start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Activation of barium titanate for photocatalytic overall water splitting via low-valence cation codoping en-subtitle= kn-subtitle= en-abstract= kn-abstract=Barium titanate (BaTiO3) has long been regarded as inactive for photocatalytic overall water splitting, in stark contrast to its perovskite counterparts SrTiO3 and CaTiO3. Here we report that BaTiO3 codoped with Al3+ and Sc3+ at Ti4+ sites under flux synthesis conditions is activated as a robust photocatalyst for overall water splitting. This material achieves apparent quantum yields of 29.8% at 310 nm and 27.5% at 365 nm, representing the first demonstration of efficient overall water splitting on BaTiO3. Comparative analyses show that BaTiO3 doped only with Al3+ suffers from severe band-edge disorder, whereas BaTiO3 codoped with Al3+ and Mg2+ exhibits clear activation with moderate efficiency. In contrast, BaTiO3 codoped with Al3+ and Sc3+ achieves the critical defect and structural control required to push the material across the threshold from inactive to highly active. These findings overturn the long-standing perception of BaTiO3 as unsuitable for water splitting and establish a general design principle for activating previously inactive perovskite oxides, thereby expanding the materials palette for solar-to-hydrogen energy conversion. en-copyright= kn-copyright= en-aut-name=IkedaShigeru en-aut-sei=Ikeda en-aut-mei=Shigeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakagiKaori en-aut-sei=Takagi en-aut-mei=Kaori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TomizawaRyota en-aut-sei=Tomizawa en-aut-mei=Ryota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NaganoTomoya en-aut-sei=Nagano en-aut-mei=Tomoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HayashiKoji en-aut-sei=Hayashi en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamakataAkira en-aut-sei=Yamakata en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NoseYoshitaro en-aut-sei=Nose en-aut-mei=Yoshitaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Faculty of Science and Engineering, Konan University kn-affil= affil-num=2 en-affil=Faculty of Science and Engineering, Konan University kn-affil= affil-num=3 en-affil=Carbon Neutral Energy Development Division, Toyota Motor Corporation kn-affil= affil-num=4 en-affil=Carbon Neutral Energy Development Division, Toyota Motor Corporation kn-affil= affil-num=5 en-affil=Carbon Neutral Energy Development Division, Toyota Motor Corporation kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=7 en-affil=Department of Materials Science and Engineering, Kyoto University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=135 cd-vols= no-issue=10 article-no= start-page=106504 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250904 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Terahertz Field Control of Electronic-Ferroelectric Anisotropy at Room Temperature in LuFe2⁢O4 en-subtitle= kn-subtitle= en-abstract= kn-abstract=Electronic ferroelectrics, with polarization 𝑷 induced by strongly correlated charges, are expected to show ultrafast, huge, and flexible responses required in future optoelectronics. Although the challenges for ultrafast manipulation of such a polarization are ongoing, the expected advantages have been unclear. In this Letter, we demonstrate an unprecedentedly large increase by a factor of 2.7 in optical second harmonic generation at room temperature in the prototypical electronic ferroelectrics, the rare-earth ferrite LuFe2⁢O4, by applying a terahertz field of 260  kV/cm. The transient anisotropy indicates that the direction of macroscopic polarization can be controlled three dimensionally on subpicosecond timescales, offering additional degrees of freedom in controlling polarization. Although the polarization response is in phase concerning the terahertz field, its sensitivity increased with delay, indicating that cooperative interactions among microscopic domains play an important role in the unprecedented response. en-copyright= kn-copyright= en-aut-name=ItohHirotake en-aut-sei=Itoh en-aut-mei=Hirotake kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MinakamiRyusei en-aut-sei=Minakami en-aut-mei=Ryusei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YuHongwu en-aut-sei=Yu en-aut-mei=Hongwu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TsuruokaRyohei en-aut-sei=Tsuruoka en-aut-mei=Ryohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AmanoTatsuya en-aut-sei=Amano en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KawakamiYohei en-aut-sei=Kawakami en-aut-mei=Yohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KoshiharaShin-ya en-aut-sei=Koshihara en-aut-mei=Shin-ya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=FujiwaraKosuke en-aut-sei=Fujiwara en-aut-mei=Kosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IkedaNaoshi en-aut-sei=Ikeda en-aut-mei=Naoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OkimotoYoichi en-aut-sei=Okimoto en-aut-mei=Yoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=IwaiShinichiro en-aut-sei=Iwai en-aut-mei=Shinichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Tohoku University kn-affil= affil-num=2 en-affil=Tohoku University kn-affil= affil-num=3 en-affil=Institute of Science Tokyo kn-affil= affil-num=4 en-affil=Tohoku University kn-affil= affil-num=5 en-affil=Tohoku University kn-affil= affil-num=6 en-affil=Tohoku University kn-affil= affil-num=7 en-affil=Institute of Science Tokyo kn-affil= affil-num=8 en-affil=Okayama University kn-affil= affil-num=9 en-affil=Okayama University kn-affil= affil-num=10 en-affil=Institute of Science Tokyo kn-affil= affil-num=11 en-affil=Tohoku University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=89 cd-vols= no-issue=11 article-no= start-page=337 end-page=343 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251101 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Ti-18Nb-xAl合金の構成相と材料特性に及ぼすAl添加量の影響 en-subtitle= kn-subtitle= en-abstract= kn-abstract=The Ti-18mass%Nb alloy with a quenched α” martensitic structure exhibited a high damping capacity. However, there are issues such as lower strength than annealed α+β structure and decreasing damping capacity due to heating until 400 K. Therefore, in this study, to address these issues, we investigated the effect of Al addition on the constituent phases and material properties of Ti-18Nb-xAl alloys. The crystal structure was determined by examining the lattice constant and unit volume using X-ray diffraction, and optical microscopy was also performed. The material properties were investigated by Vickers hardness, Young’s modulus, internal friction, tensile tests, and DSC measurements. Vickers hardness and tensile strength increased with increasing Al content. This is thought to be due to the combined effects of the refinement of the microstructure and solid-solution strengthening due to Al addition. The Young’s modulus increased slightly from 0Al to 1Al, but increased significantly to 4Al. Internal friction was highest for 0Al and decreased for 4Al, whereas 7Al showed a higher value than 1Al. In the DSC heating curves, there was a decrease in the exothermic peak starting temperature and an increase in the phase-transformation heat with the addition of Al, except for 1Al. It was suggested that these changes in Ti-18Nb-xAl alloys were influenced by the structure of the quenched α” phase, texture, and pseudoelasticity or phase transformation by deformation. en-copyright= kn-copyright= en-aut-name=MantaniYoshikazu en-aut-sei=Mantani en-aut-mei=Yoshikazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakemotoYoshito en-aut-sei=Takemoto en-aut-mei=Yoshito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Materials Science and Engineering, National Institute of Technology (KOSEN), Suzuka College kn-affil= affil-num=2 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=ternary titanium alloy kn-keyword=ternary titanium alloy en-keyword=martensite kn-keyword=martensite en-keyword=lattice constant kn-keyword=lattice constant en-keyword=hardness kn-keyword=hardness en-keyword=Young’s modulus kn-keyword=Young’s modulus en-keyword=internal friction kn-keyword=internal friction en-keyword=cyclic tensile test kn-keyword=cyclic tensile test en-keyword=texture kn-keyword=texture END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251005 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Artificial Selections for Life-History Traits Affect Effective Cumulative Temperature and Developmental Zero Point in Zeugoducus cucurbitae en-subtitle= kn-subtitle= en-abstract= kn-abstract=Effective cumulative temperature and developmental zero point are important indicators for estimating the timing of organism development and the area of distribution. These indicators are generally considered to have unique values for different species of organisms and are also important for predicting the distribution range of animals and plants, especially insect pests. These values generally are species-specific, but there is variation within populations in traits having a genetic component. However, there are no studies on what kind of selection pressure affects these indicator values. To address this issue, it would be worthwhile to compare these values using individuals of strains that have been artificially selected for life-history traits by rearing them at various temperatures and calculating these indicators from developmental days and temperatures. In the present study, eggs were taken from adults of strains with many generations of artificial selection on two life-history traits (age at reproduction and developmental period) of the melon fly, Zeugodacus cucurbitae, under constant temperature conditions. Eggs were reared at five different temperatures, and the effective cumulative temperatures and developmental zero points of the larval and developmental periods were compared. The results demonstrate that artificial selection on life-history traits in Z. cucurbitae induces evolutionary changes in both the effective cumulative temperature and the developmental zero point across successive generations. en-copyright= kn-copyright= en-aut-name=MiyatakeTakahisa en-aut-sei=Miyatake en-aut-mei=Takahisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsumuraKentarou en-aut-sei=Matsumura en-aut-mei=Kentarou kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Environment, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of General Systems Studies, Graduate School of Arts and Sciences, the University of Tokyo kn-affil= en-keyword=age at reproduction kn-keyword=age at reproduction en-keyword=development time kn-keyword=development time en-keyword=developmental period kn-keyword=developmental period en-keyword=larval period kn-keyword=larval period en-keyword=melon fly kn-keyword=melon fly en-keyword=Tephritidae kn-keyword=Tephritidae en-keyword=thermal biology kn-keyword=thermal biology en-keyword=trade-offs kn-keyword=trade-offs END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251022 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Comparison of flight behaviors among laboratory and field strains in Tribolium castaneum (Coleoptera: Tenebrionidae) using a simple method to measure flight ability en-subtitle= kn-subtitle= en-abstract= kn-abstract=Most insects can fly. The acquisition of flight is a factor that allows insects to prosper on Earth. On the other hand, in the same species and population, individual differences in flight ability may occur. Flight ability can vary due to geographical conditions and cumulative rearing. Investigating these changes in flight performance is important for understanding dispersal polymorphism and the evolution of flight performance. Thus, in the present study, the flight behaviors between cumulative rearing and field strains and changes in flight behaviors between strains of the red flour beetle, Tribolium castaneum Herbst (Coleoptera: Tenebrionidae), which is distributed around the world were compared. Tribolium castaneum is a worldwide pest of stored grains. Its body length is about 3–4 mm. Previous studies have investigated the influence of environmental and physiological factors on the flight of this species, but no studies have examined individual differences or polymorphism in flight behaviors within this species. In this study, we developed a simple apparatus that can quantify the flight behavior of this species. The experimental apparatus was set up as a double structure with two different size containers. This apparatus was able to assess the flight activity of insects by counting individuals in a big container because insects transfer to the big container only by flight. Moreover, upward flight ability was possible to be assessed by the apparatus adding the barrier. Then, the flight behavior was compared between strains of this species that have been bred in the laboratory for more than 45 years and several strains of this species collected in the field. The results showed no variation in flight activity between strains, but flying ability was higher in strains originating from warmer regions. Here, we discussed the variations in flight behavior of T. castaneum. en-copyright= kn-copyright= en-aut-name=SoneSota en-aut-sei=Sone en-aut-mei=Sota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyatakeTakahisa en-aut-sei=Miyatake en-aut-mei=Takahisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Faculty of Environment, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Environment, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Dispersal kn-keyword=Dispersal en-keyword=Flight behavior kn-keyword=Flight behavior en-keyword=Red flour beetle kn-keyword=Red flour beetle en-keyword=Upward flight kn-keyword=Upward flight END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=10 article-no= start-page=e95411 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Primary Lacrimal Sac Diffuse Large B-cell Lymphoma Treated With Local Radiotherapy Alone: A Case With No Relapse After 21 Years of Follow-Up en-subtitle= kn-subtitle= en-abstract= kn-abstract=Primary lacrimal sac lymphoma is rare and diagnosed as diffuse large B-cell lymphoma in a predominant histopathological type. Systemic chemotherapy would be the standard of care, but local radiotherapy may be a treatment option toward a localized lesion. The present patient is a 54-year-old otherwise healthy woman with a right lacrimal sac mass, which was proven by excisional biopsy to be diffuse large B-cell lymphoma. Since she did not have any other systemic lesions on gallium scintigraphy and neck-to-abdominal computed tomography scans, which were the standard procedure at that time, she underwent local radiotherapy at 40 Gy. Two years later, at the age of 56 years, she developed radiation retinopathy with macular edema in the right eye and had spotty laser photocoagulation in the nasal half of the fundus. At the age of 57 years, she developed radiation cataract and underwent cataract surgery with intraocular lens implantation in the right eye. At the age of 58 years, the macular edema in the right eye became worse and remained active, resulting in poor visual acuity of 0.1. She thus underwent 25-gauge vitrectomy in the right eye to peel off the adhering posterior vitreous surface, together with the internal limiting membrane, as the standard procedure at that time. The visual acuity in the right eye was elevated to 0.6. She maintained the visual acuity afterward and had no relapse of lymphoma in 21 years from the diagnosis of primary right lacrimal sac diffuse large B-cell lymphoma. Local radiotherapy would still be a treatment option for localized lymphoma lesions such as primary lacrimal sac lymphoma. en-copyright= kn-copyright= en-aut-name=MatsuoToshihiko en-aut-sei=Matsuo en-aut-mei=Toshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TanakaTakehiro en-aut-sei=Tanaka en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakemotoMitsuhiro en-aut-sei=Takemoto en-aut-mei=Mitsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Healthcare Science, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Radiotherapy, Himeji Red Cross Hospital kn-affil= en-keyword=diffuse large b-cell lymphoma kn-keyword=diffuse large b-cell lymphoma en-keyword=excisional biopsy kn-keyword=excisional biopsy en-keyword=lacrimal sac kn-keyword=lacrimal sac en-keyword=laser photocoagulation kn-keyword=laser photocoagulation en-keyword=macular edema kn-keyword=macular edema en-keyword=pathology kn-keyword=pathology en-keyword=radiation cataract kn-keyword=radiation cataract en-keyword=radiation retinopathy kn-keyword=radiation retinopathy en-keyword=radiotherapy kn-keyword=radiotherapy en-keyword=vitrectomy kn-keyword=vitrectomy END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251013 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Creep damage parameters based on the distribution of cavities on grain boundaries en-subtitle= kn-subtitle= en-abstract= kn-abstract=When polycrystalline heat-resistant steels are subjected to static or cyclic loading at high temperatures, they can exhibit various fracture modes and processes. This paper begins by outlining representative methods for life assessment under creep-dominated conditions. It then discusses the fracture processes and the underlying mechanisms. Under creep-dominated conditions, the initiation and growth of cavities serve as the primary form of material damage, making their quantitative assessment essential. Several parameters have been proposed to evaluate cavity distributions quantitatively. However, the relationship between these parameters and the actual cavity distribution in materials, as well as their physical significance, has remained unclear. In this study, a simple cavity distribution model was employed to clarify these issues. The results suggest that the area fraction of cavities is an appropriate damage evaluation parameter for transgranular fracture, while the fraction of cavities on grain boundary line is suitable for intergranular fracture. en-copyright= kn-copyright= en-aut-name=TadaNaoya en-aut-sei=Tada en-aut-mei=Naoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Creep kn-keyword=Creep en-keyword=cavity kn-keyword=cavity en-keyword=grain boundary kn-keyword=grain boundary en-keyword=damage parameter kn-keyword=damage parameter en-keyword=modelling kn-keyword=modelling en-keyword=geometrical analysis kn-keyword=geometrical analysis en-keyword=probabilistic analysis kn-keyword=probabilistic analysis END start-ver=1.4 cd-journal=joma no-vol=47 cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251031 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=岡山大学環境管理センター報 第47号 en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name= en-aut-sei= en-aut-mei= kn-aut-name=岡山大学安全衛生推進機構環境管理部門 kn-aut-sei=岡山大学安全衛生推進機構環境管理部門 kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251014 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Comparative analysis of interactions between five strains of Pseudomonas syringae pv. tabaci and Nicotiana benthamiana en-subtitle= kn-subtitle= en-abstract= kn-abstract=Pseudomonas syringae pv. tabaci 6605 (Pta 6605), the agent of wildfire disease in tobacco, has been used as a model strain for elucidating the virulence mechanisms of Pta. However, the host genes involved in resistance or susceptibility to Pta remain largely unknown. Nicotiana benthamiana is a model plant species in the Solanaceae family and is useful in functional analyses of genes. We herein compared five Pta strains (6605, 6823, 7372, 7375, and 7380) in terms of their phenotypes on medium and interactions with N. benthamiana. Pta 6605 and Pta 6823 showed more active proliferation than the other strains in a high cell density culture. Moreover, Pta 6605 exhibited markedly higher swarming motility than the other strains. In inoculated leaves of N. benthamiana, Pta 6605 and Pta 6823 caused more severe disease symptoms and proliferated to a higher cell density than the other strains. However, Pta 6823 as well as Pta 7372 and Pta 7380 induced the high accumulation of salicylic acid (SA). Moreover, the inoculations of Pta 6823 and Pta 7372 resulted in the upregulation of ethylene biosynthesis genes. On the other hand, Pta 6605 induced neither SA accumulation nor the expression of ethylene biosynthesis genes, and suppressed the expression of jasmonate biosynthesis genes. Moreover, chlorosis was clearly induced in the upper uninoculated leaves of Pta 6605-infected plants. These results suggest that Pta 6605 escapes from or suppresses plant immune systems and, thus, is the most virulent on N. benthamiana among the five strains tested. en-copyright= kn-copyright= en-aut-name=NakaoYuna en-aut-sei=Nakao en-aut-mei=Yuna kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AsaiShuta en-aut-sei=Asai en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KatouShinpei en-aut-sei=Katou en-aut-mei=Shinpei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Science and Technology, Shinshu University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Medicine, Science and Technology, Shinshu University kn-affil= en-keyword=Chlorosis kn-keyword=Chlorosis en-keyword=Nicotiana benthamiana kn-keyword=Nicotiana benthamiana en-keyword=Phytohormones kn-keyword=Phytohormones en-keyword=Pseudomonas syringae pv. tabaci kn-keyword=Pseudomonas syringae pv. tabaci END start-ver=1.4 cd-journal=joma no-vol=150 cd-vols= no-issue= article-no= start-page=110530 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Surrogate-assisted motion planning and layout design of robotic cellular manufacturing systems en-subtitle= kn-subtitle= en-abstract= kn-abstract=A surrogate-assisted multi-objective evolutionary algorithm is proposed for simultaneous optimization of robot motion planning and layout design in robotic cellular manufacturing systems. A sequence-pair is used to represent the layout of components in a robotic cell to avoid overlapping in the evolutionary computation. The robot motion planning with Rapidly exploring Random Trees Star (RRT*) is applied to compute the total operation time of a robot arm for each layout. Non-dominated Sorting Genetic Algorithm II (NSGA-II) is used to minimize the total required layout area and the operation time for a robot arm. The proposed surrogate model can estimate the robot’s operation time with 98% of accuracy without explicit computations of the motion planning algorithm. The experimental results with a physical 6 Degree of Freedom (DOF) manipulator show that the total computation time is approximately 1/400, significantly shorter than the conventional methods. en-copyright= kn-copyright= en-aut-name=KawabeTomoya en-aut-sei=Kawabe en-aut-mei=Tomoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishiTatsushi en-aut-sei=Nishi en-aut-mei=Tatsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=LiuZiang en-aut-sei=Liu en-aut-mei=Ziang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FujiwaraTomofumi en-aut-sei=Fujiwara en-aut-mei=Tomofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life and Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life and Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life and Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life and Natural Science and Technology, Okayama University kn-affil= en-keyword=Robotics kn-keyword=Robotics en-keyword=Cellular manufacturing kn-keyword=Cellular manufacturing en-keyword=Layout design kn-keyword=Layout design en-keyword=Sequence-pair kn-keyword=Sequence-pair en-keyword=Motion planning kn-keyword=Motion planning en-keyword=Surrogate optimization kn-keyword=Surrogate optimization en-keyword=Machine learning kn-keyword=Machine learning en-keyword=Artificial intelligence kn-keyword=Artificial intelligence END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=20 article-no= start-page=3287 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251010 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Impact of Neoadjuvant Chemotherapy with Gemcitabine Plus S-1 in Patients with Resectable Pancreatic Ductal Adenocarcinoma en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/Objectives: Although neoadjuvant chemotherapy (NAC) is not universally recommended for resectable pancreatic ductal adenocarcinoma (PDAC), NAC with gemcitabine plus S-1 (NAC-GS) has become a commonly used regimen for resectable PDAC in Japan. Furthermore, the impact of achieving textbook outcomes (TO) in patients receiving NAC-GS remains unclear. Methods: This retrospective study included 265 patients who were diagnosed with resectable PDAC at our institution between January 2009 and December 2023. Patients were categorized into two groups: the NAC-GS group (n = 81; 2019–2023) and the upfront surgery (UFS) group (n = 164; 2009–2018). After comparing the clinical outcomes between groups, multivariate analyses for survival were performed. Additionally, outcomes stratified by the achievement of the modified TO were analyzed in the NAC-GS group. Results: The completion rate of NAC-GS was 90.1%. Patients in the NAC-GS group exhibited significantly longer survival than those in the UFS group (2-year recurrence-free survival: 61.4% vs. 37.9%, p < 0.01; 2-year overall survival: 83.2% vs. 61.2%, p < 0.01). Multivariate analyses identified lymph node metastasis, NAC-GS induction, and completion of adjuvant chemotherapy as factors significantly associated with improved survival. Moreover, among patients who received NAC-GS, those who achieved modified TO demonstrated significantly longer survival than those who did not. Conclusions: This study demonstrated the clinical efficacy of NAC-GS in patients with resectable PDAC. Induction of NAC-GS was significantly associated with improved long-term outcomes. In multidisciplinary treatment strategies for PDAC, achieving a modified TO may lead to improved survival of patients undergoing NAC-GS. en-copyright= kn-copyright= en-aut-name=YasuiKazuya en-aut-sei=Yasui en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakagiKosei en-aut-sei=Takagi en-aut-mei=Kosei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujiTomokazu en-aut-sei=Fuji en-aut-mei=Tomokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishiyamaTakeyoshi en-aut-sei=Nishiyama en-aut-mei=Takeyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NagaiYasuo en-aut-sei=Nagai en-aut-mei=Yasuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MatsumotoKazuyuki en-aut-sei=Matsumoto en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HoriguchiShigeru en-aut-sei=Horiguchi en-aut-mei=Shigeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=FujiiYuki en-aut-sei=Fujii en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OtsukaMotoyuki en-aut-sei=Otsuka en-aut-mei=Motoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, kn-affil= affil-num=8 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=neoadjuvant chemotherapy kn-keyword=neoadjuvant chemotherapy en-keyword=pancreatic cancer kn-keyword=pancreatic cancer en-keyword=resectable kn-keyword=resectable en-keyword=textbook outcome kn-keyword=textbook outcome END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251017 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=ATPase copper transporting beta contributes to cisplatin resistance as a regulatory factor of extracellular vesicles in head and neck squamous cell carcinoma en-subtitle= kn-subtitle= en-abstract= kn-abstract=Cisplatin (CDDP) resistance remains a major clinical challenge in the treatment of head and neck squamous cell carcinoma (HNSC). Our group identified ATPase copper transporting beta (ATP7B) as a mediator of CDDP resistance through its role in drug efflux and small extracellular vesicle (sEV) secretion. Herein, we uncovered a novel mechanism by which ATP7B regulates sEV dynamics and the intercellular transmission of CDDP resistance. Using transcriptomic analyses of HNSC datasets, we demonstrate that ATP7B expression correlates with endocytosis- and epithelial-mesenchymal transition (EMT)-related gene sets and with elevated levels of EV-associated proteins. CDDP-resistant HNSC cells exhibited upregulated ATP7B, Rab5/Rab7, and preferentially secreted HSP90- and EpCAM-rich sEVs. These sEVs were leading to increased ATP7B expression and reduced CDDP sensitivity in recipient cells. A pharmacological inhibition of sEV biogenesis with GW4869 suppressed ATP7B and Atox1 expressions, inhibited late endosome maturation, and significantly enhanced CDDP-induced apoptosis in HNSC cells. In vivo, GW4869 reduced the sEV protein content and ATP7B expression in xenograft tumors. These findings establish that ATP7B is a critical modulator of sEV cargo and resistance propagation. Our results highlight a previously unrecognized ATP7B–sEV axis driving chemoresistance and identify sEV inhibition as a promising strategy to overcome therapeutic failure in HNSC. en-copyright= kn-copyright= en-aut-name=OgawaTatsuo en-aut-sei=Ogawa en-aut-mei=Tatsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OnoKisho en-aut-sei=Ono en-aut-mei=Kisho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=RyumonShoji en-aut-sei=Ryumon en-aut-mei=Shoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KawaiHotaka en-aut-sei=Kawai en-aut-mei=Hotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SatoKohei en-aut-sei=Sato en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=UmemoriKoki en-aut-sei=Umemori en-aut-mei=Koki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YoshidaKunihiro en-aut-sei=Yoshida en-aut-mei=Kunihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ObataKyoichi en-aut-sei=Obata en-aut-mei=Kyoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KunisadaYuki en-aut-sei=Kunisada en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OkuiTatsuo en-aut-sei=Okui en-aut-mei=Tatsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OkamotoKuniaki en-aut-sei=Okamoto en-aut-mei=Kuniaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NagatsukaHitoshi en-aut-sei=Nagatsuka en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=Momen-HeraviFatemeh en-aut-sei=Momen-Heravi en-aut-mei=Fatemeh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=IbaragiSoichiro en-aut-sei=Ibaragi en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Maxillofacial Diagnostic and Surgical Science, Field of Oral and Maxillofacial Rehabilitation, Graduate School of Medical and Dental Sciences, Kagoshima University kn-affil= affil-num=11 en-affil=Department of Dental Pharmacology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Department of Orofacial Sciences, School of Dentistry, University of California San Francisco kn-affil= affil-num=14 en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=23 cd-vols= no-issue=5 article-no= start-page=234 end-page=249 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Biochar-amended Sediment Microbial Fuel Cells for Water Quality Improvement in Intensive and Extensive Pond Drainages in Central Vietnam en-subtitle= kn-subtitle= en-abstract= kn-abstract=The use of nutrient-rich feed in shrimp farming in Central Vietnam has led to high nitrogen (N) and phosphorus (P) contents in the pond sediment. The objectives of the study were to assess the effectiveness of biochar-sediment microbial fuel cells (BC-SMFCs) in suppressing P and N release from two types of sediment in intensive (Int) and extensive (Ext) pond drainages in Central Vietnam. Single chamber SMFCs were set up and operated under open or closed-circuit (no SMFC or SMFC) conditions. Coconut shell biochar (BC) was amended to sediments at 1%. For Int-sediment, total phosphorus (TP) release was reduced by no BC-SMFCs through co-precipitation with Fe. On the other hand, BC-SMFCs did not suppress TP release because P was released from BC and organic matter decomposition was enhanced in the sediment. Application of BC enhanced organic N mineralization in the sediment. Nitrification and denitrification occurred in the overlying water, reducing mineral N concentrations. For Ext-sediment, BC addition and SMFC conditions did not affect TP and total nitrogen (TN) release because of low initial organic matter content, and less reductive condition. Our study suggested that the effect of SMFCs was masked by BC which released more P from Int-sediment to the water. en-copyright= kn-copyright= en-aut-name=NguyenUyen Tu en-aut-sei=Nguyen en-aut-mei=Uyen Tu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MaedaMorihiro en-aut-sei=Maeda en-aut-mei=Morihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SomuraHiroaki en-aut-sei=Somura en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakaharaNozomi en-aut-sei=Nakahara en-aut-mei=Nozomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=PereraGamamada Liyanage Erandi Priyangika en-aut-sei=Perera en-aut-mei=Gamamada Liyanage Erandi Priyangika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakanoChiyu en-aut-sei=Nakano en-aut-mei=Chiyu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=LeHuu Tien en-aut-sei=Le en-aut-mei=Huu Tien kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NishinaYuta en-aut-sei=Nishina en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Department of Comprehensive Technical Solutions, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=7 en-affil=Department of Education, Science and Technology Quang Tri Branch, Hue University kn-affil= affil-num=8 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= en-keyword=biochar kn-keyword=biochar en-keyword=Central Vietnam kn-keyword=Central Vietnam en-keyword=electricity generation kn-keyword=electricity generation en-keyword=redox potential kn-keyword=redox potential en-keyword=shrimp farming kn-keyword=shrimp farming END start-ver=1.4 cd-journal=joma no-vol=40 cd-vols= no-issue=3 article-no= start-page=ME25019 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Role of Formate Chemoreceptor in Pseudomonas syringae pv. tabaci 6605 in Tobacco Infection en-subtitle= kn-subtitle= en-abstract= kn-abstract=Chemotaxis is essential for infection by plant pathogenic bacteria. The causal agent of tobacco wildfire disease, Pseudomonas syringae pv. tabaci 6605 (Pta6605), is known to cause severe leaf disease and is highly motile. The requirement of chemotaxis for infection has been demonstrated through the inoculation of mutant strains lacking chemotaxis sensory component proteins. Pta6605 possesses 54 genes that encode chemoreceptors (known as methyl-accepting chemotaxis proteins, MCPs). Chemoreceptors are classified into several groups based on the type and localization of ligand-binding domains (LBD). Cache LBD-type chemoreceptors have been reported to recognize formate in several bacterial species. In the present study, we identified Cache_3 Cache_2 LBD-type Mcp26 encoded by Pta6605_RS00335 as a chemoreceptor for formate using a quantitative capillary assay, and named it McpF. Although the deletion mutant of mcpF (ΔmcpF) retained attraction to 1% yeast extract, its chemotactic response to formate was markedly reduced. Swimming and swarming motilities were also impaired in the mutant. To investigate the effects of McpF on bacterial virulence, we conducted inoculations on tobacco plants using several methods. The ΔmcpF mutant exhibited weaker virulence in flood and spray assays than wild-type and complemented strains, highlighting not only the involvement of McpF in formate recognition, but also its critical role in leaf entry during the early stages of infection. en-copyright= kn-copyright= en-aut-name=NguyenPhuoc Quy Thang en-aut-sei=Nguyen en-aut-mei=Phuoc Quy Thang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WatanabeYuta en-aut-sei=Watanabe en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SakataNanami en-aut-sei=Sakata en-aut-mei=Nanami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=chemoreceptor kn-keyword=chemoreceptor en-keyword=formate kn-keyword=formate en-keyword=mcpF kn-keyword=mcpF en-keyword=Pseudomonas syringae kn-keyword=Pseudomonas syringae en-keyword=virulence kn-keyword=virulence END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=9 article-no= start-page=251152 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250924 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=On weapons allometry and the form of sexual selection en-subtitle= kn-subtitle= en-abstract= kn-abstract=The study of trait scaling with body size (allometry) has a long history, and it has been argued that positive static allometry is an indicator of directional sexual selection. However, a range of allometries exists for sexually selected traits, and modelling shows this variation can be generated by altering the form of selection (fitness functions) on the trait and/or body size. Interestingly, in all models, positive allometry appears to emerge only when there is directional selection on trait size. Here, we report on a sexually selected trait that shows strong positive static allometry and yet appears to be under stabilizing selection. This surprising finding suggests the evolution of trait scaling is even more nuanced than currently appreciated. en-copyright= kn-copyright= en-aut-name=ShinoharaHironori en-aut-sei=Shinohara en-aut-mei=Hironori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SharmaManmohan D. en-aut-sei=Sharma en-aut-mei=Manmohan D. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=PennellTanya M. en-aut-sei=Pennell en-aut-mei=Tanya M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OkadaKensuke en-aut-sei=Okada en-aut-mei=Kensuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HoskenDavid J. en-aut-sei=Hosken en-aut-mei=David J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Center for Ecology and Conservation, University of Exeter, Cornwall Campus kn-affil= affil-num=2 en-affil=Center for Ecology and Conservation, University of Exeter, Cornwall Campus kn-affil= affil-num=3 en-affil=Center for Ecology and Conservation, University of Exeter, Cornwall Campus kn-affil= affil-num=4 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Center for Ecology and Conservation, University of Exeter, Cornwall Campus kn-affil= en-keyword=inbreeding kn-keyword=inbreeding en-keyword=selection kn-keyword=selection en-keyword=beetle kn-keyword=beetle en-keyword=Gnatocerus kn-keyword=Gnatocerus END start-ver=1.4 cd-journal=joma no-vol=42 cd-vols= no-issue=3 article-no= start-page=215 end-page=227 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Root-exuded sugars as drivers of rhizosphere microbiome assembly en-subtitle= kn-subtitle= en-abstract= kn-abstract=Sugars in root exudates play a pivotal role in shaping plant-microbe interactions in the rhizosphere, serving as carbon sources and signaling molecules that orchestrate microbial behavior, community structure, and plant resilience. Recent research has shed light on the dynamics of sugar levels in root exudates, the factors that influence their secretion, and the mechanisms by which these sugars drive microbial colonization and community assembly in the rhizosphere. Microbial communities, in turn, contribute to plant physiological changes that enhance growth and stress tolerance. While well-studied sugars such as glucose, sucrose, and fructose are known to promote chemotaxis, motility, and biofilm formation, emerging evidence suggests that less-studied sugars like arabinose and trehalose may also play significant roles in microbial interactions and stress resilience. Key challenges remain, including the accurate measurement of labile sugars that are rapidly metabolized by microbes, and the elucidation of genetic mechanisms underlying rhizosphere metabolic interactions in both host plants and microbes. Addressing these challenges will advance our understanding of sugar-mediated interactions and inform the development of sustainable agricultural innovations. en-copyright= kn-copyright= en-aut-name=HemeldaNiarsi Merry en-aut-sei=Hemelda en-aut-mei=Niarsi Merry kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Biology, Faculty of Mathematics and Natural Sciences, University of Indonesia kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=carbon sources kn-keyword=carbon sources en-keyword=plant-derived sugars kn-keyword=plant-derived sugars en-keyword=plant-microbe interactions kn-keyword=plant-microbe interactions en-keyword=rhizosphere kn-keyword=rhizosphere en-keyword=root exudate kn-keyword=root exudate END start-ver=1.4 cd-journal=joma no-vol=108 cd-vols= no-issue= article-no= start-page=104508 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Introduction to the “Japanese and Western approaches to psychotrauma” symposium en-subtitle= kn-subtitle= en-abstract= kn-abstract=Understandings of psychotrauma have changed throughout medical history, shaped by cultural and social factors. Reviewing transcultural perspectives of psychotrauma helps understand its complexities and contextual impacts. This paper summarizes the Japan–Netherlands symposium on psychotrauma held on March 1, 2024. Despite experiencing psychological trauma from World War II and numerous natural disasters, Japan did not actively research post-traumatic stress disorder (PTSD) for nearly 50 years after the war. The Great Hanshin-Awaji Earthquake and the Tokyo subway Sarin gas attack (1995) popularized the term PTSD in Japan and triggered related research. The absence of psychotrauma research in Japan may reflect a form of state-level PTSD, characterized by avoidance. Japan’s collectivist culture, stigma against seeking psychological help, view of patience as a virtue, survivor guilt, and moral injury were potential related factors. Additionally, sociocultural factors (e.g., insufficient collective grieving and focusing on post-war reconstruction) were discussed as potential hinderances to discussing war experiences. From a European perspective, we examined how “Konzentrationslager” (KZ) syndrome, a trauma-related disorder, evolved independently into diverse conceptual frameworks, ultimately contributing to the acceptance of PTSD following its introduction in 1980. Beyond state compensation for concentration camp survivors, advocacy by feminist movements and veterans' groups increased awareness of psychotrauma across Europe, fostering scholarly research and public discourse. Both PTSD and KZ syndromes are diagnostic categories shaped by specific historical and cultural contexts and should not be regarded as simple, universally applicable medical conditions. They reflect how trauma is interpreted and responded to differently depending on cultural, political, and historical factors. en-copyright= kn-copyright= en-aut-name=NagamineMasanori en-aut-sei=Nagamine en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakaoTomoyo en-aut-sei=Nakao en-aut-mei=Tomoyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=van BergenLeo en-aut-sei=van Bergen en-aut-mei=Leo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShigemuraJun en-aut-sei=Shigemura en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SaitoTaku en-aut-sei=Saito en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=van der DoesFlorentine H.S. en-aut-sei=van der Does en-aut-mei=Florentine H.S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KitanoMasato en-aut-sei=Kitano en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=GiltayErik J. en-aut-sei=Giltay en-aut-mei=Erik J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=van der WeeNic J. en-aut-sei=van der Wee en-aut-mei=Nic J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=VermettenEric en-aut-sei=Vermetten en-aut-mei=Eric kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Division of Behavioral Science, National Defense Medical College Research Institute kn-affil= affil-num=2 en-affil=Graduate School of Humanities and Social Sciences, Okayama University kn-affil= affil-num=3 en-affil=Freelance Medical Historian kn-affil= affil-num=4 en-affil=Faculty of Health Sciences, Mejiro University kn-affil= affil-num=5 en-affil=Division of Behavioral Science, National Defense Medical College Research Institute kn-affil= affil-num=6 en-affil=Department of Psychiatry, Leiden University Medical Center (LUMC) kn-affil= affil-num=7 en-affil=Division of Behavioral Science, National Defense Medical College Research Institute kn-affil= affil-num=8 en-affil=Department of Psychiatry, Leiden University Medical Center (LUMC) kn-affil= affil-num=9 en-affil=Department of Psychiatry, Leiden University Medical Center (LUMC) kn-affil= affil-num=10 en-affil=Department of Psychiatry, Leiden University Medical Center (LUMC) kn-affil= en-keyword=Psychotrauma kn-keyword=Psychotrauma en-keyword=World War II kn-keyword=World War II en-keyword=Japan kn-keyword=Japan en-keyword=Europe kn-keyword=Europe en-keyword=KZ syndrome kn-keyword=KZ syndrome en-keyword=Post-traumatic stress disorder kn-keyword=Post-traumatic stress disorder END start-ver=1.4 cd-journal=joma no-vol=80 cd-vols= no-issue= article-no= start-page=57 end-page=65 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202510 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Rectal Swab–based Targeted Prophylactic Antibiotics Reduce Infectious Complications After Transrectal Prostate Biopsy: A Systematic Review and Meta-analysis of Randomized Controlled Trials en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background and objective: Transperineal ultrasound-guided prostate biopsy is the recommended approach in guidelines, while transrectal ultrasound-guided prostate biopsy (TRUS-PB) is still widely used to diagnose prostate cancer (PCa); however, it is associated with a significant rate of infectious complications. We aimed to assess the efficacy of targeted prophylactic antibiotics (TPAs), based on rectal swabs, in reducing the incidence of infectious complications after TRUS-PB compared with empiric prophylactic antibiotics.
Methods: PubMed, Web of Science, and Scopus were queried in December 2024 for randomized controlled trials (RCTs) comparing infectious complications between patients who received TPAs based on rectal swab culture before TRUS-PB and those who received empiric prophylactic antibiotics before TRUS-PB (PROSPERO: CRD42024523794). The primary outcomes were the incidence rates of febrile urinary tract infection (fUTI) and sepsis.
Key findings and limitations: Overall, nine RCTs (n = 3002) were included in our analyses. The incidence of fUTI was approximately half as high in patients who received TPAs as in those who received empiric prophylactic antibiotics (n = 3002, 2.7% vs 5.2%, risk ratio [RR]: 0.54, 95% confidence interval [CI]: 0.36–0.81, p = 0.003). Based on these pooled incidence rates, the number of patients needed to treat to prevent fUTI after TRUS-PB was 40; however, there was no statistically significant difference in the incidence of sepsis between patients receiving TPAs and those who received empiric antibiotic prophylaxis (n = 2735, 1.3% vs 1.8%, RR: 0.74, 95% CI: 0.31–1.75, p = 0.4).
Conclusions and clinical implications: TPAs based on rectal swab culture significantly reduces the incidence of fUTI in patients who undergo TRUS-PB for PCa diagnosis compared with that in patients who receive empiric prophylactic antibiotics; however, there is insufficient evidence to assess its effect on the risk of sepsis. We recommend, based on the clinically relevant reduction in the incidence of fUTI, performing rectal swab–based TPAs in patients undergoing TRUS-PB.
Patient summary: We reviewed infections occurring after transrectal prostate biopsy in over 3000 patients. The use of antibiotics chosen based on a simple rectal swab decreased the rate of postbiopsy fever and urinary tract infections by half compared with the use of standard antibiotics. More research is needed to understand whether this approach also prevents the rare but serious complication of sepsis. en-copyright= kn-copyright= en-aut-name=TsuboiIchiro en-aut-sei=Tsuboi en-aut-mei=Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=Kardoust PariziMehdi en-aut-sei=Kardoust Parizi en-aut-mei=Mehdi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsukawaAkihiro en-aut-sei=Matsukawa en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MiszczykMarcin en-aut-sei=Miszczyk en-aut-mei=Marcin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FazekasTamás en-aut-sei=Fazekas en-aut-mei=Tamás kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=CormioAngelo en-aut-sei=Cormio en-aut-mei=Angelo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KawadaTatsushi en-aut-sei=Kawada en-aut-mei=Tatsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KatayamaSatoshi en-aut-sei=Katayama en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IwataTakehiro en-aut-sei=Iwata en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=BekkuKensuke en-aut-sei=Bekku en-aut-mei=Kensuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=WadaKoichiro en-aut-sei=Wada en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KarakiewiczPierre I. en-aut-sei=Karakiewicz en-aut-mei=Pierre I. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=ChlostaPiotr en-aut-sei=Chlosta en-aut-mei=Piotr kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=BrigantiAlberto en-aut-sei=Briganti en-aut-mei=Alberto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=ArakiMotoo en-aut-sei=Araki en-aut-mei=Motoo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=ShariatShahrokh F. en-aut-sei=Shariat en-aut-mei=Shahrokh F. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= affil-num=1 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna kn-affil= affil-num=3 en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna kn-affil= affil-num=4 en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna kn-affil= affil-num=5 en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna kn-affil= affil-num=6 en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna kn-affil= affil-num=7 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna kn-affil= affil-num=12 en-affil=Cancer Prognostics and Health Outcomes Unit, University of Montreal Health Centre kn-affil= affil-num=13 en-affil=Department of Urology, Jagiellonian University Medical College kn-affil= affil-num=14 en-affil=Unit of Urology/Division of Oncology, Gianfranco Soldera Prostate Cancer Lab, IRCCS San Raffaele Scientific Institute kn-affil= affil-num=15 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna kn-affil= en-keyword=Febrile urinary tract infection kn-keyword=Febrile urinary tract infection en-keyword=Targeted prophylactic antibiotics kn-keyword=Targeted prophylactic antibiotics en-keyword=Transrectal prostate biopsy kn-keyword=Transrectal prostate biopsy en-keyword=Sepsis kn-keyword=Sepsis END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=5 article-no= start-page=369 end-page=379 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202510 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Blood Pressure and Heart Rate Patterns Identified by Unsupervised Machine Learning and Their Associations with Subclinical Cerebral and Renal Damage in a Japanese Community: The Masuda Study en-subtitle= kn-subtitle= en-abstract= kn-abstract=We applied unsupervised machine learning to analyze blood pressure (BP) and resting heart rate (HR) patterns measured during a 1-year period to assess their cross-sectional relationships with subclinical cerebral and renal target damage. Dimension reduction via uniform manifold approximation and projection, followed by K-means++ clustering, was used to categorize 362 community-dwelling participants (mean age, 56.2 years; 54.9% women) into three groups: Low BP and Low HR (Lo-BP/Lo-HR), High BP and High HR (Hi-BP/Hi-HR), and Low BP and High HR (Lo-BP/Hi-HR). Cerebral vessel lesions were defined as the presence of at least one of the following magnetic resonance imaging findings: lacunar infarcts, white matter hyperintensities, cerebral microbleeds, or intracranial artery stenosis. A high urinary albumin-to-creatinine ratio (UACR) was defined as the top 10% (≥ 12 mg/g) of the mean value from ≥2 measurements. Poisson regression with robust error variance, adjusted for demographics, lifestyle, and medical history, showed that the Hi-BP/Hi-HR group had relative risks of 3.62 (95% confidence interval, 1.75-7.46) for cerebral vessel lesions and 3.58 (1.33-9.67) for high UACR, and the Lo-BP/Hi-HR group had a relative risk of 3.09 (1.12-8.57) for high UACR, compared with the Lo-BP/Lo-HR group. These findings demonstrate the utility of an unsupervised, data-driven approach for identifying physiological patterns associated with subclinical target organ damage. en-copyright= kn-copyright= en-aut-name=HisamatsuTakashi en-aut-sei=Hisamatsu en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KinutaMinako en-aut-sei=Kinuta en-aut-mei=Minako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MunetomoSosuke en-aut-sei=Munetomo en-aut-mei=Sosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FukudaMari en-aut-sei=Fukuda en-aut-mei=Mari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KojimaKatsuhide en-aut-sei=Kojima en-aut-mei=Katsuhide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TaniguchiKaori en-aut-sei=Taniguchi en-aut-mei=Kaori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakahataNoriko en-aut-sei=Nakahata en-aut-mei=Noriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KandaHideyuki en-aut-sei=Kanda en-aut-mei=Hideyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Environmental Medicine and Public Health, Izumo, Shimane University Faculty of Medicine kn-affil= affil-num=7 en-affil=Department of Health and Nutrition, The University of Shimane Faculty of Nursing and Nutrition kn-affil= affil-num=8 en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=blood pressure kn-keyword=blood pressure en-keyword=heart rate kn-keyword=heart rate en-keyword=subclinical disease kn-keyword=subclinical disease en-keyword=uniform manifold approximation and projection kn-keyword=uniform manifold approximation and projection en-keyword=unsupervised machine learning kn-keyword=unsupervised machine learning END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=5 article-no= start-page=353 end-page=358 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202510 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Comparison of Extraocular Muscles in Patients with Exotropia and Healthy Participants Using Anterior Segment Optical Coherence Tomography en-subtitle= kn-subtitle= en-abstract= kn-abstract=To analyze and characterize the medial and lateral rectus muscles in patients with exotropia using anterior segment optical coherence tomography (AS-OCT). This study included 24 patients with exotropia (48 eyes) and 25 healthy individuals (50 eyes). Anterior segment optical coherence tomography was used to construct the en face images. The anterior chamber angle to the extraocular muscle insertion distance, muscle width, and muscle fiber angle from the muscle insertion sites were compared between the exotropia and the control groups. The correlation between these parameters and age or angle of deviation was evaluated. The mean ages were 13.2±4.1 years for the exotropia group and 17.6±7.2 years for the control group. The lateral rectus angle was significantly more inwardly rotated in the exotropia group than in the control group (1.6±6.3°, −1.4±4.0°, p=0.014). With increasing angle of deviation, the width of the lateral rectus increased (p=0.002). Our results indicate that the lateral rectus angle is significantly more inwardly rotated in patients with exotropia. These findings should contribute to a deeper understanding of the extraocular muscles in patients with this condition. en-copyright= kn-copyright= en-aut-name=ChiharaYuki en-aut-sei=Chihara en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HamasakiIchiro en-aut-sei=Hamasaki en-aut-mei=Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShibataKiyo en-aut-sei=Shibata en-aut-mei=Kiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MorisawaShin en-aut-sei=Morisawa en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KonoReika en-aut-sei=Kono en-aut-mei=Reika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KanenagaKeisuke en-aut-sei=Kanenaga en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MorizaneYuki en-aut-sei=Morizane en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=exotropia kn-keyword=exotropia en-keyword=AS-OCT kn-keyword=AS-OCT en-keyword=anterior chamber angle to extraocular muscle insertion distance kn-keyword=anterior chamber angle to extraocular muscle insertion distance en-keyword=muscle width kn-keyword=muscle width en-keyword=muscle fiber angle kn-keyword=muscle fiber angle END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=5 article-no= start-page=345 end-page=352 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202510 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Inhibition of Air-Exposure Stress–Induced Autolysis in Clostridium perfringens by Zn2+ en-subtitle= kn-subtitle= en-abstract= kn-abstract=Clostridium perfringens is a pathogenic anaerobe that causes gas gangrene and food poisoning. Although autolysin-mediated reorganization of the bacterial cell wall is crucial for cell division, excessive autolysin activity induced by stressors can lead to cell lysis. In C. perfringens, air exposure is a significant stressor that causes cell lysis, and Acp (N-acetylglucosaminidase) is known to be a major autolysin. To further facilitate C. perfringens research, a technology to prevent air-induced cell lysis must be developed. This study investigated the role of Acp in air-induced autolysis and explored potential inhibitors that would prevent cell lysis during experimental procedures. Morphological analyses confirmed that Acp functions as an autolysin in C. perfringens, as acpdeficient strains exhibited filamentous growth. The mutants exhibited negligible autolysis under air-exposure stress, confirming the involvement of Acp in the autolytic process. We also evaluated the effects of various divalent cations on Acp activity in vitro and identified Zn2+ as a potent inhibitor. Brief treatment with a Zn2+- containing buffer induced dose-dependent cell elongation and autolysis inhibition in C. perfringens. These findings demonstrate that simple Zn2+ treatment before experiments stabilizes C. perfringens cells, reducing autolysis under aerobic conditions and facilitating various biological studies, except morphological analyses. en-copyright= kn-copyright= en-aut-name=MatsunagaNozomu en-aut-sei=Matsunaga en-aut-mei=Nozomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=EgusaSeira en-aut-sei=Egusa en-aut-mei=Seira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AonoRiyo en-aut-sei=Aono en-aut-mei=Riyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TamaiEiji en-aut-sei=Tamai en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HitusmotoYasuo en-aut-sei=Hitusmoto en-aut-mei=Yasuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KatayamaSeiichi en-aut-sei=Katayama en-aut-mei=Seiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Life Science, Faculty of Science, Okayama University of Science kn-affil= affil-num=2 en-affil=Department of Life Science, Faculty of Science, Okayama University of Science kn-affil= affil-num=3 en-affil=Department of Medical Technology, Kagawa Prefectural University of Health Sciences kn-affil= affil-num=4 en-affil=Department of Infectious Disease, College of Pharmaceutical Science, Matsuyama University kn-affil= affil-num=5 en-affil=Department of Life Science, Faculty of Science, Okayama University of Science kn-affil= affil-num=6 en-affil=Department of Life Science, Faculty of Science, Okayama University of Science kn-affil= en-keyword=Clostridium perfringens kn-keyword=Clostridium perfringens en-keyword=autolysin kn-keyword=autolysin en-keyword=zinc kn-keyword=zinc en-keyword=air-exposure autolysis kn-keyword=air-exposure autolysis END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=5 article-no= start-page=329 end-page=337 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202510 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Current Status of Extracorporeal Membrane Oxygenation as a Treatment Strategy for Primary Graft Dysfunction after Lung Transplantation en-subtitle= kn-subtitle= en-abstract= kn-abstract=Primary graft dysfunction (PGD) is one of the major risk factors affecting patients’ short- and long-term survival after lung transplantation. No particular management strategy has been established for PGD; supportive care is the mainstay of PGD treatment. When a supportive strategy fails, the patient may require the introduction of extracorporeal membrane oxygenation (ECMO) as the last-resort measure for severe PGD. A variety of study of ECMO as a PGD treatment was reported and the management of PGD patients developed so far. Early recognition of a patient’s need for ECMO and its prompt initiation are critical to improved outcomes. The use of venovenous-ECMO became the preferred procedure for PGD rather than venoarterial-ECMO. However, the current ECMO strategy has limitations, and using ECMO to manage patients with PGD is not sufficiently effective. Further studies are required to develop this promising technology. en-copyright= kn-copyright= en-aut-name=MatsubaraKei en-aut-sei=Matsubara en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyoshiKentaroh en-aut-sei=Miyoshi en-aut-mei=Kentaroh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Thoracic Surgery, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=2 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=lung transplantation kn-keyword=lung transplantation en-keyword=primary graft dysfunction kn-keyword=primary graft dysfunction en-keyword=extracorporeal membrane oxygenation kn-keyword=extracorporeal membrane oxygenation en-keyword=ex vivo lung perfusion kn-keyword=ex vivo lung perfusion END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=5 article-no= start-page=321 end-page=328 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202510 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Review of the Endoscopic Treatment for Bile Leak Following Cholecystectomy and Hepatic Surgery en-subtitle= kn-subtitle= en-abstract= kn-abstract=Bile leak occurs in 2-25% of liver transplant, 3-27% of hepatic resection, and 0.1-4% of cholecystectomy cases. The clinical course of bile leak varies depending on the type of surgery that caused the fistula, as well as the type, severity, and timing of bile duct injury. Although infections resulting from bile leak can be life-threatening, the introduction of endoscopic treatment has enabled some patients to avoid reoperation and has reduced the negative impact on quality of life associated with external fistulas for percutaneous drainage. Endoscopic interventions, such as sphincterotomy and stent placement, reduce the pressure gradient between the bile duct and duodenum, facilitating bile drainage through the papilla and promoting the closure of the leak. We reviewed the literature from 2004 to 2024 regarding bile leak following cholecystectomy and liver surgery, examining recommended techniques, timing, and treatment outcomes. In cases of bile leak following cholecystectomy, clinical success was achieved in 72-96% of cases, while success rates for bile leak following liver surgery ranged from 50% to 100%. Although endoscopic treatment is effective, it is not universally applicable, and its limitations must be carefully considered. en-copyright= kn-copyright= en-aut-name=ObataTaisuke en-aut-sei=Obata en-aut-mei=Taisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsumotoKazuyuki en-aut-sei=Matsumoto en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OtsukaMotoyuki en-aut-sei=Otsuka en-aut-mei=Motoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= en-keyword=bile leak kn-keyword=bile leak en-keyword=cholecystectomy kn-keyword=cholecystectomy en-keyword=hepatic surgery kn-keyword=hepatic surgery en-keyword=endoscopic retrograde cholangiography kn-keyword=endoscopic retrograde cholangiography en-keyword=bridging stent placement kn-keyword=bridging stent placement END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=17 article-no= start-page=6102 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250828 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Risk Factors for Perioperative Urinary Tract Infection After Living Donor Kidney Transplantation Characterized by High Prevalence of Desensitization Therapy: A Single-Center Analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/Objectives: Limited research exists on risk factors for urinary tract infections (UTIs) in kidney transplant recipients, particularly in high-risk groups such as ABO-incompatible or donor-specific antibody (DSA)-positive cases. Early UTIs, especially within the first month post-transplant, impact on acute rejection and long-term graft outcomes, highlighting the need for risk factor identification and management. Methods: Among 157 living donor kidney transplant cases performed at our institution between 2009 and 2024, 128 patients were included after excluding cases with >72 h of perioperative prophylactic antibiotics or urological complications. UTI was defined as the presence of pyuria and a positive urine culture, accompanied by clinical symptoms requiring antibiotic treatment, occurring within one month post-transplantation. Results: The median onset of UTI was postoperative day 8 (interquartile range, IQR: 6.8–9.3). No subsequent acute rejection episodes were observed. The median serum creatinine at 1 month postoperatively was 1.3 mg/dL (IQR: 1.1–1.7), and this was not significantly different from those who did not develop UTI. In univariate analysis, low or high BMI (<20 or >25), longer dialysis duration (>2.5 years), desensitization therapy (plasmapheresis + rituximab), elevated preoperative neutrophil-to-lymphocyte ratio (NLR) (≥3), and longer warm ischemic time (WIT) (≥7.8 min) were significantly associated with an increased infection risk of UTI (p = 0.010, 0.036, 0.028, 0.015, and 0.038, respectively). Multivariate analyses revealed that abnormal BMI, longer dialysis duration, desensitization therapy, and longer WIT were independent risk factors for UTI (p = 0.012, 0.031, 0.008, and 0.033, respectively). The incidence of UTI increased with the number of risk factors: 0% (0/16) for zero, 10% (5/48) for one, 31% (16/51) for two, 45% (5/11) for three, and 100% (2/2) for four risk factors. Conclusions: Desensitization therapy, BMI, dialysis duration, and WIT were identified as independent risk factors for perioperative UTI. In patients with risk factors, additional preventive strategies should be considered, with extended antibiotic prophylaxis being one potential option. en-copyright= kn-copyright= en-aut-name=NishimuraShingo en-aut-sei=Nishimura en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=InoueShota en-aut-sei=Inoue en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SekitoTakanori en-aut-sei=Sekito en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TsuboiIchiro en-aut-sei=Tsuboi en-aut-mei=Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TokunagaMoto en-aut-sei=Tokunaga en-aut-mei=Moto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YoshinagaKasumi en-aut-sei=Yoshinaga en-aut-mei=Kasumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MaruyamaYuki en-aut-sei=Maruyama en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MitsuiYosuke en-aut-sei=Mitsui en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YamanoiTomoaki en-aut-sei=Yamanoi en-aut-mei=Tomoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KawadaTatsushi en-aut-sei=Kawada en-aut-mei=Tatsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KubotaRisa en-aut-sei=Kubota en-aut-mei=Risa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SadahiraTakuya en-aut-sei=Sadahira en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TominagaYusuke en-aut-sei=Tominaga en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=IwataTakehiro en-aut-sei=Iwata en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=KatayamaSatoshi en-aut-sei=Katayama en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=BekkuKensuke en-aut-sei=Bekku en-aut-mei=Kensuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=EdamuraKohei en-aut-sei=Edamura en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=WadaKoichiro en-aut-sei=Wada en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=KobayashiYasuyuki en-aut-sei=Kobayashi en-aut-mei=Yasuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=ArakiMotoo en-aut-sei=Araki en-aut-mei=Motoo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= affil-num=1 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic kn-affil= affil-num=4 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Urology, NHO Okayama Medical Center kn-affil= affil-num=6 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic kn-affil= affil-num=8 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Urology, NHO Okayama Medical Center kn-affil= affil-num=12 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=15 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=17 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=18 en-affil=Department of Urology, Shimane University Faculty of Medicine kn-affil= affil-num=19 en-affil=Department of Urology, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=20 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=living donor kidney transplantation kn-keyword=living donor kidney transplantation en-keyword=urinary tract infection kn-keyword=urinary tract infection en-keyword=perioperative kn-keyword=perioperative en-keyword=desensitization kn-keyword=desensitization en-keyword=rituximab kn-keyword=rituximab en-keyword=plasmapheresis kn-keyword=plasmapheresis en-keyword=body mass index kn-keyword=body mass index en-keyword=dialysis duration kn-keyword=dialysis duration en-keyword=warm ischemic time kn-keyword=warm ischemic time en-keyword=prophylactic antimicrobials kn-keyword=prophylactic antimicrobials END start-ver=1.4 cd-journal=joma no-vol=26 cd-vols= no-issue=1 article-no= start-page=491 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250826 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Risk of malignant neoplasms of tacrolimus in kidney transplant patients: a retrospective cohort study conducted using the Japanese National Database of Health Insurance Claims en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Although the long-term survival of kidney transplant recipients has significantly improved, malignant neoplasms remain one of the leading causes of death in this population. The recipients face a 1.8-fold increased risk of developing malignant neoplasms compared with the general population. This risk increases with time after transplantation. Tacrolimus (TAC) is preferred over cyclosporine A (CyA) in terms of efficacy against organ rejection, but evidence on the risk of malignant neoplasms is lacking. We aimed to describe the incidence and types of malignant neoplasms in kidney transplant recipients and evaluate the association between malignant neoplasms development and the type of prescribed CNI.
Methods: This retrospective cohort study was conducted using the Japanese National Database of Health Insurance Claims, including data covering 99% of kidney transplant patients in Japan. Patients who underwent kidney transplantation and were prescribed TAC or CyA between April and June 2011 were included. The primary outcome included the incidence of malignant neoplasms, and secondary outcomes included overall survival and graft survival.
Results: A total of 7,590 patients were included, with 11.0% developing malignant neoplasms during the follow-up period. The most common malignant neoplasms were in the digestive organs and urinary tract. No statistically significant difference in malignant neoplasms incidence was observed between TAC and CyA users (hazards ratio: 0.97, 95% CI: 0.84 to 1.12; estimated average treatment effect: −24.05, 95% CI: −184.90 to 136.80). The patient and graft survival rates were also comparable between the groups.
Conclusions: This large study suggests that TAC is not associated with an increased risk of malignant neoplasms compared to CyA in the late post-transplant period. en-copyright= kn-copyright= en-aut-name=KubotaRisa en-aut-sei=Kubota en-aut-mei=Risa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SadaKen-Ei en-aut-sei=Sada en-aut-mei=Ken-Ei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TokunagaMoto en-aut-sei=Tokunaga en-aut-mei=Moto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YoshinagaKasumi en-aut-sei=Yoshinaga en-aut-mei=Kasumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamanoiTomoaki en-aut-sei=Yamanoi en-aut-mei=Tomoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KawadaTatsushi en-aut-sei=Kawada en-aut-mei=Tatsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TominagaYusuke en-aut-sei=Tominaga en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SadahiraTakuya en-aut-sei=Sadahira en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KatayamaSatoshi en-aut-sei=Katayama en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=IwataTakehiro en-aut-sei=Iwata en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NishimuraShingo en-aut-sei=Nishimura en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=BekkuKensuke en-aut-sei=Bekku en-aut-mei=Kensuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=EdamuraKohei en-aut-sei=Edamura en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KobayashiTomoko en-aut-sei=Kobayashi en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=NakagawaYuki en-aut-sei=Nakagawa en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=IchimaruNaotsugu en-aut-sei=Ichimaru en-aut-mei=Naotsugu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=WadaKoichiro en-aut-sei=Wada en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=ArakiMotoo en-aut-sei=Araki en-aut-mei=Motoo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= affil-num=1 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Clinical Epidemiology, Kochi Medical School, Kochi University kn-affil= affil-num=3 en-affil=Department of Urology, National Hospital Organization Okayama Medical Center kn-affil= affil-num=4 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=15 en-affil=Department of Urology, Juntendo University Graduate School of Medicine kn-affil= affil-num=16 en-affil=Department of Urology, Kinki Central Hospital kn-affil= affil-num=17 en-affil=Department of Urology, Shimane University Faculty of Medicine kn-affil= affil-num=18 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Calcineurin inhibitors kn-keyword=Calcineurin inhibitors en-keyword=Cyclosporine A kn-keyword=Cyclosporine A en-keyword=Kidney transplant kn-keyword=Kidney transplant en-keyword=Malignant neoplasms kn-keyword=Malignant neoplasms en-keyword=Tacrolimus kn-keyword=Tacrolimus END start-ver=1.4 cd-journal=joma no-vol=22 cd-vols= no-issue=5 article-no= start-page=3933 end-page=3946 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202510 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Topology-Driven Configuration of Emulation Networks With Deterministic Templating en-subtitle= kn-subtitle= en-abstract= kn-abstract=Network emulation is an important component of a digital twin for verifying network behavior without impacting on the service systems. Although we need to repeatedly change network topologies and configuration settings as a part of trial and error for verification, it is not easy to reflect the change without failures because the change affects multiple devices, even if it is as simple as adding a device. We present topology-driven configuration, an idea to separate network topology and generalized configuration to make it easy to change them. Based on this idea, we aim to realize a scalable, simple, and effective configuration platform for emulation networks. We design a configuration generation method using simple and deterministic config templates with a new network parameter data model, and implement it as dot2net. We evaluate three perspectives, scalability, simplicity, and efficacy, of the proposed method using dot2net through measurement and user experiments on existing test network scenarios. en-copyright= kn-copyright= en-aut-name=KobayashiSatoru en-aut-sei=Kobayashi en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShiibaRyusei en-aut-sei=Shiiba en-aut-mei=Ryusei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MiwaShinsuke en-aut-sei=Miwa en-aut-mei=Shinsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MiyachiToshiyuki en-aut-sei=Miyachi en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FukudaKensuke en-aut-sei=Fukuda en-aut-mei=Kensuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Informatics, School of Multidisciplinary Sciences, The Graduate University of Advanced Studies, Sokendai kn-affil= affil-num=3 en-affil=StarBED Technology Center, Testbed Research, Development and Operations Laboratory, National Institute of Information and Communications Technology kn-affil= affil-num=4 en-affil=Strategic Planning Department, Strategic Planning Office, National Institute of Information and Communications Technology kn-affil= affil-num=5 en-affil=Department of Informatics, School of Multidisciplinary Sciences, The Graduate University of Advanced Studies, Sokendai kn-affil= en-keyword=Configuration management kn-keyword=Configuration management en-keyword=template kn-keyword=template en-keyword=emulation network kn-keyword=emulation network en-keyword=topology graph kn-keyword=topology graph END start-ver=1.4 cd-journal=joma no-vol=55 cd-vols= no-issue=6 article-no= start-page=643 end-page=649 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250202 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Real-world clinical usage and efficacy of apalutamide in men with nonmetastatic castration-resistant prostate cancer: a multi-institutional study in the CsJUC en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objective: To evaluate the real-world clinical usage and effectiveness of apalutamide in men with nonmetastatic castration-resistant prostate cancer (nmCRPC).
Methods: We retrospectively reviewed the data of 186 men who received apalutamide across 17 institutions. The primary outcomes were the clinical usage of apalutamide for nmCRPC: prior usage of other androgen receptor signaling inhibitors (ARSIs), prior radical treatment, and the distribution of the prostate-specific antigen (PSA) doubling time (PSA-DT) at the initial administration of apalutamide. The secondary outcomes were the efficacy of apalutamide: PSA response (50% or 90% decline), progression-free survival, and skin-adverse events (AEs).
Results: We identified 75 patients with nmCRPC. A total of 31 (41.3%) patients received prior treatment with other ARSIs. A total of 42 men (56%) did not receive any prior radical treatment. The PSA-DT was <3.0, 3.0–5.9, 6.0–10, and > 10 months in 34.7%, 40%, 14.7%, and 10.6% of the patients, respectively. Patients receiving prior treatment with other ARSIs showed a significantly lower PSA response (PSA 50% decline, 88.4% vs. 18.8%; PSA 90% decline, 60.5% vs. 6.2%, P < .001, respectively) and significantly shorter progression-free survival (median: 37 months vs. 4 months; log-rank P < .001) than those without prior ARSI treatment, although cancer status did not differ between the groups. Skin-AEs were observed in 42.7%.
Conclusions: This real-world study revealed that apalutamide was used for the treatment after other ARSIs in >40% of patients with nmCRPC and showed limited efficacy in this context, although the effectiveness of apalutamide without prior other ARSI treatment was comparable with that reported in clinical trial results. en-copyright= kn-copyright= en-aut-name=TohiYoichiro en-aut-sei=Tohi en-aut-mei=Yoichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KobayashiKeita en-aut-sei=Kobayashi en-aut-mei=Keita kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=DaizumotoKei en-aut-sei=Daizumoto en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SekinoYohei en-aut-sei=Sekino en-aut-mei=Yohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FukuharaHideo en-aut-sei=Fukuhara en-aut-mei=Hideo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NiigawaHeima en-aut-sei=Niigawa en-aut-mei=Heima kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KatayamaSatoshi en-aut-sei=Katayama en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShimizuRyutaro en-aut-sei=Shimizu en-aut-mei=Ryutaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TakamotoAtsushi en-aut-sei=Takamoto en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NishimuraKenichi en-aut-sei=Nishimura en-aut-mei=Kenichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NagamiTaichi en-aut-sei=Nagami en-aut-mei=Taichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=HayashidaYushi en-aut-sei=Hayashida en-aut-mei=Yushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=HiramaHiromi en-aut-sei=Hirama en-aut-mei=Hiromi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=ShiraishiKoji en-aut-sei=Shiraishi en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=TomidaRyotaro en-aut-sei=Tomida en-aut-mei=Ryotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=KobatakeKohei en-aut-sei=Kobatake en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=InoueKeiji en-aut-sei=Inoue en-aut-mei=Keiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=MiyajiYoshiyuki en-aut-sei=Miyaji en-aut-mei=Yoshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=BekkuKensuke en-aut-sei=Bekku en-aut-mei=Kensuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=MorizaneShuichi en-aut-sei=Morizane en-aut-mei=Shuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=MiuraNoriyoshi en-aut-sei=Miura en-aut-mei=Noriyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=WadaKoichiro en-aut-sei=Wada en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=SugimotoMikio en-aut-sei=Sugimoto en-aut-mei=Mikio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=Chu-shikoku Japan Urological Consortium en-aut-sei=Chu-shikoku Japan Urological Consortium en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= affil-num=1 en-affil=Department of Urology, Faculty of Medicine, Kagawa University kn-affil= affil-num=2 en-affil=Department of Urology, Graduate School of Medicine, Yamaguchi University kn-affil= affil-num=3 en-affil=Department of Urology, Tokushima University Graduate School of Biomedical Sciences kn-affil= affil-num=4 en-affil=Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University kn-affil= affil-num=5 en-affil=Department of Urology, Kochi Medical School kn-affil= affil-num=6 en-affil=Department of Urology, Kawasaki Medical School kn-affil= affil-num=7 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Division of Urology, Department of Surgery, Faculty of Medicine, Tottori University kn-affil= affil-num=9 en-affil=Department of Urology, Fukuyama City Hospital kn-affil= affil-num=10 en-affil=Department of Urology, Ehime University kn-affil= affil-num=11 en-affil=Department of Urology, Shimane University Faculty of Medicine kn-affil= affil-num=12 en-affil=Department of Urology, Sakaide City Hospital kn-affil= affil-num=13 en-affil=Department of Urology, KKR Takamatsu Hospital kn-affil= affil-num=14 en-affil=Department of Urology, Graduate School of Medicine, Yamaguchi University kn-affil= affil-num=15 en-affil=Department of Urology, Tokushima University Graduate School of Biomedical Sciences kn-affil= affil-num=16 en-affil=Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University kn-affil= affil-num=17 en-affil=Department of Urology, Kochi Medical School kn-affil= affil-num=18 en-affil=Department of Urology, Kawasaki Medical School kn-affil= affil-num=19 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=20 en-affil=Division of Urology, Department of Surgery, Faculty of Medicine, Tottori University kn-affil= affil-num=21 en-affil=Department of Urology, Ehime University kn-affil= affil-num=22 en-affil=Department of Urology, Shimane University Faculty of Medicine kn-affil= affil-num=23 en-affil=Department of Urology, Faculty of Medicine, Kagawa University kn-affil= affil-num=24 en-affil= kn-affil= en-keyword=apalutamide kn-keyword=apalutamide en-keyword=nonmetastatic castration-resistant prostate cancer kn-keyword=nonmetastatic castration-resistant prostate cancer en-keyword=prostate cancer kn-keyword=prostate cancer en-keyword=prostate-specific antigen response kn-keyword=prostate-specific antigen response en-keyword=PSA-doubling time kn-keyword=PSA-doubling time END start-ver=1.4 cd-journal=joma no-vol=50 cd-vols= no-issue=5 article-no= start-page=291 end-page=301 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250307 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Systematic Review and Meta-Analysis of Penis Length and Circumference According to WHO Regions: Who has the Biggest One? en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study aimed to perform a systematic review and meta-analysis of stretched, erect, and flaccid penis length as well as circumference according to geographic WHO regions. PubMed, Embase, Scopus, and Cochrane Library were searched for articles published until February 2024. Studies in which a healthcare professional evaluated the penis size were considered eligible. After assessing the risk of bias, a systematic review and meta-analyses were performed according to the Preferred Reporting Items for Systematic Review and Meta-analysis statement, and the outcomes were grouped based on the WHO regions. A total of 33 studies comprising 36 883 patients were included. The risk of bias in the included studies was moderate/low. A comprehensive systematic review was done and meta-analyses performed for flaccid length [n = 28 201, mean (SE) 9.22 (0.24) cm], stretched length [n = 20 814, mean (SE) 12.84 (0.32) cm], erect length [n = 5669, mean (SE) 13.84 (0.94) cm], flaccid circumference [n = 30 117, mean (SE) 9.10 (0.12) cm], and erect circumference [n = 5168, mean (SE) 11.91 (0.18) cm]. The mean length of the stretched penis was largest in Americans [14.47 (0.90) cm]. The mean length of the flaccid penis was the largest in the Americas [10.98 (0.064) cm]. The mean flaccid penile circumference was largest in Americans [n = 29 714, mean (SE) 10.00 (0.04) cm]. Penis sizes vary across WHO regions, suggesting the need to adjust standards according to geography to better understand councilmen and their partners. These data provide a framework for discussing body image expectations and therapeutic strategies in this sensitive and emotional subject matter. en-copyright= kn-copyright= en-aut-name=MostafaeiHadi en-aut-sei=Mostafaei en-aut-mei=Hadi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MoriKeiichiro en-aut-sei=Mori en-aut-mei=Keiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KatayamaSatoshi en-aut-sei=Katayama en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=QuhalFahad en-aut-sei=Quhal en-aut-mei=Fahad kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=PradereBenjamin en-aut-sei=Pradere en-aut-mei=Benjamin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YanagisawaTakafumi en-aut-sei=Yanagisawa en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=LaukhtinaEkaterina en-aut-sei=Laukhtina en-aut-mei=Ekaterina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KönigFrederik en-aut-sei=König en-aut-mei=Frederik kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MotlaghReza Sari en-aut-sei=Motlagh en-aut-mei=Reza Sari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=RajwaPawel en-aut-sei=Rajwa en-aut-mei=Pawel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=Salehi-PourmehrHanieh en-aut-sei=Salehi-Pourmehr en-aut-mei=Hanieh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=HajebrahimiSakineh en-aut-sei=Hajebrahimi en-aut-mei=Sakineh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=ShariatShahrokh F. en-aut-sei=Shariat en-aut-mei=Shahrokh F. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna kn-affil= affil-num=2 en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna kn-affil= affil-num=3 en-affil=Department of Urology Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna kn-affil= affil-num=5 en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna kn-affil= affil-num=6 en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna kn-affil= affil-num=7 en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna kn-affil= affil-num=8 en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna kn-affil= affil-num=9 en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna kn-affil= affil-num=10 en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna kn-affil= affil-num=11 en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna kn-affil= affil-num=12 en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna kn-affil= affil-num=13 en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna kn-affil= en-keyword=Penis kn-keyword=Penis en-keyword=length kn-keyword=length en-keyword=circumference kn-keyword=circumference en-keyword=world health organization kn-keyword=world health organization END start-ver=1.4 cd-journal=joma no-vol=39 cd-vols= no-issue=5 article-no= start-page=2787 end-page=2793 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250828 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Accuracy of Contrast-enhanced CT in Diagnosing Small-sized cT3a Renal Cell Carcinoma and Analysis of Factors Predicting Downstaging to pT1 en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/Aim: This study assessed the accuracy of preoperative contrast-enhanced computed tomography (CECT) scans in staging small-sized, locally advanced (cT3a) renal cell carcinoma (RCC) and identified predictors of pathological downstaging following surgery.
Patients and Methods: Seventy-six patients who underwent radical nephrectomy for cT3aN0M0 RCC with tumors ≤7 cm were analyzed. Preoperative CECT evaluated features such as venous, peritumoral, or renal sinus fat, and urinary tract invasion, predictive values, and concordance index between radiological and pathological findings were calculated for these categories. The study also examined the impact of clinicopathologic factors on downstaging.
Results: Of 76 patients with cT3 RCC, 37% were down-staged to pT1. Down-staged cases had a higher proportion of male patients and non-clear cell carcinoma (86% vs. 58%, 32% vs. 6%; p=0.02, p=0.007, respectively). Multiple cT3a factors were less common in down-staged cases (4% vs. 23%, p=0.04). Non-clear cell carcinoma was significantly associated with downstaging compared to clear cell carcinoma (75% vs. 30%, p=0.006). Multivariate analysis confirmed non-clear cell carcinoma as an independent predictor (odds ratio=8.2, p=0.01). For venous invasion, CECT sensitivity and positive predictive value were high (73.5% and 83.3%, respectively) and the degree of agreement was substantial (κ=0.62).
