start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Activation of barium titanate for photocatalytic overall water splitting via low-valence cation codoping
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Barium titanate (BaTiO3) has long been regarded as inactive for photocatalytic overall water splitting, in stark contrast to its perovskite counterparts SrTiO3 and CaTiO3. Here we report that BaTiO3 codoped with Al3+ and Sc3+ at Ti4+ sites under flux synthesis conditions is activated as a robust photocatalyst for overall water splitting. This material achieves apparent quantum yields of 29.8% at 310 nm and 27.5% at 365 nm, representing the first demonstration of efficient overall water splitting on BaTiO3. Comparative analyses show that BaTiO3 doped only with Al3+ suffers from severe band-edge disorder, whereas BaTiO3 codoped with Al3+ and Mg2+ exhibits clear activation with moderate efficiency. In contrast, BaTiO3 codoped with Al3+ and Sc3+ achieves the critical defect and structural control required to push the material across the threshold from inactive to highly active. These findings overturn the long-standing perception of BaTiO3 as unsuitable for water splitting and establish a general design principle for activating previously inactive perovskite oxides, thereby expanding the materials palette for solar-to-hydrogen energy conversion.
en-copyright=
kn-copyright=
en-aut-name=IkedaShigeru
en-aut-sei=Ikeda
en-aut-mei=Shigeru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakagiKaori
en-aut-sei=Takagi
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TomizawaRyota
en-aut-sei=Tomizawa
en-aut-mei=Ryota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NaganoTomoya
en-aut-sei=Nagano
en-aut-mei=Tomoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HayashiKoji
en-aut-sei=Hayashi
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamakataAkira
en-aut-sei=Yamakata
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NoseYoshitaro
en-aut-sei=Nose
en-aut-mei=Yoshitaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Faculty of Science and Engineering, Konan University
kn-affil=
affil-num=2
en-affil=Faculty of Science and Engineering, Konan University
kn-affil=
affil-num=3
en-affil=Carbon Neutral Energy Development Division, Toyota Motor Corporation
kn-affil=
affil-num=4
en-affil=Carbon Neutral Energy Development Division, Toyota Motor Corporation
kn-affil=
affil-num=5
en-affil=Carbon Neutral Energy Development Division, Toyota Motor Corporation
kn-affil=
affil-num=6
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Materials Science and Engineering, Kyoto University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=135
cd-vols=
no-issue=10
article-no=
start-page=106504
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250904
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Terahertz Field Control of Electronic-Ferroelectric Anisotropy at Room Temperature in LuFe2?O4
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Electronic ferroelectrics, with polarization ? induced by strongly correlated charges, are expected to show ultrafast, huge, and flexible responses required in future optoelectronics. Although the challenges for ultrafast manipulation of such a polarization are ongoing, the expected advantages have been unclear. In this Letter, we demonstrate an unprecedentedly large increase by a factor of 2.7 in optical second harmonic generation at room temperature in the prototypical electronic ferroelectrics, the rare-earth ferrite LuFe2?O4, by applying a terahertz field of 260??kV/cm. The transient anisotropy indicates that the direction of macroscopic polarization can be controlled three dimensionally on subpicosecond timescales, offering additional degrees of freedom in controlling polarization. Although the polarization response is in phase concerning the terahertz field, its sensitivity increased with delay, indicating that cooperative interactions among microscopic domains play an important role in the unprecedented response.
en-copyright=
kn-copyright=
en-aut-name=ItohHirotake
en-aut-sei=Itoh
en-aut-mei=Hirotake
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MinakamiRyusei
en-aut-sei=Minakami
en-aut-mei=Ryusei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YuHongwu
en-aut-sei=Yu
en-aut-mei=Hongwu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TsuruokaRyohei
en-aut-sei=Tsuruoka
en-aut-mei=Ryohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AmanoTatsuya
en-aut-sei=Amano
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KawakamiYohei
en-aut-sei=Kawakami
en-aut-mei=Yohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KoshiharaShin-ya
en-aut-sei=Koshihara
en-aut-mei=Shin-ya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=FujiwaraKosuke
en-aut-sei=Fujiwara
en-aut-mei=Kosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IkedaNaoshi
en-aut-sei=Ikeda
en-aut-mei=Naoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OkimotoYoichi
en-aut-sei=Okimoto
en-aut-mei=Yoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=IwaiShinichiro
en-aut-sei=Iwai
en-aut-mei=Shinichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Tohoku University
kn-affil=
affil-num=2
en-affil=Tohoku University
kn-affil=
affil-num=3
en-affil=Institute of Science Tokyo
kn-affil=
affil-num=4
en-affil=Tohoku University
kn-affil=
affil-num=5
en-affil=Tohoku University
kn-affil=
affil-num=6
en-affil=Tohoku University
kn-affil=
affil-num=7
en-affil=Institute of Science Tokyo
kn-affil=
affil-num=8
en-affil=Okayama University
kn-affil=
affil-num=9
en-affil=Okayama University
kn-affil=
affil-num=10
en-affil=Institute of Science Tokyo
kn-affil=
affil-num=11
en-affil=Tohoku University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=89
cd-vols=
no-issue=11
article-no=
start-page=337
end-page=343
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Ti-18Nb-xAl合金の構成相と材料特性に及ぼすAl添加量の影響
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The Ti-18mass%Nb alloy with a quenched α” martensitic structure exhibited a high damping capacity. However, there are issues such as lower strength than annealed α+β structure and decreasing damping capacity due to heating until 400 K. Therefore, in this study, to address these issues, we investigated the effect of Al addition on the constituent phases and material properties of Ti-18Nb-xAl alloys. The crystal structure was determined by examining the lattice constant and unit volume using X-ray diffraction, and optical microscopy was also performed. The material properties were investigated by Vickers hardness, Young’s modulus, internal friction, tensile tests, and DSC measurements. Vickers hardness and tensile strength increased with increasing Al content. This is thought to be due to the combined effects of the refinement of the microstructure and solid-solution strengthening due to Al addition. The Young’s modulus increased slightly from 0Al to 1Al, but increased significantly to 4Al. Internal friction was highest for 0Al and decreased for 4Al, whereas 7Al showed a higher value than 1Al. In the DSC heating curves, there was a decrease in the exothermic peak starting temperature and an increase in the phase-transformation heat with the addition of Al, except for 1Al. It was suggested that these changes in Ti-18Nb-xAl alloys were influenced by the structure of the quenched α” phase, texture, and pseudoelasticity or phase transformation by deformation.
en-copyright=
kn-copyright=
en-aut-name=MantaniYoshikazu
en-aut-sei=Mantani
en-aut-mei=Yoshikazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakemotoYoshito
en-aut-sei=Takemoto
en-aut-mei=Yoshito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Materials Science and Engineering, National Institute of Technology (KOSEN), Suzuka College
kn-affil=
affil-num=2
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=ternary titanium alloy
kn-keyword=ternary titanium alloy
en-keyword=martensite
kn-keyword=martensite
en-keyword=lattice constant
kn-keyword=lattice constant
en-keyword=hardness
kn-keyword=hardness
en-keyword=Young’s modulus
kn-keyword=Young’s modulus
en-keyword=internal friction
kn-keyword=internal friction
en-keyword=cyclic tensile test
kn-keyword=cyclic tensile test
en-keyword=texture
kn-keyword=texture
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251005
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Artificial Selections for Life-History Traits Affect Effective Cumulative Temperature and Developmental Zero Point in Zeugoducus cucurbitae
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Effective cumulative temperature and developmental zero point are important indicators for estimating the timing of organism development and the area of distribution. These indicators are generally considered to have unique values for different species of organisms and are also important for predicting the distribution range of animals and plants, especially insect pests. These values generally are species-specific, but there is variation within populations in traits having a genetic component. However, there are no studies on what kind of selection pressure affects these indicator values. To address this issue, it would be worthwhile to compare these values using individuals of strains that have been artificially selected for life-history traits by rearing them at various temperatures and calculating these indicators from developmental days and temperatures. In the present study, eggs were taken from adults of strains with many generations of artificial selection on two life-history traits (age at reproduction and developmental period) of the melon fly, Zeugodacus cucurbitae, under constant temperature conditions. Eggs were reared at five different temperatures, and the effective cumulative temperatures and developmental zero points of the larval and developmental periods were compared. The results demonstrate that artificial selection on life-history traits in Z. cucurbitae induces evolutionary changes in both the effective cumulative temperature and the developmental zero point across successive generations.
en-copyright=
kn-copyright=
en-aut-name=MiyatakeTakahisa
en-aut-sei=Miyatake
en-aut-mei=Takahisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsumuraKentarou
en-aut-sei=Matsumura
en-aut-mei=Kentarou
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Graduate School of Environment, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Department of General Systems Studies, Graduate School of Arts and Sciences, the University of Tokyo
kn-affil=
en-keyword=age at reproduction
kn-keyword=age at reproduction
en-keyword=development time
kn-keyword=development time
en-keyword=developmental period
kn-keyword=developmental period
en-keyword=larval period
kn-keyword=larval period
en-keyword=melon fly
kn-keyword=melon fly
en-keyword=Tephritidae
kn-keyword=Tephritidae
en-keyword=thermal biology
kn-keyword=thermal biology
en-keyword=trade-offs
kn-keyword=trade-offs
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251022
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Comparison of flight behaviors among laboratory and field strains in Tribolium castaneum (Coleoptera: Tenebrionidae) using a simple method to measure flight ability
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Most insects can fly. The acquisition of flight is a factor that allows insects to prosper on Earth. On the other hand, in the same species and population, individual differences in flight ability may occur. Flight ability can vary due to geographical conditions and cumulative rearing. Investigating these changes in flight performance is important for understanding dispersal polymorphism and the evolution of flight performance. Thus, in the present study, the flight behaviors between cumulative rearing and field strains and changes in flight behaviors between strains of the red flour beetle, Tribolium castaneum Herbst (Coleoptera: Tenebrionidae), which is distributed around the world were compared. Tribolium castaneum is a worldwide pest of stored grains. Its body length is about 3?4 mm. Previous studies have investigated the influence of environmental and physiological factors on the flight of this species, but no studies have examined individual differences or polymorphism in flight behaviors within this species. In this study, we developed a simple apparatus that can quantify the flight behavior of this species. The experimental apparatus was set up as a double structure with two different size containers. This apparatus was able to assess the flight activity of insects by counting individuals in a big container because insects transfer to the big container only by flight. Moreover, upward flight ability was possible to be assessed by the apparatus adding the barrier. Then, the flight behavior was compared between strains of this species that have been bred in the laboratory for more than 45 years and several strains of this species collected in the field. The results showed no variation in flight activity between strains, but flying ability was higher in strains originating from warmer regions. Here, we discussed the variations in flight behavior of T. castaneum.
en-copyright=
kn-copyright=
en-aut-name=SoneSota
en-aut-sei=Sone
en-aut-mei=Sota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyatakeTakahisa
en-aut-sei=Miyatake
en-aut-mei=Takahisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Faculty of Environment, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Faculty of Environment, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Dispersal
kn-keyword=Dispersal
en-keyword=Flight behavior
kn-keyword=Flight behavior
en-keyword=Red flour beetle
kn-keyword=Red flour beetle
en-keyword=Upward flight
kn-keyword=Upward flight
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=10
article-no=
start-page=e95411
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Primary Lacrimal Sac Diffuse Large B-cell Lymphoma Treated With Local Radiotherapy Alone: A Case With No Relapse After 21 Years of Follow-Up
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Primary lacrimal sac lymphoma is rare and diagnosed as diffuse large B-cell lymphoma in a predominant histopathological type. Systemic chemotherapy would be the standard of care, but local radiotherapy may be a treatment option toward a localized lesion. The present patient is a 54-year-old otherwise healthy woman with a right lacrimal sac mass, which was proven by excisional biopsy to be diffuse large B-cell lymphoma. Since she did not have any other systemic lesions on gallium scintigraphy and neck-to-abdominal computed tomography scans, which were the standard procedure at that time, she underwent local radiotherapy at 40 Gy. Two years later, at the age of 56 years, she developed radiation retinopathy with macular edema in the right eye and had spotty laser photocoagulation in the nasal half of the fundus. At the age of 57 years, she developed radiation cataract and underwent cataract surgery with intraocular lens implantation in the right eye. At the age of 58 years, the macular edema in the right eye became worse and remained active, resulting in poor visual acuity of 0.1. She thus underwent 25-gauge vitrectomy in the right eye to peel off the adhering posterior vitreous surface, together with the internal limiting membrane, as the standard procedure at that time. The visual acuity in the right eye was elevated to 0.6. She maintained the visual acuity afterward and had no relapse of lymphoma in 21 years from the diagnosis of primary right lacrimal sac diffuse large B-cell lymphoma. Local radiotherapy would still be a treatment option for localized lymphoma lesions such as primary lacrimal sac lymphoma.
