solutions to a bistable reaction-diffusion equation in Rn. We consider a pyramidal traveling front solution to the same equation in Rn+1. As the speed goes to infinity, its projection converges to an n-dimensional polyhedral entire solution. Conversely, as the time goes to -infinity, an n-dimensional polyhedral entire solution gives n-dimensional pyramidal traveling front solutions. The result in this paper suggests a correlation between traveling front solutions and entire solutions in general reaction-diffusion equations or systems. en-copyright= kn-copyright= en-aut-name=TaniguchiMasaharu en-aut-sei=Taniguchi en-aut-mei=Masaharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= en-keyword=Traveling front solution kn-keyword=Traveling front solution en-keyword=Entire solution kn-keyword=Entire solution en-keyword=Reaction-diffusion equation kn-keyword=Reaction-diffusion equation END start-ver=1.4 cd-journal=joma no-vol=5 cd-vols= no-issue=1 article-no= start-page=e70096 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250311 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Endoscopic ultrasonography-guided removal of a stent that had migrated into the pancreas post-pancreaticojejunostomy: A case report en-subtitle= kn-subtitle= en-abstract= kn-abstract=A 64-year-old woman had undergone subtotal stomach-preserving pancreaticoduodenectomy for locally advanced pancreatic head cancer. She had an uneventful postoperative course with no recurrence. However, approximately 18 months after surgery, she presented with recurrent abdominal pain. Although contrast-enhanced computed tomography abdominal radiographs showed internal stent migration to the residual pancreas, dilatation of the tail side of the pancreatic duct was observed. The impaired internal stent was considered to be the cause of the abdominal pain. An attempt to remove the stent via balloon-assisted endoscopy was unsuccessful as the pancreaticojejunostomy site could not be reached. Consequently, endoscopic ultrasonography-guided pancreatic duct drainage was performed, and a plastic stent was placed through the jejunal site to the stomach. Two months later, the endosonographically/endoscopic ultrasonography-guided created route was dilated, and an endoscopic introducer was inserted into the pancreatic duct. Biopsy forceps were advanced through the sheath, allowing the successful removal of the stent by direct grasping. The symptoms of the patient improved, and she was discharged without complications. en-copyright= kn-copyright= en-aut-name=KajitaniSatoshi en-aut-sei=Kajitani en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsumotoKazuyuki en-aut-sei=Matsumoto en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OkiKentaro en-aut-sei=Oki en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MatsumiAkihiro en-aut-sei=Matsumi en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MiyamotoKazuya en-aut-sei=Miyamoto en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FujiiYuki en-aut-sei=Fujii en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=UchidaDaisuke en-aut-sei=Uchida en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TsutsumiKoichiro en-aut-sei=Tsutsumi en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HoriguchiShigeru en-aut-sei=Horiguchi en-aut-mei=Shigeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OtsukaMotoyuki en-aut-sei=Otsuka en-aut-mei=Motoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Gastroenterology andHepatology, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Gastroenterology andHepatology, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Gastroenterology andHepatology, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Gastroenterology andHepatology, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Gastroenterology andHepatology, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Gastroenterology andHepatology, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Gastroenterology andHepatology, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Gastroenterology andHepatology, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Gastroenterology andHepatology, Okayama University Hospital kn-affil= affil-num=10 en-affil=Department of Gastroenterology andHepatology, Okayama University Hospital kn-affil= en-keyword=endoscopic introducer kn-keyword=endoscopic introducer en-keyword=endoscopic ultrasonography-guided pancreatic duct drainage kn-keyword=endoscopic ultrasonography-guided pancreatic duct drainage en-keyword=endosonographically/EUS-guided created route kn-keyword=endosonographically/EUS-guided created route en-keyword=EUS-guided interventions kn-keyword=EUS-guided interventions en-keyword=internal stent kn-keyword=internal stent END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=5248 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250212 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Changes of leucine-rich alpha 2 glycoprotein could be a marker of changes of endoscopic and histologic activity of ulcerative colitis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Leucine-rich alpha 2 glycoprotein (LRG) is one of the serum biomarkers for disease activity of ulcerative colitis (UC). We focused on the correlation between the changes of LRG and the changes of endoscopic and histologic activity of UC, in comparison to the changes of fecal calprotectin (Fcal), fecal immunochemical test (FIT), and C-reactive protein (CRP). Seventy-nine patients with two or more colonoscopies were enrolled, and 123 paired colonoscopies and 121 paired biopsies were examined. With regard to the change of endoscopic/histologic activity between the preceding and subsequent colonoscopy, there was improvement (n = 29/45), unchanging (n = 63/36), and worsening (n = 31/40). The correlations between the changes of marker levels and endoscopic/histologic activity were Fcal; r = 0.50/0.39 and FIT; r = 0.41/0.40, LRG; r = 0.42/0.40 and CRP; r = 0.22/0.17. Furthermore, when the correlation between the changes of LRG levels and the changes of endoscopic/histological activity was compared with those of other markers, the correlation of LRG tended to be superior to those of CRP (CRP vs. LRG; p = 0.08/0.01). LRG is equivalent to fecal markers and superior to CRP, when inferring changes in disease activity of UC based on changes in its level. en-copyright= kn-copyright= en-aut-name=AoyamaYuki en-aut-sei=Aoyama en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HiraokaSakiko en-aut-sei=Hiraoka en-aut-mei=Sakiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YasutomiEriko en-aut-sei=Yasutomi en-aut-mei=Eriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=InokuchiToshihiro en-aut-sei=Inokuchi en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TanakaTakehiro en-aut-sei=Tanaka en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakeiKensuke en-aut-sei=Takei en-aut-mei=Kensuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IgawaShoko en-aut-sei=Igawa en-aut-mei=Shoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakeuchiKeiko en-aut-sei=Takeuchi en-aut-mei=Keiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TakaharaMasahiro en-aut-sei=Takahara en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ToyosawaJunki en-aut-sei=Toyosawa en-aut-mei=Junki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YamasakiYasushi en-aut-sei=Yamasaki en-aut-mei=Yasushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KinugasaHideaki en-aut-sei=Kinugasa en-aut-mei=Hideaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KatoJun en-aut-sei=Kato en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=OkadaHiroyuki en-aut-sei=Okada en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=OtsukaMotoyuki en-aut-sei=Otsuka en-aut-mei=Motoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Gastroenterology and Hepatology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Gastroenterology and Hepatology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Pathology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=6 en-affil=Department of Gastroenterology and Hepatology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Gastroenterology and Hepatology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Gastroenterology and Hepatology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Gastroenterology and Hepatology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Gastroenterology and Hepatology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Gastroenterology and Hepatology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Gastroenterology and Hepatology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Department of Gastroenterology, Graduate School of Medicine, Chiba University kn-affil= affil-num=14 en-affil=Department of Gastroenterology, Japanese Red Cross Society Himeji Hospital kn-affil= affil-num=15 en-affil=Department of Gastroenterology and Hepatology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Ulcerative colitis kn-keyword=Ulcerative colitis en-keyword=Leucine-rich alpha 2 glycoprotein kn-keyword=Leucine-rich alpha 2 glycoprotein en-keyword=Biomarker kn-keyword=Biomarker END start-ver=1.4 cd-journal=joma no-vol=7 cd-vols= no-issue= article-no= start-page=1543543 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250225 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Empowering pediatric, adolescent, and young adult patients with cancer utilizing generative AI chatbots to reduce psychological burden and enhance treatment engagement: a pilot study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Pediatric and adolescent/young adult (AYA) cancer patients face profound psychological challenges, exacerbated by limited access to continuous mental health support. While conventional therapeutic interventions often follow structured protocols, the potential of generative artificial intelligence (AI) chatbots to provide continuous conversational support remains unexplored. This study evaluates the feasibility and impact of AI chatbots in alleviating psychological distress and enhancing treatment engagement in this vulnerable population.