Conclusion: The accuracy of preoperative CECT was acceptable for detecting venous invasion. The downstaging to pT1 occurred in 37% of cT3a RCC cases in the final pathology, with non-clear cell carcinoma being a significant predictor.
en-copyright= kn-copyright= en-aut-name=BEKKUKENSUKE en-aut-sei=BEKKU en-aut-mei=KENSUKE kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YOSHINAGAKASUMI en-aut-sei=YOSHINAGA en-aut-mei=KASUMI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=INOUESHOTA en-aut-sei=INOUE en-aut-mei=SHOTA kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MITSUIYOSUKE en-aut-sei=MITSUI en-aut-mei=YOSUKE kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YAMANOITOMOAKI en-aut-sei=YAMANOI en-aut-mei=TOMOAKI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KAWADATATSUSHI en-aut-sei=KAWADA en-aut-mei=TATSUSHI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TOMINAGAYUSUKE en-aut-sei=TOMINAGA en-aut-mei=YUSUKE kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SADAHIRATAKUYA en-aut-sei=SADAHIRA en-aut-mei=TAKUYA kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KATAYAMASATOSHI en-aut-sei=KATAYAMA en-aut-mei=SATOSHI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=IWATATAKEHIRO en-aut-sei=IWATA en-aut-mei=TAKEHIRO kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NISHIMURASHINGO en-aut-sei=NISHIMURA en-aut-mei=SHINGO kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=EDAMURAKOHEI en-aut-sei=EDAMURA en-aut-mei=KOHEI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KOBAYASHITOMOKO en-aut-sei=KOBAYASHI en-aut-mei=TOMOKO kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=ARAKIMOTOO en-aut-sei=ARAKI en-aut-mei=MOTOO kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=Contrast‑enhanced CT kn-keyword=Contrast‑enhanced CT en-keyword=renal cell carcinoma kn-keyword=renal cell carcinoma en-keyword=staging kn-keyword=staging en-keyword=T3a kn-keyword=T3a en-keyword=downstaging kn-keyword=downstaging END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=1 article-no= start-page=22 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250105 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Relay Node Selection Methods for UAV Navigation Route Constructions in Wireless Multi-Hop Network Using Smart Meter Devices en-subtitle= kn-subtitle= en-abstract= kn-abstract=Unmanned aerial vehicles (UAVs) offer solutions to issues like traffic congestion and labor shortages. We developed a distributed UAV management system inspired by virtual circuit and datagram methods in packet-switching networks. By installing houses with wireless terminals, UAVs navigate routes in a multi-hop network, communicating with ground nodes. UAVs are treated as network packets, ground devices are treated as routers, and their connections are treated as links. Activating all nodes as relays increases control message traffic and node load. To optimize connectivity, we minimize relay nodes, connecting non-relay nodes to the nearest relay. This study proposes four relay node selection methods: random selection, two adjacency-based methods, and our innovative approach using Multipoint Relay (MPR) from the Optimized Link State Routing Protocol (OLSR). We evaluated these methods according to their route construction success rates, relay node counts, route lengths, and so on. The MPR-based method proved most effective for UAV route construction. However, fewer relay nodes increase link collisions, and we identify the minimum relay density needed to balance efficiency and conflict reduction. en-copyright= kn-copyright= en-aut-name=OhkawaShuto en-aut-sei=Ohkawa en-aut-mei=Shuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UedaKiyoshi en-aut-sei=Ueda en-aut-mei=Kiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MiyoshiTakumi en-aut-sei=Miyoshi en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamazakiTaku en-aut-sei=Yamazaki en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamamotoRyo en-aut-sei=Yamamoto en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Engineering, Nihon University kn-affil= affil-num=2 en-affil=Graduate School of Engineering, Nihon University kn-affil= affil-num=3 en-affil=College of Systems Engineering and Science, Shibaura Institute of Technology kn-affil= affil-num=4 en-affil=College of Systems Engineering and Science, Shibaura Institute of Technology kn-affil= affil-num=5 en-affil=Graduate School of Informatics and Engineering, The University of Electro-Communications kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=network of wireless devices kn-keyword=network of wireless devices en-keyword=UAV delivery kn-keyword=UAV delivery en-keyword=ad hoc network kn-keyword=ad hoc network END start-ver=1.4 cd-journal=joma no-vol=88 cd-vols= no-issue=9 article-no= start-page=1117 end-page=1125 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240622 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Solid-state cultivation of multiple industrial strains of koji mold on different Thai unpolished rice cultivars: biotransformation of phenolic compounds and their effects on antioxidant activity en-subtitle= kn-subtitle= en-abstract= kn-abstract=Colored rice is abundant in polyphenols, and koji molds have potential for biotransformation. This study aimed to produce Thai-colored rice koji to study its polyphenolic biotransformation. Four industrial koji mold strains: Aspergillus oryzae 6001, A. oryzae 6020, A. sojae 7009, and A. luchuensis 8035, were cultivated on unpolished Thai-colored rice (Riceberry and Sangyod), unpolished Thai white rice (RD43), and polished Japanese white rice (Koshihikari). We discovered that koji molds grew on all the rice varieties. Methanol extracts of all rice kojis exhibited an approximately 2-fold or greater increase in total phenolic content and DPPH antioxidant activity compared to those of steamed rice. Moreover, quercetin, quercetin-3-O-glucoside, isorhamnetin-3-O-glucoside, ferulic acid, caffeic acid, protocatechuic acid, vanillic acid, (+)-catechin, and (–)-epicatechin content increased in Riceberry and Sangyod koji samples. Consequently, Aspergillus solid-state cultivation on unpolished Thai-colored rice exhibited higher functionalization than the cultivation of unpolished Thai white rice and polished Japanese white rice. en-copyright= kn-copyright= en-aut-name=JitpakdeeJirayu en-aut-sei=Jitpakdee en-aut-mei=Jirayu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamashitaHideyuki en-aut-sei=Yamashita en-aut-mei=Hideyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakagawaTakuro en-aut-sei=Nakagawa en-aut-mei=Takuro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NitodaTeruhiko en-aut-sei=Nitoda en-aut-mei=Teruhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KanzakiHiroshi en-aut-sei=Kanzaki en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Higuchi Matsunosuke Shoten Co., Ltd. kn-affil= affil-num=3 en-affil=Higuchi Matsunosuke Shoten Co., Ltd. kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=antioxidant activity kn-keyword=antioxidant activity en-keyword=koji mold kn-keyword=koji mold en-keyword=polyphenols kn-keyword=polyphenols en-keyword=solid-state fermentation kn-keyword=solid-state fermentation en-keyword=Thai colored rice kn-keyword=Thai colored rice END start-ver=1.4 cd-journal=joma no-vol=6 cd-vols= no-issue=3 article-no= start-page=52 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250908 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=An Extension of Input Setup Assistance Service Using Generative AI to Unlearned Sensors for the SEMAR IoT Application Server Platform en-subtitle= kn-subtitle= en-abstract= kn-abstract=Nowadays, Internet of Things (IoT) application systems are broadly applied to various sectors of society for efficient management by monitoring environments using sensors, analyzing sampled data, and giving proper feedback. For their fast deployment, we have developed Smart Environmental Monitoring and Analysis in Real Time (SEMAR) as an integrated IoT application server platform and implemented the input setup assistance service using prompt engineering and a generative AI model to assist connecting sensors to SEMAR with step-by-step guidance. However, the current service cannot assist in connections of the sensors not learned by the AI model, such as newly released ones. To address this issue, in this paper, we propose an extension to the service for handling unlearned sensors by utilizing datasheets with four steps: (1) users input a PDF datasheet containing information about the sensor, (2) key specifications are extracted from the datasheet and structured into markdown format using a generative AI, (3) this data is saved to a vector database using chunking and embedding methods, and (4) the data is used in Retrieval-Augmented Generation (RAG) to provide additional context when guiding users through sensor setup. Our evaluation with five generative AI models shows that OpenAI’s GPT-4o achieves the highest accuracy in extracting specifications from PDF datasheets and the best answer relevancy (0.987), while Gemini 2.0 Flash delivers the most balanced results, with the highest overall RAGAs score (0.76). Other models produced competitive but mixed outcomes, averaging 0.74 across metrics. The step-by-step guidance function achieved a task success rate above 80%. In a course evaluation by 48 students, the system improved the student test scores, further confirming the effectiveness of our proposed extension. en-copyright= kn-copyright= en-aut-name=KotamaI Nyoman Darma en-aut-sei=Kotama en-aut-mei=I Nyoman Darma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=PandumanYohanes Yohanie Fridelin en-aut-sei=Panduman en-aut-mei=Yohanes Yohanie Fridelin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=BrataKomang Candra en-aut-sei=Brata en-aut-mei=Komang Candra kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=PradhanaAnak Agung Surya en-aut-sei=Pradhana en-aut-mei=Anak Agung Surya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=Noprianto en-aut-sei=Noprianto en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Information Science and Technology, The University of Osaka kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Internet of Things kn-keyword=Internet of Things en-keyword=artificial intelligence kn-keyword=artificial intelligence en-keyword=Retrieval-Augmented Generation kn-keyword=Retrieval-Augmented Generation en-keyword=review kn-keyword=review en-keyword=application server platform kn-keyword=application server platform en-keyword=SEMAR kn-keyword=SEMAR en-keyword=sensor input kn-keyword=sensor input END start-ver=1.4 cd-journal=joma no-vol=135 cd-vols= no-issue=7 article-no= start-page=1329 end-page=1343 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250417 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Molecular polymorphisms of the nuclear and chloroplast genomes among African melon germplasms reveal abundant and unique genetic diversity, especially in Sudan en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background and Aims Africa is rich in wild species of Cucumis and is considered one of the places of origin of melon. However, our knowledge of African melon is limited, and genetic studies using melon germplasms with wide geographical coverage are required. Here, we analysed the genetic structure of African melons, with emphasis on Sudan.
Methods Ninety-seven accessions of African melon were examined along with 77 reference accessions representing Asian melon and major horticultural groups. Molecular polymorphisms in the nuclear and chloroplast genomes were investigated using 12 RAPD, 7 SSR and 3 SNP markers. Horticultural traits, including seed size, were measured for 46 accessions, mainly from Sudan.
Key Results African melons were divided into large and small seed-types based on seed length: large seed-type from Northern Africa and small seed-type from Western and Southern Africa. Both seed types are common in Sudan. Molecular genetic diversity in these geographical populations was as high as in India, the Asian centre of melon domestication. Large seed-types from Northern Africa were assigned to Pop4 by structure analysis and had Ib cytoplasm in common with Cantalupensis, Inodorus and Flexuosus. Small seed-types were highly diversified and geographically differentiated; specifically, Pop1 with Ia cytoplasm in Southern Africa and South Asia, Pop2 with Ia in East Asia, including Conomon and Makuwa, and Pop3 with Ia or Ic in Africa. Sudanese small seed-types were grouped in Pop3, while their cytoplasm type was a mixture of Ia and Ic. Sudanese Tibish had Ic cytoplasm, which was unique in Africa, common in Western Africa and Sudan, and also found in wild or feral types.
Conclusions Melon of Ic lineage, including Tibish, originated from wild melon in the ‘western Sudan region’, and independently of melon with Ia or Ib cytoplasm, which originated in Asia. This clearly indicates the polyphyletic origin of melon. en-copyright= kn-copyright= en-aut-name=ImohOdirichi Nnennaya en-aut-sei=Imoh en-aut-mei=Odirichi Nnennaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShigitaGentaro en-aut-sei=Shigita en-aut-mei=Gentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SugiyamaMitsuhiro en-aut-sei=Sugiyama en-aut-mei=Mitsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=DungTran Phuong en-aut-sei=Dung en-aut-mei=Tran Phuong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TanakaKatsunori en-aut-sei=Tanaka en-aut-mei=Katsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakahashiMami en-aut-sei=Takahashi en-aut-mei=Mami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NishimuraKazusa en-aut-sei=Nishimura en-aut-mei=Kazusa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MondenYuki en-aut-sei=Monden en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NishidaHidetaka en-aut-sei=Nishida en-aut-mei=Hidetaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=GodaMashaer en-aut-sei=Goda en-aut-mei=Mashaer kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=PitratMichel en-aut-sei=Pitrat en-aut-mei=Michel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KatoKenji en-aut-sei=Kato en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO) kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Faculty of Agriculture and Life Science, Hirosaki University kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=10 en-affil=Plant Genetic Resources Conservation and Research Center, Agricultural Research Corporation kn-affil= affil-num=11 en-affil=INRAE, UR1052, Génétique et amélioration des fruits et légumes kn-affil= affil-num=12 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Cucumis melo kn-keyword=Cucumis melo en-keyword=Africa kn-keyword=Africa en-keyword=chloroplast genome kn-keyword=chloroplast genome en-keyword=domestication kn-keyword=domestication en-keyword=genetic diversity kn-keyword=genetic diversity en-keyword=genetic resources kn-keyword=genetic resources en-keyword=maternal lineage kn-keyword=maternal lineage en-keyword=melon kn-keyword=melon en-keyword=phylogeny kn-keyword=phylogeny en-keyword=polyphyletic origin kn-keyword=polyphyletic origin en-keyword=seed size kn-keyword=seed size en-keyword=Tibish kn-keyword=Tibish END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=34964 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251007 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Periodontitis associated with Porphyromonas gingivalis infection is a risk factor for infertility through uterine hypertrophy en-subtitle= kn-subtitle= en-abstract= kn-abstract=Periodontitis has recently been recognized as a potential risk factor for infertility due to its adverse effect on conception, although the underlying mechanisms remain unclear. This study investigated serum IgG antibody titers against periodontopathogenic bacteria in women with unexplained infertility and investigated how periodontal inflammation affects pregnancy and uterine function using a ligature-induced periodontitis mouse model infected with Porphyromonas gingivalis (Pg). IgG antibody titers against seven periodontopathogenic bacteria strains were measured by ELISA in 76 spontaneously pregnant women and 70 women undergoing infertility treatment. In the in vivo study, periodontitis mice were bred four weeks after periodontitis induction. Birth numbers, newborn weights, and gestation periods were assessed. To evaluate periodontal inflammation, alveolar bone, serum, and uterus was collected before mating. Uterine tissue was evaluated through histological and immunohistochemical staining. Women receiving infertility treatment were significantly older and had higher IgG titers against three Pg strains. Periodontitis mice had fewer births, lower newborn weights, and increased uterine cross-sectional areas. Additionally, elevated estrogen receptor α and progesterone receptor expression levels were observed in endometrial and stromal tissues. These results suggest that periodontitis may cause uterine hypertrophy and hormone receptor changes, potentially impairing pregnancy. en-copyright= kn-copyright= en-aut-name=Kamei-NagataChiaki en-aut-sei=Kamei-Nagata en-aut-mei=Chiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OmoriKazuhiro en-aut-sei=Omori en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SakoHidefumi en-aut-sei=Sako en-aut-mei=Hidefumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SakaidaKyosuke en-aut-sei=Sakaida en-aut-mei=Kyosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakayamaMasa-aki en-aut-sei=Nakayama en-aut-mei=Masa-aki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OharaToshiaki en-aut-sei=Ohara en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MandaiHiroki en-aut-sei=Mandai en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=Kubota-TakamoriMoyuka en-aut-sei=Kubota-Takamori en-aut-mei=Moyuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KiyamaFumiko en-aut-sei=Kiyama en-aut-mei=Fumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=IshiiTakayuki en-aut-sei=Ishii en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=HiraiKimito en-aut-sei=Hirai en-aut-mei=Kimito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=IkedaAtsushi en-aut-sei=Ikeda en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=Takeuchi-HatanakaKazu en-aut-sei=Takeuchi-Hatanaka en-aut-mei=Kazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=Shinoda-ItoYuki en-aut-sei=Shinoda-Ito en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=Tai-TokuzenMasako en-aut-sei=Tai-Tokuzen en-aut-mei=Masako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=SakamotoAi en-aut-sei=Sakamoto en-aut-mei=Ai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=KiyokawaMachiko en-aut-sei=Kiyokawa en-aut-mei=Machiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=YamanishiTomomi en-aut-sei=Yamanishi en-aut-mei=Tomomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=OdaTakashi en-aut-sei=Oda en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=TakigawaMasayuki en-aut-sei=Takigawa en-aut-mei=Masayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=YamamotoTadashi en-aut-sei=Yamamoto en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=MiyakeTakahito en-aut-sei=Miyake en-aut-mei=Takahito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=TakashibaShogo en-aut-sei=Takashiba en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= affil-num=1 en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Oral Microbiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science kn-affil= affil-num=8 en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital kn-affil= affil-num=13 en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital kn-affil= affil-num=14 en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=15 en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital kn-affil= affil-num=16 en-affil=Center for Reproductive Medicine, Miyake Clinic kn-affil= affil-num=17 en-affil=Center for Reproductive Medicine, Miyake Clinic kn-affil= affil-num=18 en-affil=Center for Reproductive Medicine, Miyake Clinic kn-affil= affil-num=19 en-affil=Center for Reproductive Medicine, Miyake Clinic kn-affil= affil-num=20 en-affil=Miyake Hello Dental Clinic, Pediatric Dentistry and Orthodontics kn-affil= affil-num=21 en-affil=The Center for Graduate Medical Education (Dental Division), Okayama University Hospital kn-affil= affil-num=22 en-affil=Center for Reproductive Medicine, Miyake Clinic kn-affil= affil-num=23 en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Infertility kn-keyword=Infertility en-keyword=Periodontitis kn-keyword=Periodontitis en-keyword=Porphyromonas gingivalis kn-keyword=Porphyromonas gingivalis en-keyword=Chronic inflammation kn-keyword=Chronic inflammation en-keyword=Uterus kn-keyword=Uterus en-keyword=Sex hormone receptor kn-keyword=Sex hormone receptor END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250902 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The response to thermospermine is fine-tuned by the balance between SAC51 and LHW family proteins in Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract=Thermospermine negatively regulates xylem formation. In Arabidopsis, SAC51 and SACL3, members of the SAC51 gene family encoding basic loop-helix-loop (bHLH) proteins play a key role in this regulation. These mRNAs contain an upstream open-reading-frame (uORF) that is highly conserved across species, and its inhibitory effect on the main ORF translation is alleviated by thermospermine. A double knockout of SAC51 and SACL3 results in thermospermine insensitivity at high concentrations that normally inhibit xylem formation and shoot growth in the wild type. Conversely, uORF mutants of SAC51, SACL3, and SACL1 suppress the excessive xylem formation and dwarf phenotype of acl5, a mutant defective in thermospermine biosynthesis. In this study, we generated genome-edited uORF mutants of SACL2 and confirmed that they partially recover the acl5 phenotype. All uORF mutants exhibited increased sensitivity to thermospermine. SACL3 represses the function of LHW, a key bHLH transcription factor required for xylem proliferation, through direct interaction. We found that the lhw mutant is also hypersensitive to thermospermine, while this sensitivity was suppressed by the sac51 sacl3 double knockout. Yeast two-hybrid assays demonstrated that all four SAC51 family members interact with LHW and its family members. These findings suggest that overaccumulation of SAC51 family proteins leads to thermospermine hypersensitivity by repressing the function of LHW family proteins, whose activity must be fine-tuned to ensure proper xylem development. en-copyright= kn-copyright= en-aut-name=XuYao en-aut-sei=Xu en-aut-mei=Yao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SaraumiMitsuru en-aut-sei=Saraumi en-aut-mei=Mitsuru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ToyoshimaTomohiko en-aut-sei=Toyoshima en-aut-mei=Tomohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MotoseHiroyasu en-aut-sei=Motose en-aut-mei=Hiroyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakahashiTaku en-aut-sei=Takahashi en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Arabidopsis thaliana kn-keyword=Arabidopsis thaliana en-keyword=LHW family kn-keyword=LHW family en-keyword=SAC51 family kn-keyword=SAC51 family en-keyword=thermospermine kn-keyword=thermospermine en-keyword=xylem kn-keyword=xylem END start-ver=1.4 cd-journal=joma no-vol=123 cd-vols= no-issue=5 article-no= start-page=e70476 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202509 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=RNA processing/modifying enzymes play key roles in the response to thermospermine in Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract=Thermospermine is involved in negative regulation of xylem differentiation by enhancing the translation of mRNAs of the SAC51 gene family in Arabidopsis (Arabidopsis thaliana). These mRNAs contain conserved upstream open reading frames (uORFs) that interfere with the translation of the main ORF. To investigate the mechanism by which thermospermine acts in this process, we isolated mutants insensitive to thermospermine, named ‘its’. We show that the four genes responsible for these mutants, its1 to its4, encode: (i) a homolog of SPOUT RNA methyltransferase, (ii) an rRNA pseudouridine synthase CBF5/NAP57, (iii) a putative spliceosome disassembly factor STIPL1/NTR1, and (iv) a plant-specific RNA-binding protein PHIP1. These four mutants were found to have much higher levels of thermospermine than the wild-type. While all these mutants except its1 appear almost normal, they enhance the dwarf phenotype of a mutant of ACL5, which encodes thermospermine synthase, resulting in tiny plants resembling a double knockout of ACL5 and SACL3, a member of the SAC51 family. Reporter assays revealed that GUS activity from the CaMV 35S promoter-SAC51 5′-GUS fusion construct was significantly reduced in its1 and its4 or not affected in its2 and its3, while it was slightly increased in its1, its3, and its4, or not changed in its2 by thermospermine. These findings underscore the critical role of RNA processing and modification in the thermospermine-dependent translational regulation of uORF-containing transcripts. en-copyright= kn-copyright= en-aut-name=SaraumiMitsuru en-aut-sei=Saraumi en-aut-mei=Mitsuru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TanakaTakahiro en-aut-sei=Tanaka en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KoyamaDaiki en-aut-sei=Koyama en-aut-mei=Daiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishiYoshitaka en-aut-sei=Nishi en-aut-mei=Yoshitaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakahashiYoshihiro en-aut-sei=Takahashi en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MotoseHiroyasu en-aut-sei=Motose en-aut-mei=Hiroyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakahashiTaku en-aut-sei=Takahashi en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Engineering, Kyushu Sangyo University kn-affil= affil-num=5 en-affil=Department of Life Science, Faculty of Life Science, Kyushu Sangyo University kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=thermospermine kn-keyword=thermospermine en-keyword=uORF kn-keyword=uORF en-keyword=translation kn-keyword=translation en-keyword=xylem kn-keyword=xylem en-keyword=RNA methyltransferase kn-keyword=RNA methyltransferase en-keyword=pseudouridine synthase kn-keyword=pseudouridine synthase en-keyword=SPOUT domain kn-keyword=SPOUT domain en-keyword=spliceosome disassembly kn-keyword=spliceosome disassembly END start-ver=1.4 cd-journal=joma no-vol=105 cd-vols= no-issue=4 article-no= start-page=1157 end-page=1167 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250505 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effect of environmental conditions on seed germination and seedling growth in Cuscuta campestris en-subtitle= kn-subtitle= en-abstract= kn-abstract=Dodder (Cuscuta) is an obligate parasitic plant that cannot survive without a host and causes significant damage to crop yields. To understand its growth characteristics before parasitism, we examined the effects of environmental conditions on seed germination and seedling growth in Cuscuta campestris Yunck. Among various factors, we focused on the effects of light, pH, temperature, sugars, salts, hormones, amino acids and polyamines on seeds sown on agar plates. Regarding the effect of light on germination, far-red light was preferable rather than red light and the reversible response of seeds to red and far-red light was confirmed, implicating a phytochrome-mediated signaling pathway opposite to that in many seed plants. Among the amino acids, aspartic acid and alanine had a promotive effect, while histidine had an inhibitory effect on germination. We further found that, in addition to gibberellic acid, methyl jasmonate stimulated both germination and shoot elongation. While 2,4-D extended the viability of trichomes around the root cap, kinetin induced the formation of scale leaves on the shoot and undifferentiated cell clusters at the base of the shoot and root tip. Real-time reverse transcriptase PCR (RT-PCR) experiments confirmed that the expression of a putative RbcS gene for photosynthesis showed no response to light, whereas that of a Phytochrome A homolog increased in the dark. Our results indicate that some of the molecular mechanisms involved in responding to light and hormone signals are uniquely modified in dodder seedlings, providing clues for understanding the survival strategy of parasitic plants. en-copyright= kn-copyright= en-aut-name=NagaoKoki en-aut-sei=Nagao en-aut-mei=Koki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakahashiTaku en-aut-sei=Takahashi en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YokoyamaRyusuke en-aut-sei=Yokoyama en-aut-mei=Ryusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Life Sciences, Tohoku University kn-affil= en-keyword=Cuscuta kn-keyword=Cuscuta en-keyword=Environmental conditions kn-keyword=Environmental conditions en-keyword=Germination kn-keyword=Germination en-keyword=Hormone responses kn-keyword=Hormone responses en-keyword=Seedling growth kn-keyword=Seedling growth END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=34768 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251006 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Continuous glucose monitoring reveals periodontitis-induced glucose variability, insulin resistance, and gut microbiota dysbiosis in mice en-subtitle= kn-subtitle= en-abstract= kn-abstract=Diabetes mellitus (DM) management has advanced from self-monitoring blood glucose (SMBG) to continuous glucose monitoring (CGM), which better prevents complications. However, the influence of periodontitis—a common DM complication—on glucose variability is unclear. This study examined glucose variability in mice with periodontitis using CGM. Periodontitis was induced in 9-week-old male C57BL/6J mice via silk ligatures around the upper second molars. Glucose levels were monitored over 14 days with CGM, validated by SMBG. On day 14, samples were collected to assess alveolar bone resorption and serum levels of tumor necrosis factor-α (TNF-α), insulin, and amyloid A. Glucose tolerance test (GTT) and insulin tolerance test (ITT) were conducted to evaluate insulin resistance. Gut microbiota diversity was also analyzed. By day 10, mice with periodontitis exhibited higher mean glucose levels and time above range than controls. On day 14, serum insulin and amyloid A levels significantly increased, while TNF-α remained unchanged. GTT and ITT indicated insulin resistance. Microbiota analysis showed reduced alpha- and altered beta-diversity, with decreased Coprococcus spp. and increased Prevotella spp., linking dysbiosis to insulin resistance. Periodontitis disrupts glucose regulation by promoting insulin resistance and gut microbiota imbalance, leading to significant glucose variability. en-copyright= kn-copyright= en-aut-name=Kubota-TakamoriMoyuka en-aut-sei=Kubota-Takamori en-aut-mei=Moyuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OmoriKazuhiro en-aut-sei=Omori en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Kamei-NagataChiaki en-aut-sei=Kamei-Nagata en-aut-mei=Chiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KiyamaFumiko en-aut-sei=Kiyama en-aut-mei=Fumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IshiiTakayuki en-aut-sei=Ishii en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakayamaMasaaki en-aut-sei=Nakayama en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=GotohKazuyoshi en-aut-sei=Gotoh en-aut-mei=Kazuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HiraiKimito en-aut-sei=Hirai en-aut-mei=Kimito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=Shinoda-ItoYuki en-aut-sei=Shinoda-Ito en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OkuboKeisuke en-aut-sei=Okubo en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NakamuraShin en-aut-sei=Nakamura en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=IkedaAtsushi en-aut-sei=Ikeda en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=SaitoTsugumichi en-aut-sei=Saito en-aut-mei=Tsugumichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=TakashibaShogo en-aut-sei=Takashiba en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Oral Microbiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Medical Laboratory Science, Okayama University Graduate School of Health Sciences kn-affil= affil-num=8 en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital kn-affil= affil-num=11 en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital kn-affil= affil-num=13 en-affil=Department of Health & Sports Sciences, Faculty of Education, Tokyo Gakugei University kn-affil= affil-num=14 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=15 en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Continuous glucose monitoring kn-keyword=Continuous glucose monitoring en-keyword=Periodontal disease kn-keyword=Periodontal disease en-keyword=Insulin resistance kn-keyword=Insulin resistance en-keyword=Chronic inflammation kn-keyword=Chronic inflammation en-keyword=Gut flora kn-keyword=Gut flora END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=10 article-no= start-page=e94062 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251007 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Refractive Error Correction With Glasses in Congenital Ocular Fundus Anomalies: A Retrospective Series of 18 Children With Different Disease Entities Followed Up for More Than 10 Years en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objectives: Children with congenital anomalies of the posterior segment of the eye are in the process of visual development, and thus, their refractive errors should be detected by cycloplegic refraction testing to prescribe full-correction glasses, if required, and to help their visual acuity develop with growth. This study aimed to review refractive correction in children with congenital ocular fundus anomalies.
Methods: A retrospective review was conducted on 18 consecutive children (11 female and seven male children) who were diagnosed with ocular fundus anomalies and followed for 10 years or more by a single ophthalmologist at a referral-based hospital. The age at the initial visit ranged from 10 days after birth to 11 years, with a median of one year and four months, and the age at the last visit ranged from 10 to 32 years, with a median of 15 years. The follow-up periods ranged from 10 to 21 years at a median of 15 years.
Results: The diagnoses were familial exudative vitreoretinopathy (FEVR) in eight children, persistent fetal vasculature (PFV) in five, morning glory disc anomaly in two, optic nerve and choroidal coloboma (CHARGE syndrome) in two, and Coats disease in one. Full-correction glasses were prescribed in eight children, while the remaining 10 children did not wear glasses. Among nine children with the uncorrected visual acuity of 1.0 or better in one eye and the visual acuity in the other eye ranging from light perception to 0.01, eight children did not wear glasses, and one child wore glasses with hyperopic correction. The diagnoses in these nine children were PFV in five children, morning glory disc anomaly in two, FEVR in one, and Coats disease in one. In seven children who wore full-correction glasses, the best corrected visual acuity in the better eye ranged from 0.2 to 0.9 at a median of 0.5. In contrast, the visual acuity in the other eye ranged from light perception to 0.1 at a median of 0.03. The diagnoses of these seven children were FEVR in five children and CHARGE syndrome in two. The five children with FEVR showed myopic astigmatism in both eyes, while the two children with CHARGE syndrome showed hyperopic astigmatism in both eyes.
Conclusion: Children with unilateral eye anomalies such as PFV and morning glory disc anomaly did not wear glasses since their healthy eyes had good uncorrected visual acuity. In contrast, children with involvement of both eyes in FEVR and CHARGE syndrome wore full-correction glasses. Rough information regarding full-correction glasses in each category would help clinicians cope with rare congenital eye diseases. However, this conclusion is generally applicable to the standard practice of pediatric ophthalmology. en-copyright= kn-copyright= en-aut-name=MatsuoToshihiko en-aut-sei=Matsuo en-aut-mei=Toshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Department of Ophthalmology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=charge syndrome kn-keyword=charge syndrome en-keyword=choroidal coloboma kn-keyword=choroidal coloboma en-keyword=coats disease kn-keyword=coats disease en-keyword=congenital eye anomalies kn-keyword=congenital eye anomalies en-keyword=cycloplegic refraction kn-keyword=cycloplegic refraction en-keyword=familial exudative vitreoretinopathy (fevr) kn-keyword=familial exudative vitreoretinopathy (fevr) en-keyword=full-correction glasses kn-keyword=full-correction glasses en-keyword=morning glory disc anomaly kn-keyword=morning glory disc anomaly en-keyword=optic nerve coloboma kn-keyword=optic nerve coloboma en-keyword=persistent fetal vasculature (pfv) kn-keyword=persistent fetal vasculature (pfv) END start-ver=1.4 cd-journal=joma no-vol=28 cd-vols= no-issue=4 article-no= start-page=51 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250930 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Cancer-associated fibroblast-derived SOD3 enhances lymphangiogenesis to drive metastasis in lung adenocarcinoma en-subtitle= kn-subtitle= en-abstract= kn-abstract=Despite advancements in diagnostic and therapeutic strategies, lung adenocarcinoma (LUAD) remains a leading cause of cancer-related mortality due to its aggressive metastatic potential. Extracellular superoxide dismutase (SOD3) is an antioxidant enzyme that regulates oxidative stress and is regarded as a tumor suppressor. However, studies have demonstrated that SOD3 can either promote or inhibit cell proliferation and survival in various cancers, and its molecular mechanisms within the tumor microenvironment are poorly understood. In this study, we report a breakthrough in uncovering the role of SOD3 derived from cancer-associated fibroblasts (CAFs) in LUAD. Using LUAD xenograft models co-implanted with SOD3-overexpressing CAFs (CAFSOD3), we observe an aggressive tumor phenotype characterized by increased lymphangiogenesis and lymphatic vessel invasion (LVI) of the tumor. Additionally, LUAD patients with elevated SOD3 levels exhibit a higher incidence of LVI and metastasis. Notably, RNA sequencing of CAFSOD3 reveals that SOD3-mediated VEGF-dependent tumor progression and lymphangiogenesis are up-regulated. Furthermore, single-cell transcriptomic analysis of LUAD clinical samples confirms a strong correlation between SOD3 expression in fibroblasts and characteristics of tumor exacerbation, such as lymphangiogenesis and metastasis. These findings underscore new insights into the role of CAF-derived SOD3 in LUAD progression and highlight its potential as a biomarker and therapeutic target. en-copyright= kn-copyright= en-aut-name=OoMay Wathone en-aut-sei=Oo en-aut-mei=May Wathone kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HikitaTakao en-aut-sei=Hikita en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MashimaTomoha en-aut-sei=Mashima en-aut-mei=Tomoha kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TorigataKosuke en-aut-sei=Torigata en-aut-mei=Kosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ThuYin Min en-aut-sei=Thu en-aut-mei=Yin Min kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HabuTomohiro en-aut-sei=Habu en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KawaiHotaka en-aut-sei=Kawai en-aut-mei=Hotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OharaToshiaki en-aut-sei=Ohara en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TomidaShuta en-aut-sei=Tomida en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ItoSachio en-aut-sei=Ito en-aut-mei=Sachio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SuzawaKen en-aut-sei=Suzawa en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NagatsukaHitoshi en-aut-sei=Nagatsuka en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=NakayamaMasanori en-aut-sei=Nakayama en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Pathophysiology and Drug Discovery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Pathophysiology and Drug Discovery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Pathophysiology and Drug Discovery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=School of Medicine, Kobe University kn-affil= affil-num=5 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital kn-affil= affil-num=10 en-affil=Department of Pathophysiology and Drug Discovery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Thoracic Surgery, National Hospital Organization, Shikoku Cancer Center kn-affil= affil-num=13 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=14 en-affil=Department of Pathophysiology and Drug Discovery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Cancer-associated fibroblast kn-keyword=Cancer-associated fibroblast en-keyword=Superoxide dismutase 3 kn-keyword=Superoxide dismutase 3 en-keyword=Lymphangiogenesis kn-keyword=Lymphangiogenesis en-keyword=Angiogenesis kn-keyword=Angiogenesis en-keyword=Metastasis kn-keyword=Metastasis en-keyword=Lung adenocarcinoma kn-keyword=Lung adenocarcinoma END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=11 article-no= start-page=102658 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202511 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Pathophysiology and Therapeutic Needs in Nonobstructive Hypertrophic Cardiomyopathy en-subtitle= kn-subtitle= en-abstract= kn-abstract=Hypertrophic cardiomyopathy (HCM) affects individuals worldwide with an estimated prevalence of over 1 in 500 individuals. Nonobstructive HCM accounts for approximately 30% to 70% of cases, is extremely heterogeneous, and is associated with a notable degree of morbidity, including daily life limitations, ventricular tachyarrhythmias, progression to heart failure, and atrial fibrillation. No approved pharmaceutical therapies target the pathophysiology of nonobstructive HCM, although several clinical trials are underway. This narrative review provides a comprehensive overview of nonobstructive HCM, focusing on epidemiology, natural history, genetics, pathophysiology, clinical manifestations, diagnosis, burden of disease, and current treatments and ongoing clinical trials. en-copyright= kn-copyright= en-aut-name=DesaiMilind Y. en-aut-sei=Desai en-aut-mei=Milind Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MauriziNiccolo en-aut-sei=Maurizi en-aut-mei=Niccolo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=BiaginiElena en-aut-sei=Biagini en-aut-mei=Elena kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=CharronPhilippe en-aut-sei=Charron en-aut-mei=Philippe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FernandesFabio en-aut-sei=Fernandes en-aut-mei=Fabio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=González-LópezEsther en-aut-sei=González-López en-aut-mei=Esther kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=van HaelstPaul L. en-aut-sei=van Haelst en-aut-mei=Paul L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HaugaaKristina Hermann en-aut-sei=Haugaa en-aut-mei=Kristina Hermann kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KramerChristopher M. en-aut-sei=Kramer en-aut-mei=Christopher M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MederBenjamin en-aut-sei=Meder en-aut-mei=Benjamin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MichelsMichelle en-aut-sei=Michels en-aut-mei=Michelle kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=OwensAnjali en-aut-sei=Owens en-aut-mei=Anjali kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YuasaShinsuke en-aut-sei=Yuasa en-aut-mei=Shinsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=ElliottPerry en-aut-sei=Elliott en-aut-mei=Perry kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=HCM Center, Department of Cardiovascular Medicine, Cleveland Clinic kn-affil= affil-num=2 en-affil=Cardiomyopathy Unit, Careggi University Hospital kn-affil= affil-num=3 en-affil=Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna kn-affil= affil-num=4 en-affil=European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart) kn-affil= affil-num=5 en-affil=InCor, Faculdade de Medicina da Universidade de São Paulo kn-affil= affil-num=6 en-affil=Puerta de Hierro Majadahonda University Hospital, Health Research Institute of the Puerta de Hierro Majadahonda-Segovia de Arana University Hospital (IDIPHISA) kn-affil= affil-num=7 en-affil=Cardiovascular Division, Department of Medicine, University of Virginia Health kn-affil= affil-num=8 en-affil=Cardiovascular Division, Department of Medicine, University of Virginia Health kn-affil= affil-num=9 en-affil=Cardiovascular Division, Department of Medicine, University of Virginia Health kn-affil= affil-num=10 en-affil=Department of Internal Medicine III, Institute for Cardiomyopathies, University of Heidelberg kn-affil= affil-num=11 en-affil=European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart) kn-affil= affil-num=12 en-affil=Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania kn-affil= affil-num=13 en-affil=Department of Cardiovascular Medicine, Academic Field, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=14 en-affil=UCL Institute of Cardiovascular Science and St Bartholomew’s Hospital kn-affil= en-keyword=heart failure kn-keyword=heart failure en-keyword=hypertrophic cardiomyopathy kn-keyword=hypertrophic cardiomyopathy en-keyword=nonobstructive kn-keyword=nonobstructive END start-ver=1.4 cd-journal=joma no-vol=29 cd-vols= no-issue=5 article-no= start-page=650 end-page=661 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250106 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Development and validation of an algorithm for identifying patients undergoing dialysis from patients with advanced chronic kidney disease en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Identifying patients on dialysis among those with an estimated glomerular filtration rate (eGFR) < 15 mL/min/1.73 m2 remains challenging. To facilitate clinical research in advanced chronic kidney disease (CKD) using electronic health records, we aimed to develop algorithms to identify dialysis patients using laboratory data obtained in routine practice.
Methods We collected clinical data of patients with an eGFR < 15 mL/min/1.73 m2 from six clinical research core hospitals across Japan: four hospitals for the derivation cohort and two for the validation cohort. The candidate factors for the classification models were identified using logistic regression with stepwise backward selection. To ensure transplant patients were not included in the non-dialysis population, we excluded individuals with the disease code Z94.0.
Results We collected data from 1142 patients, with 640 (56%) currently undergoing hemodialysis or peritoneal dialysis (PD), including 426 of 763 patients in the derivation cohort and 214 of 379 patients in the validation cohort. The prescription of PD solutions perfectly identified patients undergoing dialysis. After excluding patients prescribed PD solutions, seven laboratory parameters were included in the algorithm. The areas under the receiver operation characteristic curve were 0.95 and 0.98 and the positive and negative predictive values were 90.9% and 91.4% in the derivation cohort and 96.2% and 94.6% in the validation cohort, respectively. The calibrations were almost linear.
Conclusions We identified patients on dialysis among those with an eGFR < 15 ml/min/1.73 m2. This study paves the way for database research in nephrology, especially for patients with non-dialysis-dependent advanced CKD. en-copyright= kn-copyright= en-aut-name=ImaizumiTakahiro en-aut-sei=Imaizumi en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YokotaTakashi en-aut-sei=Yokota en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FunakoshiKouta en-aut-sei=Funakoshi en-aut-mei=Kouta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YasudaKazushi en-aut-sei=Yasuda en-aut-mei=Kazushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HattoriAkiko en-aut-sei=Hattori en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MorohashiAkemi en-aut-sei=Morohashi en-aut-mei=Akemi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KusakabeTatsumi en-aut-sei=Kusakabe en-aut-mei=Tatsumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShojimaMasumi en-aut-sei=Shojima en-aut-mei=Masumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NagamineSayoko en-aut-sei=Nagamine en-aut-mei=Sayoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NakanoToshiaki en-aut-sei=Nakano en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=HuangYong en-aut-sei=Huang en-aut-mei=Yong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MorinagaHiroshi en-aut-sei=Morinaga en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=OhtaMiki en-aut-sei=Ohta en-aut-mei=Miki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=NagashimaSatomi en-aut-sei=Nagashima en-aut-mei=Satomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=InoueRyusuke en-aut-sei=Inoue en-aut-mei=Ryusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=NakamuraNaoki en-aut-sei=Nakamura en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=OtaHideki en-aut-sei=Ota en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=MaruyamaTatsuya en-aut-sei=Maruyama en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=GobaraHideo en-aut-sei=Gobara en-aut-mei=Hideo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=EndohAkira en-aut-sei=Endoh en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=AndoMasahiko en-aut-sei=Ando en-aut-mei=Masahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=ShiratoriYoshimune en-aut-sei=Shiratori en-aut-mei=Yoshimune kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=MaruyamaShoichi en-aut-sei=Maruyama en-aut-mei=Shoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= affil-num=1 en-affil=Department of Nephrology, Nagoya University Graduate School of Medicine kn-affil= affil-num=2 en-affil=Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital kn-affil= affil-num=3 en-affil=Kyusyu University Hospital kn-affil= affil-num=4 en-affil=Department of Nephrology, Nagoya University Graduate School of Medicine kn-affil= affil-num=5 en-affil=Department of Nephrology, Nagoya University Graduate School of Medicine kn-affil= affil-num=6 en-affil=Department of Advanced Medicine, Nagoya University Hospital kn-affil= affil-num=7 en-affil=Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital kn-affil= affil-num=8 en-affil=Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University kn-affil= affil-num=9 en-affil=Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University kn-affil= affil-num=10 en-affil=Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University kn-affil= affil-num=11 en-affil=Division of Medical Informatics, Okayama University Hospital kn-affil= affil-num=12 en-affil=Department of Comprehensive Therapy for Chronic Kidney Disease, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Clinical Research Promotion Center, The University of Tokyo Hospital kn-affil= affil-num=14 en-affil=Department of Healthcare Information Management, The University of Tokyo Hospital kn-affil= affil-num=15 en-affil=Medical Information Technology Center, Tohoku University Hospital kn-affil= affil-num=16 en-affil=Medical Information Technology Center, Tohoku University Hospital kn-affil= affil-num=17 en-affil=Medical Information Technology Center, Tohoku University Hospital kn-affil= affil-num=18 en-affil=Clinical Research Promotion Center, The University of Tokyo Hospital kn-affil= affil-num=19 en-affil=Division of Medical Informatics, Okayama University Hospital kn-affil= affil-num=20 en-affil=Department of Medical Informatics, Hokkaido University Hospital kn-affil= affil-num=21 en-affil=Department of Nephrology, Nagoya University Graduate School of Medicine kn-affil= affil-num=22 en-affil=Medical IT Center, Nagoya University Hospital kn-affil= affil-num=23 en-affil=Department of Nephrology, Nagoya University Graduate School of Medicine kn-affil= en-keyword=Chronic kidney disease kn-keyword=Chronic kidney disease en-keyword=Algorithm kn-keyword=Algorithm en-keyword=Classification kn-keyword=Classification en-keyword=Dialysis kn-keyword=Dialysis END start-ver=1.4 cd-journal=joma no-vol=36 cd-vols= no-issue=1 article-no= start-page=6 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241219 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Optical bandgap tuning in SnO2–MoS2 nanocomposites: manipulating the mass of SnO2 and MoS2 using sonochemical solution mixing en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study investigates controlled optical bandgap tuning through precise adjustment of the SnO2 and MoS2 mass in nanocomposites. A sonochemical solution mixing method, coupled with bath sonication, is employed for the preparation of SnO2–MoS2 nanocomposite. This approach allows for comprehensive characterization using UV–Vis FTIR, XRD, EDX, Raman spectroscopies, and FESEM, providing insights into morphology, chemical, and optical properties. Increasing the SnO2 mass leads to a linear decrease in the optical bandgap energy, from 3.0 to 1.7 eV. Similarly, increasing the MoS2 mass also results in a decrease in the optical bandgap energy, with a limitation of around 2.01 eV. This work demonstrates superior control over optical bandgap by manipulating the SnO2 mass compared to MoS2, highlighting the complexities introduced by MoS2 2D nanosheets during sonication. These findings hold significant value for optoelectronic applications, emphasizing enhanced control of optical bandgap through systematic mass manipulation. en-copyright= kn-copyright= en-aut-name=OngChinkhai en-aut-sei=Ong en-aut-mei=Chinkhai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=LeeWeng Nam en-aut-sei=Lee en-aut-mei=Weng Nam kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanYee Seng en-aut-sei=Tan en-aut-mei=Yee Seng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OhbergPatrik en-aut-sei=Ohberg en-aut-mei=Patrik kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HayashiYasuhiko en-aut-sei=Hayashi en-aut-mei=Yasuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NishikawaTakeshi en-aut-sei=Nishikawa en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YapYuenkiat en-aut-sei=Yap en-aut-mei=Yuenkiat kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=School of Engineering and Physical Sciences, Heriot-Watt University Malaysia kn-affil= affil-num=2 en-affil=Heriot-Watt Global College, Heriot-Watt University Malaysia kn-affil= affil-num=3 en-affil=Sunway Biofunctional Molecules Discovery Centre, School of Medical and Life Sciences, Sunway University kn-affil= affil-num=4 en-affil=School of Engineering and Physical Sciences, Institute of Photonics and Quantum Sciences, Heriot-Watt University kn-affil= affil-num=5 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Heriot-Watt Global College, Heriot-Watt University Malaysia kn-affil= END start-ver=1.4 cd-journal=joma no-vol=58 cd-vols= no-issue=2 article-no= start-page=196 end-page=212 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240228 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Influence of Dilution Upon the Ultraviolet-Visible Peak Absorbance and Optical Bandgap Estimation of Tin(IV) Oxide and Tin(IV) Oxide-Molybdenum(IV) Sulfide Solutions en-subtitle= kn-subtitle= en-abstract= kn-abstract=The study investigated the constraints associated with the dilution technique in determining the optical bandgap of nanoparticle dispersion and modified nanocomposites, utilizing ultraviolet-visible absorbance spectra and Tauc plot analysis. A case study involving SnO2 dispersion and SnO2-MoS2 nanocomposite solutions, prepared through the direct solution mixing method, was conducted to assess the implications of dilution upon the absorbance spectra and bandgap estimation. The results emphasize the considerable impact of the dilution technique on the measured optical bandgap, demonstrating that higher dilution factors lead to shift in bandgap values. Furthermore, the study highlights that dilution can induce variations in the average nanoparticle sizes due to agglomeration, thereby influencing bandgap estimation. In the context of nanocomposites, the interaction between SnO2 nanoparticles and exfoliated MoS2 nanosheets diminishes with increasing dilution, leading to the estimated optical bandgap being primarily attributable to SnO2 nanoparticles alone. These observations underscore the necessity for caution when employing the dilution technique for bandgap estimation in nanoparticles dispersion and nanocomposites, offering valuable insights for researchers and practitioners in the field. en-copyright= kn-copyright= en-aut-name=OngChin Khai en-aut-sei=Ong en-aut-mei=Chin Khai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=LeeWeng Nam en-aut-sei=Lee en-aut-mei=Weng Nam kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KhalidMohammad en-aut-sei=Khalid en-aut-mei=Mohammad kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=Mohd AbdahMuhammad Amirul Aizat en-aut-sei=Mohd Abdah en-aut-mei=Muhammad Amirul Aizat kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OhbergPatrik en-aut-sei=Ohberg en-aut-mei=Patrik kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=LimLing Hong en-aut-sei=Lim en-aut-mei=Ling Hong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HayashiYasuhiko en-aut-sei=Hayashi en-aut-mei=Yasuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NishikawaTakeshi en-aut-sei=Nishikawa en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YapYuenkiat en-aut-sei=Yap en-aut-mei=Yuenkiat kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=School of Engineering and Physical Sciences, Heriot-Watt University Malaysia kn-affil= affil-num=2 en-affil=Heriot-Watt Global College, Heriot-Watt University Malaysia kn-affil= affil-num=3 en-affil=Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University kn-affil= affil-num=4 en-affil=Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University kn-affil= affil-num=5 en-affil=Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University kn-affil= affil-num=6 en-affil=Heriot-Watt Global College, Heriot-Watt University Malaysia kn-affil= affil-num=7 en-affil=Graduate School of Natural Science and Technology, Faculty of Engineering, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Natural Science and Technology, Faculty of Engineering, Okayama University kn-affil= affil-num=9 en-affil=Heriot-Watt Global College, Heriot-Watt University Malaysia kn-affil= en-keyword=Colorimetry kn-keyword=Colorimetry en-keyword=nanocomposite kn-keyword=nanocomposite en-keyword=optical bandgap kn-keyword=optical bandgap en-keyword=tin(IV) oxide, molybdenum disulfide, spectrophotometry kn-keyword=tin(IV) oxide, molybdenum disulfide, spectrophotometry END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=3 article-no= start-page=335 end-page=349 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202509 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Adaptive strategies and community engagement for sustainable conservation and tourism in Komodo National Park, Indonesia en-subtitle= kn-subtitle= en-abstract= kn-abstract=The sustainability of Komodo protection efforts is closely linked to tourism development. To achieve this, it is important to have a deep understanding of local community behaviors and adaptation strategies. This study focuses on the complex relationships between sociodemographic factors, attitudes towards forest conservation, participation in adaptive management programs, and willingness of local communities in the Komodo district to engage in sustainable tourism practices. Using structural equation modeling (SEM), we analyze the connections that either support or hinder the conservation of Komodo habitats while promoting responsible tourism growth. The results show that sociodemographic characteristics have a significant impact on conservation attitudes, leading to increased participation in adaptive programs that are crucial for sustainable tourism. Additionally, the willingness to adapt is a key factor that influences the level of community involvement in sustainable tourism initiatives. This study emphasizes the importance of developing behavioral and adaptive forest protection programs that cater to both Komodo conservation and the sustainable growth of tourism. Policy recommendations focus on community-centered conservation strategies, education on sustainable practices, and the implementation of adaptive management to ensure the long-term viability of Komodo habitats. Overall, this research provides a nuanced understanding of conservation behavior in regions with rich biodiversity. It highlights the pivotal role of community engagement and adaptive strategies in achieving sustainable tourism and conservation goals. en-copyright= kn-copyright= en-aut-name=SianiparImelda Masni Juniaty en-aut-sei=Sianipar en-aut-mei=Imelda Masni Juniaty kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=LeeChun-Hung en-aut-sei=Lee en-aut-mei=Chun-Hung kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KimDoo-Chul en-aut-sei=Kim en-aut-mei=Doo-Chul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SuryawanI Wayan Koko en-aut-sei=Suryawan en-aut-mei=I Wayan Koko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of International Relations, Faculty of Social and Political Sciences, Universitas Kristen Indonesia kn-affil= affil-num=2 en-affil=Center for Environmental Solution (CVISION), Universitas Pertamina kn-affil= affil-num=3 en-affil=Faculty of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Department of Environmental Engineering, Faculty of Infrastructure Planning, Universitas Pertamina kn-affil= en-keyword=Komodo conservation kn-keyword=Komodo conservation en-keyword=sustainable tourism kn-keyword=sustainable tourism en-keyword=forest protection kn-keyword=forest protection en-keyword=adaptive management programs kn-keyword=adaptive management programs en-keyword=sociodemographic influence kn-keyword=sociodemographic influence END start-ver=1.4 cd-journal=joma no-vol=76 cd-vols= no-issue=9 article-no= start-page=4815 end-page=4837 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202511 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Spatiotemporal evolution of ecosystem carbon storage under land use/land cover dynamics in the coastal region of Central Vietnam en-subtitle= kn-subtitle= en-abstract= kn-abstract=Ecosystem carbon storage is a cost-effective strategy for global climate change mitigation, and its fluctuation is markedly shaped by land use/land cover (LULC) dynamics. Taking Danang city as an example of Central Coastal Vietnam, this study aims to assess LULC changes and analyze the spatiotemporal evolution of carbon storage from 2023 to 2050 under four LULC change scenarios, including natural trend scenario (NTS), ecological protection scenario (EPS), economic development scenario (EDS), and cropland protection scenario (CPS), by integrating the support vector machine-cellular automata-Markov (SVM-CA-Markov) model and the InVEST model. The Optimal Parameters-based Geographical Detector (OPGD) model was subsequently employed to elucidate the impacts of driving factors on the spatial distribution of carbon storage. The results showed that, from 2007 to 2023, Danang city experienced a dramatic back-and-forth transformation between LULC types, with the predominant transitions being from natural forest to acacia tree-dominated plantation forest (6492.31 ha), and from cropland to settlements, acacia tree-dominated plantation forest, and other land (5483.05 ha, 3763.66 ha, 2762.35 ha, respectively). Between 2023 and 2050, LULC transformations in Danang city are projected to yield varying degrees of carbon storage levels across different scenarios. Specifically, carbon storage is anticipated to dwindle by 0.221 Mt, 0.223 Mt, and 0.298 Mt under NTS, EDS, and CPS, respectively, while enhancing by 0.141 Mt under EPS. Regarding the spatial distribution of carbon storage, high values will be chiefly found in the western high-elevation mountainous region, while low values will be concentrated mostly in the eastern lower-lying areas of the city. Additionally, elevation and temperature acted as the two most significant driving factors influencing the spatial distribution of carbon storage, with Q values of 0.88 and 0.86 (p-value < 0.05), respectively. For interaction detection, the combination of elevation and soil exhibited a synergistic reinforcement effect on the spatial partitioning of carbon storage, with a high Q value of 0.9566 (p-value < 0.05). Our study highlights the necessity of ecological conservation measures in Danang city in the on-track pursuit of national net-zero carbon emissions by 2050. en-copyright= kn-copyright= en-aut-name=HoViet Hoang en-aut-sei=Ho en-aut-mei=Viet Hoang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MoritaHidenori en-aut-sei=Morita en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HoThanh Ha en-aut-sei=Ho en-aut-mei=Thanh Ha kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=BachoferFelix en-aut-sei=Bachofer en-aut-mei=Felix kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=University of Agriculture and Forestry, Hue University kn-affil= affil-num=4 en-affil=German Aerospace Center (DLR), Earth Observation Center kn-affil= en-keyword=Carbon sequestration kn-keyword=Carbon sequestration en-keyword=Scenario-based modeling kn-keyword=Scenario-based modeling en-keyword=Remote sensing kn-keyword=Remote sensing en-keyword=Spatial autocorrelation analysis kn-keyword=Spatial autocorrelation analysis END start-ver=1.4 cd-journal=joma no-vol=1019 cd-vols= no-issue= article-no= start-page=A22 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250918 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Experimental and numerical study on the inertial migration of hydrogel particles suspended in square channel flows en-subtitle= kn-subtitle= en-abstract= kn-abstract=The inertial migration of hydrogel particles suspended in a Newtonian fluid flowing through a square channel is studied both experimentally and numerically. Experimental results demonstrate significant differences in the focusing positions of the deformable and rigid particles, highlighting the role of particle deformability in inertial migration. At low Reynolds numbers (Re), hydrogel particles migrate towards the centre of the channel cross-section, whereas the rigid spheres exhibit negligible lateral motion. At finite Re, they focus at four points along the diagonals in the downstream cross-section, in contrast to the rigid particles which focus near the centre of the channel face at similar Re . Numerical simulations using viscous hyperelastic particles as a model for hydrogel particles reproduced the experimental results for the particle distribution with an appropriate Young’s modulus of the hyperelastic particles. Further numerical simulations over a broader range of Re and the capillary number (Ca) reveal various focusing patterns of the particles in the channel cross-section. The phase transitions between them are discussed in terms of the inertial lift and the lift due to particle deformation, which would act in the direction towards lower shear. The stability of the channel centre is analysed using an asymptotic expansion approach to the migration force at low Re and Ca. The theoretical analysis predicts the critical condition for the transition, which is consistent with the direct numerical simulation. These experimental, numerical and theoretical results contribute to a deeper understanding of inertial migration of deformable particles. en-copyright= kn-copyright= en-aut-name=HirohataYuma en-aut-sei=Hirohata en-aut-mei=Yuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SaiKazusa en-aut-sei=Sai en-aut-mei=Kazusa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TangeYuki en-aut-sei=Tange en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishiyamaTomohiro en-aut-sei=Nishiyama en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MinatoHaruka en-aut-sei=Minato en-aut-mei=Haruka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SuzukiDaisuke en-aut-sei=Suzuki en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ItanoTomoaki en-aut-sei=Itano en-aut-mei=Tomoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SugiyamaKazuyasu en-aut-sei=Sugiyama en-aut-mei=Kazuyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=Sugihara-SekiMasako en-aut-sei=Sugihara-Seki en-aut-mei=Masako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Graduate School of Engineering Science, The University of Osaka kn-affil= affil-num=2 en-affil=Department of Pure and Applied Physics, Kansai University kn-affil= affil-num=3 en-affil=Department of Pure and Applied Physics, Kansai University kn-affil= affil-num=4 en-affil=Department of Pure and Applied Physics, Kansai University kn-affil= affil-num=5 en-affil=Graduate School of Environmental Life Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental Life Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Department of Pure and Applied Physics, Kansai University kn-affil= affil-num=8 en-affil=Graduate School of Engineering Science, The University of Osaka kn-affil= affil-num=9 en-affil=Department of Pure and Applied Physics, Kansai University kn-affil= en-keyword=flow-structure interactions kn-keyword=flow-structure interactions en-keyword=microfluidics kn-keyword=microfluidics en-keyword=particle/fluid flow kn-keyword=particle/fluid flow END start-ver=1.4 cd-journal=joma no-vol=28 cd-vols= no-issue=1 article-no= start-page=e12658 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241212 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Can online interactions reduce loneliness in young adults during university closures in Japan? The directed acyclic graphs approach en-subtitle= kn-subtitle= en-abstract= kn-abstract=As a countermeasure to the increased loneliness induced by the COVID-19 pandemic-related university closures, universities provided students with online interaction opportunities. However, whether these opportunities contributed to reducing loneliness during the university closures remains unclear, as previous studies have produced contradictory findings. We conducted a nationwide cross-sectional survey. Data were collected on demographics, social environment, social support, interactions, health and loneliness from 4949 students from 60 universities across Japan. We used psychological network and Directed Acyclic Graphs (DAGs) to examine the effect of online interactions on loneliness during university closures during COVID-19. The results showed that the frequency of online interactions with friends did not exert a significant influence on loneliness during university closures. A comparative examination of the DAGs further illuminated that the social environment exhibited fewer pathways for interpersonal interactions and social support during these closure periods. The psychosocial pathways influencing young adults' loneliness show variations contingent on the university's closure status. Notably, the impact of heightened online interactions with friends on loneliness appears to be less pronounced among young adults in the context of university closure. en-copyright= kn-copyright= en-aut-name=KambaraKohei en-aut-sei=Kambara en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ToyaAkihiro en-aut-sei=Toya en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=LeeSumin en-aut-sei=Lee en-aut-mei=Sumin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShimizuHaruka en-aut-sei=Shimizu en-aut-mei=Haruka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AbeKazuaki en-aut-sei=Abe en-aut-mei=Kazuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShigematsuJun en-aut-sei=Shigematsu en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ZhangQingyuan en-aut-sei=Zhang en-aut-mei=Qingyuan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AbeNatsuki en-aut-sei=Abe en-aut-mei=Natsuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HayaseRyo en-aut-sei=Hayase en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=AbeNobuhito en-aut-sei=Abe en-aut-mei=Nobuhito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NakaiRyusuke en-aut-sei=Nakai en-aut-mei=Ryusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=AokiShuntaro en-aut-sei=Aoki en-aut-mei=Shuntaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=AsanoKohei en-aut-sei=Asano en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=AsanoRyosuke en-aut-sei=Asano en-aut-mei=Ryosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=FujimuraMakoto en-aut-sei=Fujimura en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=FukuiKen’ichiro en-aut-sei=Fukui en-aut-mei=Ken’ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=FukumotoYoshihiro en-aut-sei=Fukumoto en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=FurutaniKaichiro en-aut-sei=Furutani en-aut-mei=Kaichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=HasegawaKoji en-aut-sei=Hasegawa en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=HashimotoHirofumi en-aut-sei=Hashimoto en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=HashimotoMikoto en-aut-sei=Hashimoto en-aut-mei=Mikoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=HosogoshiHiroki en-aut-sei=Hosogoshi en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=IkedaHiroshi en-aut-sei=Ikeda en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=IshiokaToshiyuki en-aut-sei=Ishioka en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=ItoChiharu en-aut-sei=Ito en-aut-mei=Chiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=IwanoSuguru en-aut-sei=Iwano en-aut-mei=Suguru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=KamadaMasafumi en-aut-sei=Kamada en-aut-mei=Masafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=KanaiYoshihiro en-aut-sei=Kanai en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=KaritaTomonori en-aut-sei=Karita en-aut-mei=Tomonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=KasagiYu en-aut-sei=Kasagi en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= en-aut-name=KashimaEmiko S. en-aut-sei=Kashima en-aut-mei=Emiko S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=31 ORCID= en-aut-name=KatoJuri en-aut-sei=Kato en-aut-mei=Juri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=32 ORCID= en-aut-name=KawachiYousuke en-aut-sei=Kawachi en-aut-mei=Yousuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=33 ORCID= en-aut-name=KawaharaJun‐ichiro en-aut-sei=Kawahara en-aut-mei=Jun‐ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=34 ORCID= en-aut-name=KimuraMasanori en-aut-sei=Kimura en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=35 ORCID= en-aut-name=KiraYugo en-aut-sei=Kira en-aut-mei=Yugo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=36 ORCID= en-aut-name=Kiyonaga (Sakoda)Yuko en-aut-sei=Kiyonaga (Sakoda) en-aut-mei=Yuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=37 ORCID= en-aut-name=KohguchiHiroshi en-aut-sei=Kohguchi en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=38 ORCID= en-aut-name=KomiyaAsuka en-aut-sei=Komiya en-aut-mei=Asuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=39 ORCID= en-aut-name=MasuiKeita en-aut-sei=Masui en-aut-mei=Keita kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=40 ORCID= en-aut-name=MidorikawaAkira en-aut-sei=Midorikawa en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=41 ORCID= en-aut-name=MifuneNobuhiro en-aut-sei=Mifune en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=42 ORCID= en-aut-name=MizukoshiAkimine en-aut-sei=Mizukoshi en-aut-mei=Akimine kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=43 ORCID= en-aut-name=NawataKengo en-aut-sei=Nawata en-aut-mei=Kengo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=44 ORCID= en-aut-name=NishimuraTakashi en-aut-sei=Nishimura en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=45 ORCID= en-aut-name=NogiwaDaisuke en-aut-sei=Nogiwa en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=46 ORCID= en-aut-name=OgawaKenji en-aut-sei=Ogawa en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=47 ORCID= en-aut-name=OkadaJunko en-aut-sei=Okada en-aut-mei=Junko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=48 ORCID= en-aut-name=OkamotoAki en-aut-sei=Okamoto en-aut-mei=Aki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=49 ORCID= en-aut-name=OkamotoReiko en-aut-sei=Okamoto en-aut-mei=Reiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=50 ORCID= en-aut-name=SasakiKyoko en-aut-sei=Sasaki en-aut-mei=Kyoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=51 ORCID= en-aut-name=SatoKosuke en-aut-sei=Sato en-aut-mei=Kosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=52 ORCID= en-aut-name=ShimizuHiroshi en-aut-sei=Shimizu en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=53 ORCID= en-aut-name=SugimuraAtsushi en-aut-sei=Sugimura en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=54 ORCID= en-aut-name=SugitaniYoko en-aut-sei=Sugitani en-aut-mei=Yoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=55 ORCID= en-aut-name=SugiuraHitomi en-aut-sei=Sugiura en-aut-mei=Hitomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=56 ORCID= en-aut-name=SumiokaKyoko en-aut-sei=Sumioka en-aut-mei=Kyoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=57 ORCID= en-aut-name=SunaguchiBumpei en-aut-sei=Sunaguchi en-aut-mei=Bumpei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=58 ORCID= en-aut-name=TakebeMasataka en-aut-sei=Takebe en-aut-mei=Masataka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=59 ORCID= en-aut-name=TanabeHiroki C. en-aut-sei=Tanabe en-aut-mei=Hiroki C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=60 ORCID= en-aut-name=TanakaAyumi en-aut-sei=Tanaka en-aut-mei=Ayumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=61 ORCID= en-aut-name=TanakaMasanori en-aut-sei=Tanaka en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=62 ORCID= en-aut-name=TaniguchiJunichi en-aut-sei=Taniguchi en-aut-mei=Junichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=63 ORCID= en-aut-name=TokunagaNamiji en-aut-sei=Tokunaga en-aut-mei=Namiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=64 ORCID= en-aut-name=TomitaRyozo en-aut-sei=Tomita en-aut-mei=Ryozo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=65 ORCID= en-aut-name=UedaYumiko en-aut-sei=Ueda en-aut-mei=Yumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=66 ORCID= en-aut-name=YamashitaTomomi en-aut-sei=Yamashita en-aut-mei=Tomomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=67 ORCID= en-aut-name=YamauraKazuho en-aut-sei=Yamaura en-aut-mei=Kazuho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=68 ORCID= en-aut-name=YogoMasao en-aut-sei=Yogo en-aut-mei=Masao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=69 ORCID= en-aut-name=YokotaniKenji en-aut-sei=Yokotani en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=70 ORCID= en-aut-name=YoshidaAyano en-aut-sei=Yoshida en-aut-mei=Ayano kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=71 ORCID= en-aut-name=YoshidaHiroaki en-aut-sei=Yoshida en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=72 ORCID= en-aut-name=YoshiharaKatsue en-aut-sei=Yoshihara en-aut-mei=Katsue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=73 ORCID= en-aut-name=YoshikawaAyumi en-aut-sei=Yoshikawa en-aut-mei=Ayumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=74 ORCID= en-aut-name=YanagisawaKuniaki en-aut-sei=Yanagisawa en-aut-mei=Kuniaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=75 ORCID= en-aut-name=NakashimaKen'ichiro en-aut-sei=Nakashima en-aut-mei=Ken'ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=76 ORCID= affil-num=1 en-affil=Doshisha University kn-affil= affil-num=2 en-affil=Hiroshima University kn-affil= affil-num=3 en-affil=Hiroshima University kn-affil= affil-num=4 en-affil=Nishikyushu Univ. Junior College kn-affil= affil-num=5 en-affil=Hiroshima University kn-affil= affil-num=6 en-affil=Toyama University kn-affil= affil-num=7 en-affil=Hiroshima University kn-affil= affil-num=8 en-affil=Hiroshima Bunkyo University kn-affil= affil-num=9 en-affil=Chubu University kn-affil= affil-num=10 en-affil=Kyoto University kn-affil= affil-num=11 en-affil=Kyoto University kn-affil= affil-num=12 en-affil=Fukushima Medical University kn-affil= affil-num=13 en-affil=Kyoto University kn-affil= affil-num=14 en-affil=Kurume University kn-affil= affil-num=15 en-affil=Fukuoka Jo Gakuin University kn-affil= affil-num=16 en-affil=Kwassui Women's University kn-affil= affil-num=17 en-affil=Kansai Medical University kn-affil= affil-num=18 en-affil=Kansai University kn-affil= affil-num=19 en-affil=Komazawa University kn-affil= affil-num=20 en-affil=Osaka Metropolitan University kn-affil= affil-num=21 en-affil=Chukyo Gakuin University kn-affil= affil-num=22 en-affil=Kansai University kn-affil= affil-num=23 en-affil=Kyushu University kn-affil= affil-num=24 en-affil=Kobe University kn-affil= affil-num=25 en-affil=University of Human Environments kn-affil= affil-num=26 en-affil=Fukushima Medical University kn-affil= affil-num=27 en-affil=Shujitsu Junior College kn-affil= affil-num=28 en-affil=Tohoku Gakuin University kn-affil= affil-num=29 en-affil=Ehime University kn-affil= affil-num=30 en-affil=Rissho University kn-affil= affil-num=31 en-affil=La Trobe University kn-affil= affil-num=32 en-affil=Kanazawa Institute of Technology kn-affil= affil-num=33 en-affil=Tohoku University kn-affil= affil-num=34 en-affil=Hokkaido University kn-affil= affil-num=35 en-affil=Graduate School of Business Administration, Kobe University kn-affil= affil-num=36 en-affil=Kurume University kn-affil= affil-num=37 en-affil=Kyushu Kyoritsu University kn-affil= affil-num=38 en-affil=Ryutsu Keizai University kn-affil= affil-num=39 en-affil=Hiroshima University kn-affil= affil-num=40 en-affil=Otemon Gakuin University kn-affil= affil-num=41 en-affil=Chuo University kn-affil= affil-num=42 en-affil=Kochi University of Technology kn-affil= affil-num=43 en-affil=Asahi University kn-affil= affil-num=44 en-affil=Fukuoka University kn-affil= affil-num=45 en-affil=Hiroshima International University kn-affil= affil-num=46 en-affil=Seikei University kn-affil= affil-num=47 en-affil=Hokkaido University kn-affil= affil-num=48 en-affil=Prefectural University of Hiroshima kn-affil= affil-num=49 en-affil=Okayama University kn-affil= affil-num=50 en-affil=Osaka University kn-affil= affil-num=51 en-affil=Kanagawa University of Human Services kn-affil= affil-num=52 en-affil=Kurume University kn-affil= affil-num=53 en-affil=Kwansei Gakuin University kn-affil= affil-num=54 en-affil=Tokai University kn-affil= affil-num=55 en-affil=Sophia University kn-affil= affil-num=56 en-affil=Kindai University kn-affil= affil-num=57 en-affil=Okayama University kn-affil= affil-num=58 en-affil=Graduate School of Business Administration, Kobe University kn-affil= affil-num=59 en-affil=Otsuma Women's University kn-affil= affil-num=60 en-affil=Nagoya University kn-affil= affil-num=61 en-affil=Doshisha University kn-affil= affil-num=62 en-affil=Hokkai‐Gakuen University kn-affil= affil-num=63 en-affil=Tezukayama University kn-affil= affil-num=64 en-affil=Ehime Prefectural University of Health Sciences kn-affil= affil-num=65 en-affil=Musashino University kn-affil= affil-num=66 en-affil=Asahi University kn-affil= affil-num=67 en-affil=Jumonji University kn-affil= affil-num=68 en-affil=Ritsumeikan University kn-affil= affil-num=69 en-affil=Doshisha University kn-affil= affil-num=70 en-affil=Tokushima University kn-affil= affil-num=71 en-affil=Tohoku Fukushi University kn-affil= affil-num=72 en-affil=Shinshu University kn-affil= affil-num=73 en-affil=Fukuoka Institute of Technology Junior College kn-affil= affil-num=74 en-affil=Osaka Dental University Faculty of Nursing kn-affil= affil-num=75 en-affil=Kobe University kn-affil= affil-num=76 en-affil=Hiroshima University kn-affil= en-keyword=directed acyclic graphs kn-keyword=directed acyclic graphs en-keyword=loneliness kn-keyword=loneliness en-keyword=online interactions kn-keyword=online interactions en-keyword=psychological network kn-keyword=psychological network en-keyword=university closures kn-keyword=university closures en-keyword=university students kn-keyword=university students END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=1 article-no= start-page=519 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250926 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Specific induction of right ventricular-like cardiomyocytes from human pluripotent stem cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Applications employing human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) require well-characterized, chamber-specific hPSC-CMs. Distinct first heart field (FHF) and second heart field (SHF) cardiac progenitor populations give rise to the left ventricular (LV) and right ventricular (RV) cardiomyocytes, respectively. This developmental difference in cardiomyocyte origin suggests that chamber-specific cardiomyocytes have unique characteristics. Therefore, efficient strategies to differentiate human pluripotent stem cells (hPSCs) specifically to LV-like or RV-like cardiomyocytes are needed and it is still unknown whether there is a phenotypic difference between LV-like cardiomyocytes and RV-like cardiomyocytes derived from hPSCs.
Methods An established hPSC cardiac differentiation protocol employing sequential GSK3β inhibition followed by Wnt inhibition (GiWi) was modified by addition of insulin or BMP antagonists during mesoderm formation. Cardiac progenitor populations were evaluated for FHF and SHF markers, and differentiated hPSC-CMs were characterized for chamber-specific markers.
Results The GiWi protocol produced mainly FHF-like progenitor cells that gave rise to LV-like cardiomyocytes. Inhibition of endogenous BMP signaling during mesoderm induction using insulin or BMP antagonists reduced expression of FHF markers and increased expression of SHF markers in cardiac progenitor cells. hPSC-CMs arising from the SHF-like progenitor cells showed an RV-like gene expression pattern and exhibited phenotypic differences in spontaneous contraction rate, Ca2+ transients, and cell size compared to control LV-like cardiomyocytes.
Conclusion This study establishes methodology to generate RV-like hPSC-CMs to support the development of disease modeling research using chamber-specific hPSC-CMs. en-copyright= kn-copyright= en-aut-name=SaitoYukihiro en-aut-sei=Saito en-aut-mei=Yukihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KatanosakaYuki en-aut-sei=Katanosaka en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IidaToshihiro en-aut-sei=Iida en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KusumotoDai en-aut-sei=Kusumoto en-aut-mei=Dai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SatoRyushi en-aut-sei=Sato en-aut-mei=Ryushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AdachiRiki en-aut-sei=Adachi en-aut-mei=Riki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShimizuSatoshi en-aut-sei=Shimizu en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KurokawaJunko en-aut-sei=Kurokawa en-aut-mei=Junko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=AkagiSatoshi en-aut-sei=Akagi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YoshidaMasashi en-aut-sei=Yoshida en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MoritaHiroshi en-aut-sei=Morita en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=NaruseKeiji en-aut-sei=Naruse en-aut-mei=Keiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=NishidaMikako en-aut-sei=Nishida en-aut-mei=Mikako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=UdonoHeiichiro en-aut-sei=Udono en-aut-mei=Heiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=ZhangJianhua en-aut-sei=Zhang en-aut-mei=Jianhua kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=YuasaShinsuke en-aut-sei=Yuasa en-aut-mei=Shinsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=KampTimothy J. en-aut-sei=Kamp en-aut-mei=Timothy J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Cardiovascular Physiology, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Biomedical Informatics and Molecular Biology, The Sakaguchi Laboratory, Keio University School of Medicine kn-affil= affil-num=6 en-affil=Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka kn-affil= affil-num=7 en-affil=Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka kn-affil= affil-num=8 en-affil=Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka kn-affil= affil-num=9 en-affil=Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka kn-affil= affil-num=10 en-affil=Department of Cardiovascular Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Cardiovascular Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Cardiovascular Therapeutics, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Cardiovascular Physiology, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=15 en-affil=Department of Metabolic Immune Regulation, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Department of Metabolic Immune Regulation, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=17 en-affil=Department of Medicine, University of Wisconsin School of Medicine and Public Health kn-affil= affil-num=18 en-affil=Department of Cardiovascular Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=19 en-affil=Department of Medicine, University of Wisconsin School of Medicine and Public Health kn-affil= affil-num=20 en-affil=Department of Cardiovascular Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Human pluripotent stem cell-derived cardiomyocytes kn-keyword=Human pluripotent stem cell-derived cardiomyocytes en-keyword=Anterior second heart field kn-keyword=Anterior second heart field en-keyword=Right ventricle kn-keyword=Right ventricle en-keyword=Bone morphogenetic protein kn-keyword=Bone morphogenetic protein END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=JE20250409 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effect modification and its impact on preventable and attributable fractions in the potential outcomes framework en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Policy decisions should be guided by measures that capture the impact of exposures on outcomes and that explicitly account for present-day exposure distribution. Both the preventable and attributable fractions have been used for this purpose; however, exposure effects can vary across subpopulations, and when this occurs, appropriate interpretation of these measures should be facilitated by a discussion of the contributions of different subpopulations.
Methods: We analyze preventable and attributable fractions in the presence of effect modification. In particular, we use potential outcomes to formally define these quantities and to clarify the weighting of different strata in the total population measures.
Results: Our derivations show that stratum-specific preventable and attributable fractions are weighted in proportion to the relative frequencies of effect modifiers among individuals with the outcome of interest. We also demonstrate that these weights are valid for the related quantities, preventable and attributable proportions. Finally, we present an example that illustrates how effect modification affects interpretation of these measures.