en-copyright=
kn-copyright=
en-aut-name=MatsuoToshihiko
en-aut-sei=Matsuo
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakemotoMitsuhiro
en-aut-sei=Takemoto
en-aut-mei=Mitsuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Healthcare Science, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Radiotherapy, Himeji Red Cross Hospital
kn-affil=
en-keyword=diffuse large b-cell lymphoma
kn-keyword=diffuse large b-cell lymphoma
en-keyword=excisional biopsy
kn-keyword=excisional biopsy
en-keyword=lacrimal sac
kn-keyword=lacrimal sac
en-keyword=laser photocoagulation
kn-keyword=laser photocoagulation
en-keyword=macular edema
kn-keyword=macular edema
en-keyword=pathology
kn-keyword=pathology
en-keyword=radiation cataract
kn-keyword=radiation cataract
en-keyword=radiation retinopathy
kn-keyword=radiation retinopathy
en-keyword=radiotherapy
kn-keyword=radiotherapy
en-keyword=vitrectomy
kn-keyword=vitrectomy
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251013
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Creep damage parameters based on the distribution of cavities on grain boundaries
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=When polycrystalline heat-resistant steels are subjected to static or cyclic loading at high temperatures, they can exhibit various fracture modes and processes. This paper begins by outlining representative methods for life assessment under creep-dominated conditions. It then discusses the fracture processes and the underlying mechanisms. Under creep-dominated conditions, the initiation and growth of cavities serve as the primary form of material damage, making their quantitative assessment essential. Several parameters have been proposed to evaluate cavity distributions quantitatively. However, the relationship between these parameters and the actual cavity distribution in materials, as well as their physical significance, has remained unclear. In this study, a simple cavity distribution model was employed to clarify these issues. The results suggest that the area fraction of cavities is an appropriate damage evaluation parameter for transgranular fracture, while the fraction of cavities on grain boundary line is suitable for intergranular fracture.
en-copyright=
kn-copyright=
en-aut-name=TadaNaoya
en-aut-sei=Tada
en-aut-mei=Naoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Creep
kn-keyword=Creep
en-keyword=cavity
kn-keyword=cavity
en-keyword=grain boundary
kn-keyword=grain boundary
en-keyword=damage parameter
kn-keyword=damage parameter
en-keyword=modelling
kn-keyword=modelling
en-keyword=geometrical analysis
kn-keyword=geometrical analysis
en-keyword=probabilistic analysis
kn-keyword=probabilistic analysis
END
start-ver=1.4
cd-journal=joma
no-vol=47
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251031
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=岡山大学環境管理センター報 第47号
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=
en-aut-sei=
en-aut-mei=
kn-aut-name=岡山大学安全衛生推進機構環境管理部門
kn-aut-sei=岡山大学安全衛生推進機構環境管理部門
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251014
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Comparative analysis of interactions between five strains of Pseudomonas syringae pv. tabaci and Nicotiana benthamiana
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Pseudomonas syringae pv. tabaci 6605 (Pta 6605), the agent of wildfire disease in tobacco, has been used as a model strain for elucidating the virulence mechanisms of Pta. However, the host genes involved in resistance or susceptibility to Pta remain largely unknown. Nicotiana benthamiana is a model plant species in the Solanaceae family and is useful in functional analyses of genes. We herein compared five Pta strains (6605, 6823, 7372, 7375, and 7380) in terms of their phenotypes on medium and interactions with N. benthamiana. Pta 6605 and Pta 6823 showed more active proliferation than the other strains in a high cell density culture. Moreover, Pta 6605 exhibited markedly higher swarming motility than the other strains. In inoculated leaves of N. benthamiana, Pta 6605 and Pta 6823 caused more severe disease symptoms and proliferated to a higher cell density than the other strains. However, Pta 6823 as well as Pta 7372 and Pta 7380 induced the high accumulation of salicylic acid (SA). Moreover, the inoculations of Pta 6823 and Pta 7372 resulted in the upregulation of ethylene biosynthesis genes. On the other hand, Pta 6605 induced neither SA accumulation nor the expression of ethylene biosynthesis genes, and suppressed the expression of jasmonate biosynthesis genes. Moreover, chlorosis was clearly induced in the upper uninoculated leaves of Pta 6605-infected plants. These results suggest that Pta 6605 escapes from or suppresses plant immune systems and, thus, is the most virulent on N. benthamiana among the five strains tested.
en-copyright=
kn-copyright=
en-aut-name=NakaoYuna
en-aut-sei=Nakao
en-aut-mei=Yuna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AsaiShuta
en-aut-sei=Asai
en-aut-mei=Shuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MatsuiHidenori
en-aut-sei=Matsui
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IchinoseYuki
en-aut-sei=Ichinose
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KatouShinpei
en-aut-sei=Katou
en-aut-mei=Shinpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Science and Technology, Shinshu University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Medicine, Science and Technology, Shinshu University
kn-affil=
en-keyword=Chlorosis
kn-keyword=Chlorosis
en-keyword=Nicotiana benthamiana
kn-keyword=Nicotiana benthamiana
en-keyword=Phytohormones
kn-keyword=Phytohormones
en-keyword=Pseudomonas syringae pv. tabaci
kn-keyword=Pseudomonas syringae pv. tabaci
END
start-ver=1.4
cd-journal=joma
no-vol=150
cd-vols=
no-issue=
article-no=
start-page=110530
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Surrogate-assisted motion planning and layout design of robotic cellular manufacturing systems
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A surrogate-assisted multi-objective evolutionary algorithm is proposed for simultaneous optimization of robot motion planning and layout design in robotic cellular manufacturing systems. A sequence-pair is used to represent the layout of components in a robotic cell to avoid overlapping in the evolutionary computation. The robot motion planning with Rapidly exploring Random Trees Star (RRT*) is applied to compute the total operation time of a robot arm for each layout. Non-dominated Sorting Genetic Algorithm II (NSGA-II) is used to minimize the total required layout area and the operation time for a robot arm. The proposed surrogate model can estimate the robot’s operation time with 98% of accuracy without explicit computations of the motion planning algorithm. The experimental results with a physical 6 Degree of Freedom (DOF) manipulator show that the total computation time is approximately 1/400, significantly shorter than the conventional methods.
en-copyright=
kn-copyright=
en-aut-name=KawabeTomoya
en-aut-sei=Kawabe
en-aut-mei=Tomoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishiTatsushi
en-aut-sei=Nishi
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=LiuZiang
en-aut-sei=Liu
en-aut-mei=Ziang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FujiwaraTomofumi
en-aut-sei=Fujiwara
en-aut-mei=Tomofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life and Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life and Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life and Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life and Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Robotics
kn-keyword=Robotics
en-keyword=Cellular manufacturing
kn-keyword=Cellular manufacturing
en-keyword=Layout design
kn-keyword=Layout design
en-keyword=Sequence-pair
kn-keyword=Sequence-pair
en-keyword=Motion planning
kn-keyword=Motion planning
en-keyword=Surrogate optimization
kn-keyword=Surrogate optimization
en-keyword=Machine learning
kn-keyword=Machine learning
en-keyword=Artificial intelligence
kn-keyword=Artificial intelligence
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=20
article-no=
start-page=3287
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251010
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Impact of Neoadjuvant Chemotherapy with Gemcitabine Plus S-1 in Patients with Resectable Pancreatic Ductal Adenocarcinoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Objectives: Although neoadjuvant chemotherapy (NAC) is not universally recommended for resectable pancreatic ductal adenocarcinoma (PDAC), NAC with gemcitabine plus S-1 (NAC-GS) has become a commonly used regimen for resectable PDAC in Japan. Furthermore, the impact of achieving textbook outcomes (TO) in patients receiving NAC-GS remains unclear. Methods: This retrospective study included 265 patients who were diagnosed with resectable PDAC at our institution between January 2009 and December 2023. Patients were categorized into two groups: the NAC-GS group (n = 81; 2019?2023) and the upfront surgery (UFS) group (n = 164; 2009?2018). After comparing the clinical outcomes between groups, multivariate analyses for survival were performed. Additionally, outcomes stratified by the achievement of the modified TO were analyzed in the NAC-GS group. Results: The completion rate of NAC-GS was 90.1%. Patients in the NAC-GS group exhibited significantly longer survival than those in the UFS group (2-year recurrence-free survival: 61.4% vs. 37.9%, p < 0.01; 2-year overall survival: 83.2% vs. 61.2%, p < 0.01). Multivariate analyses identified lymph node metastasis, NAC-GS induction, and completion of adjuvant chemotherapy as factors significantly associated with improved survival. Moreover, among patients who received NAC-GS, those who achieved modified TO demonstrated significantly longer survival than those who did not. Conclusions: This study demonstrated the clinical efficacy of NAC-GS in patients with resectable PDAC. Induction of NAC-GS was significantly associated with improved long-term outcomes. In multidisciplinary treatment strategies for PDAC, achieving a modified TO may lead to improved survival of patients undergoing NAC-GS.
en-copyright=
kn-copyright=
en-aut-name=YasuiKazuya
en-aut-sei=Yasui
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakagiKosei
en-aut-sei=Takagi
en-aut-mei=Kosei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FujiTomokazu
en-aut-sei=Fuji
en-aut-mei=Tomokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NishiyamaTakeyoshi
en-aut-sei=Nishiyama
en-aut-mei=Takeyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NagaiYasuo
en-aut-sei=Nagai
en-aut-mei=Yasuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MatsumotoKazuyuki
en-aut-sei=Matsumoto
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HoriguchiShigeru
en-aut-sei=Horiguchi
en-aut-mei=Shigeru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=FujiiYuki
en-aut-sei=Fujii
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences,
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=neoadjuvant chemotherapy
kn-keyword=neoadjuvant chemotherapy
en-keyword=pancreatic cancer
kn-keyword=pancreatic cancer
en-keyword=resectable
kn-keyword=resectable
en-keyword=textbook outcome
kn-keyword=textbook outcome
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251017
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=ATPase copper transporting beta contributes to cisplatin resistance as a regulatory factor of extracellular vesicles in head and neck squamous cell carcinoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Cisplatin (CDDP) resistance remains a major clinical challenge in the treatment of head and neck squamous cell carcinoma (HNSC). Our group identified ATPase copper transporting beta (ATP7B) as a mediator of CDDP resistance through its role in drug efflux and small extracellular vesicle (sEV) secretion. Herein, we uncovered a novel mechanism by which ATP7B regulates sEV dynamics and the intercellular transmission of CDDP resistance. Using transcriptomic analyses of HNSC datasets, we demonstrate that ATP7B expression correlates with endocytosis- and epithelial-mesenchymal transition (EMT)-related gene sets and with elevated levels of EV-associated proteins. CDDP-resistant HNSC cells exhibited upregulated ATP7B, Rab5/Rab7, and preferentially secreted HSP90- and EpCAM-rich sEVs. These sEVs were leading to increased ATP7B expression and reduced CDDP sensitivity in recipient cells. A pharmacological inhibition of sEV biogenesis with GW4869 suppressed ATP7B and Atox1 expressions, inhibited late endosome maturation, and significantly enhanced CDDP-induced apoptosis in HNSC cells. In vivo, GW4869 reduced the sEV protein content and ATP7B expression in xenograft tumors. These findings establish that ATP7B is a critical modulator of sEV cargo and resistance propagation. Our results highlight a previously unrecognized ATP7B?sEV axis driving chemoresistance and identify sEV inhibition as a promising strategy to overcome therapeutic failure in HNSC.