Methods: Two age-appropriate AI chatbots, leveraging GPT-4, were developed to provide natural, empathetic conversations without structured therapeutic protocols. Five pediatric and AYA cancer patients participated in a two-week intervention, engaging with the chatbots via a messaging platform. Pre- and post-intervention anxiety and stress levels were self-reported, and usage patterns were analyzed to assess the chatbots' effectiveness.
Results: Four out of five participants reported significant reductions in anxiety and stress levels post-intervention. Participants engaged with the chatbot every 2-3 days, with sessions lasting approximately 10 min. All participants noted improved treatment motivation, with 80% disclosing personal concerns to the chatbot they had not shared with healthcare providers. The 24/7 availability particularly benefited patients experiencing nighttime anxiety.
Conclusions: This pilot study demonstrates the potential of generative AI chatbots to complement traditional mental health services by addressing unmet psychological needs in pediatric and AYA cancer patients. The findings suggest these tools can serve as accessible, continuous support systems. Further large-scale studies are warranted to validate these promising results. en-copyright= kn-copyright= en-aut-name=HaseiJoe en-aut-sei=Hasei en-aut-mei=Joe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HanzawaMana en-aut-sei=Hanzawa en-aut-mei=Mana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NaganoAkihito en-aut-sei=Nagano en-aut-mei=Akihito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MaedaNaoko en-aut-sei=Maeda en-aut-mei=Naoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YoshidaShinichirou en-aut-sei=Yoshida en-aut-mei=Shinichirou kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=EndoMakoto en-aut-sei=Endo en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YokoyamaNobuhiko en-aut-sei=Yokoyama en-aut-mei=Nobuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OchiMotoharu en-aut-sei=Ochi en-aut-mei=Motoharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IshidaHisashi en-aut-sei=Ishida en-aut-mei=Hisashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KatayamaHideki en-aut-sei=Katayama en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=FujiwaraTomohiro en-aut-sei=Fujiwara en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NakataEiji en-aut-sei=Nakata en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NakaharaRyuichi en-aut-sei=Nakahara en-aut-mei=Ryuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KunisadaToshiyuki en-aut-sei=Kunisada en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=TsukaharaHirokazu en-aut-sei=Tsukahara en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=OzakiToshifumi en-aut-sei=Ozaki en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= affil-num=1 en-affil=Department of Medical Information and Assistive Technology Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Orthopedic Surgery, Gifu University Graduate School of Medicine kn-affil= affil-num=4 en-affil=Department of Pediatrics, NHO National Hospital Organization Nagoya Medical Center kn-affil= affil-num=5 en-affil=Department of Orthopedic Surgery, Tohoku University Graduate School of Medicine kn-affil= affil-num=6 en-affil=Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University kn-affil= affil-num=7 en-affil=Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University kn-affil= affil-num=8 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= affil-num=10 en-affil=Department of Palliative and Supportive Care, Okayama University Hospital kn-affil= affil-num=11 en-affil=Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=15 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=generative AI chatbot kn-keyword=generative AI chatbot en-keyword=large language model kn-keyword=large language model en-keyword=pediatric cancer kn-keyword=pediatric cancer en-keyword=adolescent and young adult (AYA) kn-keyword=adolescent and young adult (AYA) en-keyword=psychological support kn-keyword=psychological support END start-ver=1.4 cd-journal=joma no-vol=34 cd-vols= no-issue=1 article-no= start-page=35 end-page=40 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Evaluation of CT Findings in Squamous and Non-Squamous Cell Carcinomas of the Maxillary Sinus en-subtitle= kn-subtitle= en-abstract= kn-abstract=The aim of the present study was to compare CT images between squamous cell carcinoma (SCC) and non-SCC found in the maxillary sinus, and to identify features that could be used to differentiate between SCC and non-SCC. Patients who visited the Faculty of Dentistry, Okayama University Hospital, between April 2007 and March 2023, underwent head and neck CT, and had tumors extending into the maxillary sinus that were diagnosed histopathologically as malignancy, were enrolled. The main seat of the mass, bony changes in the maxillary sinus wall, and extension into the surrounding area were assessed. These imaging features were evaluated according to SCC or non-SCC, and the characteristics of the two classes were assessed. Comparisons between the two groups were made using the Fisher exact probability test. There were 11 cases each of SCC and non-SCC. In 11 SCC and 7 non-SCC cases, the main seat of the mass occupied the entire maxillary sinus. The frequency of mass occupying the whole sinus was significantly higher in SCC than in non-SCC (p<0.05). Bone-thickening type disease was found only in squamous cell carcinoma 4/11 (36.4%), with there being a significant difference between SCC and non-SCC (p<0.05). Occupancy of the entire maxillary sinus by the mass and bone thickening on CT images were useful for differentiating between SCC and non-SCC arising in the maxillary sinus. en-copyright= kn-copyright= en-aut-name=AsaumiYuka en-aut-sei=Asaumi en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujikuraMamiko en-aut-sei=Fujikura en-aut-mei=Mamiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HisatomiMiki en-aut-sei=Hisatomi en-aut-mei=Miki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=E. Al-HammadWlla en-aut-sei=E. Al-Hammad en-aut-mei=Wlla kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakeshitaYohei en-aut-sei=Takeshita en-aut-mei=Yohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OkadaShunsuke en-aut-sei=Okada en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KawazuToshiyuki en-aut-sei=Kawazu en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YanagiYoshinobu en-aut-sei=Yanagi en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=AsaumiJunichi en-aut-sei=Asaumi en-aut-mei=Junichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Oral and Maxillofacial Radiology, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Oral and Maxillofacial Radiology, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Oral and Maxillofacial Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Oral and Maxillofacial Radiology, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Oral and Maxillofacial Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Dental Informatics, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Maxillary sinus kn-keyword=Maxillary sinus en-keyword=Squamous cell carcinoma kn-keyword=Squamous cell carcinoma en-keyword=Non-squamous cell carcinoma kn-keyword=Non-squamous cell carcinoma en-keyword=CT kn-keyword=CT END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250224 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A randomized controlled trial of conventional GVHD prophylaxis with or without teprenone for the prevention of severe acute GVHD en-subtitle= kn-subtitle= en-abstract= kn-abstract=Therapies that effectively suppress graft-versus-host disease (GVHD) without compromising graft-versus-leukemia/lymphoma (GVL) effects is important in allogeneic hematopoietic stem cell transplantation (allo-HSCT) for hematopoietic malignancies. Geranylgeranylacetone (GGA) is a main component of teprenone, a gastric mucosal protectant commonly used in clinical practice. In preclinical models, GGA suppresses proinflammatory cytokines, including interleukin (IL)-1ƒÀ, IL-6, and tumor necrosis factor-ƒ¿ (TNF-ƒ¿), which are associated with GVHD as well as induces thioredoxin-1 (Trx-1), which suppresses GVHD while maintaining GVL effects. Here, we investigated whether the addition of teprenone to standard GVHD prophylaxis could reduce the cumulative incidence of severe acute GVHD (aGVHD) without attenuating GVL effects. This open-label, randomized clinical trial enrolled 40 patients (21 control and 19 teprenone group) who received allo-HSCT between May 2022 and February 2023 in our institution. Patients in the teprenone group received 50 mg of teprenone orally thrice daily for 21 days from the initiation of the conditioning regimen. The cumulative incidence of severe aGVHD by day 100 after allo-HSCT was not significantly different in the two groups (27.9 vs. 16.1%, p?