Conclusions: In sum, when effect modification is present, investigators should consider reporting these measures by the relevant population strata, and information that would allow quantification of their implicit weights in the total population estimate. Our study provides a formal justification for this approach. en-copyright= kn-copyright= en-aut-name=GonçalvesBronner P. en-aut-sei=Gonçalves en-aut-mei=Bronner P. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SuzukiEtsuji en-aut-sei=Suzuki en-aut-mei=Etsuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Faculty of Health and Medical Sciences, University of Surrey kn-affil= affil-num=2 en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=preventable fraction kn-keyword=preventable fraction en-keyword=attributable fraction kn-keyword=attributable fraction en-keyword=effect modification kn-keyword=effect modification en-keyword=causality kn-keyword=causality END start-ver=1.4 cd-journal=joma no-vol=36 cd-vols= no-issue=6 article-no= start-page=732 end-page=740 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202511 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Causal Approaches to Disease Progression Analyses en-subtitle= kn-subtitle= en-abstract= kn-abstract=Epidemiologic analyses that aim to quantify exposure effects on disease progression are not uncommon. Understanding the implications of these studies, however, is complicated, in part because different causal estimands could, at least in theory, be the target of such analyses. Here, to facilitate interpretation of these studies, we describe different settings in which causal questions related to disease progression can be asked, and consider possible estimands. For clarity, our discussion is structured around settings defined based on two factors: whether the disease occurrence is manipulable or not, and the type of outcome. We describe relevant causal structures and sets of response types, which consist of joint potential outcomes of disease occurrence and disease progression, and argue that settings where interventions to manipulate disease occurrence are not plausible are more common, and that, in this case, principal stratification might be an appropriate framework to conceptualize the analysis. Further, we suggest that the precise definition of the outcome of interest, in particular of what constitutes its permissible levels, might determine whether potential outcomes linked to disease progression are definable in different strata of the population. Our hope is that this paper will encourage additional methodological work on causal analysis of disease progression, as well as serve as a resource for future applied studies. en-copyright= kn-copyright= en-aut-name=GonçalvesBronner P. en-aut-sei=Gonçalves en-aut-mei=Bronner P. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SuzukiEtsuji en-aut-sei=Suzuki en-aut-mei=Etsuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Faculty of Health and Medical Sciences, University of Surrey kn-affil= affil-num=2 en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=disease progression kn-keyword=disease progression en-keyword=causal inference kn-keyword=causal inference en-keyword=principal stratification kn-keyword=principal stratification en-keyword=controlled direct effects kn-keyword=controlled direct effects en-keyword=potential outcomes kn-keyword=potential outcomes END start-ver=1.4 cd-journal=joma no-vol=19 cd-vols= no-issue=5 article-no= start-page=939 end-page=948 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250905 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Study on an Effective Coolant Supply Method in the Side Plunge Grinding Process en-subtitle= kn-subtitle= en-abstract= kn-abstract=Grinding is widely used for finishing components with journal and thrust surfaces, such as crankshafts. Side-plunge grinding enables the simultaneous finishing of thrust and cylindrical surfaces in a single plunge. However, compared to cylindrical grinding, it involves a larger contact area between the grinding wheel and the workpiece, leading to increased heat generation. In particular, poor coolant penetration near internal corners can degrade surface quality, potentially causing stress concentrations and cracks. To enhance coolant effectiveness in side-plunge grinding, this study installs a high-pressure nozzle that supplies coolant from the side of the grinding wheel. The effectiveness of this setup is experimentally verified. Additionally, the distribution of coolant flow within the contact area between the grinding wheel and the workpiece is measured to determine the optimal nozzle position for efficient coolant delivery. The nozzle’s performance is evaluated by measuring the workpiece surface temperature using a wire/workpiece thermocouple, the amount of coolant discharged from the grinding wheel, and the residual stress distribution. The results show that coolant penetrates the grinding wheel and effectively reaches the grinding zone, enhancing the cooling effect. This study clarifies the relationship between effective coolant supply and the position of the side nozzle. Considering physical constraints, such as potential interference during grinding, the optimal nozzle location is as close as possible to both the edge of the grinding wheel and the workpiece. This positioning ensures maximum coolant delivery, reduces grinding temperature, and helps suppress drastic variations in residual stress. en-copyright= kn-copyright= en-aut-name=GaoLingxiao en-aut-sei=Gao en-aut-mei=Lingxiao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujimotoTaichi en-aut-sei=Fujimoto en-aut-mei=Taichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KodamaHiroyuki en-aut-sei=Kodama en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OhashiKazuhito en-aut-sei=Ohashi en-aut-mei=Kazuhito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=grinding kn-keyword=grinding en-keyword=thrust surface kn-keyword=thrust surface en-keyword=grinding temperature kn-keyword=grinding temperature en-keyword=coolant flow kn-keyword=coolant flow en-keyword=residual stress kn-keyword=residual stress END start-ver=1.4 cd-journal=joma no-vol=66 cd-vols= no-issue=7 article-no= start-page=1044 end-page=1060 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250527 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Oxygen supply is a prerequisite for response to aluminum in cultured cells of tobacco (Nicotiana tabacum) en-subtitle= kn-subtitle= en-abstract= kn-abstract=Responses to aluminum (Al) were investigated in tobacco cells (cell line SL) in a calcium-sucrose solution for up to 24 h under shaking (aerobic) condition. Microarray analysis of upregulated and downregulated genes under Al exposure and following Gene Ontology (GO) enrichment analysis of biological process category revealed only one GO term to be enriched for the upregulated genes, “response to chitin,” annotated with genes encoding transcription factors (NtERF1 and NtMYB3) and MAP kinase (WIPK), and nine GO terms for the downregulated genes, including “cell wall loosening” and “lipid transport,” annotated with genes encoding expansin (NtEXPA4) and lipid transfer protein (LTP)/LTP-like (NtLTP3 and NtEIG-C29), respectively. Al triggered the production of nitric oxide (NO) then reactive oxygen species (ROS). Addition of NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide decreased the levels of NO and a part of the transcriptional changes described above, but increased the levels of ROS and a loss of growth capacity, suggesting a role of the NO to induce the transcriptional changes partly and to repress these toxic responses under Al exposure. Under non-shaking (anaerobic) condition, the cells exhibited upregulation of several hypoxia-responsive genes. The cells exposed to Al exhibited the same level of Al accumulation but much lower levels of the Al responses including NO production, ROS production, a loss of growth capacity, citrate secretion, and a part of the transcriptional changes described above, compared with the cells under shaking condition. These results suggest that coexistence of oxygen with Al is necessary to trigger the Al responses related to toxicity and tolerance. en-copyright= kn-copyright= en-aut-name=TsuchiyaYoshiyuki en-aut-sei=Tsuchiya en-aut-mei=Yoshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KatsuharaMaki en-aut-sei=Katsuhara en-aut-mei=Maki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SasakiTakayuki en-aut-sei=Sasaki en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamamotoYoko en-aut-sei=Yamamoto en-aut-mei=Yoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=aluminum toxicity kn-keyword=aluminum toxicity en-keyword=aluminum-responsive genes kn-keyword=aluminum-responsive genes en-keyword=cell wall loosening kn-keyword=cell wall loosening en-keyword=chitin-responsive genes kn-keyword=chitin-responsive genes en-keyword=dioxygen kn-keyword=dioxygen en-keyword=hypoxia kn-keyword=hypoxia END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=21 article-no= start-page=11479 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Dennd2c Negatively Controls Multinucleation and Differentiation in Osteoclasts by Regulating Actin Polymerization and Protrusion Formation en-subtitle= kn-subtitle= en-abstract= kn-abstract=Osteoclasts are bone-resorbing multinucleated giant cells formed by the fusion of monocyte/macrophage lineages. Various small GTPases are involved in the multinucleation and differentiation of osteoclasts. However, the roles of small GTPases regulatory molecules in osteoclast differentiation remain unclear. In the present study, we examined the role of Dennd2c, a putative guanine nucleotide exchange factor for Rab GTPases, in osteoclast differentiation. Knockdown of Dennd2c promoted osteoclast differentiation, resorption, and expression of osteoclast markers. Morphologically, Dennd2c knockdown induced the formation of larger osteoclasts with several protrusions. In contrast, overexpression of Dennd2c inhibited the multinucleation and differentiation of osteoclasts, bone resorption, and the expression of osteoclast markers. Dennd2c-overexpressing macrophages exhibited spindle-shaped mononuclear cells and long thin protrusions. Treatment of Dennd2c-overexpressing cells with the Cdc42 inhibitor ML-141 or the Rac1 inhibitor 6-thio-GTP prevented protrusion formation. Moreover, treatment of Dennd2c-overexpressing cells with the actin polymerization inhibitor latrunculin B restored multinucleated and TRAP-positive osteoclast formation. These results indicate that Dennd2c negatively regulates osteoclast differentiation and multinucleation by modulating protrusion formation in macrophages. en-copyright= kn-copyright= en-aut-name=KoyanagiYu en-aut-sei=Koyanagi en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SakaiEiko en-aut-sei=Sakai en-aut-mei=Eiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamaguchiYu en-aut-sei=Yamaguchi en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FarhanaFatima en-aut-sei=Farhana en-aut-mei=Fatima kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TairaYohsuke en-aut-sei=Taira en-aut-mei=Yohsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OkamotoKuniaki en-aut-sei=Okamoto en-aut-mei=Kuniaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MurataHiroshi en-aut-sei=Murata en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TsukubaTakayuki en-aut-sei=Tsukuba en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University kn-affil= affil-num=2 en-affil=Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University kn-affil= affil-num=3 en-affil=Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University kn-affil= affil-num=4 en-affil=Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University kn-affil= affil-num=5 en-affil=Division of Cariology and Restorative Dentistry, Department of Prosthetic Dentistry, Graduate School of Biomedical Sciences, Nagasaki University kn-affil= affil-num=6 en-affil=Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Division of Cariology and Restorative Dentistry, Department of Prosthetic Dentistry, Graduate School of Biomedical Sciences, Nagasaki University kn-affil= affil-num=8 en-affil=Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University kn-affil= en-keyword=osteoclast kn-keyword=osteoclast en-keyword=actin polymerization kn-keyword=actin polymerization en-keyword=protrusion formation kn-keyword=protrusion formation en-keyword=Dennd2c kn-keyword=Dennd2c END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=20056 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250612 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Pharmacokinetics and the effectiveness of pyrogen-free bioabsorbable wet adhesives en-subtitle= kn-subtitle= en-abstract= kn-abstract=Bioabsorbable materials are essential for advanced therapies, including surgical sealing, cell therapy, and drug delivery. Natural bioabsorbable materials, including collagen and hyaluronic acid, have better biocompatibility than synthetic bioabsorbable polymers; however, they are mainly derived from animals, presenting infection risks. Non-animal origin polymers have a lower molecular weight than those of animal origins. Their viscosity increases with increase in molecular weight, making endotoxin removal difficult. Here, using the phosphoryl chloride disposal method, we present a strategy for synthesizing pyrogen-free bioabsorbable adhesives with controlled molecular weight. Phosphopullulan, a polysaccharide derivative, had less than detectable endotoxin levels and controllable average molecular weight of approximately 300,000 to over 1,400,000. Furthermore, it is important to ensure the safety as well as efficacy of bio-implantable materials. We have evaluated the biosafety of polysaccharide derivatives we are developing, and have examined their cell phagocytosis and pharmacokinetics in vitro and in vivo, and have confirmed that they are safe. We have also evaluated their adhesion to wet tissue adhesions and confirmed that they leak less than existing materials. en-copyright= kn-copyright= en-aut-name=OshimaRisa en-aut-sei=Oshima en-aut-mei=Risa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YoshiharaKumiko en-aut-sei=Yoshihara en-aut-mei=Kumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakanishiKo en-aut-sei=Nakanishi en-aut-mei=Ko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AkasakaTsukasa en-aut-sei=Akasaka en-aut-mei=Tsukasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShimojiShinji en-aut-sei=Shimoji en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakamuraTeppei en-aut-sei=Nakamura en-aut-mei=Teppei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OkiharaTakumi en-aut-sei=Okihara en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakamuraMariko en-aut-sei=Nakamura en-aut-mei=Mariko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MatsukawaAkihiro en-aut-sei=Matsukawa en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TamadaIkkei en-aut-sei=Tamada en-aut-mei=Ikkei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=Van MeerbeekBart en-aut-sei=Van Meerbeek en-aut-mei=Bart kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SugayaTsutomu en-aut-sei=Sugaya en-aut-mei=Tsutomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YoshidaYasuhiro en-aut-sei=Yoshida en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Periodontology, Faculty of Dental Medicine, Hokkaido University kn-affil= affil-num=2 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University kn-affil= affil-num=4 en-affil=Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University kn-affil= affil-num=5 en-affil=Department of Periodontology, Faculty of Dental Medicine, Hokkaido University kn-affil= affil-num=6 en-affil=Department of Applied Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University kn-affil= affil-num=7 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Department of Clinical Psychology, School of Clinical Psychology, Kyushu University of Medical and Science kn-affil= affil-num=9 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Plastic and Reconstructive Surgery, Tokyo Metropolitan Children’s Medical Center kn-affil= affil-num=11 en-affil=BIOMAT, Department of Oral Health Sciences, & UZ Leuven, Dentistry, KU Leuven kn-affil= affil-num=12 en-affil=Department of Periodontology, Faculty of Dental Medicine, Hokkaido University kn-affil= affil-num=13 en-affil=Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University kn-affil= en-keyword=Phosphopullulan kn-keyword=Phosphopullulan en-keyword=Polysaccharide kn-keyword=Polysaccharide en-keyword=ADME kn-keyword=ADME en-keyword=Animal study kn-keyword=Animal study en-keyword=Endodontic sealer kn-keyword=Endodontic sealer END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=38 article-no= start-page=eadv9952 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250919 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Polymeric microwave rectifiers enabled by monolayer-thick ionized donors en-subtitle= kn-subtitle= en-abstract= kn-abstract=Solution processing of polymeric semiconductors provides a facile way to fabricate functional diodes. However, energy barriers at metal-semiconductor interfaces often limit their performance. Here, we report rectifying polymer diodes with markedly modified energy-level alignments. The gold electrode surface was treated with a dimeric metal complex, which resulted in a shallow work function of 3.7 eV by forming a monolayer-thick ionized donor layer. When a polymeric semiconductor was coated on the treated electrode, most of the ionized donors remained at the metal-semiconductor interface. The confined ionized donors with the ideal thickness enabled fabrication of a polymer diode with a forward current density of over 100 A cm−2. Furthermore, a power conversion efficiency of 7.9% was observed for rectification at a microwave frequency of 920 MHz, which is orders of magnitude higher than that reported for organic diodes. Our findings will pave a way to solution-processed high-frequency and high-power devices. en-copyright= kn-copyright= en-aut-name=OsakabeNobutaka en-aut-sei=Osakabe en-aut-mei=Nobutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HerJeongeun en-aut-sei=Her en-aut-mei=Jeongeun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KanetaTakahiro en-aut-sei=Kaneta en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TajimaAkiko en-aut-sei=Tajima en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=LonghiElena en-aut-sei=Longhi en-aut-mei=Elena kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TangKan en-aut-sei=Tang en-aut-mei=Kan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=FujimoriKazuhiro en-aut-sei=Fujimori en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=BarlowStephen en-aut-sei=Barlow en-aut-mei=Stephen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MarderSeth R. en-aut-sei=Marder en-aut-mei=Seth R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=WatanabeShun en-aut-sei=Watanabe en-aut-mei=Shun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TakeyaJun en-aut-sei=Takeya en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=YamashitaYu en-aut-sei=Yamashita en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo kn-affil= affil-num=2 en-affil=Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo kn-affil= affil-num=3 en-affil=Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo kn-affil= affil-num=4 en-affil=Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo kn-affil= affil-num=5 en-affil=School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology kn-affil= affil-num=6 en-affil=Renewable and Sustainable Energy Institute, University of Colorado Boulder kn-affil= affil-num=7 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology kn-affil= affil-num=9 en-affil=School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology kn-affil= affil-num=10 en-affil=Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo kn-affil= affil-num=11 en-affil=Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo kn-affil= affil-num=12 en-affil=Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo kn-affil= END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=9 article-no= start-page=660 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250921 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Application of LMM-Derived Prompt-Based AIGC in Low-Altitude Drone-Based Concrete Crack Monitoring en-subtitle= kn-subtitle= en-abstract= kn-abstract=In recent years, large multimodal models (LMMs), such as ChatGPT 4o and DeepSeek R1—artificial intelligence systems capable of multimodal (e.g., image and text) human–computer interaction—have gained traction in industrial and civil engineering applications. Concurrently, insufficient real-world drone-view data (specifically close-distance, high-resolution imagery) for civil engineering scenarios has heightened the importance of artificially generated content (AIGC) or synthetic data as supplementary inputs. AIGC is typically produced via text-to-image generative models (e.g., Stable Diffusion, DALL-E) guided by user-defined prompts. This study leverages LMMs to interpret key parameters for drone-based image generation (e.g., color, texture, scene composition, photographic style) and applies prompt engineering to systematize these parameters. The resulting LMM-generated prompts were used to synthesize training data for a You Only Look Once version 8 segmentation model (YOLOv8-seg). To address the need for detailed crack-distribution mapping in low-altitude drone-based monitoring, the trained YOLOv8-seg model was evaluated on close-distance crack benchmark datasets. The experimental results confirm that LMM-prompted AIGC is a viable supplement for low-altitude drone crack monitoring, achieving >80% classification accuracy (images with/without cracks) at a confidence threshold of 0.5. en-copyright= kn-copyright= en-aut-name=PanShijun en-aut-sei=Pan en-aut-mei=Shijun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FanZhun en-aut-sei=Fan en-aut-mei=Zhun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YoshidaKeisuke en-aut-sei=Yoshida en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=QinShujia en-aut-sei=Qin en-aut-mei=Shujia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KojimaTakashi en-aut-sei=Kojima en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NishiyamaSatoshi en-aut-sei=Nishiyama en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Shenzhen Institute for Advanced Study, UESTC, University of Electronic Science and Technology of China kn-affil= affil-num=2 en-affil=Shenzhen Institute for Advanced Study, UESTC, University of Electronic Science and Technology of China kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Shenzhen Academy of Robotics kn-affil= affil-num=5 en-affil=TOKEN C.E.E. Consultants Co., Ltd. kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=artificial intelligence kn-keyword=artificial intelligence en-keyword=large multimodal model kn-keyword=large multimodal model en-keyword=unmanned aerial vehicle kn-keyword=unmanned aerial vehicle en-keyword=crack kn-keyword=crack END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=1 article-no= start-page=1333 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250816 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Phosphorylated pullulan as a local drug delivery matrix for cationic antibacterial chemicals to prevent oral biofilm en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Preventing oral infections, such as oral caries and periodontal disease, helps reduce the risks of various systemic diseases. In this study, the polysaccharide pullulan produced by the black yeast Aureobasidium pullulans was modified in combination with the cationic surfactant cetylpyridinium chloride (CPC) to create a local drug delivery system, and its antibacterial potential on oral bacteria was examined in vitro.
Methods Pullulan was phosphorylated at the CH2OH residue of α6 in the maltotriose structure and mixed with CPC. Bacterial attachment of cariogenic Streptococcus mutans on hydroxyapatite plates (HAPs) treated with the phosphorylated pullulan (PP) and CPC compound (0.01% PP and 0.001– 0.03% CPC, and vice versa) was assessed by observing bacteria using a field emission scanning electron microscope (FE-SEM) and quantified through 16 S rRNA amplification via real-time polymerase chain reaction (PCR). Additionally, the quartz crystal microbalance (QCM) method was employed to evaluate the sustained release of CPC.
Results PP-CPC compound maintained significant bactericidal activity even at 0.01%, which is one-fifth of the conventional applicable concentration of CPC. Additionally, a residual mixture was detected by the hydroxyapatite sensor of the crystal oscillator microbalance detector, suggesting an unknown molecular interaction that enables the sustained release of CPC after attachment to hydroxyapatite.
Conclusions The combination of PP and CPC may contribute to the low concentration and effective prevention of oral infections, such as dental caries. en-copyright= kn-copyright= en-aut-name=Namba-KoideNaoko en-aut-sei=Namba-Koide en-aut-mei=Naoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YoshidaYasuhiro en-aut-sei=Yoshida en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NagaokaNoriyuki en-aut-sei=Nagaoka en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OkiharaTakumi en-aut-sei=Okihara en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KawataYusuke en-aut-sei=Kawata en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ItoMasahiro en-aut-sei=Ito en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ItoTakashi en-aut-sei=Ito en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=Takeuchi-HatanakaKazu en-aut-sei=Takeuchi-Hatanaka en-aut-mei=Kazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=Shinoda-ItoYuki en-aut-sei=Shinoda-Ito en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OmoriKazuhiro en-aut-sei=Omori en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YamamotoTadashi en-aut-sei=Yamamoto en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TakashibaShogo en-aut-sei=Takashiba en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University kn-affil= affil-num=3 en-affil=Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School kn-affil= affil-num=4 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital kn-affil= affil-num=7 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Pathophysiology - Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Pathophysiology - Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Pathophysiology - Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Pathophysiology - Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Phosphorylated Pullulan kn-keyword=Phosphorylated Pullulan en-keyword=Local drug delivery system kn-keyword=Local drug delivery system en-keyword=Cationic antimicrobial agents kn-keyword=Cationic antimicrobial agents en-keyword=Cetylpyridinium chloride kn-keyword=Cetylpyridinium chloride en-keyword=Oral biofilm kn-keyword=Oral biofilm END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250922 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Applicability of Effective Atomic Number (Z eff) Image Analysis of Coronary Plaques Measured With Photon- Counting Computed Tomography en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objective: Coronary computed tomography (CT) allows the assessment of cardiovascular risk by imaging calcified plaques in coronary arteries. Because photon-counting CT (PC-CT) can analyze the effective atomic number (Zeff) of the subject, it is expected to be applied to the analysis of plaque components. The purpose of this study was to investigate the applicability of plaque analysis based on Zeff images with continuous gradation.
Methods: Zeff images were generated from virtual monoenergetic images (VMIs) obtained by PC-CT. Zeff values were derived from the difference between linear attenuation coefficients (μ) at low and high energies using an in-house program. Coronary CT images of 64 plaques in 10 patients were analyzed. The Zeff score, calculated as the sum of Zeff values within the plaque region, was calculated and compared with the conventional Agatston score and mean coronary artery calcium (CAC) score.
Results: The systematic uncertainty of Zeff images was estimated to be ±0.08. The Zeff score of actual patient data showed strong positive correlations with the conventional Agatston and mean CAC scores. The Zeff score uses all voxel data in the plaque area, whereas conventional scores consider only data from voxels with a CT value >130. We found that the conventional scores excluded 39% of the plaque area, and the Zeff score permitted the analysis of low- and high-density plaques.
Conclusions: Zeff imaging was shown to be applicable to plaque analysis that reflects the entire plaque volume. This study demonstrated its technical feasibility as a compositional analysis method using the Zeff image. en-copyright= kn-copyright= en-aut-name=AsaharaTakashi en-aut-sei=Asahara en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MitaniMana en-aut-sei=Mitani en-aut-mei=Mana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KimotoNatsumi en-aut-sei=Kimoto en-aut-mei=Natsumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishigamiRina en-aut-sei=Nishigami en-aut-mei=Rina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakegamiKazuki en-aut-sei=Takegami en-aut-mei=Kazuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MorimitsuYusuke en-aut-sei=Morimitsu en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AkagiNoriaki en-aut-sei=Akagi en-aut-mei=Noriaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KanazawaYuki en-aut-sei=Kanazawa en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=IguchiToshihiro en-aut-sei=Iguchi en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=HayashiHiroaki en-aut-sei=Hayashi en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University kn-affil= affil-num=2 en-affil=Medical Support Department, Division of Radiology, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Radiological Science, Faculty of Health Sciences, Junshin Gakuen University kn-affil= affil-num=4 en-affil=Graduate School of Medical Sciences, Kanazawa University kn-affil= affil-num=5 en-affil=Department of Radiological Technology, Yamaguchi University Hospital kn-affil= affil-num=6 en-affil=Medical Support Department, Division of Radiology, Okayama University Hospital kn-affil= affil-num=7 en-affil=Medical Support Department, Division of Radiology, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Faculty of Life Science, Kumamoto University kn-affil= affil-num=10 en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University kn-affil= affil-num=11 en-affil=College of Transdisciplinary Sciences for Innovation, Kanazawa University kn-affil= en-keyword=effective atomic number image kn-keyword=effective atomic number image en-keyword=photon-counting computed tomography kn-keyword=photon-counting computed tomography en-keyword=virtual monoenergetic images kn-keyword=virtual monoenergetic images en-keyword=coronary CT kn-keyword=coronary CT en-keyword=coronary plaques kn-keyword=coronary plaques en-keyword=Agatston score kn-keyword=Agatston score END start-ver=1.4 cd-journal=joma no-vol=40 cd-vols= no-issue=4 article-no= start-page=463 end-page=474 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241225 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Nationwide diversity of symbolic “city flowers” in Japan is increasing en-subtitle= kn-subtitle= en-abstract= kn-abstract=Recognizing and maintaining locally rooted human–nature interactions is essential for utilizing ecosystem services. Although the general public's awareness of biodiversity and ecosystem services has been examined using various proxies, it remains unclear how local governments—key sectors in creating conservation policies—appreciate them within a solid local context. Here, we focused on the “city flower,” an official symbolic species of Japanese cities, as a new proxy for measuring governmental attitudes toward biota and its services. We aimed to capture temporal changes in the awareness of species with locally relevant value at the city government level by examining the changes in city flowers over more than half a century. Data from the official websites of municipalities, including the names, the adoption years, and the reasons for adoption, revealed two major periods of adoption, with a notable increase in species diversity in and after 1993. This increase could be attributed to a recent reduction in bias toward popular flowers and growing interest in alternative, less popular flowers. Analysis of the reasons for adoption suggested that the temporal change in adopted flower species was related to the increasing emphasis on species with an explicit local context, especially those with instrumental value to the city. Our findings indicate the tendency for local governments to increasingly recognize their biocultural backgrounds and the ecosystem services of plants within their regions. The growing awareness of the local governments regarding their biocultural background is a positive sign for the conservation of biodiversity and ecosystem services. en-copyright= kn-copyright= en-aut-name=TsuzukiYoichi en-aut-sei=Tsuzuki en-aut-mei=Yoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OhsakiHaruna en-aut-sei=Ohsaki en-aut-mei=Haruna kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KawaguchiYawako W. en-aut-sei=Kawaguchi en-aut-mei=Yawako W. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SuzukiSayaka en-aut-sei=Suzuki en-aut-mei=Sayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HaradaShogo en-aut-sei=Harada en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OtakeYurie en-aut-sei=Otake en-aut-mei=Yurie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ShinoharaNaoto en-aut-sei=Shinohara en-aut-mei=Naoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KatsuharaKoki R. en-aut-sei=Katsuhara en-aut-mei=Koki R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Health and Environmental Risk Division, National Institute for Environmental Studies kn-affil= affil-num=2 en-affil=Department of Biological Sciences, Tokyo Metropolitan University kn-affil= affil-num=3 en-affil=Department of Biological Sciences, Graduate School of Science, The University of Tokyo kn-affil= affil-num=4 en-affil=Center for Ecological Research, Kyoto University kn-affil= affil-num=5 en-affil=Department of Biology, Graduate School of Science, Osaka City University kn-affil= affil-num=6 en-affil=Center for Ecological Research, Kyoto University kn-affil= affil-num=7 en-affil=Center for Ecological Research, Kyoto University kn-affil= affil-num=8 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=awareness of local governments kn-keyword=awareness of local governments en-keyword=biocultural diversity kn-keyword=biocultural diversity en-keyword=ecosystem services kn-keyword=ecosystem services en-keyword=manual web scraping kn-keyword=manual web scraping en-keyword=temporal trend kn-keyword=temporal trend END start-ver=1.4 cd-journal=joma no-vol=96 cd-vols= no-issue=1 article-no= start-page=e70055 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Presence of a Deletion Mutation of Myostatin (MSTN) Gene Associated With Double-Muscling Phenotype in Japanese Black Cattle Population en-subtitle= kn-subtitle= en-abstract= kn-abstract=Mutations in the bovine myostatin (MSTN) gene have been identified as the causative factor for the double-muscling phenotype in several European cattle breeds, including Belgian Blue, Piedmontese, and Shorthorn. In Japan, following the Meiji Restoration, several European breeds, including Shorthorn, Brown Swiss, Devon, Simmental, and Ayrshire, were introduced and crossbred with native cattle to develop modern Japanese beef cattle breeds, such as Japanese Black cattle. Historical records regarding the breeding of Japanese Black cattle indicate that the double-muscling phenotype, referred to as “Butajiri,” occasionally appeared in Japanese Black cattle population. These historical observations suggest the potential presence of MSTN gene mutation in the Japanese Black cattle population. The aim of this study was, therefore, to investigate the presence of MSTN gene mutation in the current Japanese Black cattle population. Through screening 400 reproductive females, we identified one cow carrying an 11-bp deletion in the MSTN gene. While further investigation of the animals in the pedigree of this cow could not reveal any living animals with this mutation, this is the first report demonstrating the presence of the MSTN mutation in the Japanese Black cattle population. en-copyright= kn-copyright= en-aut-name=LeNu Anh Thu en-aut-sei=Le en-aut-mei=Nu Anh Thu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KuboRena en-aut-sei=Kubo en-aut-mei=Rena kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=BorjiginLiushiqi en-aut-sei=Borjigin en-aut-mei=Liushiqi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IbiTakayuki en-aut-sei=Ibi en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SasakiShinji en-aut-sei=Sasaki en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KuniedaTetsuo en-aut-sei=Kunieda en-aut-mei=Tetsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Faculty of Veterinary Medicine Okayama University of Science Imabari kn-affil= affil-num=2 en-affil=Faculty of Veterinary Medicine Okayama University of Science Imabari kn-affil= affil-num=3 en-affil=Faculty of Veterinary Medicine Okayama University of Science Imabari kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Faculty of Agriculture Ryukyu University Nishihara kn-affil= affil-num=6 en-affil=Faculty of Veterinary Medicine Okayama University of Science Imabari kn-affil= en-keyword=double muscle kn-keyword=double muscle en-keyword=Japanese Black cattle kn-keyword=Japanese Black cattle en-keyword=myostatin gene kn-keyword=myostatin gene END start-ver=1.4 cd-journal=joma no-vol=142 cd-vols= no-issue= article-no= start-page=104967 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Cross-feeding between beneficial and pathogenic bacteria to utilize eukaryotic host cell-derived sialic acids and bacteriophages shape the pathogen-host interface milieu en-subtitle= kn-subtitle= en-abstract= kn-abstract=Under an inflamed-intestinal milieu, increased free sialic acids are associated with the overgrowth of some pathogenic bacterial strains. Recently, the protective immunomodulatory activity of gut bacteriophages (phages) has also been highlighted. However, the role of phages in triple reciprocal interactions between pathogenic bacteria, beneficial bacteria, and their host cell sialic acids has not been studied so far. We established a sialidase-explicit model in which beneficial and pathogenic bacteria interact through cross-feeding and competition for free sialic acid using a human triple co-culture cell model incorporating colonocytes (T84 cells), monocytes (THP-1 cells), and hepatocytes (Huh7 cells). Triple co-cultured cells were challenged with Gram-positive Bifidobacterium bifidum (B. bifidum) and Gram-negative Pseudomonas aeruginosa PAO1 (P. a PAO1) in the absence or presence of its KPP22 phage in two different cell culture mediums: 1) standard Dulbecco's Modified Eagle Medium (DMEM) and 2) DMEM with 2,3-dehydro-2-deoxy-N-acetylneuraminic acid (DANA). Changes in physiological, functional, and structural health markers of stimulated cocultured cells were evaluated. The concentrations of sialic acid and pro-inflammatory cytokines in the cell culture supernatants were quantified. P. a PAO1 triggered the release of interleukin 6 and 8 (IL-6 and IL-8), accompanied by increased levels of free sialic acid, reduced viability of co-cultured cells, and disrupted the integrity of the cellular monolayer. These disruptive effects were markedly attenuated by KPP22 phage and B. bifidum. In addition to well-documented differences in the structure and composition of the bacterial cell walls of Gram-negative pathogenic bacteria and bifidobacteria, two distinct factors seem to be pivotal in modulating the pathogen-host interface milieu: (i) the presence of phages and (ii) the utilization of free sialic acids secreted from host cells by bifidobacteria. en-copyright= kn-copyright= en-aut-name=GhadimiDarab en-aut-sei=Ghadimi en-aut-mei=Darab kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=Fölster-HolstRegina en-aut-sei=Fölster-Holst en-aut-mei=Regina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=BlömerSophia en-aut-sei=Blömer en-aut-mei=Sophia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=EbsenMichael en-aut-sei=Ebsen en-aut-mei=Michael kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=RöckenChristoph en-aut-sei=Röcken en-aut-mei=Christoph kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=UchiyamaJumpei en-aut-sei=Uchiyama en-aut-mei=Jumpei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsuzakiShigenobu en-aut-sei=Matsuzaki en-aut-mei=Shigenobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=BockelmannWilhelm en-aut-sei=Bockelmann en-aut-mei=Wilhelm kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Microbiology and Biotechnology, Max Rubner-Institut kn-affil= affil-num=2 en-affil=Clinic of Dermatology, Venerology und Allergology, University Hospital Schleswig-Holstein kn-affil= affil-num=3 en-affil=Clinic of Dermatology, Venerology und Allergology, University Hospital Schleswig-Holstein kn-affil= affil-num=4 en-affil=Städtisches MVZ Kiel GmbH (Kiel City Hospital), Department of Pathology kn-affil= affil-num=5 en-affil=Institute of Pathology, Kiel University, University Hospital, Schleswig-Holstein kn-affil= affil-num=6 en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Medical Laboratory Science, Faculty of Health Sciences, Kochi Gakuen University kn-affil= affil-num=8 en-affil=Department of Microbiology and Biotechnology, Max Rubner-Institut kn-affil= en-keyword=Bacterial sialidase kn-keyword=Bacterial sialidase en-keyword=Inflammation kn-keyword=Inflammation en-keyword=Cytokines kn-keyword=Cytokines en-keyword=Infection kn-keyword=Infection en-keyword=Bifidobacteria kn-keyword=Bifidobacteria en-keyword=Phages kn-keyword=Phages END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=9 article-no= start-page=e93012 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250923 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Impact of a Peer-Led International Training Program on Work Motivation Among Early-Career Psychiatrists: A Mixed-Methods Study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background
The Japan Young Psychiatrists Organization (JYPO) has conducted a Course for Academic Development of Psychiatrists (CADP), a peer-led residential international training program, since 2002 to promote the professional development of early-career psychiatrists. This study aimed to evaluate the impact of CADP on participants' work motivation using a psychometric scale and to identify the factors contributing to these changes.
Methods
We conducted a mixed-method study with 23 Japanese participants of the 21st CADP from March 8 to 10, 2024, in Himeji, Japan. Work motivation was assessed using the abbreviated version of the Measure of Multifaceted Work Motivations (MWM-12) at two time points: two weeks before and three months after the course. The total and subitem scores of the MWM-12 were analyzed using the Wilcoxon signed-rank test. Furthermore, free-text responses collected before and after the course were subjected to qualitative analyses.
Results
Significant improvements were observed in the MWM-12 total score from pre-course to post-course. Significant increases were also identified in specific sub-items: M1 (directionality of achievement-oriented motivation), M4 (directionality of competition-oriented motivation), M6 (sustainability of competition-oriented motivation), and M9 (sustainability of cooperation-oriented motivation). Qualitative analysis revealed changes in key categories, including growth as a psychiatrist, personal networking, personal growth, and increased motivation. The integration of quantitative and qualitative findings suggested that enhanced career perspectives (M1), professional growth and peer interaction (M4), and increased self-confidence and support networks (M6 and M9) contributed to improved motivation.
Conclusion
This study demonstrated that a three-day, two-night peer-led training program positively influenced work motivation among early-career psychiatrists. en-copyright= kn-copyright= en-aut-name=ShimizuToshihiro en-aut-sei=Shimizu en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KitaokaJunko en-aut-sei=Kitaoka en-aut-mei=Junko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SuzutaniKen en-aut-sei=Suzutani en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SatakeYuto en-aut-sei=Satake en-aut-mei=Yuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KodaMasahide en-aut-sei=Koda en-aut-mei=Masahide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KuramochiIzumi en-aut-sei=Kuramochi en-aut-mei=Izumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SartoriusNorman en-aut-sei=Sartorius en-aut-mei=Norman kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Psychiatry, Saitama Prefectural Psychiatric Hospital kn-affil= affil-num=2 en-affil=Department of Psychiatry, Fukkoukai Tarumi Hospital kn-affil= affil-num=3 en-affil=Department of Psychiatry, Aizu Medical Center kn-affil= affil-num=4 en-affil=Department of Psychiatry, The University of Osaka kn-affil= affil-num=5 en-affil=Co-learning Community Healthcare Re-innovation Office, Graduate School of Medicine, Okayama University kn-affil= affil-num=6 en-affil=Department of Epileptology and Psychiatry, National Center of Neurology and Psychiatry kn-affil= affil-num=7 en-affil=Psychiatry, Association for the Improvement of Mental Health Programs (AIMHP) kn-affil= en-keyword=cadp kn-keyword=cadp en-keyword=early-career psychiatrists kn-keyword=early-career psychiatrists en-keyword=jypo kn-keyword=jypo en-keyword=peer-led training kn-keyword=peer-led training en-keyword=peer networking kn-keyword=peer networking en-keyword=professional development kn-keyword=professional development en-keyword=professional identity kn-keyword=professional identity en-keyword=work motivation kn-keyword=work motivation END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=12 article-no= start-page=25 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241216 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Disruption of the Enterococcus faecalis–Induced Biofilm on the Intraocular Lens Using Bacteriophages en-subtitle= kn-subtitle= en-abstract= kn-abstract=Purpose: To compare the effects of bacteriophages (phages) and vancomycin on Enterococcus faecalis–induced biofilms on the intraocular lens.
Methods: E. faecalis strains EF24, GU02, GU03, and phiEF14H1 were used. The expression of the enterococcus surface protein (esp) gene was analyzed using polymerase chain reaction. Phages or vancomycin was added to the biofilms formed on culture plates or acrylic intraocular lenses. The biofilms were quantified after staining with crystal violet. The structure of the biofilms was analyzed using scanning electron microscopy.
Results: E. faecalis strains EF24, GU02, and GU03 formed biofilms on cell culture plates; however, the esp-negative GU03 strain had a significantly lower biofilm-forming ability than the esp-positive strains EF24 and GU02. The addition of phiEF14H1 resulted in a significant reduction in biofilm mass produced by both EF24 and GU02 compared with the untreated control. However, the addition of vancomycin did not degrade the biofilms. Phages significantly degraded biofilms and reduced the viable EF24 and GU02 bacteria on the intraocular lens.
Conclusions: Phages can degrade biofilms formed on the intraocular lens and destroy the bacteria within it. Thus, phage therapy may be a new treatment option for refractory and recurrent endophthalmitis caused by biofilm-forming bacteria.
Translational Relevance: Phage therapy, a novel treatment option for refractory and recurrent endophthalmitis caused by biofilm-forming bacteria, effectively lyses E. faecalis–induced biofilms. en-copyright= kn-copyright= en-aut-name=KishimotoTatsuma en-aut-sei=Kishimoto en-aut-mei=Tatsuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FukudaKen en-aut-sei=Fukuda en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IshidaWaka en-aut-sei=Ishida en-aut-mei=Waka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KuwanaAozora en-aut-sei=Kuwana en-aut-mei=Aozora kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TodokoroDaisuke en-aut-sei=Todokoro en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=UchiyamaJumpei en-aut-sei=Uchiyama en-aut-mei=Jumpei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsuzakiShigenobu en-aut-sei=Matsuzaki en-aut-mei=Shigenobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamashiroKenji en-aut-sei=Yamashiro en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University kn-affil= affil-num=2 en-affil=Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University kn-affil= affil-num=3 en-affil=Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University kn-affil= affil-num=4 en-affil=Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University kn-affil= affil-num=5 en-affil=Department of Ophthalmology, Gunma University Graduate School of Medicine kn-affil= affil-num=6 en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Medical Laboratory Science, Faculty of Health Sciences, Kochi Gakuen University kn-affil= affil-num=8 en-affil=Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University kn-affil= en-keyword=biofilm kn-keyword=biofilm en-keyword=bacteriophage kn-keyword=bacteriophage en-keyword=intraocular lens kn-keyword=intraocular lens en-keyword=endophthalmitis kn-keyword=endophthalmitis en-keyword=cataract kn-keyword=cataract en-keyword=enterococcus faecalis kn-keyword=enterococcus faecalis END start-ver=1.4 cd-journal=joma no-vol=23 cd-vols= no-issue=5 article-no= start-page=209 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250514 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Novel Anti-MRSA Peptide from Mangrove-Derived Virgibacillus chiguensis FN33 Supported by Genomics and Molecular Dynamics en-subtitle= kn-subtitle= en-abstract= kn-abstract=Antimicrobial resistance (AMR) is a global health threat, with methicillin-resistant Staphylococcus aureus (MRSA) being one of the major resistant pathogens. This study reports the isolation of a novel mangrove-derived bacterium, Virgibacillus chiguensis FN33, as identified through genome analysis and the discovery of a new anionic antimicrobial peptide (AMP) exhibiting anti-MRSA activity. The AMP was composed of 23 amino acids, which were elucidated as NH3-Glu-Gly-Gly-Cys-Gly-Val-Asp-Thr-Trp-Gly-Cys-Leu-Thr-Pro-Cys-His-Cys-Asp-Leu-Phe-Cys-Thr-Thr-COOH. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for MRSA were 8 µg/mL and 16 µg/mL, respectively. FN33 AMP induced cell membrane permeabilization, suggesting a membrane-disrupting mechanism. The AMP remained stable at 30–40 °C but lost activity at higher temperatures and following exposure to proteases, surfactants, and extreme pH. All-atom molecular dynamics simulations showed that the AMP adopts a β-sheet structure upon membrane interaction. These findings suggest that Virgibacillus chiguensis FN33 is a promising source of novel antibacterial agents against MRSA, supporting alternative strategies for drug-resistant infections. en-copyright= kn-copyright= en-aut-name=SermkaewNamfa en-aut-sei=Sermkaew en-aut-mei=Namfa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AtipairinApichart en-aut-sei=Atipairin en-aut-mei=Apichart kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=BoonruamkaewPhetcharat en-aut-sei=Boonruamkaew en-aut-mei=Phetcharat kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KrobthongSucheewin en-aut-sei=Krobthong en-aut-mei=Sucheewin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AonbangkhenChanat en-aut-sei=Aonbangkhen en-aut-mei=Chanat kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=UchiyamaJumpei en-aut-sei=Uchiyama en-aut-mei=Jumpei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YingchutrakulYodying en-aut-sei=Yingchutrakul en-aut-mei=Yodying kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SongnakaNuttapon en-aut-sei=Songnaka en-aut-mei=Nuttapon kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=School of Pharmacy, Walailak University kn-affil= affil-num=2 en-affil=School of Pharmacy, Walailak University kn-affil= affil-num=3 en-affil=School of Pharmacy, Walailak University kn-affil= affil-num=4 en-affil=Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University kn-affil= affil-num=5 en-affil=Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University kn-affil= affil-num=6 en-affil=Department of Bacteriology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency kn-affil= affil-num=8 en-affil=School of Pharmacy, Walailak University kn-affil= en-keyword=anionic AMP kn-keyword=anionic AMP en-keyword=AMP kn-keyword=AMP en-keyword=antimicrobial peptide kn-keyword=antimicrobial peptide en-keyword=antimicrobial resistance kn-keyword=antimicrobial resistance en-keyword=FN33 kn-keyword=FN33 en-keyword=genome kn-keyword=genome en-keyword=molecular dynamics simulations kn-keyword=molecular dynamics simulations en-keyword=MRSA kn-keyword=MRSA en-keyword=Virgibacillus chiguensis kn-keyword=Virgibacillus chiguensis END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=2500368 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250629 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Integration of Cholesterol Oxidase‐Based Biosensors on a Smart Contact Lens for Wireless Cholesterol Monitoring from Tears en-subtitle= kn-subtitle= en-abstract= kn-abstract=Cholesterol plays a critical role in physiological functions, but elevated levels increase the risk of cardiovascular disease. Regular cholesterol monitoring is essential for elderly or obese individuals. Current methods, such as blood tests, are invasive, inconvenient, and require a professional operator. In contrast, tears, as an accessible body fluid, offer a promising alternative for noninvasive monitoring due to their correlation with blood cholesterol levels. Herein, a noninvasive approach for monitoring cholesterol levels in tears using a biosensor integrated into a smart contact lens is reported. The biosensor employs cholesterol oxidases as the biocatalyst, coupled with an osmium-based mediator, to detect cholesterol concentrations ranging from 0.1 mM to 1.2 mM in artificial tears. A key challenge is the extremely low cholesterol concentration in tears, which is addressed using a parity-time (P-T) symmetry-based magnetic resonance coupling system. This system enables wireless signal reading and achieves high sensitivity due to its high-quality (Q) factor, which can achieve a detection limit of 0.061 mM. This portable, high-sensitivity smart contact lens demonstrates significant potential as a wearable device for continuous, noninvasive cholesterol monitoring. The findings contribute to advancing tear-based diagnostic systems and highlight the scientific importance of utilizing tear biomarkers for health monitoring. en-copyright= kn-copyright= en-aut-name=CuiYang en-aut-sei=Cui en-aut-mei=Yang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ZhuoLin en-aut-sei=Zhuo en-aut-mei=Lin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishinaYuta en-aut-sei=Nishina en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AzhariSaman en-aut-sei=Azhari en-aut-mei=Saman kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MiyakeTakeo en-aut-sei=Miyake en-aut-mei=Takeo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate school of Information, Production and Systems, Waseda University kn-affil= affil-num=2 en-affil=Graduate school of Information, Production and Systems, Waseda University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate school of Information, Production and Systems, Waseda University kn-affil= affil-num=5 en-affil=Graduate school of Information, Production and Systems, Waseda University kn-affil= en-keyword=cholesterol kn-keyword=cholesterol en-keyword=magnetic resonance coupling kn-keyword=magnetic resonance coupling en-keyword=parity-time symmetry kn-keyword=parity-time symmetry en-keyword=smart contact lens kn-keyword=smart contact lens END start-ver=1.4 cd-journal=joma no-vol=133 cd-vols= no-issue=9 article-no= start-page=555 end-page=561 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250901 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Preparation and structural characterization of nanoporous silica/magnesium(II)-whitlockite composite particles en-subtitle= kn-subtitle= en-abstract= kn-abstract=The preparation of particles composed of nanoporous silica (NS) and Mg2+-whitlockite (Mg-WH) would provide valuable insights for designing particles for biomedical applications. In this study, NS and Mg-WH composite particles were successfully synthesized. The addition of chitosan during synthesis possibly promoted the crystallization of calcium phosphate phases in the composite particles. Pore size distribution analysis of the particles showed a maximum at 3.2 nm. Investigating the adsorption of methylene blue onto the particles in a phosphate buffer (pH 7.4) showed that the saturated adsorption amount of methylene blue on the particles was significantly higher than that on commercial hydroxyapatite. The composite particles provided important results for potential applications as drug carriers for bone regeneration and repair. en-copyright= kn-copyright= en-aut-name=KataokaTakuya en-aut-sei=Kataoka en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HirotaDaiki en-aut-sei=Hirota en-aut-mei=Daiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujiiEiji en-aut-sei=Fujii en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YoshiokaTomohiko en-aut-sei=Yoshioka en-aut-mei=Tomohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HayakawaSatoshi en-aut-sei=Hayakawa en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=3 en-affil=Industrial Technology Center of Okayama Prefecture kn-affil= affil-num=4 en-affil=Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=5 en-affil=Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=Nanoporous silica kn-keyword=Nanoporous silica en-keyword=Magnesium(II)-whitlockite kn-keyword=Magnesium(II)-whitlockite en-keyword=Composite particle kn-keyword=Composite particle en-keyword=Drug carriers for bone regeneration and repair kn-keyword=Drug carriers for bone regeneration and repair END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=17 article-no= start-page=6049 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250826 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Photon-Counting CT Enhances Diagnostic Accuracy in Stable Coronary Artery Disease: A Comparative Study with Conventional CT en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/Objectives: Coronary CT angiography (CCTA) is a cornerstone in evaluating stable coronary artery disease (CAD), but conventional energy-integrating detector CT (EID-CT) has limitations, including calcium blooming and limited spatial resolution. Photon-counting detector CT (PCD-CT) may overcome these drawbacks through enhanced spatial resolution and improved tissue characterization. Methods: In this retrospective, propensity score–matched study, we compared CCTA findings from 820 patients (410 per group) who underwent either EID-CT or PCD-CT for suspected stable CAD. Primary outcomes included stenosis severity, high-risk plaque features, and downstream invasive coronary angiography (ICA) referral and yield. Results: The matched cohorts were balanced in demographics and cardiovascular risk factors (mean age 67 years, 63% male). PCD-CT showed a favorable shift in stenosis severity distribution (p = 0.03). High-risk plaques were detected less frequently with PCD-CT (22.7% vs. 30.5%, p = 0.01). Median coronary calcium scores did not differ (p = 0.60). Among patients referred for ICA, those initially evaluated with PCD-CT were more likely to undergo revascularization (62.5% vs. 44.1%), and fewer underwent potentially unnecessary ICA without revascularization (3.7% vs. 8.0%, p = 0.001). The specificity in diagnosing significant stenosis requiring revascularization was 0.74 with EID-CT and 0.81 with PCD-CT (p = 0.04). Conclusions: PCD-CT improved diagnostic specificity for CAD, reducing unnecessary ICA referrals while maintaining detection of clinically significant disease. This advanced CT technology holds promise for more accurate, efficient, and patient-centered CAD evaluation. en-copyright= kn-copyright= en-aut-name=NakashimaMitsutaka en-aut-sei=Nakashima en-aut-mei=Mitsutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HaraShohei en-aut-sei=Hara en-aut-mei=Shohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MiyagiRyosuke en-aut-sei=Miyagi en-aut-mei=Ryosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NishiharaTakahiro en-aut-sei=Nishihara en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MikiTakashi en-aut-sei=Miki en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OsawaKazuhiro en-aut-sei=Osawa en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YuasaShinsuke en-aut-sei=Yuasa en-aut-mei=Shinsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of General Internal Medicine 3, Kawasaki Medical School General Medicine Centre kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=photon-counting CT kn-keyword=photon-counting CT en-keyword=coronary CT angiography kn-keyword=coronary CT angiography en-keyword=diagnostic accuracy kn-keyword=diagnostic accuracy en-keyword=invasive coronary angiography kn-keyword=invasive coronary angiography END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250921 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Urbanised landscape and microhabitat differences can influence flowering phenology and synchrony in an annual herb en-subtitle= kn-subtitle= en-abstract= kn-abstract=1. Flowering phenology, a crucial determinant of plant reproductive success and biotic interactions, is susceptible to urbanisation. Numerous studies have shown the impact of urbanised landscapes on flowering phenology based on comparisons along urban–rural gradients. Phenological patterns among microenvironments in the urban ecosystem have received less attention, although they often offer unique habitats with varying artificial influences, such as roadsides, drainage ditches and vacant lots. If differences in microenvironments diversify flowering phenology, the urban matrix might reduce flowering synchrony with neighbouring populations, limiting outcrossing opportunities and therefore reducing reproductive success.
2. We investigated the flowering phenology and synchrony of the native annual herb Commelina communis in approximately 250 populations at two rural and two urban sites over 3 years. To determine the effect of microhabitat differences, we categorised the microhabitats of C. communis populations into five types: drains, roadsides, vacant land, farmland and forest edge. In some study populations, we investigated reproductive success (seed set) to estimate the degree of outcross pollination limitation.
3. Our findings revealed that populations in urban sites exhibited earlier flowering onset and longer flowering duration compared to rural locations. Besides, we did not detect consistent patterns of flowering onset, peak and duration among the different microhabitat types. For flowering synchrony, we found that the population in urban sites, growing in drain habitats, and with artificial disturbances exhibited relatively lower interpopulation flowering synchrony, suggesting their phenology differed from neighbouring populations within the same landscape. Additionally, populations in urban sites, especially those growing in drain and roadside habitats, suffered severe outcross pollen limitation compared to those in rural landscapes.
4. Synthesis and applications. In conclusion, our results indicate that in addition to landscape changes associated with urbanisation, variations in local microhabitats also influence the flowering phenology and synchrony of C. communis populations. Urbanised landscapes and differences in microhabitats could contribute to the diversification of phenological patterns between populations, potentially having a negative impact on the reproductive success of native plant species. These findings highlight the need to consider not only spatial but also temporal fragmentation from diversified flowering phenology when addressing conservation in the urban matrix. en-copyright= kn-copyright= en-aut-name=FujiwaraHinata en-aut-sei=Fujiwara en-aut-mei=Hinata kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamaguchiHiroto en-aut-sei=Yamaguchi en-aut-mei=Hiroto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakataKazuyoshi en-aut-sei=Nakata en-aut-mei=Kazuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KatsuharaKoki R. en-aut-sei=Katsuhara en-aut-mei=Koki R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=artificial disturbance kn-keyword=artificial disturbance en-keyword=Commelina kn-keyword=Commelina en-keyword=drainage ditches kn-keyword=drainage ditches en-keyword=flowering synchrony kn-keyword=flowering synchrony en-keyword=roadside kn-keyword=roadside en-keyword=ruderal plants kn-keyword=ruderal plants en-keyword=temporal fragmentation kn-keyword=temporal fragmentation en-keyword=urban ecology kn-keyword=urban ecology END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=1 end-page=3 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250919 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Dual-action intranasal oxytocin enhances both male sexual performance and fertility in rats en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=EnomotoChica en-aut-sei=Enomoto en-aut-mei=Chica kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OtiTakumi en-aut-sei=Oti en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamanakaTakahiro en-aut-sei=Yamanaka en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShimadaMasayuki en-aut-sei=Shimada en-aut-mei=Masayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SakamotoHirotaka en-aut-sei=Sakamoto en-aut-mei=Hirotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Biology, Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Biology, Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Laboratory of Reproductive Endocrinology, Graduate School of Integrated Sciences for Life, Hiroshima University kn-affil= affil-num=4 en-affil=Laboratory of Reproductive Endocrinology, Graduate School of Integrated Sciences for Life, Hiroshima University kn-affil= affil-num=5 en-affil=Department of Biology, Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=oxytocin kn-keyword=oxytocin en-keyword=intranasal administration kn-keyword=intranasal administration en-keyword=sexual behavior kn-keyword=sexual behavior en-keyword=sperm motility kn-keyword=sperm motility en-keyword=paraventricular nucleus kn-keyword=paraventricular nucleus en-keyword=male sexual function kn-keyword=male sexual function en-keyword=androgen signaling kn-keyword=androgen signaling END start-ver=1.4 cd-journal=joma no-vol=133 cd-vols= no-issue=1 article-no= start-page=15 end-page=24 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250101 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Comparative study of the effects of fluoride treatment with cyclic variations in pH on the structures of stoichiometric, calcium-deficient, and carbonated hydroxyapatites en-subtitle= kn-subtitle= en-abstract= kn-abstract=The primary objective of this study was to analyze the effects of fluoride treatment with cyclic variations in pH on the structure of stoichiometric hydroxyapatite (HAp), calcium-deficient HAp (CDHAp), and carbonated HAp (CHAp) powders. The structures of HAp, CDHAp, and CHAp before and after fluoride treatment were investigated using X-ray diffraction, Fourier-transform infrared, Raman, and nuclear magnetic resonance spectroscopic analyses. The fluoride treatment with cyclic variations in pH increased the calcium deficiency in HAp and CHAp but decreased in CDHAp. During fluoride treatment, fluoridated CDHAp or fluoridated calcium-deficient CHAp was formed on the surface of the HAp samples via dissolution and crystal growth, accompanied by the selective elution of component ions and partial substitution of OH− groups in the HAp hexagonal lattice with F− ions. No evidence of the formation of Ca(OH)2 and OH− groups outside the HAp crystal lattice was obtained. A new perspective on the formation of structured water at the surface termination of the OH columns (disordered region), with possible interactions with adsorbed water molecules or nonspecifically adsorbed F− ions was provided. The top surface of the fluoridated CDHAp consisted of an amorphous fluoride-rich hydrated layer, which included calcium phosphate and CaF2. en-copyright= kn-copyright= en-aut-name=HayakawaSatoshi en-aut-sei=Hayakawa en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkadaYu en-aut-sei=Okada en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YoshiokaTomohiko en-aut-sei=Yoshioka en-aut-mei=Tomohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=Hydroxyapatite kn-keyword=Hydroxyapatite en-keyword=Fluoride treatment kn-keyword=Fluoride treatment en-keyword=Microstructure kn-keyword=Microstructure en-keyword=Calcium fluoride kn-keyword=Calcium fluoride en-keyword=Structured water kn-keyword=Structured water END start-ver=1.4 cd-journal=joma no-vol=4 cd-vols= no-issue=9 article-no= start-page=1135 end-page=1151 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250910 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Heart failure-specific cardiac fibroblasts contribute to cardiac dysfunction via the MYC–CXCL1–CXCR2 axis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Heart failure (HF) is a growing global health issue. While most studies focus on cardiomyocytes, here we highlight the role of cardiac fibroblasts (CFs) in HF. Single-cell RNA sequencing of mouse hearts under pressure overload identified six CF subclusters, with one specific to the HF stage. This HF-specific CF population highly expresses the transcription factor Myc. Deleting Myc in CFs improves cardiac function without reducing fibrosis. MYC directly regulates the expression of the chemokine CXCL1, which is elevated in HF-specific CFs and downregulated in Myc-deficient CFs. The CXCL1 receptor, CXCR2, is expressed in cardiomyocytes, and blocking the CXCL1–CXCR2 axis mitigates HF. CXCL1 impairs contractility in neonatal rat and human iPSC-derived cardiomyocytes. Human CFs from failing hearts also express MYC and CXCL1, unlike those from controls. These findings reveal that HF-specific CFs contribute to HF via the MYC–CXCL1–CXCR2 pathway, offering a promising therapeutic target beyond cardiomyocytes. en-copyright= kn-copyright= en-aut-name=KomuroJin en-aut-sei=Komuro en-aut-mei=Jin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HashimotoHisayuki en-aut-sei=Hashimoto en-aut-mei=Hisayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KatsukiToshiomi en-aut-sei=Katsuki en-aut-mei=Toshiomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KusumotoDai en-aut-sei=Kusumoto en-aut-mei=Dai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KatohManami en-aut-sei=Katoh en-aut-mei=Manami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KoToshiyuki en-aut-sei=Ko en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ItoMasamichi en-aut-sei=Ito en-aut-mei=Masamichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KatagiriMikako en-aut-sei=Katagiri en-aut-mei=Mikako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KubotaMasayuki en-aut-sei=Kubota en-aut-mei=Masayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YamadaShintaro en-aut-sei=Yamada en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NakamuraTakahiro en-aut-sei=Nakamura en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=AkibaYohei en-aut-sei=Akiba en-aut-mei=Yohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KoukaThukaa en-aut-sei=Kouka en-aut-mei=Thukaa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KomuroKaoruko en-aut-sei=Komuro en-aut-mei=Kaoruko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=KimuraMai en-aut-sei=Kimura en-aut-mei=Mai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=ItoShogo en-aut-sei=Ito en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=NomuraSeitaro en-aut-sei=Nomura en-aut-mei=Seitaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=KomuroIssei en-aut-sei=Komuro en-aut-mei=Issei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=FukudaKeiichi en-aut-sei=Fukuda en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=YuasaShinsuke en-aut-sei=Yuasa en-aut-mei=Shinsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=IedaMasaki en-aut-sei=Ieda en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= affil-num=1 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=2 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=3 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=4 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=5 en-affil=Department of Frontier Cardiovascular Science, Graduate School of Medicine kn-affil= affil-num=6 en-affil=Department of Frontier Cardiovascular Science, Graduate School of Medicine kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=10 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=11 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=12 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=13 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=14 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=15 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=16 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=17 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=18 en-affil=Department of Frontier Cardiovascular Science, Graduate School of Medicine kn-affil= affil-num=19 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=20 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=21 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= END start-ver=1.4 cd-journal=joma no-vol=118 cd-vols= no-issue=10 article-no= start-page=146 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250901 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Duganella hordei sp. nov., Duganella caerulea sp. nov., and Duganella rhizosphaerae sp. nov., isolated from barley rhizosphere en-subtitle= kn-subtitle= en-abstract= kn-abstract=Duganella sp. strains R1T, R57T, and R64T, isolated from barley roots in Japan, are Gram-stain-negative, motile, rod-shaped bacteria. Duganella species abundantly colonized barley roots. Strains R1T, R57T, and R64T were capable of growth at 4 °C, suggesting adaptation to colonize winter barley roots. Strains R57T and R64T formed purple colonies, indicating violacein production, while strain R1T did not. Based on 16S rRNA gene sequence similarities, strains R1T, R57T, and R64T were most closely related to D. violaceipulchra HSC-15S17T (99.10%), D. vulcania FT81WT (99.45%), and D. violaceipulchra HSC-15S17T (99.86%), respectively. Their genome sizes ranged from 7.05 to 7.38 Mbp, and their genomic G+C contents were 64.2–64.7%. The average nucleotide identity and digital DNA–DNA hybridization values between R1T and D. violaceipulchra HSC-15S17T, R57T and D. vulcania FT81WT, R64T and D. violaceipulchra HSC-15S17T were 86.0% and 33.2%, 95.7% and 67.9%, and 92.7% and 52.6%, respectively. Their fatty acids were predominantly composed of C16:0, C17:0 cyclo, and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c). Based on their distinct genetic and phenotypic characteristics, and supported by chemotaxonomic analyses, we propose that strains R1T, R57T, and R64T represent novel species within the Duganella genus, for which the names Duganella hordei (type strain R1T = NBRC 115982 T = DSM 115069 T), Duganella caerulea (type strain R57T = NBRC 115983 T = DSM 115070 T), and Duganella rhizosphaerae (type strain R64T = NBRC 115984 T = DSM 115071 T) are proposed. en-copyright= kn-copyright= en-aut-name=KishiroKatsumoto en-aut-sei=Kishiro en-aut-mei=Katsumoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SahinNurettin en-aut-sei=Sahin en-aut-mei=Nurettin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SaishoDaisuke en-aut-sei=Saisho en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamajiNaoki en-aut-sei=Yamaji en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamashitaJun en-aut-sei=Yamashita en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MondenYuki en-aut-sei=Monden en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakagawaTomoyuki en-aut-sei=Nakagawa en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MochidaKeiichi en-aut-sei=Mochida en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TaniAkio en-aut-sei=Tani en-aut-mei=Akio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Egitim Fakultesi, Mugla Sitki Kocman University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Faculty of Applied Biological Sciences, Gifu University kn-affil= affil-num=8 en-affil=RIKEN Center for Sustainable Resource Science kn-affil= affil-num=9 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=Barley kn-keyword=Barley en-keyword=Duganella kn-keyword=Duganella en-keyword=Novel species kn-keyword=Novel species en-keyword=Rhizosphere kn-keyword=Rhizosphere END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=pcaf098 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250822 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Thylakostasis: key factors in thylakoid membrane organization with emphasis on biogenesis and remodeling proteins in vascular plants en-subtitle= kn-subtitle= en-abstract= kn-abstract=The thylakoid membrane (TM), a defining feature for almost all oxygen-evolving photosynthetic organisms, serves as the structural foundation for light-driven energy conversion. In vascular plants, the TM evolved into a complex architecture composed of single-layered stroma thylakoids and stacked grana thylakoids, enabling the spatial organization of two photosystems (PSII and PSI) to optimize light capture and energy transfer. In addition, two membrane regions, one connecting these two compartments (grana margin) and the other corresponding to the curvature domain in grana, function in dissipating excess energy, balancing electron transfer, and maintaining functional PSII. Recent advances in electron microscopy imaging and proteome analysis of membrane subcompartments have provided new insights into the structure and dynamic adaptations of the TM in response to diverse environmental conditions. To describe the mechanisms that govern TM architecture, dynamics, and integrity, I am introducing the concept of “thylakostasis” (thylakoid homeostasis). Here, I provide an overview of the molecular components and processes central to thylakostasis, including the biosynthesis of lipids, chlorophyll, and proteins. I focus particularly on the membrane remodeling proteins whose functions have been elucidated recently, such as VIPP1, a member of the evolutionarily conserved PspA/ESCRT-III superfamily; FZL, a dynamin-like GTPase; and CURT1, a curvature-inducing protein unique to photosynthetic organisms. Together, these factors orchestrate TM biogenesis, remodeling, and adaptive flexibility that is essential for photosynthetic efficiency. en-copyright= kn-copyright= en-aut-name=SakamotoWataru en-aut-sei=Sakamoto en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=chloroplast kn-keyword=chloroplast en-keyword=ESCRT-III (endosomal sorting complex required for transport complex III) kn-keyword=ESCRT-III (endosomal sorting complex required for transport complex III) en-keyword=grana kn-keyword=grana en-keyword=membrane trafficking kn-keyword=membrane trafficking en-keyword=photosynthesis kn-keyword=photosynthesis en-keyword=stroma thylakoid kn-keyword=stroma thylakoid END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Generation of alkyl radicals via C(sp3)–C(sp3) bond cleavage of xanthene-based precursors for photocatalytic Giese-type reaction en-subtitle= kn-subtitle= en-abstract= kn-abstract=Novel xanthene-based alkyl radical precursors were developed and subjected to photocatalytic C(sp3)–C(sp3) bond cleavage for the efficient generation of alkyl radicals, which were subsequently reacted with various alkenes to afford the corresponding Giese-type products. After the reaction, the produced xanthones can be recovered in high yield. en-copyright= kn-copyright= en-aut-name=HoriuchiShuta en-aut-sei=Horiuchi en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OishiMasato en-aut-sei=Oishi en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MizutaniAsuka en-aut-sei=Mizutani en-aut-mei=Asuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakamuraHiroyoshi en-aut-sei=Takamura en-aut-mei=Hiroyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KadotaIsao en-aut-sei=Kadota en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TanakaKenta en-aut-sei=Tanaka en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=18 cd-vols= no-issue=1 article-no= start-page=wrae175 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202401 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Cyanorhodopsin-II represents a yellow-absorbing proton-pumping rhodopsin clade within cyanobacteria en-subtitle= kn-subtitle= en-abstract= kn-abstract=Microbial rhodopsins are prevalent in many cyanobacterial groups as a light-energy-harvesting system in addition to the photosynthetic system. It has been suggested that this dual system allows efficient capture of sunlight energy using complementary ranges of absorption wavelengths. However, the diversity of cyanobacterial rhodopsins, particularly in accumulated metagenomic data, remains underexplored. Here, we used a metagenomic mining approach, which led to the identification of a novel rhodopsin clade unique to cyanobacteria, cyanorhodopsin-II (CyR-II). CyR-IIs function as light-driven outward H+ pumps. CyR-IIs, together with previously identified cyanorhodopsins (CyRs) and cyanobacterial halorhodopsins (CyHRs), constitute cyanobacterial ion-pumping rhodopsins (CyipRs), a phylogenetically distinct family of rhodopsins. The CyR-II clade is further divided into two subclades, YCyR-II and GCyR-II, based on their specific absorption wavelength. YCyR-II absorbed yellow light (λmax = 570 nm), whereas GCyR-II absorbed green light (λmax = 550 nm). X-ray crystallography and mutational analysis revealed that the difference in absorption wavelengths is attributable to slight changes in the side chain structure near the retinal chromophore. The evolutionary trajectory of cyanobacterial rhodopsins suggests that the function and light-absorbing range of these rhodopsins have been adapted to a wide range of habitats with variable light and environmental conditions. Collectively, these findings shed light on the importance of rhodopsins in the evolution and environmental adaptation of cyanobacteria. en-copyright= kn-copyright= en-aut-name=Hasegawa-TakanoMasumi en-aut-sei=Hasegawa-Takano en-aut-mei=Masumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HosakaToshiaki en-aut-sei=Hosaka en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KojimaKeiichi en-aut-sei=Kojima en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishimuraYosuke en-aut-sei=Nishimura en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KuriharaMarie en-aut-sei=Kurihara en-aut-mei=Marie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakajimaYu en-aut-sei=Nakajima en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=Ishizuka-KatsuraYoshiko en-aut-sei=Ishizuka-Katsura en-aut-mei=Yoshiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=Kimura-SomeyaTomomi en-aut-sei=Kimura-Someya en-aut-mei=Tomomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ShirouzuMikako en-aut-sei=Shirouzu en-aut-mei=Mikako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SudoYuki en-aut-sei=Sudo en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YoshizawaSusumu en-aut-sei=Yoshizawa en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Atmosphere and Ocean Research Institute, The University of Tokyo kn-affil= affil-num=2 en-affil=Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research kn-affil= affil-num=3 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Atmosphere and Ocean Research Institute, The University of Tokyo kn-affil= affil-num=5 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Atmosphere and Ocean Research Institute, The University of Tokyo kn-affil= affil-num=7 en-affil=Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research kn-affil= affil-num=8 en-affil=Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research kn-affil= affil-num=9 en-affil=Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research kn-affil= affil-num=10 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Atmosphere and Ocean Research Institute, The University of Tokyo kn-affil= en-keyword=cyanobacteria kn-keyword=cyanobacteria en-keyword=microbial rhodopsin kn-keyword=microbial rhodopsin en-keyword=ecology kn-keyword=ecology en-keyword=evolution kn-keyword=evolution END start-ver=1.4 cd-journal=joma no-vol=26 cd-vols= no-issue=10 article-no= start-page=4724 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250515 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Stem Cell Factors BAM1 and WOX1 Suppressing Longitudinal Cell Division of Margin Cells Evoked by Low-Concentration Auxin in Young Cotyledon of Arabidopsis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Highly differentiated tissues and organs play essential biological functions in multicellular organisms. Coordination of organ developmental process with tissue differentiation is necessary to achieve proper development of mature organs, but mechanisms for such coordination are not well understood. We used cotyledon margin cells from Arabidopsis plant as a new model system to investigate cell elongation and cell division during organ growth and found that margin cells endured a developmental phase transition from the “elongation” phase to the “elongation and division” phase at the early stage in germinating seedlings. We also discovered that the stem cell factors BARELY ANY MERISTEM 1 (BAM1) and WUSCHEL-related homeobox1 (WOX1) are involved in the regulation of margin cell developmental phase transition. Furthermore, exogenous auxin treatment (1 nanomolar,nM) promotes cell division, especially longitudinal cell division. This promotion of cell division did not occur in bam1 and wox1 mutants. Based on these findings, we hypothesized a new “moderate auxin concentration” model which emphasizes that a moderate auxin concentration is the key to triggering the developmental transition of meristematic cells. en-copyright= kn-copyright= en-aut-name=JiangYuli en-aut-sei=Jiang en-aut-mei=Yuli kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=LiangJian en-aut-sei=Liang en-aut-mei=Jian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WangChunyan en-aut-sei=Wang en-aut-mei=Chunyan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TanLi en-aut-sei=Tan en-aut-mei=Li kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KawanoYoji en-aut-sei=Kawano en-aut-mei=Yoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NagawaShingo en-aut-sei=Nagawa en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Institute for Translational Brain Reaearch, Fudan University kn-affil= affil-num=2 en-affil=Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences kn-affil= affil-num=3 en-affil=Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences kn-affil= affil-num=4 en-affil=Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=6 en-affil=Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences kn-affil= en-keyword=BAM1 kn-keyword=BAM1 en-keyword=WOX1 kn-keyword=WOX1 en-keyword=margin cells kn-keyword=margin cells en-keyword=auxin kn-keyword=auxin END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=95 end-page=143 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250729 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Low-Threshold Raman Silicon Lasers Using Photonic Crystal High-Q Nanocavities en-subtitle= kn-subtitle= en-abstract= kn-abstract=By utilizing stimulated Raman scattering, it is possible to generate continuous-wave laser light in silicon, an indirect bandgap semiconductor. The first part of this chapter explains the mechanism of the Raman laser using a silicon resonator with a high-quality factor (Q). In the second part, the mechanism of the ultra-low threshold Raman silicon laser using a photonic crystal high-Q nanocavity is summarized, and recent advancements are explained. en-copyright= kn-copyright= en-aut-name=TakahashiYasushi en-aut-sei=Takahashi en-aut-mei=Yasushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AsanoTakashi en-aut-sei=Asano en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NodaSusumu en-aut-sei=Noda en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Okayama University kn-affil= affil-num=2 en-affil=Kyoto University kn-affil= affil-num=3 en-affil=Kyoto University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=31 cd-vols= no-issue=6 article-no= start-page=103174 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202510 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Evaluation of a method to predict positioning errors in orthopantomography using cephalography en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction: Various radiographic examinations are used to diagnose diseases and determine treatment plans, and the quality of radiographic images affects diagnostic accuracy. This study assessed the relationship between orthopantomography and cephalometric analysis in predicting positioning errors before orthopantomography.
Methods: This study evaluated four human head phantom types and included 300 patients aged ≥18 years who underwent orthopantomography. The correlation between the Frankfort horizontal plane and occlusal plane angles in the orthopantomogram was analyzed. The occlusal plane angle at a Frankfort horizontal plane of 0° was estimated using a linear approximation formula. Frankfort horizontal plane and occlusal plane angles were measured on the cephalograms, and their differences were analyzed for correlation with the occlusal plane angle at a Frankfort horizontal plane of 0° in the corresponding orthopantomograms. The cephalogram’s condylar plane–corpus line angle was also compared with orthopantomogram measurements.
Results: Frankfort horizontal and occlusal plane angles demonstrated a strong negative correlation (r < −0.9) in phantom studies and moderate negative correlation (r < −0.4) in clinical orthopantomograms. In the phantoms, the occlusal plane at a Frankfort horizontal of 0° in the orthopantomogram strongly correlated with the difference between the Frankfort horizontal and condylar plane–corpus line angles in the cephalogram.
Conclusion: Adjusting patient positioning based on individual skeletal differences and angles may reduce positioning errors and improve image quality. Cephalogram analysis could help determine an appropriate Frankfort plane angle for each patient when acquiring orthopantomograms.
Implications for practice: Integrating cephalometric analysis into positioning protocols enhances radiographic accuracy, reduces retakes, and improves diagnostic reliability in clinical positioning. This research could improve image quality by identifying reference indicators for orthopantomography by incorporating data from images other than cephalograms, such as computed tomography and magnetic resonance imaging. en-copyright= kn-copyright= en-aut-name=ImajoS. en-aut-sei=Imajo en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HondaM. en-aut-sei=Honda en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanabeY. en-aut-sei=Tanabe en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Division of Radiology, Medical Support Department, Okayama University Hospital kn-affil= affil-num=2 en-affil=Division of Radiology, Medical Support Department, Okayama University Hospital kn-affil= affil-num=3 en-affil=Faculty of Medicine, Graduate School of Health Sciences, Okayama University kn-affil= en-keyword=Cephalogram kn-keyword=Cephalogram en-keyword=Orthopantomogram kn-keyword=Orthopantomogram en-keyword=Panoramic radiography kn-keyword=Panoramic radiography en-keyword=Frankfort horizontal plane kn-keyword=Frankfort horizontal plane en-keyword=Occlusal plane angle kn-keyword=Occlusal plane angle en-keyword=Patient positioning kn-keyword=Patient positioning END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=1 article-no= start-page=305 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250818 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Precise stratification of prognosis in pancreatic ductal adenocarcinoma patients based on pre- and postoperative genomic information en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Pancreatic ductal adenocarcinoma (PDAC) has the highest mortality rate among all cancers; hence, multidisciplinary treatment is essential for patients with PDAC. Although the resectability status, tumour marker, KRAS circulating tumour DNA (mutKRAS-ctDNA) mutations, and GATA binding 6 (GATA6) expression status are promising prognostic biomarkers, their effective integration before and after surgery remains unclear.
Methods In this retrospective cohort study, patients with PDAC who had undergone radical resection were enrolled, and pre- and postoperative independent factors associated with poor prognosis were identified using Cox hazard modelling. Risk stratification systems were developed using the identified prognostic factors and investigated for the ability to predict prognosis.
Results A total of 91 patients with PDAC were included (median follow-up duration, 28 months). Borderline resectable or locally advanced cancer at diagnosis, elevated carbohydrate antigen 19–9 (CA19-9) level, and mutKRAS-ctDNA-positive status were identified as independent preoperative factors associated with poor prognosis. The postoperative factors significantly associated with shorter overall survival were low GATA6 expression, elevated CA19-9 level, and mutKRAS-ctDNA-positive status. Finally, the preoperative and postoperative risk scoring systems developed using Cox modelling hazard ratio values could significantly stratify prognosis after curative resection for PDAC.