en-copyright=
kn-copyright=
en-aut-name=OgawaTatsuo
en-aut-sei=Ogawa
en-aut-mei=Tatsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OnoKisho
en-aut-sei=Ono
en-aut-mei=Kisho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=RyumonShoji
en-aut-sei=Ryumon
en-aut-mei=Shoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KawaiHotaka
en-aut-sei=Kawai
en-aut-mei=Hotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SatoKohei
en-aut-sei=Sato
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UmemoriKoki
en-aut-sei=Umemori
en-aut-mei=Koki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YoshidaKunihiro
en-aut-sei=Yoshida
en-aut-mei=Kunihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ObataKyoichi
en-aut-sei=Obata
en-aut-mei=Kyoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KunisadaYuki
en-aut-sei=Kunisada
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OkuiTatsuo
en-aut-sei=Okui
en-aut-mei=Tatsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OkamotoKuniaki
en-aut-sei=Okamoto
en-aut-mei=Kuniaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NagatsukaHitoshi
en-aut-sei=Nagatsuka
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=Momen-HeraviFatemeh
en-aut-sei=Momen-Heravi
en-aut-mei=Fatemeh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=IbaragiSoichiro
en-aut-sei=Ibaragi
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Maxillofacial Diagnostic and Surgical Science, Field of Oral and Maxillofacial Rehabilitation, Graduate School of Medical and Dental Sciences, Kagoshima University
kn-affil=
affil-num=11
en-affil=Department of Dental Pharmacology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Orofacial Sciences, School of Dentistry, University of California San Francisco
kn-affil=
affil-num=14
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=23
cd-vols=
no-issue=5
article-no=
start-page=234
end-page=249
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Biochar-amended Sediment Microbial Fuel Cells for Water Quality Improvement in Intensive and Extensive Pond Drainages in Central Vietnam
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The use of nutrient-rich feed in shrimp farming in Central Vietnam has led to high nitrogen (N) and phosphorus (P) contents in the pond sediment. The objectives of the study were to assess the effectiveness of biochar-sediment microbial fuel cells (BC-SMFCs) in suppressing P and N release from two types of sediment in intensive (Int) and extensive (Ext) pond drainages in Central Vietnam. Single chamber SMFCs were set up and operated under open or closed-circuit (no SMFC or SMFC) conditions. Coconut shell biochar (BC) was amended to sediments at 1%. For Int-sediment, total phosphorus (TP) release was reduced by no BC-SMFCs through co-precipitation with Fe. On the other hand, BC-SMFCs did not suppress TP release because P was released from BC and organic matter decomposition was enhanced in the sediment. Application of BC enhanced organic N mineralization in the sediment. Nitrification and denitrification occurred in the overlying water, reducing mineral N concentrations. For Ext-sediment, BC addition and SMFC conditions did not affect TP and total nitrogen (TN) release because of low initial organic matter content, and less reductive condition. Our study suggested that the effect of SMFCs was masked by BC which released more P from Int-sediment to the water.
en-copyright=
kn-copyright=
en-aut-name=NguyenUyen Tu
en-aut-sei=Nguyen
en-aut-mei=Uyen Tu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MaedaMorihiro
en-aut-sei=Maeda
en-aut-mei=Morihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SomuraHiroaki
en-aut-sei=Somura
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakaharaNozomi
en-aut-sei=Nakahara
en-aut-mei=Nozomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=PereraGamamada Liyanage Erandi Priyangika
en-aut-sei=Perera
en-aut-mei=Gamamada Liyanage Erandi Priyangika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakanoChiyu
en-aut-sei=Nakano
en-aut-mei=Chiyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=LeHuu Tien
en-aut-sei=Le
en-aut-mei=Huu Tien
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Comprehensive Technical Solutions, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Education, Science and Technology Quang Tri Branch, Hue University
kn-affil=
affil-num=8
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
en-keyword=biochar
kn-keyword=biochar
en-keyword=Central Vietnam
kn-keyword=Central Vietnam
en-keyword=electricity generation
kn-keyword=electricity generation
en-keyword=redox potential
kn-keyword=redox potential
en-keyword=shrimp farming
kn-keyword=shrimp farming
END
start-ver=1.4
cd-journal=joma
no-vol=40
cd-vols=
no-issue=3
article-no=
start-page=ME25019
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Role of Formate Chemoreceptor in Pseudomonas syringae pv. tabaci 6605 in Tobacco Infection
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Chemotaxis is essential for infection by plant pathogenic bacteria. The causal agent of tobacco wildfire disease, Pseudomonas syringae pv. tabaci 6605 (Pta6605), is known to cause severe leaf disease and is highly motile. The requirement of chemotaxis for infection has been demonstrated through the inoculation of mutant strains lacking chemotaxis sensory component proteins. Pta6605 possesses 54 genes that encode chemoreceptors (known as methyl-accepting chemotaxis proteins, MCPs). Chemoreceptors are classified into several groups based on the type and localization of ligand-binding domains (LBD). Cache LBD-type chemoreceptors have been reported to recognize formate in several bacterial species. In the present study, we identified Cache_3 Cache_2 LBD-type Mcp26 encoded by Pta6605_RS00335 as a chemoreceptor for formate using a quantitative capillary assay, and named it McpF. Although the deletion mutant of mcpF (ΔmcpF) retained attraction to 1% yeast extract, its chemotactic response to formate was markedly reduced. Swimming and swarming motilities were also impaired in the mutant. To investigate the effects of McpF on bacterial virulence, we conducted inoculations on tobacco plants using several methods. The ΔmcpF mutant exhibited weaker virulence in flood and spray assays than wild-type and complemented strains, highlighting not only the involvement of McpF in formate recognition, but also its critical role in leaf entry during the early stages of infection.
en-copyright=
kn-copyright=
en-aut-name=NguyenPhuoc Quy Thang
en-aut-sei=Nguyen
en-aut-mei=Phuoc Quy Thang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WatanabeYuta
en-aut-sei=Watanabe
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MatsuiHidenori
en-aut-sei=Matsui
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SakataNanami
en-aut-sei=Sakata
en-aut-mei=Nanami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NoutoshiYoshiteru
en-aut-sei=Noutoshi
en-aut-mei=Yoshiteru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ToyodaKazuhiro
en-aut-sei=Toyoda
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IchinoseYuki
en-aut-sei=Ichinose
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=chemoreceptor
kn-keyword=chemoreceptor
en-keyword=formate
kn-keyword=formate
en-keyword=mcpF
kn-keyword=mcpF
en-keyword=Pseudomonas syringae
kn-keyword=Pseudomonas syringae
en-keyword=virulence
kn-keyword=virulence
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=9
article-no=
start-page=251152
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250924
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=On weapons allometry and the form of sexual selection
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The study of trait scaling with body size (allometry) has a long history, and it has been argued that positive static allometry is an indicator of directional sexual selection. However, a range of allometries exists for sexually selected traits, and modelling shows this variation can be generated by altering the form of selection (fitness functions) on the trait and/or body size. Interestingly, in all models, positive allometry appears to emerge only when there is directional selection on trait size. Here, we report on a sexually selected trait that shows strong positive static allometry and yet appears to be under stabilizing selection. This surprising finding suggests the evolution of trait scaling is even more nuanced than currently appreciated.
en-copyright=
kn-copyright=
en-aut-name=ShinoharaHironori
en-aut-sei=Shinohara
en-aut-mei=Hironori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SharmaManmohan D.
en-aut-sei=Sharma
en-aut-mei=Manmohan D.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=PennellTanya M.
en-aut-sei=Pennell
en-aut-mei=Tanya M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OkadaKensuke
en-aut-sei=Okada
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HoskenDavid J.
en-aut-sei=Hosken
en-aut-mei=David J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Center for Ecology and Conservation, University of Exeter, Cornwall Campus
kn-affil=
affil-num=2
en-affil=Center for Ecology and Conservation, University of Exeter, Cornwall Campus
kn-affil=
affil-num=3
en-affil=Center for Ecology and Conservation, University of Exeter, Cornwall Campus
kn-affil=
affil-num=4
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Center for Ecology and Conservation, University of Exeter, Cornwall Campus
kn-affil=
en-keyword=inbreeding
kn-keyword=inbreeding
en-keyword=selection
kn-keyword=selection
en-keyword=beetle
kn-keyword=beetle
en-keyword=Gnatocerus
kn-keyword=Gnatocerus
END
start-ver=1.4
cd-journal=joma
no-vol=42
cd-vols=
no-issue=3
article-no=
start-page=215
end-page=227
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Root-exuded sugars as drivers of rhizosphere microbiome assembly
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Sugars in root exudates play a pivotal role in shaping plant-microbe interactions in the rhizosphere, serving as carbon sources and signaling molecules that orchestrate microbial behavior, community structure, and plant resilience. Recent research has shed light on the dynamics of sugar levels in root exudates, the factors that influence their secretion, and the mechanisms by which these sugars drive microbial colonization and community assembly in the rhizosphere. Microbial communities, in turn, contribute to plant physiological changes that enhance growth and stress tolerance. While well-studied sugars such as glucose, sucrose, and fructose are known to promote chemotaxis, motility, and biofilm formation, emerging evidence suggests that less-studied sugars like arabinose and trehalose may also play significant roles in microbial interactions and stress resilience. Key challenges remain, including the accurate measurement of labile sugars that are rapidly metabolized by microbes, and the elucidation of genetic mechanisms underlying rhizosphere metabolic interactions in both host plants and microbes. Addressing these challenges will advance our understanding of sugar-mediated interactions and inform the development of sustainable agricultural innovations.
en-copyright=
kn-copyright=
en-aut-name=HemeldaNiarsi Merry
en-aut-sei=Hemelda
en-aut-mei=Niarsi Merry
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NoutoshiYoshiteru
en-aut-sei=Noutoshi
en-aut-mei=Yoshiteru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Biology, Faculty of Mathematics and Natural Sciences, University of Indonesia
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=carbon sources
kn-keyword=carbon sources
en-keyword=plant-derived sugars
kn-keyword=plant-derived sugars
en-keyword=plant-microbe interactions
kn-keyword=plant-microbe interactions
en-keyword=rhizosphere
kn-keyword=rhizosphere
en-keyword=root exudate
kn-keyword=root exudate
END
start-ver=1.4
cd-journal=joma
no-vol=108
cd-vols=
no-issue=
article-no=
start-page=104508
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Introduction to the “Japanese and Western approaches to psychotrauma” symposium
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Understandings of psychotrauma have changed throughout medical history, shaped by cultural and social factors. Reviewing transcultural perspectives of psychotrauma helps understand its complexities and contextual impacts. This paper summarizes the Japan?Netherlands symposium on psychotrauma held on March 1, 2024. Despite experiencing psychological trauma from World War II and numerous natural disasters, Japan did not actively research post-traumatic stress disorder (PTSD) for nearly 50 years after the war. The Great Hanshin-Awaji Earthquake and the Tokyo subway Sarin gas attack (1995) popularized the term PTSD in Japan and triggered related research. The absence of psychotrauma research in Japan may reflect a form of state-level PTSD, characterized by avoidance. Japan’s collectivist culture, stigma against seeking psychological help, view of patience as a virtue, survivor guilt, and moral injury were potential related factors. Additionally, sociocultural factors (e.g., insufficient collective grieving and focusing on post-war reconstruction) were discussed as potential hinderances to discussing war experiences. From a European perspective, we examined how “Konzentrationslager” (KZ) syndrome, a trauma-related disorder, evolved independently into diverse conceptual frameworks, ultimately contributing to the acceptance of PTSD following its introduction in 1980. Beyond state compensation for concentration camp survivors, advocacy by feminist movements and veterans' groups increased awareness of psychotrauma across Europe, fostering scholarly research and public discourse. Both PTSD and KZ syndromes are diagnostic categories shaped by specific historical and cultural contexts and should not be regarded as simple, universally applicable medical conditions. They reflect how trauma is interpreted and responded to differently depending on cultural, political, and historical factors.
