このエントリーをはてなブックマークに追加


ID 30131
フルテキストURL
著者
Tanaka, Masahiro Okayama University
抄録

In this paper, nonlinear identification is dealt with by using Gaussian sum distribution. This model is also called a stochastic neural network. By using the stochastic model, it is possible to estimate the output and also the missing elements in the input vector within the framework of conditional estimation. The model parameters can be estimated by using the EM algorithm. By interpolating the unknown elements, we don't have to discard the vectors including the missing elements

キーワード
Gaussian distribution
neural nets
nonlinear dynamical systems
parameter estimation
備考
Digital Object Identifier: 10.1109/CDC.1996.574577
Published with permission from the copyright holder. This is the institute's copy, as published in Decision and Control, 1996., Proceedings of the 35th IEEE, 11-13 Dec. 1996, Vol. 1, Pages 933-934.
Publisher URL:http://dx.doi.org/10.1109/CDC.1996.574577
Copyright © 1996 IEEE. All rights reserved.
発行日
1996-12
出版物タイトル
Decision and Control
1巻
開始ページ
933
終了ページ
934
資料タイプ
学術雑誌論文
言語
英語
査読
有り
DOI
Submission Path
industrial_engineering/52