Conclusion A risk stratification system based on liquid biopsy, specialised for each phase (pre- and post-surgery), has been proven to be a useful, simple, and practical prognostic prediction clinical tool to determine the optimal multidisciplinary treatment protocol for PDAC. en-copyright= kn-copyright= en-aut-name=MiyamotoKokichi en-aut-sei=Miyamoto en-aut-mei=Kokichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YoshidaRyuichi en-aut-sei=Yoshida en-aut-mei=Ryuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YasuiKazuya en-aut-sei=Yasui en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShigeyasuKunitoshi en-aut-sei=Shigeyasu en-aut-mei=Kunitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YoshidaKazuhiro en-aut-sei=Yoshida en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FujiTomokazu en-aut-sei=Fuji en-aut-mei=Tomokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakagiKosei en-aut-sei=Takagi en-aut-mei=Kosei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=UmedaYuzo en-aut-sei=Umeda en-aut-mei=Yuzo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MatsumotoKazuyuki en-aut-sei=Matsumoto en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=FujiiYuki en-aut-sei=Fujii en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TakahashiToshiaki en-aut-sei=Takahashi en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MoriwakeKazuya en-aut-sei=Moriwake en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KayanoMasashi en-aut-sei=Kayano en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=NishiyamaTakeyoshi en-aut-sei=Nishiyama en-aut-mei=Takeyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=NagaiYasuo en-aut-sei=Nagai en-aut-mei=Yasuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=YamamotoHideki en-aut-sei=Yamamoto en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=KatoHironari en-aut-sei=Kato en-aut-mei=Hironari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=TazawaHiroshi en-aut-sei=Tazawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=MoritaMizuki en-aut-sei=Morita en-aut-mei=Mizuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=OtsukaMotoyuki en-aut-sei=Otsuka en-aut-mei=Motoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science kn-affil= affil-num=10 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science kn-affil= affil-num=11 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=15 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Department of Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=17 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science kn-affil= affil-num=18 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=19 en-affil=Department of Biomedical Informatics, Okayama University Graduate School of Interdisciplinary Science and Engineering in Health Systems kn-affil= affil-num=20 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science kn-affil= affil-num=21 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=Pancreatic ductal adenocarcinoma kn-keyword=Pancreatic ductal adenocarcinoma en-keyword=Risk stratification kn-keyword=Risk stratification en-keyword=Prognosis kn-keyword=Prognosis en-keyword=Tumour marker kn-keyword=Tumour marker en-keyword=KRAS kn-keyword=KRAS END start-ver=1.4 cd-journal=joma no-vol=18 cd-vols= no-issue=1 article-no= start-page=e70149 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Clinical Impacts of Minimally Invasive Transperineal Abdominoperineal Resection in Crohn's Disease: A Retrospective Analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction: Crohn's disease (CD) often leads to complex anorectal complications, posing significant challenges in surgical management. Transperineal abdominoperineal resection (TpAPR) has emerged as a minimally invasive alternative to APR. This study aims to evaluate the safety and efficacy of TpAPR compared to APR in patients with CD.
Methods: A retrospective analysis was conducted on 19 CD patients who underwent either minimally invasive TpAPR (n = 11) or APR (n = 8) between 2008 and 2023 from a single institution. The primary outcomes were assessed: intraoperative blood loss, operative time, and surgical site infection (SSI) rates.
Results: The minimally invasive TpAPR group exhibited significantly reduced intraoperative blood loss (223 mL vs. 533 mL, p = 0.04) and a lower incidence of SSI rates (36.4% vs. 75%, p = 0.07). Operative time and hospital stay were comparable between groups.
Conclusion: Minimally invasive TpAPR demonstrates potential benefits over APR in reducing blood loss and SSI rates in CD patients. Further large-scale studies are warranted to confirm these findings. en-copyright= kn-copyright= en-aut-name=KondoYoshitaka en-aut-sei=Kondo en-aut-mei=Yoshitaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KanayaNobuhiko en-aut-sei=Kanaya en-aut-mei=Nobuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShojiRyohei en-aut-sei=Shoji en-aut-mei=Ryohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=InokuchiToshihiro en-aut-sei=Inokuchi en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HiraokaSakiko en-aut-sei=Hiraoka en-aut-mei=Sakiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YoshidaYusuke en-aut-sei=Yoshida en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsumiYuki en-aut-sei=Matsumi en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShigeyasuKunitoshi en-aut-sei=Shigeyasu en-aut-mei=Kunitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TeraishiFuminori en-aut-sei=Teraishi en-aut-mei=Fuminori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KurodaShinji en-aut-sei=Kuroda en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Research Center for Intestinal Health Science, Okayama University kn-affil= affil-num=5 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Crohn's disease kn-keyword=Crohn's disease en-keyword=intraoperative blood loss kn-keyword=intraoperative blood loss en-keyword=minimally invasive surgery kn-keyword=minimally invasive surgery en-keyword=surgical site infection (SSI) kn-keyword=surgical site infection (SSI) en-keyword=transperineal abdominoperineal resection (TpAPR) kn-keyword=transperineal abdominoperineal resection (TpAPR) END start-ver=1.4 cd-journal=joma no-vol=65 cd-vols= no-issue=9 article-no= start-page=396 end-page=406 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250915 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Real-world Experience of Embolization for Intracranial Tumors in Japan: Analysis of 2,756 Cases from Japanese Registry of NeuroEndovascular Therapy 4 en-subtitle= kn-subtitle= en-abstract= kn-abstract=Embolization of intracranial tumors is predominantly performed in Japan, primarily before neurosurgical resection. The Japanese Registry of NeuroEndovascular Therapy (JR-NET) Study Group, established in 2005, aims to clarify the factors influencing the outcomes of neuroendovascular treatment. Japanese Registry of NeuroEndovascular Therapy 4 is a nationwide, multicenter retrospective observational study that evaluates real-world data on intracranial tumor embolization in Japan. Japanese Registry of NeuroEndovascular Therapy 4 is based on data collected from 166 neurosurgical centers in Japan between January 2015 and December 2019. Of 63,230 patients, 2,664 (4.2%) with intracranial tumors underwent embolization. The primary endpoint was the proportion of patients with a modified Rankin scale (mRS) score of 0-2 at 30 days post-procedure. Secondary endpoints included procedure-related complications. Among the 2,664 patients, 61 records lacked sufficient data, leaving 2,603 patients (1,612 females, median age: 61 years [interquartile range 51-71]). The proportion of patients with mRS scores ≤2 at 30 days after the procedure was 86.9%. The overall incidence of procedure-related complications was 4.8%, with 1.8% hemorrhagic, 2.0% ischemic, and 1.0% classified as other complications. In the multivariate analysis, general anesthesia and embolization of vessels other than the external carotid artery were identified as risk factors for the development of complications. Meningioma cases had a complication rate of 4.3%, with major complications occurring in 3.5%. Hemangioblastoma cases had a 14.9% complication rate, with major complications at 9.9%. Japanese Registry of NeuroEndovascular Therapy 4 provides comprehensive real-world data on intracranial tumor embolization in Japan, identifying risk factors to inform and improve the safe practice of intracranial tumor embolization in neuroendovascular therapy. en-copyright= kn-copyright= en-aut-name=HARUMAJun en-aut-sei=HARUMA en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SUGIUKenji en-aut-sei=SUGIU en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HISHIKAWATomohito en-aut-sei=HISHIKAWA en-aut-mei=Tomohito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SOUTOMEYuta en-aut-sei=SOUTOME en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=EBISUDANIYuki en-aut-sei=EBISUDANI en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KIMURARyu en-aut-sei=KIMURA en-aut-mei=Ryu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=EDAKIHisanori en-aut-sei=EDAKI en-aut-mei=Hisanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KAWAKAMIMasato en-aut-sei=KAWAKAMI en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MURAISatoshi en-aut-sei=MURAI en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HIRAMATSUMasafumi en-aut-sei=HIRAMATSU en-aut-mei=Masafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TANAKAShota en-aut-sei=TANAKA en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SATOWTetsu en-aut-sei=SATOW en-aut-mei=Tetsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=IIHARAKoji en-aut-sei=IIHARA en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=IMAMURAHirotoshi en-aut-sei=IMAMURA en-aut-mei=Hirotoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=ISHIIAkira en-aut-sei=ISHII en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=MATSUMARUYuji en-aut-sei=MATSUMARU en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=SAKAIChiaki en-aut-sei=SAKAI en-aut-mei=Chiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=YOSHIMURAShinichi en-aut-sei=YOSHIMURA en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=SAKAINobuyuki en-aut-sei=SAKAI en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=Japanese Registry of Neuroendovascular Therapy (JR-NET) Investigators en-aut-sei=Japanese Registry of Neuroendovascular Therapy (JR-NET) Investigators en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= affil-num=1 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Neurosurgery, Kawasaki Medical School kn-affil= affil-num=8 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Neurosurgery, Kawasaki Medical School kn-affil= affil-num=10 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Neurosurgery, Kindai University kn-affil= affil-num=13 en-affil=Department of Neurosurgery, National Cerebral and Cardiovascular Center kn-affil= affil-num=14 en-affil=Department of Neurosurgery, National Cerebral and Cardiovascular Center kn-affil= affil-num=15 en-affil=Department of Neurosurgery, Juntendo University Graduate School of Medicine kn-affil= affil-num=16 en-affil=Department of Neurosurgery, Institute of Medicine, University of Tsukuba kn-affil= affil-num=17 en-affil=Department of Neurosurgery, Kyoto University kn-affil= affil-num=18 en-affil=Department of Neurosurgery, Hyogo Medical University kn-affil= affil-num=19 en-affil=Department of Neurological Surgery, Shimizu Hospital kn-affil= affil-num=20 en-affil= kn-affil= en-keyword=complication kn-keyword=complication en-keyword=intracranial tumor kn-keyword=intracranial tumor en-keyword=embolization kn-keyword=embolization en-keyword=Japanese registry kn-keyword=Japanese registry END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250905 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Double-blind randomized noninferiority study of the effect of pharyngeal lidocaine anesthesia on EUS en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background and objectives: EUS is typically performed under sedation, often with concomitant analgesics to reduce pain. Traditionally used pharyngeal anesthesia, commonly with lidocaine, may cause pharyngeal discomfort and allergic reactions. This study investigated whether lidocaine-based pharyngeal anesthesia is necessary for EUS under sedation with analgesics.
Methods: A double-blind, randomized, noninferiority study was conducted on EUS cases that met the selection criteria. Patients were randomly assigned to receive either 5 sprays of 8% lidocaine (lidocaine group: LG) or saline spray (placebo group: PG) as endoscopy pretreatment. The primary outcome was EUS tolerability, analyzed separately for endoscopists and patients, with a noninferiority margin set at 15%. Secondary outcomes included endoscopist and patient satisfaction, midazolam/pethidine doses, number of gag events, number of esophageal insertion attempts, use of sedative/analgesic antagonists, interruptions due to body movements, throat symptoms after endoscopy, and sedation-related adverse events.
Results: Favorable tolerance was 85% in LG and 88% for PG among endoscopists (percent difference: 3.0 [95% confidence interval, −6.6 to 12.6]) and 90% in LG and 91% in PG among patients (percent difference, 0.94 [95% confidence interval, −7.5 to 9.4]). Both groups exceeded the noninferiority margin (P = 0.0002 for endoscopists and patients). Patient satisfaction was significantly higher in PG (P = 0.0080), but no intergroup differences were found in other secondary outcomes.
Conclusions: PG was noninferior to LG for pharyngeal anesthesia during EUS with sedation and analgesics. These results suggest that pharyngeal anesthesia with lidocaine can be omitted when performing EUS under sedation with concomitant analgesics. Omitting pharyngeal anesthesia with lidocaine may prevent discomfort and complications caused by pharyngeal anesthesia, shorten examination times, and reduce medical costs. en-copyright= kn-copyright= en-aut-name=FujiiYuki en-aut-sei=Fujii en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsumotoKazuyuki en-aut-sei=Matsumoto en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HaradaKei en-aut-sei=Harada en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HattoriNao en-aut-sei=Hattori en-aut-mei=Nao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SatoRyosuke en-aut-sei=Sato en-aut-mei=Ryosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ObataTaisuke en-aut-sei=Obata en-aut-mei=Taisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsumiAkihiro en-aut-sei=Matsumi en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MiyamotoKazuya en-aut-sei=Miyamoto en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=UchidaDaisuke en-aut-sei=Uchida en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HoriguchiShigeru en-aut-sei=Horiguchi en-aut-mei=Shigeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TsutsumiKoichiro en-aut-sei=Tsutsumi en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MitsuhashiToshiharu en-aut-sei=Mitsuhashi en-aut-mei=Toshiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=OtsukaMotoyuki en-aut-sei=Otsuka en-aut-mei=Motoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=10 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=11 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=12 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=13 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= en-keyword=EUS kn-keyword=EUS en-keyword=Lidocaine kn-keyword=Lidocaine en-keyword=Tolerance kn-keyword=Tolerance END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250909 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=S100A8/A9-MCAM signaling promotes gastric cancer cell progression via ERK-c-Jun activation en-subtitle= kn-subtitle= en-abstract= kn-abstract=S100 protein family members S100A8 and S100A9 function primarily as a heterodimer complex (S100A8/A9) in vivo. This complex has been implicated in various cancers, including gastric cancer (GC). Recent studies suggest that these proteins play significant roles in tumor progression, inflammation, and metastasis. However, the exact mechanisms by which S100A8/A9 contributes to GC pathogenesis remain unclear. This study investigates the role of S100A8/A9 and its receptor in GC. Immunohistochemical analysis was performed on GC tissue samples to assess the expression of the S100A8/A9 receptor melanoma cell adhesion molecule (MCAM). In vitro transwell migration and invasion assays were used to evaluate the motility and invasiveness of GC cells. Cell proliferation was assessed using a growth assay, and Western blotting (WB) was employed to examine downstream signaling pathways, including ERK and the transcription factor c-Jun, in response to S100A8/A9–MCAM interaction. S100A8/A9 stimulation enhanced both proliferation and migration through MCAM binding in GC cell lines. These cellular events were accompanied by ERK activation and c-Jun induction. Downregulation of MCAM suppressed both ERK phosphorylation and c-Jun expression, highlighting the importance of the S100A8/A9‒MCAM‒ERK‒c-Jun axis in promoting GC progression. These findings indicate that S100A8/A9 contributes to GC progression via MCAM, which activates the ERK‒c-Jun pathway. The S100A8/A9‒signaling axis may represent a novel therapeutic target in GC. en-copyright= kn-copyright= en-aut-name=ChenYouyi en-aut-sei=Chen en-aut-mei=Youyi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YangXu en-aut-sei=Yang en-aut-mei=Xu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KinoshitaRie en-aut-sei=Kinoshita en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TomonobuNahoko en-aut-sei=Tomonobu en-aut-mei=Nahoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=PanBo en-aut-sei=Pan en-aut-mei=Bo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=WuFangping en-aut-sei=Wu en-aut-mei=Fangping kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ZhangXu en-aut-sei=Zhang en-aut-mei=Xu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SagayamaKazumi en-aut-sei=Sagayama en-aut-mei=Kazumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SunBei en-aut-sei=Sun en-aut-mei=Bei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SakaguchiMasakiyo en-aut-sei=Sakaguchi en-aut-mei=Masakiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine kn-affil= affil-num=2 en-affil=Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine kn-affil= affil-num=3 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=The First Affiliated Hospital, Zhejiang University School of Medicine kn-affil= affil-num=6 en-affil=School of Pharmaceutical Sciences, Zhejiang Chinese Medical University kn-affil= affil-num=7 en-affil=Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine kn-affil= affil-num=8 en-affil=Faculties of Educational and Research Management Field, Okayama University kn-affil= affil-num=9 en-affil=Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University kn-affil= affil-num=10 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=Gastric cancer kn-keyword=Gastric cancer en-keyword=S100 protein kn-keyword=S100 protein en-keyword=MCAM kn-keyword=MCAM en-keyword=Inflammation kn-keyword=Inflammation en-keyword=Metastasis kn-keyword=Metastasis END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202505 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Development of 50 krpm Ultra-High Speed IPMSM For EV Traction en-subtitle= kn-subtitle= en-abstract= kn-abstract=This paper develops an ultra-high-speed 50 krpm motor for traction applications. A typical IPMSM structure is used for the rotor in this paper. At ultra-high speeds, the winding structure has a large effect on winding losses. Hence, this paper investigates the AC loss of the winding. The AC loss includes the eddy current loss and circulating current loss in the winding. Additionally, the ultra-high speed raises concerns about the rotor's critical speed. Therefore, in this paper, the shaft of the developed motor is manufactured, and the critical speed is evaluated. en-copyright= kn-copyright= en-aut-name=TsunataRen en-aut-sei=Tsunata en-aut-mei=Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KimuraMasaki en-aut-sei=Kimura en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakemotoMasatsugu en-aut-sei=Takemoto en-aut-mei=Masatsugu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ImaiJun en-aut-sei=Imai en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Okayama University, Graduate School of Environmental, Life, Natural Science and Technology kn-affil= affil-num=2 en-affil=Okayama University, Graduate School of Environmental, Life, Natural Science and Technology kn-affil= affil-num=3 en-affil=Okayama University, Graduate School of Environmental, Life, Natural Science and Technology kn-affil= affil-num=4 en-affil=Okayama University, Graduate School of Environmental, Life, Natural Science and Technology kn-affil= en-keyword=IPMSM kn-keyword=IPMSM en-keyword=winding kn-keyword=winding en-keyword=traction motor kn-keyword=traction motor en-keyword=50 krpm kn-keyword=50 krpm en-keyword=eddy current loss kn-keyword=eddy current loss END start-ver=1.4 cd-journal=joma no-vol=34 cd-vols= no-issue=2 article-no= start-page=67 end-page=73 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240701 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Depletion of Lysyl Oxidase-Like 4 (LOXL4) Attenuates Colony Formation in vitro and Collagen Deposition in vivo Breast Cancer Model en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Lysyl oxidase (LOX) family proteins have recently become a topic in cancer progression. Our recent study found a high expression of LOX-like 4 (LOXL4) in MDA-MB-231 cells. Objective: To reveal the impact of depleted LOXL4 in both in vitro and in vivo breast cancer models from a histological perspective. Material and Method: Endogenous LOXL4 was depleted using the CRISPR/Cas9 on MDA-MB-231 parental cells. Based on the LOXL4 protein expression, the clone was determined for the next experiment, thus generating MDA-MB-231 LOXL4 KO. Cell assay was conducted using colony formation assay (n=3) followed by crystal violet staining. The indicated cells were inoculated orthotopically to female BALB/c nude mice (n=5). At the end of the experiment, tumors were isolated, fixed, and prepared for Masson Trichrome staining. Result: CRISPR/Cas9 completely depleted LOXL4 expression on clone number #2-22. Depletion of LOXL4 reduced the colony size formed by MDA-MB-231 cells. MDA-MB-231 LOXL4 KO #2-22 derived tumors showed depressed tumor volume compared to the parental group. Reduced collagen was also observed from the Masson Trichrome staining (p<0.001). Conclusion: Depletion of LOXL4 downregulates the growth of MDA-MB-231 cells in vitro and collagen deposition in vivo. en-copyright= kn-copyright= en-aut-name=Ni Luh Gede Yoni Komalasari en-aut-sei=Ni Luh Gede Yoni Komalasari en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=I Gde Haryo Ganesha en-aut-sei=I Gde Haryo Ganesha en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=I Gusti Nyoman Sri Wiryawan en-aut-sei=I Gusti Nyoman Sri Wiryawan en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TomonobuNahoko en-aut-sei=Tomonobu en-aut-mei=Nahoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SakaguchiMasakiyo en-aut-sei=Sakaguchi en-aut-mei=Masakiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Cell Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Histology, Faculty of Medicine, Udayana University kn-affil= affil-num=3 en-affil=Department of Histology, Faculty of Medicine, Udayana University kn-affil= affil-num=4 en-affil=Department of Cell Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama University kn-affil= affil-num=5 en-affil=Department of Cell Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama University kn-affil= en-keyword=Good health kn-keyword=Good health en-keyword=Lysyl oxidase kn-keyword=Lysyl oxidase en-keyword=Extracellular matrix kn-keyword=Extracellular matrix END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=16 article-no= start-page=2634 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250812 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Prognostic Impact of Gastrointestinal Immune-Related Adverse Events Depends on Nutritional Status in Cancer Patients Treated with Immune Checkpoint Inhibitors en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Gastrointestinal immune-related adverse events (GI-irAEs) are recognized complications of immune checkpoint inhibitors (ICIs), but their prognostic relevance and associated risk factors remain unclear. This study aimed to assess whether baseline nutritional status, measured using the prognostic nutritional index (PNI), modifies the prognostic impact of GI-irAEs, and to identify clinical factors associated with their occurrence. Methods: We retrospectively analyzed 1104 cancer patients treated with ICIs at a single institution. GI-irAEs were defined as gastrointestinal symptoms requiring clinical intervention. Patients were stratified by irAE type and PNI (≥40 vs. <40), and differences in survival and treatment response were evaluated. Potential risk factors for developing GI-irAEs were also examined. Results: GI-irAEs occurred in 2.7% of patients and were associated with prolonged overall survival (median: 28.7 vs. 14.0 months) among those with PNI ≥ 40. This survival advantage was not observed in patients with PNI < 40. The PNI-dependent prognostic pattern was specific to GI-irAEs and not observed for non-GI irAEs. Similar trends were confirmed in 4- and 8-week landmark analyses. Differences in objective response rate and disease control rate by PNI status were most pronounced in patients with GI-irAEs. The use of anti-CTLA-4 antibodies was significantly associated with GI-irAE development (odds ratio 4.24; 95% confidence interval 1.73–10.39). Conclusions: GI-irAEs appear to confer a survival benefit primarily in patients with preserved nutritional status. PNI may serve as a useful tool to contextualize the clinical relevance of GI-irAEs and help identify patients most likely to benefit from immune activation during ICI therapy. en-copyright= kn-copyright= en-aut-name=HirataShoichiro en-aut-sei=Hirata en-aut-mei=Shoichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KonoYoshiyasu en-aut-sei=Kono en-aut-mei=Yoshiyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanakaEmi en-aut-sei=Tanaka en-aut-mei=Emi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SueMasahiko en-aut-sei=Sue en-aut-mei=Masahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakeuchiYasuto en-aut-sei=Takeuchi en-aut-mei=Yasuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YoshikawaTomoki en-aut-sei=Yoshikawa en-aut-mei=Tomoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MakiYoshie en-aut-sei=Maki en-aut-mei=Yoshie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KamioTomohiro en-aut-sei=Kamio en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KametakaDaisuke en-aut-sei=Kametaka en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MatsuedaKatsunori en-aut-sei=Matsueda en-aut-mei=Katsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SakaguchiChihiro en-aut-sei=Sakaguchi en-aut-mei=Chihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=HamadaKenta en-aut-sei=Hamada en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=IwamuroMasaya en-aut-sei=Iwamuro en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KawanoSeiji en-aut-sei=Kawano en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=KawaharaYoshiro en-aut-sei=Kawahara en-aut-mei=Yoshiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=OtsukaMotoyuki en-aut-sei=Otsuka en-aut-mei=Motoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Practical Gastrointestinal Endoscopy, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=14 en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=15 en-affil=Department of Practical Gastrointestinal Endoscopy, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=16 en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=gastrointestinal immune-related adverse events kn-keyword=gastrointestinal immune-related adverse events en-keyword=immune checkpoint inhibitors kn-keyword=immune checkpoint inhibitors en-keyword=prognostic nutrition index kn-keyword=prognostic nutrition index END start-ver=1.4 cd-journal=joma no-vol=6 cd-vols= no-issue= article-no= start-page=1370 end-page=1386 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250815 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Time-Efficient and Practical Design Method for Skewed PMSMs: Integrating Numerical Calculations With Limited 3-D-FEA en-subtitle= kn-subtitle= en-abstract= kn-abstract=This article proposes a time-efficient and practical design method for determining appropriate skew structures for permanent magnet synchronous motors (PMSMs). Various PMSMs use skew to suppress torque ripple, but 3-D finite element analysis (3-D-FEA) is required in order to accurately determine an appropriate structure for skewed PMSMs, resulting in a long analysis time. Therefore, this article constructs a hybrid analysis method that combines numerical calculations and minimal 3-D-FEA. The aim of this method is to be practical and easy to use, even for novice designers, and to accurately and quickly design skewed PMSMs. In this article, the effectiveness of the proposed method is clarified through several case studies, and then, a skewed PMSM designed using the proposed method is verified experimentally. It is also revealed that suppression of voltage harmonics contributes to improving the performance of PMSMs in experiments. en-copyright= kn-copyright= en-aut-name=TsunataRen en-aut-sei=Tsunata en-aut-mei=Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IchimuraYu en-aut-sei=Ichimura en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakemotoMasatsugu en-aut-sei=Takemoto en-aut-mei=Masatsugu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ImaiJun en-aut-sei=Imai en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Design method kn-keyword=Design method en-keyword=efficiency kn-keyword=efficiency en-keyword=field weakening control kn-keyword=field weakening control en-keyword=interior permanent magnet synchronous motor (IPMSM) kn-keyword=interior permanent magnet synchronous motor (IPMSM) en-keyword=PMSMs kn-keyword=PMSMs en-keyword=skew kn-keyword=skew en-keyword=torque ripple kn-keyword=torque ripple en-keyword=voltage harmonics kn-keyword=voltage harmonics END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250830 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Pseudohypoxia induced by iron chelator activates tumor immune response in lung cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=Hypoxia-inducible factor (HIF) signaling plays a critical role in immune cell function. Pseudohypoxia is characterized as iron-mediated stabilization of HIF-1α under normoxic conditions, which can be induced by iron chelators. This study explored whether iron chelators exert antitumor effects by enhancing tumor immune responses and elucidating the underlying mechanisms. The iron chelators Super–polyphenol 10 (SP10) and Deferoxamine (DFO) were used to create iron-deficient and pseudohypoxia conditions. Pseudohypoxia induced by iron chelators stimulates IL-2 secretion from T cells and from both human and murine nonsmall cell lung cancer (NSCLC) cell lines (A549, PC-3, and LLC). Administration of SP10 reduced tumor growth when LLC tumors were implanted in C57BL/6 mice; however, this was not observed in immunodeficient RAG1-deficient C57BL/6 mice. SP10 itself did not directly inhibit LLC cells proliferation in vitro, suggesting an activation of the tumor immune response. SP10 synergistically enhanced the efficacy of PD-1 antibody therapy in lung cancer by increasing the number of tumor-infiltrating lymphocytes (TILs). In conclusion, iron chelation-induced pseudohypoxia activates tumor immune responses by directly upregulating HIF-1α, augmenting T cell function, and inducing IL-2 secretion from T cells, and cancer cells, thereby amplifying the immune efficacy of the PD-1 antibody in lung cancer treatment. en-copyright= kn-copyright= en-aut-name=HamadaYusuke en-aut-sei=Hamada en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OharaToshiaki en-aut-sei=Ohara en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ChenYuehua en-aut-sei=Chen en-aut-mei=Yuehua kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TeradaManato en-aut-sei=Terada en-aut-mei=Manato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WangYuze en-aut-sei=Wang en-aut-mei=Yuze kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KawaiHotaka en-aut-sei=Kawai en-aut-mei=Hotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=FujisawaMasayoshi en-aut-sei=Fujisawa en-aut-mei=Masayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YoshimuraTeizo en-aut-sei=Yoshimura en-aut-mei=Teizo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MatsukawaAkihiro en-aut-sei=Matsukawa en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Lung cancer kn-keyword=Lung cancer en-keyword=iron kn-keyword=iron en-keyword=hypoxia-inducible factor kn-keyword=hypoxia-inducible factor en-keyword=immune checkpoint inhibitors kn-keyword=immune checkpoint inhibitors END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250902 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=An Alternative Approach Based on Skin Electrical Impedance to Determine Transepidermal Water Loss for Skin Barrier Function Assessments en-subtitle= kn-subtitle= en-abstract= kn-abstract=Purpose: The transepidermal water loss (TEWL) has long been measured as an indicator to assess the skin barrier function in dermatological research and clinical practice. However, practical limitations such as time requirement, environmental sensitivity, and measurement complexity hinder the widespread uptake of conventional TEWL measurements in clinical settings and routine monitoring. Consequently, there is a growing need for rapid, robust, and clinically applicable alternatives to conventional TEWL measurements. Here, we present a simple, non-invasive, and time-efficient method based on the skin electrical impedance for skin barrier function assessments.
Methods: The skin electrical impedance, TEWL, stratum corneum (SC) thickness, and SC surface water content of 25 healthy adult participants with no history of dermatological diseases were measured at two adjacent forearm sites: intact site with a normal skin barrier and tape-stripped site with an impaired skin barrier. The measured impedance was used to calculate the SC thickness and surface water content, from which the TEWL was estimated and then compared against the TEWL measured using a Tewameter. The estimation accuracy was evaluated by determining the correlation coefficient (R) and root mean square error (RMSE) between estimated and measured TEWL.
Results: A strong correlation (R = 0.891) was observed between estimated and measured TEWL, with an RMSE of 6.05 g/m²/h, indicating high accuracy of the proposed method.
Conclusion: This impedance-based method provides accurate estimations of the TEWL, indicating its potential as a practical alternative to conventional TEWL measurements for skin barrier function assessments, particularly in clinical or high-throughput settings. en-copyright= kn-copyright= en-aut-name=UeharaOsamu en-aut-sei=Uehara en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakamuraTakao en-aut-sei=Nakamura en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= en-keyword=Transepidermal water loss kn-keyword=Transepidermal water loss en-keyword=Electrical impedance kn-keyword=Electrical impedance en-keyword=Stratum corneum kn-keyword=Stratum corneum en-keyword=Skin barrier kn-keyword=Skin barrier END start-ver=1.4 cd-journal=joma no-vol=26 cd-vols= no-issue=17 article-no= start-page=8145 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250822 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Augmentation of the Benzyl Isothiocyanate-Induced Antiproliferation by NBDHEX in the HCT-116 Human Colorectal Cancer Cell Line en-subtitle= kn-subtitle= en-abstract= kn-abstract=Increased drug metabolism and elimination are prominent mechanisms mediating multidrug resistance (MDR) to not only chemotherapy drugs but also anti-cancer natural products, such as benzyl isothiocyanate (BITC). To evaluate the possibility of combined utilization of a certain compound to overcome this resistance, we focused on glutathione S-transferase (GST)-dependent metabolism of BITC. The pharmacological treatment of a pi-class GST-selective inhibitor, 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol (NBDHEX), significantly increased BITC-induced toxicity in human colorectal cancer HCT-116 cells. However, NBDHEX unexpectedly increased the level of the BITC–glutathione (GSH) conjugate as well as BITC-modified proteins, suggesting that NBDHEX might increase BITC-modified protein accumulation by inhibiting BITC–GSH excretion instead of inhibiting GST. Furthermore, NBDHEX significantly potentiated BITC-induced apoptosis with the enhanced activation of apoptosis-related pathways, such as c-Jun N-terminal kinase and caspase-3 pathways. These results suggested that combination treatment with NBDHEX may be an effective way to overcome MDR with drug efflux and thus induce the biological activity of BITC at lower doses. en-copyright= kn-copyright= en-aut-name=SunRuitong en-aut-sei=Sun en-aut-mei=Ruitong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YanoAina en-aut-sei=Yano en-aut-mei=Aina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SatohAyano en-aut-sei=Satoh en-aut-mei=Ayano kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MunemasaShintaro en-aut-sei=Munemasa en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MurataYoshiyuki en-aut-sei=Murata en-aut-mei=Yoshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakamuraToshiyuki en-aut-sei=Nakamura en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakamuraYoshimasa en-aut-sei=Nakamura en-aut-mei=Yoshimasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=benzyl isothiocyanate kn-keyword=benzyl isothiocyanate en-keyword=multidrug resistance kn-keyword=multidrug resistance en-keyword=glutathione S-transferase kn-keyword=glutathione S-transferase en-keyword=NBDHEX kn-keyword=NBDHEX en-keyword=apoptosis kn-keyword=apoptosis en-keyword=c-Jun N-terminal kinase kn-keyword=c-Jun N-terminal kinase END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=27047 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250725 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Prevalence of Streptococcus mutans harboring the cnm gene encoding cell surface protein Cnm in Japanese children en-subtitle= kn-subtitle= en-abstract= kn-abstract=Dental caries is a highly prevalent infectious disease primarily caused by the pathogenic bacterium Streptococcus mutans, which has also been associated with systemic disease. A 120-kDa collagen-binding protein (Cnm) produced by S. mutans contributes to cardiovascular disease pathogenicity. Few studies have addressed the current prevalence of S. mutans and the cnm gene in Japanese children or examined caries pathology in relation to cnm presence. Here, we investigated the prevalence of S. mutans and the distribution of cnm-positive S. mutans among 490 children who visited two university hospitals in Japan. The caries experience index (dmft/DMFT) was calculated, and the collagen-binding ability of cnm-positive S. mutans strains was assessed. S. mutans was isolated from the oral cavities of 158 patients (36.8%); 10.1% (16/158) harbored cnm-positive S. mutans. When caries experience indices were compared across dentitions, patients harboring cnm-positive strains had significantly higher dmft/DMFT scores than those with cnm-negative strains (P < 0.05). Additionally, a positive correlation was observed between the collagen-binding capacity of cnm-positive S. mutans and the dmft/DMFT score (r = 0.601, P < 0.05). These findings suggest that cnm contributes to caries progression through collagen-mediated adherence to tooth surfaces. The presence of cnm-positive S. mutans may represent a risk factor for increased caries susceptibility in children. en-copyright= kn-copyright= en-aut-name=SuehiroYuto en-aut-sei=Suehiro en-aut-mei=Yuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkudaMakoto en-aut-sei=Okuda en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OtsuguMasatoshi en-aut-sei=Otsugu en-aut-mei=Masatoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OchiaiMarin en-aut-sei=Ochiai en-aut-mei=Marin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakagiMisato en-aut-sei=Takagi en-aut-mei=Misato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TojoFumikazu en-aut-sei=Tojo en-aut-mei=Fumikazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MikasaYusuke en-aut-sei=Mikasa en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakaShuhei en-aut-sei=Naka en-aut-mei=Shuhei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=Matsumoto-NakanoMichiyo en-aut-sei=Matsumoto-Nakano en-aut-mei=Michiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=LapirattanakulJinthana en-aut-sei=Lapirattanakul en-aut-mei=Jinthana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OkawaRena en-aut-sei=Okawa en-aut-mei=Rena kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NomuraRyota en-aut-sei=Nomura en-aut-mei=Ryota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NakanoKazuhiko en-aut-sei=Nakano en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Pediatric Dentistry, Graduate School of Dentistry, The University of Osaka kn-affil= affil-num=2 en-affil=Department of Pediatric Dentistry, Graduate School of Dentistry, The University of Osaka kn-affil= affil-num=3 en-affil=Department of Pediatric Dentistry, Graduate School of Dentistry, The University of Osaka kn-affil= affil-num=4 en-affil=Department of Pediatric Dentistry, Graduate School of Dentistry, The University of Osaka kn-affil= affil-num=5 en-affil=Department of Pediatric Dentistry, Graduate School of Dentistry, The University of Osaka kn-affil= affil-num=6 en-affil=Department of Pediatric Dentistry, Graduate School of Dentistry, The University of Osaka kn-affil= affil-num=7 en-affil=Department of Pediatric Dentistry, Graduate School of Dentistry, The University of Osaka kn-affil= affil-num=8 en-affil=Department of Pediatric Dentistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Pediatric Dentistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Oral Microbiology, Faculty of Dentistry, Mahidol University kn-affil= affil-num=11 en-affil=Department of Pediatric Dentistry, Graduate School of Dentistry, The University of Osaka kn-affil= affil-num=12 en-affil=Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University kn-affil= affil-num=13 en-affil=Department of Pediatric Dentistry, Graduate School of Dentistry, The University of Osaka kn-affil= en-keyword=Streptococcus mutans kn-keyword=Streptococcus mutans en-keyword=Collagen-binding protein kn-keyword=Collagen-binding protein en-keyword=Cnm kn-keyword=Cnm en-keyword=Prevalence kn-keyword=Prevalence en-keyword=Dental caries kn-keyword=Dental caries en-keyword=Japanese population kn-keyword=Japanese population END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue= article-no= start-page=113544 end-page=113556 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250630 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Optimized Ensemble Deep Learning for Real-Time Intrusion Detection on Resource-Constrained Raspberry Pi Devices en-subtitle= kn-subtitle= en-abstract= kn-abstract=The rapid growth of Internet of Things (IoT) networks has increased security risks, making it essential to have effective Intrusion Detection Systems (IDS) for real-time threat detection. Deep learning techniques offer promising solutions for such detection due to their superior complex pattern recognition and anomaly detection capabilities in large datasets. This paper proposes an optimized ensemble-based IDS designed specifically for efficient deployment on edge hardware. However, deploying such computationally intensive models on resource-limited edge devices remains a significant challenge due to model size and computational overhead on devices with limited processing capabilities. Building upon our previously developed stacked Long Short-Term Memory (LSTM) model integrated with ANOVA feature selection, we optimize it by integrating dual-stage model compression: pruning and quantization to create a lightweight model suitable for real-time inference on Raspberry Pi devices. To evaluate the system under realistic conditions, we combined with a Kafka-based testbed to simulate dynamic IoT environments with variable traffic loads, delays, and multiple simultaneous attack sources. This enables the assessment of detection performance under varying traffic volumes, latency, and overlapping attack scenarios. The proposed system maintains high detection performance with accuracy of 97.3% across all test scenarios, while efficiently leveraging multi-core processing with peak CPU usage reaching 111.8%. These results demonstrate the system’s practical viability for real-time IoT security at the edge. en-copyright= kn-copyright= en-aut-name=MusthafaMuhammad Bisri en-aut-sei=Musthafa en-aut-mei=Muhammad Bisri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HudaSamsul en-aut-sei=Huda en-aut-mei=Samsul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NguyenTuy Tan en-aut-sei=Nguyen en-aut-mei=Tuy Tan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KoderaYuta en-aut-sei=Kodera en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NogamiYasuyuki en-aut-sei=Nogami en-aut-mei=Yasuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Interdisciplinary Education and Research Field, Okayama University kn-affil= affil-num=3 en-affil=School of Informatics, Computing, and Cyber Systems, Northern Arizona University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Internet of things kn-keyword=Internet of things en-keyword=intrusion detection system kn-keyword=intrusion detection system en-keyword=stacked lstm kn-keyword=stacked lstm en-keyword=pruning model kn-keyword=pruning model en-keyword=optimizing model kn-keyword=optimizing model en-keyword=quantization model kn-keyword=quantization model en-keyword=raspberry pi kn-keyword=raspberry pi en-keyword=real-time detection kn-keyword=real-time detection en-keyword=apache kafka kn-keyword=apache kafka END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue= article-no= start-page=89003 end-page=89024 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250519 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Security in Post-Quantum Era: A Comprehensive Survey on Lattice-Based Algorithms en-subtitle= kn-subtitle= en-abstract= kn-abstract=Lattice-based post-quantum cryptography (PQC) has attracted significant attention as a promising solution to the security challenges posed by quantum computing. Unlike traditional cryptographic algorithms, lattice-based schemes are expected to remain secure even in the presence of quantum attacks, making them essential for securing future data. Despite their strong theoretical foundations, lattice-based schemes face several practical challenges, particularly in optimizing performance and scalability for real-world applications. This survey provides a novel taxonomy that categorizes lattice-based PQC designs, with an emphasis on computational paradigms and security considerations. We systematically evaluate lattice-based PQC implementations across both software platforms, including central processing units and graphics processing units, as well as hardware platforms like field-programmable gate arrays and application-specific integrated circuits, highlighting their strengths and limitations. In addition, we explore the practical applications of lattice-based cryptography in fields such as secure communication, critical infrastructure, privacy-preserving data analytics, artificial intelligence, and trust and authentication systems. By offering a comprehensive overview of the current state of lattice-based PQC, this survey aims to provide valuable insights into the ongoing advancements and future research directions in the field as we transition to a post-quantum era. en-copyright= kn-copyright= en-aut-name=NguyenHien en-aut-sei=Nguyen en-aut-mei=Hien kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HudaSamsul en-aut-sei=Huda en-aut-mei=Samsul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NogamiYasuyuki en-aut-sei=Nogami en-aut-mei=Yasuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NguyenTuy Tan en-aut-sei=Nguyen en-aut-mei=Tuy Tan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=School of Informatics, Computing, and Cyber Systems, Northern Arizona University kn-affil= affil-num=2 en-affil=Interdisciplinary Education and Research Field, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=School of Informatics, Computing, and Cyber Systems, Northern Arizona University kn-affil= en-keyword=Post-quantum cryptography kn-keyword=Post-quantum cryptography en-keyword=lattice-based cryptography kn-keyword=lattice-based cryptography en-keyword=number theoretic transform kn-keyword=number theoretic transform en-keyword=hardware and software implementation kn-keyword=hardware and software implementation END start-ver=1.4 cd-journal=joma no-vol=18 cd-vols= no-issue=8 article-no= start-page=e70325 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202508 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Cardiotoxicity Assessment of EGFR Tyrosine Kinase Inhibitors Using Human iPS Cell‐Derived Cardiomyocytes and FDA Adverse Events Reporting System en-subtitle= kn-subtitle= en-abstract= kn-abstract=Recent advances in the development of anti-cancer drugs have contributed to prolonged survival of cancer patients. In contrast, drug-induced cardiotoxicity, particularly cardiac contractile dysfunction, is of growing concern in cancer treatment. Therefore, it is important to understand the risks of anti-cancer drug-induced cardiac contractile dysfunction in drug development. We have previously developed image-based motion analysis using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to assess the effect of drugs on contractility. However, the utility and predictive potential of image-based motion analysis using hiPSC-CMs for anti-cancer drug-induced cardiac contractile dysfunction have not been well understood. Here we focused on epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) and investigated the correlation between the hiPSC-CMs data and clinical signals of adverse events related to cardiac contractile dysfunction. We examined the effects of the four EGFR-TKIs, osimertinib, gefitinib, afatinib, and erlotinib, on the contractility of hiPSC-CMs using image-based motion analysis. We found that osimertinib decreased contraction velocity and deformation distance in a dose- and time-dependent manner, whereas gefitinib, afatinib, and erlotinib had little effect on these parameters. Next, we examined the real-world data of the EGFR-TKIs using FDA Adverse Event Reporting System (FAERS; JAPIC AERS). Only osimertinib showed significant clinical signals of adverse events related to cardiac contractile dysfunction. These data suggest that hiPSC-CM data correlate with clinical signals in FAERS analysis for four EGFR-TKIs. Thus, image-based motion analysis using hiPSC-CMs can be a useful platform for predicting the risk of anti-cancer drug-induced cardiac contractile dysfunction in patients. en-copyright= kn-copyright= en-aut-name=YanagidaShota en-aut-sei=Yanagida en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawagishiHiroyuki en-aut-sei=Kawagishi en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SaitoMitsuo en-aut-sei=Saito en-aut-mei=Mitsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HamanoHirofumi en-aut-sei=Hamano en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ZamamiYoshito en-aut-sei=Zamami en-aut-mei=Yoshito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KandaYasunari en-aut-sei=Kanda en-aut-mei=Yasunari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Division of Pharmacology, National Institute of Health Sciences (NIHS) kn-affil= affil-num=2 en-affil=Division of Pharmacology, National Institute of Health Sciences (NIHS) kn-affil= affil-num=3 en-affil=Japan Pharmaceutical Information Center (JAPIC) kn-affil= affil-num=4 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil= affil-num=6 en-affil=Division of Pharmacology, National Institute of Health Sciences (NIHS) kn-affil= en-keyword=cardiomyocytes kn-keyword=cardiomyocytes en-keyword=cardiotoxicity kn-keyword=cardiotoxicity en-keyword=contractility kn-keyword=contractility en-keyword=EGFR-tyrosine kinase inhibitor kn-keyword=EGFR-tyrosine kinase inhibitor en-keyword=FAERS kn-keyword=FAERS en-keyword=human iPS cell kn-keyword=human iPS cell END start-ver=1.4 cd-journal=joma no-vol=188 cd-vols= no-issue= article-no= start-page=118137 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202507 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Unravelling the cardioprotective effects of calcitriol in Sunitinib-induced toxicity: A comprehensive in silico and in vitro study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Sunitinib (SUN), a drug used to treat advanced renal cell carcinoma and other cancers, causes cardiotoxicity. This study aimed to identify a potential drug candidate to counteract SUN-induced cardiotoxicity. We analysed real-world data from adverse event report databases of existing clinically approved drugs to identify potential candidates. Through in silico analyses and in vitro experiments, the mechanisms of action were determined. The study identified calcitriol (CTL), an active form of vitamin D, as a promising candidate against SUN-induced cardiotoxicity. In H9c2 cells, SUN decreased cell viability significantly, whereas CTL mitigated this effect significantly. The SUN-treated group exhibited increased autophagy in H9c2 cells, which was reduced significantly in the CTL group. Bioinformatics analysis using Ingenuity Pathway Analysis revealed the mechanistic target of rapamycin (mTOR) as a common factor between autophagy and CTL. Notably, rapamycin, an mTOR inhibitor, nullified the effects of CTL on cell viability and autophagy. Furthermore, SUN treatment led to significant reductions in cardiomyocyte diameters and increases in their widths, changes that were inhibited by CTL. SUN also induced morphological changes in surviving H9c2 cells, causing them to adopt a rounded shape, whereas CTL improved their morphology to resemble the elongated shape of the control group. In conclusion, the findings of the present study suggest that CTL has the potential to prevent SUN-induced cardiomyocyte damage through autophagy, particularly via mTOR-mediated pathways. The findings indicate that CTL could serve as an effective prophylactic agent against SUN-induced cardiotoxicity, offering a promising avenue for further research and potential clinical applications. en-copyright= kn-copyright= en-aut-name=SakamotoYoshika en-aut-sei=Sakamoto en-aut-mei=Yoshika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NiimuraTakahiro en-aut-sei=Niimura en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=GodaMitsuhiro en-aut-sei=Goda en-aut-mei=Mitsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TomochikaNanami en-aut-sei=Tomochika en-aut-mei=Nanami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MurakawaWakana en-aut-sei=Murakawa en-aut-mei=Wakana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AizawaFuka en-aut-sei=Aizawa en-aut-mei=Fuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YagiKenta en-aut-sei=Yagi en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HamanoHirofumi en-aut-sei=Hamano en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=Izawa-IshizawaYuki en-aut-sei=Izawa-Ishizawa en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ZamamiYoshito en-aut-sei=Zamami en-aut-mei=Yoshito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=IshizawaKeisuke en-aut-sei=Ishizawa en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences kn-affil= affil-num=2 en-affil=Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences kn-affil= affil-num=3 en-affil=Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences kn-affil= affil-num=4 en-affil=Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences kn-affil= affil-num=5 en-affil=Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences kn-affil= affil-num=6 en-affil=Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences kn-affil= affil-num=7 en-affil=Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences kn-affil= affil-num=8 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences kn-affil= affil-num=10 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil= affil-num=11 en-affil=Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences kn-affil= en-keyword=Sunitinib kn-keyword=Sunitinib en-keyword=Advanced renal cell carcinoma kn-keyword=Advanced renal cell carcinoma en-keyword=Cardiotoxicity kn-keyword=Cardiotoxicity en-keyword=Calcitriol kn-keyword=Calcitriol en-keyword=Autophagy kn-keyword=Autophagy en-keyword=MTOR kn-keyword=MTOR END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=1 article-no= start-page=40 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250428 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Time dependent predictors of cardiac inflammatory adverse events in cancer patients receiving immune checkpoint inhibitors en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Cardio-inflammatory immune related adverse events (irAEs) while receiving immune checkpoint inhibitor (ICI) therapy are particularly consequential due to their associations with poorer treatment outcomes. Evaluation of predictive factors of these serious irAEs with a time dependent approach allows better understanding of patients most at risk.
Objective: To identify different elements of patient data that are significant predictors of early and late-onset or delayed cardio-inflammatory irAEs through various predictive modeling strategies.
Methods: A cohort of patients receiving ICI therapy from January 1, 2010 to May 1, 2022 was identified from TriNetX meeting inclusion/exclusion criteria. Patient data collected included occurrence of early and later cardio-inflammatory irAEs, patient survival time, patient demographic information, ICI therapies, comorbidities, and medication histories. Predictive and statistical modeling approaches identified unique risk factors for early and later developing cardio-inflammatory irAEs.
Results: A cohort of 66,068 patients on ICI therapy were identified in the TriNetX platform; 193 (0.30%) experienced early cardio-inflammatory irAEs and 175 (0.26%) experienced later cardio-inflammatory irAEs. Significant predictors for early irAEs included: anti-PD-1 therapy at index, combination ICI therapy at index, and history of peripheral vascular disease. Significant predictors for later irAEs included: a history of myocarditis and/or pericarditis, cerebrovascular disease, and history of non-steroidal anti-inflammatory medication use.
Conclusions: Cardio-inflammatory irAEs can be divided into clinically meaningful categories of early and late based on time since initiation of ICI therapy. Considering distinct risk factors for early-onset and late-onset events may allow for more effective patient monitoring and risk assessment. en-copyright= kn-copyright= en-aut-name=SayerMichael en-aut-sei=Sayer en-aut-mei=Michael kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HamanoHirofumi en-aut-sei=Hamano en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NagasakaMisako en-aut-sei=Nagasaka en-aut-mei=Misako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=LeeBenjamin J. en-aut-sei=Lee en-aut-mei=Benjamin J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=DohJean en-aut-sei=Doh en-aut-mei=Jean kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=PatelPranav M. en-aut-sei=Patel en-aut-mei=Pranav M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ZamamiYoshito en-aut-sei=Zamami en-aut-mei=Yoshito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OzakiAya F. en-aut-sei=Ozaki en-aut-mei=Aya F. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=School of Pharmacy & Pharmaceutical Sciences, University of California kn-affil= affil-num=2 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil= affil-num=3 en-affil=Division of Hematology and Oncology, University of California kn-affil= affil-num=4 en-affil=Department of Pharmacy, University of California Irvine Health kn-affil= affil-num=5 en-affil=Department of Pharmacy, University of California Irvine Health kn-affil= affil-num=6 en-affil=Division of Cardiology, Department of Medicine, University of California kn-affil= affil-num=7 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil= affil-num=8 en-affil=School of Pharmacy & Pharmaceutical Sciences, University of California kn-affil= en-keyword=Immune checkpoint inhibitors kn-keyword=Immune checkpoint inhibitors en-keyword=Immune-Related adverse events kn-keyword=Immune-Related adverse events en-keyword=Myocarditis kn-keyword=Myocarditis en-keyword=Pericarditis kn-keyword=Pericarditis en-keyword=Predictive modeling kn-keyword=Predictive modeling en-keyword=TriNetx kn-keyword=TriNetx END start-ver=1.4 cd-journal=joma no-vol=239 cd-vols= no-issue= article-no= start-page=113260 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2026 dt-pub=202602 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Helical X-ray tube trajectory estimation via image noise analysis for enhanced CT dosimetry en-subtitle= kn-subtitle= en-abstract= kn-abstract=Information on the helical trajectory of the X-ray tube is necessary for accurate dose evaluation during computed tomography (CT). We aimed to propose a methodology for analyzing the trajectory of the X-ray tube. The novelty of this paper is that the incident direction of X-rays is estimated from the standard deviation (SD) distribution. The X-ray incident direction for each slice was analyzed using a distribution function of SD values, in which the analysis regions were placed in the air region. Then, the helical trajectory of the CT scan was estimated by fitting a three-dimensional helical function to the analyzed data. The robustness of our algorithm was verified through phantom studies: the analyzed X-ray incident directions were compared with instrumental log data, in which cylindrical polyoxymethylene resin phantoms and a whole-body phantom were scanned. Chest CT scanning was mimicked, in which the field of view (FOV) was set at the lung region. The procedure for analyzing the X-ray incident direction was applicable to cylindrical phantoms regardless of the phantom size. In contrast, in the case of the whole-body phantom, although it was possible to apply our procedure to the chest and abdomen regions, the shoulder slices were inappropriate to analyze. Therefore, the helical trajectory was determined based on chest and abdominal CT images. The accuracy in X-ray incident direction analysis was evaluated to be 7.5°. In conclusion, we have developed an algorithm to estimate a three-dimensional helical trajectory that can be used for dose measurements and simulations. en-copyright= kn-copyright= en-aut-name=MaedaTatsuya en-aut-sei=Maeda en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakegamiKazuki en-aut-sei=Takegami en-aut-mei=Kazuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=GotoSota en-aut-sei=Goto en-aut-mei=Sota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AsaharaTakashi en-aut-sei=Asahara en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KobayashiDaiki en-aut-sei=Kobayashi en-aut-mei=Daiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NishigamiRina en-aut-sei=Nishigami en-aut-mei=Rina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KimotoNatsumi en-aut-sei=Kimoto en-aut-mei=Natsumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamashitaKazuta en-aut-sei=Yamashita en-aut-mei=Kazuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HigashinoKosaku en-aut-sei=Higashino en-aut-mei=Kosaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MorimotoShinichi en-aut-sei=Morimoto en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KonishiTakeshi en-aut-sei=Konishi en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MakiMotochika en-aut-sei=Maki en-aut-mei=Motochika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=HayashiHiroaki en-aut-sei=Hayashi en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Graduate School of Medical Sciences, Kanazawa University kn-affil= affil-num=2 en-affil=Department of Radiological Technology, Yamaguchi University Hospital kn-affil= affil-num=3 en-affil=Faculty of Health Sciences, Kobe Tokiwa University kn-affil= affil-num=4 en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Medical Sciences, Kanazawa University kn-affil= affil-num=6 en-affil=Graduate School of Medical Sciences, Kanazawa University kn-affil= affil-num=7 en-affil=Department of Radiological Science, Faculty of Health Sciences, Junshin Gakuen University kn-affil= affil-num=8 en-affil=Department of Orthopedics, School of Medicine, Tokushima University kn-affil= affil-num=9 en-affil=Shikoku Medical Center for Children and Adults kn-affil= affil-num=10 en-affil=MEDITEC JAPAN Co., Ltd., Yamaguchi Kosan Bld. kn-affil= affil-num=11 en-affil=MEDITEC JAPAN Co., Ltd., Yamaguchi Kosan Bld. kn-affil= affil-num=12 en-affil=MEDITEC JAPAN Co., Ltd., Yamaguchi Kosan Bld. kn-affil= affil-num=13 en-affil=College of Transdisciplinary Sciences for Innovation, Kanazawa University kn-affil= en-keyword=X-ray medical diagnosis kn-keyword=X-ray medical diagnosis en-keyword=Helical CT scan kn-keyword=Helical CT scan en-keyword=CT image kn-keyword=CT image en-keyword=X-ray incident direction kn-keyword=X-ray incident direction en-keyword=Helical trajectory kn-keyword=Helical trajectory en-keyword=Radiation dose measurement kn-keyword=Radiation dose measurement END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=24040 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250705 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Lactose fermenting enteroinvasive Escherichia coli from diarrhoeal cases confers enhanced virulence en-subtitle= kn-subtitle= en-abstract= kn-abstract=Enteroinvasive Escherichia coli (EIEC), known for causing bacillary dysentery akin to Shigella species, comprises both lactose-fermenting (LF) and non-lactose-fermenting (NLF) isolates. While NLF-EIEC is a well-established pathogen associated with acute dysentery and harbours classical Shigella-like virulence factors, the role of LF-EIEC in human disease remains underexplored. In this study, we sought to characterize LF-EIEC clinical isolates and assessed their pathogenic potential in comparison to NLF-EIEC. Among 13,682 diarrhoeal stool specimens, six LF and nine NLF-EIEC were isolated, predominantly belonging to serogroups O28ac, O125, O136, and O152. Unlike other E. coli, all the EIEC isolates were non-motile. Both the types of EIEC had multiple plasmids harbouring several virulence encoding genes (ipaBCD, ial, virF, sig, sepA and ipaH). Resistance to recent generation antibiotics were mostly confined to NLF-EIEC but some of the LF-EIEC were resistant only to ceftriaxone. Higher invasion ability and significant increase in the expression of virulence encoding genes by the LF-EIEC (p < 0.05) were noted during infection to Int407 cell-line. Additionally, LF-EIEC exhibited extensive colonization of the mouse intestine and expressed severe keratoconjunctivitis in guinea pigs. Together, our findings highlight LF-EIEC as an emerging pathogenic variant warranting heightened surveillance and comprehensive investigation to better understand its epidemiological and clinical significance. en-copyright= kn-copyright= en-aut-name=GhoshDebjani en-aut-sei=Ghosh en-aut-mei=Debjani kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HalderProlay en-aut-sei=Halder en-aut-mei=Prolay kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SamantaProsenjit en-aut-sei=Samanta en-aut-mei=Prosenjit kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ChowdhuryGoutam en-aut-sei=Chowdhury en-aut-mei=Goutam kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShawSreeja en-aut-sei=Shaw en-aut-mei=Sreeja kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=BosePuja en-aut-sei=Bose en-aut-mei=Puja kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=RoyDeboleena en-aut-sei=Roy en-aut-mei=Deboleena kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=RoyNivedita en-aut-sei=Roy en-aut-mei=Nivedita kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KitaharaKei en-aut-sei=Kitahara en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=RamamurthyThandavarayan en-aut-sei=Ramamurthy en-aut-mei=Thandavarayan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KoleyHemanta en-aut-sei=Koley en-aut-mei=Hemanta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MiyoshiShin-ichi en-aut-sei=Miyoshi en-aut-mei=Shin-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=DuttaShanta en-aut-sei=Dutta en-aut-mei=Shanta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=MukhopadhyayAsish Kumar en-aut-sei=Mukhopadhyay en-aut-mei=Asish Kumar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI) kn-affil= affil-num=2 en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI) kn-affil= affil-num=3 en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI) kn-affil= affil-num=4 en-affil=Collaborative Research Centre of Okayama University for Infectious Diseases, ICMR-National Institute for Research in Bacterial Infections kn-affil= affil-num=5 en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI) kn-affil= affil-num=6 en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI) kn-affil= affil-num=7 en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI) kn-affil= affil-num=8 en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI) kn-affil= affil-num=9 en-affil=Collaborative Research Centre of Okayama University for Infectious Diseases, ICMR-National Institute for Research in Bacterial Infections kn-affil= affil-num=10 en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI) kn-affil= affil-num=11 en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI) kn-affil= affil-num=12 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI) kn-affil= affil-num=14 en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI) kn-affil= en-keyword=Antibiotic resistance kn-keyword=Antibiotic resistance en-keyword=Bacterial infections kn-keyword=Bacterial infections en-keyword=Diarrhoea kn-keyword=Diarrhoea en-keyword=Enteroinvasive Escherichia coli kn-keyword=Enteroinvasive Escherichia coli en-keyword=Keratoconjunctivitis kn-keyword=Keratoconjunctivitis en-keyword=Pathogenesis kn-keyword=Pathogenesis END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=4 article-no= start-page=139 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250402 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=An Implementation of Creep Test Assisting System with Dial Gauge Needle Reading and Smart Lighting Function for Laboratory Automation en-subtitle= kn-subtitle= en-abstract= kn-abstract=For decades, analog dial gauges have been essential for measuring and monitoring data at various industrial instruments including production machines and laboratory equipment. Among them, we focus on the instrument for creep test in a mechanical engineering laboratory, which evaluates material strength under sustained stress. Manual reading of gauges imposes significant labor demands, especially in long-duration tests. This burden further increases under low-lighting environments, where poor visibility can lead to misreading data points, potentially compromising the accuracy of test results. In this paper, to address the challenges, we implement a creep test assisting system that possesses the following features: (1) to save the installation cost, a web camera and Raspberry Pi are employed to capture images of the dial gauge and automate the needle reading by image processing in real time, (2) to ensure reliability under low-lighting environments, a smart lighting mechanism is integrated to turn on a supplementary light when the dial gauge is not clearly visible, and (3) to allow a user to stay in a distant place from the instrument during a creep test, material break is detected and the corresponding message is notified to a laboratory staff using LINE automatically. For evaluations, we install the implemented system into a material strength measuring instrument at Okayama University, Japan, and confirm the effectiveness and accuracy through conducting experiments under various lighting conditions. en-copyright= kn-copyright= en-aut-name=KongDezheng en-aut-sei=Kong en-aut-mei=Dezheng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FangShihao en-aut-sei=Fang en-aut-mei=Shihao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=Noprianto en-aut-sei=Noprianto en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OkayasuMitsuhiro en-aut-sei=Okayasu en-aut-mei=Mitsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=PuspitaningayuPradini en-aut-sei=Puspitaningayu en-aut-mei=Pradini kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil= Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil= Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil= Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil= Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil= Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil= Department of Electrical Engineering, Universitas Negeri Surabaya kn-affil= en-keyword=creep test kn-keyword=creep test en-keyword=Raspberry Pi kn-keyword=Raspberry Pi en-keyword=dial gauge kn-keyword=dial gauge en-keyword=needle reading kn-keyword=needle reading en-keyword=smart lighting kn-keyword=smart lighting END start-ver=1.4 cd-journal=joma no-vol=20 cd-vols= no-issue=4 article-no= start-page=401 end-page=409 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=High-Definition Topographic Archiving and Educational Applications in Regions Affected by the 2024 Noto Peninsula Earthquake en-subtitle= kn-subtitle= en-abstract= kn-abstract=The 2024 Noto Peninsula earthquake (Mw 7.5) caused extensive damage in Ishikawa Prefecture, Japan, and surrounding areas, with considerable coastal uplift and tsunami flooding. Past 100 years’ records show no earthquake above Mw 7.0 in the Noto Peninsula, so for everyone alive today, this event is truly without precedent. Therefore, we aimed to support disaster prevention education by developing teaching materials using unmanned aerial vehicles (UAVs) based on digitally archived topographic changes. High-definition topographic data collected from multiple UAV surveys were processed into digital and analog formats, including 3D models, spherical panorama images, and 3D printings. These materials were designed to provide detailed and intuitive representations of post-disaster landforms and were used as educational tools in schools. The learning materials were introduced during a workshop for disaster-affected teachers, featuring hands-on activities to help participants familiarize themselves with the materials, and explore their integration into geography and science classes. Feedback from participants indicated that these tools were highly effective in enhancing classroom learning. The results of this study are expected to contribute to preserving disaster records while enhancing disaster awareness in educational settings and local communities. en-copyright= kn-copyright= en-aut-name=OguraTakuro en-aut-sei=Ogura en-aut-mei=Takuro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamauchiHiroyuki en-aut-sei=Yamauchi en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AokiTatsuto en-aut-sei=Aoki en-aut-mei=Tatsuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MattaNobuhisa en-aut-sei=Matta en-aut-mei=Nobuhisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IizukaKotaro en-aut-sei=Iizuka en-aut-mei=Kotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IwasaYoshiya en-aut-sei=Iwasa en-aut-mei=Yoshiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakahashiTakayuki en-aut-sei=Takahashi en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HayashiKiyomi en-aut-sei=Hayashi en-aut-mei=Kiyomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HattanjiTsuyoshi en-aut-sei=Hattanji en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OguchiTakashi en-aut-sei=Oguchi en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Graduate School of Education, Hyogo University of Teacher Education kn-affil= affil-num=2 en-affil=Art Research Center, Ritsumeikan University kn-affil= affil-num=3 en-affil=Faculty of Regional Development Studies, Kanazawa University kn-affil= affil-num=4 en-affil=Graduate School of Education, Okayama University kn-affil= affil-num=5 en-affil=Center for Spatial Information Science, The University of Tokyo kn-affil= affil-num=6 en-affil=Faculty of Education, University of Teacher Education Fukuoka kn-affil= affil-num=7 en-affil=International Research Institute of Disaster Science, Tohoku University kn-affil= affil-num=8 en-affil=Faculty of Regional Development Studies, Kanazawa University kn-affil= affil-num=9 en-affil=Institute of Life and Environmental Sciences, University of Tsukuba kn-affil= affil-num=10 en-affil=Center for Spatial Information Science, The University of Tokyo kn-affil= en-keyword=disaster risk-reduction education kn-keyword=disaster risk-reduction education en-keyword=uplift area kn-keyword=uplift area en-keyword=UAV kn-keyword=UAV en-keyword=3D printing kn-keyword=3D printing END start-ver=1.4 cd-journal=joma no-vol=131 cd-vols= no-issue=9 article-no= start-page=744 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250828 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Optical and chemical properties of silver tree-like structure treated with gold galvanic substitution en-subtitle= kn-subtitle= en-abstract= kn-abstract=Galvanic gold substitution was executed in the presence of trisodium citrate on silver tree-like structures. No discernible difference in geometry was observed between the pre- and post-gold substitution phases, which benefited from the presence of citrate ions. The extent of gold substitution was regulated by the amount of gold ion solution added. After the gold substitution, an increase in extinction was observed in the ultraviolet region, indicating that gold was deposited at the surface. Raman scattering of para-toluenethiol was measured on the gold/silver tree-like structures at 488 nm excitations, where a decrease in the Raman peak intensity was observed as the quantity of gold ion solution increased. The results indicated that the optical property of silver was lost due to the increase of the amount of gold deposition. Concurrently, an investigation was conducted into the chemical resistance of the gold/silver tree-like structures, which was evaluated by measuring the resistivity inverse-proportional to the amount of silver ions dissolved by the diluted nitric acid. As the amount of gold ion solution added increased, the resistivity increased and became constant. The result implied that the surface chemical property had undergone a complete transformation into gold. en-copyright= kn-copyright= en-aut-name=HondaKazushi en-aut-sei=Honda en-aut-mei=Kazushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakeyasuNobuyuki en-aut-sei=Takeyasu en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Gold/silver tree-like structures kn-keyword=Gold/silver tree-like structures en-keyword=Galvanic substitution kn-keyword=Galvanic substitution en-keyword=SERS kn-keyword=SERS en-keyword=Raman mapping kn-keyword=Raman mapping END start-ver=1.4 cd-journal=joma no-vol=31 cd-vols= no-issue=6 article-no= start-page=103121 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202510 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Impact of pre-reconstruction filtering with butterworth filter on 111In-pentetreotide SPECT image quality and quantitative accuracy: A phantom study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction: This study evaluates the image quality and quantitative accuracy of SPECT images with pre- and post-reconstruction smoothing filters in somatostatin receptor scintigraphy using phantom data.
Methods: We evaluated the spatial resolution, the contrast-to-noise ratio (CNR), and the quantitative accuracy using a NEMA IEC body phantom filled with a 111In solution. SPECT images were obtained with a Siemens Symbia T16 SPECT/CT system. Quantitative accuracy refers to the ability to accurately estimate the radioactive concentration of 111In in the phantom from the image. SPECT reconstructions were performed using three methods: post-reconstruction Gaussian filtering (post-G), pre-reconstruction Gaussian filtering (pre-G), and pre-reconstruction Butterworth filtering (pre-B). To verify each filtering method, the cut-off frequency of the Butterworth filter and the full width at half maximum (FWHM) of the Gaussian filter were each changed to eight different settings.
Results: FWHMs were 21.2, 19.8, and 18.0 mm for post-G, pre-G, and pre-B. CNRs (37-mm sphere) were 47.2, 63.8, and 69.5. Pre-B showed a 12.0 % error rate at 0.40 cycles/cm, while post-G and pre-G showed 20.2 % and 22.0 % at 7.2-mm FWHM. Pre-B outperformed other methods for resolution, CNR, and quantitative accuracy.
Conclusion: For 111In-pentetreotide SPECT images, image reconstruction with a Butterworth filter applied to the projection image before reconstruction was found to be superior to reconstruction with a Gaussian filter in terms of image quality and quantitative accuracy. This method can be easily implemented in routine clinical SPECT imaging workflows and has the potential to improve diagnostic confidence.
Implications for practice: The proposed method with a pre-reconstruction Butterworth filter has great potential to improve the image quality and quantitative accuracy of 111In-SPECT images. en-copyright= kn-copyright= en-aut-name=HasegawaD. en-aut-sei=Hasegawa en-aut-mei=D. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IguchiT. en-aut-sei=Iguchi en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakashimaM. en-aut-sei=Nakashima en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YoshitomiK. en-aut-sei=Yoshitomi en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MiyaiM. en-aut-sei=Miyai en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KojimaK. en-aut-sei=Kojima en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AsaharaT. en-aut-sei=Asahara en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Radiological Technology, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Radiological Technology, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University kn-affil= en-keyword=SPECT kn-keyword=SPECT en-keyword=Butterworth filter kn-keyword=Butterworth filter en-keyword=Gaussian filter kn-keyword=Gaussian filter en-keyword=111In-pentetreotide kn-keyword=111In-pentetreotide en-keyword=Quantification kn-keyword=Quantification END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title= en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= END start-ver=1.4 cd-journal=joma no-vol=137 cd-vols= no-issue=2 article-no= start-page=58 end-page=64 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=The process of left-hand writing improvement in patients with right hemiplegic stroke: Occupational therapists' observations kn-title=脳卒中右片麻痺者における左手書字の上達過程を捉える作業療法士の観察内容 en-subtitle= kn-subtitle= en-abstract= kn-abstract= This study explored the observations of occupational therapists regarding the early stages of left-hand writing improvement in patients with right hemiplegic stroke. Semi-structured interviews using interview guides were conducted with 12 occupational therapists, and the qualitative data were analyzed inductively. From 79 descriptive codes, 33 interpretive codes were generated and grouped into 12 subcategories. These were further classified into five main categories : ‘letter neatness,’ ‘tool operability, postural optimization,’ ‘practical utility of writing,’ and ‘autonomy in writing.’ These results revealed that the occupational therapists observed improvements in handwriting from a multifaceted perspective, including not only the patients' motor skills but also psychological and behavioral aspects. The findings of this study capture the contents of occupational therapists' observations regarding the process of the early improvement of left-hand writing, and the insights suggest that, in supporting left-hand writing for stroke patients with right hemiplegia — among whom it is necessary to grasp changes within a limited intervention period — these observations are potentially useful for occupational therapists to assess handwriting improvement and provide support, regardless of their years of experience. en-copyright= kn-copyright= en-aut-name=DaitoMaki en-aut-sei=Daito en-aut-mei=Maki kn-aut-name=大東真紀 kn-aut-sei=大東 kn-aut-mei=真紀 aut-affil-num=1 ORCID= en-aut-name=MorimotoMichiko en-aut-sei=Morimoto en-aut-mei=Michiko kn-aut-name=森本美智子 kn-aut-sei=森本 kn-aut-mei=美智子 aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Health Sciences, Okayama University kn-affil=岡山大学大学院保健学研究科 affil-num=2 en-affil=Division of Nursing, Faculty of Health Sciences, Okayama University kn-affil=岡山大学学術研究院保健学域 看護学 en-keyword=書字 (handwriting) kn-keyword=書字 (handwriting) en-keyword=脳卒中患者 (stroke patient) kn-keyword=脳卒中患者 (stroke patient) en-keyword=作業療法士 (occupational therapist) kn-keyword=作業療法士 (occupational therapist) en-keyword=観察 (observation) kn-keyword=観察 (observation) en-keyword=質的研究 (qualitative study) kn-keyword=質的研究 (qualitative study) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250902 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Neutrophil-to-lymphocyte ratio affects the impact of proton pump inhibitors on efficacy of immune checkpoint inhibitors in patients with non‑small-cell lung cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background The neutrophil-to-lymphocyte ratio (NLR) at the initiation of immune checkpoint inhibitor (ICI) therapy is a known predictor of prognosis. Proton pump inhibitors (PPIs) reportedly attenuate the therapeutic efficacy of ICIs. However, the attenuation effects are not consistently observed across all patients. This study aimed to evaluate whether NLR serves as a stratification factor to determine the impact of PPI on the efficacy of ICI.
Methods This retrospective study was conducted in patients with NSCLC treated with ICI monotherapy. Patients were stratified into two groups (higher NLR (≥ 4) and lower NLR (< 4)). PPI use was defined as the administration of PPIs within 30 days before or after ICI initiation. The primary outcome was progression-free survival (PFS) and the secondary outcome was overall survival (OS).
Results Among the 132 patients included, PPI users exhibited significantly shorter median PFS and OS than non-PPI users. In the higher NLR group (n = 61), PPI users had a markedly shorter PFS and OS than non-PPI users (median PFS: 1.6 vs. 8.2 months; p < 0.01, median OS: 3.3 vs. 19.6 months; p = 0.015). Conversely, in the lower NLR group (n = 71), no significant difference in PFS and OS was observed between PPI users and non-PPI users (median PFS: 2.8 vs. 7.3 months, p = 0.83, median OS: 17.6 vs. 24.4 months, p = 0.40).
Conclusion NLR may be a significant stratification factor for evaluating the impact of PPI on PFS and OS in patients with NSCLC undergoing ICI monotherapy. en-copyright= kn-copyright= en-aut-name=HoriTomoki en-aut-sei=Hori en-aut-mei=Tomoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamamotoKazuhiro en-aut-sei=Yamamoto en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ItoTakefumi en-aut-sei=Ito en-aut-mei=Takefumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IkushimaShigeki en-aut-sei=Ikushima en-aut-mei=Shigeki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OmuraTomohiro en-aut-sei=Omura en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YanoIkuko en-aut-sei=Yano en-aut-mei=Ikuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Pharmacy, Nara Prefecture General Medical Center kn-affil= affil-num=2 en-affil=Department of Integrated Clinical and Basic Pharmaceutical Science, Okayama University kn-affil= affil-num=3 en-affil=Department of Respiratory Medicine, Nara Prefecture General Medical Center kn-affil= affil-num=4 en-affil=Department of Pharmacy, Nara Prefecture General Medical Center kn-affil= affil-num=5 en-affil=Department of Pharmacy, Kobe University Hospital kn-affil= affil-num=6 en-affil=Department of Pharmacy, Kobe University Hospital kn-affil= en-keyword=Immune checkpoint inhibitor kn-keyword=Immune checkpoint inhibitor en-keyword=Neutrophil-to-lymphocyte ratio kn-keyword=Neutrophil-to-lymphocyte ratio en-keyword=Non-small-cell lung cancer kn-keyword=Non-small-cell lung cancer en-keyword=Proton pump inhibitor kn-keyword=Proton pump inhibitor END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250612 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Asymptomatic intracranial vascular lesions and cognitive function in a general population of Japanese men: Shiga Epidemiological Study of Subclinical Atherosclerosis (SESSA) en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction: Intracranial subclinical vessel diseases are considered important indicators of cognitive impairment. However, a comprehensive assessment of various types of vessel disease, particularly in Asian populations, is lacking. We aimed to compare multiple types of intracranial vessel disease in association with cognitive function among a community-based Japanese male population. Methods: The Shiga Epidemiological Study of Subclinical Atherosclerosis (SESSA) randomly recruited and examined a community-based cohort of Japanese men from Shiga, Japan. We analyzed those who underwent the Cognitive Abilities Screening Instrument (CASI) assessment and cranial magnetic resonance imaging/angiogram (MRI/MRA) in 2010–2015. Using MRI/MRA, we assessed lacunar infarction, microbleeds, periventricular hyperintensity (PVH), deep subcortical white matter hyperintensity (DSWMH), and intracranial artery stenosis (ICAS). We divided these subclinical cerebrovascular diseases (SCDs) into three categories according to severity. Using linear regression, we calculated the CASI score according to the grade of each vessel disease, adjusted for age and years of education. Results: In the adjusted models, CASI scores were significantly associated with both PVH and DSWMH. Specifically, multivariable-adjusted CASI scores declined across increasing severity categories of DSWMH (91.7, 91.2, and 90.4; p for trend = 0.011) and PVH (91.5, 90.4, and 89.7; p for trend = 0.006). Other SCDs did not show significant associations. In stratified analyses based on the presence or absence of each SCD, both DSWMH and PVH demonstrated significant inverse trends with CASI scores in the absence of lacunar infarcts and microbleeds and in the presence of ICAS. Additionally, among participants with PVH (+), ≥moderate ICAS was significantly associated with lower CASI scores. Conclusion: PVH and DSWMH showed significant dose-response relationships with cognitive function among community-based Japanese men. These findings suggest that white matter lesions may be an important indicator of early cognitive impairment, and severe ICAS may also play a role in those with PVH. en-copyright= kn-copyright= en-aut-name=ItoTakahiro en-aut-sei=Ito en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujiyoshiAkira en-aut-sei=Fujiyoshi en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OhkuboTakayoshi en-aut-sei=Ohkubo en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShiinoAkihiko en-aut-sei=Shiino en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShitaraSatoshi en-aut-sei=Shitara en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MiyagawaNaoko en-aut-sei=Miyagawa en-aut-mei=Naoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ToriiSayuki en-aut-sei=Torii en-aut-mei=Sayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HisamatsuTakashi en-aut-sei=Hisamatsu en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SegawaHiroyoshi en-aut-sei=Segawa en-aut-mei=Hiroyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KondoKeiko en-aut-sei=Kondo en-aut-mei=Keiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KadotaAya en-aut-sei=Kadota en-aut-mei=Aya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TooyamaIkuo en-aut-sei=Tooyama en-aut-mei=Ikuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=WatanabeYoshiyuki en-aut-sei=Watanabe en-aut-mei=Yoshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=YoshidaKazumichi en-aut-sei=Yoshida en-aut-mei=Kazumichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=NozakiKazuhiko en-aut-sei=Nozaki en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=MiuraKatsuyuki en-aut-sei=Miura en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=The SESSA Research Group en-aut-sei=The SESSA Research Group en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= affil-num=1 en-affil=Department of Radiology, Shiga University of Medical Science kn-affil= affil-num=2 en-affil=Department of Radiology, Shiga University of Medical Science kn-affil= affil-num=3 en-affil=Department of Hygiene and Public Health, Teikyo University School of Medicine kn-affil= affil-num=4 en-affil=Molecular Neuroscience Research Center, Shiga University of Medical Science kn-affil= affil-num=5 en-affil=Department of Neurosurgery, Shiga University of Medical Science kn-affil= affil-num=6 en-affil=Department of Preventive Medicine and Public Health, Keio University School of Medicine kn-affil= affil-num=7 en-affil=Department of Radiology, Shiga University of Medical Science kn-affil= affil-num=8 en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Radiology, Shiga University of Medical Science kn-affil= affil-num=10 en-affil=Department of Radiology, Shiga University of Medical Science kn-affil= affil-num=11 en-affil=Department of Radiology, Shiga University of Medical Science kn-affil= affil-num=12 en-affil=Molecular Neuroscience Research Center, Shiga University of Medical Science kn-affil= affil-num=13 en-affil=Department of Radiology, Shiga University of Medical Science kn-affil= affil-num=14 en-affil=Department of Neurosurgery, Shiga University of Medical Science kn-affil= affil-num=15 en-affil=Department of Neurosurgery, Shiga University of Medical Science kn-affil= affil-num=16 en-affil=Department of Radiology, Shiga University of Medical Science kn-affil= affil-num=17 en-affil= kn-affil= en-keyword=Cognitive impairment kn-keyword=Cognitive impairment en-keyword=Cerebrovascular disease kn-keyword=Cerebrovascular disease en-keyword=Brain magnetic resonance imaging kn-keyword=Brain magnetic resonance imaging en-keyword=White matter lesion kn-keyword=White matter lesion en-keyword=Community-based population study kn-keyword=Community-based population study END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue= article-no= start-page=e72549 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250624 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Optimization of Preemptive Therapy for Cytomegalovirus Infections With Valganciclovir Based on Therapeutic Drug Monitoring: Protocol for a Phase II, Single-Center, Single-Arm Trial en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Valganciclovir (VGCV) is the first-line drug for preemptive therapy of cytomegalovirus (CMV) infections. However, even when administered at the dose specified in the package insert, there is significant interindividual variability in the plasma concentrations of ganciclovir (GCV). In addition, correlations have been reported between the area under the concentration–time curve and therapeutic efficacy or adverse events. Therefore, therapeutic drug monitoring (TDM) can be used to improve the efficacy and safety of preemptive VGCV therapy.