en-copyright=
kn-copyright=
en-aut-name=NagamineMasanori
en-aut-sei=Nagamine
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakaoTomoyo
en-aut-sei=Nakao
en-aut-mei=Tomoyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=van BergenLeo
en-aut-sei=van Bergen
en-aut-mei=Leo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ShigemuraJun
en-aut-sei=Shigemura
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SaitoTaku
en-aut-sei=Saito
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=van der DoesFlorentine H.S.
en-aut-sei=van der Does
en-aut-mei=Florentine H.S.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KitanoMasato
en-aut-sei=Kitano
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=GiltayErik J.
en-aut-sei=Giltay
en-aut-mei=Erik J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=van der WeeNic J.
en-aut-sei=van der Wee
en-aut-mei=Nic J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=VermettenEric
en-aut-sei=Vermetten
en-aut-mei=Eric
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Division of Behavioral Science, National Defense Medical College Research Institute
kn-affil=
affil-num=2
en-affil=Graduate School of Humanities and Social Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Freelance Medical Historian
kn-affil=
affil-num=4
en-affil=Faculty of Health Sciences, Mejiro University
kn-affil=
affil-num=5
en-affil=Division of Behavioral Science, National Defense Medical College Research Institute
kn-affil=
affil-num=6
en-affil=Department of Psychiatry, Leiden University Medical Center (LUMC)
kn-affil=
affil-num=7
en-affil=Division of Behavioral Science, National Defense Medical College Research Institute
kn-affil=
affil-num=8
en-affil=Department of Psychiatry, Leiden University Medical Center (LUMC)
kn-affil=
affil-num=9
en-affil=Department of Psychiatry, Leiden University Medical Center (LUMC)
kn-affil=
affil-num=10
en-affil=Department of Psychiatry, Leiden University Medical Center (LUMC)
kn-affil=
en-keyword=Psychotrauma
kn-keyword=Psychotrauma
en-keyword=World War II
kn-keyword=World War II
en-keyword=Japan
kn-keyword=Japan
en-keyword=Europe
kn-keyword=Europe
en-keyword=KZ syndrome
kn-keyword=KZ syndrome
en-keyword=Post-traumatic stress disorder
kn-keyword=Post-traumatic stress disorder
END
start-ver=1.4
cd-journal=joma
no-vol=80
cd-vols=
no-issue=
article-no=
start-page=57
end-page=65
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202510
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Rectal Swab?based Targeted Prophylactic Antibiotics Reduce Infectious Complications After Transrectal Prostate Biopsy: A Systematic Review and Meta-analysis of Randomized Controlled Trials
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background and objective: Transperineal ultrasound-guided prostate biopsy is the recommended approach in guidelines, while transrectal ultrasound-guided prostate biopsy (TRUS-PB) is still widely used to diagnose prostate cancer (PCa); however, it is associated with a significant rate of infectious complications. We aimed to assess the efficacy of targeted prophylactic antibiotics (TPAs), based on rectal swabs, in reducing the incidence of infectious complications after TRUS-PB compared with empiric prophylactic antibiotics.
Methods: PubMed, Web of Science, and Scopus were queried in December 2024 for randomized controlled trials (RCTs) comparing infectious complications between patients who received TPAs based on rectal swab culture before TRUS-PB and those who received empiric prophylactic antibiotics before TRUS-PB (PROSPERO: CRD42024523794). The primary outcomes were the incidence rates of febrile urinary tract infection (fUTI) and sepsis.
Key findings and limitations: Overall, nine RCTs (n = 3002) were included in our analyses. The incidence of fUTI was approximately half as high in patients who received TPAs as in those who received empiric prophylactic antibiotics (n = 3002, 2.7% vs 5.2%, risk ratio [RR]: 0.54, 95% confidence interval [CI]: 0.36?0.81, p = 0.003). Based on these pooled incidence rates, the number of patients needed to treat to prevent fUTI after TRUS-PB was 40; however, there was no statistically significant difference in the incidence of sepsis between patients receiving TPAs and those who received empiric antibiotic prophylaxis (n = 2735, 1.3% vs 1.8%, RR: 0.74, 95% CI: 0.31?1.75, p = 0.4).
Conclusions and clinical implications: TPAs based on rectal swab culture significantly reduces the incidence of fUTI in patients who undergo TRUS-PB for PCa diagnosis compared with that in patients who receive empiric prophylactic antibiotics; however, there is insufficient evidence to assess its effect on the risk of sepsis. We recommend, based on the clinically relevant reduction in the incidence of fUTI, performing rectal swab?based TPAs in patients undergoing TRUS-PB.
Patient summary: We reviewed infections occurring after transrectal prostate biopsy in over 3000 patients. The use of antibiotics chosen based on a simple rectal swab decreased the rate of postbiopsy fever and urinary tract infections by half compared with the use of standard antibiotics. More research is needed to understand whether this approach also prevents the rare but serious complication of sepsis.
en-copyright=
kn-copyright=
en-aut-name=TsuboiIchiro
en-aut-sei=Tsuboi
en-aut-mei=Ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=Kardoust PariziMehdi
en-aut-sei=Kardoust Parizi
en-aut-mei=Mehdi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MatsukawaAkihiro
en-aut-sei=Matsukawa
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MiszczykMarcin
en-aut-sei=Miszczyk
en-aut-mei=Marcin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FazekasTam?s
en-aut-sei=Fazekas
en-aut-mei=Tam?s
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=CormioAngelo
en-aut-sei=Cormio
en-aut-mei=Angelo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KawadaTatsushi
en-aut-sei=Kawada
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KatayamaSatoshi
en-aut-sei=Katayama
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IwataTakehiro
en-aut-sei=Iwata
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=BekkuKensuke
en-aut-sei=Bekku
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=WadaKoichiro
en-aut-sei=Wada
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KarakiewiczPierre I.
en-aut-sei=Karakiewicz
en-aut-mei=Pierre I.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=ChlostaPiotr
en-aut-sei=Chlosta
en-aut-mei=Piotr
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=BrigantiAlberto
en-aut-sei=Briganti
en-aut-mei=Alberto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=ShariatShahrokh F.
en-aut-sei=Shariat
en-aut-mei=Shahrokh F.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
affil-num=1
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=3
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=4
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=5
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=6
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=7
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=12
en-affil=Cancer Prognostics and Health Outcomes Unit, University of Montreal Health Centre
kn-affil=
affil-num=13
en-affil=Department of Urology, Jagiellonian University Medical College
kn-affil=
affil-num=14
en-affil=Unit of Urology/Division of Oncology, Gianfranco Soldera Prostate Cancer Lab, IRCCS San Raffaele Scientific Institute
kn-affil=
affil-num=15
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
en-keyword=Febrile urinary tract infection
kn-keyword=Febrile urinary tract infection
en-keyword=Targeted prophylactic antibiotics
kn-keyword=Targeted prophylactic antibiotics
en-keyword=Transrectal prostate biopsy
kn-keyword=Transrectal prostate biopsy
en-keyword=Sepsis
kn-keyword=Sepsis
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=5
article-no=
start-page=369
end-page=379
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202510
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Blood Pressure and Heart Rate Patterns Identified by Unsupervised Machine Learning and Their Associations with Subclinical Cerebral and Renal Damage in a Japanese Community: The Masuda Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We applied unsupervised machine learning to analyze blood pressure (BP) and resting heart rate (HR) patterns measured during a 1-year period to assess their cross-sectional relationships with subclinical cerebral and renal target damage. Dimension reduction via uniform manifold approximation and projection, followed by K-means++ clustering, was used to categorize 362 community-dwelling participants (mean age, 56.2 years; 54.9% women) into three groups: Low BP and Low HR (Lo-BP/Lo-HR), High BP and High HR (Hi-BP/Hi-HR), and Low BP and High HR (Lo-BP/Hi-HR). Cerebral vessel lesions were defined as the presence of at least one of the following magnetic resonance imaging findings: lacunar infarcts, white matter hyperintensities, cerebral microbleeds, or intracranial artery stenosis. A high urinary albumin-to-creatinine ratio (UACR) was defined as the top 10% (? 12 mg/g) of the mean value from ?2 measurements. Poisson regression with robust error variance, adjusted for demographics, lifestyle, and medical history, showed that the Hi-BP/Hi-HR group had relative risks of 3.62 (95% confidence interval, 1.75-7.46) for cerebral vessel lesions and 3.58 (1.33-9.67) for high UACR, and the Lo-BP/Hi-HR group had a relative risk of 3.09 (1.12-8.57) for high UACR, compared with the Lo-BP/Lo-HR group. These findings demonstrate the utility of an unsupervised, data-driven approach for identifying physiological patterns associated with subclinical target organ damage.
en-copyright=
kn-copyright=
en-aut-name=HisamatsuTakashi
en-aut-sei=Hisamatsu
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KinutaMinako
en-aut-sei=Kinuta
en-aut-mei=Minako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MunetomoSosuke
en-aut-sei=Munetomo
en-aut-mei=Sosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FukudaMari
en-aut-sei=Fukuda
en-aut-mei=Mari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KojimaKatsuhide
en-aut-sei=Kojima
en-aut-mei=Katsuhide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TaniguchiKaori
en-aut-sei=Taniguchi
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakahataNoriko
en-aut-sei=Nakahata
en-aut-mei=Noriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KandaHideyuki
en-aut-sei=Kanda
en-aut-mei=Hideyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Environmental Medicine and Public Health, Izumo, Shimane University Faculty of Medicine
kn-affil=
affil-num=7
en-affil=Department of Health and Nutrition, The University of Shimane Faculty of Nursing and Nutrition
kn-affil=
affil-num=8
en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=blood pressure
kn-keyword=blood pressure
en-keyword=heart rate
kn-keyword=heart rate
en-keyword=subclinical disease
kn-keyword=subclinical disease
en-keyword=uniform manifold approximation and projection
kn-keyword=uniform manifold approximation and projection
en-keyword=unsupervised machine learning
kn-keyword=unsupervised machine learning
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=5
article-no=
start-page=353
end-page=358
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202510
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Comparison of Extraocular Muscles in Patients with Exotropia and Healthy Participants Using Anterior Segment Optical Coherence Tomography
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=To analyze and characterize the medial and lateral rectus muscles in patients with exotropia using anterior segment optical coherence tomography (AS-OCT). This study included 24 patients with exotropia (48 eyes) and 25 healthy individuals (50 eyes). Anterior segment optical coherence tomography was used to construct the en face images. The anterior chamber angle to the extraocular muscle insertion distance, muscle width, and muscle fiber angle from the muscle insertion sites were compared between the exotropia and the control groups. The correlation between these parameters and age or angle of deviation was evaluated. The mean ages were 13.2±4.1 years for the exotropia group and 17.6±7.2 years for the control group. The lateral rectus angle was significantly more inwardly rotated in the exotropia group than in the control group (1.6±6.3°, ?1.4±4.0°, p=0.014). With increasing angle of deviation, the width of the lateral rectus increased (p=0.002). Our results indicate that the lateral rectus angle is significantly more inwardly rotated in patients with exotropia. These findings should contribute to a deeper understanding of the extraocular muscles in patients with this condition.