=?0.25). The exploratory studies revealed no obvious changes in Trx-1 levels, but the alternations from baseline in IL-1ƒÀ and TNF-ƒ¿ levels at day 28 after allo-HSCT tended to be lower in the teprenone group. In conclusion, we could not demonstrate that teprenone significantly prevented the development of severe aGVHD. Discrepancy with preclinical model suggests that appropriate dose of teprenone may be necessary to induce the expression of antioxidant enzymes that suppress severe aGVHD. Clinical Trial Registration number:jRCTs 061210072. en-copyright= kn-copyright= en-aut-name=KitamuraWataru en-aut-sei=Kitamura en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujiiKeiko en-aut-sei=Fujii en-aut-mei=Keiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TsugeMitsuru en-aut-sei=Tsuge en-aut-mei=Mitsuru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MitsuhashiToshiharu en-aut-sei=Mitsuhashi en-aut-mei=Toshiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KobayashiHiroki en-aut-sei=Kobayashi en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KamoiChihiro en-aut-sei=Kamoi en-aut-mei=Chihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamamotoAkira en-aut-sei=Yamamoto en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KondoTakumi en-aut-sei=Kondo en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SeikeKeisuke en-aut-sei=Seike en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=FujiwaraHideaki en-aut-sei=Fujiwara en-aut-mei=Hideaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=AsadaNoboru en-aut-sei=Asada en-aut-mei=Noboru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=EnnishiDaisuke en-aut-sei=Ennishi en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MatsuokaKen-ichi en-aut-sei=Matsuoka en-aut-mei=Ken-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=FujiiNobuharu en-aut-sei=Fujii en-aut-mei=Nobuharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Pediatric Acute Diseases, Okayama University Academic Field of Medicine Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=10 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=11 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=12 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=13 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=14 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=15 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= en-keyword=Allogeneic hematopoietic stem cell transplantation kn-keyword=Allogeneic hematopoietic stem cell transplantation en-keyword=Graft-versus-host disease kn-keyword=Graft-versus-host disease en-keyword=Teprenone kn-keyword=Teprenone en-keyword=Oxidative stress kn-keyword=Oxidative stress en-keyword=Interleukin-33 kn-keyword=Interleukin-33 END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=6666 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250224 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Microfluidic fabrication of rattle shaped biopolymer microcapsules via sequential phase separation in oil droplets en-subtitle= kn-subtitle= en-abstract= kn-abstract=Multilayer microcapsules containing a small particle within a larger capsule have recently attracted considerable attention owing to their potential applications in diverse fields, including drug delivery, active ingredient storage, and chemical reactions. These complex capsules have been fabricated using interfacial polymerization or seeded emulsion polymerization. However, these methods often require complex and lengthy polymerization processes, limiting their utility, particularly in biopolymer systems. This study introduces a simple and efficient approach for preparing rattle-shaped cellulose acetate (CA) microcapsules through sequential phase separation in droplets. We systematically examine the effects of various preparation parameters, including the amount of co-solvent, initial droplet size, and flow rates, and reveal that the incorporation of a co-solvent-ethyl acetate (EA)- in the dispersed phase significantly impacts the microcapsule morphology. Our findings demonstrate a transition from a core-shell to a rattle-shaped structure as the EA concentration increases. Furthermore, the initial droplet diameter and flow rates influence microcapsule formation-larger droplets and reduced continuous-phase flow rates favor the development of multi-layered structures. These results indicate that the formation mechanism of these rattle-shaped microcapsules arises from the establishment of a radial solvent concentration gradient and subsequent phase separation within the droplets, driven by kinetic rather than thermodynamic factors. en-copyright= kn-copyright= en-aut-name=WatanabeTakaichi en-aut-sei=Watanabe en-aut-mei=Takaichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SakaiYuko en-aut-sei=Sakai en-aut-mei=Yuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoriKurumi en-aut-sei=Mori en-aut-mei=Kurumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OnoTsutomu en-aut-sei=Ono en-aut-mei=Tsutomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology kn-affil= affil-num=2 en-affil=Department of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology kn-affil= affil-num=3 en-affil=Department of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology kn-affil= affil-num=4 en-affil=Department of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology kn-affil= en-keyword=Microfluidics kn-keyword=Microfluidics en-keyword=Phase separation kn-keyword=Phase separation en-keyword=Nucleation kn-keyword=Nucleation en-keyword=Multi-core kn-keyword=Multi-core en-keyword=Rattle-shaped kn-keyword=Rattle-shaped END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=2 article-no= start-page=61 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250129 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Study of Podoplanin-Deficient Mouse Bone with Mechanical Stress en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objective: We investigated morphological differences in osteocyte processes between aged mice and our original podoplanin-conditional knockout (cKO) mice in which the floxed exon 3 of podoplanin was deleted by Dmp-1-driven Cre (Dmp1-Cre;Pdpnƒ¢/ƒ¢). Methods: SEM observation on osteocyte cell process, histochemistry for bone remodeling with mechanostress, and RT-PCR for RANKL and M-CSF in podoplanin cKO mouse bone with mechanostress was investigated. Results: SEM observations showed fewer and thinner osteocyte processes in femurs from 23-week-old Dmp1-Cre;Pdpnƒ¢/ƒ¢ mice than from 23-week-old wild-type mice, while the numbers of osteocyte processes in femurs and calvarias were similar in 23-week-old Dmp1-Cre;Pdpnƒ¢/ƒ¢ mice and 48-week-old wild-type mice. Furthermore, cell process numbers in femurs and calvarias were significantly smaller in 23-week-old Dmp1-Cre;Pdpnƒ¢/ƒ¢ mice than in 48-week-old wild-type mice. In the test for differences in alveolar bone resorption under mechanical stress between Dmp1-Cre;Pdpnƒ¢/ƒ¢ and wild-type mice, the area of TRAP-positive resorption pits was larger in wild-type mice than in Dmp1-Cre;Pdpnƒ¢/ƒ¢ mice. In a quantitative tissue PCR analysis, the mRNA expression levels of RANKL and M-CSF in alveolar bone under mechanical stress were significantly lower in Dmp1-Cre;Pdpnƒ¢/ƒ¢ mice than in wild-type mice. These results suggest that a reduction in cell process formation in osteocytes with podoplanin cKO affected the absorption of alveolar bone under mechanical stress in Dmp1-Cre;Pdpnƒ¢/ƒ¢ mice. Conclusions: In podoplanin-deficient bone, the deformation of osteocyte processes by mechanical stimuli is not recognized as a stress due to the lower number of cell processes with podoplanin deficiency; therefore, the production of osteoclast migration/differentiation factors by activated osteocytes is not fully induced and macrophage migration to alveolar bone with mechanical stress appeared to be suppressed. These results indicate that podoplanin-dependent osteocyte process formation indirectly plays a key role in sensing mechanical stress in bone. en-copyright= kn-copyright= en-aut-name=KanaiTakenori en-aut-sei=Kanai en-aut-mei=Takenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OsawaKyoko en-aut-sei=Osawa en-aut-mei=Kyoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KajiwaraKoichiro en-aut-sei=Kajiwara en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SatoYoshiaki en-aut-sei=Sato en-aut-mei=Yoshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SawaYoshihiko en-aut-sei=Sawa en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Orthodontics, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University kn-affil= affil-num=2 en-affil=Department of Orthodontics, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University kn-affil= affil-num=3 en-affil=Department of Oral Growth & Development, Hokkaido University kn-affil= affil-num=4 en-affil=Department of Orthodontics, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University kn-affil= affil-num=5 en-affil=Department of Oral Function & Anatomy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=podoplanin