Objective: This study aims to evaluate whether the dosage adjustment of VGCV based on TDM in patients undergoing preemptive therapy for CMV infections is associated with the successful completion rate of treatment without severe hematological adverse effects.
Methods: This phase II, single-center, single-arm trial aims to enroll 40 patients admitted at the Department of Rheumatology and Clinical Immunology, Kobe University Hospital, who will receive oral VGCV as preemptive therapy for CMV infections. Participants will begin treatment with VGCV at the dose recommended in the package insert, with subsequent dose adjustments based on weekly TDM results. The primary end point will be the proportion of patients who achieve CMV antigenemia negativity within 3 weeks without severe hematological adverse events. The secondary end points will include weekly changes in CMV antigen levels, total VGCV dose, and duration of preemptive therapy. For safety evaluation, the occurrence, type, and severity of VGCV-related adverse events will be analyzed. Additionally, this study will explore the correlations between the efficacy and safety of preemptive therapy and the pharmacokinetic parameters of GCV, CMV-polymerase chain reaction values, and nudix hydrolase 15 (NUDT15) genetic polymorphisms. The correlation between GCV plasma concentrations obtained from regular venous blood and blood concentrations will be examined using dried blood spots.
Results: This study began with patient recruitment in September 2024, with 5 participants enrolled as of June 16, 2025. The target enrollment is 40 participants, and the anticipated study completion is set for July 2027.
Conclusions: This is the first study to investigate the impact of TDM intervention in patients receiving VGCV as preemptive therapy. The findings are postulated to provide valuable evidence regarding the utility of TDM in patients receiving VGCV as preemptive therapy.
Trial Registration: Japan Registry of Clinical Trials jRCTs051240080; https://jrct.mhlw.go.jp/latest-detail/jRCTs051240080
International Registered Report Identifier (IRRID): DERR1-10.2196/72549 en-copyright= kn-copyright= en-aut-name=TamuraNaoki en-aut-sei=Tamura en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ItoharaKotaro en-aut-sei=Itohara en-aut-mei=Kotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UedaYo en-aut-sei=Ueda en-aut-mei=Yo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KitahiroYumi en-aut-sei=Kitahiro en-aut-mei=Yumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamamotoKazuhiro en-aut-sei=Yamamoto en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OmuraTomohiro en-aut-sei=Omura en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SakaneToshiyasu en-aut-sei=Sakane en-aut-mei=Toshiyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SaegusaJun en-aut-sei=Saegusa en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YanoIkuko en-aut-sei=Yano en-aut-mei=Ikuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Pharmacy, Kobe University Hospital kn-affil= affil-num=2 en-affil=Department of Pharmacy, Kobe University Hospital kn-affil= affil-num=3 en-affil=Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine kn-affil= affil-num=4 en-affil=Department of Pharmacy, Kobe University Hospital kn-affil= affil-num=5 en-affil=Department of Integrated Clinical and Basic Pharmaceutical Sciences, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Pharmacy, Kobe University Hospital kn-affil= affil-num=7 en-affil=Department of Pharmaceutical Technology, Kobe Pharmaceutical University kn-affil= affil-num=8 en-affil=Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine kn-affil= affil-num=9 en-affil=Department of Pharmacy, Kobe University Hospital kn-affil= en-keyword=valganciclovir kn-keyword=valganciclovir en-keyword=ganciclovir kn-keyword=ganciclovir en-keyword=cytomegalovirus kn-keyword=cytomegalovirus en-keyword=therapeutic drug monitoring kn-keyword=therapeutic drug monitoring en-keyword=preemptive therapy kn-keyword=preemptive therapy en-keyword=dried blood spots kn-keyword=dried blood spots END start-ver=1.4 cd-journal=joma no-vol=287 cd-vols= no-issue= article-no= start-page=117674 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251101 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A plant-insertable multi-enzyme biosensor for the real-time monitoring of stomatal sucrose uptake en-subtitle= kn-subtitle= en-abstract= kn-abstract=Monitoring sucrose transport in plants is essential for understanding plant physiology and improving agricultural practices, yet effective sensors for continuous and real-time in-vivo monitoring are lacking. In this study, we developed a plant-insertable sucrose sensor capable of real-time sucrose concentration monitoring and demonstrated its application as a useful tool for plant research by monitoring the sugar-translocating path from leaves to the lower portion of plants through the stem in living plants. The biosensor consists of a bilirubin oxidase-based biocathode and a needle-type bioanode integrating glucose oxidase, invertase, and mutarotase, with the two electrodes separated by an agarose gel for ionic connection. The sensor exhibits a sensitivity of 6.22 μA mM−1 cm−2, a limit of detection of 100 μM, a detection range up to 60 mM, and a response time of 90 s at 100 μM sucrose. Additionally, the sensor retained 86 % of its initial signal after 72 h of continuous measurement. Day-night monitoring from the biosensor inserted in strawberry guava (Psidium cattleianum) showed higher sucrose transport activity at night, following well the redistribution of photosynthetically produced sugars. In addition, by monitoring the forced translocation of sucrose dissolved in the stable isotopically labeled water, we demonstrated that a young seedling of Japanese cedar known as Sugi (Cryptomeria japonica) can absorb and transport both water and sucrose through light-dependently opened stomata, which is the recently revealed path for liquid uptake by higher plants. These findings highlight the potential of our sensor for studying dynamic plant processes and its applicability in real-time monitoring of sugar transport under diverse environmental conditions. en-copyright= kn-copyright= en-aut-name=WuShiqi en-aut-sei=Wu en-aut-mei=Shiqi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakagawaWakutaka en-aut-sei=Nakagawa en-aut-mei=Wakutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoriYuki en-aut-sei=Mori en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AzhariSaman en-aut-sei=Azhari en-aut-mei=Saman kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MéhesGábor en-aut-sei=Méhes en-aut-mei=Gábor kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NishinaYuta en-aut-sei=Nishina en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KawanoTomonori en-aut-sei=Kawano en-aut-mei=Tomonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MiyakeTakeo en-aut-sei=Miyake en-aut-mei=Takeo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Graduate School of Information, Production and Systems, Waseda University kn-affil= affil-num=2 en-affil=Graduate School of Information, Production and Systems, Waseda University kn-affil= affil-num=3 en-affil=Faculty and Graduate School of Environmental Engineering, The University of Kitakyushu kn-affil= affil-num=4 en-affil=Graduate School of Information, Production and Systems, Waseda University kn-affil= affil-num=5 en-affil=Graduate School of Information, Production and Systems, Waseda University kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=7 en-affil=Faculty and Graduate School of Environmental Engineering, The University of Kitakyushu kn-affil= affil-num=8 en-affil=Graduate School of Information, Production and Systems, Waseda University kn-affil= en-keyword=Flexible wearable sensor kn-keyword=Flexible wearable sensor en-keyword=Plant monitoring kn-keyword=Plant monitoring en-keyword=Carbon fiber kn-keyword=Carbon fiber en-keyword=Multi-enzyme system kn-keyword=Multi-enzyme system END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=8 article-no= start-page=e91072 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250826 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Craniofacial Fibrous Dysplasia to Affect or Not the Optic Nerve in Long-Term Follow-Up of Three Cases en-subtitle= kn-subtitle= en-abstract= kn-abstract=Fibrous dysplasia of the bone is characterized by immature fibrous bones of trabeculae and fibrovascular proliferation in the medulla. In this study, we report three consecutive patients with craniofacial fibrous dysplasia with or without optic nerve involvement. In Case 1, a 43-year-old man with blurred vision in the right eye at the first visit was well until the age of 54 years, when he came back with symptoms suggestive of paranasal sinusitis. Computed tomography scans disclosed a mucocele in the right sphenoid sinus and thickened bilateral ethmoid, sphenoid, and frontal bones. He underwent an emergency nasal endoscopic surgery to make a drainage opening to the sphenoid and ethmoid sinuses on the right side with incomplete success. The pathology of the resected tissue confirmed fibrous dysplasia. With intravenous antibiotics, he recovered from blepharoptosis, complete ophthalmoplegia, and visual acuity decrease on the right side. He was well until the age of 71 years when he had a self-limiting episode of visual field cloudiness caused by the right sphenoid sinus mucocele. At the age of 75 years, he developed abrupt vision loss to no light perception in the right eye. He underwent an open skull surgery to extirpate the sphenoid mucocele on the right side and died of an unknown cause two years later. In Case 2, a 29-year-old man had a two-week-long headache, and computed tomography scans revealed fibrous dysplasia in the bilateral sphenoid bones. Nasal biopsy at the spheno-ethmoid recess proved a pathological diagnosis of fibrous dysplasia. Goldmann perimetry showed normal visual fields in both eyes. He was followed every year by magnetic resonance imaging to maintain normal visual fields until the latest visit at the age of 41 years. In Case 3, a 12-year-old girl was referred to an ophthalmologist to check her vision. She had been diagnosed with fibrous dysplasia of the left maxillary bone at the age of six years by a dentist. She had a gingival resection on the left maxilla at the age of 15 years and had a left maxillary bone resection at 18 years at another hospital. One month after the resection, Goldmann perimetry showed superior peripheral field depression in the left eye, in contrast with the normal visual field in the right eye. She maintained the visual acuity of 1.5 in both eyes until the last visit at the age of 21 years. In fibrous dysplasia as a rare disease, functional and cosmetic problems, including vision problems, should be considered in a case-based approach. en-copyright= kn-copyright= en-aut-name=MatsuoToshihiko en-aut-sei=Matsuo en-aut-mei=Toshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TanakaTakehiro en-aut-sei=Tanaka en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamadaKiyoshi en-aut-sei=Yamada en-aut-mei=Kiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OkanoMitsuhiro en-aut-sei=Okano en-aut-mei=Mitsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Ophthalmology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Otorhinolaryngology, School of Medicine, International University of Health and Welfare kn-affil= en-keyword=computed tomography (ct) scan kn-keyword=computed tomography (ct) scan en-keyword=craniofacial bone kn-keyword=craniofacial bone en-keyword=fibrous dysplasia kn-keyword=fibrous dysplasia en-keyword=goldmann perimetry kn-keyword=goldmann perimetry en-keyword=magnetic resonance imaging kn-keyword=magnetic resonance imaging en-keyword=monostotic kn-keyword=monostotic en-keyword=optic nerve kn-keyword=optic nerve en-keyword=pathology kn-keyword=pathology en-keyword=visual acuity kn-keyword=visual acuity en-keyword=visual field kn-keyword=visual field END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=10 article-no= start-page=2373 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241017 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Development and Characterization of a Three-Dimensional Organotypic In Vitro Oral Cancer Model with Four Co-Cultured Cell Types, Including Patient-Derived Cancer-Associated Fibroblasts en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/Objectives: Cancer organoids have emerged as a valuable tool of three-dimensional (3D) cell cultures to investigate tumor heterogeneity and predict tumor behavior and treatment response. We developed a 3D organotypic culture model of oral squamous cell carcinoma (OSCC) to recapitulate the tumor–stromal interface by co-culturing four cell types, including patient-derived cancer-associated fibroblasts (PD-CAFs). Methods: A stainless-steel ring was used twice to create the horizontal positioning of the cancer stroma (adjoining normal oral mucosa connective tissue) and the OSCC layer (surrounding normal oral mucosa epithelial layer). Combined with a structured bi-layered model of the epithelial component and the underlying stroma, this protocol enabled us to construct four distinct portions mimicking the oral cancer tissue arising in the oral mucosa. Results: In this model, α-smooth muscle actin-positive PD-CAFs were localized in close proximity to the OSCC layer, suggesting a crosstalk between them. Furthermore, a linear laminin-γ2 expression was lacking at the interface between the OSCC layer and the underlying stromal layer, indicating the loss of the basement membrane-like structure. Conclusions: Since the specific 3D architecture and polarity mimicking oral cancer in vivo provides a more accurate milieu of the tumor microenvironment (TME), it could be crucial in elucidating oral cancer TME. en-copyright= kn-copyright= en-aut-name=AizawaYuka en-aut-sei=Aizawa en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HagaKenta en-aut-sei=Haga en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YoshibaNagako en-aut-sei=Yoshiba en-aut-mei=Nagako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YortchanWitsanu en-aut-sei=Yortchan en-aut-mei=Witsanu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakadaSho en-aut-sei=Takada en-aut-mei=Sho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TanakaRintaro en-aut-sei=Tanaka en-aut-mei=Rintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NaitoEriko en-aut-sei=Naito en-aut-mei=Eriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AbéTatsuya en-aut-sei=Abé en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MaruyamaSatoshi en-aut-sei=Maruyama en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YamazakiManabu en-aut-sei=Yamazaki en-aut-mei=Manabu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TanumaJun-ichi en-aut-sei=Tanuma en-aut-mei=Jun-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=IgawaKazuyo en-aut-sei=Igawa en-aut-mei=Kazuyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TomiharaKei en-aut-sei=Tomihara en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=TogoShinsaku en-aut-sei=Togo en-aut-mei=Shinsaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=IzumiKenji en-aut-sei=Izumi en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil=Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University kn-affil= affil-num=2 en-affil=Division of Reconstructive Surgery for Oral and Maxillofacial Region, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University kn-affil= affil-num=3 en-affil=Department of Oral Health and Welfare, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University kn-affil= affil-num=4 en-affil=Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University kn-affil= affil-num=5 en-affil=Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University kn-affil= affil-num=6 en-affil=Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University kn-affil= affil-num=7 en-affil=Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University kn-affil= affil-num=8 en-affil=Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University kn-affil= affil-num=9 en-affil=Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University kn-affil= affil-num=10 en-affil=Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University kn-affil= affil-num=11 en-affil=Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University kn-affil= affil-num=12 en-affil=Neutron Therapy Research Center, Okayama University kn-affil= affil-num=13 en-affil=Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University kn-affil= affil-num=14 en-affil=Department of Respiratory Medicine, Graduate School of Medicine, Juntendo University kn-affil= affil-num=15 en-affil=Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University kn-affil= en-keyword=oral cancer kn-keyword=oral cancer en-keyword=cancer-associated fibroblasts kn-keyword=cancer-associated fibroblasts en-keyword=oral mucosa kn-keyword=oral mucosa en-keyword=patient-derived kn-keyword=patient-derived en-keyword=organotypic culture kn-keyword=organotypic culture en-keyword=3D in vitro model kn-keyword=3D in vitro model en-keyword=polarity kn-keyword=polarity END start-ver=1.4 cd-journal=joma no-vol=156 cd-vols= no-issue=2 article-no= start-page=473 end-page=479.e1 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202508 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Dried blood spot proteome identifies subclinical interferon signature in neonates with type I interferonopathy en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Type I interferonopathy is characterized by aberrant upregulation of type I interferon signaling. The mRNA interferon signature is a useful marker for activation of the interferon pathway and for diagnosis of type I interferonopathy; however, early diagnosis is challenging.
Objective: This study sought to identify the proteomic interferon signature in dried blood spot (DBS) samples. The aim was to evaluate the usefulness of the interferon signature for neonatal screening and to gain insight into presymptomatic state of neonates with inborn errors of immunity (IEIs).
Methods: DBS samples from healthy newborns/adults, patients with type I interferonopathy or other IEIs as well as from neonates with viral infections, including some samples obtained during the presymptomatic neonatal period, were examined by nontargeted proteome analyses. Expression of interferon-stimulated genes (ISGs) was evaluated and a DBS-interferon signature was defined. Differential expression/pathway analysis was also performed.
Results: The ISG products IFIT5, ISG15, and OAS2 were detected. Expression of IFIT5 and ISG15 was upregulated significantly in individuals with type I interferonopathy. We defined the sum of the z scores for these as the DBS-interferon signature, and found that patients with IEIs other than type I interferonopathy, such as chronic granulomatous disease (CGD), also showed significant elevation. Additionally, neonatal samples of type I interferonopathy and CGD patients showed high interferon signatures. Pathway analysis of neonatal CGD samples revealed upregulation of systemic lupus erythematosus–like pathways.
Conclusion: Upregulation of the interferon pathway exists already at birth—not only in neonates with type I interferonopathy but also in other IEIs, including CGD. en-copyright= kn-copyright= en-aut-name=NihiraHiroshi en-aut-sei=Nihira en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakajimaDaisuke en-aut-sei=Nakajima en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IzawaKazushi en-aut-sei=Izawa en-aut-mei=Kazushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KawashimaYusuke en-aut-sei=Kawashima en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShibataHirofumi en-aut-sei=Shibata en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KonnoRyo en-aut-sei=Konno en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HigashiguchiMotoko en-aut-sei=Higashiguchi en-aut-mei=Motoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MiyamotoTakayuki en-aut-sei=Miyamoto en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=Nishitani-IsaMasahiko en-aut-sei=Nishitani-Isa en-aut-mei=Masahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HiejimaEitaro en-aut-sei=Hiejima en-aut-mei=Eitaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=HondaYoshitaka en-aut-sei=Honda en-aut-mei=Yoshitaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MatsubayashiTadashi en-aut-sei=Matsubayashi en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=IshiharaTakashi en-aut-sei=Ishihara en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=YashiroMasato en-aut-sei=Yashiro en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=IwataNaomi en-aut-sei=Iwata en-aut-mei=Naomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=OhwadaYoko en-aut-sei=Ohwada en-aut-mei=Yoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=TomotakiSeiichi en-aut-sei=Tomotaki en-aut-mei=Seiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=KawaiMasahiko en-aut-sei=Kawai en-aut-mei=Masahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=MurakamiKosaku en-aut-sei=Murakami en-aut-mei=Kosaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=OhnishiHidenori en-aut-sei=Ohnishi en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=IshimuraMasataka en-aut-sei=Ishimura en-aut-mei=Masataka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=OkadaSatoshi en-aut-sei=Okada en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=YamashitaMotoi en-aut-sei=Yamashita en-aut-mei=Motoi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=MorioTomohiro en-aut-sei=Morio en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=HoshinoAkihiro en-aut-sei=Hoshino en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=KaneganeHirokazu en-aut-sei=Kanegane en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=ImaiKohsuke en-aut-sei=Imai en-aut-mei=Kohsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=NakamuraYasuko en-aut-sei=Nakamura en-aut-mei=Yasuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=NonoyamaShigeaki en-aut-sei=Nonoyama en-aut-mei=Shigeaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=UchiyamaToru en-aut-sei=Uchiyama en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= en-aut-name=OnoderaMasafumi en-aut-sei=Onodera en-aut-mei=Masafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=31 ORCID= en-aut-name=IshikawaTakashi en-aut-sei=Ishikawa en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=32 ORCID= en-aut-name=KawaiToshinao en-aut-sei=Kawai en-aut-mei=Toshinao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=33 ORCID= en-aut-name=TakitaJunko en-aut-sei=Takita en-aut-mei=Junko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=34 ORCID= en-aut-name=NishikomoriRyuta en-aut-sei=Nishikomori en-aut-mei=Ryuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=35 ORCID= en-aut-name=OharaOsamu en-aut-sei=Ohara en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=36 ORCID= en-aut-name=YasumiTakahiro en-aut-sei=Yasumi en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=37 ORCID= affil-num=1 en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine kn-affil= affil-num=2 en-affil=Department of Applied Genomics, Kazusa DNA Research Institute kn-affil= affil-num=3 en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine kn-affil= affil-num=4 en-affil=Department of Applied Genomics, Kazusa DNA Research Institute kn-affil= affil-num=5 en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine kn-affil= affil-num=6 en-affil=Department of Applied Genomics, Kazusa DNA Research Institute kn-affil= affil-num=7 en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine kn-affil= affil-num=8 en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine kn-affil= affil-num=9 en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine kn-affil= affil-num=10 en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine kn-affil= affil-num=11 en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine kn-affil= affil-num=12 en-affil=Department of Pediatrics, Seirei Hamamatsu General Hospital kn-affil= affil-num=13 en-affil=Department of Pediatrics, Nara Medical University kn-affil= affil-num=14 en-affil=Department of Pediatrics, Okayama University kn-affil= affil-num=15 en-affil=Department of Infection and Immunology, Aichi Children’s Health and Medical Center kn-affil= affil-num=16 en-affil=Department of Pediatrics, Dokkyo Medical University School of Medicine kn-affil= affil-num=17 en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine kn-affil= affil-num=18 en-affil=Department of Neonatology, Kyoto University Graduate School of Medicine kn-affil= affil-num=19 en-affil=Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine kn-affil= affil-num=20 en-affil=Department of Pediatrics, Gifu University Graduate School of Medicine kn-affil= affil-num=21 en-affil=Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University kn-affil= affil-num=22 en-affil=Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences kn-affil= affil-num=23 en-affil=Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (SCIENCE TOKYO) kn-affil= affil-num=24 en-affil=Laboratory of Immunology and Molecular Medicine, Advanced Research Initiative, Institute of Science Tokyo (SCIENCE TOKYO) kn-affil= affil-num=25 en-affil=Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (SCIENCE TOKYO) kn-affil= affil-num=26 en-affil=Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (SCIENCE TOKYO) kn-affil= affil-num=27 en-affil=Department of Pediatrics, National Defense Medical College kn-affil= affil-num=28 en-affil=Department of Pediatrics, National Defense Medical College kn-affil= affil-num=29 en-affil=Department of Pediatrics, National Defense Medical College kn-affil= affil-num=30 en-affil=Department of Human Genetics, National Center for Child Health and Development kn-affil= affil-num=31 en-affil=Department of Human Genetics, National Center for Child Health and Development kn-affil= affil-num=32 en-affil=Division of Immunology, National Center for Child Health and Development kn-affil= affil-num=33 en-affil=Division of Immunology, National Center for Child Health and Development kn-affil= affil-num=34 en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine kn-affil= affil-num=35 en-affil=Department of Pediatrics and Child Health, Kurume University School of Medicine kn-affil= affil-num=36 en-affil=Department of Applied Genomics, Kazusa DNA Research Institute kn-affil= affil-num=37 en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine kn-affil= en-keyword=Inborn errors of immunity kn-keyword=Inborn errors of immunity en-keyword=interferonopathy kn-keyword=interferonopathy en-keyword=signature kn-keyword=signature en-keyword=proteome kn-keyword=proteome en-keyword=dried blood spot kn-keyword=dried blood spot en-keyword=CGD kn-keyword=CGD en-keyword=WAS kn-keyword=WAS en-keyword=newborn kn-keyword=newborn en-keyword=neonate kn-keyword=neonate END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=roaf042 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250603 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Recommendations for the treatment of juvenile idiopathic arthritis with oligoarthritis or polyarthritis from the 2024 update of the Japan College of Rheumatology Clinical Practice Guidelines for the management of rheumatoid arthritis including juvenile idiopathic arthritis with oligoarthritis or polyarthritis – secondary publication en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objectives: To conduct systematic reviews (SRs) and develop clinical practice guidelines (CPGs) for managing juvenile idiopathic arthritis (JIA) with oligoarthritis or polyarthritis.
Methods: The Grading of Recommendations, Assessment, Development, and Evaluation methodology was employed to carry out SRs and formulate the CPGs. An expert panel, including patients, paediatric and nonpaediatric rheumatologists, guideline specialists, and patient representatives, used the Delphi method to discuss and agree on the recommendations.
Results: Six clinical questions (CQs) on the efficacy and safety of medical treatments were evaluated. These included CQ1 on methotrexate (MTX), CQ2 on non-MTX conventional synthetic disease-modifying antirheumatic drugs, CQ3 on glucocorticoids, CQ4 on tumour necrosis factor inhibitors, CQ5 on interleukin-6 inhibitors, and CQ6 on Janus kinase inhibitors. Two randomized controlled trials were identified for CQ1, three for CQ2, two for CQ3, eight for CQ4, two for CQ5, and two for CQ6. Based on these evaluations, three strong and three conditional recommendations were established. The CPGs have been endorsed by the Japan College of Rheumatology and the Pediatric Rheumatology Association of Japan.
Conclusions: The SRs provided the necessary evidence to develop the CPGs, which are intended to guide not only paediatric but also nonpaediatric rheumatologists, caregivers, patients, and their families in treatment decision-making. en-copyright= kn-copyright= en-aut-name=MiyamaeTakako en-aut-sei=Miyamae en-aut-mei=Takako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkamotoNami en-aut-sei=Okamoto en-aut-mei=Nami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=InoueYuzaburo en-aut-sei=Inoue en-aut-mei=Yuzaburo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KubotaTomohiro en-aut-sei=Kubota en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=EbatoTakasuke en-aut-sei=Ebato en-aut-mei=Takasuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IrabuHitoshi en-aut-sei=Irabu en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KamedaHideto en-aut-sei=Kameda en-aut-mei=Hideto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KanekoYuko en-aut-sei=Kaneko en-aut-mei=Yuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KuboHiroshi en-aut-sei=Kubo en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MitsunagaKanako en-aut-sei=Mitsunaga en-aut-mei=Kanako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MoriMasaaki en-aut-sei=Mori en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NakajimaAyako en-aut-sei=Nakajima en-aut-mei=Ayako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NishimuraKenichi en-aut-sei=Nishimura en-aut-mei=Kenichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=OhkuboNaoaki en-aut-sei=Ohkubo en-aut-mei=Naoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=SatoTomomi en-aut-sei=Sato en-aut-mei=Tomomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=SugitaYuko en-aut-sei=Sugita en-aut-mei=Yuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=TakanashiSatoshi en-aut-sei=Takanashi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=TanakaTakayuki en-aut-sei=Tanaka en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=UmebayashiHiroaki en-aut-sei=Umebayashi en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=YashiroMasato en-aut-sei=Yashiro en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=YamanishiShingo en-aut-sei=Yamanishi en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=FusamaMie en-aut-sei=Fusama en-aut-mei=Mie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=HirataShintaro en-aut-sei=Hirata en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=KishimotoMitsumasa en-aut-sei=Kishimoto en-aut-mei=Mitsumasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=KohnoMasataka en-aut-sei=Kohno en-aut-mei=Masataka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=KojimaMasayo en-aut-sei=Kojima en-aut-mei=Masayo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=KojimaToshihisa en-aut-sei=Kojima en-aut-mei=Toshihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=MorinobuAkio en-aut-sei=Morinobu en-aut-mei=Akio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=SugiharaTakahiko en-aut-sei=Sugihara en-aut-mei=Takahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=TanakaEiichi en-aut-sei=Tanaka en-aut-mei=Eiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= en-aut-name=YajimaNobuyuki en-aut-sei=Yajima en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=31 ORCID= en-aut-name=YanaiRyo en-aut-sei=Yanai en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=32 ORCID= en-aut-name=KawahitoYutaka en-aut-sei=Kawahito en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=33 ORCID= en-aut-name=HarigaiMasayoshi en-aut-sei=Harigai en-aut-mei=Masayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=34 ORCID= affil-num=1 en-affil=Department of Pediatric Rheumatology, Institute of Rheumatology, Tokyo Women’s Medical University Hospital kn-affil= affil-num=2 en-affil=Department of Pediatrics, Osaka Rosai Hospital, Japan Organization of Occupational Health and Safety kn-affil= affil-num=3 en-affil=Department of General Medical Science, Graduate School of Medicine, Chiba University kn-affil= affil-num=4 en-affil=Department of Pediatrics, Kagoshima Prefectural Satsunan Hospital kn-affil= affil-num=5 en-affil=Department of Pediatrics, Kitasato University kn-affil= affil-num=6 en-affil=Department of Pediatrics and Development Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University kn-affil= affil-num=7 en-affil=Division of Rheumatology, Department of Internal Medicine, Toho University kn-affil= affil-num=8 en-affil=Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=9 en-affil=Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine kn-affil= affil-num=10 en-affil=Department of Allergy and Rheumatology, Chiba Children's Hospital kn-affil= affil-num=11 en-affil=Department of Lifetime Clinical Immunology, Tokyo Medical and Dental University kn-affil= affil-num=12 en-affil=Center for Rheumatic Diseases, Mie University Hospital kn-affil= affil-num=13 en-affil=Department of Pediatrics, Yokohama City University Graduate School of Medicine kn-affil= affil-num=14 en-affil=Iizuka Hospital kn-affil= affil-num=15 en-affil=Clinical Education Center For Physicians, Shiga University of Medical Science kn-affil= affil-num=16 en-affil=Department of Pediatrics, School of Medicine, Osaka Medical and Pharmaceutical University kn-affil= affil-num=17 en-affil=Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=18 en-affil=Department of Pediatrics, Japanese Red Cross Otsu Hospital kn-affil= affil-num=19 en-affil=Department of Rheumatology and Infectious Diseases, Miyagi Children’s Hospital kn-affil= affil-num=20 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= affil-num=21 en-affil=Department of Pediatrics, Nippon Medical School kn-affil= affil-num=22 en-affil=Health Sciences Department of Nursing, Kansai University of International Studies kn-affil= affil-num=23 en-affil=Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital kn-affil= affil-num=24 en-affil=Department of Nephrology and Rheumatology, Kyorin University School of Medicine kn-affil= affil-num=25 en-affil=Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine kn-affil= affil-num=26 en-affil=Graduate School of Medical Sciences, Nagoya City University kn-affil= affil-num=27 en-affil=Department of Orthopedic Surgery, National Hospital Organization Nagoya Medical Center kn-affil= affil-num=28 en-affil=Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University kn-affil= affil-num=29 en-affil=Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine kn-affil= affil-num=30 en-affil=Division of Rheumatology, Department of Internal Medicine, School of Medicine, Tokyo Women's Medical University kn-affil= affil-num=31 en-affil=Division of Rheumatology, Department of Medicine, Showa University School of Medicine kn-affil= affil-num=32 en-affil=Division of Rheumatology, Department of Medicine, Showa University School of Medicine kn-affil= affil-num=33 en-affil=Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine kn-affil= affil-num=34 en-affil=Division of Rheumatology, Department of Internal Medicine, School of Medicine, Tokyo Women's Medical University kn-affil= en-keyword=Clinical practice guidelines kn-keyword=Clinical practice guidelines en-keyword=baricitinib kn-keyword=baricitinib en-keyword=GRADE (Grading of Recommendations, Assessment, Development, and Evaluation) kn-keyword=GRADE (Grading of Recommendations, Assessment, Development, and Evaluation) en-keyword=juvenile idiopathic arthritis kn-keyword=juvenile idiopathic arthritis en-keyword=systematic review kn-keyword=systematic review END start-ver=1.4 cd-journal=joma no-vol=18 cd-vols= no-issue= article-no= start-page=244 end-page=256 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Postnatal expression of Cat-315-positive perineuronal nets in the SAMP10 mouse primary somatosensory cortex en-subtitle= kn-subtitle= en-abstract= kn-abstract=Perineuronal nets (PNNs) form at the end of the critical period of plasticity in the mouse primary somatosensory cortex. PNNs are said to have functions that control neuroplasticity and provide neuroprotection. However, it is not clear which molecules in PNNs have these functions. We have previously reported that Cat-315-positive molecules were not expressed in the PNNs of the senescence-accelerated model (SAM)P10 strain model mice at 12 months of age. To confirm whether the loss of Cat-315-positive molecules occurred early in life in SAMP10 mice, we examined Cat-315-positive PNNs in the primary somatosensory cortex during postnatal development. This research helps to elucidate the function of PNNs and the mechanism of cognitive decline associated with ageing. To confirm whether Cat-315-positive PNNs changed in an age-dependent manner in SAMP10 mice, we examined the primary somatosensory cortex at 21, 28, and 56 days after birth. We compared these results with those of senescence-accelerated mouse-resistant (SAMR) mice. In SAMP10 mice, Cat-315-positive PNNs were expressed in the primary somatosensory cortex early after birth, but their expression was significantly lower than that in SAMR1 mice. Many other molecules that calibrated the PNN were unchanged between SAMP10 and SAMR1 mice. This study revealed that the expression of the Cat-315 epitope was decreased in the primary somatosensory cortex of SAMP10 mice during postnatal development. SAMP10 mice have had histological abnormalities in their brains since early life. Furthermore, using SAMP10 will be useful in elucidating the mechanism of age-related abnormalities in brain function as well as in elucidating the function and structure of PNNs. en-copyright= kn-copyright= en-aut-name=UenoHiroshi en-aut-sei=Ueno en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakahashiYu en-aut-sei=Takahashi en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoriSachiko en-aut-sei=Mori en-aut-mei=Sachiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KitanoEriko en-aut-sei=Kitano en-aut-mei=Eriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MurakamiShinji en-aut-sei=Murakami en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=WaniKenta en-aut-sei=Wani en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsumotoYosuke en-aut-sei=Matsumoto en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OkamotoMotoi en-aut-sei=Okamoto en-aut-mei=Motoi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IshiharaTakeshi en-aut-sei=Ishihara en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Medical Technology, Kawasaki University of Medical Welfare kn-affil= affil-num=2 en-affil=Department of Psychiatry, Kawasaki Medical School kn-affil= affil-num=3 en-affil=Department of Psychiatry, Kawasaki Medical School kn-affil= affil-num=4 en-affil=Department of Psychiatry, Kawasaki Medical School kn-affil= affil-num=5 en-affil=Department of Psychiatry, Kawasaki Medical School kn-affil= affil-num=6 en-affil=Department of Psychiatry, Kawasaki Medical School kn-affil= affil-num=7 en-affil=Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Psychiatry, Kawasaki Medical School kn-affil= en-keyword=Ageing kn-keyword=Ageing en-keyword=Brain function kn-keyword=Brain function en-keyword=Neuroplasticity kn-keyword=Neuroplasticity en-keyword=Neuroprotection kn-keyword=Neuroprotection en-keyword=Cognitive decline kn-keyword=Cognitive decline END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=1 article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250225 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Age-related behavioural abnormalities in C57BL/6.KOR–Apoe shl mice en-subtitle= kn-subtitle= en-abstract= kn-abstract=Spontaneously hyperlipidaemic (Apoeshl) mice were discovered in 1999 as mice lacking apolipoprotein E (ApoE) owing to a mutation in the Apoe gene. However, age-related behavioural changes in commercially available Apoeshl mice have not yet been clarified. The behavioural abnormalities of ApoE-deficient mice, which are genetically modified mice artificially deficient in ApoE, have been investigated in detail, and it has been reported that they can serve as a model of Alzheimer’s disease (AD). To understand whether Apoeshl mice can also serve as a murine model of AD, it is necessary to investigate age-related behavioural abnormalities in Apoeshl mice. In this study, we conducted a series of behavioural experiments on 7- and 11-month-old Apoeshl mice to investigate the behavioural abnormalities associated with ageing in Apoeshl mice. In this study, 7-month-old Apoeshl mice showed decreased body weight and grip strength compared to age-matched wild-type mice. In the open field test, 7-month-old Apoeshl mice showed increased anxiety-like behaviour compared to wild-type mice, whereas 11-month-old Apoeshl mice showed decreased anxiety-like behaviour. Moreover, Apoeshl mice aged 7 and 11 months had increased serum cholesterol levels. These results indicate that the behaviour of Apoeshl mice changes with age. However, 11-month-old Apoeshl mice did not show a decline in cognitive function or memory ability similar to murine models of AD. Our findings indicate that Apoeshl mice can be used to investigate the function of ApoE in the central nervous system. en-copyright= kn-copyright= en-aut-name=UenoHiroshi en-aut-sei=Ueno en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakahashiYu en-aut-sei=Takahashi en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoriSachiko en-aut-sei=Mori en-aut-mei=Sachiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KitanoEriko en-aut-sei=Kitano en-aut-mei=Eriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MurakamiShinji en-aut-sei=Murakami en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=WaniKenta en-aut-sei=Wani en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MiyazakiTetsuji en-aut-sei=Miyazaki en-aut-mei=Tetsuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MatsumotoYosuke en-aut-sei=Matsumoto en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OkamotoMotoi en-aut-sei=Okamoto en-aut-mei=Motoi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=IshiharaTakeshi en-aut-sei=Ishihara en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Medical Technology, Kawasaki University of Medical Welfare kn-affil= affil-num=2 en-affil=Department of Psychiatry, Kawasaki Medical School kn-affil= affil-num=3 en-affil=Department of Psychiatry, Kawasaki Medical School kn-affil= affil-num=4 en-affil=Department of Psychiatry, Kawasaki Medical School kn-affil= affil-num=5 en-affil=Department of Psychiatry, Kawasaki Medical School kn-affil= affil-num=6 en-affil=Department of Psychiatry, Kawasaki Medical School kn-affil= affil-num=7 en-affil=Department of Psychiatry, Kawasaki Medical School kn-affil= affil-num=8 en-affil=Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Psychiatry, Kawasaki Medical School kn-affil= en-keyword=age kn-keyword=age en-keyword=apolipoprotein kn-keyword=apolipoprotein en-keyword=behavioural test kn-keyword=behavioural test en-keyword=central nervous system kn-keyword=central nervous system en-keyword=mouse kn-keyword=mouse END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=1 article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250222 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Rearing in an envy-like environment increases anxiety-like behaviour in mice en-subtitle= kn-subtitle= en-abstract= kn-abstract=Interest in the societal and psychological harm caused by widespread envy and social comparison is increasing. Envy is associated with anxiety and depression, though the mechanism by which envy affects neuropsychiatric disorders, such as depression, remains unclear. Clarifying the neurobiological basis of envy’s effects on behaviour and emotion regulation in experimental mice is essential for developing disease-prevention and treatment strategies. As mice recognize other mice in neighbouring cages, this study investigated whether they recognize neighbouring cages housed in environmentally enriched cages and suffer psychological stress due to envy. After being raised in an envy-like environment for 3 weeks, we revealed changes in the behaviour of the mice through a series of behavioural experiments. Mice raised in an envious environment showed increased body weight and anxiety-like behaviour but decreased social behaviour and serum corticosterone levels compared to control mice. Thus, mice recognize their neighbouring cages and experience psychological stress due to envy. This study revealed a part of the scientific basis for why envy increased anxiety. Using this novel experimental breeding environment, it may be possible to create an experimental animal model of anxiety disorders. en-copyright= kn-copyright= en-aut-name=UenoHiroshi en-aut-sei=Ueno en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KitanoEriko en-aut-sei=Kitano en-aut-mei=Eriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakahashiYu en-aut-sei=Takahashi en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MoriSachiko en-aut-sei=Mori en-aut-mei=Sachiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MurakamiShinji en-aut-sei=Murakami en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=WaniKenta en-aut-sei=Wani en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsumotoYosuke en-aut-sei=Matsumoto en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OkamotoMotoi en-aut-sei=Okamoto en-aut-mei=Motoi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IshiharaTakeshi en-aut-sei=Ishihara en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Medical Technology, Kawasaki University of Medical Welfare kn-affil= affil-num=2 en-affil=Department of Psychiatry, Kawasaki Medical School kn-affil= affil-num=3 en-affil=Department of Psychiatry, Kawasaki Medical School kn-affil= affil-num=4 en-affil=Department of Psychiatry, Kawasaki Medical School kn-affil= affil-num=5 en-affil=Department of Psychiatry, Kawasaki Medical School kn-affil= affil-num=6 en-affil=Department of Psychiatry, Kawasaki Medical School kn-affil= affil-num=7 en-affil=Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Psychiatry, Kawasaki Medical School kn-affil= en-keyword=behaviour kn-keyword=behaviour en-keyword=anxiety kn-keyword=anxiety en-keyword=mouse kn-keyword=mouse en-keyword=envy kn-keyword=envy en-keyword=rodent kn-keyword=rodent END start-ver=1.4 cd-journal=joma no-vol=2024 cd-vols= no-issue= article-no= start-page=9215607 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202401 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Mice Recognise Mice in Neighbouring Rearing Cages and Change Their Social Behaviour en-subtitle= kn-subtitle= en-abstract= kn-abstract=Mice are social animals that change their behaviour primarily in response to visual, olfactory, and auditory information from conspecifics. Rearing conditions such as cage size and colour are important factors influencing mouse behaviour. In recent years, transparent plastic cages have become standard breeding cages. The advantage of using a transparent cage is that the experimenter can observe the mouse from outside the cage without touching the cage. However, mice may recognise the environment outside the cage and change their behaviour. We speculated that mice housed in transparent cages might recognise mice in neighbouring cages. We used only male mice in this experiment. C57BL/6 mice were kept in transparent rearing cages with open lids, and the cage positions were maintained for 3 weeks. Subsequently, we examined how mice behaved toward cagemate mice, mice from neighbouring cages, and mice from distant cages. We compared the level of interest in mice using a social preference test. Similar to previous reports, subject mice showed a high degree of interest in unfamiliar mice from distant cages. By contrast, subject mice reacted to mice from neighbouring cages as familiar mice, similar to cagemate mice. This suggests that mice housed in transparent cages with open lids perceive the external environment and identify mice in neighbouring cages. Researchers should pay attention to the environment outside the mouse cage, especially for the social preference test. en-copyright= kn-copyright= en-aut-name=UenoHiroshi en-aut-sei=Ueno en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakahashiYu en-aut-sei=Takahashi en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoriSachiko en-aut-sei=Mori en-aut-mei=Sachiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MurakamiShinji en-aut-sei=Murakami en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WaniKenta en-aut-sei=Wani en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MatsumotoYosuke en-aut-sei=Matsumoto en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OkamotoMotoi en-aut-sei=Okamoto en-aut-mei=Motoi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IshiharaTakeshi en-aut-sei=Ishihara en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Medical Technology, Kawasaki University of Medical Welfare kn-affil= affil-num=2 en-affil=Department of Psychiatry, Kawasaki Medical School kn-affil= affil-num=3 en-affil=Department of Psychiatry, Kawasaki Medical School kn-affil= affil-num=4 en-affil=Department of Psychiatry, Kawasaki Medical School kn-affil= affil-num=5 en-affil=Department of Psychiatry, Kawasaki Medical School kn-affil= affil-num=6 en-affil=Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Psychiatry, Kawasaki Medical School kn-affil= END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=12 article-no= start-page=1399 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250611 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Association Between Chewing Status and Steatotic Liver Disease in Japanese People Aged ≥50 Years: A Cohort Study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/Objectives: In this longitudinal study, the relationship between chewing status and steatotic liver disease (SLD) was examined in 3775 people aged ≥50 years who underwent medical checkups at Junpukai Health Maintenance Center in Okayama, Japan. Methods: Participants without SLD at the time of a baseline survey in 2018 were followed until 2022. Chewing status was assessed by a self-administered questionnaire. The presence or absence of SLD was ascertained from the medical records of Junpukai Health Maintenance Center. Results: A total of 541 participants (14%) were diagnosed as having a poor chewing status at baseline. Furthermore, 318 (8%) participants were newly diagnosed with SLD at follow-up. In multivariate logistic regression analyses, the presence or absence of SLD was found to be associated with the following characteristics at baseline: sex (male: odds ratio [ORs] = 1.806; 95% confidence interval [CIs]: 1.399–2.351), age (ORs = 0.969; 95% CIs: 0.948–0.991), body mass index (≥25.0 kg/m2; ORs = 1.934; 95% CIs: 1.467–2.549), diastolic blood pressure (ORs = 1.017; 95% CIs: 1.002–1.032), and chewing status (poor: ORs = 1.472; 95% CIs: 1.087–1.994). Conclusions: The results indicate that a poor chewing status was associated with SLD development after 4 years. Aggressively recommending dental visits to participants with poor chewing status may not only improve their ability to chew well but may also reduce the incidence of SLD. en-copyright= kn-copyright= en-aut-name=IwaiKomei en-aut-sei=Iwai en-aut-mei=Komei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=EkuniDaisuke en-aut-sei=Ekuni en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AzumaTetsuji en-aut-sei=Azuma en-aut-mei=Tetsuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YonenagaTakatoshi en-aut-sei=Yonenaga en-aut-mei=Takatoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TabataKoichiro en-aut-sei=Tabata en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ToyamaNaoki en-aut-sei=Toyama en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KataokaKota en-aut-sei=Kataoka en-aut-mei=Kota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MaruyamaTakayuki en-aut-sei=Maruyama en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TomofujiTakaaki en-aut-sei=Tomofuji en-aut-mei=Takaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Community Oral Health, School of Dentistry, Asahi University kn-affil= affil-num=2 en-affil=Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Community Oral Health, School of Dentistry, Asahi University kn-affil= affil-num=4 en-affil=Department of Community Oral Health, School of Dentistry, Asahi University kn-affil= affil-num=5 en-affil=Department of Community Oral Health, School of Dentistry, Asahi University kn-affil= affil-num=6 en-affil=Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Community Oral Health, School of Dentistry, Asahi University kn-affil= en-keyword=oral health kn-keyword=oral health en-keyword=liver diseases kn-keyword=liver diseases en-keyword=longitudinal studies kn-keyword=longitudinal studies en-keyword=mastication kn-keyword=mastication en-keyword=physical examination kn-keyword=physical examination en-keyword=surveys and questionnaires kn-keyword=surveys and questionnaires END start-ver=1.4 cd-journal=joma no-vol=64 cd-vols= no-issue=4 article-no= start-page=292 end-page=296 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241225 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Computed tomography findings of idiopathic multicentric Castleman disease subtypes en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study retrospectively evaluated the computed tomography (CT) findings of idiopathic multicentric Castleman disease (iMCD) at a single center and compared the CT findings of iMCD-TAFRO with those of iMCD-non-TAFRO. CT images obtained within 30 days before diagnostic confirmation were reviewed for 20 patients with iMCD (8 men and 12 women, mean age 52.8 ± 12.3 years, range 25–74 years). Twelve patients were diagnosed with iMCD-TAFRO, five with iMCD-idiopathic plasmacytic lymphadenopathy, and three with iMCD-not otherwise specified. CT images revealed anasarca and lymphadenopathy in all 20 patients. The iMCD-TAFRO group showed significantly higher frequencies of ascites (100% vs. 37.5%, P = 0.004), gallbladder wall edema (75.0% vs. 12.5%, P = 0.020), periportal collar (91.7% vs. 25.0%, P = 0.004), and anterior mediastinal lesions (non-mass-forming infiltrative lesions) (66.7% vs. 12.5%, P = 0.028). Para-aortic edema tended to be more frequent in patients with the iMCD-TAFRO group (83.3% vs. 37.5%, P = 0.062), while the absence of anterior mediastinal lesions tended to be more frequent in the iMCD-non-TAFRO group (16.7% vs. 62.5%, P = 0.062). These CT findings may have clinical implications for improving the accuracy and speed of iMCD diagnosis and differentiating iMCD-TAFRO from other subtypes. en-copyright= kn-copyright= en-aut-name=IguchiToshihiro en-aut-sei=Iguchi en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishikoriAsami en-aut-sei=Nishikori en-aut-mei=Asami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SatoYasuharu en-aut-sei=Sato en-aut-mei=Yasuharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishimuraMidori Filiz en-aut-sei=Nishimura en-aut-mei=Midori Filiz kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IwakiNoriko en-aut-sei=Iwaki en-aut-mei=Noriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KojimaKatsuhide en-aut-sei=Kojima en-aut-mei=Katsuhide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AsaharaTakashi en-aut-sei=Asahara en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HirakiTakao en-aut-sei=Hiraki en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=3 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=4 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=5 en-affil=Department of Hematology, National Cancer Center Hospital kn-affil= affil-num=6 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=idiopathic multicentric Castleman disease kn-keyword=idiopathic multicentric Castleman disease en-keyword=TAFRO syndrome kn-keyword=TAFRO syndrome en-keyword=computed tomography kn-keyword=computed tomography END start-ver=1.4 cd-journal=joma no-vol=26 cd-vols= no-issue=9 article-no= start-page=4310 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Possibility of Plasma Membrane Transporters as Drug Targets in Oral Cancers en-subtitle= kn-subtitle= en-abstract= kn-abstract=Plasma membrane transporters are increasingly recognized as potential drug targets for oral cancer, particularly oral squamous cell carcinoma (OSCC). These transporters play crucial roles in cancer cell metabolism, drug resistance, and the tumor microenvironment, making them attractive targets for therapeutic intervention. Among the two main families of plasma membrane transporters, ATP-binding cassette (ABC) transporters have long been known to be involved in drug efflux and contribute to chemoresistance in cancer cells. On the other hand, solute carriers (SLCs) are also a family of transporters that facilitate the transport of various substrates, including nutrients and drugs, and have recently been shown to contribute to cancer chemosensitivity, metabolism, and proliferation. SLC transporters have been identified as potential cancer biomarkers and therapeutic targets, and their expression profiles suggest that they could be utilized in precision oncology approaches. We summarize previous reports on the expression and role of ABC and SLC transporters in oral cancer and discuss their potential as therapeutic targets. en-copyright= kn-copyright= en-aut-name=SogawaChiharu en-aut-sei=Sogawa en-aut-mei=Chiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShimadaKatsumitsu en-aut-sei=Shimada en-aut-mei=Katsumitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakanoKeisuke en-aut-sei=Nakano en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Food and Health Sciences, Faculty of Environmental Studies, Hiroshima Institute of Technology kn-affil= affil-num=2 en-affil=Department of Clinical Phathophysiology, Matsumoto Dental University kn-affil= affil-num=3 en-affil=Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=SLC transporter kn-keyword=SLC transporter en-keyword=ABC transporter kn-keyword=ABC transporter en-keyword=oral cancer kn-keyword=oral cancer en-keyword=oral squamous cell carcinoma kn-keyword=oral squamous cell carcinoma END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=26737 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250723 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Coronary cross-sectional area stenosis severity determined using coronary CT highly correlated with coronary functional flow reserve: a pilot study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Fractional flow reserve (FFR) is the gold standard for assessing the physiological significance of coronary stenosis. We examined the potential correlation between digitally measured coronary cross-sectional area stenosis using coronary computed tomography (CT) angiography and FFR. We analyzed data of 32 consecutive patients with stenoses who underwent invasive FFR determination. The cross-sectional area was assessed using 128-slice coronary detector-based spectral CT angiography. Power analysis revealed that the sample size enabled the detection of an area under the receiver operating characteristic (ROC) curve (AUC) of 0.90. FFR ≤ 0.8 and > 0.8 were defined as FFR-positive and FFR-negative, respectively. Intra- and interobserver differences were negligible. Percentage cross-sectional area stenosis was calculated as 100 × (A−B)/A, where A is the cross-sectional area at non-stenotic pre-stenotic segment and B is the cross-sectional area of the most severe stenotic lesion. AUC indicated that percentage cross-sectional area stenosis effectively discriminated between FFR-positive and FFR-negative cases, yielding a sensitivity of 0.882 and specificity of 0.933 at a cutoff of 50% area reduction, with an AUC of 0.976. Lesions with less than 45% cross-sectional area stenosis on coronary CT angiography were not FFR-positive. When ROC analysis was conducted for lesion characteristics, AUC did not significantly improve. In conclusion, the percent coronary cross-sectional area stenosis measured using coronary CT angiography distinguished between FFR-positive and FFR-negative lesions with high accuracy. The severity of coronary cross-sectional area stenosis determined using CT angiography is clinically useful for predicting FFR. en-copyright= kn-copyright= en-aut-name=KoumotoTakuto en-aut-sei=Koumoto en-aut-mei=Takuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KusachiShozo en-aut-sei=Kusachi en-aut-mei=Shozo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TomiyaTakumi en-aut-sei=Tomiya en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AkagiTakuya en-aut-sei=Akagi en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KawamuraHiroshi en-aut-sei=Kawamura en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HirohataSatoshi en-aut-sei=Hirohata en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamajiHirosuke en-aut-sei=Yamaji en-aut-mei=Hirosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MurakamiTakashi en-aut-sei=Murakami en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KamikawaShigeshi en-aut-sei=Kamikawa en-aut-mei=Shigeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MurakamiMasaaki en-aut-sei=Murakami en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Division of Radiation, Okayama Heart Clinic kn-affil= affil-num=2 en-affil=Okayama University Graduate School of Health Sciences kn-affil= affil-num=3 en-affil=Division of Cardiovascular Intervention, Okayama Heart Clinic kn-affil= affil-num=4 en-affil=Division of Cardiovascular Intervention, Okayama Heart Clinic kn-affil= affil-num=5 en-affil=Division of Cardiovascular Medicine, Okayama Heart Clinic kn-affil= affil-num=6 en-affil=Okayama University Graduate School of Health Sciences kn-affil= affil-num=7 en-affil=Division of Cardiovascular Medicine, Okayama Heart Clinic kn-affil= affil-num=8 en-affil=Division of Cardiovascular Medicine, Okayama Heart Clinic kn-affil= affil-num=9 en-affil=Division of Cardiovascular Intervention, Okayama Heart Clinic kn-affil= affil-num=10 en-affil=Division of Cardiovascular Intervention, Okayama Heart Clinic kn-affil= en-keyword=Ischemic heart disease kn-keyword=Ischemic heart disease en-keyword=Reversible ischemia kn-keyword=Reversible ischemia en-keyword=Coronary pressure kn-keyword=Coronary pressure en-keyword=Multi-slice CT kn-keyword=Multi-slice CT en-keyword=Coronary hemodynamics kn-keyword=Coronary hemodynamics END start-ver=1.4 cd-journal=joma no-vol=31 cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202503 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Activated Clotting Time Requires Adaptation Across Altered Measurement Devices: Determination of Appropriate Range During Atrial Fibrillation Ablation en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Methods for measuring activated clotting time (ACT) are not yet standardized.
Objectives: To adjust and compare values between two measurement systems and to optimize ACT during atrial fibrillation (AF) ablation.
Methods: Two systems were compared: electromagnetic detection using a rotating tube (EM system; Hemochron Response) and photo-optical detection using a cartridge immersed in blood (PO system; ACT CA-300TM).
Results: ACT was measured simultaneously in 124 instances in 53 patients before and during AF ablations using both methods. A linear regression analysis showed ACT (EM system) = 1.19 × ACT (PO system) + 9.03 (p < .001, r = 0.90). Bland–Altman plots indicated an average difference of 50 s between the two systems. In 3364 ACT measurements from 1161 ablations, the EM system recorded a mean ACT of 320 ± 44 s (range 156-487 s). Estimating the target range as mean ± 1 SD range, the EM system's range was 275-365 s, in 5-s increments. The pre-ablation ACT measured on the EM system was 143 ± 28 s (115-170 s). Cardiac tamponade occurred in 4 out of 2085 ablations (0.19%) over 5 years, with ACT values ranging from 330 to 391 s on the EM system. Based on these findings, the estimated optimal ACT range for the PO system was adjusted to 225-300 s to align with the EM system's range of 275-365 s.
Conclusions: ACT target ranges should be system-specific, and direct extrapolation between devices is not recommended. Adjustment is clinically necessary when switching systems. en-copyright= kn-copyright= en-aut-name=SakanoueHaruna en-aut-sei=Sakanoue en-aut-mei=Haruna kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamajiHirosuke en-aut-sei=Yamaji en-aut-mei=Hirosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OkamotoSayaka en-aut-sei=Okamoto en-aut-mei=Sayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OkanoKumi en-aut-sei=Okano en-aut-mei=Kumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FujitaYuka en-aut-sei=Fujita en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HigashiyaShunichi en-aut-sei=Higashiya en-aut-mei=Shunichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MurakamiTakashi en-aut-sei=Murakami en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HirohataSatoshi en-aut-sei=Hirohata en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KusachiShozo en-aut-sei=Kusachi en-aut-mei=Shozo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Nursing, Okayama Heart Clinic kn-affil= affil-num=2 en-affil=Heart Rhythm Center, Okayama Heart Clinic kn-affil= affil-num=3 en-affil=Department of Nursing, Okayama Heart Clinic kn-affil= affil-num=4 en-affil=Department of Nursing, Okayama Heart Clinic kn-affil= affil-num=5 en-affil=Department of Nursing, Okayama Heart Clinic kn-affil= affil-num=6 en-affil=Heart Rhythm Center, Okayama Heart Clinic kn-affil= affil-num=7 en-affil=Heart Rhythm Center, Okayama Heart Clinic kn-affil= affil-num=8 en-affil=Department of Medical Technology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=9 en-affil=Department of Medical Technology, Okayama University Graduate School of Health Sciences kn-affil= en-keyword=anticoagulation kn-keyword=anticoagulation en-keyword=heparin kn-keyword=heparin en-keyword=catheter kn-keyword=catheter en-keyword=supraventricular arrhythmia kn-keyword=supraventricular arrhythmia en-keyword=point-of-care testing kn-keyword=point-of-care testing END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue= article-no= start-page=1561628 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250321 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Histidine-rich glycoprotein inhibits TNF-α–induced tube formation in human vascular endothelial cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction: Tumor necrosis factor-α (TNF-α)-induced angiogenesis plays a critical role in tumor progression and metastasis, making it an important therapeutic target in cancer treatment. Suppressing angiogenesis can effectively limit tumor growth and metastasis. However, despite advancements in understanding angiogenic pathways, effective strategies to inhibit TNF-α-mediated angiogenesis remain limited.
Methods: This study investigates the antiangiogenic effects of histidine-rich glycoprotein (HRG), a multifunctional plasma protein with potent antiangiogenic properties, on TNF-α-stimulated human endothelial cells (EA.hy926). Tube formation assays were performed to assess angiogenesis, and gene/protein expression analyses were conducted to evaluate HRG’s effects on integrins αV and β8. The role of nuclear factor erythroid 2-related factor 2 (NRF2) in HRG-mediated antiangiogenic activity was also examined through nuclear translocation assays and NRF2 activation studies.
Results: At physiological concentrations, HRG effectively suppressed TNF-α-induced tube formation in vitro and downregulated TNF-α-induced expression of integrins αV and β8 at both the mRNA and protein levels. HRG treatment promoted NRF2 nuclear translocation in a time-dependent manner. Furthermore, activation of NRF2 significantly reduced TNF-α-induced tube formation and integrin expression, suggesting that NRF2 plays a key role in HRG-mediated antiangiogenic effects.