en-copyright=
kn-copyright=
en-aut-name=ChiharaYuki
en-aut-sei=Chihara
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HamasakiIchiro
en-aut-sei=Hamasaki
en-aut-mei=Ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShibataKiyo
en-aut-sei=Shibata
en-aut-mei=Kiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MorisawaShin
en-aut-sei=Morisawa
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KonoReika
en-aut-sei=Kono
en-aut-mei=Reika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KanenagaKeisuke
en-aut-sei=Kanenaga
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MorizaneYuki
en-aut-sei=Morizane
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=exotropia
kn-keyword=exotropia
en-keyword=AS-OCT
kn-keyword=AS-OCT
en-keyword=anterior chamber angle to extraocular muscle insertion distance
kn-keyword=anterior chamber angle to extraocular muscle insertion distance
en-keyword=muscle width
kn-keyword=muscle width
en-keyword=muscle fiber angle
kn-keyword=muscle fiber angle
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=5
article-no=
start-page=345
end-page=352
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202510
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Inhibition of Air-Exposure Stress?Induced Autolysis in Clostridium perfringens by Zn2+
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Clostridium perfringens is a pathogenic anaerobe that causes gas gangrene and food poisoning. Although autolysin-mediated reorganization of the bacterial cell wall is crucial for cell division, excessive autolysin activity induced by stressors can lead to cell lysis. In C. perfringens, air exposure is a significant stressor that causes cell lysis, and Acp (N-acetylglucosaminidase) is known to be a major autolysin. To further facilitate C. perfringens research, a technology to prevent air-induced cell lysis must be developed. This study investigated the role of Acp in air-induced autolysis and explored potential inhibitors that would prevent cell lysis during experimental procedures. Morphological analyses confirmed that Acp functions as an autolysin in C. perfringens, as acpdeficient strains exhibited filamentous growth. The mutants exhibited negligible autolysis under air-exposure stress, confirming the involvement of Acp in the autolytic process. We also evaluated the effects of various divalent cations on Acp activity in vitro and identified Zn2+ as a potent inhibitor. Brief treatment with a Zn2+- containing buffer induced dose-dependent cell elongation and autolysis inhibition in C. perfringens. These findings demonstrate that simple Zn2+ treatment before experiments stabilizes C. perfringens cells, reducing autolysis under aerobic conditions and facilitating various biological studies, except morphological analyses.
en-copyright=
kn-copyright=
en-aut-name=MatsunagaNozomu
en-aut-sei=Matsunaga
en-aut-mei=Nozomu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=EgusaSeira
en-aut-sei=Egusa
en-aut-mei=Seira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AonoRiyo
en-aut-sei=Aono
en-aut-mei=Riyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TamaiEiji
en-aut-sei=Tamai
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HitusmotoYasuo
en-aut-sei=Hitusmoto
en-aut-mei=Yasuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KatayamaSeiichi
en-aut-sei=Katayama
en-aut-mei=Seiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Life Science, Faculty of Science, Okayama University of Science
kn-affil=
affil-num=2
en-affil=Department of Life Science, Faculty of Science, Okayama University of Science
kn-affil=
affil-num=3
en-affil=Department of Medical Technology, Kagawa Prefectural University of Health Sciences
kn-affil=
affil-num=4
en-affil=Department of Infectious Disease, College of Pharmaceutical Science, Matsuyama University
kn-affil=
affil-num=5
en-affil=Department of Life Science, Faculty of Science, Okayama University of Science
kn-affil=
affil-num=6
en-affil=Department of Life Science, Faculty of Science, Okayama University of Science
kn-affil=
en-keyword=Clostridium perfringens
kn-keyword=Clostridium perfringens
en-keyword=autolysin
kn-keyword=autolysin
en-keyword=zinc
kn-keyword=zinc
en-keyword=air-exposure autolysis
kn-keyword=air-exposure autolysis
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=5
article-no=
start-page=329
end-page=337
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202510
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Current Status of Extracorporeal Membrane Oxygenation as a Treatment Strategy for Primary Graft Dysfunction after Lung Transplantation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Primary graft dysfunction (PGD) is one of the major risk factors affecting patients’ short- and long-term survival after lung transplantation. No particular management strategy has been established for PGD; supportive care is the mainstay of PGD treatment. When a supportive strategy fails, the patient may require the introduction of extracorporeal membrane oxygenation (ECMO) as the last-resort measure for severe PGD. A variety of study of ECMO as a PGD treatment was reported and the management of PGD patients developed so far. Early recognition of a patient’s need for ECMO and its prompt initiation are critical to improved outcomes. The use of venovenous-ECMO became the preferred procedure for PGD rather than venoarterial-ECMO. However, the current ECMO strategy has limitations, and using ECMO to manage patients with PGD is not sufficiently effective. Further studies are required to develop this promising technology.
en-copyright=
kn-copyright=
en-aut-name=MatsubaraKei
en-aut-sei=Matsubara
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyoshiKentaroh
en-aut-sei=Miyoshi
en-aut-mei=Kentaroh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Thoracic Surgery, Hiroshima City Hiroshima Citizens Hospital
kn-affil=
affil-num=2
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=lung transplantation
kn-keyword=lung transplantation
en-keyword=primary graft dysfunction
kn-keyword=primary graft dysfunction
en-keyword=extracorporeal membrane oxygenation
kn-keyword=extracorporeal membrane oxygenation
en-keyword=ex vivo lung perfusion
kn-keyword=ex vivo lung perfusion
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=5
article-no=
start-page=321
end-page=328
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202510
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Review of the Endoscopic Treatment for Bile Leak Following Cholecystectomy and Hepatic Surgery
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Bile leak occurs in 2-25% of liver transplant, 3-27% of hepatic resection, and 0.1-4% of cholecystectomy cases. The clinical course of bile leak varies depending on the type of surgery that caused the fistula, as well as the type, severity, and timing of bile duct injury. Although infections resulting from bile leak can be life-threatening, the introduction of endoscopic treatment has enabled some patients to avoid reoperation and has reduced the negative impact on quality of life associated with external fistulas for percutaneous drainage. Endoscopic interventions, such as sphincterotomy and stent placement, reduce the pressure gradient between the bile duct and duodenum, facilitating bile drainage through the papilla and promoting the closure of the leak. We reviewed the literature from 2004 to 2024 regarding bile leak following cholecystectomy and liver surgery, examining recommended techniques, timing, and treatment outcomes. In cases of bile leak following cholecystectomy, clinical success was achieved in 72-96% of cases, while success rates for bile leak following liver surgery ranged from 50% to 100%. Although endoscopic treatment is effective, it is not universally applicable, and its limitations must be carefully considered.
en-copyright=
kn-copyright=
en-aut-name=ObataTaisuke
en-aut-sei=Obata
en-aut-mei=Taisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsumotoKazuyuki
en-aut-sei=Matsumoto
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
en-keyword=bile leak
kn-keyword=bile leak
en-keyword=cholecystectomy
kn-keyword=cholecystectomy
en-keyword=hepatic surgery
kn-keyword=hepatic surgery
en-keyword=endoscopic retrograde cholangiography
kn-keyword=endoscopic retrograde cholangiography
en-keyword=bridging stent placement
kn-keyword=bridging stent placement
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=17
article-no=
start-page=6102
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250828
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Risk Factors for Perioperative Urinary Tract Infection After Living Donor Kidney Transplantation Characterized by High Prevalence of Desensitization Therapy: A Single-Center Analysis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Objectives: Limited research exists on risk factors for urinary tract infections (UTIs) in kidney transplant recipients, particularly in high-risk groups such as ABO-incompatible or donor-specific antibody (DSA)-positive cases. Early UTIs, especially within the first month post-transplant, impact on acute rejection and long-term graft outcomes, highlighting the need for risk factor identification and management. Methods: Among 157 living donor kidney transplant cases performed at our institution between 2009 and 2024, 128 patients were included after excluding cases with >72 h of perioperative prophylactic antibiotics or urological complications. UTI was defined as the presence of pyuria and a positive urine culture, accompanied by clinical symptoms requiring antibiotic treatment, occurring within one month post-transplantation. Results: The median onset of UTI was postoperative day 8 (interquartile range, IQR: 6.8?9.3). No subsequent acute rejection episodes were observed. The median serum creatinine at 1 month postoperatively was 1.3 mg/dL (IQR: 1.1?1.7), and this was not significantly different from those who did not develop UTI. In univariate analysis, low or high BMI (<20 or >25), longer dialysis duration (>2.5 years), desensitization therapy (plasmapheresis + rituximab), elevated preoperative neutrophil-to-lymphocyte ratio (NLR) (?3), and longer warm ischemic time (WIT) (?7.8 min) were significantly associated with an increased infection risk of UTI (p = 0.010, 0.036, 0.028, 0.015, and 0.038, respectively). Multivariate analyses revealed that abnormal BMI, longer dialysis duration, desensitization therapy, and longer WIT were independent risk factors for UTI (p = 0.012, 0.031, 0.008, and 0.033, respectively). The incidence of UTI increased with the number of risk factors: 0% (0/16) for zero, 10% (5/48) for one, 31% (16/51) for two, 45% (5/11) for three, and 100% (2/2) for four risk factors. Conclusions: Desensitization therapy, BMI, dialysis duration, and WIT were identified as independent risk factors for perioperative UTI. In patients with risk factors, additional preventive strategies should be considered, with extended antibiotic prophylaxis being one potential option.
en-copyright=
kn-copyright=
en-aut-name=NishimuraShingo
en-aut-sei=Nishimura
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=InoueShota
en-aut-sei=Inoue
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SekitoTakanori
en-aut-sei=Sekito
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TsuboiIchiro
en-aut-sei=Tsuboi
en-aut-mei=Ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TokunagaMoto
en-aut-sei=Tokunaga
en-aut-mei=Moto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YoshinagaKasumi
en-aut-sei=Yoshinaga
en-aut-mei=Kasumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MaruyamaYuki
en-aut-sei=Maruyama
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MitsuiYosuke
en-aut-sei=Mitsui
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YamanoiTomoaki
en-aut-sei=Yamanoi
en-aut-mei=Tomoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KawadaTatsushi
en-aut-sei=Kawada
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KubotaRisa
en-aut-sei=Kubota
en-aut-mei=Risa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=SadahiraTakuya
en-aut-sei=Sadahira
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TominagaYusuke
en-aut-sei=Tominaga
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=IwataTakehiro
en-aut-sei=Iwata
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KatayamaSatoshi
en-aut-sei=Katayama
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=BekkuKensuke
en-aut-sei=Bekku
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=EdamuraKohei
en-aut-sei=Edamura
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=WadaKoichiro
en-aut-sei=Wada
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=KobayashiYasuyuki
en-aut-sei=Kobayashi
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
affil-num=1
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=4
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Urology, NHO Okayama Medical Center
kn-affil=
affil-num=6
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=8
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Urology, NHO Okayama Medical Center
kn-affil=
affil-num=12
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=17
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=18
en-affil=Department of Urology, Shimane University Faculty of Medicine
kn-affil=
affil-num=19
en-affil=Department of Urology, Hiroshima City Hiroshima Citizens Hospital
kn-affil=
affil-num=20
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=living donor kidney transplantation
kn-keyword=living donor kidney transplantation
en-keyword=urinary tract infection
kn-keyword=urinary tract infection
en-keyword=perioperative
kn-keyword=perioperative
en-keyword=desensitization
kn-keyword=desensitization
en-keyword=rituximab
kn-keyword=rituximab
en-keyword=plasmapheresis
kn-keyword=plasmapheresis
en-keyword=body mass index
kn-keyword=body mass index
en-keyword=dialysis duration
kn-keyword=dialysis duration
en-keyword=warm ischemic time
kn-keyword=warm ischemic time
en-keyword=prophylactic antimicrobials
kn-keyword=prophylactic antimicrobials
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=1
article-no=
start-page=491
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250826
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Risk of malignant neoplasms of tacrolimus in kidney transplant patients: a retrospective cohort study conducted using the Japanese National Database of Health Insurance Claims
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Although the long-term survival of kidney transplant recipients has significantly improved, malignant neoplasms remain one of the leading causes of death in this population. The recipients face a 1.8-fold increased risk of developing malignant neoplasms compared with the general population. This risk increases with time after transplantation. Tacrolimus (TAC) is preferred over cyclosporine A (CyA) in terms of efficacy against organ rejection, but evidence on the risk of malignant neoplasms is lacking. We aimed to describe the incidence and types of malignant neoplasms in kidney transplant recipients and evaluate the association between malignant neoplasms development and the type of prescribed CNI.
Methods: This retrospective cohort study was conducted using the Japanese National Database of Health Insurance Claims, including data covering 99% of kidney transplant patients in Japan. Patients who underwent kidney transplantation and were prescribed TAC or CyA between April and June 2011 were included. The primary outcome included the incidence of malignant neoplasms, and secondary outcomes included overall survival and graft survival.