kn-keyword=podoplanin en-keyword=cKO kn-keyword=cKO en-keyword=osteocyte kn-keyword=osteocyte en-keyword=bone kn-keyword=bone en-keyword=remodeling kn-keyword=remodeling END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=4 article-no= start-page=1055 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250207 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Natural Course and Long-Term Outcomes of Gastric Subepithelial Lesions: A Systematic Review en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/Objectives: Gastric subepithelial lesions (SELs) are often incidentally detected during endoscopic examinations, with most patients being asymptomatic and lesions measuring <20 mm. Despite their generally indolent nature, certain SELs, such as gastrointestinal stromal tumors, require resection. Current guidelines recommend periodic surveillance; however, the natural course and long-term outcomes of gastric SELs have not been sufficiently investigated. This systematic review aimed to synthesize evidence on the progression, growth rate, and risk factors associated with gastric SELs to inform clinical management strategies. Methods: A comprehensive search of PubMed was conducted for peer-reviewed studies published between January 2000 and November 2024. Eligible studies included original studies on the follow-up and progression of gastric SELs. Non-English articles, reviews, case reports, and unrelated topics were excluded. In total, 277 articles were screened, with 15 additional articles identified through manual screening. Ultimately, 41 articles were included in the analysis. The study protocol is registered in PROSPERO (CRD42024614865). Results: Large-scale studies reported low growth rates of 2.0-8.5% over 2.0-5.0 years, while smaller studies reported a broader range of growth rates of 5.4-28.4%. The factors contributing to these discrepancies include patient selection, follow-up duration, and growth criteria. Risk factors for lesion size increase include larger initial lesion size, irregular margins, heterogeneous echo patterns, and certain tumor locations. Conclusions: These findings underscore the need for individualized management strategies based on lesion size, imaging characteristics, and risk factors. The close monitoring of high-risk lesions is crucial for timely intervention. Standardized growth criteria and optimized follow-up protocols are essential for improving clinical decision making and patient outcomes. en-copyright= kn-copyright= en-aut-name=IwamuroMasaya en-aut-sei=Iwamuro en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkadaHiroyuki en-aut-sei=Okada en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OtsukaMotoyuki en-aut-sei=Otsuka en-aut-mei=Motoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Internal Medicine, Japanese Red Cross Society Himeji Hospital kn-affil= affil-num=3 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=esophagogastroduodenoscopy kn-keyword=esophagogastroduodenoscopy en-keyword=gastric lesions kn-keyword=gastric lesions en-keyword=gastrointestinal stromal tumor kn-keyword=gastrointestinal stromal tumor en-keyword=subepithelial lesion kn-keyword=subepithelial lesion en-keyword=submucosal tumor kn-keyword=submucosal tumor END start-ver=1.4 cd-journal=joma no-vol=4 cd-vols= no-issue=1 article-no= start-page=e70077 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250302 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A case of invasive pulmonary aspergillosis associated with clozapine-induced agranulocytosis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Clozapine-induced agranulocytosis (CLIA) is a rare but serious complication. Fever associated with CLIA is typically treated with broad-spectrum antimicrobials, but empiric antifungal therapy is rarely used. While bacterial and viral infections have been reported in CLIA cases, no cases of fungal infections complicated by CLIA have been documented. We report the first case of CLIA complicated by invasive pulmonary aspergillosis (IPA) in a patient with schizophrenia. The diagnosis of IPA was made using serum beta-D-glucan, Aspergillus galactomannan antigen tests, and chest computed tomography (CT).
Case presentation: We present a case of a 51-year-old man with schizophrenia who developed CLIA complicated by IPA. The patient, diagnosed with treatment-resistant schizophrenia, was started on clozapine, but 9 months later he presented with fever, cough, leukopenia, and neutropenia. Clozapine was discontinued, and empirical treatments with cefepime and filgrastim were initiated. Serum beta-D-glucan and Aspergillus galactomannan antigen tests were positive, and chest CT showed well-circumscribed nodules, leading to a probable diagnosis of IPA. Antifungal therapy was switched from micafungin to voriconazole according to guidelines. His neutropenia and fever improved, and he was re-transferred to a psychiatric hospital.
Conclusion: CLIA can be complicated by fungal infections. When patients with CLIA present with fever, fungal infections, including IPA, should be considered in the differential diagnosis. Serological tests, including beta-D-glucan and Aspergillus galactomannan, are useful for the diagnosis of IPA as well as the appropriate use of antifungal agents in patients with CLIA. en-copyright= kn-copyright= en-aut-name=YokodeAkiyoshi en-aut-sei=Yokode en-aut-mei=Akiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujiwaraMasaki en-aut-sei=Fujiwara en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TeraoToshiki en-aut-sei=Terao en-aut-mei=Toshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SakamotoShinji en-aut-sei=Sakamoto en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamadaYuto en-aut-sei=Yamada en-aut-mei=Yuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SatoRyota en-aut-sei=Sato en-aut-mei=Ryota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MishimaMomoko en-aut-sei=Mishima en-aut-mei=Momoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YadaYuji en-aut-sei=Yada en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MatsuokaKen-Ichi en-aut-sei=Matsuoka en-aut-mei=Ken-Ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TakakiManabu en-aut-sei=Takaki en-aut-mei=Manabu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Neuropsychiatry, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Neuropsychiatry, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Neuropsychiatry, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Okayama Psychiatric Medical Center kn-affil= affil-num=7 en-affil=Okayama Psychiatric Medical Center kn-affil= affil-num=8 en-affil=Okayama Psychiatric Medical Center kn-affil= affil-num=9 en-affil=Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences kn-affil= affil-num=10 en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=clozapine-induced agranulocytosis kn-keyword=clozapine-induced agranulocytosis en-keyword=fungal infections kn-keyword=fungal infections en-keyword=invasive pulmonary aspergillosis kn-keyword=invasive pulmonary aspergillosis en-keyword=schizophrenia kn-keyword=schizophrenia END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=4 article-no= start-page=1391 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250219 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Course of General Fatigue in Patients with Post-COVID-19 Conditions Who Were Prescribed Hochuekkito: A Single-Center Exploratory Pilot Study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: After the start of the COVID-19 pandemic, general fatigue in patients with long COVID and post-COVID-19 conditions (PCC) became a medical issue. Although there is a lack of evidence-based treatments, Kampo medicine (traditional Japanese medicine) has gained attention in Japan. At an outpatient clinic in Japan specializing in long COVID, 24% of all prescriptions were Kampo medicines, and 72% of Kampo medicine prescriptions were hochuekkito. However, there has been no prospective, quantitative study on the course of fatigue in patients with long COVID and PCC who were prescribed hochuekkito. The aim of this study was to clarify the course of fatigue in those patients. Methods: This study included patients aged 18 years or older with general fatigue who visited the long COVID specialized outpatient clinic at Okayama University Hospital and consented to participate after being prescribed hochuekkito. We reviewed the backgrounds of the patients, and we evaluated the patients' fatigue assessment scale in person or online. Results: Twenty patients were enrolled in this study from September to December in 2023. The average age of the patients was 42.9 years (SD: 15.8 years) and 12 patients (60%) were female. After hochuekkito administration, the fatigue assessment scale score decreased from 35.9 (SD: 5.9) at the initial visit to 31.2 (SD: 9.4) after 8 weeks, indicating a trend for improvement in fatigue (difference: 4.7; 95% CI: 0.5-8.9). Conclusions: A trend for improvement in fatigue was observed in patients with long COVID and PCC who were prescribed hochuekkito, indicating a potential benefit of hochuekkito for general fatigue in such patients. General fatigue in patients with long COVID or PCC can be classified as post-infectious fatigue syndrome and is considered a condition of qi deficiency in Kampo medicine, for which hochuekkito is appropriately