Discussion and Conclusion: Our findings indicate that HRG suppresses TNF-α-induced angiogenesis by promoting NRF2 nuclear translocation and transcriptional activation, which in turn inhibits integrin αV and β8 expression. Given the essential role of angiogenesis in tumor progression, HRG’s ability to regulate this process presents a promising therapeutic strategy for cancer treatment. en-copyright= kn-copyright= en-aut-name=HatipogluOmer Faruk en-aut-sei=Hatipoglu en-aut-mei=Omer Faruk kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishinakaTakashi en-aut-sei=Nishinaka en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YaykasliKursat Oguz en-aut-sei=Yaykasli en-aut-mei=Kursat Oguz kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MoriShuji en-aut-sei=Mori en-aut-mei=Shuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WatanabeMasahiro en-aut-sei=Watanabe en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ToyomuraTakao en-aut-sei=Toyomura en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NishiboriMasahiro en-aut-sei=Nishibori en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HirohataSatoshi en-aut-sei=Hirohata en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=WakeHidenori en-aut-sei=Wake en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TakahashiHideo en-aut-sei=Takahashi en-aut-mei=Hideo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Pharmacology, Kindai University Faculty of Medicine kn-affil= affil-num=2 en-affil=Department of Pharmacology, Kindai University Faculty of Medicine kn-affil= affil-num=3 en-affil=Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen kn-affil= affil-num=4 en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University kn-affil= affil-num=5 en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University kn-affil= affil-num=6 en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University kn-affil= affil-num=7 en-affil=Department of Translational Research and Dug Development, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Pharmacology, Kindai University Faculty of Medicine kn-affil= affil-num=10 en-affil=Department of Pharmacology, Kindai University Faculty of Medicine kn-affil= en-keyword=histidine-rich glycoprotein kn-keyword=histidine-rich glycoprotein en-keyword=tumor necrosis factor-α kn-keyword=tumor necrosis factor-α en-keyword=integrin kn-keyword=integrin en-keyword=tube formation kn-keyword=tube formation en-keyword=angiogenesis kn-keyword=angiogenesis en-keyword=factor erythroid 2-related factor 2 kn-keyword=factor erythroid 2-related factor 2 END start-ver=1.4 cd-journal=joma no-vol=43 cd-vols= no-issue=8 article-no= start-page=1261 end-page=1268 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250505 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Overview of task shifting guidelines in Japan: from radiologists to radiological technologists en-subtitle= kn-subtitle= en-abstract= kn-abstract=As one of the key pillars of work style reform for physicians, task shifting and sharing from radiologists to radiological technologists has been considered. In May 2021, the Radiological Technologists Act was amended, allowing for the expansion of several duties. Alongside these legal and regulatory changes, a notice from Ministry of Health, Labour and Welfare was issued, highlighting tasks to be particularly promoted under the current system prior to the amendment of the Radiological Technologists Act. These amendments authorize radiological technologists to perform advanced and specialized tasks, such as securing venous access for contrast agent administration, which require significantly higher skill levels than their traditional roles. However, the amended legislation did not include specific guidelines, rules, or considerations for the practical implementation of these new duties in daily medical practice, especially from the perspectives of patient safety and quality of care. To address this, the Japan Radiological Society, the Japanese College of Radiology, and the Japan Association of Radiological Technologists collaborated with other related societies to develop guidelines on five key topics:-Guidelines for Safe Conduct of CT/MRI Contrast-Enhanced Examinations: Considering the expanded scope of practice for radiological technologists. -Guidelines for Safe Conduct of Nuclear Medicine Examinations: Aligned with the expanded responsibilities of radiological technologists. -Guidelines for Clinical application of Image-Guided Radiation Therapy (IGRT). -Guidelines for Safe Conduct of Angiography and Interventional Radiology (IR): Adapted for the expanded roles of radiological technologists. -Guidelines for Reporting Findings of STAT Imaging: Addressing urgent conditions with potential impact on life prognosis. en-copyright= kn-copyright= en-aut-name=KidoAki en-aut-sei=Kido en-aut-mei=Aki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OhnoKazuko en-aut-sei=Ohno en-aut-mei=Kazuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamadaKei en-aut-sei=Yamada en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamakadoKoichiro en-aut-sei=Yamakado en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HirakiTakao en-aut-sei=Hiraki en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MizowakiTakashi en-aut-sei=Mizowaki en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AidaNoriko en-aut-sei=Aida en-aut-mei=Noriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=Oyama-ManabeNoriko en-aut-sei=Oyama-Manabe en-aut-mei=Noriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KodamaNaoki en-aut-sei=Kodama en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=UedaKatsuhiko en-aut-sei=Ueda en-aut-mei=Katsuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=AokiShigeki en-aut-sei=Aoki en-aut-mei=Shigeki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TomiyamaNoriyuki en-aut-sei=Tomiyama en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Radiology, Toyama University Hospital kn-affil= affil-num=2 en-affil=Department of Radiological Technology, Kyoto University of Medial Science kn-affil= affil-num=3 en-affil=Department of Radiology, Kyoto Prefectural University of Medicine kn-affil= affil-num=4 en-affil=Department of Radiology, The Hospital of Hyogo College of Medicine kn-affil= affil-num=5 en-affil=Department of Radiology, Okayama University kn-affil= affil-num=6 en-affil=Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University kn-affil= affil-num=7 en-affil=Department of Diagnostic Radiology, Yokohama City University Graduate School of Medicine kn-affil= affil-num=8 en-affil=Department of Radiology, Jichi Medical University Saitama Medical Center kn-affil= affil-num=9 en-affil=Department of Radiological Technology, Faculty of Medical Technology, Niigata University of Health and Welfare kn-affil= affil-num=10 en-affil=Department of Radiological Sciences, School of Health Sciences at Narita, International University of Health and Welfare kn-affil= affil-num=11 en-affil=Health Data Science, Department of Radiology/Data Science, Graduate School of Medicine, Juntendo University kn-affil= affil-num=12 en-affil=Department of Radiology, Osaka University Graduate School of Medicine kn-affil= en-keyword=Task shifting and sharing kn-keyword=Task shifting and sharing en-keyword=Radiological technologists kn-keyword=Radiological technologists en-keyword=Guideline kn-keyword=Guideline en-keyword=IGRT kn-keyword=IGRT en-keyword=STAT kn-keyword=STAT END start-ver=1.4 cd-journal=joma no-vol=1863 cd-vols= no-issue= article-no= start-page=149752 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202509 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Spearmint extract Neumentix downregulates amyloid-β accumulation by promoting phagocytosis in APP23 mice en-subtitle= kn-subtitle= en-abstract= kn-abstract=In recent years, many researchers have focused on natural compounds that can effectively delay symptoms of Alzheimer’s disease (AD). The spearmint extract Neumentix, which is rich in phenolic compounds, has been shown to reduce inflammatory responses and oxidative stress in mice. However, the effect of Neumentix on AD has not been thoroughly studied. In this study, APP23 transgenic female and male mice were administered Neumentix orally from 4 to 18 months of age at a dosage of 2.65 g/kg/day (containing 0.41 g/kg/day of rosmarinic acid). The impact was evaluated by behavioral tests and histological analyses and compared with APP23 mice to which Neumentix was not administered. The results showed that Neumentix administration increased the survival rate of APP23 mice and effectively reduced Aβ accumulation by enhancing its phagocytosis by microglial cells. These findings suggest that Neumentix is a potential natural nutritional treatment for improving the progression of AD. en-copyright= kn-copyright= en-aut-name=HuXinran en-aut-sei=Hu en-aut-mei=Xinran kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MoriharaRyuta en-aut-sei=Morihara en-aut-mei=Ryuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FukuiYusuke en-aut-sei=Fukui en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=BianYuting en-aut-sei=Bian en-aut-mei=Yuting kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SunHongming en-aut-sei=Sun en-aut-mei=Hongming kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=Ota-ElliottRicardo Satoshi en-aut-sei=Ota-Elliott en-aut-mei=Ricardo Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IshiuraHiroyuki en-aut-sei=Ishiura en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AbeKoji en-aut-sei=Abe en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YamashitaToru en-aut-sei=Yamashita en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=National Center Hospital, National Center of Neurology and Psychiatry kn-affil= affil-num=9 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Alzheimer's disease kn-keyword=Alzheimer's disease en-keyword=Amyloid-beta kn-keyword=Amyloid-beta en-keyword=Inflammation kn-keyword=Inflammation en-keyword=Neumentix kn-keyword=Neumentix en-keyword=Phagocytosis kn-keyword=Phagocytosis en-keyword=Survival rate kn-keyword=Survival rate END start-ver=1.4 cd-journal=joma no-vol=89 cd-vols= no-issue=8 article-no= start-page=1217 end-page=1226 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250527 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Microbial biotransformation of proteins into amino acids in unpolished Thai and polished Japanese rice varieties cultivated with distinct industrial strains of koji mold en-subtitle= kn-subtitle= en-abstract= kn-abstract=We previously reported the cultivation of industrial koji mold strains to produce unpolished Thai-colored rice kojis. These kojis, along with those made from unpolished Thai white rice and polished Japanese white rice, showed increased polyphenol content after cultivation, with the highest levels observed in unpolished Thai-colored rice kojis. In this study, an increase in both proteinogenic and non-proteinogenic amino acid contents, particularly γ-aminobutyric acid (GABA) content, was observed in both unpolished Thai and polished Japanese rice kojis, suggesting the ability of koji mold in the biotransformation of proteins. This increase was almost comparable even when using different rice varieties; in contrast, it varied depending on the koji mold strain used. The observed increase in both polyphenol and functional amino acid contents, especially GABA content, highlights the potential of unpolished Thai and polished Japanese rice kojis, particularly unpolished Thai-colored rice koji, as multifunctional materials, benefiting from polyphenol and amino acid functionalities. en-copyright= kn-copyright= en-aut-name=JitpakdeeJirayu en-aut-sei=Jitpakdee en-aut-mei=Jirayu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ItoKazunari en-aut-sei=Ito en-aut-mei=Kazunari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TaninoYuka en-aut-sei=Tanino en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakeuchiHayato en-aut-sei=Takeuchi en-aut-mei=Hayato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamashitaHideyuki en-aut-sei=Yamashita en-aut-mei=Hideyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakagawaTakuro en-aut-sei=Nakagawa en-aut-mei=Takuro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NitodaTeruhiko en-aut-sei=Nitoda en-aut-mei=Teruhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KanzakiHiroshi en-aut-sei=Kanzaki en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Industrial Technology Center of Okayama Prefecture kn-affil= affil-num=3 en-affil=Industrial Technology Center of Okayama Prefecture kn-affil= affil-num=4 en-affil=Industrial Technology Center of Okayama Prefecture kn-affil= affil-num=5 en-affil=Higuchi Matsunosuke Shoten Co., Ltd. kn-affil= affil-num=6 en-affil=Higuchi Matsunosuke Shoten Co., Ltd. kn-affil= affil-num=7 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Amino acid kn-keyword=Amino acid en-keyword=GABA kn-keyword=GABA en-keyword=koji mold kn-keyword=koji mold en-keyword=rice koji kn-keyword=rice koji en-keyword=Thai-colored rice kn-keyword=Thai-colored rice END start-ver=1.4 cd-journal=joma no-vol=98 cd-vols= no-issue=6 article-no= start-page=uoaf044 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250516 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Redox-potential-controlled intermolecular [2 + 2] cycloaddition of styrenes for the regio- and diastereoselective synthesis of multisubstituted halogenocyclobutanes en-subtitle= kn-subtitle= en-abstract= kn-abstract=The redox potential is an important factor for controlling the outcome of photoredox catalysis. Particularly, the selective oxidation of substrates and the control over the reactions are challenging when using photoredox catalysts that have high excited-state reduction potentials. In this study, a redox-potential-controlled intermolecular [2 + 2] cycloaddition of styrenes using a thioxanthylium organophotoredox (TXT) catalyst has been developed. This TXT catalyst selectively oxidizes β-halogenostyrenes and smoothly promotes the subsequent intermolecular [2 + 2] cycloadditions to give multisubstituted halogenocyclobutanes with excellent regio- and diastereoselectivity, which has not been effectively achieved by the hitherto reported representative photoredox catalysts. The synthesized halogenocyclobutanes exhibit interesting free radical scavenging activity. The present reaction contributes to the field of redox-potential-controlled electron transfer chemistry. en-copyright= kn-copyright= en-aut-name=MizutaniAsuka en-aut-sei=Mizutani en-aut-mei=Asuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KondoMomo en-aut-sei=Kondo en-aut-mei=Momo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ItakuraShoko en-aut-sei=Itakura en-aut-mei=Shoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakamuraHiroyoshi en-aut-sei=Takamura en-aut-mei=Hiroyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HoshinoYujiro en-aut-sei=Hoshino en-aut-mei=Yujiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NishikawaMakiya en-aut-sei=Nishikawa en-aut-mei=Makiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KadotaIsao en-aut-sei=Kadota en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KusamoriKosuke en-aut-sei=Kusamori en-aut-mei=Kosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TanakaKenta en-aut-sei=Tanaka en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science kn-affil= affil-num=3 en-affil=Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environment and Information Sciences, Yokohama National University kn-affil= affil-num=6 en-affil=Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science kn-affil= affil-num=7 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Laboratory of Cellular Drug Discovery and Development, Faculty of Pharmaceutical Sciences, Tokyo University of Science kn-affil= affil-num=9 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= en-keyword=redox potential kn-keyword=redox potential en-keyword=photoredox catalysis kn-keyword=photoredox catalysis en-keyword=[2 + 2] cycloaddition kn-keyword=[2 + 2] cycloaddition END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250813 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The stress‒strain behavior of poly(methyl acrylate) microparticle-based polymers determined via optical microscopy en-subtitle= kn-subtitle= en-abstract= kn-abstract=The structural integrity of microparticle-based films is maintained through interpenetration of the superficial polymer chains of the microparticles that physically crosslink neighboring microparticles. This structural feature is fundamentally different from those of conventional polymers prepared by solvent casting or bulk polymerization. To understand the mechanical properties of such microparticle-based films, it is necessary to investigate the behavior of their constituent particles. However, methods are still being developed to evaluate microscale structural changes in microparticle-based films during the stretching process leading to film fracture. In this study, we propose a method that combines a stretching stage with optical microscopy to investigate the changes in particle morphology and its positional relationship with surrounding particles during uniaxial tensile tests on microparticle-based films. In a film consisting of cross-linked poly(methyl acrylate) microparticles, the deformation of the particles deviated from affine deformation due to the cross-linked structure. However, the deformation of a group of several (local) particles was confirmed to be location-dependent and larger than that of each particle forming the film. The method established here can be used to contribute to the design of tough microparticle-based films. en-copyright= kn-copyright= en-aut-name=NishizawaYuichiro en-aut-sei=Nishizawa en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawamuraYuto en-aut-sei=Kawamura en-aut-mei=Yuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SasakiYuma en-aut-sei=Sasaki en-aut-mei=Yuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SuzukiDaisuke en-aut-sei=Suzuki en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=raduate School of Textile Science & Technology, Shinshu University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=101 cd-vols= no-issue= article-no= start-page=173 end-page=211 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202502 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Next frontier in photocatalytic hydrogen production through CdS heterojunctions en-subtitle= kn-subtitle= en-abstract= kn-abstract=Photocatalytic hydrogen (H₂) generation via solar-powered water splitting represents a sustainable solution to the global energy crisis. Cadmium sulfide (CdS) has emerged as a promising semiconductor photocatalyst due to its tunable bandgap, high physicochemical stability, cost-effectiveness, and widespread availability. This review systematically examines recent advancements in CdS-based heterojunctions, categorized into CdS-metal (Schottky), CdS-semiconductor (p-n, Z-scheme, S-scheme), and CdS-carbon heterojunctions. Various strategies employed to enhance photocatalytic efficiency and stability are discussed, including band structure engineering, surface modification, and the incorporation of crosslinked architectures. A critical evaluation of the underlying photocatalytic mechanisms highlights recent efforts to improve charge separation and photostability under operational conditions. This review highlights the challenges and opportunities in advancing CdS-based photocatalysts and provides a direction for future research. The insights presented aim to accelerate the development of efficient and durable CdS-based photocatalysts for sustainable H₂ production. en-copyright= kn-copyright= en-aut-name=IslamAminul en-aut-sei=Islam en-aut-mei=Aminul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MalekAbdul en-aut-sei=Malek en-aut-mei=Abdul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IslamMd. Tarekul en-aut-sei=Islam en-aut-mei=Md. Tarekul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NipaFarzana Yeasmin en-aut-sei=Nipa en-aut-mei=Farzana Yeasmin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=RaihanObayed en-aut-sei=Raihan en-aut-mei=Obayed kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MahmudHasan en-aut-sei=Mahmud en-aut-mei=Hasan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=UddinMd. Elias en-aut-sei=Uddin en-aut-mei=Md. Elias kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IbrahimMohd Lokman en-aut-sei=Ibrahim en-aut-mei=Mohd Lokman kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=Abdulkareem-AlsultanG. en-aut-sei=Abdulkareem-Alsultan en-aut-mei=G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MondalAlam Hossain en-aut-sei=Mondal en-aut-mei=Alam Hossain kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=HasanMd. Munjur en-aut-sei=Hasan en-aut-mei=Md. Munjur kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SalmanMd. Shad en-aut-sei=Salman en-aut-mei=Md. Shad kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KubraKhadiza Tul en-aut-sei=Kubra en-aut-mei=Khadiza Tul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=HasanMd. Nazmul en-aut-sei=Hasan en-aut-mei=Md. Nazmul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=SheikhMd. Chanmiya en-aut-sei=Sheikh en-aut-mei=Md. Chanmiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=UchidaTetsuya en-aut-sei=Uchida en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=RaseeAdiba Islam en-aut-sei=Rasee en-aut-mei=Adiba Islam kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=RehanAriyan Islam en-aut-sei=Rehan en-aut-mei=Ariyan Islam kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=AwualMrs Eti en-aut-sei=Awual en-aut-mei=Mrs Eti kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=HossainMohammed Sohrab en-aut-sei=Hossain en-aut-mei=Mohammed Sohrab kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=WaliullahR.M. en-aut-sei=Waliullah en-aut-mei=R.M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=AwualMd. Rabiul en-aut-sei=Awual en-aut-mei=Md. Rabiul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= affil-num=1 en-affil=Department of Petroleum and Mining Engineering, Jashore University of Science and Technology kn-affil= affil-num=2 en-affil=Department of Petroleum and Mining Engineering, Jashore University of Science and Technology kn-affil= affil-num=3 en-affil=Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering and Technology kn-affil= affil-num=4 en-affil=Department of Petroleum and Mining Engineering, Jashore University of Science and Technology kn-affil= affil-num=5 en-affil=Department of Pharmaceutical Sciences, College of Health Sciences and Pharmacy, Chicago State University kn-affil= affil-num=6 en-affil=Bangladesh Energy and Power Research Council (BEPRC) kn-affil= affil-num=7 en-affil=Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering and Technology kn-affil= affil-num=8 en-affil=School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA kn-affil= affil-num=9 en-affil=Catalysis Science and Technology Research Centre, Faculty of Science, Universiti Putra Malaysia kn-affil= affil-num=10 en-affil=USAID - Bangladesh Advancing Development and Growth through Energy (BADGE) Project, Tetra Tech kn-affil= affil-num=11 en-affil=Department of Chemistry, Graduate School of Science, Osaka University kn-affil= affil-num=12 en-affil=Institute for Chemical Research, Kyoto University kn-affil= affil-num=13 en-affil=Department of Chemistry, Graduate School of Science, Osaka University kn-affil= affil-num=14 en-affil=Department of Chemistry, School of Science, The University of Tokyo kn-affil= affil-num=15 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=16 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=17 en-affil=Department of Chemistry, Graduate School of Science, Osaka University kn-affil= affil-num=18 en-affil=Department of Chemistry, School of Science, The University of Tokyo kn-affil= affil-num=19 en-affil=Institute for Chemical Research, Kyoto University kn-affil= affil-num=20 en-affil=Department of Chemistry, Graduate School of Science, Osaka University kn-affil= affil-num=21 en-affil=Institute for Chemical Research, Kyoto University kn-affil= affil-num=22 en-affil=Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University kn-affil= en-keyword=H2 kn-keyword=H2 en-keyword=Sustainability kn-keyword=Sustainability en-keyword=Photocatalytic kn-keyword=Photocatalytic en-keyword=Photo-stability kn-keyword=Photo-stability en-keyword=Heterojunction kn-keyword=Heterojunction en-keyword=CdS kn-keyword=CdS END start-ver=1.4 cd-journal=joma no-vol=390 cd-vols= no-issue= article-no= start-page=116594 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202508 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Extension-type flexible pneumatic actuator with a large extension force using a cross-link mechanism based on pantographs en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this study, we propose an extension-type flexible pneumatic actuator (EFPA) with a high extension force and no buckling. In a previous study, soft actuators that extended in the axial direction by applying a supply pressure were unable to generate the extension’s pushing force because the actuators buckled owing to their high flexibility. To generate a pushing force, the circumferential stiffness of an extension-type flexible soft actuator must be reinforced. Therefore, a cross-linked EFPA (CL-EFPA) was developed, inspired by a pantograph that restrains the EFPA three-dimensionally using the proposed link mechanism. The proposed CL-EFPA consists of three EFPAs and a cross-linking mechanism for integrating each EFPA circumference. The pushing force of the CL-EFPA is approximately 3.0 times compared with that generated by the previous EFPA with plates to restrain its plane. To perform various bending motions, attitude control was performed using an analytical model and a system that included valves, sensors, and controllers. en-copyright= kn-copyright= en-aut-name=ShimookaSo en-aut-sei=Shimooka en-aut-mei=So kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TadachiKazuma en-aut-sei=Tadachi en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KamegawaTetsushi en-aut-sei=Kamegawa en-aut-mei=Tetsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Mechanical and Systems Engineering Program, School of Engineering, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Soft robot kn-keyword=Soft robot en-keyword=Extension soft actuator kn-keyword=Extension soft actuator en-keyword=Link mechanism kn-keyword=Link mechanism en-keyword=Pantograph kn-keyword=Pantograph en-keyword=Attitude control kn-keyword=Attitude control END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=From sewage sludge to agriculture: governmental initiatives, technologies, and sustainable practices in Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=Sewage sludge (SS), an underutilized but valuable resource for agriculture, contains essential nutrients, such as phosphorus. In Japan, where dependence on imported fertilizers is high and global price fluctuations persist, using SS as fertilizer presents a sustainable alternative aligned with circular economy goals. This review analyzes Japan’s current efforts to repurpose SS, focusing on technological developments and key policy initiatives that promote safe and effective application. Selective phosphorus recovery technologies mitigate resource depletion, while holistic approaches, such as composting and carbonization, maximize sludge utilization for agricultural applications. Government-led initiatives, including public awareness campaigns, quality assurance standards and research support, have facilitated the adoption of sludge-based fertilizers. To contextualize Japan’s position, international trends, particularly in the EU, are also examined. These comparisons reveal both common strategies and areas for policy and technological advancement, especially regarding regulation of emerging contaminants. By integrating national case studies with global perspectives, the study offers insights into the economic, environmental, and social benefits of SS reuse, contributing to Japan’s goals of resource self-sufficiency and carbon neutrality, while also informing broader sustainable agriculture transitions worldwide. en-copyright= kn-copyright= en-aut-name=NguyenThu Huong en-aut-sei=Nguyen en-aut-mei=Thu Huong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujiwaraTaku en-aut-sei=Fujiwara en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamashitaHiromasa en-aut-sei=Yamashita en-aut-mei=Hiromasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TogawaHironori en-aut-sei=Togawa en-aut-mei=Hironori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MiyakeHaruo en-aut-sei=Miyake en-aut-mei=Haruo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=GotoMasako en-aut-sei=Goto en-aut-mei=Masako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NagareHideaki en-aut-sei=Nagare en-aut-mei=Hideaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakamuraMasato en-aut-sei=Nakamura en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OritateFumiko en-aut-sei=Oritate en-aut-mei=Fumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=IharaHirotaka en-aut-sei=Ihara en-aut-mei=Hirotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MaedaMorihiro en-aut-sei=Maeda en-aut-mei=Morihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Graduate School of Engineering, Kyoto University kn-affil= affil-num=2 en-affil=Graduate School of Engineering, Kyoto University kn-affil= affil-num=3 en-affil=Water Supply and Sewerage Department, National Institute for Land and Infrastructure Management kn-affil= affil-num=4 en-affil=Water Supply and Sewerage Department, National Institute for Land and Infrastructure Management kn-affil= affil-num=5 en-affil=R & D Department, Japan Sewage Works Agency kn-affil= affil-num=6 en-affil=1St Research Department, Japan Institute of Wastewater Engineering and Technology kn-affil= affil-num=7 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Institute for Rural Engineering, NARO kn-affil= affil-num=9 en-affil=Institute for Rural Engineering, NARO kn-affil= affil-num=10 en-affil=Institute for Agro-Environmental Sciences, NARO kn-affil= affil-num=11 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Japan kn-keyword=Japan en-keyword=Sewage sludge kn-keyword=Sewage sludge en-keyword=Agriculture kn-keyword=Agriculture en-keyword=Sludge fertilizers kn-keyword=Sludge fertilizers en-keyword=Governmental initiatives kn-keyword=Governmental initiatives END start-ver=1.4 cd-journal=joma no-vol=63 cd-vols= no-issue=23 article-no= start-page=3243 end-page=3248 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241201 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Successful Treatment for Life Threatening Recurrent Non-traumatic Rectus Sheath Hematoma in a Case with Microscopic Polyangiitis with Rapidly Progressive Glomerulonephritis en-subtitle= kn-subtitle= en-abstract= kn-abstract=A 68-year-old woman was admitted to our hospital because of a rapid progression of renal dysfunction with positive myeloperoxidase antineutrophil cytoplasmic antibody and was diagnosed with rapidly progressive glomerulonephritis associated with microscopic polyangiitis (MPA). Severe right rectus sheath hematoma (RSH) bleeding from the inferior epigastric artery developed after starting hemodialysis, which required 4 transarterial embolizations due to recurrent bleeding. After additional treatment with methylprednisolone pulse therapy and rituximab, no rebleeding occurred. Although the giant hematoma reached the pelvis, it shrank spontaneously without any intervention. Nontraumatic RSH should therefore be considered when treating patients with multiple risk factors. en-copyright= kn-copyright= en-aut-name=NakanohHiroyuki en-aut-sei=Nakanoh en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakeuchiHidemi en-aut-sei=Takeuchi en-aut-mei=Hidemi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MorimotoShiho en-aut-sei=Morimoto en-aut-mei=Shiho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TerajimaYuya en-aut-sei=Terajima en-aut-mei=Yuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OkamotoShugo en-aut-sei=Okamoto en-aut-mei=Shugo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OnishiYasuhiro en-aut-sei=Onishi en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TanakaKeiko en-aut-sei=Tanaka en-aut-mei=Keiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KatsuyamaTakayuki en-aut-sei=Katsuyama en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TsujiKenji en-aut-sei=Tsuji en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MatsumotoYoshinori en-aut-sei=Matsumoto en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TanabeKatsuyuki en-aut-sei=Tanabe en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MorinagaHiroshi en-aut-sei=Morinaga en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=UkaMayu en-aut-sei=Uka en-aut-mei=Mayu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=TomitaKoji en-aut-sei=Tomita en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=UchidaHaruhito A. en-aut-sei=Uchida en-aut-mei=Haruhito A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=HirakiTakao en-aut-sei=Hiraki en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=14 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=15 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=17 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=rectus sheath hematoma kn-keyword=rectus sheath hematoma en-keyword=microscopic polyangiitis kn-keyword=microscopic polyangiitis en-keyword=hemodialysis kn-keyword=hemodialysis END start-ver=1.4 cd-journal=joma no-vol=343 cd-vols= no-issue= article-no= start-page=103558 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202509 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Progress in silicon-based materials for emerging solar-powered green hydrogen (H2) production en-subtitle= kn-subtitle= en-abstract= kn-abstract=The imperative demand for sustainable and renewable energy solutions has precipitated profound scientific investigations into photocatalysts designed for the processes of water splitting and hydrogen fuel generation. The abundance, low toxicity, high conductivity, and cost-effectiveness of silicon-based compounds make them attractive candidates for hydrogen production, driving ongoing research and technological advancements. Developing an effective synthesis method that is simple, economically feasible, and environmentally friendly is crucial for the widespread implementation of silicon-based heterojunctions for sustainable hydrogen production. Balancing the performance benefits with the economic and environmental considerations is a key challenge in the development of these systems. The specific performance of each catalyst type can vary depending on the synthesis method, surface modifications, catalyst loading, and reaction conditions. The confluence of high crystallinity, reduced oxygen concentration, and calcination temperature within the silicon nanoparticle has significantly contributed to its noteworthy hydrogen evolution rate. This review provides an up-to-date evaluation of Si-based photocatalysts, summarizing recent developments, guiding future research directions, and identifying areas that require further investigation. By combining theoretical insights and experimental findings, this review offers a comprehensive understanding of Si-based photocatalysts for water splitting. Through a comprehensive analysis, it aims to elucidate existing knowledge gaps and inspire future research directions towards optimized photocatalytic performance and scalability, ultimately contributing to the realization of sustainable hydrogen generation. en-copyright= kn-copyright= en-aut-name=IslamAminul en-aut-sei=Islam en-aut-mei=Aminul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IslamMd. Tarekul en-aut-sei=Islam en-aut-mei=Md. Tarekul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TeoSiow Hwa en-aut-sei=Teo en-aut-mei=Siow Hwa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MahmudHasan en-aut-sei=Mahmud en-aut-mei=Hasan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SwarazA.M. en-aut-sei=Swaraz en-aut-mei=A.M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=RehanAriyan Islam en-aut-sei=Rehan en-aut-mei=Ariyan Islam kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=RaseeAdiba Islam en-aut-sei=Rasee en-aut-mei=Adiba Islam kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KubraKhadiza Tul en-aut-sei=Kubra en-aut-mei=Khadiza Tul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HasanMd. Munjur en-aut-sei=Hasan en-aut-mei=Md. Munjur kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SalmanMd. Shad en-aut-sei=Salman en-aut-mei=Md. Shad kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=WaliullahR.M. en-aut-sei=Waliullah en-aut-mei=R.M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=HasanMd. Nazmul en-aut-sei=Hasan en-aut-mei=Md. Nazmul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=SheikhMd. Chanmiya en-aut-sei=Sheikh en-aut-mei=Md. Chanmiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=UchidaTetsuya en-aut-sei=Uchida en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=AwualMrs Eti en-aut-sei=Awual en-aut-mei=Mrs Eti kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=HossainMohammed Sohrab en-aut-sei=Hossain en-aut-mei=Mohammed Sohrab kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=ZnadHussein en-aut-sei=Znad en-aut-mei=Hussein kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=AwualMd. Rabiul en-aut-sei=Awual en-aut-mei=Md. Rabiul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= affil-num=1 en-affil=Department of Petroleum and Mining Engineering, Jashore University of Science and Technology kn-affil= affil-num=2 en-affil=Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering and Technology kn-affil= affil-num=3 en-affil=Industrial Chemistry Program, Faculty of Science and Natural Resources, Universiti Malaysia Sabah kn-affil= affil-num=4 en-affil=Bangladesh Energy and Power Research Council (BEPRC) kn-affil= affil-num=5 en-affil=Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology kn-affil= affil-num=6 en-affil=Department of Chemistry, School of Science, The University of Tokyo kn-affil= affil-num=7 en-affil=Department of Chemistry, Graduate School of Science, Osaka University kn-affil= affil-num=8 en-affil=Department of Chemistry, Graduate School of Science, Osaka University kn-affil= affil-num=9 en-affil=Department of Chemistry, Graduate School of Science, Osaka University kn-affil= affil-num=10 en-affil=Institute for Chemical Research, Kyoto University kn-affil= affil-num=11 en-affil=Institute for Chemical Research, Kyoto University kn-affil= affil-num=12 en-affil=Department of Chemistry, School of Science, The University of Tokyo kn-affil= affil-num=13 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=14 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=15 en-affil=Department of Chemistry, Graduate School of Science, Osaka University kn-affil= affil-num=16 en-affil=Department of Chemistry, Graduate School of Science, Osaka University kn-affil= affil-num=17 en-affil=Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University kn-affil= affil-num=18 en-affil=Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University kn-affil= en-keyword=Silicon-based materials kn-keyword=Silicon-based materials en-keyword=Water splitting kn-keyword=Water splitting en-keyword=Hydrogen kn-keyword=Hydrogen en-keyword=Sustainable kn-keyword=Sustainable en-keyword=Clean and renewable energy kn-keyword=Clean and renewable energy END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250810 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Elucidation of the relationship between solid‐state photoluminescence and crystal structures in 2,6‐substituted naphthalene derivatives en-subtitle= kn-subtitle= en-abstract= kn-abstract=Polycyclic aromatic hydrocarbons (PAHs) are known to exhibit fluorescence in solution, but generally do not emit in the solid state, with the notable exception of anthracene. We previously reported that PAHs containing multiple chromophores show solid-state emission, and we have investigated the relationship between their crystal structures and photoluminescence properties. In particular, PAHs with herringbone-type crystal packing, such as 2,6-diphenylnaphthalene (DPhNp), which has a slender and elongated molecular structure, exhibits red-shifted solid-state fluorescence spectra relative to their solution-phase counterparts. In this study, we synthesized 2,6-naphthalene derivatives bearing phenyl and/or pyridyl substituents (PhPyNp and DPyNp) and observed distinct, red-shifted emission in the solid state compared with that in solution. Crystallographic analysis revealed that both PhPyNp and DPyNp adopt herringbone packing motifs. These findings support our hypothesis that the spectral characteristics of PAH emission are closely linked to crystal packing arrangements, providing a useful strategy for screening PAH candidates for applications in organic semiconducting materials. en-copyright= kn-copyright= en-aut-name=YamajiMinoru en-aut-sei=Yamaji en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YoshikawaIsao en-aut-sei=Yoshikawa en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MutaiToshiki en-aut-sei=Mutai en-aut-mei=Toshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HoujouHirohiko en-aut-sei=Houjou en-aut-mei=Hirohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=GotoKenta en-aut-sei=Goto en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TaniFumito en-aut-sei=Tani en-aut-mei=Fumito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SuzukiKengo en-aut-sei=Suzuki en-aut-mei=Kengo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OkamotoHideki en-aut-sei=Okamoto en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Applied Chemistry, Division of Materials and Environment, Graduate School of Science and Engineering, Gunma University kn-affil= affil-num=2 en-affil=Department of Materials and Environmental Science, Institute of Industrial Science, The University of Tokyo kn-affil= affil-num=3 en-affil=Technology Transfer Service Corporation kn-affil= affil-num=4 en-affil=Department of Materials and Environmental Science, Institute of Industrial Science, The University of Tokyo kn-affil= affil-num=5 en-affil=Institute for Materials Chemistry and Engineering, Kyushu University kn-affil= affil-num=6 en-affil=Institute for Materials Chemistry and Engineering, Kyushu University kn-affil= affil-num=7 en-affil=Hamamatsu Photonics K.K kn-affil= affil-num=8 en-affil=Department of Chemistry, Faculty of Environment, Life, Natural Sciences and Technology, Okayama University kn-affil= en-keyword=herringbone kn-keyword=herringbone en-keyword=polycyclic aromatic hydrocarbon kn-keyword=polycyclic aromatic hydrocarbon en-keyword=solid-state emission kn-keyword=solid-state emission END start-ver=1.4 cd-journal=joma no-vol=23 cd-vols= no-issue=2 article-no= start-page=71 end-page=81 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Study on the Removal Technology of Trichloramine from Drinking Water Using Ultraviolet Light en-subtitle= kn-subtitle= en-abstract= kn-abstract=Trichloramine (NCl3) is an inorganic chloramine that causes a pungent chlorine-like odor, and it is difficult to remove its precursors (nitrogen organic compounds and/or ammonia) completely from water. Powdered activated carbon, ozonation, and UV treatment have been applied for decomposing NCl3, but free chlorine was also decomposed. So, it is necessary to develop a technique that can selectively control NCl3 without losing free chlorine. UV light-emitting diodes (265, 280, and 300 nm) and plasma emission UV sheet (347 ± 52 nm, hereafter 350 nm) were compared to find the optimal wavelengths that decompose NCl3 but not free chlorine. As a result, 90.6, 96.7, 92.5, and 77.8% of NCl3 were removed at 265, 280, 300 (3,600 mJ/cm2), and 350 nm (14,400 mJ/cm2), respectively. On the other hand, free chlorine at neutral pH (hypochlorous acid is dominant) and slightly alkaline pH (hypochlorite ion is dominant) was not decomposed at 350 nm, but at other wavelengths (i.e., 265, 280, and 300 nm) the removals were more than 64%. Therefore, UV radiation at 350 nm can be candidates to remove NCl3 while maintaining free chlorine. However, this method requires high input energy, and further study is needed for evaluating the practical applicability of this method by considering optimal reactor design. en-copyright= kn-copyright= en-aut-name=HashiguchiAyumi en-aut-sei=Hashiguchi en-aut-mei=Ayumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YoshidaShiho en-aut-sei=Yoshida en-aut-mei=Shiho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=EchigoShinya en-aut-sei=Echigo en-aut-mei=Shinya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakanamiRyohei en-aut-sei=Takanami en-aut-mei=Ryohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NagareHideaki en-aut-sei=Nagare en-aut-mei=Hideaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Shimane University kn-affil= affil-num=3 en-affil=Graduate School of Global Environmental Studies, Kyoto University kn-affil= affil-num=4 en-affil=Faculty of Design Technology, Osaka Sangyo University kn-affil= affil-num=5 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=trichloramine kn-keyword=trichloramine en-keyword=disinfection byproducts kn-keyword=disinfection byproducts en-keyword=drinking water kn-keyword=drinking water en-keyword=ultraviolet light kn-keyword=ultraviolet light END start-ver=1.4 cd-journal=joma no-vol=37 cd-vols= no-issue=1 article-no= start-page=43 end-page=53 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250220 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Fan-Shaped Pneumatic Soft Actuator that Can Operate Bending Motion for Ankle-Joint Rehabilitation Device en-subtitle= kn-subtitle= en-abstract= kn-abstract=Nowadays, owing to declining birthrates and an aging population, patients and the elderly requiring rehabilitation are not getting enough physical activity. In addressing this issue, devices for rehabilitating them have been researched and developed. However, rehabilitation devices are almost exclusively used for patients who can get up, rather than those who are bedridden. In this study, we aim to develop a rehabilitation device that can provide passive exercise for bedridden patients. The ankle joint was selected as the target joint because the patients who have undergone surgery for cerebrovascular disease remain bedridden, and early recovery in the acute stage is highly desirable. We proposed and tested a fan-shaped pneumatic soft actuator (FPSA) that can expand and bend stably at angles when supply pressure is applied as an actuator for a rehabilitation device to encourage patient exercise. However, the previous FPSA’s movement deviates from the arch of the foot owing to increased supply pressure. In the ideal case, FPSA should push the arch of the foot in an arc motion. This study proposes and tests the FPSA that can operate a bending motion to provide passive exercise to the ankle joint using tensile springs and a winding mechanism powered by a servo motor. The proposed FPSA has a significant advantage of exhibiting no hysteresis in its pressure-displacement characteristics. The configuration and static analytical model of the improved FPSA are described. en-copyright= kn-copyright= en-aut-name=ShimookaSo en-aut-sei=Shimooka en-aut-mei=So kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YokoyaHirosato en-aut-sei=Yokoya en-aut-mei=Hirosato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HamadaMasanori en-aut-sei=Hamada en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShiomiShun en-aut-sei=Shiomi en-aut-mei=Shun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=UeharaTakenori en-aut-sei=Uehara en-aut-mei=Takenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HirayamaTakahiro en-aut-sei=Hirayama en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KamegawaTetsushi en-aut-sei=Kamegawa en-aut-mei=Tetsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=3 en-affil=Department of Rehabilitation Medicine, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Rehabilitation Medicine, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Orthopaedic Surgery, NHO Okayama Medical Center kn-affil= affil-num=6 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=fan-shaped pneumatic soft actuator kn-keyword=fan-shaped pneumatic soft actuator en-keyword=ankle-joint rehabilitation device kn-keyword=ankle-joint rehabilitation device en-keyword=hysteresis kn-keyword=hysteresis en-keyword=range of motion kn-keyword=range of motion END start-ver=1.4 cd-journal=joma no-vol=329 cd-vols= no-issue=1 article-no= start-page=L183 end-page=L196 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250701 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Activated factor X inhibition ameliorates NF-κB-IL-6-mediated perivascular inflammation and pulmonary hypertension en-subtitle= kn-subtitle= en-abstract= kn-abstract=Activated factor X (FXa) induces inflammatory response and cell proliferation in various cell types via activation of proteinase-activated receptor-1 (PAR1) and/or PAR2. We thus aimed to investigate the impact of FXa on the development of pulmonary arterial hypertension (PAH) and the mechanisms involved. The effects of edoxaban, a selective FXa inhibitor, on hemodynamic, right ventricular (RV) hypertrophy, and vascular remodeling were evaluated in a monocrotaline (MCT)-exposed pulmonary hypertension (PH) rat model. At 21 days after a single subcutaneous injection of MCT of 60 mg/kg, right ventricular systolic pressure (RVSP) and total pulmonary vascular resistance index (TPRI) were elevated concomitant with the increased plasma FXa and lung interleukin-6 (IL-6) mRNA. Daily administration of edoxaban (10 mg/kg/day, by gavage) starting from the day of MCT injection for 21 days ameliorated RVSP, TPRI, RV hypertrophy, pulmonary vascular remodeling, and macrophage accumulation. Edoxaban reduced nuclear factor-kappa B (NF-κB) activity and IL-6 mRNA level in the lungs of MCT-exposed rats. mRNA levels of FXa, PAR1, and PAR2 in cultured pulmonary arterial smooth muscle cells (PASMCs) isolated from patients with PAH were higher than those seen in normal PASMCs. FXa stimulation increased cell proliferation and mRNA level of IL-6 in normal PASMCs, both of which were blunted by edoxaban and PAR1 antagonist. Moreover, FXa stimulation activated extracellularly regulated kinases 1/2 in a PAR1-dependent manner. Inhibition of FXa ameliorates NF-κB-IL-6-mediated perivascular inflammation, pulmonary vascular remodeling, and the development of PH in MCT-exposed rats, suggesting that FXa may be a potential target for the treatment of PAH.
NEW & NOTEWORTHY This study demonstrated that chronic treatment with activated factor X (FXa) inhibitor ameliorated NF-κB-IL-6-mediated perivascular inflammation in a rat model with pulmonary arterial hypertension, which is associated with elevated FXa activity. FXa may act on pulmonary arterial smooth muscle cells, inducing cell proliferation and inflammatory response via upregulated PAR1, thereby contributing to pulmonary vascular remodeling. Understanding the patient-specific pathophysiology is a prerequisite for applying FXa-targeted therapy to the treatment of pulmonary arterial hypertension. en-copyright= kn-copyright= en-aut-name=ImakiireSatomi en-aut-sei=Imakiire en-aut-mei=Satomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KimuroKeiji en-aut-sei=Kimuro en-aut-mei=Keiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YoshidaKeimei en-aut-sei=Yoshida en-aut-mei=Keimei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MasakiKohei en-aut-sei=Masaki en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IzumiRyo en-aut-sei=Izumi en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ImabayashiMisaki en-aut-sei=Imabayashi en-aut-mei=Misaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=WatanabeTakanori en-aut-sei=Watanabe en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IshikawaTomohito en-aut-sei=Ishikawa en-aut-mei=Tomohito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HosokawaKazuya en-aut-sei=Hosokawa en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MatsushimaShouji en-aut-sei=Matsushima en-aut-mei=Shouji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=HashimotoToru en-aut-sei=Hashimoto en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=ShinoharaKeisuke en-aut-sei=Shinohara en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KatsukiShunsuke en-aut-sei=Katsuki en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=MatobaTetsuya en-aut-sei=Matoba en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=HiranoKatsuya en-aut-sei=Hirano en-aut-mei=Katsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=TsutsuiHiroyuki en-aut-sei=Tsutsui en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=AbeKohtaro en-aut-sei=Abe en-aut-mei=Kohtaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University kn-affil= affil-num=10 en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University kn-affil= affil-num=11 en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University kn-affil= affil-num=12 en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University kn-affil= affil-num=13 en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University kn-affil= affil-num=14 en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University kn-affil= affil-num=15 en-affil=Department of Cardiovascular Medicine, Okayama University kn-affil= affil-num=16 en-affil=Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University kn-affil= affil-num=17 en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University kn-affil= affil-num=18 en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University kn-affil= en-keyword=factor Xa kn-keyword=factor Xa en-keyword=IL-6 kn-keyword=IL-6 en-keyword=proteinase-activated receptor kn-keyword=proteinase-activated receptor en-keyword=pulmonary arterial hypertension kn-keyword=pulmonary arterial hypertension en-keyword=pulmonary hypertension kn-keyword=pulmonary hypertension END start-ver=1.4 cd-journal=joma no-vol=67 cd-vols= no-issue=1 article-no= start-page=e70090 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Changes in body mass index during early childhood on school‐age asthma prevalence classified by phenotypes and sex en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Few studies have explored the relationship between changes in body mass index(BMI) during early childhood and asthma prevalence divided by phenotypes and sex, and the limited results are conflicting. This study assessed the impact of BMI changes during early childhood on school-age asthma, classified by phenotypes and sex, using a nationwide longitudinal survey in Japan.
Methods: From children born in 2001 (n = 47,015), we divided participants into BMI quartiles (Q1, Q2, Q3, and Q4) and the following BMI categories: Q1Q1 (i.e., Q1 at birth and Q1 at age 7), Q1Q4, Q4Q1, Q4Q4, and others. Asthma history from ages 7 to 8 was analyzed, with bronchial asthma (BA) further categorized as allergic asthma (AA) or nonallergic asthma (NA) based on the presence of other allergic diseases. Using logistic regression, we estimated the asthma odds ratio (OR) and 95% confidence intervals (CIs) for each BMI category.
Results: Q1Q4 showed significantly higher risks of BA, AA, and NA. In boys, BA and NA risks were significantly higher in Q1Q4 (adjusted OR: 1.47 [95% CI: 1.17–1.85], at 1.56 [95% CI: 1.16–2.1]), with no significant difference in AA risk. In girls, no increased asthma risk was observed in Q1Q4, but AA risk was significantly higher in Q4Q4 (adjusted OR: 1.78 [95% CI: 1.21–2.6]).
Conclusion: Our results demonstrated that BMI changes during early childhood impact asthma risks, particularly that the risk of NA in boys increases with BMI changes during early childhood, and the risk of AA in girls increases with consistently high BMI. en-copyright= kn-copyright= en-aut-name=YabuuchiToshihiko en-aut-sei=Yabuuchi en-aut-mei=Toshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IkedaMasanori en-aut-sei=Ikeda en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsumotoNaomi en-aut-sei=Matsumoto en-aut-mei=Naomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TsugeMitsuru en-aut-sei=Tsuge en-aut-mei=Mitsuru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YorifujiTakashi en-aut-sei=Yorifuji en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TsukaharaHirokazu en-aut-sei=Tsukahara en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Pediatrics, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Pediatrics, Okayama University Medical School kn-affil= affil-num=3 en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Pediatrics, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Pediatrics, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=asthma kn-keyword=asthma en-keyword=body mass index kn-keyword=body mass index en-keyword=child kn-keyword=child en-keyword=phenotypes kn-keyword=phenotypes en-keyword=sex kn-keyword=sex END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=30648 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250820 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effect of mechanical stretching stimulation on maturation of human iPS cell-derived cardiomyocytes co-cultured with human gingival fibroblasts en-subtitle= kn-subtitle= en-abstract= kn-abstract=In the realm of regenerative medicine, despite the various techniques available for inducing the differentiation of induced pluripotent stem (iPS) cells into cardiomyocytes, there remains a need to enhance the maturation of the cardiomyocytes. This study aimed to improve the differentiation and subsequent maturation of iPS-derived cardiomyocytes (iPS-CMs) by incorporating mechanical stretching. Human iPS cells were co-cultured with human gingival fibroblasts (HGF) on a polydimethylsiloxane (PDMS) stretch chamber, where mechanical stretching stimulation was applied during the induction of cardiomyocyte differentiation. The maturation of iPS-CMs was assessed using qRT-PCR, immunocytochemistry, transmission electron microscopy, calcium imaging and contractility comparisons. Results indicated significantly elevated gene expression levels of cardiomyocyte markers (cTnT) and the mesodermal marker (Nkx2.5) in the stretch group compared to the control group. Fluorescent immunocytochemical staining revealed the presence of cardiac marker proteins (cTnT and MYL2) in both groups, with higher protein expression in the stretch group. Additionally, structural maturation of iPS-CMs in the stretch group was notably better than in the control group. A significant increase in the contractility and calcium cycle of iPS-CMs was observed in the stretch group. These findings demonstrate that mechanical stretching stimulation enhances the maturation of iPS-CMs co-cultured with HGF. en-copyright= kn-copyright= en-aut-name=WangMengxue en-aut-sei=Wang en-aut-mei=Mengxue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IdeiHarumi en-aut-sei=Idei en-aut-mei=Harumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WangChen en-aut-sei=Wang en-aut-mei=Chen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=LiangYin en-aut-sei=Liang en-aut-mei=Yin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=LiuYun en-aut-sei=Liu en-aut-mei=Yun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MatsudaYusuke en-aut-sei=Matsuda en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakahashiKen en-aut-sei=Takahashi en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KamiokaHiroshi en-aut-sei=Kamioka en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NaruseKeiji en-aut-sei=Naruse en-aut-mei=Keiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Nursing, School of Life and Health Sciences, HuZhou College kn-affil= affil-num=4 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Human induced pluripotent stem cell kn-keyword=Human induced pluripotent stem cell en-keyword=Cardiomyocyte kn-keyword=Cardiomyocyte en-keyword=Human gingival fibroblast kn-keyword=Human gingival fibroblast en-keyword=Mechanical stretching kn-keyword=Mechanical stretching END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=19206 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250601 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Association between cesarean delivery and childhood allergic diseases in a longitudinal population-based birth cohort from Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=The association between cesarean delivery and childhood allergic diseases, such as atopic dermatitis, food allergy, and bronchial asthma, remains unclear, with limited evidence from Asian populations. We analyzed population-based data of 2,114 children born in Japan in 2010 from the Longitudinal Survey of Babies in the 21st Century, linked to the Perinatal Research Network Database. Comparisons were made between children born by cesarean delivery and those born vaginally. Longitudinal outcomes were atopic dermatitis, food allergy, and bronchial asthma during childhood for each age group up to 9 years of age. We performed Poisson regression analyses with robust variance, and adjusted for child and parent variables, followed by supplementary analyses using generalized estimating equations (GEE). Children born by cesarean delivery did not have a higher risk of most outcomes compared to those born vaginally. GEE analysis found no association between cesarean delivery and atopic dermatitis (adjusted risk ratio [aRR] 0.8, 95% confidence interval [CI] 0.5–1.2), food allergy (aRR 1.1, 95% CI 0.7–1.7), bronchial asthma (aRR 1.0, 95% CI 0.8–1.4), or allergic rhinoconjunctivitis (aRR 0.9, 95% CI 0.8–1.1). This study shows no clear evidence of an association between delivery mode and childhood allergic diseases in Japan. en-copyright= kn-copyright= en-aut-name=TamaiKei en-aut-sei=Tamai en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsumotoNaomi en-aut-sei=Matsumoto en-aut-mei=Naomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MitsuiTakashi en-aut-sei=Mitsui en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MasuyamaHisashi en-aut-sei=Masuyama en-aut-mei=Hisashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YorifujiTakashi en-aut-sei=Yorifuji en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Epidemiology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=2 en-affil=Department of Epidemiology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=3 en-affil=Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=4 en-affil=Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=5 en-affil=Department of Epidemiology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= END start-ver=1.4 cd-journal=joma no-vol=43 cd-vols= no-issue=2 article-no= start-page=282 end-page=289 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240917 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Evaluation of a novel central venous access port for direct catheter insertion without a peel-away sheath en-subtitle= kn-subtitle= en-abstract= kn-abstract=Purpose This study retrospectively evaluated the feasibility and safety of implanting a newly developed central venous access port (CV-port) that allows catheter insertion into a vein without the use of a peel-away sheath, with a focus on its potential to minimize risks associated with conventional implantation methods.
Materials and methods All procedures were performed using a new device (P-U CelSite Port™ MS; Toray Medical, Tokyo, Japan) under ultrasound guidance. The primary endpoint was the implantation success rate. The secondary endpoints were the safety and risk factors for infection in the early postprocedural period (< 30 days).
Results We assessed 523 CV-port implantations performed in a cumulative total of 523 patients (240 men and 283 women; mean age, 61.6 ± 13.1 years; range, 18–85 years). All implantations were successfully performed using an inner guide tube and over-the-wire technique through 522 internal jugular veins and one subclavian vein. The mean procedural time was 33.2 ± 10.9 min (range 15–112 min). Air embolism, rupture/perforation of the superior vena cava, or hemothorax did not occur during catheter insertion. Eleven (2.1%) intraprocedural complications occurred, including Grade I arrhythmia (n = 8) and subcutaneous bleeding (n = 1), Grade II arrhythmia (n = 1), and Grade IIIa pneumothorax (n = 1). Furthermore, 496 patients were followed up for ≥ 30 days. Six early postprocedural complications were encountered (1.1%), including Grade IIIa infection (n = 4), catheter occlusion (n = 1), and skin necrosis due to subcutaneous leakage of trabectedin (n = 1). These six CV-ports were withdrawn, and no significant risk factors for infection in the early postprocedural period were identified.
Conclusion The implantation of this CV-port device demonstrated comparable success and complication rates to conventional devices, with the added potential benefit of eliminating complications associated with the use of a peel-away sheath. en-copyright= kn-copyright= en-aut-name=IguchiToshihiro en-aut-sei=Iguchi en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawabataTakahiro en-aut-sei=Kawabata en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsuiYusuke en-aut-sei=Matsui en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TomitaKoji en-aut-sei=Tomita en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=UkaMayu en-aut-sei=Uka en-aut-mei=Mayu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=UmakoshiNoriyuki en-aut-sei=Umakoshi en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OkamotoSoichiro en-aut-sei=Okamoto en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MunetomoKazuaki en-aut-sei=Munetomo en-aut-mei=Kazuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HirakiTakao en-aut-sei=Hiraki en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Central venous catheters kn-keyword=Central venous catheters en-keyword=Vascular access device kn-keyword=Vascular access device en-keyword=Treatment outcome kn-keyword=Treatment outcome en-keyword=Safety kn-keyword=Safety END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=5 article-no= start-page=e240601 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250320 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Is subclinical hypothyroidism associated with cardiovascular disease in the elderly? en-subtitle= kn-subtitle= en-abstract= kn-abstract=Subclinical hypothyroidism (SCH) is diagnosed when thyroid function tests show that the serum thyrotropin (TSH) level is elevated and the serum free thyroxine (FT4) level is normal. SCH is mainly caused by Hashimoto’s thyroiditis, the prevalence of which increases with aging. Recently, it has been revealed that SCH is associated with risk factors for cardiovascular diseases (CVDs), including atherosclerosis, dyslipidemia and hypertension, leading to cardiovascular morbidity and mortality. However, there are still controversies regarding the diagnosis and treatment of SCH in elderly patients. In this review, we present recent evidence regarding the relationship between SCH and CVD and treatment recommendations for SCH, especially in elderly patients. Studies have shown that SCH is associated with CVD and all-cause mortality. Patients aged less than 65 years showed significant associations of SCH with CVD risk and all-cause mortality, whereas patients aged 65 or older did not show such associations. It was shown that levothyroxine therapy was associated with lower all-cause mortality and cardiovascular mortality in younger SCH patients (<65–70 years) but not in SCH patients aged 65–70 years or older. In elderly SCH patients, levothyroxine treatment should be considered individually according to the patient’s age, serum TSH level, hypothyroid symptoms, CVD risk and other comorbidities. To further elucidate the impact of SCH on CVD in elderly patients, studies should be conducted using age-specific reference ranges of results of thyroid function tests, focusing on elderly patients, specific serum TSH levels, thyroid antibody status and cardiovascular risk factors. en-copyright= kn-copyright= en-aut-name=YamamotoKoichiro en-aut-sei=Yamamoto en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakanoYasuhiro en-aut-sei=Nakano en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SoejimaYoshiaki en-aut-sei=Soejima en-aut-mei=Yoshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SuyamaAtsuhito en-aut-sei=Suyama en-aut-mei=Atsuhito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OguniKohei en-aut-sei=Oguni en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HasegawaKou en-aut-sei=Hasegawa en-aut-mei=Kou kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=cardiovascular disease kn-keyword=cardiovascular disease en-keyword=elderly patients kn-keyword=elderly patients en-keyword=subclinical hypothyroidism kn-keyword=subclinical hypothyroidism en-keyword=thyroid disease kn-keyword=thyroid disease END start-ver=1.4 cd-journal=joma no-vol=487 cd-vols= no-issue= article-no= start-page=137307 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202504 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Co-precipitating calcium phosphate as oral detoxification of cadmium en-subtitle= kn-subtitle= en-abstract= kn-abstract=Bone-eating (also known as osteophagia), found in wild animals, is primarily recognized as a means to supplement phosphorus and calcium intake. Herein, we describe a novel function of bone-eating in detoxifying heavy metal ions through the dissolution and co-precipitation of bone minerals as they travel through the gastrointestinal (GI) tract. In this study, cadmium (Cd), a heavy metal ion, served as a toxic model. We demonstrated that hydroxyapatite (HAp), the major calcium phosphate (CaP) in bone, dissolves in the stomach and acts as a co-precipitant in the intestine for Cd detoxification. We compared HAp to a common antidote, activated charcoal (AC), which did not precipitate within the GI tract. In vitro experiments showed that HAp dissolves under acidic conditions and, upon return to a neutral environment, efficiently re-sequesters Cd. Similarly, oral administration of HAp effectively prevented Cd absorption and accumulation, resulting in enhanced Cd excretion in the feces when compared to AC. A co-precipitating CaP in the GI tract could serve as an excellent detoxification system, as it helps prevent the accumulation of toxic substances and aids in developing appropriate strategies to reduce tissue toxicity. Moreover, understanding this detoxification system would be a valuable indicator for designing efficient detoxification materials. en-copyright= kn-copyright= en-aut-name=BikharudinAhmad en-aut-sei=Bikharudin en-aut-mei=Ahmad kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkadaMasahiro en-aut-sei=Okada en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SungPing-chin en-aut-sei=Sung en-aut-mei=Ping-chin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MatsumotoTakuya en-aut-sei=Matsumoto en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Cadmium detoxification kn-keyword=Cadmium detoxification en-keyword=Coprecipitation kn-keyword=Coprecipitation en-keyword=Calcium phosphate kn-keyword=Calcium phosphate en-keyword=Gastrointestinal tract kn-keyword=Gastrointestinal tract END start-ver=1.4 cd-journal=joma no-vol=32 cd-vols= no-issue=5 article-no= start-page=567 end-page=579 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=ChatGPT Responses to Clinical Questions in the Japan Atherosclerosis Society Guidelines for Prevention of Atherosclerotic Cardiovascular Disease 2022 en-subtitle= kn-subtitle= en-abstract= kn-abstract=Aims: Artificial intelligence is increasingly used in the medical field. We assessed the accuracy and reproducibility of responses by ChatGPT to clinical questions (CQs) in the Japan Atherosclerosis Society Guidelines for Prevention Atherosclerotic Cardiovascular Diseases 2022 (JAS Guidelines 2022).
Methods: In June 2024, we assessed responses by ChatGPT (version 3.5) to CQs, including background questions (BQs) and foreground questions (FQs). Accuracy was assessed independently by three researchers using six-point Likert scales ranging from 1 (“completely incorrect”) to 6 (“completely correct”) by evaluating responses to CQs in Japanese or translated into English. For reproducibility assessment, responses to each CQ asked five times separately in a new chat were scored using six-point Likert scales, and Fleiss kappa coefficients were calculated.
Results: The median (25th–75th percentile) score for ChatGPT’s responses to BQs and FQs was 4 (3–5) and 5 (5–6) for Japanese CQs and 5 (3–6) and 6 (5–6) for English CQs, respectively. Response scores were higher for FQs than those for BQs (P values <0.001 for Japanese and English). Similar response accuracy levels were observed between Japanese and English CQs (P value 0.139 for BQs and 0.586 for FQs). Kappa coefficients for reproducibility were 0.76 for BQs and 0.90 for FQs.
Conclusions: ChatGPT showed high accuracy and reproducibility in responding to JAS Guidelines 2022 CQs, especially FQs. While ChatGPT primarily reflects existing guidelines, its strength could lie in rapidly organizing and presenting relevant information, thus supporting instant and more efficient guideline interpretation and aiding in medical decision-making. en-copyright= kn-copyright= en-aut-name=HisamatsuTakashi en-aut-sei=Hisamatsu en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FukudaMari en-aut-sei=Fukuda en-aut-mei=Mari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KinutaMinako en-aut-sei=Kinuta en-aut-mei=Minako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KandaHideyuki en-aut-sei=Kanda en-aut-mei=Hideyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Autonomic intelligence kn-keyword=Autonomic intelligence en-keyword=ChatGPT kn-keyword=ChatGPT en-keyword=Accuracy kn-keyword=Accuracy en-keyword=Reproducibility kn-keyword=Reproducibility en-keyword=Guidelines kn-keyword=Guidelines END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250704 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Primary tumour resection plus systemic therapy versus systemic therapy alone in metastatic breast cancer (JCOG1017, PRIM-BC): a randomised clinical trial en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Several prospective studies have evaluated the benefit of primary tumour resection (PTR) in de novo Stage IV breast cancer (BC) patients, but it remains controversial. We aimed to investigate whether PTR improves the survival of de novo stage IV BC patients.
Methods: De novo stage IV BC patients were enrolled in the first registration and received systemic therapies according to clinical subtypes. Patients without progression after primary systemic therapy for 3 months were randomly assigned 1:1 to systemic therapy alone (arm A) or PTR plus systemic therapy (arm B). The primary endpoint was overall survival (OS), and the secondary endpoints included local relapse-free survival (LRFS).
Results: Five hundred seventy patients were enrolled between May 5, 2011, and May 31, 2018. Of these, 407 were randomised to arm A (N = 205) or arm B (N = 202). The median follow-up time of all randomised patients was 60 months. The difference in OS was not statistically significant (HR 0.86 90% CI 0.69–1.07, one-sided p = 0.13). Median OS was 69 months (arm A) and 75 months (arm B). In the subgroup analysis, PTR was associated with improved OS in pre-menopausal patients, or those with single-organ metastasis. LRFS in arm B was significantly longer than that in arm A (median LRFS 20 vs. 63 months: HR 0.42, 95% CI 0.33–0.53, p < 0.0001). There were no treatment-related deaths.
Conclusions: PTR did not prolong OS. However, it improved local control and might benefit a subset of patients, such as those with premenopausal status or with single-organ metastasis. It also improved local relapse-free survival (LRFS), which is a clinically meaningful outcome in trials of systemic therapy.
Clinical trial registration: UMIN Clinical Trials Registry (UMIN000005586); Japan Registry of Clinical Trials (jRCTs031180151). en-copyright= kn-copyright= en-aut-name=ShienTadahiko en-aut-sei=Shien en-aut-mei=Tadahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HaraFumikata en-aut-sei=Hara en-aut-mei=Fumikata kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AogiKenjiro en-aut-sei=Aogi en-aut-mei=Kenjiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YanagidaYasuhiro en-aut-sei=Yanagida en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TsuneizumiMichiko en-aut-sei=Tsuneizumi en-aut-mei=Michiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamamotoNaohito en-aut-sei=Yamamoto en-aut-mei=Naohito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsumotoHiroshi en-aut-sei=Matsumoto en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SutoAkihiko en-aut-sei=Suto en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=WatanabeKenichi en-aut-sei=Watanabe en-aut-mei=Kenichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HaraoMichiko en-aut-sei=Harao en-aut-mei=Michiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KanbayashiChizuko en-aut-sei=Kanbayashi en-aut-mei=Chizuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=ItohMitsuya en-aut-sei=Itoh en-aut-mei=Mitsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KadoyaTakayuki en-aut-sei=Kadoya en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=AnanKeisei en-aut-sei=Anan en-aut-mei=Keisei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=MaedaShigeto en-aut-sei=Maeda en-aut-mei=Shigeto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=SasakiKeita en-aut-sei=Sasaki en-aut-mei=Keita kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=OgawaGakuto en-aut-sei=Ogawa en-aut-mei=Gakuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=SajiShigehira en-aut-sei=Saji en-aut-mei=Shigehira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=FukudaHaruhiko en-aut-sei=Fukuda en-aut-mei=Haruhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=IwataHiroji en-aut-sei=Iwata en-aut-mei=Hiroji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= affil-num=1 en-affil=Okayama University Hospital kn-affil= affil-num=2 en-affil=Cancer Institute Hospital kn-affil= affil-num=3 en-affil=National Hospital Organization Shikoku Cancer Center kn-affil= affil-num=4 en-affil=Shizuoka General Hospital kn-affil= affil-num=5 en-affil=Gunma Prefectural Cancer Center kn-affil= affil-num=6 en-affil=Chiba Prefectural Cancer Center kn-affil= affil-num=7 en-affil=Saitama Prefectural Cancer Center kn-affil= affil-num=8 en-affil=National Cancer Center Hospital kn-affil= affil-num=9 en-affil=Hokkaido Cancer Center kn-affil= affil-num=10 en-affil=Jichi Medical University Hospital kn-affil= affil-num=11 en-affil=Niigata Prefectural Cancer Center kn-affil= affil-num=12 en-affil=Hiroshima City Hiroshima Citizen’s Hospital kn-affil= affil-num=13 en-affil=Hiroshima University Hospital kn-affil= affil-num=14 en-affil=Kitakyushu Municipal Medical Center kn-affil= affil-num=15 en-affil=Nagasaki Municipal Medical Center kn-affil= affil-num=16 en-affil=National Cancer Center Hospital kn-affil= affil-num=17 en-affil=National Cancer Center Hospital kn-affil= affil-num=18 en-affil=Fukushima Medical University kn-affil= affil-num=19 en-affil=National Cancer Center Hospital kn-affil= affil-num=20 en-affil=Aichi Cancer Center Hospital kn-affil= END start-ver=1.4 cd-journal=joma no-vol=6 cd-vols= no-issue=2 article-no= start-page=53 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250606 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=An Endocrine-Disrupting Chemical, Bisphenol A Diglycidyl Ether (BADGE), Accelerates Neuritogenesis and Outgrowth of Cortical Neurons via the G-Protein-Coupled Estrogen Receptor en-subtitle= kn-subtitle= en-abstract= kn-abstract=Bisphenol A diglycidyl ether (BADGE) is the main component of epoxy resin and is used for the inner coating of canned foods and plastic food containers. BADGE can easily migrate from containers and result in food contamination; the compound is known as an endocrine-disrupting chemical. We previously reported that maternal exposure to bisphenol A bis (2,3-dihydroxypropyl) ether (BADGE·2H2O), which is the most detected BADGE derivative not only in canned foods but also in human specimens, during gestation and lactation, could accelerate neuronal differentiation in the cortex of fetuses and induce anxiety-like behavior in juvenile mice. In this study, we investigated the effects of low-dose BADGE·2H2O (1–100 pM) treatment on neurites and the mechanism of neurite outgrowth in cortical neurons. BADGE·2H2O exposure significantly increased the number of dendrites and neurite length in cortical neurons; these accelerating effects were inhibited by estrogen receptor (ER) antagonist ICI 182,780 and G-protein-coupled estrogen receptor (GPER) antagonist G15. BADGE·2H2O down-regulated Hes1 expression, which is a transcriptional repressor, and increased levels of neuritogenic factor neurogenin-3 (Ngn3) in the cortical neurons; the changes were significantly blocked by G15. These data suggest that direct BADGE·2H2O exposure can accelerate neuritogenesis and outgrowth in cortical neurons through down-regulation of Hes1 and by increasing Ngn3 levels through ERs, particularly GPER. en-copyright= kn-copyright= en-aut-name=MiyazakiIkuko en-aut-sei=Miyazaki en-aut-mei=Ikuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishiyamaChiharu en-aut-sei=Nishiyama en-aut-mei=Chiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NagoshiTakeru en-aut-sei=Nagoshi en-aut-mei=Takeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MiyakoAkane en-aut-sei=Miyako en-aut-mei=Akane kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OnoSuzuka en-aut-sei=Ono en-aut-mei=Suzuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MisawaIchika en-aut-sei=Misawa en-aut-mei=Ichika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IsseAika en-aut-sei=Isse en-aut-mei=Aika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TomimotoKana en-aut-sei=Tomimoto en-aut-mei=Kana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MasaiKaori en-aut-sei=Masai en-aut-mei=Kaori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ZenshoKazumasa en-aut-sei=Zensho en-aut-mei=Kazumasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=AsanumaMasato en-aut-sei=Asanuma en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Medical Neurobiology, Okayama University Medical School kn-affil= affil-num=3 en-affil=Department of Medical Neurobiology, Okayama University Medical School kn-affil= affil-num=4 en-affil=Department of Medical Neurobiology, Okayama University Medical School kn-affil= affil-num=5 en-affil=Department of Medical Neurobiology, Okayama University Medical School kn-affil= affil-num=6 en-affil=Department of Medical Neurobiology, Okayama University Medical School kn-affil= affil-num=7 en-affil=Department of Medical Neurobiology, Okayama University Medical School kn-affil= affil-num=8 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=BADGE kn-keyword=BADGE en-keyword=neurite outgrowth kn-keyword=neurite outgrowth en-keyword=estrogen receptor kn-keyword=estrogen receptor en-keyword=GPER kn-keyword=GPER en-keyword=Hes1 kn-keyword=Hes1 en-keyword=neurogenin-3 kn-keyword=neurogenin-3 END start-ver=1.4 cd-journal=joma no-vol=3 cd-vols= no-issue=4 article-no= start-page=350 end-page=359 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241211 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=N-Phenylphenothiazine Radical Cation with Extended π-Systems: Enhanced Heat Resistance of Triarylamine Radical Cations as Near-Infrared Absorbing Dyes en-subtitle= kn-subtitle= en-abstract= kn-abstract=N-Phenylphenothiazine derivatives extended with various aryl groups were designed and synthesized. These derivatives have bent conformation in crystal and exhibit high solubility. Radical cations obtained by one-electron oxidation of these derivatives gave stable radical cations in solution and showed absorption in the near-infrared region. A radical cation was isolated as a stable salt, which exhibited heat resistance up to around 200 °C. A design strategy for radical cation-based near-infrared absorbing dyes, which are easily oxidized and stable not only as a solution but in solid form, is described. en-copyright= kn-copyright= en-aut-name=YanoMasafumi en-aut-sei=Yano en-aut-mei=Masafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UedaMinami en-aut-sei=Ueda en-aut-mei=Minami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YajimaTatsuo en-aut-sei=Yajima en-aut-mei=Tatsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MitsudoKoichi en-aut-sei=Mitsudo en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KashiwagiYukiyasu en-aut-sei=Kashiwagi en-aut-mei=Yukiyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Faculty of Chemistry, Material and Bioengineering, Kansai University kn-affil= affil-num=2 en-affil=Faculty of Chemistry, Material and Bioengineering, Kansai University kn-affil= affil-num=3 en-affil=Faculty of Chemistry, Material and Bioengineering, Kansai University kn-affil= affil-num=4 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Osaka Research Institute of Industrial Science and Technology kn-affil= en-keyword=triarylamines kn-keyword=triarylamines en-keyword=N-phenylphenothiazine kn-keyword=N-phenylphenothiazine en-keyword=radical cation kn-keyword=radical cation en-keyword=near-infrared absorption kn-keyword=near-infrared absorption END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=1 article-no= start-page=e003250 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Clinical impact of combined assessment of myocardial inflammation and fibrosis using myocardial biopsy in patients with dilated cardiomyopathy: a multicentre, retrospective cohort study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Among patients with dilated cardiomyopathy (DCM), myocardial inflammation and fibrosis are risk factors for poor clinical outcomes. Here, we investigated the combined prognostic value of these two factors, as evaluated using myocardial biopsy samples.
Methods This retrospective and multicentre study included patients with DCM—defined as LVEF of ≤45% and left diastolic diameter of >112% of predicted value, without evidence of secondary or ischaemic cardiomyopathy. In myocardial biopsy samples, inflammatory cells were counted using immunohistochemistry, and Masson’s Trichrome staining was performed to quantify the myocardial fibrosis as collagen area fraction (CAF). Higher myocardial inflammation was defined as leucocytes of ≥14/mm², including ≤4 monocytes/mm², with CD3+ T lymphocytes of≥7/mm². Greater myocardial fibrosis was defined as CAF of>5.9% by the Youden’s index. The primary endpoint was cardiac death or left ventricular assist device implantation.
Results A total of 255 DCM patients were enrolled (average age, 53.1 years; 78% males). Within this cohort, the mean LVEF was 28.0%, mean CAF was 10.7% and median CD3+ cell count was 8.3/mm2. During the median follow-up period of 2688 days, 46 patients met the primary endpoint. Multivariable Cox proportional hazard analyses revealed that CD3+ cell count and CAF were independent determinants of the primary endpoint. Kaplan–Meier analysis showed that patients with both higher myocardial inflammation and greater fibrosis had the worst prognosis (log-rank p<0.001). When myocardial inflammation was graded as one of three degrees: T lymphocytes of <13/mm² (low); 13 of 13.1–23.9/mm² (moderate); and T lymphocytes of ≥24 /mm² (high), patients with moderate inflammation exhibited a superior survival rate when CAF was ≤5.9%, but a worse survival rate when CAF was >5.9%.
Conclusions Having both biopsy-proven higher myocardial inflammation and greater fibrosis predicted the worst clinical prognosis in patients with DCM. en-copyright= kn-copyright= en-aut-name=NakayamaTakafumi en-aut-sei=Nakayama en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OgoKeiko Ohta en-aut-sei=Ogo en-aut-mei=Keiko Ohta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SuganoYasuo en-aut-sei=Sugano en-aut-mei=Yasuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YokokawaTetsuro en-aut-sei=Yokokawa en-aut-mei=Tetsuro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KanamoriHiromitsu en-aut-sei=Kanamori en-aut-mei=Hiromitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IkedaYoshihiko en-aut-sei=Ikeda en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HiroeMichiaki en-aut-sei=Hiroe en-aut-mei=Michiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HatakeyamaKinta en-aut-sei=Hatakeyama en-aut-mei=Kinta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=Ishibashi-UedaHatsue en-aut-sei=Ishibashi-Ueda en-aut-mei=Hatsue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=DohiKaoru en-aut-sei=Dohi en-aut-mei=Kaoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=AnzaiToshihisa en-aut-sei=Anzai en-aut-mei=Toshihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=SeoYoshihiro en-aut-sei=Seo en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=Imanaka-YoshidaKyoko en-aut-sei=Imanaka-Yoshida en-aut-mei=Kyoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Cardiology, Nagoya City University Graduate School of Medical Sciences kn-affil= affil-num=2 en-affil=Department of Pathology, National Cerebral and Cardiovascular Center kn-affil= affil-num=3 en-affil=Department of Cardiology, Keiyu Hospital kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Fukushima Medical University kn-affil= affil-num=5 en-affil=Department of Cardiology, Gifu University Graduate School of Medicine kn-affil= affil-num=6 en-affil=Department of Pathology, National Cerebral and Cardiovascular Center kn-affil= affil-num=7 en-affil=Department of Cardiology, National Center for Global Health and Medicine kn-affil= affil-num=8 en-affil=Department of Pathology, National Cerebral and Cardiovascular Center kn-affil= affil-num=9 en-affil=Department of Pathology, National Cerebral and Cardiovascular Center kn-affil= affil-num=10 en-affil=Center for Advanced Heart Failure, Okayama University Hospital kn-affil= affil-num=11 en-affil=Department of Cardiology and Nephrology, Mie University Graduate School of Medicine kn-affil= affil-num=12 en-affil=Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine kn-affil= affil-num=13 en-affil=Department of Cardiology, Nagoya City University Graduate School of Medical Sciences kn-affil= affil-num=14 en-affil=Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine kn-affil= END start-ver=1.4 cd-journal=joma no-vol=56 cd-vols= no-issue=1 article-no= start-page=64 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250527 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Evaluating a discretized data acquisition method for couch modeling to streamline the commissioning process of radiological instruments en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background The commissioning of radiotherapy treatment planning system (RTPS) involves many time-consuming tests to maintain consistency between actual and planned dose. As the number of new technologies and peripheral devices increases year by year, there is a need for time-efficient and accurate commissioning of radiation therapy equipment. Couch modeling is one type of commissioning, and there are no recommended values for CT due to differences in equipment calibration between facilities. This study evaluated the optimal electron density (ED) for the couch using discretized gantry angles.
Results All discrete-angle groups showed a high correlation between the surface ED and dose difference between the actual and planned doses (|r|> 0.9). AcurosXB did not demonstrate a significant correlation between dose differences and each energy. For a small number of discretized gantry groups, the optimal couch modeling results revealed several combinations of surface and interior ED with the same score. Upon adding all couch thickness scores, all energy scores, and both algorithm scores, the optimal surface and interior EDs with the highest score across all couch thicknesses were 0.4 and 0.07, respectively.
Conclusions The optimal couch surface ED dose difference trend was identified, and the effectiveness indicated using the dose difference score from discrete-angle couch modeling. Using this method, couch modeling can be evaluated in a highly precise and quick manner, which helps in the commissioning of complicated linear accelerator and radiological treatment plans. en-copyright= kn-copyright= en-aut-name=TomimotoSyouta en-aut-sei=Tomimoto en-aut-mei=Syouta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SaekiYusuke en-aut-sei=Saeki en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MotodaOkihiro en-aut-sei=Motoda en-aut-mei=Okihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TanakaMasato en-aut-sei=Tanaka en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TsumotoSyouki en-aut-sei=Tsumoto en-aut-mei=Syouki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NishikawaHana en-aut-sei=Nishikawa en-aut-mei=Hana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MiyashimaYuki en-aut-sei=Miyashima en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HiguchiMakiko en-aut-sei=Higuchi en-aut-mei=Makiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TaniTadashi en-aut-sei=Tani en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KatsuiKuniaki en-aut-sei=Katsui en-aut-mei=Kuniaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TanabeYoshinori en-aut-sei=Tanabe en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Radiological Technology, Faculty of Medicine, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Radiological Technology, Kawasaki Medical School Hospital kn-affil= affil-num=3 en-affil=Department of Radiological Technology, Kawasaki Medical School Hospital kn-affil= affil-num=4 en-affil=Department of Radiological Technology, Kawasaki Medical School Hospital kn-affil= affil-num=5 en-affil=Department of Radiological Technology, Faculty of Medicine, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Radiological Technology, Faculty of Medicine, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Radiological Technology, Kawasaki Medical School Hospital kn-affil= affil-num=8 en-affil=Department of Radiological Technology, Kawasaki Medical School Hospital kn-affil= affil-num=9 en-affil=Department of Radiological Technology, Kawasaki Medical School Hospital kn-affil= affil-num=10 en-affil=Department of Radiology, Kawasaki Medical School kn-affil= affil-num=11 en-affil=Department of Radiological Technology, Faculty of Medicine, Graduate School of Health Sciences, Okayama University kn-affil= en-keyword=Couch modeling kn-keyword=Couch modeling en-keyword=Commissioning kn-keyword=Commissioning en-keyword=Attenuation of couch kn-keyword=Attenuation of couch en-keyword=Linear accelerator kn-keyword=Linear accelerator en-keyword=Radiotherapy planning system kn-keyword=Radiotherapy planning system END start-ver=1.4 cd-journal=joma no-vol=5 cd-vols= no-issue=2 article-no= start-page=606 end-page=617 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250130 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Mechanistic Insights Into Oxidative Response of Heat Shock Factor 1 Condensates en-subtitle= kn-subtitle= en-abstract= kn-abstract=Heat shock factor 1 (Hsf1), a hub protein in the stress response and cell fate decisions, senses the strength, type, and duration of stress to balance cell survival and death through an unknown mechanism. Recently, changes in the physical property of Hsf1 condensates due to persistent stress have been suggested to trigger apoptosis, highlighting the importance of biological phase separation and transition in cell fate decisions. In this study, the mechanism underlying Hsf1 droplet formation and oxidative response was investigated through 3D refractive index imaging of the internal architecture, corroborated by molecular dynamics simulations and biophysical/biochemical experiments. We found that, in response to oxidative conditions, Hsf1 formed liquid condensates that suppressed its internal mobility. Furthermore, these conditions triggered the hyper-oligomerization of Hsf1, mediated by disulfide bonds and secondary structure stabilization, leading to the formation of dense core particles in the Hsf1 droplet. Collectively, these data demonstrate how the physical property of Hsf1 condensates undergoes an oxidative transition by sensing redox conditions to potentially drive cell fate decisions. en-copyright= kn-copyright= en-aut-name=KawagoeSoichiro en-aut-sei=Kawagoe en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsusakiMotonori en-aut-sei=Matsusaki en-aut-mei=Motonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MabuchiTakuya en-aut-sei=Mabuchi en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OgasawaraYuto en-aut-sei=Ogasawara en-aut-mei=Yuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WatanabeKazunori en-aut-sei=Watanabe en-aut-mei=Kazunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IshimoriKoichiro en-aut-sei=Ishimori en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SaioTomohide en-aut-sei=Saio en-aut-mei=Tomohide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Institute of Advanced Medical Sciences, Tokushima University kn-affil= affil-num=2 en-affil=Institute of Advanced Medical Sciences, Tokushima University kn-affil= affil-num=3 en-affil=Frontier Research Institute for Interdisciplinary Sciences, Tohoku University kn-affil= affil-num=4 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=5 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=6 en-affil=Department of Chemistry, Faculty of Science, Hokkaido University kn-affil= affil-num=7 en-affil=Institute of Advanced Medical Sciences, Tokushima University kn-affil= en-keyword=heat shock factor 1 kn-keyword=heat shock factor 1 en-keyword=oxidative hyper-oligomerization kn-keyword=oxidative hyper-oligomerization en-keyword=biological phase transition kn-keyword=biological phase transition en-keyword=stress response kn-keyword=stress response en-keyword=biophysics kn-keyword=biophysics END start-ver=1.4 cd-journal=joma no-vol=64 cd-vols= no-issue=15 article-no= start-page=2290 end-page=2294 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Clinical and Genetic Analyses of SPG7 in Japanese Patients with Undiagnosed Ataxia en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objective Spastic paraplegia 7 (SPG7) is an autosomal recessive neurodegenerative disorder caused by biallelic pathogenic variants in SPG7. It is predominantly characterized by adult-onset slowly progressive spastic paraparesis. While SPG7 presenting with ataxia with or without spasticity is relatively common in Europe and North America, it is considered rare in Japan. This study aimed to identify SPG7 patients among those with undiagnosed ataxia within the Japanese population.
Methods We retrospectively selected 351 patients with undiagnosed ataxia, excluding those with secondary and common spinocerebellar ataxia. Whole-exome sequence analysis was conducted, and homozygosity of the identified variants was confirmed using droplet digital polymerase chain reaction (ddPCR).
Results Among the 351 patients, 2 were diagnosed with SPG7, and homozygosity was confirmed by ddPCR. Both patients carried homozygous pathogenic variants in SPG7: c.1948G>A, p.Asp650Asn, and c.1192C>T, p.Arg398Ter (NM_003119.4). Clinically, both patients presented with progressive ataxia. In addition, Patient 1 exhibited partial ophthalmoplegia and spastic paraparesis, whereas Patient 2 demonstrated cerebellar ataxia without spasticity.
Conclusion The rarity of SPG7 in Japan may be attributed to variation in the minor allele frequency of the c.1529C>T, p.Ala510Val variant, which is more prevalent in Europe and North America than in other areas. en-copyright= kn-copyright= en-aut-name=MitsutakeAkihiko en-aut-sei=Mitsutake en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsukawaTakashi en-aut-sei=Matsukawa en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HinoRimi en-aut-sei=Hino en-aut-mei=Rimi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FujinoGo en-aut-sei=Fujino en-aut-mei=Go kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SakaiYuto en-aut-sei=Sakai en-aut-mei=Yuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MitsuiJun en-aut-sei=Mitsui en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IshiuraHiroyuki en-aut-sei=Ishiura en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=K. IwataNobue en-aut-sei=K. Iwata en-aut-mei=Nobue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TsujiShoji en-aut-sei=Tsuji en-aut-mei=Shoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TodaTatsushi en-aut-sei=Toda en-aut-mei=Tatsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=2 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=3 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=4 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=5 en-affil=Department of Neurology, International University of Health and Welfare Mita Hospital kn-affil= affil-num=6 en-affil=Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=7 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Neurology, International University of Health and Welfare Mita Hospital kn-affil= affil-num=9 en-affil=Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=10 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= en-keyword=cerebellar ataxia kn-keyword=cerebellar ataxia en-keyword=spastic paraparesis kn-keyword=spastic paraparesis en-keyword=whole-exome sequence analysis kn-keyword=whole-exome sequence analysis en-keyword=SPG7 kn-keyword=SPG7 END start-ver=1.4 cd-journal=joma no-vol=156 cd-vols= no-issue=2 article-no= start-page=151 end-page=159.e1 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202502 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The greater palatine nerve and artery both supply the maxillary teeth en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background. It is generally accepted that the greater palatine nerve and artery supply the palatal mucosa, gingiva, and glands, but not the bone or tooth adjacent to those tissues. When the bony palate is observed closely, multiple small foramina are seen on the palatal surface of the alveolar process. The authors hypothesized that the greater palatine nerve and artery might supply the maxillary teeth via the foramina on the palatal surface of the alveolar process and the superior alveolar nerve and artery. The authors aimed to investigate the palatal innervation and blood supply of the maxillary teeth.
Methods. Eight cadaveric maxillae containing most teeth or alveolar sockets were selected. The mean age at the time of death was 82.4 years. The samples were examined with colored water injection, latex injection, microcomputed tomography with contrast dye, gross anatomic dissection, and histologic observation.
Results. Through both injection studies and microcomputed tomographic analysis, the authors found that the small foramina on and around the greater palatine groove connected to the alveolar process and tooth sockets. The small foramina in the greater palatine and incisive canal also continued inside the alveolar process and the tooth sockets.
Conclusions. The alveolar branches of the greater palatine nerve and artery as well as the nasopalatine nerve and sphenopalatine artery supply maxillary teeth, alveolar bone, and periodontal tissue via the palatal alveolar foramina with superior alveolar nerves and arteries.