Results: A total of 7,590 patients were included, with 11.0% developing malignant neoplasms during the follow-up period. The most common malignant neoplasms were in the digestive organs and urinary tract. No statistically significant difference in malignant neoplasms incidence was observed between TAC and CyA users (hazards ratio: 0.97, 95% CI: 0.84 to 1.12; estimated average treatment effect: ?24.05, 95% CI: ?184.90 to 136.80). The patient and graft survival rates were also comparable between the groups.
Conclusions: This large study suggests that TAC is not associated with an increased risk of malignant neoplasms compared to CyA in the late post-transplant period.
en-copyright=
kn-copyright=
en-aut-name=KubotaRisa
en-aut-sei=Kubota
en-aut-mei=Risa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SadaKen-Ei
en-aut-sei=Sada
en-aut-mei=Ken-Ei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TokunagaMoto
en-aut-sei=Tokunaga
en-aut-mei=Moto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YoshinagaKasumi
en-aut-sei=Yoshinaga
en-aut-mei=Kasumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamanoiTomoaki
en-aut-sei=Yamanoi
en-aut-mei=Tomoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KawadaTatsushi
en-aut-sei=Kawada
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TominagaYusuke
en-aut-sei=Tominaga
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SadahiraTakuya
en-aut-sei=Sadahira
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KatayamaSatoshi
en-aut-sei=Katayama
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=IwataTakehiro
en-aut-sei=Iwata
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NishimuraShingo
en-aut-sei=Nishimura
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=BekkuKensuke
en-aut-sei=Bekku
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=EdamuraKohei
en-aut-sei=Edamura
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KobayashiTomoko
en-aut-sei=Kobayashi
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=NakagawaYuki
en-aut-sei=Nakagawa
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=IchimaruNaotsugu
en-aut-sei=Ichimaru
en-aut-mei=Naotsugu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=WadaKoichiro
en-aut-sei=Wada
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
affil-num=1
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Clinical Epidemiology, Kochi Medical School, Kochi University
kn-affil=
affil-num=3
en-affil=Department of Urology, National Hospital Organization Okayama Medical Center
kn-affil=
affil-num=4
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of Urology, Juntendo University Graduate School of Medicine
kn-affil=
affil-num=16
en-affil=Department of Urology, Kinki Central Hospital
kn-affil=
affil-num=17
en-affil=Department of Urology, Shimane University Faculty of Medicine
kn-affil=
affil-num=18
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Calcineurin inhibitors
kn-keyword=Calcineurin inhibitors
en-keyword=Cyclosporine A
kn-keyword=Cyclosporine A
en-keyword=Kidney transplant
kn-keyword=Kidney transplant
en-keyword=Malignant neoplasms
kn-keyword=Malignant neoplasms
en-keyword=Tacrolimus
kn-keyword=Tacrolimus
END
start-ver=1.4
cd-journal=joma
no-vol=22
cd-vols=
no-issue=5
article-no=
start-page=3933
end-page=3946
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202510
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Topology-Driven Configuration of Emulation Networks With Deterministic Templating
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Network emulation is an important component of a digital twin for verifying network behavior without impacting on the service systems. Although we need to repeatedly change network topologies and configuration settings as a part of trial and error for verification, it is not easy to reflect the change without failures because the change affects multiple devices, even if it is as simple as adding a device. We present topology-driven configuration, an idea to separate network topology and generalized configuration to make it easy to change them. Based on this idea, we aim to realize a scalable, simple, and effective configuration platform for emulation networks. We design a configuration generation method using simple and deterministic config templates with a new network parameter data model, and implement it as dot2net. We evaluate three perspectives, scalability, simplicity, and efficacy, of the proposed method using dot2net through measurement and user experiments on existing test network scenarios.
en-copyright=
kn-copyright=
en-aut-name=KobayashiSatoru
en-aut-sei=Kobayashi
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShiibaRyusei
en-aut-sei=Shiiba
en-aut-mei=Ryusei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MiwaShinsuke
en-aut-sei=Miwa
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MiyachiToshiyuki
en-aut-sei=Miyachi
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FukudaKensuke
en-aut-sei=Fukuda
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Informatics, School of Multidisciplinary Sciences, The Graduate University of Advanced Studies, Sokendai
kn-affil=
affil-num=3
en-affil=StarBED Technology Center, Testbed Research, Development and Operations Laboratory, National Institute of Information and Communications Technology
kn-affil=
affil-num=4
en-affil=Strategic Planning Department, Strategic Planning Office, National Institute of Information and Communications Technology
kn-affil=
affil-num=5
en-affil=Department of Informatics, School of Multidisciplinary Sciences, The Graduate University of Advanced Studies, Sokendai
kn-affil=
en-keyword=Configuration management
kn-keyword=Configuration management
en-keyword=template
kn-keyword=template
en-keyword=emulation network
kn-keyword=emulation network
en-keyword=topology graph
kn-keyword=topology graph
END
start-ver=1.4
cd-journal=joma
no-vol=55
cd-vols=
no-issue=6
article-no=
start-page=643
end-page=649
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250202
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Real-world clinical usage and efficacy of apalutamide in men with nonmetastatic castration-resistant prostate cancer: a multi-institutional study in the CsJUC
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective: To evaluate the real-world clinical usage and effectiveness of apalutamide in men with nonmetastatic castration-resistant prostate cancer (nmCRPC).
Methods: We retrospectively reviewed the data of 186 men who received apalutamide across 17 institutions. The primary outcomes were the clinical usage of apalutamide for nmCRPC: prior usage of other androgen receptor signaling inhibitors (ARSIs), prior radical treatment, and the distribution of the prostate-specific antigen (PSA) doubling time (PSA-DT) at the initial administration of apalutamide. The secondary outcomes were the efficacy of apalutamide: PSA response (50% or 90% decline), progression-free survival, and skin-adverse events (AEs).
Results: We identified 75 patients with nmCRPC. A total of 31 (41.3%) patients received prior treatment with other ARSIs. A total of 42 men (56%) did not receive any prior radical treatment. The PSA-DT was <3.0, 3.0?5.9, 6.0?10, and > 10 months in 34.7%, 40%, 14.7%, and 10.6% of the patients, respectively. Patients receiving prior treatment with other ARSIs showed a significantly lower PSA response (PSA 50% decline, 88.4% vs. 18.8%; PSA 90% decline, 60.5% vs. 6.2%, P < .001, respectively) and significantly shorter progression-free survival (median: 37 months vs. 4 months; log-rank P < .001) than those without prior ARSI treatment, although cancer status did not differ between the groups. Skin-AEs were observed in 42.7%.
Conclusions: This real-world study revealed that apalutamide was used for the treatment after other ARSIs in >40% of patients with nmCRPC and showed limited efficacy in this context, although the effectiveness of apalutamide without prior other ARSI treatment was comparable with that reported in clinical trial results.
en-copyright=
kn-copyright=
en-aut-name=TohiYoichiro
en-aut-sei=Tohi
en-aut-mei=Yoichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KobayashiKeita
en-aut-sei=Kobayashi
en-aut-mei=Keita
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=DaizumotoKei
en-aut-sei=Daizumoto
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SekinoYohei
en-aut-sei=Sekino
en-aut-mei=Yohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FukuharaHideo
en-aut-sei=Fukuhara
en-aut-mei=Hideo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NiigawaHeima
en-aut-sei=Niigawa
en-aut-mei=Heima
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KatayamaSatoshi
en-aut-sei=Katayama
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ShimizuRyutaro
en-aut-sei=Shimizu
en-aut-mei=Ryutaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TakamotoAtsushi
en-aut-sei=Takamoto
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NishimuraKenichi
en-aut-sei=Nishimura
en-aut-mei=Kenichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NagamiTaichi
en-aut-sei=Nagami
en-aut-mei=Taichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=HayashidaYushi
en-aut-sei=Hayashida
en-aut-mei=Yushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=HiramaHiromi
en-aut-sei=Hirama
en-aut-mei=Hiromi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=ShiraishiKoji
en-aut-sei=Shiraishi
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=TomidaRyotaro
en-aut-sei=Tomida
en-aut-mei=Ryotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=KobatakeKohei
en-aut-sei=Kobatake
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=InoueKeiji
en-aut-sei=Inoue
en-aut-mei=Keiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=MiyajiYoshiyuki
en-aut-sei=Miyaji
en-aut-mei=Yoshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=BekkuKensuke
en-aut-sei=Bekku
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=MorizaneShuichi
en-aut-sei=Morizane
en-aut-mei=Shuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=MiuraNoriyoshi
en-aut-sei=Miura
en-aut-mei=Noriyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=WadaKoichiro
en-aut-sei=Wada
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=SugimotoMikio
en-aut-sei=Sugimoto
en-aut-mei=Mikio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=Chu-shikoku Japan Urological Consortium
en-aut-sei=Chu-shikoku Japan Urological Consortium
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
affil-num=1
en-affil=Department of Urology, Faculty of Medicine, Kagawa University
kn-affil=
affil-num=2
en-affil=Department of Urology, Graduate School of Medicine, Yamaguchi University
kn-affil=
affil-num=3
en-affil=Department of Urology, Tokushima University Graduate School of Biomedical Sciences
kn-affil=
affil-num=4
en-affil=Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University
kn-affil=
affil-num=5
en-affil=Department of Urology, Kochi Medical School
kn-affil=
affil-num=6
en-affil=Department of Urology, Kawasaki Medical School
kn-affil=
affil-num=7
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Division of Urology, Department of Surgery, Faculty of Medicine, Tottori University
kn-affil=
affil-num=9
en-affil=Department of Urology, Fukuyama City Hospital
kn-affil=
affil-num=10
en-affil=Department of Urology, Ehime University
kn-affil=
affil-num=11
en-affil=Department of Urology, Shimane University Faculty of Medicine
kn-affil=
affil-num=12
en-affil=Department of Urology, Sakaide City Hospital
kn-affil=
affil-num=13
en-affil=Department of Urology, KKR Takamatsu Hospital
kn-affil=
affil-num=14
en-affil=Department of Urology, Graduate School of Medicine, Yamaguchi University
kn-affil=
affil-num=15
en-affil=Department of Urology, Tokushima University Graduate School of Biomedical Sciences
kn-affil=
affil-num=16
en-affil=Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University
kn-affil=
affil-num=17
en-affil=Department of Urology, Kochi Medical School
kn-affil=
affil-num=18
en-affil=Department of Urology, Kawasaki Medical School
kn-affil=
affil-num=19
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=20
en-affil=Division of Urology, Department of Surgery, Faculty of Medicine, Tottori University
kn-affil=
affil-num=21
en-affil=Department of Urology, Ehime University
kn-affil=
affil-num=22
en-affil=Department of Urology, Shimane University Faculty of Medicine
kn-affil=
affil-num=23
en-affil=Department of Urology, Faculty of Medicine, Kagawa University
kn-affil=
affil-num=24
en-affil=
kn-affil=
en-keyword=apalutamide
kn-keyword=apalutamide
en-keyword=nonmetastatic castration-resistant prostate cancer
kn-keyword=nonmetastatic castration-resistant prostate cancer
en-keyword=prostate cancer
kn-keyword=prostate cancer
en-keyword=prostate-specific antigen response
kn-keyword=prostate-specific antigen response
en-keyword=PSA-doubling time
kn-keyword=PSA-doubling time
END
start-ver=1.4
cd-journal=joma
no-vol=50
cd-vols=
no-issue=5
article-no=
start-page=291
end-page=301
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250307
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Systematic Review and Meta-Analysis of Penis Length and Circumference According to WHO Regions: Who has the Biggest One?