indicated. en-copyright= kn-copyright= en-aut-name=TokumasuKazuki en-aut-sei=Tokumasu en-aut-mei=Kazuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsukiNobuyoshi en-aut-sei=Matsuki en-aut-mei=Nobuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OtsukaYuki en-aut-sei=Otsuka en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SakamotoYoko en-aut-sei=Sakamoto en-aut-mei=Yoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=UedaKeigo en-aut-sei=Ueda en-aut-mei=Keigo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MatsudaYui en-aut-sei=Matsuda en-aut-mei=Yui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SakuradaYasue en-aut-sei=Sakurada en-aut-mei=Yasue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HondaHiroyuki en-aut-sei=Honda en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NakanoYasuhiro en-aut-sei=Nakano en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HasegawaToru en-aut-sei=Hasegawa en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TakaseRyosuke en-aut-sei=Takase en-aut-mei=Ryosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=OmuraDaisuke en-aut-sei=Omura en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=fatigue assessment scale (FAS) kn-keyword=fatigue assessment scale (FAS) en-keyword= general fatigue kn-keyword= general fatigue en-keyword= hochuekkito kn-keyword= hochuekkito en-keyword= kampo medicine kn-keyword= kampo medicine en-keyword= long COVID kn-keyword= long COVID en-keyword= post-COVID-19 condition kn-keyword= post-COVID-19 condition END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=2 article-no= start-page=267 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250122 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Abnormal Expression of Tubular SGLT2 and GULT2 in Diabetes Model Mice with Malocclusion-Induced Hyperglycemia en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: A relationship between malocclusion and the promotion of diabetes has been suggested. In hyperglycemia, the expression of sodium-glucose cotransporter 2 (SGLT2) and the facilitative glucose transporter 2 (GLUT2) is upregulated in proximal tubular cells, leading to an increase in renal glucose reabsorption. The present study aimed to investigate whether malocclusion contributes to diabetic exacerbation. Methods: Streptozotocin (STZ)-induced diabetic mice with malocclusion due to cutting molars were investigated based on increased blood glucose levels. PCR and immunohistochemical analyses were performed on diabetic mice kidneys to investigate the expression of SGLT2 and GLUT2. Results: Animal experiments were performed using 32 mice for 21 days. The time to reach a diabetic condition in STZ-administered mice was shorter with malocclusion than without malocclusion. The increase and mean blood glucose levels in STZ-administered mice were steeper and higher with malocclusion than without malocclusion. Urea albumin, BUN, and CRE levels were higher in diabetic mice with malocclusion than in diabetic mice without. Immunoreaction with anti-SGLT2 and anti-GLUT2 in the renal tissue of STZ-administered mice was stronger with malocclusion than without malocclusion. The amounts of SGLT2 and GLUT2 mRNA in the renal tissue in STZ-administered mice were higher with malocclusion than without malocclusion. The amounts of TNF-a and IL-6 mRNA in the large intestinal tissue in STZ-administered mice were higher with malocclusion than without malocclusion. Conclusions: Our results indicate that malocclusion accelerates the tubular expression of SGLT2 and GLUT2 under hyperglycemia. Malocclusion may be a diabetes-exacerbating factor with increased poor glycemic control due to shortened occlusion time resulting from swallowing food without chewing. en-copyright= kn-copyright= en-aut-name=KajiwaraKoichiro en-aut-sei=Kajiwara en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TamaokiSachio en-aut-sei=Tamaoki en-aut-mei=Sachio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SawaYoshihiko en-aut-sei=Sawa en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Oral Growth & Development, Fukuoka Dental College kn-affil= affil-num=2 en-affil=Department of Oral Growth & Development, Fukuoka Dental College kn-affil= affil-num=3 en-affil=Department of Oral Function & Anatomy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=malocclusion kn-keyword=malocclusion en-keyword= hyperglycemia kn-keyword= hyperglycemia en-keyword= SGLT2 kn-keyword= SGLT2 en-keyword= GLUT2 kn-keyword= GLUT2 END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=2 article-no= start-page=217 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250121 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Interchangeability of Cross-Platform Orthophotographic and LiDAR Data in DeepLabV3+-Based Land Cover Classification Method en-subtitle= kn-subtitle= en-abstract= kn-abstract=Riverine environmental information includes important data to collect, and the data collection still requires personnel's field surveys. These on-site tasks still face significant limitations (i.e., hard or danger to entry). In recent years, as one of the efficient approaches for data collection, air-vehicle-based Light Detection and Ranging technologies have already been applied in global environmental research, i.e., land cover classification (LCC) or environmental monitoring. For this study, the authors specifically focused on seven types of LCC (i.e., bamboo, tree, grass, bare ground, water, road, and clutter) that can be parameterized for flood simulation. A validated airborne LiDAR bathymetry system (ALB) and a UAV-borne green LiDAR System (GLS) were applied in this study for cross-platform analysis of LCC. Furthermore, LiDAR data were visualized using high-contrast color scales to improve the accuracy of land cover classification methods through image fusion techniques. If high-resolution aerial imagery is available, then it must be downscaled to match the resolution of low-resolution point clouds. Cross-platform data interchangeability was assessed by comparing the interchangeability, which measures the absolute difference in overall accuracy (OA) or macro-F1 by comparing the cross-platform interchangeability. It is noteworthy that relying solely on aerial photographs is inadequate for achieving precise labeling, particularly under limited sunlight conditions that can lead to misclassification. In such cases, LiDAR plays a crucial role in facilitating target recognition. All the approaches (i.e., low-resolution digital imagery, LiDAR-derived imagery and image fusion) present results of over 0.65 OA and of around 0.6 macro-F1. The authors found that the vegetation (bamboo, tree, grass) and road species have comparatively better performance compared with clutter and bare ground species. Given the stated conditions, differences in the species derived from different years (ALB from year 2017 and GLS from year 2020) are the main reason. Because the identification of clutter species includes all the items except for the relative species in this research, RGB-based features of the clutter species cannot be substituted easily because of the 3-year gap compared with other species. Derived from on-site reconstruction, the bare ground species also has a further color change between ALB and GLS that leads to decreased interchangeability. In the case of individual species, without considering seasons and platforms, image fusion can classify bamboo and trees with higher F1 scores compared to low-resolution digital imagery and LiDAR-derived imagery, which has especially proved the cross-platform interchangeability in the high vegetation types. In recent years, high-resolution photography (UAV), high-precision LiDAR measurement (ALB, GLS), and satellite imagery have been used. LiDAR measurement equipment is expensive, and measurement opportunities are limited. Based on this, it would be desirable if ALB and GLS could be continuously classified by Artificial Intelligence, and in this study, the authors investigated such data interchangeability. A unique and crucial aspect of this study is exploring the interchangeability of land cover classification models across different LiDAR platforms. en-copyright= kn-copyright= en-aut-name=PanShijun en-aut-sei=Pan en-aut-mei=Shijun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YoshidaKeisuke en-aut-sei=Yoshida en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishiyamaSatoshi en-aut-sei=Nishiyama en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KojimaTakashi en-aut-sei=Kojima en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HashimotoYutaro en-aut-sei=Hashimoto en-aut-mei=Yutaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=TOKEN C. E. E. Consultants Co., Ltd. kn-affil= affil-num=5 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=airborne LiDAR bathymetry kn-keyword=airborne LiDAR bathymetry en-keyword=cross-platform kn-keyword=cross-platform en-keyword=deep learning kn-keyword=deep learning en-keyword=green LiDAR system kn-keyword=green LiDAR system en-keyword=riverine land cover classification kn-keyword=riverine land cover classification END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=2 article-no= start-page=235 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250205 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Distinct Infection Mechanisms of Rhizoctonia solani AG-1 IA and AG-4 HG-I+II