Practical Implications. This knowledge is essential for dentists when administering local anesthetic to the maxillary teeth and performing an osteotomy. Anatomic and dental textbooks should be updated with this new knowledge for better patient care. en-copyright= kn-copyright= en-aut-name=IwanagaJoe en-aut-sei=Iwanaga en-aut-mei=Joe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakeshitaYohei en-aut-sei=Takeshita en-aut-mei=Yohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AnbalaganMuralidharan en-aut-sei=Anbalagan en-aut-mei=Muralidharan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ZouBinghao en-aut-sei=Zou en-aut-mei=Binghao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ToriumiTaku en-aut-sei=Toriumi en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KunisadaYuki en-aut-sei=Kunisada en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IbaragiSoichiro en-aut-sei=Ibaragi en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TubbsR. Shane en-aut-sei=Tubbs en-aut-mei=R. Shane kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Division of Gross and Clinical Anatomy, Department of Anatomy, School of Medicine, Kurume University kn-affil= affil-num=2 en-affil=Department of Oral and Maxillofacial Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Structural and Cellular Biology, School of Medicine, Tulane University kn-affil= affil-num=4 en-affil=Department of Structural and Cellular Biology, School of Medicine, Tulane University kn-affil= affil-num=5 en-affil=Department of Anatomy, School of Life Dentistry at Niigata, The Nippon Dental University kn-affil= affil-num=6 en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=University of Queensland kn-affil= en-keyword=Maxillary teeth kn-keyword=Maxillary teeth en-keyword=dental pulp kn-keyword=dental pulp en-keyword=anatomy kn-keyword=anatomy en-keyword=nerve block kn-keyword=nerve block en-keyword=root canal treatment kn-keyword=root canal treatment en-keyword=cadaver kn-keyword=cadaver END start-ver=1.4 cd-journal=joma no-vol=60 cd-vols= no-issue=10 article-no= start-page=1151 end-page=1159 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202412 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=NCF-1 plays a pivotal role in the survival of adenocarcinoma cells of pancreatic and gastric origins en-subtitle= kn-subtitle= en-abstract= kn-abstract=Reactive oxygen species (ROS) play a pivotal biological role in cells, with ROS function differing depending on cellular conditions and the extracellular environment. Notably, ROS act as cytotoxic factors to eliminate infectious pathogens or promote cell death under cellular stress, while also facilitating cell growth (via ROS-sensing pathways) by modifying gene expression. Among ROS-related genes, neutrophil cytosolic factor-1 (NCF-1; p47phox) was identified as a ROS generator in neutrophils. This product is a subunit of a cytosolic NADPH oxidase complex activated in response to pathogens such as bacteria and viruses. NCF-1 has been examined primarily in terms of ROS-production pathways in macrophages and neutrophils; however, the expression of this protein and its biological role in cancer cells remain unclear. Here, we report expression of NCF-1 in pancreatic and gastric cancers, and demonstrate its biological significance in these tumor cells. Abundant expression of NCF-1 was observed in pancreatic adenocarcinoma (PDAC) lines and in patient tissues, as well as in gastric adenocarcinomas. Accumulation of the protein was also detected in the invasive/metastatic foci of these tumors. Unexpectedly, BxPC-3 underwent apoptotic cell death when transfected with a small interfering RNA (siRNA) specific to NCF-1, whereas the cells treated with a control siRNA proliferated in a time-dependent manner. A similar phenomenon was observed in HSC-58, a poorly differentiated gastric adenocarcinoma line. Consequently, the tumor cells highly expressing NCF-1 obtained coincident accumulation of ROS and reduced glutathione (GSH) with expression of glutathione peroxidase 4 (GPX4), a quencher involved in ferroptosis. Unlike the conventional role of ROS as a representative cytotoxic factor, these findings suggest that NCF-1-mediated ROS generation may be required for expansive growth of PDAC and gastric cancers. en-copyright= kn-copyright= en-aut-name=Furuya-IkudeChiemi en-aut-sei=Furuya-Ikude en-aut-mei=Chiemi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KittaAkane en-aut-sei=Kitta en-aut-mei=Akane kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TomonobuNaoko en-aut-sei=Tomonobu en-aut-mei=Naoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KawasakiYoshihiro en-aut-sei=Kawasaki en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SakaguchiMasakiyo en-aut-sei=Sakaguchi en-aut-mei=Masakiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KondoEisaku en-aut-sei=Kondo en-aut-mei=Eisaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Division of Tumor Pathology, NIR-PIT Research Institute, Kansai Medical University kn-affil= affil-num=2 en-affil=Division of Tumor Pathology, NIR-PIT Research Institute, Kansai Medical University kn-affil= affil-num=3 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Division of Tumor Pathology, NIR-PIT Research Institute, Kansai Medical University kn-affil= affil-num=5 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Division of Tumor Pathology, NIR-PIT Research Institute, Kansai Medical University kn-affil= en-keyword=NCF-1 (p47phox) kn-keyword=NCF-1 (p47phox) en-keyword=ROS kn-keyword=ROS en-keyword=Cancer kn-keyword=Cancer en-keyword=Tumor growth kn-keyword=Tumor growth en-keyword=Apoptosis kn-keyword=Apoptosis END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=2 article-no= start-page=373 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250205 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Asia-Pacific Body Mass Index Classification and New-Onset Chronic Kidney Disease in Non-Diabetic Japanese Adults: A Community-Based Longitudinal Study from 1998 to 2023 en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/Objectives: Obesity is a risk factor for chronic kidney disease (CKD) in Asians. The Asia-Pacific body mass index (BMI) classification sets lower obesity cutoffs than the conventional BMI classification for all races, generally reflecting the lower BMIs in Asians. This longitudinal study evaluated the association between BMI, as classified by the Asia-Pacific BMI system, and CKD development in non-diabetic Asian adults. Methods: A population-based longitudinal study (1998–2023) was conducted in non-diabetic Japanese adults (hemoglobin A1c < 6.5%) in Zentsuji City (Kagawa Prefecture, Japan). The generalized gamma model was used to assess the relationship between time-varying BMI categories and CKD development, stratified by sex. CKD was defined as an estimated glomerular filtration rate of <60 mL/min/1.73 m2. BMI was calculated as weight (kg) divided by the square of height (m2) and categorized per the Asia-Pacific classification as overweight (23.0–24.9 kg/m2), obesity class I (25.0–29.9 kg/m2), and obesity class II (≥30.0 kg/m2). Results: CKD developed in 34.2% of 3098 men and 34.8% of 4391 women. The mean follow-up times were 7.41 years for men and 8.25 years for women. During follow-up, the BMI distributions for men were 5.0% underweight, 43.3% normal weight, 25.6% overweight, 24.1% obesity class I, and 2.0% obesity class II; those for women were 7.7%, 50.5%, 20.5%, 18.3%, and 2.9%, respectively. Compared with normal weight, obesity class I was associated with a 6% (95% confidence interval [CI]: 2–10%) shorter time to CKD onset in men and 5% (95% CI: 2–7%) in women. In both sexes, obesity class II showed shorter survival times than normal weight by point estimates, although all 95% CIs crossed the null value. Conclusions: Obesity, as classified by the Asia-Pacific BMI system, shortened the time to CKD onset in non-diabetic Asians. The conventional BMI cutoff for obesity (≥30.0 kg/m2) may be too high to identify CKD risk in this population. The findings of this study may be useful for public health professionals in designing interventions to prevent CKD. en-copyright= kn-copyright= en-aut-name=OkawaYukari en-aut-sei=Okawa en-aut-mei=Yukari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MitsuhashiToshiharu en-aut-sei=Mitsuhashi en-aut-mei=Toshiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TsudaToshihide en-aut-sei=Tsuda en-aut-mei=Toshihide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Public Health and Welfare, Zentsuji City Hall kn-affil= affil-num=2 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=3 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=body mass index kn-keyword=body mass index en-keyword=chronic kidney disease kn-keyword=chronic kidney disease en-keyword=East Asian kn-keyword=East Asian en-keyword=longitudinal studies kn-keyword=longitudinal studies en-keyword=risk factors kn-keyword=risk factors END start-ver=1.4 cd-journal=joma no-vol=472 cd-vols= no-issue= article-no= start-page=123486 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202505 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Clinical, neuroimaging and genetic findings in the Japanese case series of CLCN2-related leukoencephalopathy en-subtitle= kn-subtitle= en-abstract= kn-abstract=Biallelic loss-of-function variants in CLCN2 lead to CLCN2-related leukoencephalopathy (CC2L), also called leukoencephalopathy with ataxia (LKPAT). CC2L is characterized clinically by a spectrum of clinical presentations including childhood- to adult-onset mild ataxia, spasticity, cognitive decline, and vision loss as well as typical MRI findings of symmetrical high signal intensities on the DWIs/T2WIs of the middle cerebellar peduncles (MCPs). We searched for pathogenic variants of CLCN2 in a case series of undiagnosed leukoencephalopathy accompanied by MCP signs, which led to the identification of four Japanese patients with CC2L. All the patients carried at least one allele of c.61dupC (p.Leu21Profs*27) in CLCN2, including compound heterozygosity with either the novel pathogenic variant c.983 + 2 T > A or the previously reported pathogenic variant c.1828C > T (p.Arg610*). Of note, all the four previously reported cases from Japan also harbored c.61dupC, and no reports of this variant have been documented from outside Japan. The allele frequency of c.61dupC in the Japanese population is 0.002152, raising the possibility of a relatively high prevalence of CC2L in Japan. Patients in this study developed symptoms after the age of 30, and demonstrated neurological signs including cerebellar ataxia, pyramidal signs, and mild cognitive impairment, consistent with previous reports. One male patient had two children, supporting preserved fertility, and another patient had calcifications in the cerebral and cerebellar surfaces. These findings provide valuable insights into the broader clinical and genetic spectra of CC2L in the Japanese population, and emphasize the importance of considering this disease in the differential diagnoses of leukoencephalopathy with MCP signs. en-copyright= kn-copyright= en-aut-name=OrimoKenta en-aut-sei=Orimo en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsukawaTakashi en-aut-sei=Matsukawa en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MitsutakeAkihiko en-aut-sei=Mitsutake en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ChoTakusei en-aut-sei=Cho en-aut-mei=Takusei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NaruseHiroya en-aut-sei=Naruse en-aut-mei=Hiroya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SakiyamaYoshio en-aut-sei=Sakiyama en-aut-mei=Yoshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SumiKensho en-aut-sei=Sumi en-aut-mei=Kensho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=UchioNaohiro en-aut-sei=Uchio en-aut-mei=Naohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SatakeAkane en-aut-sei=Satake en-aut-mei=Akane kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TakiyamaYoshihisa en-aut-sei=Takiyama en-aut-mei=Yoshihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MatsushitaTakuya en-aut-sei=Matsushita en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=OmaeYosuke en-aut-sei=Omae en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KawaiYosuke en-aut-sei=Kawai en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=TokunagaKatsushi en-aut-sei=Tokunaga en-aut-mei=Katsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=MitsuiJun en-aut-sei=Mitsui en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=IshiuraHiroyuki en-aut-sei=Ishiura en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=TsujiShoji en-aut-sei=Tsuji en-aut-mei=Shoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=TodaTatsushi en-aut-sei=Toda en-aut-mei=Tatsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= affil-num=1 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=2 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=3 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=4 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=5 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=6 en-affil=Division of Neurology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University kn-affil= affil-num=7 en-affil=Department of Neurology, Mitsui Memorial Hospital kn-affil= affil-num=8 en-affil=Department of Neurology, Mitsui Memorial Hospital kn-affil= affil-num=9 en-affil=Department of Neurology, Fuefuki Central Hospital kn-affil= affil-num=10 en-affil=Department of Neurology, Fuefuki Central Hospital kn-affil= affil-num=11 en-affil=Department of Neurology, Kochi Medical School, Kochi University kn-affil= affil-num=12 en-affil=Genome Medical Science Project, National Center for Global Health and Medicine kn-affil= affil-num=13 en-affil=Genome Medical Science Project, National Center for Global Health and Medicine kn-affil= affil-num=14 en-affil=Genome Medical Science Project, National Center for Global Health and Medicine kn-affil= affil-num=15 en-affil=Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=16 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=17 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=18 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= en-keyword=Leukodystrophy kn-keyword=Leukodystrophy en-keyword=CC2L kn-keyword=CC2L en-keyword=CLCN2 kn-keyword=CLCN2 en-keyword=MCP sign kn-keyword=MCP sign END start-ver=1.4 cd-journal=joma no-vol=39 cd-vols= no-issue=12 article-no= start-page=2664 end-page=2671 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241014 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Long‐term outcomes of endoscopic resection of superficial esophageal squamous cell carcinoma in late‐elderly patients en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background and Aim: As the population ages, the number of elderly patients with superficial esophageal squamous cell carcinoma (ESCC) is increasing. We aimed to clarify the indications for endoscopic resection (ER) in late-elderly patients with ESCC in terms of life expectancy.
Methods: Patients aged ≥75 years who underwent ER for ESCC at our institution from January 2005 to December 2018 were enrolled. Clinical data, including the Eastern Cooperative Oncology Group performance status, American Society of Anesthesiologists physical status (ASA-PS), Charlson comorbidity index, and prognostic nutritional index (PNI), were collected at the time of ER. The main outcome measure was overall survival (OS).
Results: Two hundred eight consecutive patients were enrolled. The patients' median age was 78 years (range, 75–89 years). The 5-year follow-up rate was 88.5% (median follow-up period, 6.6 years). The 5-year OS rate was 79.2% (95% confidence interval [CI], 72.2–84.8), and 5-year net survival standardized for age, sex, and calendar year was 1.04 (95% CI, 0.98–1.09). In the multivariate analysis, an ASA-PS of 3 (hazard ratio, 2.45; 95% CI, 1.16–5.17) and PNI of <44.0 (hazard ratio, 2.73; 95% CI, 1.38–5.40) were independent prognostic factors. When neither of these factors was met, the 5-year OS rate was 87.8% (95% CI, 80.0–92.9), and 5-year net survival was 1.08 (95% CI, 1.02–1.14).
Conclusions: ER for ESCC in late-elderly patients may improve life expectancy. ER is recommended in patients with a good ASA-PS and PNI. en-copyright= kn-copyright= en-aut-name=MatsuedaKatsunori en-aut-sei=Matsueda en-aut-mei=Katsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawanoSeiji en-aut-sei=Kawano en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FukuiKeisuke en-aut-sei=Fukui en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HirataShoichiro en-aut-sei=Hirata en-aut-mei=Shoichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SatomiTakuya en-aut-sei=Satomi en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=InooShoko en-aut-sei=Inoo en-aut-mei=Shoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HamadaKenta en-aut-sei=Hamada en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KonoYoshiyasu en-aut-sei=Kono en-aut-mei=Yoshiyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IwamuroMasaya en-aut-sei=Iwamuro en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KawaharaYoshiro en-aut-sei=Kawahara en-aut-mei=Yoshiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OtsukaMotoyuki en-aut-sei=Otsuka en-aut-mei=Motoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=3 en-affil=Faculty of Societal Safety Sciences, Kansai University kn-affil= affil-num=4 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=10 en-affil=Department of Practical Gastrointestinal Endoscopy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= en-keyword=endoscopic resection kn-keyword=endoscopic resection en-keyword=esophageal cancer kn-keyword=esophageal cancer en-keyword=late-elderly patient kn-keyword=late-elderly patient en-keyword=long-term outcome kn-keyword=long-term outcome END start-ver=1.4 cd-journal=joma no-vol=4 cd-vols= no-issue=1 article-no= start-page=e261 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230703 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Alcohol consumption, multiple Lugol‐voiding lesions, and field cancerization en-subtitle= kn-subtitle= en-abstract= kn-abstract=The development of multiple squamous cell carcinomas (SCC) in the upper aerodigestive tract, which includes the oral cavity, pharynx, larynx, and esophagus, is explained by field cancerization and is associated with alcohol consumption and cigarette smoking. We reviewed the association between alcohol consumption, multiple Lugol-voiding lesions, and field cancerization, mainly based on the Japan Esophageal Cohort study. The Japan Esophageal Cohort study is a prospective cohort study that enrolled patients with esophageal SCC after endoscopic resection. Enrolled patients received surveillance by gastrointestinal endoscopy every 6 months and surveillance by an otolaryngologist every 12 months. The Japan Esophageal Cohort study showed that esophageal SCC and head and neck SCC that developed after endoscopic resection for esophageal SCC were associated with genetic polymorphisms related to alcohol metabolism. They were also associated with Lugol-voiding lesions grade in the background esophageal mucosa, the score of the health risk appraisal model for predicting the risk of esophageal SCC, macrocytosis, and score on alcohol use disorders identification test. The standardized incidence ratio of head and neck SCC in patients with esophageal SCC after endoscopic resection was extremely high compared to the general population. Drinking and smoking cessation is strongly recommended to reduce the risk of metachronous esophageal SCC after treatment of esophageal SCC. Risk factors for field cancerization provide opportunities for early diagnosis and minimally invasive treatment. Lifestyle guidance of alcohol consumption and cigarette smoking for esophageal precancerous conditions, which are endoscopically visualized as multiple Lugol-voiding lesions, may play a pivotal role in decreasing the incidence and mortality of esophageal SCC. en-copyright= kn-copyright= en-aut-name=KatadaChikatoshi en-aut-sei=Katada en-aut-mei=Chikatoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YokoyamaTetsuji en-aut-sei=Yokoyama en-aut-mei=Tetsuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YanoTomonori en-aut-sei=Yano en-aut-mei=Tomonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SuzukiHaruhisa en-aut-sei=Suzuki en-aut-mei=Haruhisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FurueYasuaki en-aut-sei=Furue en-aut-mei=Yasuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamamotoKeiko en-aut-sei=Yamamoto en-aut-mei=Keiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=DoyamaHisashi en-aut-sei=Doyama en-aut-mei=Hisashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KoikeTomoyuki en-aut-sei=Koike en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TamaokiMasashi en-aut-sei=Tamaoki en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KawataNoboru en-aut-sei=Kawata en-aut-mei=Noboru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=HiraoMotohiro en-aut-sei=Hirao en-aut-mei=Motohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KawaharaYoshiro en-aut-sei=Kawahara en-aut-mei=Yoshiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=OgataTakashi en-aut-sei=Ogata en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KatagiriAtsushi en-aut-sei=Katagiri en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=YamanouchiTakenori en-aut-sei=Yamanouchi en-aut-mei=Takenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=KiyokawaHirofumi en-aut-sei=Kiyokawa en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=KawakuboHirofumi en-aut-sei=Kawakubo en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=KonnoMaki en-aut-sei=Konno en-aut-mei=Maki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=YokoyamaAkira en-aut-sei=Yokoyama en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=OhashiShinya en-aut-sei=Ohashi en-aut-mei=Shinya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=KondoYuki en-aut-sei=Kondo en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=KishimotoYo en-aut-sei=Kishimoto en-aut-mei=Yo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=KanoKoichi en-aut-sei=Kano en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=MureKanae en-aut-sei=Mure en-aut-mei=Kanae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=HayashiRyuichi en-aut-sei=Hayashi en-aut-mei=Ryuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=IshikawaHideki en-aut-sei=Ishikawa en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=YokoyamaAkira en-aut-sei=Yokoyama en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=MutoManabu en-aut-sei=Muto en-aut-mei=Manabu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= affil-num=1 en-affil=Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University kn-affil= affil-num=2 en-affil=Department of Health and Promotion, National Institute of Public Health kn-affil= affil-num=3 en-affil=Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East kn-affil= affil-num=4 en-affil=Endoscopy Division, National Cancer Center Hospital kn-affil= affil-num=5 en-affil=Department of Gastroenterology, Kitasato University School of Medicine kn-affil= affil-num=6 en-affil=Division of Endoscopy, Hokkaido University Hospital kn-affil= affil-num=7 en-affil=Department of Gastroenterology, Ishikawa Prefectural Central Hospital kn-affil= affil-num=8 en-affil=Division of Gastroenterology, Tohoku University Graduate School of Medicine kn-affil= affil-num=9 en-affil=Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University kn-affil= affil-num=10 en-affil=Division of Endoscopy, Shizuoka Cancer Center kn-affil= affil-num=11 en-affil=Department of Surgery, National Hospital Organization Osaka National Hospital kn-affil= affil-num=12 en-affil=Department of Practical Gastrointestinal Endoscopy, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Department of Gastroenterology, Kanagawa Cancer Center kn-affil= affil-num=14 en-affil=Department of Medicine, Division of Gastroenterology, Showa University Hospital kn-affil= affil-num=15 en-affil=Department of Gastroenterology, Kumamoto Regional Medical Center kn-affil= affil-num=16 en-affil=Division of Gastroenterology, Department of Internal Medicine, St. Marianna University School of Medicine kn-affil= affil-num=17 en-affil=Department of Surgery, Kawasaki Municipal Kawasaki Hospital kn-affil= affil-num=18 en-affil=Department of Gastroenterology, Tochigi Cancer Center kn-affil= affil-num=19 en-affil=Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University kn-affil= affil-num=20 en-affil=Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University kn-affil= affil-num=21 en-affil=Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University kn-affil= affil-num=22 en-affil=Department of Otolaryngology-Head and Neck Surgery, Kyoto University Hospital kn-affil= affil-num=23 en-affil=Department of Otorhinolaryngology-Head and Neck Surgery, Kitasato University School of Medicine kn-affil= affil-num=24 en-affil=Department of Public Health, Wakayama Medical University School of Medicine kn-affil= affil-num=25 en-affil=Department of Head and Neck Surgery, National Cancer Center Hospital East kn-affil= affil-num=26 en-affil=Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine kn-affil= affil-num=27 en-affil=Clinical Research Unit, National Hospital Organization Kurihama Medical and Addiction Center kn-affil= affil-num=28 en-affil=Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University kn-affil= en-keyword=alcohol kn-keyword=alcohol en-keyword=esophageal cancer kn-keyword=esophageal cancer en-keyword=field cancerization kn-keyword=field cancerization en-keyword=head and neck cancer kn-keyword=head and neck cancer en-keyword=JEC study kn-keyword=JEC study END start-ver=1.4 cd-journal=joma no-vol=52 cd-vols= no-issue=8 article-no= start-page=e18026 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202508 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Commissioning of respiratory‐gated 4D dynamic dose calculations for various gating widths without spot timestamp in proton pencil beam scanning en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Proton pencil beam scanning (PBS) is susceptible to dose degradation because of interplay effects on moving targets. For cases of unacceptable motion, respiratory-gated (RG) irradiation is an effective alternative to free breathing (FB) irradiation. However, the introduction of RG irradiation with larger gate widths (GW) is hindered by interplay effects, which are analogous to those observed with FB irradiation. Accurate estimation of interplay effects can be performed by recording spot timestamps. However, our machine lacks this feature, making it imperative to find an alternative approach. Thus, we developed an RG 4-dimensional dynamic dose (RG-4DDD) system without spot timestamps.
Purpose: This study aimed to investigate the accuracy of calculated doses from the RG-4DDD system for PBS plans with varying breathing curves, amplitudes, and periods for 10%–50% GW.
Methods: RG-4DDDs were reconstructed using in-house developed software that assigned timestamps to individual spots, integrated start times for spills with breathing curves, and utilized deformable registrations for dose accumulation. Three cubic verification plans were created using a heterogeneous phantom. Additionally, typical liver and lung cases were employed for patient plan validation. Single- and multi-field-optimized (SFO and IMPT) plans (ten beams in total) were created for the liver and lung cases in a homogeneous phantom. Lateral profile measurements were obtained under both motion and no-motion conditions using a 2D ionization chamber array (2D-array) and EBT3 Gafchromic films on the CIRS dynamic platform. Breathing curves from the cubic plans were used to assess nine patterns of sine curves, with amplitudes of 5.0–10.0 mm (10.0–20.0 mm target motions) and periods of 3–6 sec. Patient field verifications were conducted using a representative patient curve with an average amplitude of 6.4 mm and period of 3.2 sec. Additional simulations were performed assuming a ± 10% change in assigned timestamps for the dose rate (DR), spot spill (0.08-s), and gate time delay (0.1-s) to evaluate the effect of parameter selection on our 4DDD models. The 4DDDs were compared with measured values using the 2D gamma index and absolute doses over that required for dosing 95% of the target.
Results: The 2D-array measurements showed that average gamma scores for the reference (no motion) and 4DDD plans for all GWs were at least 99.9 ± 0.2% and 98.2 ± 2.4% at 3%/3 mm, respectively. The gamma scores of the 4DDDs in film measurements exceeded 95.4% and 92.9% at 2%/2 mm for the cubic and patient plans, respectively. The 4DDD calculations were acceptable under DR changes of ±10% and both spill and gate time delays of ±0.18 sec. For the 4DDD plan using all GWs for all measurement points, the absolute point differences for all validation plans were within ±5.0% for 99.1% of the points.
Conclusions: The RG-4DDD calculations (less than 50% GW) of the heterogeneous and actual patient plans showed good agreement with measurements for various breathing curves in the amplitudes and periods described above. The proposed system allows us to evaluate actual RG irradiation without requiring the ability to record spot timestamps. en-copyright= kn-copyright= en-aut-name=TominagaYuki en-aut-sei=Tominaga en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WakisakaYushi en-aut-sei=Wakisaka en-aut-mei=Yushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KatoTakahiro en-aut-sei=Kato en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IchiharaMasaya en-aut-sei=Ichihara en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YasuiKeisuke en-aut-sei=Yasui en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SasakiMotoharu en-aut-sei=Sasaki en-aut-mei=Motoharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OitaMasataka en-aut-sei=Oita en-aut-mei=Masataka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NishioTeiji en-aut-sei=Nishio en-aut-mei=Teiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Radiotherapy, Medical Co. Hakuhokai, Osaka Proton Therapy Clinic kn-affil= affil-num=2 en-affil=Department of Radiotherapy, Medical Co. Hakuhokai, Osaka Proton Therapy Clinic kn-affil= affil-num=3 en-affil=Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University kn-affil= affil-num=4 en-affil=Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, The University of Osaka kn-affil= affil-num=5 en-affil=School of Medical Sciences, Fujita Health University kn-affil= affil-num=6 en-affil=Graduate School of Biomedical Sciences, Tokushima University kn-affil= affil-num=7 en-affil=Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=8 en-affil=Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, The University of Osaka kn-affil= en-keyword=4D dynamic dose kn-keyword=4D dynamic dose en-keyword=interplay effect kn-keyword=interplay effect en-keyword=pencil beam scanning kn-keyword=pencil beam scanning en-keyword=proton therapy kn-keyword=proton therapy en-keyword=respiratory gating kn-keyword=respiratory gating END start-ver=1.4 cd-journal=joma no-vol=238 cd-vols= no-issue= article-no= start-page=113243 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2026 dt-pub=202601 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Bone-enhanced high contrast X-ray images derived from attenuation estimation related to ultra-low energy X-rays – An application of an energy-resolving photon-counting detector (ERPCD) en-subtitle= kn-subtitle= en-abstract= kn-abstract=Purpose: X-ray diagnosis in medicine is often used for bone diagnosis based on qualitative observation analysis. However, there are often cases where the contrast of bones is reduced because of the existence of soft-tissues, making it difficult to accurately diagnose the bone conditions. Although the algorithm for bone extraction images was proposed using an energy-resolving photon-counting detector (ERPCD), this algorithm can depict “one” bone material (such as hydroxyapatite under the assumption), and it is difficult to adequately depict other components. The purpose of this study is to develop an algorithm for bone-enhanced high-contrast images that can be virtually represented by the attenuation of extremely low-energy X-rays without making any special assumptions.
Methods: High-contrast images were virtually generated based on the attenuation rate of ultra-low energy X-rays. It was determined by fitting the mass attenuation coefficient (μ/ρ) curve to the X-ray attenuation values (μt values) measured at middle (30–40 keV) and high (40–60 keV) energy windows, and extrapolating the μt values to those for the low energy region (E = 5–20 keV). When performing the extrapolation, the effective atomic number (Zeff ) of the object was taken into consideration. The methodology was validated by simulating X-ray projections using a digital human body phantom. The frequency of correspondence between the pixel values in the high-contrast image and the Zeff image was analyzed for each pixel.
Results: We succeeded in creating virtual high-contrast X-ray images that reflect the image contrast of monochromatic X-rays of 5–20 keV. It was confirmed that the pixel values in the high-contrast image corresponding to an Zeff = 7.5 (soft-tissue) were completely separated from those corresponding to an Zeff = 9 (bone). The optimization of the energy related to the high contrast images was performed based on the contrast-to-noise ratio (CNR) analysis. The high contrast image with 10 keV showed a good CNR value.
Conclusions: Based on the analysis of the attenuation information of middle and high-energy X-rays measured by ERPCDs, we succeeded in creating a novel algorithm that can generate a virtual monochromatic image with high contrast. en-copyright= kn-copyright= en-aut-name=NishigamiRina en-aut-sei=Nishigami en-aut-mei=Rina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KimotoNatsumi en-aut-sei=Kimoto en-aut-mei=Natsumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AsaharaTakashi en-aut-sei=Asahara en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MaedaTatsuya en-aut-sei=Maeda en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KobayashiDaiki en-aut-sei=Kobayashi en-aut-mei=Daiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=GotoSota en-aut-sei=Goto en-aut-mei=Sota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HabaTomonobu en-aut-sei=Haba en-aut-mei=Tomonobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KanazawaYuki en-aut-sei=Kanazawa en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YamamotoShuichiro en-aut-sei=Yamamoto en-aut-mei=Shuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HayashiHiroaki en-aut-sei=Hayashi en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Graduate School of Medical Sciences, Kanazawa University kn-affil= affil-num=2 en-affil=Department of Radiological Science, Faculty of Health Sciences, Junshin Gakuen University kn-affil= affil-num=3 en-affil=Faculty of Health Sciences, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Medical Sciences, Kanazawa University kn-affil= affil-num=5 en-affil=Graduate School of Medical Sciences, Kanazawa University kn-affil= affil-num=6 en-affil=Faculty of Health Sciences, Kobe Tokiwa University kn-affil= affil-num=7 en-affil=Faculty of Radiological Technology, School of Medical Science, Fujita Health University kn-affil= affil-num=8 en-affil=Faculty of Life Science, Kumamoto University kn-affil= affil-num=9 en-affil=JOB CORPORATION kn-affil= affil-num=10 en-affil=College of Transdisciplinary Sciences for Innovation, Kanazawa University kn-affil= en-keyword=Medical X-ray diagnosis kn-keyword=Medical X-ray diagnosis en-keyword=Photon-counting detector kn-keyword=Photon-counting detector en-keyword=High contrast image kn-keyword=High contrast image en-keyword=Virtual monochromatic image kn-keyword=Virtual monochromatic image en-keyword=Effective atomic number kn-keyword=Effective atomic number en-keyword=Ultra-low energy image kn-keyword=Ultra-low energy image END start-ver=1.4 cd-journal=joma no-vol=239 cd-vols= no-issue= article-no= start-page=113237 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2026 dt-pub=202602 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Counting-loss correction procedure of X-ray imaging detectors with consideration for the effective atomic number of biological objects en-subtitle= kn-subtitle= en-abstract= kn-abstract=It is necessary to correct counting loss caused by the pulse pile-up effect and dead time when using energy-resolving photon-counting detectors (ERPCDs) under “high-counting-rate” conditions in medical and/or industrial settings. We aimed to develop a novel counting-loss correction procedure in which biological objects having effective atomic numbers (Zeff values) of 6.5–13.0 are measured with polychromatic X-rays. To correct for counting loss, such a procedure must theoretically estimate the count value of an ideal X-ray spectrum without counting loss. In this study, we estimated the ideal X-ray spectrum by focusing on the following two points: (1) the X-ray attenuation in an object (Zeff values of 6.5–13.0) and (2) the detector response. Virtual materials having intermediate atomic numbers between 6.5 and 13.0 were generated by using a mixture of polymethylmethacrylate (PMMA, Zeff = 6.5) and aluminum (Al, Zeff = 13.0). We then constructed an algorithm that can perform the counting-loss correction based on the object’s true Zeff value. To demonstrate the applicability of our procedure, we analyzed investigational objects consisting of PMMA and Al using a prototype ERPCD system. A fresh fish sample was also analyzed. The Zeff values agree with the theoretical values within an accuracy of Zeff ±1. In conclusion, we have developed a highly accurate procedure for correcting counting losses for the quantitative X-ray imaging of biological objects. en-copyright= kn-copyright= en-aut-name=KimotoNatsumi en-aut-sei=Kimoto en-aut-mei=Natsumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishigamiRina en-aut-sei=Nishigami en-aut-mei=Rina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KobayashiDaiki en-aut-sei=Kobayashi en-aut-mei=Daiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MaedaTatsuya en-aut-sei=Maeda en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AsaharaTakashi en-aut-sei=Asahara en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=GotoSota en-aut-sei=Goto en-aut-mei=Sota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KanazawaYuki en-aut-sei=Kanazawa en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KatsumataAkitoshi en-aut-sei=Katsumata en-aut-mei=Akitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YamamotoShuichiro en-aut-sei=Yamamoto en-aut-mei=Shuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HayashiHiroaki en-aut-sei=Hayashi en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Radiological Science, Faculty of Health Sciences, Junshin Gakuen University kn-affil= affil-num=2 en-affil=Graduate School of Medical Sciences, Kanazawa University kn-affil= affil-num=3 en-affil=Graduate School of Medical Sciences, Kanazawa University kn-affil= affil-num=4 en-affil=Graduate School of Medical Sciences, Kanazawa University kn-affil= affil-num=5 en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University kn-affil= affil-num=6 en-affil=Faculty of Health Science, Kobe Tokiwa University kn-affil= affil-num=7 en-affil=Faculty of Life Science, Kumamoto University kn-affil= affil-num=8 en-affil=Oral Radiology and Artificial Intelligence, Asahi University kn-affil= affil-num=9 en-affil=JOB CORPORATION kn-affil= affil-num=10 en-affil=College of Transdisciplinary Sciences for Innovation, Kanazawa University kn-affil= en-keyword=Photon-counting detector kn-keyword=Photon-counting detector en-keyword=Pulse pile-up kn-keyword=Pulse pile-up en-keyword=Dead time kn-keyword=Dead time en-keyword=Counting-loss correction kn-keyword=Counting-loss correction en-keyword=Charge-sharing effect kn-keyword=Charge-sharing effect en-keyword=Effective atomic number kn-keyword=Effective atomic number END start-ver=1.4 cd-journal=joma no-vol=54 cd-vols= no-issue=8 article-no= start-page=afaf224 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Oestrogen replacement combined with resistance exercise in older women with knee osteoarthritis: a randomised, double-blind, placebo-controlled clinical trial en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Interventions targeting physical function decline in older women with knee osteoarthritis (KOA) are vital for healthy ageing. The additive benefits of combining oestrogen replacement therapy (ERT) with resistance exercise remain unclear.
Objective: To evaluate the additive effect of low-dose ERT on physical performance when combined with a muscle resistance exercise programme (MREP) in older women with KOA.
Design: This is a placebo-controlled, double-blind, randomised clinical trial.
Subjects: The subjects were community-dwelling women aged ≥65 years with chronic knee pain and KOA diagnosis.
Methods: Participants completed a 3-month MREP and were randomised to receive daily low-dose transdermal ERT (oestradiol 0.54 mg/day) or placebo. Outcomes were assessed at baseline, postintervention and 12 months later. The primary outcome was change in 30-second chair stand test (CS-30) score. Secondary outcomes included muscle mass, knee extension strength, walking performance, metabolic indicators, knee pain scale and 12-item short-form health survey (SF-12). Between-group differences in CS-30 changes were analysed using a linear regression model based on the intention-to-treat principle.
Results: Among 168 individuals screened, 75 participants (mean age 73.8 years, SD 5.8) were enrolled and randomised into an ERT group (n = 37) or a placebo group (n = 38). Baseline CS-30 scores were 14.81 (SD 3.95) in the ERT group and 15.58 (SD 3.48) in the placebo group. At 3 months, mean changes were 2.59 (SD 2.58) and 1.79 (SD 2.28) repetitions, respectively. The primary analysis showed no statistically significant between-group difference [regression coefficient: 0.81 (95% CI: −0.31, 1.92); P = .16]. Post hoc subgroup and sensitivity analyses suggested that benefits may exist among early-stage KOA participants. SF-12 mental health scores also improved significantly in the ERT group. No serious adverse events occurred.
Conclusions: ERT did not confer significant additive benefits to resistance exercise overall but may improve outcomes in early-stage KOA and mental health domains. These exploratory findings warrant further investigation. en-copyright= kn-copyright= en-aut-name=MitomaTomohiro en-aut-sei=Mitoma en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OobaHikaru en-aut-sei=Ooba en-aut-mei=Hikaru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakahashiKasumi en-aut-sei=Takahashi en-aut-mei=Kasumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KondoTsunemasa en-aut-sei=Kondo en-aut-mei=Tsunemasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IkedaTomohiro en-aut-sei=Ikeda en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SakamotoYoko en-aut-sei=Sakamoto en-aut-mei=Yoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MitsuhashiToshiharu en-aut-sei=Mitsuhashi en-aut-mei=Toshiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MakiJota en-aut-sei=Maki en-aut-mei=Jota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Medical Development Field, Center for Innovative Clinical Medicine, Okayama University kn-affil= affil-num=2 en-affil=Medical Development Field, Center for Innovative Clinical Medicine, Okayama University kn-affil= affil-num=3 en-affil=Obstetrics and Gynecology, Ochiai Hospital kn-affil= affil-num=4 en-affil=Obstetrics and Gynecology, Ochiai Hospital kn-affil= affil-num=5 en-affil=Rehabilitation Medicine, Okayama University Hospital kn-affil= affil-num=6 en-affil=Medical Development Field, Center for Innovative Clinical Medicine, Okayama University kn-affil= affil-num=7 en-affil=Medical Development Field, Center for Innovative Clinical Medicine, Okayama University kn-affil= affil-num=8 en-affil=Medical Development Field, Center for Innovative Clinical Medicine, Okayama University kn-affil= en-keyword=oestrogen replacement therapy kn-keyword=oestrogen replacement therapy en-keyword=muscle resistance exercise kn-keyword=muscle resistance exercise en-keyword=knee osteoarthritis kn-keyword=knee osteoarthritis en-keyword=physical performance kn-keyword=physical performance en-keyword=randomised controlled trial kn-keyword=randomised controlled trial en-keyword=older people kn-keyword=older people END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title= en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= END start-ver=1.4 cd-journal=joma no-vol=27 cd-vols= no-issue=3 article-no= start-page=121 end-page=127 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=2024 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Association Between Early Mobilization and Postoperative Pneumonia Following Robot-assisted Minimally Invasive Esophagectomy in Patients with Thoracic Esophageal Squamous Cell Carcinoma en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objective: The objective of this study was to confirm that early mobilization (EM) could reduce pneumonia in patients undergoing robot-assisted minimally invasive esophagectomy (RAMIE) for thoracic esophageal squamous cell carcinoma (TESCC). Methods: Postoperative pneumonia was defined as physician-diagnosed pneumonia using the Esophagectomy Complications Consensus Group definition of pneumonia with a Clavien–Dindo classification grade II–V on postoperative day (POD) 3–5. EM was defined as achieving an ICU Mobility Scale (IMS) ≥7 by POD 2. Patients were divided into EM (n = 36) and non-EM (n = 35) groups. Barriers to EM included pain, orthostatic intolerance (OI), and orthostatic hypotension. Results: The overall incidence of postoperative pneumonia was 12.7%, with a significant difference between the EM (2.8%) and non-EM (22.9%) groups (P = 0.014). The odds ratio was 0.098 in the EM group compared to the non-EM group. A significant difference was found between the two groups in terms of the barriers to EM at POD 2 only for OI, with a higher incidence in the non-EM group. Multivariate logistic regression analysis showed that patients with OI were more likely to be unable to achieve EM than those without OI (odds ratio, 7.030; P = 0.006). Conclusion: EM within POD 2 may reduce the incidence of postoperative pneumonia in patients undergoing RAMIE for TESCC. Furthermore, it was suggested that OI can have a negative impact on the EM after RAMIE. en-copyright= kn-copyright= en-aut-name=NOZAWAYasuaki en-aut-sei=NOZAWA en-aut-mei=Yasuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HARADAKazuhiro en-aut-sei=HARADA en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NOMAKazuhiro en-aut-sei=NOMA en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KATAYAMAYoshimi en-aut-sei=KATAYAMA en-aut-mei=Yoshimi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HAMADAMasanori en-aut-sei=HAMADA en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OZAKIToshifumi en-aut-sei=OZAKI en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Division of Physical Medicine and Rehabilitation, Okayama University Hospital kn-affil= affil-num=2 en-affil=Graduate School of Health Science Studies, Kibi International University kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Division of Physical Medicine and Rehabilitation, Okayama University Hospital kn-affil= affil-num=5 en-affil=Division of Physical Medicine and Rehabilitation, Okayama University Hospital kn-affil= affil-num=6 en-affil=Division of Physical Medicine and Rehabilitation, Okayama University Hospital kn-affil= en-keyword=Early mobilization kn-keyword=Early mobilization en-keyword=Postoperative pneumonia kn-keyword=Postoperative pneumonia en-keyword=Orthostatic intolerance kn-keyword=Orthostatic intolerance en-keyword=Thoracic esophageal squamous cell carcinoma kn-keyword=Thoracic esophageal squamous cell carcinoma en-keyword=Robot-assisted minimally invasive esophagectomy kn-keyword=Robot-assisted minimally invasive esophagectomy END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250802 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Berberine Prevents NSAID-Induced Small Intestinal Injury by Protecting Intestinal Barrier and Inhibiting Inflammasome-Associated Activation en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Nonsteroidal anti-inflammatory drugs (NSAID), which are commonly used to manage pain and inflammation, often cause gastrointestinal injuries, including small intestinal damage. Berberine (BBR) is a traditional Chinese medicine that protects against these injuries. However, the mechanism of action is not fully understood.
Aims This study aimed to evaluate the protective effects of BBR against NSAID-induced intestinal injury and elucidate the underlying molecular mechanisms.
Methods We evaluated the effects of BBR on NSAID-induced intestinal injury using a combination of mouse models and human gut organoids. Mice were treated with indomethacin with or without BBR to induce small intestinal injury. Human gut organoids were exposed to NSAID, with or without BBR, to assess their direct epithelial effects. Histological analyses, cytokine measurements, and Western blotting were performed to evaluate intestinal damage, tight junction integrity, and inflammasome-associated activation.
Results In NSAID-treated mice, BBR markedly reduced ulcers and adhesions and preserved ileal Claudin-1, Occludin, and Zonula Occludens-1 (ZO-1) levels. BBR inhibited both NOD-like receptor family pyrin domain-containing 6 and NOD-like receptor family caspase recruitment domain–containing protein 4 inflammasome activation, reducing Caspase-1 maturation and downstream interleukin-1β and tumor necrosis factor-α release. In human gut organoids, BBR demonstrated comparable protective effects by directly mitigating NSAID-induced epithelial barrier disruption caused by Claudin-1 and Occludin downregulation, although it did not restore ZO-1 expression.
Conclusions BBR effectively prevented NSAID-induced small intestinal injury by maintaining tight junction integrity and inhibiting inflammasome-associated activation, indicating its potential as a therapeutic agent against such damage. en-copyright= kn-copyright= en-aut-name=IshiguroMikako en-aut-sei=Ishiguro en-aut-mei=Mikako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakaharaMasahiro en-aut-sei=Takahara en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakakiAkinobu en-aut-sei=Takaki en-aut-mei=Akinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HiraokaSakiko en-aut-sei=Hiraoka en-aut-mei=Sakiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ToyosawaJyunki en-aut-sei=Toyosawa en-aut-mei=Jyunki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AoyamaYuki en-aut-sei=Aoyama en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IgawaShoko en-aut-sei=Igawa en-aut-mei=Shoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamasakiYasushi en-aut-sei=Yamasaki en-aut-mei=Yasushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=InokuchiToshihiro en-aut-sei=Inokuchi en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KinugasaHideaki en-aut-sei=Kinugasa en-aut-mei=Hideaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OtsukaMotoyuki en-aut-sei=Otsuka en-aut-mei=Motoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=3 en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=4 en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=5 en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=6 en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=7 en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=8 en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=9 en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=10 en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=11 en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= en-keyword=Nonsteroidal anti-inflammatory drugs-induced small intestinal injury kn-keyword=Nonsteroidal anti-inflammatory drugs-induced small intestinal injury en-keyword=Berberine kn-keyword=Berberine en-keyword=Tight junction protein kn-keyword=Tight junction protein en-keyword=Inflammasomes kn-keyword=Inflammasomes END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250714 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Week 2 remission with vedolizumab as a predictor of long-term remission in patients with ulcerative colitis: a multicenter, retrospective, observational study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/Aims Vedolizumab (VDZ), a gut-selective monoclonal antibody for ulcerative colitis (UC) treatment, has no established biomarkers or clinical features that predict long-term remission. Week 2 remission, a potential predictor of long-term remission, could inform maintenance treatment strategy.
Methods This retrospective, observational chart review included patients with UC in Japan who initiated VDZ between December 2018 and February 2020. Outcome measures included 14- and 54-week remission rates in patients with week 2 and non-week 2 remission (remission by week 14), 54-week remission rates in patients with week 14 remission and primary nonresponse, and predictive factors of week 2 and week 54 remission (logistic regression).
Results Overall, 332 patients with UC (176 biologic-naïve and 156 biologic-non-naïve) were included. Significantly more biologic-naïve than biologic-non-naïve patients achieved week 2 remission (36.9% vs. 28.2%; odds ratio [OR], 1.43; 95% confidence interval [CI], 1.05–1.94; P=0.0224). Week 54 remission rates were significantly different between week 14 remission and primary nonresponse (both groups: P<0.0001), and between week 2 and non-week 2 remission (all patients: OR, 2.41; 95% CI, 1.30–4.48; P=0.0052; biologic-naïve patients: OR, 2.40; 95% CI, 1.10–5.24; P=0.0280). Week 2 remission predictors were male sex, no anti-tumor necrosis factor alpha exposure, and normal/mild endoscopic findings. Week 54 remission was significantly associated with week 2 remission and no tacrolimus use.
Conclusions Week 2 remission with VDZ is a predictor of week 54 remission in patients with UC. Week 2 may be used as an evaluation point for UC treatment decisions. (Japanese Registry of Clinical Trials: jRCT-1080225363) en-copyright= kn-copyright= en-aut-name=KobayashiTaku en-aut-sei=Kobayashi en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HisamatsuTadakazu en-aut-sei=Hisamatsu en-aut-mei=Tadakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MotoyaSatoshi en-aut-sei=Motoya en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FujiiToshimitsu en-aut-sei=Fujii en-aut-mei=Toshimitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KunisakiReiko en-aut-sei=Kunisaki en-aut-mei=Reiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShibuyaTomoyoshi en-aut-sei=Shibuya en-aut-mei=Tomoyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsuuraMinoru en-aut-sei=Matsuura en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakeuchiKen en-aut-sei=Takeuchi en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HiraokaSakiko en-aut-sei=Hiraoka en-aut-mei=Sakiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YasudaHiroshi en-aut-sei=Yasuda en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YokoyamaKaoru en-aut-sei=Yokoyama en-aut-mei=Kaoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TakatsuNoritaka en-aut-sei=Takatsu en-aut-mei=Noritaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MaemotoAtsuo en-aut-sei=Maemoto en-aut-mei=Atsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=TaharaToshiyuki en-aut-sei=Tahara en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=TominagaKeiichi en-aut-sei=Tominaga en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=ShimadaMasaaki en-aut-sei=Shimada en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=KunoNobuaki en-aut-sei=Kuno en-aut-mei=Nobuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=CavaliereMary en-aut-sei=Cavaliere en-aut-mei=Mary kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=IshiguroKaori en-aut-sei=Ishiguro en-aut-mei=Kaori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=FernandezJovelle L en-aut-sei=Fernandez en-aut-mei=Jovelle L kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=HibiToshifumi en-aut-sei=Hibi en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= affil-num=1 en-affil=Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology, Kyorin University School of Medicine kn-affil= affil-num=3 en-affil=Inflammatory Bowel Disease Center, Sapporo-Kosei General Hospital kn-affil= affil-num=4 en-affil=Department of Gastroenterology and Hepatology, Institute of Science Tokyo kn-affil= affil-num=5 en-affil=Inflammatory Bowel Disease Center, Yokohama City University Medical Center kn-affil= affil-num=6 en-affil=Department of Gastroenterology, Juntendo University School of Medicine kn-affil= affil-num=7 en-affil=Department of Gastroenterology and Hepatology, Kyorin University School of Medicine kn-affil= affil-num=8 en-affil=Department of Gastroenterology and Hepatology, IBD Center, Tsujinaka Hospital Kashiwanoha kn-affil= affil-num=9 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=10 en-affil=Department of Gastroenterology, St. Marianna University School of Medicine kn-affil= affil-num=11 en-affil=Department of Gastroenterology, Kitasato University School of Medicine kn-affil= affil-num=12 en-affil=Inflammatory Bowel Disease Center, Fukuoka University Chikushi Hospital kn-affil= affil-num=13 en-affil=Inflammatory Bowel Disease Center, Sapporo Higashi Tokushukai Hospital kn-affil= affil-num=14 en-affil=Department of Gastroenterology, Saiseikai Utsunomiya Hospital kn-affil= affil-num=15 en-affil=Department of Gastroenterology, Dokkyo Medical University kn-affil= affil-num=16 en-affil=Department of Gastroenterology, NHO Nagoya Medical Center kn-affil= affil-num=17 en-affil=Department of Gastroenterology and Medicine, Fukuoka University Hospital kn-affil= affil-num=18 en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited kn-affil= affil-num=19 en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited kn-affil= affil-num=20 en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited kn-affil= affil-num=21 en-affil=Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital kn-affil= en-keyword=Colitis, ulcerative kn-keyword=Colitis, ulcerative en-keyword=Inflammatory bowel diseases kn-keyword=Inflammatory bowel diseases en-keyword=Japan kn-keyword=Japan en-keyword=Vedolizumab kn-keyword=Vedolizumab END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250604 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The duration of prior anti-tumor necrosis factor agents is associated with the effectiveness of vedolizumab in patients with ulcerative colitis: a real-world multicenter retrospective study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/Aims Previous literature suggests that the response of patients with ulcerative colitis to vedolizumab may be affected by previous biologic therapy exposure. This real-world study evaluated vedolizumab treatment effectiveness in biologicnon-naïve patients.
Methods This was a multicenter, retrospective, observational chart review of records from 16 hospitals in Japan (December 1, 2018, to February 29, 2020). Included patients who had ulcerative colitis, were aged ≥ 20 years, and received at least 1 dose of vedolizumab. Outcomes included clinical remission rates from weeks 2 to 54 according to prior biologic exposure status and factors associated with clinical remission up to week 54.
Results A total of 370 eligible patients were included. Clinical remission rates were significantly higher in biologic-naïve (n=197) than in biologic-non-naïve (n=173) patients for weeks 2 to 54 of vedolizumab treatment. Higher clinical remission rates up to week 54 were significantly associated with lower disease severity (partial Mayo score ≤ 4, P= 0.001; albumin ≥ 3.0, P= 0.019) and the duration of prior anti-tumor necrosis factor α (anti-TNFα) therapy (P= 0.026). Patients with anti-TNFα therapy durations of < 3 months, 3 to < 12 months, and ≥ 12 months had clinical remission rates of 28.1%, 32.7%, and 60.0%, respectively (P= 0.001 across groups).
Conclusions The effectiveness of vedolizumab in biologic-non-naïve patients was significantly influenced by duration of prior anti-TNFα therapy. (Japanese Registry of Clinical Trials: jRCT-1080225363) en-copyright= kn-copyright= en-aut-name=KobayashiTaku en-aut-sei=Kobayashi en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HisamatsuTadakazu en-aut-sei=Hisamatsu en-aut-mei=Tadakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MotoyaSatoshi en-aut-sei=Motoya en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MatsuuraMinoru en-aut-sei=Matsuura en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FujiiToshimitsu en-aut-sei=Fujii en-aut-mei=Toshimitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KunisakiReiko en-aut-sei=Kunisaki en-aut-mei=Reiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ShibuyaTomoyoshi en-aut-sei=Shibuya en-aut-mei=Tomoyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakeuchiKen en-aut-sei=Takeuchi en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HiraokaSakiko en-aut-sei=Hiraoka en-aut-mei=Sakiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YasudaHiroshi en-aut-sei=Yasuda en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YokoyamaKaoru en-aut-sei=Yokoyama en-aut-mei=Kaoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TakatsuNoritaka en-aut-sei=Takatsu en-aut-mei=Noritaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MaemotoAtsuo en-aut-sei=Maemoto en-aut-mei=Atsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=TaharaToshiyuki en-aut-sei=Tahara en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=TominagaKeiichi en-aut-sei=Tominaga en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=ShimadaMasaaki en-aut-sei=Shimada en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=KunoNobuaki en-aut-sei=Kuno en-aut-mei=Nobuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=CavaliereMary en-aut-sei=Cavaliere en-aut-mei=Mary kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=IshiguroKaori en-aut-sei=Ishiguro en-aut-mei=Kaori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=FernandezJovelle L en-aut-sei=Fernandez en-aut-mei=Jovelle L kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=HibiToshifumi en-aut-sei=Hibi en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= affil-num=1 en-affil=Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology, Kyorin University School of Medicine kn-affil= affil-num=3 en-affil=Inflammatory Bowel Disease Center, Sapporo-Kosei General Hospital kn-affil= affil-num=4 en-affil=Department of Gastroenterology and Hepatology, Kyorin University School of Medicine kn-affil= affil-num=5 en-affil=Department of Gastroenterology and Hepatology, Institute of Science Tokyo kn-affil= affil-num=6 en-affil=Inflammatory Bowel Disease Center, Yokohama City University Medical Center kn-affil= affil-num=7 en-affil=Department of Gastroenterology, Juntendo University School of Medicine kn-affil= affil-num=8 en-affil=Department of Gastroenterology and Hepatology, IBD Center, Tsujinaka Hospital Kashiwanoha kn-affil= affil-num=9 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=10 en-affil=Department of Gastroenterology, St. Marianna University School of Medicine kn-affil= affil-num=11 en-affil=Department of Gastroenterology, Kitasato University School of Medicine kn-affil= affil-num=12 en-affil=Inflammatory Bowel Disease Center, Fukuoka University Chikushi Hospital kn-affil= affil-num=13 en-affil=Inflammatory Bowel Disease Center, Sapporo Higashi Tokushukai Hospital kn-affil= affil-num=14 en-affil=Department of Gastroenterology, Saiseikai Utsunomiya Hospital kn-affil= affil-num=15 en-affil=Department of Gastroenterology, Dokkyo Medical University kn-affil= affil-num=16 en-affil=Department of Gastroenterology, NHO Nagoya Medical Center kn-affil= affil-num=17 en-affil=Department of Gastroenterology and Medicine, Fukuoka University Hospital kn-affil= affil-num=18 en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited kn-affil= affil-num=19 en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited kn-affil= affil-num=20 en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited kn-affil= affil-num=21 en-affil=Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital kn-affil= en-keyword=Tumor necrosis factor-alpha kn-keyword=Tumor necrosis factor-alpha en-keyword=Real-world evidence kn-keyword=Real-world evidence en-keyword=Colitis kn-keyword=Colitis en-keyword=ulcerative kn-keyword=ulcerative en-keyword=Vedolizumab kn-keyword=Vedolizumab en-keyword=Sequencing kn-keyword=Sequencing END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250116 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Factors affecting 1-year persistence with vedolizumab for ulcerative colitis: a multicenter, retrospective real-world study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/Aims The objectives of this real-world study were to determine 1-year persistence with vedolizumab in patients with ulcerative colitis and to evaluate factors contributing to loss of response.
Methods In this multicenter, retrospective, observational chart review, patients with moderately to severely active ulcerative colitis who received ≥ 1 dose of vedolizumab in clinical practice at 16 tertiary hospitals in Japan (from December 2018 through February 2020) were enrolled.
Results Persistence with vedolizumab was 64.5% (n = 370); the median follow-up time was 53.2 weeks. Discontinuation due to loss of response among initial clinical remitters was reported in 12.5% (35/281) of patients. Multivariate analysis showed that concomitant use of tacrolimus (odds ratio [OR], 2.76; 95% confidence interval [CI], 1.00–7.62; P= 0.050) and shorter disease duration (OR for median duration ≥ 7.8 years vs. < 7.8 years, 0.33; 95% CI, 0.13–0.82; P= 0.017) were associated with discontinuation due to loss of response. Loss of response was not associated with prior use of anti-tumor necrosis factor alpha therapy, age at the time of treatment, disease severity, or concomitant corticosteroids or immunomodulators. Of the 25 patients with disease duration < 1 year, 32.0% discontinued due to loss of response.
Conclusions Persistence with vedolizumab was consistent with previous reports. Use of tacrolimus and shorter disease duration were the main predictors of decreased persistence. en-copyright= kn-copyright= en-aut-name=KobayashiTaku en-aut-sei=Kobayashi en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HisamatsuTadakazu en-aut-sei=Hisamatsu en-aut-mei=Tadakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MotoyaSatoshi en-aut-sei=Motoya en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FujiiToshimitsu en-aut-sei=Fujii en-aut-mei=Toshimitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KunisakiReiko en-aut-sei=Kunisaki en-aut-mei=Reiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShibuyaTomoyoshi en-aut-sei=Shibuya en-aut-mei=Tomoyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsuuraMinoru en-aut-sei=Matsuura en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakeuchiKen en-aut-sei=Takeuchi en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HiraokaSakiko en-aut-sei=Hiraoka en-aut-mei=Sakiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YasudaHiroshi en-aut-sei=Yasuda en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YokoyamaKaoru en-aut-sei=Yokoyama en-aut-mei=Kaoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TakatsuNoritaka en-aut-sei=Takatsu en-aut-mei=Noritaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MaemotoAtsuo en-aut-sei=Maemoto en-aut-mei=Atsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=TaharaToshiyuki en-aut-sei=Tahara en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=TominagaKeiichi en-aut-sei=Tominaga en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=ShimadaMasaaki en-aut-sei=Shimada en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=KunoNobuaki en-aut-sei=Kuno en-aut-mei=Nobuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=FernandezJovelle L. en-aut-sei=Fernandez en-aut-mei=Jovelle L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=IshiguroKaori en-aut-sei=Ishiguro en-aut-mei=Kaori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=CavaliereMary en-aut-sei=Cavaliere en-aut-mei=Mary kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=DeguchiHisato en-aut-sei=Deguchi en-aut-mei=Hisato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=HibiToshifumi en-aut-sei=Hibi en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= affil-num=1 en-affil=Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology, Kyorin University School of Medicine kn-affil= affil-num=3 en-affil=Inflammatory Bowel Disease Center, Sapporo-Kosei General Hospital kn-affil= affil-num=4 en-affil=Department of Gastroenterology and Hepatology, Institute of Science Tokyo kn-affil= affil-num=5 en-affil=Inflammatory Bowel Disease Center, Yokohama City University Medical Center kn-affil= affil-num=6 en-affil=Department of Gastroenterology, Juntendo University School of Medicine kn-affil= affil-num=7 en-affil=Department of Gastroenterology and Hepatology, Kyorin University School of Medicine kn-affil= affil-num=8 en-affil=Department of Gastroenterology and Hepatology, IBD Center kn-affil= affil-num=9 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=10 en-affil=Department of Gastroenterology, St. Marianna University School of Medicine kn-affil= affil-num=11 en-affil=Department of Gastroenterology, Kitasato University School of Medicine kn-affil= affil-num=12 en-affil=Inflammatory Bowel Disease Center, Fukuoka University Chikushi Hospital kn-affil= affil-num=13 en-affil=Inflammatory Bowel Disease Center, Sapporo Higashi Tokushukai Hospital kn-affil= affil-num=14 en-affil=Department of Gastroenterology, Saiseikai Utsunomiya Hospital kn-affil= affil-num=15 en-affil=Department of Gastroenterology, Dokkyo Medical University kn-affil= affil-num=16 en-affil=Department of Gastroenterology, NHO Nagoya Medical Center kn-affil= affil-num=17 en-affil=Department of Gastroenterology and Medicine, Fukuoka University Hospital kn-affil= affil-num=18 en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited kn-affil= affil-num=19 en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited kn-affil= affil-num=20 en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited kn-affil= affil-num=21 en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited kn-affil= affil-num=22 en-affil=Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital kn-affil= en-keyword=Colitis, ulcerative kn-keyword=Colitis, ulcerative en-keyword=Inflammatory bowel diseases kn-keyword=Inflammatory bowel diseases en-keyword=Japan kn-keyword=Japan en-keyword=Vedolizumab kn-keyword=Vedolizumab en-keyword=Medication persistence kn-keyword=Medication persistence END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250102 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Health-related quality of life, work productivity, and persisting challenges in treated ulcerative colitis patients: a Japanese National Health and Wellness Survey en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/Aims Despite available treatments for ulcerative colitis (UC), unmet needs persist among patients in Japan. This study explored the health-related quality of life (HRQoL), work productivity and activity impairment (WPAI), indirect cost, and unmet needs among treated UC patients in Japan.
Methods This cross-sectional, observational study utilized data from the online 2017, 2019, and 2021 Japan National Health and Wellness Survey. Respondents were aged ≥ 18 years and had undergone or were on UC treatment (5-aminosalicylic acid, steroids, immunomodulators/immunosuppressants, biologics/Janus kinase inhibitors [JAKi]). Demographic, general health, and clinical characteristics, medication adherence, HRQoL, WPAI, and indirect cost were collected and analyzed.
Results Among 293 treated UC patients, 83.6% were non-biologic/JAKi users, 29.0% had UC ≥ 15 years, 34.8% had moderate-to-severe disease severity, 55.3% experienced ≥ 1 persisting UC symptom, and 91.5% reported UC as bothersome to an extent. Patients reported EuroQoL visual analog scale score of 68.1 and ≥ 35% reported anxiety and depression. Mean work productivity loss was 29.3%, resulting in an annual mean indirect loss of 1.1 million JPY (45.3 thousand USD) per person. Higher WPAI (impairment) was associated with being male, moderate-to-severe disease severity, and low treatment adherence (P<0.05). Biologics/JAKi users had higher work impairment, and IM/IS users had higher activity impairment than 5-aminosalicylic acid users (P<0.05).
Conclusions Despite treatment, Japanese UC patients experienced high disease burden and persistent disease-related challenges. Overall HRQoL were lower than the mean healthy population and work productivity impairment led to high indirect costs. The findings suggest the importance of new interventions for optimizing UC outcomes. en-copyright= kn-copyright= en-aut-name=HiraokaSakiko en-aut-sei=Hiraoka en-aut-mei=Sakiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HuangZhezhou en-aut-sei=Huang en-aut-mei=Zhezhou kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=QinFei en-aut-sei=Qin en-aut-mei=Fei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=Nathan ArokianathanFatima Megala en-aut-sei=Nathan Arokianathan en-aut-mei=Fatima Megala kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=DavéKiran en-aut-sei=Davé en-aut-mei=Kiran kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShahShweta en-aut-sei=Shah en-aut-mei=Shweta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KimHyunchung en-aut-sei=Kim en-aut-mei=Hyunchung kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Gastroenterology, Okayama University kn-affil= affil-num=2 en-affil=Cerner Enviza kn-affil= affil-num=3 en-affil=Cerner Enviza kn-affil= affil-num=4 en-affil=Oracle Life Sciences kn-affil= affil-num=5 en-affil=Bristol Myers Squibb kn-affil= affil-num=6 en-affil=Bristol Myers Squibb kn-affil= affil-num=7 en-affil=Bristol Myers Squibb kn-affil= en-keyword=Quality of life kn-keyword=Quality of life en-keyword=Presenteeism kn-keyword=Presenteeism en-keyword=Absenteeism kn-keyword=Absenteeism en-keyword=Ulcerative colitis kn-keyword=Ulcerative colitis en-keyword=Japan kn-keyword=Japan END start-ver=1.4 cd-journal=joma no-vol=35 cd-vols= no-issue=1 article-no= start-page=245 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250614 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Favorable clinical outcomes are achieved in both male and female following medial meniscus posterior root repair en-subtitle= kn-subtitle= en-abstract= kn-abstract=Purpose In recent years, medial meniscus (MM) posterior root tears (PRT) have received increasing attention due to their association with rapidly progressive knee osteoarthritis. MM posterior root (PR) repair has been reported to yield good clinical outcomes, but no study has yet to compare the postoperative outcomes after MMPR repair between sexes. The purpose of this study is evaluating the postoperative clinical outcomes following MMPR pullout repair by sex.
Methods Eighty-six patients who underwent pullout repair for isolated MMPRTs at our institution between October 2016 and November 2019 were evaluated. Patients were divided into two groups according to sex, and their clinical outcomes were compared preoperatively and at 2 years postoperatively.
Results The cohort was comprised of 21 male and 65 female patients. Three factors related to physical status (height (p < 0.01), body weight (p < 0.01), and BMI (p = 0.02)) were significantly higher in male patients. No significant differences were observed in preoperative clinical scores between male and female. All clinical scores significantly improved at 2 years postoperatively in both sexes. In the clinical scores, the KOOS-symptom (p = 0.03), KOOS-QOL (p = 0.03), and Tegner activity scores (p < 0.01) showed significantly better scores in male patients.
Conclusion Following MMPR pullout repair, the clinical outcomes significantly improved in both sexes. These results indicate that MMPR pullout repair is a universally effective technique regardless of the disadvantages of females in morphological characteristics. en-copyright= kn-copyright= en-aut-name=KatayamaHaruyoshi en-aut-sei=Katayama en-aut-mei=Haruyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FurumatsuTakayuki en-aut-sei=Furumatsu en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OkazakiYuki en-aut-sei=Okazaki en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HigashiharaNaohiro en-aut-sei=Higashihara en-aut-mei=Naohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YokoyamaYusuke en-aut-sei=Yokoyama en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TamuraMasanori en-aut-sei=Tamura en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KawadaKoki en-aut-sei=Kawada en-aut-mei=Koki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HasegawaTsubasa en-aut-sei=Hasegawa en-aut-mei=Tsubasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KoharaToshiki en-aut-sei=Kohara en-aut-mei=Toshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OzakiToshifumi en-aut-sei=Ozaki en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Okayama University Hospital kn-affil= affil-num=2 en-affil=Okayama Red Cross General Hospital kn-affil= affil-num=3 en-affil=Okayama University Hospital kn-affil= affil-num=4 en-affil=Okayama University Hospital kn-affil= affil-num=5 en-affil=Okayama University Hospital kn-affil= affil-num=6 en-affil=Okayama University Hospital kn-affil= affil-num=7 en-affil=Okayama University Hospital kn-affil= affil-num=8 en-affil=Okayama University Hospital kn-affil= affil-num=9 en-affil=Okayama University Hospital kn-affil= affil-num=10 en-affil=Okayama University Hospital kn-affil= en-keyword=Clinical outcome kn-keyword=Clinical outcome en-keyword=Medial meniscus kn-keyword=Medial meniscus en-keyword=Posterior root tear kn-keyword=Posterior root tear en-keyword=Pullout repair kn-keyword=Pullout repair en-keyword=Sex difference kn-keyword=Sex difference END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=2 article-no= start-page=e70139 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202504 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Progression of patellofemoral joint cartilage degeneration within 1 year after medial meniscus posterior root repair: A retrospective study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Purpose: To assess postoperative progression of patellofemoral (PF) cartilage degeneration after medial meniscus posterior root (MMPR) repair and identify potential risk factors.
Methods: Data from patients who underwent transtibial pullout repair for complete radial MMPR tears between April 2018 and October 2021 were retrospectively investigated. Patients with severe chondral lesions of the PF joint at primary surgery were excluded. All patients underwent second-look arthroscopy at 12 months postoperatively. Postoperative changes using the International Cartilage Repair Society (ICRS) grade were evaluated. Associated open magnetic resonance imaging (MRI) findings were assessed.
Results: In total, 40 patients (30 women, 10 men; mean age: 64.0 years) were evaluated. PF joint cartilage degeneration progressed significantly postoperatively. Abnormal signal intensity (ASI) of the infrapatellar fat pad (IPFP) was observed in 15 (37.5%) patients. Arthroscopic findings in groups between IPFP with and without ASI were compared. The incidence of postoperative ICRS grade worsening (≥2 grades) on the patella or trochlea was significantly higher among patients with ASI (53%) than among those without (20%, p = 0.04). ICRS grade worsening in the medial femorotibial compartment and meniscus-healing status were comparable between the groups. Patients with ASI of the IPFP showed greater decrease in the distance between the patellar and anterior cruciate ligament insertions on knee flexion MRI (−1.5 ± 0.7 mm) than that in those without (−0.2 ± 0.3 mm, p < 0.01). A delayed rehabilitation protocol was a risk factor according to the logistic regression analysis (p = 0.01).
Conclusions: Progressive PF cartilage degeneration occurred following MMPR repair, highlighting the need for diligent postoperative PF joint management.
Level of Evidence: Level IV case series. en-copyright= kn-copyright= en-aut-name=TamuraMasanori en-aut-sei=Tamura en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FurumatsuTakayuki en-aut-sei=Furumatsu en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YokoyamaYusuke en-aut-sei=Yokoyama en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OkazakiYuki en-aut-sei=Okazaki en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KawadaKoki en-aut-sei=Kawada en-aut-mei=Koki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HasegawaTsubasa en-aut-sei=Hasegawa en-aut-mei=Tsubasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OzakiToshifumi en-aut-sei=Ozaki en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Orthopaedic Surgery, Japanese Red Cross Okayama Hospital kn-affil= affil-num=3 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=medial meniscus kn-keyword=medial meniscus en-keyword=posterior root tear kn-keyword=posterior root tear en-keyword=pullout repair kn-keyword=pullout repair en-keyword=rehabilitation kn-keyword=rehabilitation en-keyword=second‐look arthroscopy kn-keyword=second‐look arthroscopy END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=4 article-no= start-page=299 end-page=303 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202508 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Pulmonary Calcium Phosphate Cement Embolism After Percutaneous Vertebroplasty for Thoracic Vertebrae Fractures en-subtitle= kn-subtitle= en-abstract= kn-abstract=Pulmonary cement embolism (PCE) is a rare but severe complication following percutaneous vertebroplasty (PVP). Calcium phosphate cement (CPC) has emerged as an alternative to traditional materials for vertebral augmentation. There appear to be no established guidelines for managing symptomatic PCE, and there is scarce literature on CPC embolisms. This is a first report of a case of pulmonary CPC embolism following PVP. The patient, a 63-year-old Chinese female, was administered anticoagulant treatment and achieved a satisfactory outcome. Her case highlights the severe potential morbidity associated with CPC leakage and emphasizes the efficacy of anticoagulant treatment for managing pulmonary CPC embolisms. en-copyright= kn-copyright= en-aut-name=FengRuibin en-aut-sei=Feng en-aut-mei=Ruibin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ZhuBikang en-aut-sei=Zhu en-aut-mei=Bikang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WeiDanyun en-aut-sei=Wei en-aut-mei=Danyun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ZhuDingjiao en-aut-sei=Zhu en-aut-mei=Dingjiao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ChenCairu en-aut-sei=Chen en-aut-mei=Cairu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Orthopedics, the Ninth Affiliated Hospital of Guangxi Medical University kn-affil= affil-num=2 en-affil=Department of Orthopedics, the Ninth Affiliated Hospital of Guangxi Medical University kn-affil= affil-num=3 en-affil=Department of Orthopedics, the Ninth Affiliated Hospital of Guangxi Medical University kn-affil= affil-num=4 en-affil=Department of Radiology, the Ninth Affiliated Hospital of Guangxi Medical University kn-affil= affil-num=5 en-affil=Department of Orthopedics, the Ninth Affiliated Hospital of Guangxi Medical University kn-affil= en-keyword=percutaneous vertebroplasty kn-keyword=percutaneous vertebroplasty en-keyword=thoracic vertebrae fracture kn-keyword=thoracic vertebrae fracture en-keyword=calcium phosphate cement kn-keyword=calcium phosphate cement en-keyword=pulmonary embolism kn-keyword=pulmonary embolism END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=4 article-no= start-page=283 end-page=286 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202508 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Anterior Uveitis Secondary to an Infected Postoperative Maxillary Cyst en-subtitle= kn-subtitle= en-abstract= kn-abstract=A 76-year-old man presented with right eyelid swelling and deteriorated vision. Examination revealed anterior uveitis with hypopyon and a visual acuity of 20/2,000 in the right eye, with no abnormalities in the left. Computed tomography revealed enlargement of the right maxillary sinus and internal fluid accumulation, suggesting a postoperative maxillary cyst (POMC). Nasal endoscopic surgery drained the pus by opening the lower wall of the maxillary cyst. Following the procedure, intraocular inflammation resolved, and visual acuity in the right eye improved to 24/20. This is the first reported case of uveitis secondary to POMC. en-copyright= kn-copyright= en-aut-name=ImamuraYuta en-aut-sei=Imamura en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShiodeYusuke en-aut-sei=Shiode en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KimuraShuhei en-aut-sei=Kimura en-aut-mei=Shuhei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HosokawaMio en-aut-sei=Hosokawa en-aut-mei=Mio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MatobaRyo en-aut-sei=Matoba en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KanzakiYuki en-aut-sei=Kanzaki en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KindoHiroya en-aut-sei=Kindo en-aut-mei=Hiroya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MoritaTetsuro en-aut-sei=Morita en-aut-mei=Tetsuro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MuraiAya en-aut-sei=Murai en-aut-mei=Aya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=AndoMizuo en-aut-sei=Ando en-aut-mei=Mizuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MorizaneYuki en-aut-sei=Morizane en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Otolaryngology-Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Otolaryngology-Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=anterior uveitis kn-keyword=anterior uveitis en-keyword=hypopyon kn-keyword=hypopyon en-keyword=maxillary sinus kn-keyword=maxillary sinus en-keyword=postoperative maxillary cyst kn-keyword=postoperative maxillary cyst END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=4 article-no= start-page=279 end-page=282 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202508 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Long-Term Survival Following Extended Cholecystectomy for Synchronous Gallbladder and Regional Lymph Node Metastasis of Lung Adenocarcinoma, with Subsequent Pulmonary Lobectomy en-subtitle= kn-subtitle= en-abstract= kn-abstract=An 80-year-old male underwent an extended cholecystectomy for node-positive gallbladder adenocarcinoma. Two weeks later, hemoptysis revealed a left hilar tumor obstructing the bronchus, which was diagnosed as adenocarcinoma. Three months post-cholecystectomy, a left upper pulmonary lobectomy was performed. Histological similarity and positive thyroid transcription factor-1 (TTF-1) immunostaining in both tumors confirmed lung adenocarcinoma with gallbladder metastasis. Despite the generally poor prognosis for gallbladder metastasis from lung cancer, the patient achieved 3 years of survival. Patients with isolated synchronous gallbladder metastasis from lung cancer may benefit from oligometastasectomy. en-copyright= kn-copyright= en-aut-name=YoshikawaMao en-aut-sei=Yoshikawa en-aut-mei=Mao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TaoHiroyuki en-aut-sei=Tao en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of General Thoracic Surgery, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Thoracic Surgery, Japanese Red Cross Society Himeji Hospital kn-affil= en-keyword=gallbladder metastasis kn-keyword=gallbladder metastasis en-keyword=lung cancer kn-keyword=lung cancer en-keyword=oligometastatic disease kn-keyword=oligometastatic disease END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=4 article-no= start-page=261 end-page=267 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202508 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Outcome of Decompression Surgery Following Rapid Neurological Deterioration in Patients with Spinal Cord Injury Without Radiographic Evidence of Trauma (SCIWORET) en-subtitle= kn-subtitle= en-abstract= kn-abstract=Cervical spondylotic myelopathy (CSM) and ossification of the posterior longitudinal ligament (OPLL) increase the likelihood of spinal cord injury without radiographic evidence of trauma (SCIWORET). Opinions regarding the optimal timing for surgery in such cases vary, however. We retrospectively investigated the demographics and outcomes of patients with SCIWORET who underwent surgery shortly after experiencing rapid neurological deterioration, and we matched patients who underwent standby surgery for CSM or OPLL. Although the optimal timing of surgery for SCIWORET remains unclear, our findings suggest that early stage surgery for SCIWORET may yield favorable neurological improvements. en-copyright= kn-copyright= en-aut-name=HirataYuichi en-aut-sei=Hirata en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SugaharaChiaki en-aut-sei=Sugahara en-aut-mei=Chiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SasadaSusumu en-aut-sei=Sasada en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MiyakeHayato en-aut-sei=Miyake en-aut-mei=Hayato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NagaseTakayuki en-aut-sei=Nagase en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YasuharaTakao en-aut-sei=Yasuhara en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TanakaShota en-aut-sei=Tanaka en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=spinal trauma kn-keyword=spinal trauma en-keyword=SCIWORET kn-keyword=SCIWORET en-keyword=timing of surgery kn-keyword=timing of surgery en-keyword=cervical spondylotic myelopathy kn-keyword=cervical spondylotic myelopathy en-keyword=ossification of the posterior longitudinal ligament kn-keyword=ossification of the posterior longitudinal ligament END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=4 article-no= start-page=253 end-page=259 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202508 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Study of Periprosthetic Femoral Stem Fractures in Hip Arthroplasty for Femoral Neck Fracture en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study investigated the risk factors for bone fragility and perioperative periprosthetic femoral stem fractures in patients undergoing hip arthroplasty for femoral neck fractures. The records of 215 patients (42 male, 173 female; mean age, 84.4 years) were analyzed to assess correlations among periprosthetic fracture rates and sex, age, body mass index (BMI), Dorr classification, femoral stem fixation type (cemented/cementless), and bone mineral density (BMD) of the contralateral proximal femur. The overall prevalence of perioperative periprosthetic fractures was 4.7%. All patients with periprosthetic fractures were female, and all but one were ≥ 80 years of age. Fracture rates were higher in patients with lower BMI, although this difference was not significant. The fracture rates were 0%, 4.7%, and 7.9% for Dorr types A, B, and C, respectively, and 0% and 5.3% for patients who received cemented and cementless stems, respectively. The findings indicated that female patients, those of advanced age, those with lower BMI, and those with Dorr type C had lower BMDs. Although BMD was significantly lower in patients who received cemented stems compared to those who received cementless stems, no fractures were observed in the former group, suggesting that the use of cemented stems is safe for this high-risk population. en-copyright= kn-copyright= en-aut-name=MiyakeYoshiaki en-aut-sei=Miyake en-aut-mei=Yoshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakagiToru en-aut-sei=Takagi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KonishiikeTaizo en-aut-sei=Konishiike en-aut-mei=Taizo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Orthopaedic Surgery, Japanese Red Cross Okayama Hospital kn-affil= affil-num=2 en-affil=Department of Orthopaedic Surgery, Japanese Red Cross Okayama Hospital kn-affil= affil-num=3 en-affil=Department of Orthopaedic Surgery, Japanese Red Cross Okayama Hospital kn-affil= en-keyword=bone mineral density kn-keyword=bone mineral density en-keyword=cemented stem kn-keyword=cemented stem en-keyword=Dorr classification kn-keyword=Dorr classification en-keyword=femoral neck fracture kn-keyword=femoral neck fracture en-keyword=periprosthetic femoral stem fracture kn-keyword=periprosthetic femoral stem fracture END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=4 article-no= start-page=243 end-page=251 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202508 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Work Productivity of Cancer-survivor and Non-cancer-survivor Workers en-subtitle= kn-subtitle= en-abstract= kn-abstract=We investigated the work productivity levels of employed cancer survivors and non-cancer-survivor workers by conducting a cross-sectional study in Japan between February and March 2019, using an online survey. A total of 561 employed individuals aged 20-64 years were analyzed. Work productivity was assessed using the Work Productivity and Activity Impairment-General Health questionnaire which evaluates absenteeism, presenteeism, and overall work productivity loss. The questionnaire responses demonstrated that the cancer survivors within 1 year of diagnosis had significantly higher absenteeism compared to the non-cancer workers (p=0.048). Although presenteeism and overall work productivity loss were also higher in the non-cancer-survivor group, the differences were not significant. Cancer survivors within 1 year of diagnosis exhibited higher absenteeism, but their work productivity appeared to recover to levels comparable to those of the non-cancer workers over time. These findings may contribute to workplace policies supporting cancer survivors’ return to work. en-copyright= kn-copyright= en-aut-name=KamanoMika en-aut-sei=Kamano en-aut-mei=Mika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KandaKanae en-aut-sei=Kanda en-aut-mei=Kanae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NgatuNlandu Roger en-aut-sei=Ngatu en-aut-mei=Nlandu Roger kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MurakamiAkitsu en-aut-sei=Murakami en-aut-mei=Akitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamadoriYusuke en-aut-sei=Yamadori en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HiraoTomohiro en-aut-sei=Hirao en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Public Health, Faculty of Medicine, Kagawa University kn-affil= affil-num=2 en-affil=Department of Public Health, Faculty of Medicine, Kagawa University kn-affil= affil-num=3 en-affil=Department of Public Health, Faculty of Medicine, Kagawa University kn-affil= affil-num=4 en-affil=Cancer Center, Kagawa University Hospital kn-affil= affil-num=5 en-affil=Department of Anesthesiology, Faculty of Medicine, Kagawa University kn-affil= affil-num=6 en-affil=Department of Public Health, Faculty of Medicine, Kagawa University kn-affil= en-keyword=cancer survivor kn-keyword=cancer survivor en-keyword=work productivity kn-keyword=work productivity en-keyword=absenteeism kn-keyword=absenteeism en-keyword=presenteeism kn-keyword=presenteeism END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=4 article-no= start-page=231 end-page=242 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202508 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Bloodstream Infections Caused by Gram-Negative Bacteria in Geriatric Patients: Epidemiology, Antimicrobial Resistance and The Factors Affecting Mortality en-subtitle= kn-subtitle= en-abstract= kn-abstract=Bloodstream infections (BSIs) are an important cause of morbidity and mortality in geriatric patients. We retrospectively analyzed the cases of geriatric patients who developed BSIs due to gram-negative bacteria in order to evaluate the epidemiology, antimicrobial resistance, and the factors affecting mortality. The cases of 110 patients aged ≥ 65 years admitted to our hospital between January 1, 2017, and December 31, 2022 were assessed; 70 (63.6%) of the BSIs were healthcare-associated BSIs. The urinary system was the most common detectable source of infection at 43.6%. The most frequently isolated bacteria were Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae, in that order. Carbapenem resistance was detected in 17 patients (15.5%), and extended-spectrum beta-lactamase (ESBL) production from Enterobacterales family members was detected in 37 (51.4%) patients. Multivariate analysis revealed that (i) the probability of mortality in the patients with total bilirubin was increased by approx. sixfold and (ii) the likelihood of mortality for those with a Pitt bacteremia score (PBS) ≥ 4 points was approx. 17 times higher. PBS and simplified qPitt scores can help predict mortality and manage geriatric patients. There is a significant increase in mortality among patients with procalcitonin (PCT) levels at ≥ 2 nm/ml. en-copyright= kn-copyright= en-aut-name=KardanM Enes en-aut-sei=Kardan en-aut-mei=M Enes kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ErdemIlknur en-aut-sei=Erdem en-aut-mei=Ilknur kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YildizEmre en-aut-sei=Yildiz en-aut-mei=Emre kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KirazNuri en-aut-sei=Kiraz en-aut-mei=Nuri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ÇelikkolAliye en-aut-sei=Çelikkol en-aut-mei=Aliye kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Infectious Diseases, Faculty of Medicine, Namik Kemal University kn-affil= affil-num=2 en-affil=Department of Infectious Diseases, Faculty of Medicine, Namik Kemal University kn-affil= affil-num=3 en-affil=Department of Infectious Diseases, Faculty of Medicine, Namik Kemal University kn-affil= affil-num=4 en-affil=Department of Medical Microbiology, Faculty of Medicine, Namik Kemal University kn-affil= affil-num=5 en-affil=Department of Biochemistry, Faculty of Medicine, Namik Kemal University kn-affil= en-keyword=geriatrics kn-keyword=geriatrics en-keyword=gram-negative bacteria kn-keyword=gram-negative bacteria en-keyword=epidemiology kn-keyword=epidemiology en-keyword=antimicrobial resistance kn-keyword=antimicrobial resistance en-keyword=mortality kn-keyword=mortality END start-ver=1.4 cd-journal=joma no-vol=31 cd-vols= no-issue= article-no= start-page=100776 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202509 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Investigation of the relationship between 0.5–1200 Hz signal characteristics of cortical high-frequency oscillations and epileptogenicity through multivariate analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Fast ripples (FRs) (250–500 Hz) on the electroencephalogram (EEG) are closely related to epileptogenicity and are important to determine cortical regions resected in epilepsy surgery. However, FR-related epileptogenicity may be variable, and may depend on information associated with FRs. We enrolled nine epilepsy patients who had undergone intracranial 5 kHz-sampling-rate EEG for surgical treatment and had final Engel class I outcomes. Three electrodes were selected from each epileptogenic area (EA) and the unlikely EA (the region outside the EA) in each patient. Up to 100 candidate FRs were automatically detected from interictal nocturnal EEG at each of the selected electrodes and were visually reviewed independently by two researchers. Multivariate logistic regression analysis was performed using the frequency and log-power value of the corresponding FRs, presence of concurrent spike, ripple, very-high-frequency oscillations (vHFO)1 (500–600 Hz), and vHFO2 (600–1200 Hz), and whether the timing of the spectral peak of corresponding FRs was in the peak–trough or trough–peak transition of each slow activity (0.5–1, 1–2, 2–3, 3–4, and 4–8 Hz) as independent variables. Factors significantly related to epileptogenicity were FR power, the concurrent presence of spike and vHFO2, coupling with 0.5–1 and 1–2 Hz slow waves in the peak–trough transition, and coupling with 3–4 and 4–8 Hz slow waves in the trough–peak transition. Multifactorial analysis of FRs may increase their usefulness, potentially leading to improved treatment outcomes in epilepsy surgery. en-copyright= kn-copyright= en-aut-name=ShibataTakashi en-aut-sei=Shibata en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TsuchiyaHiroki en-aut-sei=Tsuchiya en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AkiyamaMari en-aut-sei=Akiyama en-aut-mei=Mari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AkiyamaTomoyuki en-aut-sei=Akiyama en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MatsuhashiMasao en-aut-sei=Matsuhashi en-aut-mei=Masao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KobayashiKatsuhiro en-aut-sei=Kobayashi en-aut-mei=Katsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Pediatric Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Pediatric Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Pediatric Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Pediatric Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Epilepsy, Movement Disorders and Physiology, Graduate School of Medicine, Kyoto University kn-affil= affil-num=6 en-affil=Department of Pediatric Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital kn-affil= en-keyword=Epilepsy surgery kn-keyword=Epilepsy surgery en-keyword=Multivariate logistic regression analysis kn-keyword=Multivariate logistic regression analysis en-keyword=Phase-amplitude coupling kn-keyword=Phase-amplitude coupling en-keyword=Ripple kn-keyword=Ripple en-keyword=Very high-frequency oscillations kn-keyword=Very high-frequency oscillations END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250605 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Determinants of residual myometrial thickness after cesarean delivery: Comparative analysis of barbed versus conventional sutures—A sub‐analysis from the SPIRAL trial en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objective: This sub-analysis aimed to determine whether conventional suture-associated risk factors for cesarean scar defect show similar outcomes with barbed continuous suturing, and to identify factors influencing residual myometrial thickness when using barbed continuous sutures.