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study aimed to perform a systematic review and meta-analysis of stretched, erect, and flaccid penis length as well as circumference according to geographic WHO regions. PubMed, Embase, Scopus, and Cochrane Library were searched for articles published until February 2024. Studies in which a healthcare professional evaluated the penis size were considered eligible. After assessing the risk of bias, a systematic review and meta-analyses were performed according to the Preferred Reporting Items for Systematic Review and Meta-analysis statement, and the outcomes were grouped based on the WHO regions. A total of 33 studies comprising 36 883 patients were included. The risk of bias in the included studies was moderate/low. A comprehensive systematic review was done and meta-analyses performed for flaccid length [n = 28 201, mean (SE) 9.22 (0.24) cm], stretched length [n = 20 814, mean (SE) 12.84 (0.32) cm], erect length [n = 5669, mean (SE) 13.84 (0.94) cm], flaccid circumference [n = 30 117, mean (SE) 9.10 (0.12) cm], and erect circumference [n = 5168, mean (SE) 11.91 (0.18) cm]. The mean length of the stretched penis was largest in Americans [14.47 (0.90) cm]. The mean length of the flaccid penis was the largest in the Americas [10.98 (0.064) cm]. The mean flaccid penile circumference was largest in Americans [n = 29 714, mean (SE) 10.00 (0.04) cm]. Penis sizes vary across WHO regions, suggesting the need to adjust standards according to geography to better understand councilmen and their partners. These data provide a framework for discussing body image expectations and therapeutic strategies in this sensitive and emotional subject matter.
en-copyright=
kn-copyright=
en-aut-name=MostafaeiHadi
en-aut-sei=Mostafaei
en-aut-mei=Hadi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MoriKeiichiro
en-aut-sei=Mori
en-aut-mei=Keiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KatayamaSatoshi
en-aut-sei=Katayama
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=QuhalFahad
en-aut-sei=Quhal
en-aut-mei=Fahad
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=PradereBenjamin
en-aut-sei=Pradere
en-aut-mei=Benjamin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YanagisawaTakafumi
en-aut-sei=Yanagisawa
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=LaukhtinaEkaterina
en-aut-sei=Laukhtina
en-aut-mei=Ekaterina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=K?nigFrederik
en-aut-sei=K?nig
en-aut-mei=Frederik
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MotlaghReza Sari
en-aut-sei=Motlagh
en-aut-mei=Reza Sari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=RajwaPawel
en-aut-sei=Rajwa
en-aut-mei=Pawel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=Salehi-PourmehrHanieh
en-aut-sei=Salehi-Pourmehr
en-aut-mei=Hanieh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=HajebrahimiSakineh
en-aut-sei=Hajebrahimi
en-aut-mei=Sakineh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=ShariatShahrokh F.
en-aut-sei=Shariat
en-aut-mei=Shahrokh F.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=2
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=3
en-affil=Department of Urology Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=5
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=6
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=7
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=8
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=9
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=10
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=11
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=12
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=13
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
en-keyword=Penis
kn-keyword=Penis
en-keyword=length
kn-keyword=length
en-keyword=circumference
kn-keyword=circumference
en-keyword=world health organization
kn-keyword=world health organization
END
start-ver=1.4
cd-journal=joma
no-vol=39
cd-vols=
no-issue=5
article-no=
start-page=2787
end-page=2793
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250828
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Accuracy of Contrast-enhanced CT in Diagnosing Small-sized cT3a Renal Cell Carcinoma and Analysis of Factors Predicting Downstaging to pT1
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Aim: This study assessed the accuracy of preoperative contrast-enhanced computed tomography (CECT) scans in staging small-sized, locally advanced (cT3a) renal cell carcinoma (RCC) and identified predictors of pathological downstaging following surgery.
Patients and Methods: Seventy-six patients who underwent radical nephrectomy for cT3aN0M0 RCC with tumors ?7 cm were analyzed. Preoperative CECT evaluated features such as venous, peritumoral, or renal sinus fat, and urinary tract invasion, predictive values, and concordance index between radiological and pathological findings were calculated for these categories. The study also examined the impact of clinicopathologic factors on downstaging.
Results: Of 76 patients with cT3 RCC, 37% were down-staged to pT1. Down-staged cases had a higher proportion of male patients and non-clear cell carcinoma (86% vs. 58%, 32% vs. 6%; p=0.02, p=0.007, respectively). Multiple cT3a factors were less common in down-staged cases (4% vs. 23%, p=0.04). Non-clear cell carcinoma was significantly associated with downstaging compared to clear cell carcinoma (75% vs. 30%, p=0.006). Multivariate analysis confirmed non-clear cell carcinoma as an independent predictor (odds ratio=8.2, p=0.01). For venous invasion, CECT sensitivity and positive predictive value were high (73.5% and 83.3%, respectively) and the degree of agreement was substantial (κ=0.62).
Conclusion: The accuracy of preoperative CECT was acceptable for detecting venous invasion. The downstaging to pT1 occurred in 37% of cT3a RCC cases in the final pathology, with non-clear cell carcinoma being a significant predictor.
en-copyright=
kn-copyright=
en-aut-name=BEKKUKENSUKE
en-aut-sei=BEKKU
en-aut-mei=KENSUKE
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YOSHINAGAKASUMI
en-aut-sei=YOSHINAGA
en-aut-mei=KASUMI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=INOUESHOTA
en-aut-sei=INOUE
en-aut-mei=SHOTA
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MITSUIYOSUKE
en-aut-sei=MITSUI
en-aut-mei=YOSUKE
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YAMANOITOMOAKI
en-aut-sei=YAMANOI
en-aut-mei=TOMOAKI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KAWADATATSUSHI
en-aut-sei=KAWADA
en-aut-mei=TATSUSHI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TOMINAGAYUSUKE
en-aut-sei=TOMINAGA
en-aut-mei=YUSUKE
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SADAHIRATAKUYA
en-aut-sei=SADAHIRA
en-aut-mei=TAKUYA
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KATAYAMASATOSHI
en-aut-sei=KATAYAMA
en-aut-mei=SATOSHI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=IWATATAKEHIRO
en-aut-sei=IWATA
en-aut-mei=TAKEHIRO
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NISHIMURASHINGO
en-aut-sei=NISHIMURA
en-aut-mei=SHINGO
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=EDAMURAKOHEI
en-aut-sei=EDAMURA
en-aut-mei=KOHEI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KOBAYASHITOMOKO
en-aut-sei=KOBAYASHI
en-aut-mei=TOMOKO
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=ARAKIMOTOO
en-aut-sei=ARAKI
en-aut-mei=MOTOO
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=Contrast?enhanced CT
kn-keyword=Contrast?enhanced CT
en-keyword=renal cell carcinoma
kn-keyword=renal cell carcinoma
en-keyword=staging
kn-keyword=staging
en-keyword=T3a
kn-keyword=T3a
en-keyword=downstaging
kn-keyword=downstaging
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=1
article-no=
start-page=22
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250105
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Relay Node Selection Methods for UAV Navigation Route Constructions in Wireless Multi-Hop Network Using Smart Meter Devices
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Unmanned aerial vehicles (UAVs) offer solutions to issues like traffic congestion and labor shortages. We developed a distributed UAV management system inspired by virtual circuit and datagram methods in packet-switching networks. By installing houses with wireless terminals, UAVs navigate routes in a multi-hop network, communicating with ground nodes. UAVs are treated as network packets, ground devices are treated as routers, and their connections are treated as links. Activating all nodes as relays increases control message traffic and node load. To optimize connectivity, we minimize relay nodes, connecting non-relay nodes to the nearest relay. This study proposes four relay node selection methods: random selection, two adjacency-based methods, and our innovative approach using Multipoint Relay (MPR) from the Optimized Link State Routing Protocol (OLSR). We evaluated these methods according to their route construction success rates, relay node counts, route lengths, and so on. The MPR-based method proved most effective for UAV route construction. However, fewer relay nodes increase link collisions, and we identify the minimum relay density needed to balance efficiency and conflict reduction.
en-copyright=
kn-copyright=
en-aut-name=OhkawaShuto
en-aut-sei=Ohkawa
en-aut-mei=Shuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UedaKiyoshi
en-aut-sei=Ueda
en-aut-mei=Kiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MiyoshiTakumi
en-aut-sei=Miyoshi
en-aut-mei=Takumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamazakiTaku
en-aut-sei=Yamazaki
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamamotoRyo
en-aut-sei=Yamamoto
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FunabikiNobuo
en-aut-sei=Funabiki
en-aut-mei=Nobuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Graduate School of Engineering, Nihon University
kn-affil=
affil-num=2
en-affil=Graduate School of Engineering, Nihon University
kn-affil=
affil-num=3
en-affil=College of Systems Engineering and Science, Shibaura Institute of Technology
kn-affil=
affil-num=4
en-affil=College of Systems Engineering and Science, Shibaura Institute of Technology
kn-affil=
affil-num=5
en-affil=Graduate School of Informatics and Engineering, The University of Electro-Communications
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=network of wireless devices
kn-keyword=network of wireless devices
en-keyword=UAV delivery
kn-keyword=UAV delivery
en-keyword=ad hoc network
kn-keyword=ad hoc network
END
start-ver=1.4
cd-journal=joma
no-vol=88
cd-vols=
no-issue=9
article-no=
start-page=1117
end-page=1125
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240622
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Solid-state cultivation of multiple industrial strains of koji mold on different Thai unpolished rice cultivars: biotransformation of phenolic compounds and their effects on antioxidant activity
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Colored rice is abundant in polyphenols, and koji molds have potential for biotransformation. This study aimed to produce Thai-colored rice koji to study its polyphenolic biotransformation. Four industrial koji mold strains: Aspergillus oryzae 6001, A. oryzae 6020, A. sojae 7009, and A. luchuensis 8035, were cultivated on unpolished Thai-colored rice (Riceberry and Sangyod), unpolished Thai white rice (RD43), and polished Japanese white rice (Koshihikari). We discovered that koji molds grew on all the rice varieties. Methanol extracts of all rice kojis exhibited an approximately 2-fold or greater increase in total phenolic content and DPPH antioxidant activity compared to those of steamed rice. Moreover, quercetin, quercetin-3-O-glucoside, isorhamnetin-3-O-glucoside, ferulic acid, caffeic acid, protocatechuic acid, vanillic acid, (+)-catechin, and (?)-epicatechin content increased in Riceberry and Sangyod koji samples. Consequently, Aspergillus solid-state cultivation on unpolished Thai-colored rice exhibited higher functionalization than the cultivation of unpolished Thai white rice and polished Japanese white rice.
en-copyright=
kn-copyright=
en-aut-name=JitpakdeeJirayu
en-aut-sei=Jitpakdee
en-aut-mei=Jirayu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamashitaHideyuki
en-aut-sei=Yamashita
en-aut-mei=Hideyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakagawaTakuro
en-aut-sei=Nakagawa
en-aut-mei=Takuro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NitodaTeruhiko
en-aut-sei=Nitoda
en-aut-mei=Teruhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KanzakiHiroshi
en-aut-sei=Kanzaki
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Higuchi Matsunosuke Shoten Co., Ltd.
kn-affil=
affil-num=3
en-affil=Higuchi Matsunosuke Shoten Co., Ltd.