in Brachypodium distachyon and Barley en-subtitle= kn-subtitle= en-abstract= kn-abstract=Rhizoctonia solani is a basidiomycete phytopathogenic fungus that causes rapid necrosis in a wide range of crop species, leading to substantial agricultural losses worldwide. The species complex is divided into 13 anastomosis groups (AGs) based on hyphal fusion compatibility and further subdivided by culture morphology. While R. solani classifications were shown to be independent of host specificity, it remains unclear whether different R. solani isolates share similar virulence mechanisms. Here, we investigated the infectivity of Japanese R. solani isolates on Brachypodium distachyon and barley. Two isolates, AG-1 IA (from rice) and AG-4 HG-I+II (from cauliflower), infected leaves of both plants, but only AG-4 HG-I+II infected roots. B. distachyon accessions Bd3-1 and Gaz-4 and barley cultivar 'Morex' exhibited enhanced resistance to both isolates compared to B. distachyon Bd21 and barley cultivars 'Haruna Nijo' and 'Golden Promise'. During AG-1 IA infection, but not AG-4 HG-I+II infection, resistant Bd3-1 and Morex induced genes for salicylic acid (SA) and N-hydroxypipecolic acid (NHP) biosynthesis. Pretreatment with SA or NHP conferred resistance to AG-1 IA, but not AG-4 HG-I+II, in susceptible B. distachyon Bd21 and barley Haruna Nijo. On the leaves of susceptible Bd21 and Haruna Nijo, AG-1 IA developed extensive mycelial networks with numerous infection cushions, which are specialized infection structures well-characterized in rice sheath blight. In contrast, AG-4 HG-I+II formed dispersed mycelial masses associated with underlying necrosis. We propose that the R. solani species complex encompasses at least two distinct infection strategies: AG-1 IA exhibits a hemibiotrophic lifestyle, while AG-4 HG-I+II follows a predominantly necrotrophic strategy. en-copyright= kn-copyright= en-aut-name=MahadevanNiranjan en-aut-sei=Mahadevan en-aut-mei=Niranjan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FernandaRozi en-aut-sei=Fernanda en-aut-mei=Rozi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KouzaiYusuke en-aut-sei=Kouzai en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KohnoNatsuka en-aut-sei=Kohno en-aut-mei=Natsuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NagaoReiko en-aut-sei=Nagao en-aut-mei=Reiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NyeinKhin Thida en-aut-sei=Nyein en-aut-mei=Khin Thida kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=WatanabeMegumi en-aut-sei=Watanabe en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SakataNanami en-aut-sei=Sakata en-aut-mei=Nanami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MochidaKeiichi en-aut-sei=Mochida en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=HisanoHiroshi en-aut-sei=Hisano en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Crop Stress Management Group, Division of Plant Molecular Regulation Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO) kn-affil= affil-num=4 en-affil=Faculty of Agriculture, Okayama University kn-affil= affil-num=5 en-affil=Faculty of Agriculture, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=10 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=11 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=12 en-affil=RIKEN Center for Sustainable Resource Science kn-affil= affil-num=13 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=14 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Rhizoctonia solani species complex kn-keyword=Rhizoctonia solani species complex en-keyword=virulence mechanism kn-keyword=virulence mechanism en-keyword=infection behavior kn-keyword=infection behavior en-keyword=salicylic acid kn-keyword=salicylic acid en-keyword=N-hydroxypipecolic acid kn-keyword=N-hydroxypipecolic acid END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=2 article-no= start-page=60 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250205 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Clinical Significance of Serum Omega-3 Fatty Acids on Endothelial Function in Patients with Coronary Artery Disease Under Statin Therapy en-subtitle= kn-subtitle= en-abstract= kn-abstract=Vascular endothelial function plays an important role in the pathogenesis of atherosclerosis. The reduction in low-density lipoprotein cholesterol (LDL-C) is a key therapy for preventing coronary artery disease (CAD), but the role of omega-3 fatty acids as residual risk factors of CAD remains controversial. We studied the correlation between serum omega-3 fatty acid levels and endothelial function in patients with CAD receiving statin therapy and examined the effect of eicosapentaenoic acid (EPA) therapy on endothelial function. Methods: A total of 150 consecutive patients with CAD receiving statin therapy (LDL-C levels < 100 mg/dL) were enrolled. Serum omega-3 fatty acid levels were measured, and endothelial function was assessed by flow-mediated dilation (FMD) of the brachial artery. Subsequently, 65 patients with impaired FMD (<6%) and low EPA/arachidonic acid (AA) (<0.3) were administered EPA, and FMD was reassessed after 3 months. Results: A multivariate linear regression analysis demonstrated that serum docosahexaenoic acid (DHA) and EPA plus DHA levels were independent determinants of %FMD (ƒÀ = 0.214 and 0.163, p < 0.05, respectively). The EPA therapy significantly improved %FMD (from 3.7 } 1.0% to 4.1 } 1.0%, p < 0.05) in patients with low EPA/AA, and especially in patients with low EPA/AA and high triglyceride levels (from 3.4 } 1.0% to 4.0 } 1.1%, p < 0.01). Conclusions: Serum omega-3 fatty acid levels were associated with endothelial dysfunction in patients with CAD receiving statin therapy. EPA therapy improves endothelial function in patients with low EPA/AA, especially those with low EPA/AA and high triglycerides. en-copyright= kn-copyright= en-aut-name=YunokiKei en-aut-sei=Yunoki en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsumiHiroaki en-aut-sei=Matsumi en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KuboMotoki en-aut-sei=Kubo en-aut-mei=Motoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HataYoshiki en-aut-sei=Hata en-aut-mei=Yoshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YuasaShinsuke en-aut-sei=Yuasa en-aut-mei=Shinsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine kn-affil= affil-num=5 en-affil=Minamino Cardiovascular Hospital kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine kn-affil= en-keyword=coronary artery disease kn-keyword=coronary artery disease en-keyword=endothelial function kn-keyword=endothelial function en-keyword=eicosapentaenoic acid kn-keyword=eicosapentaenoic acid en-keyword=residual risk factor kn-keyword=residual risk factor END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=2 article-no= start-page=101 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250210 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Radiographic and Clinical Assessment of Unidirectional Porous Beta-Tricalcium Phosphate to Treat Benign Bone Tumors en-subtitle= kn-subtitle= en-abstract= kn-abstract=The purpose of this study was to evaluate radiographic changes, clinical outcomes, and complications following unidirectional porous beta-tricalcium phosphate (UDPTCP) implantation for the treatment of benign bone tumors. We retrospectively analyzed 46 patients who underwent intralesional resection. The patients were divided into two cohorts: Cohort 1 (n = 32), which included all bones except the phalanges and metacarpal/tarsal bones, and Cohort 2 (n = 14), which included the phalanges and metacarpal/tarsal bones. Radiographic changes were assessed at each reading based on resorption of the implanted UDPTCP and bone trabeculation through the defect. UDPTCP resorption and bone trabeculation were observed on radiographs within 3 months of surgery in all patients. Bone remodeling in the cavity progressed steadily for up to 3 years postoperatively. In Cohort 1, resorption and trabeculation progressed significantly in young patients, and trabeculation developed significantly in small lesions. The rates of resorption and trabeculation at 3 months postoperatively correlated statistically with their increased rates at one year. There was no statistical difference in resorption and trabeculation rates between Cohort 1 and Cohort 2. There were no cases of postoperative deep infections or allergic reactions related to the implant. UDPTCP is a useful bone-filling substitute for the treatment of benign bone tumors and has a low complication rate. en-copyright= kn-copyright= en-aut-name=KunisadaToshiyuki en-aut-sei=Kunisada en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakataEiji en-aut-sei=Nakata en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujiwaraTomohiro en-aut-sei=Fujiwara en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KatayamaHaruyoshi en-aut-sei=Katayama en-aut-mei=Haruyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ItanoTakuto en-aut-sei=Itano en-aut-mei=Takuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KurozumiTakanao en-aut-sei=Kurozumi en-aut-mei=Takanao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AndoTeruhiko en-aut-sei=Ando en-aut-mei=Teruhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OzakiToshifumi en-aut-sei=Ozaki en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=unidirectional porous beta-tricalcium