Methods: This sub-analysis of a multicenter, parallel-group, randomized controlled trial across four Japanese obstetrics and gynecology departments included 1211 women who had their first cesarean delivery between May 2020 and March 2023. Among them, 298 women underwent a C-section, with 253 follow-up through July 2023. Singleton pregnancies were randomly assigned to receive either barbed or conventional double-layered continuous sutures in a 1:1 ratio; they were monitored from consent through their 6- to 7-month check-up. The effects of cervical ripening, facility characteristics, and surgeon experience were investigated using a two-way ANOVA.
Results: Of the remaining 253 patients, 33 were lost to follow-up and 220 completed follow-up (110 per group). One institution enrolled the largest proportion of participants (45.9%), whereas two other institutions had more experienced surgeons. Two-way ANOVA revealed that surgeon experience (P = 0.020) and institutional factors (P < 0.001) significantly influenced the residual myometrial thickness at 6–7 months after surgery, whereas cervical dilation during active labor did not (P = 0.215). Additionally, a significant interaction was observed between institutional factors and suture type (barbed vs. conventional) on residual myometrial thickness (Pinteraction <0.001).
Conclusion: Institutional factors and surgeon experience represent significant determinants of residual myometrial thickness when using barbed sutures for cesarean closure, highlighting the importance of standardized surgical protocols and training across facilities. en-copyright= kn-copyright= en-aut-name=MakiJota en-aut-sei=Maki en-aut-mei=Jota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OobaHikaru en-aut-sei=Ooba en-aut-mei=Hikaru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MitomaTomohiro en-aut-sei=Mitoma en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakatoHikari en-aut-sei=Nakato en-aut-mei=Hikari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SuemoriAyano en-aut-sei=Suemori en-aut-mei=Ayano kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KuriyamaChiaki en-aut-sei=Kuriyama en-aut-mei=Chiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SakataShujiro en-aut-sei=Sakata en-aut-mei=Shujiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MishimaSakurako en-aut-sei=Mishima en-aut-mei=Sakurako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OhiraAkiko en-aut-sei=Ohira en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=EtoEriko en-aut-sei=Eto en-aut-mei=Eriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MasuyamaHisashi en-aut-sei=Masuyama en-aut-mei=Hisashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=barbed suture kn-keyword=barbed suture en-keyword=cervical ripening kn-keyword=cervical ripening en-keyword=cesarean scar defect kn-keyword=cesarean scar defect en-keyword=cesarean scar disorder kn-keyword=cesarean scar disorder en-keyword=niche kn-keyword=niche en-keyword=residual myometrial thickness kn-keyword=residual myometrial thickness en-keyword=risk factors kn-keyword=risk factors END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=30648 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250820 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effect of mechanical stretching stimulation on maturation of human iPS cell-derived cardiomyocytes co-cultured with human gingival fibroblasts en-subtitle= kn-subtitle= en-abstract= kn-abstract=In the realm of regenerative medicine, despite the various techniques available for inducing the differentiation of induced pluripotent stem (iPS) cells into cardiomyocytes, there remains a need to enhance the maturation of the cardiomyocytes. This study aimed to improve the differentiation and subsequent maturation of iPS-derived cardiomyocytes (iPS-CMs) by incorporating mechanical stretching. Human iPS cells were co-cultured with human gingival fibroblasts (HGF) on a polydimethylsiloxane (PDMS) stretch chamber, where mechanical stretching stimulation was applied during the induction of cardiomyocyte differentiation. The maturation of iPS-CMs was assessed using qRT-PCR, immunocytochemistry, transmission electron microscopy, calcium imaging and contractility comparisons. Results indicated significantly elevated gene expression levels of cardiomyocyte markers (cTnT) and the mesodermal marker (Nkx2.5) in the stretch group compared to the control group. Fluorescent immunocytochemical staining revealed the presence of cardiac marker proteins (cTnT and MYL2) in both groups, with higher protein expression in the stretch group. Additionally, structural maturation of iPS-CMs in the stretch group was notably better than in the control group. A significant increase in the contractility and calcium cycle of iPS-CMs was observed in the stretch group. These findings demonstrate that mechanical stretching stimulation enhances the maturation of iPS-CMs co-cultured with HGF. en-copyright= kn-copyright= en-aut-name=WangMengxue en-aut-sei=Wang en-aut-mei=Mengxue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IdeiHarumi en-aut-sei=Idei en-aut-mei=Harumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WangChen en-aut-sei=Wang en-aut-mei=Chen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=LiangYin en-aut-sei=Liang en-aut-mei=Yin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=LiuYun en-aut-sei=Liu en-aut-mei=Yun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MatsudaYusuke en-aut-sei=Matsuda en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakahashiKen en-aut-sei=Takahashi en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KamiokaHiroshi en-aut-sei=Kamioka en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NaruseKeiji en-aut-sei=Naruse en-aut-mei=Keiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Nursing, School of Life and Health Sciences, HuZhou College kn-affil= affil-num=4 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Human induced pluripotent stem cell kn-keyword=Human induced pluripotent stem cell en-keyword=Cardiomyocyte kn-keyword=Cardiomyocyte en-keyword=Human gingival fibroblast kn-keyword=Human gingival fibroblast en-keyword=Mechanical stretching kn-keyword=Mechanical stretching END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=7 article-no= start-page=e70506 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250626 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Tongue Schwannoma at the Median Inferior Surface in the Elderly: A Case Report en-subtitle= kn-subtitle= en-abstract= kn-abstract=We report the extremely rare case of an atypical schwannoma that occurred at the median inferior surface of the tongue in an elderly patient. We performed an excisional biopsy to achieve a definitive diagnosis. Based on the histopathological findings, we diagnosed a schwannoma (mixed type, Antoni A/B). en-copyright= kn-copyright= en-aut-name=FukushimaKiho en-aut-sei=Fukushima en-aut-mei=Kiho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OnoKisho en-aut-sei=Ono en-aut-mei=Kisho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ObataKyoichi en-aut-sei=Obata en-aut-mei=Kyoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamamotoIzumi en-aut-sei=Yamamoto en-aut-mei=Izumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KunisadaYuki en-aut-sei=Kunisada en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YutoriHirokazu en-aut-sei=Yutori en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IbaragiSoichiro en-aut-sei=Ibaragi en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=elderly kn-keyword=elderly en-keyword=inferior surface of the tongue kn-keyword=inferior surface of the tongue en-keyword=schwannoma kn-keyword=schwannoma en-keyword=tongue tumor kn-keyword=tongue tumor END start-ver=1.4 cd-journal=joma no-vol=272 cd-vols= no-issue=1 article-no= start-page=36 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241212 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Genetic and functional analyses of SPTLC1 in juvenile amyotrophic lateral sclerosis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder of the motor system. Pathogenic variants in SPTLC1, encoding a subunit of serine palmitoyltransferase, cause hereditary sensory and autonomic neuropathy type 1 (HSAN1), and have recently been associated with juvenile ALS. SPTLC1 variants associated with ALS cause elevated levels of sphinganines and ceramides. Reports on ALS associated with SPTLC1 remain limited. This study aimed to investigate the frequency of SPTLC1 variants in ALS and relevant clinical characteristics.
Methods We analyzed whole-exome and whole-genome sequence data from 40 probands with familial ALS and 413 patients with sporadic ALS without previously identified causative variants. Reverse transcription polymerase chain reaction (RT-PCR) analysis and droplet digital PCR (ddPCR) were used to assess splicing and mosaicism, respectively. Plasma sphingolipid levels were quantified to analyze biochemical consequences.
Results The heterozygous c.58G>A, p.Ala20Thr variant was identified in a 21-year-old Japanese female patient presenting with symmetric weakness which slowly progressed over 15 years. RT-PCR analysis showed no splice defects. Plasma sphingolipid levels in the patient were significantly increased compared to her asymptomatic parents. ddPCR revealed that the asymptomatic father harbored a mosaic variant with 17% relative mutant allele abundance in peripheral blood leukocytes.
Conclusions We identified a pathogenic c.58G>A, p.Ala20Thr SPTLC1 variant in a patient with juvenile ALS, likely inherited from an asymptomatic parent with mosaicism. Lipid analysis results are consistent with previous findings on SPTLC1-associated ALS. Further studies are necessary to determine the clinical effect of mosaic variants of SPTLC1. en-copyright= kn-copyright= en-aut-name=OkuboSo en-aut-sei=Okubo en-aut-mei=So kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NaruseHiroya en-aut-sei=Naruse en-aut-mei=Hiroya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IshiuraHiroyuki en-aut-sei=Ishiura en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SudoAtsushi en-aut-sei=Sudo en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=EsakiKayoko en-aut-sei=Esaki en-aut-mei=Kayoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MitsuiJun en-aut-sei=Mitsui en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsukawaTakashi en-aut-sei=Matsukawa en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SatakeWataru en-aut-sei=Satake en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=GreimelPeter en-aut-sei=Greimel en-aut-mei=Peter kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ShingaiNanoka en-aut-sei=Shingai en-aut-mei=Nanoka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OyaYasushi en-aut-sei=Oya en-aut-mei=Yasushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=YoshikawaTakeo en-aut-sei=Yoshikawa en-aut-mei=Takeo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TsujiShoji en-aut-sei=Tsuji en-aut-mei=Shoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=TodaTatsushi en-aut-sei=Toda en-aut-mei=Tatsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=2 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=3 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=5 en-affil=Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University kn-affil= affil-num=6 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=7 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=8 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=9 en-affil=Laboratory for Cell Function Dynamics, RIKEN Centre for Brain Sciences kn-affil= affil-num=10 en-affil=Division of Applied Life Science, Graduate School of Engineering, Sojo University kn-affil= affil-num=11 en-affil=Department of Neurology, National Center of Neurology and Psychiatry kn-affil= affil-num=12 en-affil=Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science kn-affil= affil-num=13 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=14 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= en-keyword=Juvenile amyotrophic lateral sclerosis kn-keyword=Juvenile amyotrophic lateral sclerosis en-keyword=SPTLC1 kn-keyword=SPTLC1 en-keyword=Sphingolipids kn-keyword=Sphingolipids en-keyword=Mosaicism kn-keyword=Mosaicism END start-ver=1.4 cd-journal=joma no-vol=64 cd-vols= no-issue=12 article-no= start-page=1900 end-page=1905 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250615 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Subacute Upper Motor Neuron Dysfunction Possibly Associated with the Anti-GM1 Autoantibody en-subtitle= kn-subtitle= en-abstract= kn-abstract=Anti-GM1 antibodies are associated with Guillain-Barré syndrome (GBS), primarily peripheral neuropathy. However, there are cases of anti-GM1 IgG antibody-positive GBS with upper motor neuron (UMN) signs. We herein report a case of gastrointestinal infection followed by subacute gait disturbance with predominant signs of UMN on a neurological examination. The serum and cerebrospinal fluid tests were positive for anti-GM1 and anti-asialo-GM1 IgG antibodies. An electrophysiological evaluation revealed normal nerve conduction and prolonged central motor conduction times. No magnetic resonance imaging abnormalities were observed. The symptoms improved with treatment, which was accompanied by decreased antibody titers. This case highlights the fact that anti-GM1 IgG-associated disorders may present with predominant UMN involvement. en-copyright= kn-copyright= en-aut-name=OkuboSo en-aut-sei=Okubo en-aut-mei=So kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MaedaMeiko en-aut-sei=Maeda en-aut-mei=Meiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KatsuseKazuto en-aut-sei=Katsuse en-aut-mei=Kazuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IshiuraHiroyuki en-aut-sei=Ishiura en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShirotaYuichiro en-aut-sei=Shirota en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HamadaMasashi en-aut-sei=Hamada en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SatakeWataru en-aut-sei=Satake en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TodaTatsushi en-aut-sei=Toda en-aut-mei=Tatsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=2 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=3 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=4 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=6 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=7 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=8 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= en-keyword=anti-GM1 antibody kn-keyword=anti-GM1 antibody en-keyword=anti-GA1 antibody kn-keyword=anti-GA1 antibody en-keyword=upper motor neuron kn-keyword=upper motor neuron en-keyword=motor-evoked potentials kn-keyword=motor-evoked potentials en-keyword=central motor conduction time kn-keyword=central motor conduction time en-keyword=Guillain-Barré syndrome kn-keyword=Guillain-Barré syndrome END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=15 article-no= start-page=e71098 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202508 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Real‐World Data of Comprehensive Cancer Genomic Profiling Tests Performed in the Routine Clinical Setting in Sarcoma en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction: Next-generation sequencing-based comprehensive cancer genomic profiling (CGP) tests are beneficial for refining diagnosis and personalized treatment of various cancers. However, the clinical impact of CGP, as covered by public health insurance in the management of sarcomas, remains unknown. Especially, the data on the utility of the newly emerging dual DNA–RNA panel compared to the conventional DNA-only panel in clinical settings is lacking. Therefore, we evaluated the utility of CGP in routine clinical practice for sarcoma treatment.
Patients and Methods: In this study, three types of DNA panel and one DNA–RNA panel, reimbursed by Japanese public health insurance, were utilized. We detected oncogenic and druggable gene mutations and genotype-matched therapies.
Results: One hundred and thirty-six patients were included in this study. Based on the detection of highly histology-specific translocations in the sequencing results, 2.2% of patients were re-classified. In patients with translocation-related sarcomas, a DNA–RNA panel identified more histology-specific fusion genes than DNA panels (p = 0.0035). Specifically, 86.8% and 39.0% of patients had oncogenic and druggable genomic alterations, respectively. Of these, 9.6% underwent genotype-matched therapy, with a 36.3% response rate and an 81.8% disease control rate. Patients who were administered genomically matched therapy had better overall survival (OS) than those who did not in patients with metastatic or advanced sarcoma with no prior chemotherapy (3-year OS: 83.3% vs. 48.0%, p = 0.42). Patients with TP53 and RB1 mutations had worse OS than those without. Germline findings were detected in 11.0% of the patients, one of whom had a truly germline origin.
Conclusions: This study suggests that publicly reimbursed CGP tests, particularly the dual DNA–RNA panel, could be beneficial for refining diagnostic precision in selected sarcoma subtypes, treatment decisions, detecting the germline findings, and prognosis prediction in routine clinical settings for sarcoma. The implementation of genotype-matched therapies showed favorable clinical outcomes and improved the prognosis. en-copyright= kn-copyright= en-aut-name=NakataEiji en-aut-sei=Nakata en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=EnnishiDaisuke en-aut-sei=Ennishi en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OsoneTatsunori en-aut-sei=Osone en-aut-mei=Tatsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NinomiyaKiichiro en-aut-sei=Ninomiya en-aut-mei=Kiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TomidaShuta en-aut-sei=Tomida en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ItanoTakuto en-aut-sei=Itano en-aut-mei=Takuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=FujiwaraTomohiro en-aut-sei=Fujiwara en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KunisadaToshiyuki en-aut-sei=Kunisada en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IdaNaoyuki en-aut-sei=Ida en-aut-mei=Naoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YamamotoHideki en-aut-sei=Yamamoto en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=FutagawaMashu en-aut-sei=Futagawa en-aut-mei=Mashu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=ShimoiTatsunori en-aut-sei=Shimoi en-aut-mei=Tatsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YanaiHiroyuki en-aut-sei=Yanai en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=HirasawaAkira en-aut-sei=Hirasawa en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=TabataMasahiro en-aut-sei=Tabata en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=OzakiToshifumi en-aut-sei=Ozaki en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= affil-num=1 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Medical Oncology, National Cancer Center Hospital kn-affil= affil-num=13 en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=15 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Center for Clinical Oncology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=17 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=comprehensive genomic profiling kn-keyword=comprehensive genomic profiling en-keyword=genotype-matched therapy kn-keyword=genotype-matched therapy en-keyword=multiplex gene panel test kn-keyword=multiplex gene panel test en-keyword=sarcoma kn-keyword=sarcoma END start-ver=1.4 cd-journal=joma no-vol=638 cd-vols= no-issue=8049 article-no= start-page=225 end-page=236 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250122 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Immune evasion through mitochondrial transfer in the tumour microenvironment en-subtitle= kn-subtitle= en-abstract= kn-abstract=Cancer cells in the tumour microenvironment use various mechanisms to evade the immune system, particularly T cell attack1. For example, metabolic reprogramming in the tumour microenvironment and mitochondrial dysfunction in tumour-infiltrating lymphocytes (TILs) impair antitumour immune responses2,3,4. However, detailed mechanisms of such processes remain unclear. Here we analyse clinical specimens and identify mitochondrial DNA (mtDNA) mutations in TILs that are shared with cancer cells. Moreover, mitochondria with mtDNA mutations from cancer cells are able to transfer to TILs. Typically, mitochondria in TILs readily undergo mitophagy through reactive oxygen species. However, mitochondria transferred from cancer cells do not undergo mitophagy, which we find is due to mitophagy-inhibitory molecules. These molecules attach to mitochondria and together are transferred to TILs, which results in homoplasmic replacement. T cells that acquire mtDNA mutations from cancer cells exhibit metabolic abnormalities and senescence, with defects in effector functions and memory formation. This in turn leads to impaired antitumour immunity both in vitro and in vivo. Accordingly, the presence of an mtDNA mutation in tumour tissue is a poor prognostic factor for immune checkpoint inhibitors in patients with melanoma or non-small-cell lung cancer. These findings reveal a previously unknown mechanism of cancer immune evasion through mitochondrial transfer and can contribute to the development of future cancer immunotherapies. en-copyright= kn-copyright= en-aut-name=IkedaHideki en-aut-sei=Ikeda en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawaseKatsushige en-aut-sei=Kawase en-aut-mei=Katsushige kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishiTatsuya en-aut-sei=Nishi en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WatanabeTomofumi en-aut-sei=Watanabe en-aut-mei=Tomofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakenagaKeizo en-aut-sei=Takenaga en-aut-mei=Keizo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=InozumeTakashi en-aut-sei=Inozume en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IshinoTakamasa en-aut-sei=Ishino en-aut-mei=Takamasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AkiSho en-aut-sei=Aki en-aut-mei=Sho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=LinJason en-aut-sei=Lin en-aut-mei=Jason kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KawashimaShusuke en-aut-sei=Kawashima en-aut-mei=Shusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NagasakiJoji en-aut-sei=Nagasaki en-aut-mei=Joji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=UedaYouki en-aut-sei=Ueda en-aut-mei=Youki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=SuzukiShinichiro en-aut-sei=Suzuki en-aut-mei=Shinichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=MakinoshimaHideki en-aut-sei=Makinoshima en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=ItamiMakiko en-aut-sei=Itami en-aut-mei=Makiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=NakamuraYuki en-aut-sei=Nakamura en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=TatsumiYasutoshi en-aut-sei=Tatsumi en-aut-mei=Yasutoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=SuenagaYusuke en-aut-sei=Suenaga en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=MorinagaTakao en-aut-sei=Morinaga en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=Honobe-TabuchiAkiko en-aut-sei=Honobe-Tabuchi en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=OhnumaTakehiro en-aut-sei=Ohnuma en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=KawamuraTatsuyoshi en-aut-sei=Kawamura en-aut-mei=Tatsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=UmedaYoshiyasu en-aut-sei=Umeda en-aut-mei=Yoshiyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=NakamuraYasuhiro en-aut-sei=Nakamura en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=KiniwaYukiko en-aut-sei=Kiniwa en-aut-mei=Yukiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=IchiharaEiki en-aut-sei=Ichihara en-aut-mei=Eiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=HayashiHidetoshi en-aut-sei=Hayashi en-aut-mei=Hidetoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=IkedaJun-ichiro en-aut-sei=Ikeda en-aut-mei=Jun-ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=HanazawaToyoyuki en-aut-sei=Hanazawa en-aut-mei=Toyoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= en-aut-name=ManoHiroyuki en-aut-sei=Mano en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=31 ORCID= en-aut-name=SuzukiTakuji en-aut-sei=Suzuki en-aut-mei=Takuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=32 ORCID= en-aut-name=OsawaTsuyoshi en-aut-sei=Osawa en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=33 ORCID= en-aut-name=KawazuMasahito en-aut-sei=Kawazu en-aut-mei=Masahito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=34 ORCID= en-aut-name=TogashiYosuke en-aut-sei=Togashi en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=35 ORCID= affil-num=1 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=2 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=3 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Division of Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute kn-affil= affil-num=6 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=7 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Division of Nutriomics and Oncology, RCAST, The University of Tokyo kn-affil= affil-num=9 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=10 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan Department of Dermatology, Graduate School of Medicine, Chiba University kn-affil= affil-num=11 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Department of Medical Oncology, Kindai University Faculty of Medicine kn-affil= affil-num=14 en-affil=Tsuruoka Metabolomics Laboratory, National Cancer Center kn-affil= affil-num=15 en-affil=Department of Surgical Pathology, Chiba Cancer Center kn-affil= affil-num=16 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=17 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=18 en-affil=Laboratory of Evolutionary Oncology, Chiba Cancer Center Research Institute kn-affil= affil-num=19 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=20 en-affil=Department of Dermatology, Faculty of Medicine, University of Yamanashi kn-affil= affil-num=21 en-affil=Department of Dermatology, Faculty of Medicine, University of Yamanashi kn-affil= affil-num=22 en-affil=Department of Dermatology, Faculty of Medicine, University of Yamanashi kn-affil= affil-num=23 en-affil=Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center kn-affil= affil-num=24 en-affil=Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center kn-affil= affil-num=25 en-affil=Department of Dermatology, Shinshu University School of Medicine kn-affil= affil-num=26 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=27 en-affil=Department of Medical Oncology, Kindai University Faculty of Medicine kn-affil= affil-num=28 en-affil=Department of Diagnostic Pathology, Graduate School of Medicine, Chiba University kn-affil= affil-num=29 en-affil=Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine kn-affil= affil-num=30 en-affil=Department of General Thoracic Surgery and Endocrinological Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=31 en-affil=Division of Cellular Signalling, National Cancer Center Research Institute kn-affil= affil-num=32 en-affil=Department of Respirology, Graduate School of Medicine, Chiba University kn-affil= affil-num=33 en-affil=Division of Nutriomics and Oncology, RCAST, The University of Tokyo kn-affil= affil-num=34 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=35 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=409 cd-vols= no-issue=1 article-no= start-page=356 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241125 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Subjective global assessment for nutritional screening and its impact on surgical outcomes: A prospective study in older patients with colorectal cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=Purpose Our perioperative management center provides preoperative intervention and functional and nutritional assessments for colorectal cancer patients aged over 75 years. This study evaluated the associations of preoperative nutritional status with postoperative outcomes and prognosis in colorectal cancer patients aged 75 years or older.
Methods This was a prospective, observational study of 71 colorectal cancer patients aged 75 years or older who underwent surgery between July 2020 and September 2022. The Subjective Global Assessment (SGA) was evaluated as a nutritional index. The patients were classified into three groups: SGA-A (well nourished), B (moderately malnourished), and C (severely malnourished), and the correlations with postoperative outcomes and prognosis were examined.
Results The median age of the 71 patients (34 males, 37 females) was 78 (75–92) years, and their median body mass index (BMI) was 22.3 (13.4–31.9) kg/m2. Forty-eight patients had colon cancer, and 23 had rectal cancer. On the SGA, 28 patients were SGA-A, 25 SGA-B, and 18 SGA-C. The SGA-B/C group had significantly higher BMI (p < 0.01) and more ICU admissions (p = 0.02). The G8 score was significantly lower (p = 0.03) in the SGA-B/C group, suggesting coexisting functional decline. In terms of postoperative outcomes, the SGA-B/C group had a significantly longer postoperative hospital stay (p = 0.04). The 3-year OS rates for all stages were 100% in the SGA-A group and 49.7% in the SGA-B/C group (p = 0.03), while the 3-year OS rates for patients excluding Stage IV were 100% in the SGA-A group and 68.5% in the SGA-B/C group, not significantly different (p = 0.14). The 3-year RFS rate was 95.5% in the SGA-A group and 65.3% in the SGA-B/C group (p = 0.15).
Conclusion The SGA is a promising nutritional index associated with short-term outcomes in older patients undergoing colorectal cancer surgery. The SGA can be assessed in a few minutes during an outpatient visit, making it useful for routine clinical use. en-copyright= kn-copyright= en-aut-name=TeraishiFuminori en-aut-sei=Teraishi en-aut-mei=Fuminori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YoshidaYusuke en-aut-sei=Yoshida en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShojiRyohei en-aut-sei=Shoji en-aut-mei=Ryohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KanayaNobuhiko en-aut-sei=Kanaya en-aut-mei=Nobuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MatsumiYuki en-aut-sei=Matsumi en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShigeyasuKunitoshi en-aut-sei=Shigeyasu en-aut-mei=Kunitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KondoYoshitaka en-aut-sei=Kondo en-aut-mei=Yoshitaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KagawaShunsuke en-aut-sei=Kagawa en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TamuraRie en-aut-sei=Tamura en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MatsuokaYoshikazu en-aut-sei=Matsuoka en-aut-mei=Yoshikazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MorimatsuHiroshi en-aut-sei=Morimatsu en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MitsuhashiToshiharu en-aut-sei=Mitsuhashi en-aut-mei=Toshiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Perioperative Management Center, Okayama University Hospital kn-affil= affil-num=10 en-affil=Perioperative Management Center, Okayama University Hospital kn-affil= affil-num=11 en-affil=Perioperative Management Center, Okayama University Hospital kn-affil= affil-num=12 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=13 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Subjective global assessment kn-keyword=Subjective global assessment en-keyword=Colorectal cancer kn-keyword=Colorectal cancer en-keyword=Older patients kn-keyword=Older patients en-keyword=Surgical outcome kn-keyword=Surgical outcome END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=5 article-no= start-page=271 end-page=277 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240329 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Japan MSA registry: A multicenter cohort study of multiple system atrophy en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Multiple system atrophy (MSA) is a neurodegenerative disorder characterized by autonomic failure and various motor symptoms. While MSA-C (cerebellar type) predominates in East Asia, MSA-P (parkinsonian type) predominates in Europe and North America. This nationwide patient registry aimed to (1) conduct a prospective natural history study of MSA in Japan, (2) facilitate patient recruitment for clinical trials, and (3) deposit bioresources and clinical information in a biobank.
Methods: Thirteen institutions participated in this study. Clinical information was obtained by neurologists from the patients visiting the hospital every 12 months to assess the UMSARS Part 2 scores and by telephone interviews by nurses every 6 months to assess UMSARS Part 1 scores and to determine whether clinical events had occurred.
Results: Demographic data from 329 MSA patients (216 MSA-C and 113 MSA-P) were analyzed. The mean age at symptom onset was 58.2 years (standard deviation, 8.9); the mean duration of symptoms at enrollment was 3.5 years (standard deviation, 2.2). The mean 12-month changes in the UMSARS Part 1 and Part 2 scores were 7.9 (standard deviation, 5.6) and 6.4 (standard deviation, 5.9), respectively. The patient registry proved useful in recruiting participants for clinical trials, including those with gene variants. Clinical information and biospecimens were deposited in a biobank.
Discussion: The study highlighted the importance of telephone interviews in minimizing drop-out rates in natural history studies and demonstrated similar MSA progression rates across populations. The deposited bioresources are available to researchers upon request, aiming to contribute to future MSA researches. en-copyright= kn-copyright= en-aut-name=ChikadaAyaka en-aut-sei=Chikada en-aut-mei=Ayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OrimoKenta en-aut-sei=Orimo en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MitsuiJun en-aut-sei=Mitsui en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MatsukawaTakashi en-aut-sei=Matsukawa en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IshiuraHiroyuki en-aut-sei=Ishiura en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TodaTatsushi en-aut-sei=Toda en-aut-mei=Tatsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MizusawaHidehiro en-aut-sei=Mizusawa en-aut-mei=Hidehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakahashiYuji en-aut-sei=Takahashi en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KatsunoMasahisa en-aut-sei=Katsuno en-aut-mei=Masahisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HaraKazuhiro en-aut-sei=Hara en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OnoderaOsamu en-aut-sei=Onodera en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=IshiharaTomohiko en-aut-sei=Ishihara en-aut-mei=Tomohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TadaMasayoshi en-aut-sei=Tada en-aut-mei=Masayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KuwabaraSatoshi en-aut-sei=Kuwabara en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=SugiyamaAtsuhiko en-aut-sei=Sugiyama en-aut-mei=Atsuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=YamanakaYoshitaka en-aut-sei=Yamanaka en-aut-mei=Yoshitaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=TakahashiRyosuke en-aut-sei=Takahashi en-aut-mei=Ryosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=SawamotoNobukatsu en-aut-sei=Sawamoto en-aut-mei=Nobukatsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=SakatoYusuke en-aut-sei=Sakato en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=IshimotoTomoyuki en-aut-sei=Ishimoto en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=HanajimaRitsuko en-aut-sei=Hanajima en-aut-mei=Ritsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=WatanabeYasuhiro en-aut-sei=Watanabe en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=TakigawaHiroshi en-aut-sei=Takigawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=AdachiTadashi en-aut-sei=Adachi en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=AbeKoji en-aut-sei=Abe en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=YamashitaToru en-aut-sei=Yamashita en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=TakashimaHiroshi en-aut-sei=Takashima en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=HigashiKeiko en-aut-sei=Higashi en-aut-mei=Keiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=KiraJunichi en-aut-sei=Kira en-aut-mei=Junichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=YabeIchiro en-aut-sei=Yabe en-aut-mei=Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= en-aut-name=MatsushimaMasaaki en-aut-sei=Matsushima en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=31 ORCID= en-aut-name=OgataKatsuhisa en-aut-sei=Ogata en-aut-mei=Katsuhisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=32 ORCID= en-aut-name=IshikawaKinya en-aut-sei=Ishikawa en-aut-mei=Kinya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=33 ORCID= en-aut-name=NishidaYoichiro en-aut-sei=Nishida en-aut-mei=Yoichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=34 ORCID= en-aut-name=IshiguroTaro en-aut-sei=Ishiguro en-aut-mei=Taro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=35 ORCID= en-aut-name=OzakiKokoro en-aut-sei=Ozaki en-aut-mei=Kokoro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=36 ORCID= en-aut-name=NagataTetsuya en-aut-sei=Nagata en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=37 ORCID= en-aut-name=TsujiShoji en-aut-sei=Tsuji en-aut-mei=Shoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=38 ORCID= affil-num=1 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=2 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=3 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=4 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=5 en-affil=Department of Neurology, Okayama University Graduate School of Medicine and Dentistry kn-affil= affil-num=6 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=7 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=8 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=9 en-affil=Department of Neurology, Nagoya University Graduate School of Medicine kn-affil= affil-num=10 en-affil=Department of Neurology, Nagoya University Graduate School of Medicine kn-affil= affil-num=11 en-affil=Department of Neurology, Brain Research Institute, Niigata University kn-affil= affil-num=12 en-affil=Department of Neurology, Brain Research Institute, Niigata University kn-affil= affil-num=13 en-affil=Department of Neurology, Brain Research Institute, Niigata University kn-affil= affil-num=14 en-affil=Department of Neurology, Graduate School of Medicine, Chiba University kn-affil= affil-num=15 en-affil=Department of Neurology, Graduate School of Medicine, Chiba University kn-affil= affil-num=16 en-affil=Department of Neurology, Graduate School of Medicine, Chiba University kn-affil= affil-num=17 en-affil=Department of Neurology, Kyoto University Graduate School of Medicine kn-affil= affil-num=18 en-affil=Department of Human Health Sciences, Kyoto University Graduate School of Medicine kn-affil= affil-num=19 en-affil=Department of Neurology, Kyoto University Graduate School of Medicine kn-affil= affil-num=20 en-affil=Department of Neurology, Kyoto University Graduate School of Medicine kn-affil= affil-num=21 en-affil=Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University kn-affil= affil-num=22 en-affil=Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University kn-affil= affil-num=23 en-affil=Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University kn-affil= affil-num=24 en-affil=Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University kn-affil= affil-num=25 en-affil=Department of Neurology, Okayama University Graduate School of Medicine and Dentistry kn-affil= affil-num=26 en-affil=Department of Neurology, Okayama University Graduate School of Medicine and Dentistry kn-affil= affil-num=27 en-affil=Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University kn-affil= affil-num=28 en-affil=Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University kn-affil= affil-num=29 en-affil=Department of Neurology, Graduate School of Medical Sciences, Kyushu University kn-affil= affil-num=30 en-affil=Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University kn-affil= affil-num=31 en-affil=Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University kn-affil= affil-num=32 en-affil=Department of Neurology, Higashi-Saitama National Hospital kn-affil= affil-num=33 en-affil=Department of Neurology and Neurological Science, Tokyo Medical and Dental University kn-affil= affil-num=34 en-affil=Department of Neurology and Neurological Science, Tokyo Medical and Dental University kn-affil= affil-num=35 en-affil=Department of Neurology and Neurological Science, Tokyo Medical and Dental University kn-affil= affil-num=36 en-affil=Department of Neurology and Neurological Science, Tokyo Medical and Dental University kn-affil= affil-num=37 en-affil=Department of Neurology and Neurological Science, Tokyo Medical and Dental University kn-affil= affil-num=38 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= en-keyword=multicenter cohort study kn-keyword=multicenter cohort study en-keyword=multiple system atrophy kn-keyword=multiple system atrophy en-keyword=natural history kn-keyword=natural history en-keyword=patient registry kn-keyword=patient registry END start-ver=1.4 cd-journal=joma no-vol=508 cd-vols= no-issue= article-no= start-page=111242 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202509 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Enhanced aboveground biomass density estimation in Central Vietnamese forests en-subtitle= kn-subtitle= en-abstract= kn-abstract=Accurate estimation of spatially explicit forest aboveground biomass density (AGBD) is essential for supporting climate change mitigation strategies. Recent studies have demonstrated the predictive effectiveness of the random forest (RF) algorithm in forest AGBD estimation utilizing multi-source remote sensing (RS) data. However, the RF-based estimates may be further enhanced by integrating RF with kriging techniques that account for spatial autocorrelation in model residuals. Therefore, we investigated the performance of random forest ordinary kriging (RFOK) and random forest co-kriging (RFCK) for estimating AGBD in Central Vietnamese forests using Advanced Land Observing Satellite-2 Phased Array L-band Synthetic Aperture Radar-2 (ALOS-2 PALSAR-2), Sentinel-1 (S1), and Sentinel-2 (S2) imageries. 277 predictors, including spectral bands, radar backscatter coefficients, vegetation indices, biophysical variables, and texture metrics, were derived from these RS datasets and statistically linked to field measurements from 104 geo-referenced forest inventory plots. The results showed that textures, modified chlorophyll absorption ratio index (MCARI), and radar backscatters were key contributors to AGBD variability. The fusion of ALOS-2 PALSAR-2 and S2 data yielded the highest RF performance, with coefficient of determination (R2), root mean square error (RMSE), and mean absolute error (MAE) achieving 0.75, 39.15 t.ha-1, and 32.20 t.ha-1, respectively. Incorporating interpolated residuals by ordinary kriging and co-kriging into RF predictions enhanced estimation accuracy, with relative improvements of 5.74–7.04 % in R2, 8.73–10.91 % in RMSE, and 13.62–15.27 % in MAE, yet these gains remained limited. Although RFOK achieved marginally better accuracy (R2 = 0.80, RMSE = 34.88 t.ha-1, MAE = 27.28 t.ha-1) compared to RFCK (R2 = 0.79, RMSE = 35.73 t.ha-1, MAE = 27.81 t.ha-1), the latter reduced estimation bias more effectively, likely due to the inclusion of elevation as a covariate in the co-kriging process. These findings underscore the potential of the hybrid RF-kriging frameworks for improving spatial AGBD estimation, offering a robust approach for carbon accounting in tropical ecosystems. en-copyright= kn-copyright= en-aut-name=HoViet Hoang en-aut-sei=Ho en-aut-mei=Viet Hoang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MoritaHidenori en-aut-sei=Morita en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=BachoferFelix en-aut-sei=Bachofer en-aut-mei=Felix kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HoThanh Ha en-aut-sei=Ho en-aut-mei=Thanh Ha kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=German Aerospace Center (DLR), Earth Observation Center kn-affil= affil-num=4 en-affil=University of Agriculture and Forestry, Hue University kn-affil= en-keyword=Forest aboveground biomass density kn-keyword=Forest aboveground biomass density en-keyword=Random forest kn-keyword=Random forest en-keyword=Ordinary kriging kn-keyword=Ordinary kriging en-keyword=Co-kriging kn-keyword=Co-kriging en-keyword=Multispectral kn-keyword=Multispectral en-keyword=Multi-frequency synthetic aperture radar kn-keyword=Multi-frequency synthetic aperture radar END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=5 article-no= start-page=1554 end-page=1577 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250405 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Comparison of geostatistics, machine learning algorithms, and their hybrid approaches for modeling soil organic carbon density in tropical forests en-subtitle= kn-subtitle= en-abstract= kn-abstract=Purpose Understanding the spatial variability of soil organic carbon density (SOCD) in tropical forests is necessary for efficient climate change mitigation initiatives. However, accurately modeling SOCD in these landscapes is challenging due to low-density sampling efforts and the limited availability of in-situ data caused by constrained accessibility. In this study, we aimed to explore the most suitable modeling technique for SOCD estimation in the context of tropical forest ecosystems.
Methods To support the research, thirty predictor covariates derived from remote sensing data, topographic attributes, climatic factors, and geographic positions were utilized, along with 104 soil samples collected from the top 30 cm of soil in Central Vietnamese tropical forests. We compared the effectiveness of geostatistics (ordinary kriging, universal kriging, and kriging with external drift), machine learning (ML) algorithms (random forest and boosted regression tree), and their hybrid approaches (random forest regression kriging and boosted regression tree regression kriging) for the prediction of SOCD. Prediction accuracy was evaluated using the coefficient of determination (R2), the root mean squared error (RMSE), and the mean absolute error (MAE) obtained from leave-one-out cross-validation.
Results The study results indicated that hybrid approaches performed best in predicting forest SOCD with the greatest values of R2 and the lowest values of MAE and RMSE, and the ML algorithms were more accurate than geostatistics. Additionally, the prediction maps produced by the hybridization showed the most realistic SOCD pattern, whereas the kriged maps were prone to have smoother patterns, and ML-based maps were inclined to possess more detailed patterns. The result also revealed the superiority of the ML plus residual kriging approaches over the ML models in reducing the underestimation of large SOCD values in high-altitude mountain areas and the overestimation of low SOCD values in low-lying terrain areas.
Conclusion Our findings suggest that the hybrid approaches of geostatistics and ML models are most suitable for modeling SOCD in tropical forests. en-copyright= kn-copyright= en-aut-name=HoViet Hoang en-aut-sei=Ho en-aut-mei=Viet Hoang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MoritaHidenori en-aut-sei=Morita en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HoThanh Ha en-aut-sei=Ho en-aut-mei=Thanh Ha kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=BachoferFelix en-aut-sei=Bachofer en-aut-mei=Felix kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NguyenThi Thuong en-aut-sei=Nguyen en-aut-mei=Thi Thuong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=University of Agriculture and Forestry, Hue University kn-affil= affil-num=4 en-affil=German Aerospace Center (DLR), Earth Observation Center kn-affil= affil-num=5 en-affil=University of Agriculture and Forestry, Hue University kn-affil= en-keyword=Digital soil mapping kn-keyword=Digital soil mapping en-keyword=Hybrid approaches kn-keyword=Hybrid approaches en-keyword=Kriging kn-keyword=Kriging en-keyword=Machine learning kn-keyword=Machine learning en-keyword=Soil organic carbon density kn-keyword=Soil organic carbon density en-keyword=Tropical forests kn-keyword=Tropical forests END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=2 article-no= start-page=159 end-page=161 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A novel de novo disease-causing variant in ATL1 in a pediatric patient with spastic paraplegia en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=NakamuraAyumi en-aut-sei=Nakamura en-aut-mei=Ayumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NaruseHiroya en-aut-sei=Naruse en-aut-mei=Hiroya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MitsutakeAkihiko en-aut-sei=Mitsutake en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MitsuiJun en-aut-sei=Mitsui en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MorishitaShinichi en-aut-sei=Morishita en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IwakoshiMie en-aut-sei=Iwakoshi en-aut-mei=Mie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IshiuraHiroyuki en-aut-sei=Ishiura en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TsujiShoji en-aut-sei=Tsuji en-aut-mei=Shoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TodaTatsushi en-aut-sei=Toda en-aut-mei=Tatsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=2 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=3 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=4 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=5 en-affil=Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo kn-affil= affil-num=6 en-affil=Department of Nursing, Faculty of Health Sciences, Kobe Tokiwa University kn-affil= affil-num=7 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Institute of Medical Genomics, International University of Health and Welfare kn-affil= affil-num=9 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= END start-ver=1.4 cd-journal=joma no-vol=69 cd-vols= no-issue=12 article-no= start-page=613 end-page=621 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240718 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Association study of GBA1 variants with MSA based on comprehensive sequence analysis -Pitfalls in short-read sequence analysis depending on the human reference genome- en-subtitle= kn-subtitle= en-abstract= kn-abstract=Multiple system atrophy (MSA) is a neurodegenerative disorder characterized by various combinations of autonomic failure, parkinsonism, and cerebellar ataxia. To elucidate variants associated with MSA, we have been conducting short-read-based whole-genome sequence analysis. In the process of the association studies, we initially focused on GBA1, a previously proposed susceptibility gene for MSA, to evaluate whether GBA1 variants can be efficiently identified despite its extraordinarily high homology with its pseudogene, GBA1LP. To accomplish this, we conducted a short-read whole-genome sequence analysis with alignment to GRCh38 as well as Sanger sequence analysis and compared the results. We identified five variants with inconsistencies between the two pipelines, of which three variants (p.L483P, p.A495P–p.V499V, p.L483_M489delinsW) were the results of misalignment due to minor alleles in GBA1P1 registered in GRCh38. The miscalling events in these variants were resolved by alignment to GRCh37 as the reference genome, where the major alleles are registered. In addition, a structural variant was not properly identified either by short-read or by Sanger sequence analyses. Having accomplished correct variant calling, we identified three variants pathogenic for Gaucher disease (p.S310G, p.L483P, and p.L483_M489delinsW). Of these variants, the allele frequency of p.L483P (0.003) in the MSA cases was higher than that (0.0011) in controls. The meta-analysis incorporating a previous report demonstrated a significant association of p.L483P with MSA with an odds ratio of 2.85 (95% CI; 1.05 – 7.76, p = 0.0400). en-copyright= kn-copyright= en-aut-name=OrimoKenta en-aut-sei=Orimo en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MitsuiJun en-aut-sei=Mitsui en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsukawaTakashi en-aut-sei=Matsukawa en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TanakaMasaki en-aut-sei=Tanaka en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NomotoJunko en-aut-sei=Nomoto en-aut-mei=Junko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IshiuraHiroyuki en-aut-sei=Ishiura en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OmaeYosuke en-aut-sei=Omae en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KawaiYosuke en-aut-sei=Kawai en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TokunagaKatsushi en-aut-sei=Tokunaga en-aut-mei=Katsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NCBN Controls WGS Consortium en-aut-sei=NCBN Controls WGS Consortium en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TodaTatsushi en-aut-sei=Toda en-aut-mei=Tatsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TsujiShoji en-aut-sei=Tsuji en-aut-mei=Shoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=2 en-affil=Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=3 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=4 en-affil=Institute of Medical Genomics, International University of Health and Welfare kn-affil= affil-num=5 en-affil=Institute of Medical Genomics, International University of Health and Welfare kn-affil= affil-num=6 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Genome Medical Science Project, National Center for Global Health and Medicine kn-affil= affil-num=8 en-affil=Genome Medical Science Project, National Center for Global Health and Medicine kn-affil= affil-num=9 en-affil=Genome Medical Science Project, National Center for Global Health and Medicine kn-affil= affil-num=10 en-affil= kn-affil= affil-num=11 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=12 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=4 article-no= start-page=244 end-page=254 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202408 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A novel brief questionnaire using a face rating scale to assess dental anxiety and fear en-subtitle= kn-subtitle= en-abstract= kn-abstract=PURPOSE This study aimed to evaluate the reliability and validity of a four-item questionnaire using a face rating scale to measure dental trait anxiety (DTA), dental trait fear (DTF), dental state anxiety (DSA), and dental state fear (DSF).
MATERIALS AND METHODS Participants were consecutively selected from patients undergoing scaling (S-group; n = 47) and implant placement (I-group; n = 25). The S-group completed the questionnaire both before initial and second scaling, whereas the I-group responded on the pre-surgery day (Pre-day), the day of implant placement (Imp-day), and the day of suture removal (Post-day).
RESULTS The reliability in the S-group was evaluated using the test-retest method, showing a weighted kappa value of DTA, 0.61; DTF, 0.46; DSA, 0.67; DSF, 0.52. Criterion-related validity, assessed using the State-Trait Anxiety Inventory’s trait anxiety and state anxiety, revealed positive correlations between trait anxiety and DTA/DTF (DTA, ρ = 0.30; DTF, ρ = 0.27, ρ: correlation coefficient) and between state anxiety and all four items (DTA, ρ = 0.41; DTF, ρ = 0.32; DSA, ρ = 0.25; DSF, ρ = 0.25). Known-group validity was assessed using the initial data and Imp-day data from the S-group and I-group, respectively, revealing significantly higher DSA and DSF scores in the I-group than in the S-group. Responsiveness was gauged using I-group data, showing significantly lower DSA and DSF scores on post-day compared to other days.
CONCLUSION The newly developed questionnaire has acceptable reliability and validity for clinical use, suggesting its usefulness for research on dental anxiety and fear and for providing patient-specific dental care. en-copyright= kn-copyright= en-aut-name=MinoTakuya en-aut-sei=Mino en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=Kimura-OnoAya en-aut-sei=Kimura-Ono en-aut-mei=Aya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ArakawaHikaru en-aut-sei=Arakawa en-aut-mei=Hikaru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TokumotoKana en-aut-sei=Tokumoto en-aut-mei=Kana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KurosakiYoko en-aut-sei=Kurosaki en-aut-mei=Yoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MatsukaYoshizo en-aut-sei=Matsuka en-aut-mei=Yoshizo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MaekawaKenji en-aut-sei=Maekawa en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KubokiTakuo en-aut-sei=Kuboki en-aut-mei=Takuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Stomatognathic Function and Occlusal Reconstruction, Graduate School of Biomedical Sciences, Tokushima University kn-affil= affil-num=7 en-affil=Department of Removable Prosthodontics and Occlusion, Osaka Dental University kn-affil= affil-num=8 en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=Dental anxiety kn-keyword=Dental anxiety en-keyword=Anxiety disorders kn-keyword=Anxiety disorders en-keyword=Surveys kn-keyword=Surveys en-keyword=Questionnaires kn-keyword=Questionnaires en-keyword=Validation study kn-keyword=Validation study en-keyword=Phobia kn-keyword=Phobia END start-ver=1.4 cd-journal=joma no-vol=88 cd-vols= no-issue=9 article-no= start-page=1398 end-page=1405 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240823 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Morphological Features of Patent Foramen Ovale Compared Between Older and Young Patients With Cryptogenic Ischemic Stroke en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: The morphology of a patent foramen ovale (PFO) with a high-risk for cryptogenic ischemic stroke (CS) is an important factor in the selection of patients for transcatheter closure, but the morphological features of PFO in older patients with a history of CS are less known because the most data are obtained from younger patients.
Methods and Results: The study included 169 patients who had a history of CS and PFO. The prevalence of high-risk morphologies of PFO assessed by transesophageal echocardiography was compared between patients aged ≥60 years and patients aged <60 years. We also assessed the presence of septal malalignment of PFO on the aortic wall. The probability of CS due to PFO was evaluated using the PFO-Associated Stroke Causal Likelihood classification system. Patients aged ≥60 years had a significantly higher prevalence of atrial septal aneurysm than patients aged <60 years. The prevalence of large right-to-left shunt, long-tunnel of PFO, or Eustachian valve or Chiari’s network was similar between patients aged ≥60 years and <60 years. Septal malalignment was observed more frequently in patients aged ≥60 years than in those <60 years old. Nearly 90% of patients aged ≥60 years were classified as ‘possible’ in the PFO-Associated Stroke Causal Likelihood classification system.
Conclusions: High-risk morphologies of PFO are common in older patients with a history of CS, as well as in younger patients. en-copyright= kn-copyright= en-aut-name=NakashimaMitsutaka en-aut-sei=Nakashima en-aut-mei=Mitsutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakayaYoichi en-aut-sei=Takaya en-aut-mei=Yoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakayamaRie en-aut-sei=Nakayama en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TsujiMasahiro en-aut-sei=Tsuji en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AkagiTeiji en-aut-sei=Akagi en-aut-mei=Teiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MikiTakashi en-aut-sei=Miki en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YuasaShinsuke en-aut-sei=Yuasa en-aut-mei=Shinsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Cryptogenic ischemic stroke kn-keyword=Cryptogenic ischemic stroke en-keyword=Older patients kn-keyword=Older patients en-keyword=Patent foramen ovale kn-keyword=Patent foramen ovale END start-ver=1.4 cd-journal=joma no-vol=23 cd-vols= no-issue=3 article-no= start-page=79 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250703 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Association of the expression of 5‑FU biomarkers with aging and prognosis in elderly patients with lung cancer treated with S‑1 adjuvant chemotherapy: Follow‑up results of the Setouchi Lung Cancer Group Study 1201 en-subtitle= kn-subtitle= en-abstract= kn-abstract=Managing elderly patients presents several challenges because of age‑related declines; however, age should not be the sole determinant for adjuvant treatment decisions in patients with non‑small cell lung cancer (NSCLC). Moreover, age may affect the expression of 5‑fluorouracil (5‑FU) biomarkers. The present study assessed: i) The effect of age on the expression levels of 5‑FU biomarkers by analyzing a public database; and ii) the ability of these biomarkers to predict clinical outcomes in elderly patients with NSCLC who underwent complete resection in the Setouchi Lung Cancer Group Study 1201 (SCLG1201) followed by S‑1 adjuvant chemotherapy. Changes in gene expression levels across age groups were assessed by analyzing The Cancer Genome Atlas (TCGA) database. The expression of 5‑FU biomarkers, including thymidylate synthase (TS), dihydropyrimidine dehydrogenase (DPD), orotate phosphoribosyltransferase, epidermal growth factor receptor (EGFR) and excision repair cross‑complementation group 1 (ERCC1), were assessed via quantitative reverse‑transcription PCR assays in 89 elderly patients (≥75 years) with NSCLC who received adjuvant chemotherapy with oral fluoropyrimidine prodrug S‑1 in the SLCG1201 trial. TCGA database analysis (n=955) showed that TS expression decreased significantly with aging, especially in the age group ≥75. In the SCLG1201 trial, univariate analysis revealed that EGFR upregulation and TS downregulation were correlated with favorable recurrence‑free survival (RFS) and overall survival (OS), respectively. Multivariate analysis demonstrated that pathological stage was an independent prognostic factor for both RFS and OS. EGFR mutations were associated with upregulation of DPD and EGFR, and downregulation of TS and ERCC1. In conclusion, although pathological stage is an independent prognostic factor for survival, EGFR upregulation and TS downregulation may be a greater predictor of clinical outcomes in elderly patients with NSCLC treated with S‑1 adjuvant chemotherapy. The age‑related decrease in TS expression supports the potential benefit of 5‑FU therapies in elderly patients. Nonetheless, further research is warranted to validate these results. en-copyright= kn-copyright= en-aut-name=SohJunichi en-aut-sei=Soh en-aut-mei=Junichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamamotoHiromasa en-aut-sei=Yamamoto en-aut-mei=Hiromasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OkumuraNorihito en-aut-sei=Okumura en-aut-mei=Norihito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SuzukiHiroyuki en-aut-sei=Suzuki en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakataMasao en-aut-sei=Nakata en-aut-mei=Masao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FujiwaraToshiya en-aut-sei=Fujiwara en-aut-mei=Toshiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=GembaKenicehi en-aut-sei=Gemba en-aut-mei=Kenicehi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SanoIsao en-aut-sei=Sano en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=FujinagaTakuji en-aut-sei=Fujinaga en-aut-mei=Takuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KataokaMasafumi en-aut-sei=Kataoka en-aut-mei=Masafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TerasakiYasuhiro en-aut-sei=Terasaki en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=FujimotoNobukazu en-aut-sei=Fujimoto en-aut-mei=Nobukazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KataokaKazuhiko en-aut-sei=Kataoka en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KosakaShinji en-aut-sei=Kosaka en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=YamashitaMotohiro en-aut-sei=Yamashita en-aut-mei=Motohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=InokawaHidetoshi en-aut-sei=Inokawa en-aut-mei=Hidetoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=InoueMasaaki en-aut-sei=Inoue en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=NakamuraHiroshige en-aut-sei=Nakamura en-aut-mei=Hiroshige kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=YamashitaYoshinori en-aut-sei=Yamashita en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=TakahashiYuta en-aut-sei=Takahashi en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=TorigoeHidejiro en-aut-sei=Torigoe en-aut-mei=Hidejiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=SatoHiroki en-aut-sei=Sato en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=TomidaShuta en-aut-sei=Tomida en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=HottaKatsuyuki en-aut-sei=Hotta en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=YoshiokaHiroshige en-aut-sei=Yoshioka en-aut-mei=Hiroshige kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=MoritaSatoshi en-aut-sei=Morita en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=MatsuoKeitaro en-aut-sei=Matsuo en-aut-mei=Keitaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=SakamotoJunichi en-aut-sei=Sakamoto en-aut-mei=Junichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=DateHiroshi en-aut-sei=Date en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= affil-num=1 en-affil=Department of Thoracic Surgery, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Thoracic Surgery, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Thoracic Surgery, Kurashiki Central Hospital kn-affil= affil-num=4 en-affil=Department of Chest Surgery, Fukushima Medical University Hospital kn-affil= affil-num=5 en-affil=Department of General Thoracic Surgery, Kawasaki Medical School Hospital kn-affil= affil-num=6 en-affil=Department of Thoracic Surgery, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=7 en-affil=Department of Respiratory Medicine, Chugoku Central Hospital, Fukuyama, Hiroshima 720‑0001, Japan; 8Department of Respiratory Surgery, Japanese Red Cross Nagasaki Genbaku Hospital kn-affil= affil-num=8 en-affil=Department of Respiratory Surgery, Japanese Red Cross Nagasaki Genbaku Hospital kn-affil= affil-num=9 en-affil=Department of General Thoracic Surgery, National Hospital Organization Nagara Medical Center kn-affil= affil-num=10 en-affil=Department of Surgery and Respiratory Center, Okayama Saiseikai General Hospital kn-affil= affil-num=11 en-affil=Department of Respiratory Surgery, Saga Medical Center Koseikan kn-affil= affil-num=12 en-affil=Department of Medical Oncology and Respiratory Medicine, Okayama Rosai Hospital kn-affil= affil-num=13 en-affil=Department of Thoracic Surgery, National Hospital Organization Iwakuni Clinical Center kn-affil= affil-num=14 en-affil=Department of Thoracic Surgery, Shimane Prefectural Central Hospital kn-affil= affil-num=15 en-affil=Department of Thoracic Surgery, National Hospital Organization Shikoku Cancer Center kn-affil= affil-num=16 en-affil=Department of Thoracic Surgery, National Hospital Organization Yamaguchi‑Ube Medical Center kn-affil= affil-num=17 en-affil=Department of Thoracic Surgery, Shimonoseki City Hospital kn-affil= affil-num=18 en-affil=Division of General Thoracic Surgery, Tottori University Hospital kn-affil= affil-num=19 en-affil=Department of Thoracic Surgery, National Hospital Organization Kure Medical Center and Chugoku Cancer Center kn-affil= affil-num=20 en-affil=Department of Thoracic Surgery, Okayama University Hospital kn-affil= affil-num=21 en-affil=Department of Thoracic Surgery, Okayama University Hospital kn-affil= affil-num=22 en-affil=Department of Thoracic Surgery, Okayama University Hospital kn-affil= affil-num=23 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital kn-affil= affil-num=24 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=25 en-affil=Department of Thoracic Oncology, Kansai Medical University Hospital kn-affil= affil-num=26 en-affil=Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine kn-affil= affil-num=27 en-affil=Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute kn-affil= affil-num=28 en-affil=Tokai Central Hospital kn-affil= affil-num=29 en-affil=Department of Thoracic Surgery, Kyoto University Hospital kn-affil= affil-num=30 en-affil=Department of Thoracic Surgery, Okayama University Hospital kn-affil= en-keyword=non‑small cell lung cancer kn-keyword=non‑small cell lung cancer en-keyword=elderly patients kn-keyword=elderly patients en-keyword=adjuvant chemotherapy kn-keyword=adjuvant chemotherapy en-keyword=S‑1 kn-keyword=S‑1 en-keyword=EGFR kn-keyword=EGFR en-keyword=TP kn-keyword=TP en-keyword=TS kn-keyword=TS en-keyword=OPRT kn-keyword=OPRT en-keyword=ERCC1 kn-keyword=ERCC1 en-keyword=DPD kn-keyword=DPD END start-ver=1.4 cd-journal=joma no-vol=60 cd-vols= no-issue=10 article-no= start-page=1215 end-page=1227 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241121 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Enhanced design of pCMViR-TSC plasmid vector for sustainably high cargo gene expression in mammalian cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=The first-generation pCMViR-TSC, implemented through the promoter sandwich rule, yields 10- to 100-fold higher gene expression than the standard plasmid used with the CMV (cytomegalovirus) or CAG promoter. However, the vector’s shortcomings limit its utility to transient expression only, as it is not suitable for establishing stable transformants in mammalian cells. To overcome this weakness, we here introduce the improved plasmid vector pSAKA-4B, derived from pCMViR-TSC as a second-generation chromosome-insertable vector. This vector facilitates the linear entry of the expression unit into the TTAA site of DNA universally with transposase assistance. The vector is helpful for the indefinite expression of our target gene. The new vector system is proven here to be efficient in establishing stable transformants with a high likelihood of positive clones that exhibit significantly elevated expression levels of the delivered foreign gene. This system, alongside the first-generation vector, is therefore instrumental for diverse basic research endeavors concerning genes, proteins, cells, and animals, and potentially for clinical applications such as gene therapy. en-copyright= kn-copyright= en-aut-name=SakaguchiMasakiyo en-aut-sei=Sakaguchi en-aut-mei=Masakiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KinoshitaRie en-aut-sei=Kinoshita en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TomonobuNahoko en-aut-sei=Tomonobu en-aut-mei=Nahoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SakaguchiYoshihiko en-aut-sei=Sakaguchi en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FutamiJunichiro en-aut-sei=Futami en-aut-mei=Junichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamauchiAkira en-aut-sei=Yamauchi en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MurataHitoshi en-aut-sei=Murata en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamamotoKen-ichi en-aut-sei=Yamamoto en-aut-mei=Ken-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TakahashiTetta en-aut-sei=Takahashi en-aut-mei=Tetta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=GoharaYuma en-aut-sei=Gohara en-aut-mei=Yuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OchiToshiki en-aut-sei=Ochi en-aut-mei=Toshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=JiangFan en-aut-sei=Jiang en-aut-mei=Fan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KomalasariNi Luh Gede Yoni en-aut-sei=Komalasari en-aut-mei=Ni Luh Gede Yoni kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=ChenYouyi en-aut-sei=Chen en-aut-mei=Youyi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=RumaI Made Winarsa en-aut-sei=Ruma en-aut-mei=I Made Winarsa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=SumardikaI Wayan en-aut-sei=Sumardika en-aut-mei=I Wayan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=ZhouJin en-aut-sei=Zhou en-aut-mei=Jin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=HonjoTomoko en-aut-sei=Honjo en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=KuribayashiFutoshi en-aut-sei=Kuribayashi en-aut-mei=Futoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=SagayamaKazumi en-aut-sei=Sagayama en-aut-mei=Kazumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=KondoEisaku en-aut-sei=Kondo en-aut-mei=Eisaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=InoueYusuke en-aut-sei=Inoue en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= affil-num=1 en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=2 en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=3 en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=4 en-affil=Department of Microbiology, Tokushima Bunri University kn-affil= affil-num=5 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=6 en-affil=Department of Biochemistry, Kawasaki Medical School kn-affil= affil-num=7 en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=8 en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=9 en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=10 en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=11 en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=12 en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=13 en-affil=Faculty of Medicine, Udayana University kn-affil= affil-num=14 en-affil=Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine kn-affil= affil-num=15 en-affil=Faculty of Medicine, Udayana University kn-affil= affil-num=16 en-affil=Faculty of Medicine, Udayana University kn-affil= affil-num=17 en-affil=Medical Oncology Department of Gastrointestinal Tumors, Liaoning Cancer Hospital & Institute, Cancer Hospital of the Dalian University of Technology kn-affil= affil-num=18 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=19 en-affil=Department of Biochemistry, Kawasaki Medical School kn-affil= affil-num=20 en-affil=Organization for Research and Innovation Strategy, Okayama University kn-affil= affil-num=21 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=22 en-affil=Division of Tumor Pathology, Near InfraRed Photo-Immuno-Therapy Research Institute, Kansai Medical University kn-affil= affil-num=23 en-affil=Faculty of Science and Technology, Division of Molecular Science, Gunma University kn-affil= en-keyword=Plasmid kn-keyword=Plasmid en-keyword=Gene engineering kn-keyword=Gene engineering en-keyword=Cancer kn-keyword=Cancer en-keyword=Cell culture kn-keyword=Cell culture END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=1892 end-page=1893 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250807 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Assessing the Proportion of Clinical Trial Eligibility Criteria Expressible with Standard EHR Data Elements en-subtitle= kn-subtitle= en-abstract= kn-abstract=Patient recruitment for clinical trials often requires substantial human effort and experiences delays, leading to increased drug development costs. Leveraging electronic health records (EHRs) may improve the accuracy of estimates of potentially recruitable patients. We evaluated the feasibility of using EHRs by analyzing the proportion of computable eligibility criteria. en-copyright= kn-copyright= en-aut-name=OkazakiRisa en-aut-sei=Okazaki en-aut-mei=Risa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KamikawaKunihisa en-aut-sei=Kamikawa en-aut-mei=Kunihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UnoHideki en-aut-sei=Uno en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OkudaHiroto en-aut-sei=Okuda en-aut-mei=Hiroto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NambaShihoko en-aut-sei=Namba en-aut-mei=Shihoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KanoMitsunobu en-aut-sei=Kano en-aut-mei=Mitsunobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MoritaMizuki en-aut-sei=Morita en-aut-mei=Mizuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil= affil-num=2 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=3 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=4 en-affil=Division of Clinical Research of New Drugs and Therapeutics, Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=5 en-affil=Division of Clinical Research of New Drugs and Therapeutics, Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=6 en-affil=Graduate School of Interdisciplinary Science and Technology in Health Systems, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Interdisciplinary Science and Technology in Health Systems, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=86 cd-vols= no-issue= article-no= start-page=103389 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202508 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Global trends in mortality related to pulmonary embolism: an epidemiological analysis of data from the World Health Organization mortality database from 2001 to 2023 en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=HagiyaHideharu en-aut-sei=Hagiya en-aut-mei=Hideharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HaradaKo en-aut-sei=Harada en-aut-mei=Ko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishimuraYoshito en-aut-sei=Nishimura en-aut-mei=Yoshito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamamotoMaki en-aut-sei=Yamamoto en-aut-mei=Maki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NishimuraSayoko en-aut-sei=Nishimura en-aut-mei=Sayoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamamotoMichio en-aut-sei=Yamamoto en-aut-mei=Michio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NiimuraTakahiro en-aut-sei=Niimura en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OsakiYuka en-aut-sei=Osaki en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=VuQuynh Thi en-aut-sei=Vu en-aut-mei=Quynh Thi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=FujiiMariko en-aut-sei=Fujii en-aut-mei=Mariko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SakoNanami en-aut-sei=Sako en-aut-mei=Nanami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TakedaTatsuaki en-aut-sei=Takeda en-aut-mei=Tatsuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=HamanoHirofumi en-aut-sei=Hamano en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=ZamamiYoshito en-aut-sei=Zamami en-aut-mei=Yoshito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=KoyamaToshihiro en-aut-sei=Koyama en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil=Department of Infectious Diseases, Okayama University Hospital kn-affil= affil-num=2 en-affil=Brookdale Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai kn-affil= affil-num=3 en-affil=Division of Hematology and Oncology, Mayo Clinic kn-affil= affil-num=4 en-affil=Department of Health Data Science, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Health Data Science, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Human Sciences, Osaka University kn-affil= affil-num=7 en-affil=Department of Clinical Pharmacology and Therapeutics, Institute of Biomedical Sciences, Tokushima University Graduate School kn-affil= affil-num=8 en-affil=Department of Health Data Science, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Health Data Science, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Health Data Science, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Health Data Science, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Center for Education in Medicine and Health Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Department of Pharmacy, Medical Development Field, Okayama University kn-affil= affil-num=14 en-affil=Department of Pharmacy, Medical Development Field, Okayama University kn-affil= affil-num=15 en-affil=Department of Health Data Science, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Pulmonary embolism kn-keyword=Pulmonary embolism en-keyword=Mortality kn-keyword=Mortality en-keyword=WHO kn-keyword=WHO en-keyword=Global trends kn-keyword=Global trends END start-ver=1.4 cd-journal=joma no-vol=6 cd-vols= no-issue=1 article-no= start-page=654 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250812 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Biogeochemical impact of nickel and urea in the great oxidation event en-subtitle= kn-subtitle= en-abstract= kn-abstract=The Great Oxidation Event marks the first substantial increase in atmospheric oxygen on Earth. Despite the oxygenic photosynthesis that emerged hundreds of million years before this event, the specific biogeochemical mechanisms responsible for maintaining low oxygen levels for an extended period remain elusive. Here, we show the critical role of urea as a nitrogen source for cyanobacteria, the cascading impact of nickel on abiotic urea production, and their combined effects on the proliferation of cyanobacteria leading to the great oxidation event. Urea formation was experimentally evaluated under simulated Archean conditions and cyanobacterial growth was monitored providing urea as the nitrogen source. Our findings demonstrate that urea can be produced in the Archean cyanobacterial habitats with UV-C irradiation, shedding light on the controversy regarding the evolution of nitrogen-fixing enzymes in primitive cyanobacteria. We propose that environmental conditions in the early Archean, characterized by elevated urea and nickel concentration, may have hindered cyanobacterial expansion, contributing to the delay between the evolution of oxygenic photosynthesis and the onset of the great oxidation event. en-copyright= kn-copyright= en-aut-name=RatnayakeDilan M. en-aut-sei=Ratnayake en-aut-mei=Dilan M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TanakaRyoji en-aut-sei=Tanaka en-aut-mei=Ryoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakamuraEizo en-aut-sei=Nakamura en-aut-mei=Eizo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=2 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=3 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=68 cd-vols= no-issue= article-no= start-page=1319 end-page=1323 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Method for predicting crack size using amplitude change in titanium alloy under bending vibration en-subtitle= kn-subtitle= en-abstract= kn-abstract=The natural frequency of a material decreases owing to the presence of cracks. Thus, when a crack initiates in a material under vibration, the amplitude of the vibration changes with the crack propagation. In this study, we investigated a method for predicting crack size using the amplitude change in a plate specimen of a titanium alloy under bending vibration. The bending displacement amplitudes were measured using high-speed camera images of the specimens. The crack sizes were measured using optical microscopy images of plastic replicas of the specimen surfaces that were obtained after interrupting tests at specified intervals. By using the relationship between the total area of the cracks and bending displacement amplitude for tests at two different vibration frequencies as well as the relationship between the vibration frequency and bending displacement amplitude for an undamaged specimen, the bending displacement amplitude at any vibration frequency can be monitored to predict the total area of the cracks. en-copyright= kn-copyright= en-aut-name=SakamotoJunji en-aut-sei=Sakamoto en-aut-mei=Junji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TadaNaoya en-aut-sei=Tada en-aut-mei=Naoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UemoriTakeshi en-aut-sei=Uemori en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Okayama University, Faculty of Environmental, Life, Natural Science and Technology kn-affil= affil-num=2 en-affil=Okayama University, Faculty of Environmental, Life, Natural Science and Technology kn-affil= affil-num=3 en-affil=Okayama University, Faculty of Environmental, Life, Natural Science and Technology kn-affil= en-keyword=Vibration kn-keyword=Vibration en-keyword=Fatigue crack propagation kn-keyword=Fatigue crack propagation en-keyword=Non-destructive inspection kn-keyword=Non-destructive inspection en-keyword=Titanium alloy kn-keyword=Titanium alloy END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250726 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Relationship between maternal body composition changes and heavy for date infants in pregnant women with diabetes en-subtitle= kn-subtitle= en-abstract= kn-abstract=Aims/Introduction: Maternal hyperglycemia is associated with heavy for date (HFD) infants. Considering the association between body composition and hyperglycemia, we investigated the changes in maternal body composition and their relationship with HFD infants in pregnant women with diabetes.
Materials and Methods: Body composition was measured during pregnancy using a bioelectrical impedance analysis system. This retrospective study included 151 pregnant women; 27 women had type 1 diabetes mellitus (DM), 21 had type 2 DM, 101 were diagnosed with gestational DM, and 2 had overt DM. The number of HFD infants was 40.
Results: In the non-type 1 DM group, change in fat mass (ΔFM) (P < 0.01) and pre-pregnancy BMI (P < 0.05) were risk factors for HFD. In the insulin group, ΔFM, pre-pregnancy BMI, and age (all P < 0.05) were risk factors for HFD. The area under the curve was 0.813 for the predictive model combined with ΔFM and pre-pregnancy BMI in the non-type 1 DM group and 0.818 for the model combined with ΔFM, pre-pregnancy BMI, and age in the insulin group.
Conclusions: The combination of body composition parameters and clinical data may predict HFD in pregnant women with diabetes. en-copyright= kn-copyright= en-aut-name=EtoEriko en-aut-sei=Eto en-aut-mei=Eriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KatoMasakazu en-aut-sei=Kato en-aut-mei=Masakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KirinoSatoe en-aut-sei=Kirino en-aut-mei=Satoe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KuriyamaChiaki en-aut-sei=Kuriyama en-aut-mei=Chiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SakataSyujiro en-aut-sei=Sakata en-aut-mei=Syujiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakatoHikari en-aut-sei=Nakato en-aut-mei=Hikari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MishimaSakurako en-aut-sei=Mishima en-aut-mei=Sakurako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OhiraAkiko en-aut-sei=Ohira en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MasuyamaHisashi en-aut-sei=Masuyama en-aut-mei=Hisashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil= kn-affil= affil-num=4 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Fat mass gain kn-keyword=Fat mass gain en-keyword=Heavy for date kn-keyword=Heavy for date en-keyword=Maternal body composition kn-keyword=Maternal body composition END