phosphate kn-keyword=unidirectional porous beta-tricalcium phosphate en-keyword= bone tumor kn-keyword= bone tumor en-keyword= bone graft kn-keyword= bone graft en-keyword= radiography kn-keyword= radiography en-keyword= bone remodeling kn-keyword= bone remodeling END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=2 article-no= start-page=108 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250205 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Implementation of Sensor Input Setup Assistance Service Using Generative AI for SEMAR IoT Application Server Platform en-subtitle= kn-subtitle= en-abstract= kn-abstract=For rapid deployments of various IoT application systems, we have developed Smart Environmental Monitoring and Analytical in Real-Time (SEMAR) as an integrated server platform. It is equipped with rich functions for collecting, analyzing, and visualizing various data. Unfortunately, the proper configuration of SEMAR with a variety of IoT devices can be complex and challenging for novice users, since it often requires technical expertise. The assistance of Generative AI can be helpful to solve this drawback. In this paper, we present an implementation of a sensor input setup assistance service for SEMAR using prompt engineering techniques and Generative AI. A user needs to define the requirement specifications and environments of the IoT application system for sensor inputs, and give them to the service. Then, the service provides step-by-step guidance on sensor connections, communicating board configurations, network connections, and communication protocols to the user, which can help the user easily set up the configuration to connect the relevant devices to SEMAR. For evaluations, we applied the proposal to the input sensor setup processes of three practical IoT application systems with SEMAR, namely, a smart light, water heater, and room temperature monitoring system. In addition, we applied it to the setup process of an IoT application system for a course for undergraduate students at the Insitut Bisnis dan Teknologi (INSTIKI), Indonesia. The results demonstrate the effectiveness of the proposed service for SEMAR. en-copyright= kn-copyright= en-aut-name=KotamaI. Nyoman Darma en-aut-sei=Kotama en-aut-mei=I. Nyoman Darma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=PandumanYohanes Yohanie Fridelin en-aut-sei=Panduman en-aut-mei=Yohanes Yohanie Fridelin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=BrataKomang Candra en-aut-sei=Brata en-aut-mei=Komang Candra kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=PradhanaAnak Agung Surya en-aut-sei=Pradhana en-aut-mei=Anak Agung Surya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=Noprianto en-aut-sei=Noprianto en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=DesnanjayaI. Gusti Made Ngurah en-aut-sei=Desnanjaya en-aut-mei=I. Gusti Made Ngurah kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Department of Computer System Engineering, Institute of Business and Technology Indonesia kn-affil= en-keyword=Internet of Things kn-keyword=Internet of Things en-keyword= generative AI kn-keyword= generative AI en-keyword= review kn-keyword= review en-keyword= application server platform kn-keyword= application server platform en-keyword= SEMAR kn-keyword= SEMAR en-keyword= sensor input kn-keyword= sensor input END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=2 article-no= start-page=91 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250124 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=An Application of SEMAR IoT Application Server Platform to Drone-Based Wall Inspection System Using AI Model en-subtitle= kn-subtitle= en-abstract= kn-abstract=Recently, artificial intelligence (AI) has been adopted in a number of Internet of Things (IoT) application systems to enhance intelligence. We have developed a ready-made server with rich built-in functions to collect, process, display, analyze, and store data from various IoT devices, the SEMAR (Smart Environmental Monitoring and Analytics in Real-Time) IoT application server platform, in which various AI techniques have been implemented to enhance its capabilities. In this paper, we present an application of SEMAR to a drone-based wall inspection system using an object detection AI model called You Only Look Once (YOLO). This system aims to detect wall cracks at high places using images taken via a camera on a flying drone. An edge computing device is installed to control the drone, sending the taken images through the Kafka system, storing them with the drone flight data, and sending the data to SEMAR. The images are analyzed via YOLO through SEMAR. For evaluations, we implemented the system using Ryze Tello for the drone and Raspberry Pi for the edge, and we evaluated the detection accuracy. The preliminary experiment results confirmed the effectiveness of the proposal. en-copyright= kn-copyright= en-aut-name=PandumanYohanes Yohanie Fridelin en-aut-sei=Panduman en-aut-mei=Yohanes Yohanie Fridelin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HusnaRadhiatul en-aut-sei=Husna en-aut-mei=Radhiatul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NopriantoNobuo en-aut-sei=Noprianto en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SakamakiShunya en-aut-sei=Sakamaki en-aut-mei=Shunya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SukaridhotoSritrusta en-aut-sei=Sukaridhoto en-aut-mei=Sritrusta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SyaifudinYan Watequlis en-aut-sei=Syaifudin en-aut-mei=Yan Watequlis kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=RahmadaniAlfiandi Aulia en-aut-sei=Rahmadani en-aut-mei=Alfiandi Aulia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Department of Informatics and Computer, Politeknik Elektronika Negeri Surabaya kn-affil= affil-num=7 en-affil=Department of Information Technology, State Polytechnic of Malang kn-affil= affil-num=8 en-affil=Department of Electrical Engineering, State Polytechnic of Malang kn-affil= en-keyword=Internet of Things kn-keyword=Internet of Things en-keyword= AI kn-keyword= AI en-keyword= SEMAR kn-keyword= SEMAR en-keyword= crack detection kn-keyword= crack detection en-keyword= drone kn-keyword= drone en-keyword= Kafka kn-keyword= Kafka END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=2 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241225 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Enhancing Campus Environment: Real-Time Air Quality Monitoring Through IoT and Web Technologies en-subtitle= kn-subtitle= en-abstract= kn-abstract=Nowadays, enhancing campus environments through mitigations of air pollutions is an essential endeavor to support academic achievements, health, and safety of students and staffs in higher educational institutes. In laboratories, pollutants from welding, auto repairs, or chemical experiments can drastically degrade the air quality in the campus, endangering the respiratory and cognitive health of students and staffs. Besides, in universities in Indonesia, automobile emissions of harmful substances such as carbon monoxide (CO), nitrogen dioxide (NO2), and hydrocarbon (HC) have been a serious problem for a long time. Almost everybody is using a motorbike or a car every day in daily life, while the number of students is continuously increasing. However, people in many campuses including managements do not be aware these problems, since air quality is not monitored. In this paper, we present a real-time air quality monitoring system utilizing Internet of Things (IoT) integrated sensors capable of detecting pollutants and measuring environmental conditions to visualize them. By transmitting data to the SEMAR IoT application server platform via an ESP32 microcontroller, this system provides instant alerts through a web application and Telegram notifications when pollutant levels exceed safe thresholds. For evaluations of the proposed system, we adopted three sensors to measure the levels of CO, NO2, and HC and conducted experiments in three sites, namely, Mechatronics Laboratory, Power and Emission Laboratory, and Parking Lot, at the State Polytechnic of Malang, Indonesia. Then, the results reveal Good, Unhealthy, and Dangerous for them, respectively, among the five categories defined by the Indonesian government. The system highlighted its ability to monitor air quality fluctuations, trigger warnings of hazardous conditions, and inform the campus community. The correlation of the sensor levels can identify the relationship of each pollutant, which provides insight into the characteristics of pollutants in a particular scenario. en-copyright= kn-copyright= en-aut-name=RahmadaniAlfiandi Aulia en-aut-sei=Rahmadani en-aut-mei=Alfiandi Aulia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SyaifudinYan Watequlis en-aut-sei=Syaifudin en-aut-mei=Yan Watequlis kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SetiawanBudhy en-aut-sei=Setiawan en-aut-mei=Budhy kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=PandumanYohanes Yohanie Fridelin en-aut-sei=Panduman en-aut-mei=Yohanes Yohanie Fridelin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Electrical Engineering, State Polytechnic of Malang kn-affil= affil-num=2 en-affil=Department of Information Technology, State Polytechnic of Malang kn-affil= affil-num=3 en-affil=Department of Electrical Engineering, State Polytechnic of Malang kn-affil= affil-num=4 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=5 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= en-keyword=Internet of Things kn-keyword=Internet of Things en-keyword= campus air quality kn-keyword= campus air quality en-keyword= pollutant detection kn-keyword= pollutant detection en-keyword= SEMAR kn-keyword= SEMAR en-keyword= sensor technology kn-keyword= sensor technology en-keyword= web application kn-keyword= web application END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=e202403213 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250218 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Antifouling Activity of Xylemin, Its Structural Analogs, and Related Polyamines en-subtitle= kn-subtitle= en-abstract= kn-abstract=Biofouling, which is the accumulation of organisms on undersea structures, poses significant global, social, and economic issues. Although organotin compounds were effective antifoulants since the 1960s, they were banned in 2008 due to their toxicity to marine life. Although tin-free alternatives have been developed, they also raise environmental concerns. This underscores the need for effective, nontoxic antifouling agents. We previously synthesized N-(4-aminobutyl)propylamine (xylemin) and its structural analogs. In this study, we assayed the antifouling activity and toxicity of xylemin, its structural analogs, and related polyamines toward cypris larvae of the barnacle Amphibalanus amphitrite. Xylemin and its Boc-protected analog exhibited antifouling activities with 50% effective concentrations (EC50) of 4.25 and 6.11 ?g/mL, respectively. Four xylemin analogs did not show a settlement-inhibitory effect at a concentration of 50 ?g/mL. Putrescine, spermidine, spermine, and thermospermine, which are xylemin-related polyamines, did not display antifoulant effects (EC50 > 50 ?g/mL). All evaluated compounds were nontoxic at a concentration of 50 ?g/mL. These findings indicate that the size and structure of the N-alkyl group are essential for the antifouling activity of xylemin. Therefore, xylemin and its analogs hold promise as nontoxic, eco-friendly antifouling agents, offering a sustainable solution to biofouling in marine environments. en-copyright= kn-copyright= en-aut-name=TakamuraHiroyoshi en-aut-sei=Takamura en-aut-mei=Hiroyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YorisueTakefumi en-aut-sei=Yorisue en-aut-mei=Takefumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanakaKenta en-aut-sei=Tanaka en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KadotaIsao en-aut-sei=Kadota en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Institute of Natural and Environmental Sciences, University of Hyogo kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=4 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Amines kn-keyword=Amines en-keyword=Antifouling activity kn-keyword=Antifouling activity en-keyword=Barnacle kn-keyword=Barnacle en-keyword=Structure?activity relationships kn-keyword=Structure?activity relationships en-keyword=Xylemin kn-keyword=Xylemin END start-ver=1.4 cd-journal=joma no-vol=19 cd-vols= no-issue=1 article-no= start-page=ra.2023-0019 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Non-Sinus-Type Dural Arteriovenous Fistula at the Foramen Magnum: A Review of the Literature en-subtitle= kn-subtitle= en-abstract= kn-abstract=Dural arteriovenous fistula (dAVF) of the foramen magnum (FM) region is rare. Moreover, the terminology of dAVF is very confusing in this region. In the narrow sense, the FM dAVF is the non-sinus-type dAVF with direct venous reflux to the medulla oblongata or spinal cord via the bridging veins (BVs) of the FM. Previous literature was systematically reviewed to investigate the clinical characteristics, angioarchitecture, and effective treatment of the FM dAVF. From the literature review, almost all the feeders of FM dAVF were dural branches. Spinal pial arteries were rarely involved as the feeder. All lesions had venous reflux to the medulla oblongata via medullary BVs. The FM dAVF is characterized by a significant male predominance and a high incidence of aggressive symptoms. The most common symptom is congestive myelopathy, followed by hemorrhage. The FM dAVF differs from the craniocervical junction (CCJ) arteriovenous fistula (AVF) and is similar to the thoracolumbar spinal dAVF. Direct surgery for the FM dAVF is effective and safe. Endovascular treatment for the FM dAVF may be more effective and has lower complication rates than that for the CCJ AVF. en-copyright= kn-copyright= en-aut-name=HiramatsuMasafumi en-aut-sei=Hiramatsu en-aut-mei=Masafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OzakiTomohiko en-aut-sei=Ozaki en-aut-mei=Tomohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AokiRie en-aut-sei=Aoki en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OdaShinri en-aut-sei=Oda en-aut-mei=Shinri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HarumaJun en-aut-sei=Haruma en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HishikawaTomohito en-aut-sei=Hishikawa en-aut-mei=Tomohito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SugiuKenji en-aut-sei=Sugiu en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=DateIsao en-aut-sei=Date en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Neurological Surgery, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Neurosurgery, National Hospital Organization Osaka National Hospital kn-affil= affil-num=3 en-affil=Department of Neurosurgery, Tokai University Hachioji Hospital kn-affil= affil-num=4 en-affil=Department of Neurosurgery, Tokai University Hachioji Hospital kn-affil= affil-num=5 en-affil=Department of Neurological Surgery, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Neurological Surgery, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Neurological Surgery, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Neurological Surgery, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=dural arteriovenous fistula kn-keyword=dural arteriovenous fistula en-keyword=foramen magnum kn-keyword=foramen magnum en-keyword=bridging vein kn-keyword=bridging vein en-keyword=treatment kn-keyword=treatment END start-ver=1.4 cd-journal=joma no-vol=197 cd-vols= no-issue= article-no= start-page=115301 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202503 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Fraglide-1 from traditional Chinese aromatic vinegar: A natural AhR antagonist for atopic dermatitis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Traditional Chinese Zhenjiang aromatic vinegar (Kozu) contains Fraglide-1 (FG1), a bioactive lactone with demonstrated peroxisome proliferator-activated receptor gamma (PPARƒÁ) agonist and antioxidant activities. This study explored FG1's novel ability to antagonize the aryl hydrocarbon receptor (AhR) signaling pathway, which regulates artemin expression and contributes to itching and inflammation in atopic dermatitis. Through molecular docking simulations and cell-based assays in human keratinocytes, we demonstrated FG1's potent antagonistic activity against AhR signaling. FG1 effectively suppressed FICZ-induced inflammatory responses, including artemin expression, with potency (half maximal inhibitory concentration, IC50 = 5.1 ƒÊM) comparable to the synthetic antagonist StemRegenin 1 (SR1) while demonstrating a superior safety profile (median lethal concentration, LC50 > 100 ƒÊM vs. 27.5 ƒÊM for SR1). These findings expand our understanding of bioactive compounds from traditional fermented foods and their regulatory effects on AhR signaling, providing a foundation for future studies on FG1's role in modulating skin inflammation. en-copyright= kn-copyright= en-aut-name=KatoKosuke en-aut-sei=Kato en-aut-mei=Kosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AkamatsuMiki en-aut-sei=Akamatsu en-aut-mei=Miki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KakimaruSaya en-aut-sei=Kakimaru en-aut-mei=Saya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KoreishiMayuko en-aut-sei=Koreishi en-aut-mei=Mayuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakagiMasahiro en-aut-sei=Takagi en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MiyashitaMasahiro en-aut-sei=Miyashita en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MurataYoshiyuki en-aut-sei=Murata en-aut-mei=Yoshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakamuraYoshimasa en-aut-sei=Nakamura en-aut-mei=Yoshimasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SatohAyano en-aut-sei=Satoh en-aut-mei=Ayano kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TsujinoYoshio en-aut-sei=Tsujino en-aut-mei=Yoshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=5 en-affil=School of Materials Science, Japan Advanced Institute of Science and Technology kn-affil= affil-num=6 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=7 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=10 en-affil=Graduate School of Science, Technology and Innovation, Kobe University kn-affil= en-keyword=AhR kn-keyword=AhR en-keyword=Xenobiotic responsive element kn-keyword=Xenobiotic responsive element en-keyword=StemRegenin 1 kn-keyword=StemRegenin 1 en-keyword=ARNT kn-keyword=ARNT en-keyword=Atopic dermatitis kn-keyword=Atopic dermatitis en-keyword=Artemin kn-keyword=Artemin END