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=antioxidant activity
kn-keyword=antioxidant activity
en-keyword=koji mold
kn-keyword=koji mold
en-keyword=polyphenols
kn-keyword=polyphenols
en-keyword=solid-state fermentation
kn-keyword=solid-state fermentation
en-keyword=Thai colored rice
kn-keyword=Thai colored rice
END
start-ver=1.4
cd-journal=joma
no-vol=6
cd-vols=
no-issue=3
article-no=
start-page=52
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250908
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=An Extension of Input Setup Assistance Service Using Generative AI to Unlearned Sensors for the SEMAR IoT Application Server Platform
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Nowadays, Internet of Things (IoT) application systems are broadly applied to various sectors of society for efficient management by monitoring environments using sensors, analyzing sampled data, and giving proper feedback. For their fast deployment, we have developed Smart Environmental Monitoring and Analysis in Real Time (SEMAR) as an integrated IoT application server platform and implemented the input setup assistance service using prompt engineering and a generative AI model to assist connecting sensors to SEMAR with step-by-step guidance. However, the current service cannot assist in connections of the sensors not learned by the AI model, such as newly released ones. To address this issue, in this paper, we propose an extension to the service for handling unlearned sensors by utilizing datasheets with four steps: (1) users input a PDF datasheet containing information about the sensor, (2) key specifications are extracted from the datasheet and structured into markdown format using a generative AI, (3) this data is saved to a vector database using chunking and embedding methods, and (4) the data is used in Retrieval-Augmented Generation (RAG) to provide additional context when guiding users through sensor setup. Our evaluation with five generative AI models shows that OpenAI’s GPT-4o achieves the highest accuracy in extracting specifications from PDF datasheets and the best answer relevancy (0.987), while Gemini 2.0 Flash delivers the most balanced results, with the highest overall RAGAs score (0.76). Other models produced competitive but mixed outcomes, averaging 0.74 across metrics. The step-by-step guidance function achieved a task success rate above 80%. In a course evaluation by 48 students, the system improved the student test scores, further confirming the effectiveness of our proposed extension.
en-copyright=
kn-copyright=
en-aut-name=KotamaI Nyoman Darma
en-aut-sei=Kotama
en-aut-mei=I Nyoman Darma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FunabikiNobuo
en-aut-sei=Funabiki
en-aut-mei=Nobuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=PandumanYohanes Yohanie Fridelin
en-aut-sei=Panduman
en-aut-mei=Yohanes Yohanie Fridelin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=BrataKomang Candra
en-aut-sei=Brata
en-aut-mei=Komang Candra
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=PradhanaAnak Agung Surya
en-aut-sei=Pradhana
en-aut-mei=Anak Agung Surya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=Noprianto
en-aut-sei=Noprianto
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Information Science and Technology, The University of Osaka
kn-affil=
affil-num=4
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Internet of Things
kn-keyword=Internet of Things
en-keyword=artificial intelligence
kn-keyword=artificial intelligence
en-keyword=Retrieval-Augmented Generation
kn-keyword=Retrieval-Augmented Generation
en-keyword=review
kn-keyword=review
en-keyword=application server platform
kn-keyword=application server platform
en-keyword=SEMAR
kn-keyword=SEMAR
en-keyword=sensor input
kn-keyword=sensor input
END
start-ver=1.4
cd-journal=joma
no-vol=135
cd-vols=
no-issue=7
article-no=
start-page=1329
end-page=1343
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250417
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Molecular polymorphisms of the nuclear and chloroplast genomes among African melon germplasms reveal abundant and unique genetic diversity, especially in Sudan
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background and Aims Africa is rich in wild species of Cucumis and is considered one of the places of origin of melon. However, our knowledge of African melon is limited, and genetic studies using melon germplasms with wide geographical coverage are required. Here, we analysed the genetic structure of African melons, with emphasis on Sudan.
Methods Ninety-seven accessions of African melon were examined along with 77 reference accessions representing Asian melon and major horticultural groups. Molecular polymorphisms in the nuclear and chloroplast genomes were investigated using 12 RAPD, 7 SSR and 3 SNP markers. Horticultural traits, including seed size, were measured for 46 accessions, mainly from Sudan.
Key Results African melons were divided into large and small seed-types based on seed length: large seed-type from Northern Africa and small seed-type from Western and Southern Africa. Both seed types are common in Sudan. Molecular genetic diversity in these geographical populations was as high as in India, the Asian centre of melon domestication. Large seed-types from Northern Africa were assigned to Pop4 by structure analysis and had Ib cytoplasm in common with Cantalupensis, Inodorus and Flexuosus. Small seed-types were highly diversified and geographically differentiated; specifically, Pop1 with Ia cytoplasm in Southern Africa and South Asia, Pop2 with Ia in East Asia, including Conomon and Makuwa, and Pop3 with Ia or Ic in Africa. Sudanese small seed-types were grouped in Pop3, while their cytoplasm type was a mixture of Ia and Ic. Sudanese Tibish had Ic cytoplasm, which was unique in Africa, common in Western Africa and Sudan, and also found in wild or feral types.
Conclusions Melon of Ic lineage, including Tibish, originated from wild melon in the ‘western Sudan region’, and independently of melon with Ia or Ib cytoplasm, which originated in Asia. This clearly indicates the polyphyletic origin of melon.
en-copyright=
kn-copyright=
en-aut-name=ImohOdirichi Nnennaya
en-aut-sei=Imoh
en-aut-mei=Odirichi Nnennaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShigitaGentaro
en-aut-sei=Shigita
en-aut-mei=Gentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SugiyamaMitsuhiro
en-aut-sei=Sugiyama
en-aut-mei=Mitsuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=DungTran Phuong
en-aut-sei=Dung
en-aut-mei=Tran Phuong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TanakaKatsunori
en-aut-sei=Tanaka
en-aut-mei=Katsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TakahashiMami
en-aut-sei=Takahashi
en-aut-mei=Mami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NishimuraKazusa
en-aut-sei=Nishimura
en-aut-mei=Kazusa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MondenYuki
en-aut-sei=Monden
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NishidaHidetaka
en-aut-sei=Nishida
en-aut-mei=Hidetaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=GodaMashaer
en-aut-sei=Goda
en-aut-mei=Mashaer
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=PitratMichel
en-aut-sei=Pitrat
en-aut-mei=Michel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KatoKenji
en-aut-sei=Kato
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO)
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=5
en-affil=Faculty of Agriculture and Life Science, Hirosaki University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=9
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=10
en-affil=Plant Genetic Resources Conservation and Research Center, Agricultural Research Corporation
kn-affil=
affil-num=11
en-affil=INRAE, UR1052, G?n?tique et am?lioration des fruits et l?gumes
kn-affil=
affil-num=12
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Cucumis melo
kn-keyword=Cucumis melo
en-keyword=Africa
kn-keyword=Africa
en-keyword=chloroplast genome
kn-keyword=chloroplast genome
en-keyword=domestication
kn-keyword=domestication
en-keyword=genetic diversity
kn-keyword=genetic diversity
en-keyword=genetic resources
kn-keyword=genetic resources
en-keyword=maternal lineage
kn-keyword=maternal lineage
en-keyword=melon
kn-keyword=melon
en-keyword=phylogeny
kn-keyword=phylogeny
en-keyword=polyphyletic origin
kn-keyword=polyphyletic origin
en-keyword=seed size
kn-keyword=seed size
en-keyword=Tibish
kn-keyword=Tibish
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=34964
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251007
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Periodontitis associated with Porphyromonas gingivalis infection is a risk factor for infertility through uterine hypertrophy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Periodontitis has recently been recognized as a potential risk factor for infertility due to its adverse effect on conception, although the underlying mechanisms remain unclear. This study investigated serum IgG antibody titers against periodontopathogenic bacteria in women with unexplained infertility and investigated how periodontal inflammation affects pregnancy and uterine function using a ligature-induced periodontitis mouse model infected with Porphyromonas gingivalis (Pg). IgG antibody titers against seven periodontopathogenic bacteria strains were measured by ELISA in 76 spontaneously pregnant women and 70 women undergoing infertility treatment. In the in vivo study, periodontitis mice were bred four weeks after periodontitis induction. Birth numbers, newborn weights, and gestation periods were assessed. To evaluate periodontal inflammation, alveolar bone, serum, and uterus was collected before mating. Uterine tissue was evaluated through histological and immunohistochemical staining. Women receiving infertility treatment were significantly older and had higher IgG titers against three Pg strains. Periodontitis mice had fewer births, lower newborn weights, and increased uterine cross-sectional areas. Additionally, elevated estrogen receptor α and progesterone receptor expression levels were observed in endometrial and stromal tissues. These results suggest that periodontitis may cause uterine hypertrophy and hormone receptor changes, potentially impairing pregnancy.
en-copyright=
kn-copyright=
en-aut-name=Kamei-NagataChiaki
en-aut-sei=Kamei-Nagata
en-aut-mei=Chiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OmoriKazuhiro
en-aut-sei=Omori
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SakoHidefumi
en-aut-sei=Sako
en-aut-mei=Hidefumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SakaidaKyosuke
en-aut-sei=Sakaida
en-aut-mei=Kyosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakayamaMasa-aki
en-aut-sei=Nakayama
en-aut-mei=Masa-aki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OharaToshiaki
en-aut-sei=Ohara
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MandaiHiroki
en-aut-sei=Mandai
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=Kubota-TakamoriMoyuka
en-aut-sei=Kubota-Takamori
en-aut-mei=Moyuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KiyamaFumiko
en-aut-sei=Kiyama
en-aut-mei=Fumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=IshiiTakayuki
en-aut-sei=Ishii
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HiraiKimito
en-aut-sei=Hirai
en-aut-mei=Kimito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=IkedaAtsushi
en-aut-sei=Ikeda
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=Takeuchi-HatanakaKazu
en-aut-sei=Takeuchi-Hatanaka
en-aut-mei=Kazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=Shinoda-ItoYuki
en-aut-sei=Shinoda-Ito
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=Tai-TokuzenMasako
en-aut-sei=Tai-Tokuzen
en-aut-mei=Masako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=SakamotoAi
en-aut-sei=Sakamoto
en-aut-mei=Ai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=KiyokawaMachiko
en-aut-sei=Kiyokawa
en-aut-mei=Machiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=YamanishiTomomi
en-aut-sei=Yamanishi
en-aut-mei=Tomomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=OdaTakashi
en-aut-sei=Oda
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=TakigawaMasayuki
en-aut-sei=Takigawa
en-aut-mei=Masayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=YamamotoTadashi
en-aut-sei=Yamamoto
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=MiyakeTakahito
en-aut-sei=Miyake
en-aut-mei=Takahito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=TakashibaShogo
en-aut-sei=Takashiba
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
affil-num=1
en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Oral Microbiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science
kn-affil=
affil-num=8
en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital
kn-affil=
affil-num=13
en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital
kn-affil=
affil-num=14
en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=15
en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital
kn-affil=
affil-num=16
en-affil=Center for Reproductive Medicine, Miyake Clinic
kn-affil=
affil-num=17
en-affil=Center for Reproductive Medicine, Miyake Clinic
kn-affil=
affil-num=18
en-affil=Center for Reproductive Medicine, Miyake Clinic
kn-affil=
affil-num=19
en-affil=Center for Reproductive Medicine, Miyake Clinic
kn-affil=
affil-num=20
en-affil=Miyake Hello Dental Clinic, Pediatric Dentistry and Orthodontics
kn-affil=
affil-num=21
en-affil=The Center for Graduate Medical Education (Dental Division), Okayama University Hospital
kn-affil=
affil-num=22
en-affil=Center for Reproductive Medicine, Miyake Clinic
kn-affil=
affil-num=23
en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Infertility
kn-keyword=Infertility
en-keyword=Periodontitis
kn-keyword=Periodontitis
en-keyword=Porphyromonas gingivalis
kn-keyword=Porphyromonas gingivalis
en-keyword=Chronic inflammation
kn-keyword=Chronic inflammation
en-keyword=Uterus
kn-keyword=Uterus
en-keyword=Sex hormone receptor
kn-keyword=Sex hormone receptor
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250902
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The response to thermospermine is fine-tuned by the balance between SAC51 and LHW family proteins in Arabidopsis thaliana
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Thermospermine negatively regulates xylem formation. In Arabidopsis, SAC51 and SACL3, members of the SAC51 gene family encoding basic loop-helix-loop (bHLH) proteins play a key role in this regulation. These mRNAs contain an upstream open-reading-frame (uORF) that is highly conserved across species, and its inhibitory effect on the main ORF translation is alleviated by thermospermine. A double knockout of SAC51 and SACL3 results in thermospermine insensitivity at high concentrations that normally inhibit xylem formation and shoot growth in the wild type. Conversely, uORF mutants of SAC51, SACL3, and SACL1 suppress the excessive xylem formation and dwarf phenotype of acl5, a mutant defective in thermospermine biosynthesis. In this study, we generated genome-edited uORF mutants of SACL2 and confirmed that they partially recover the acl5 phenotype. All uORF mutants exhibited increased sensitivity to thermospermine. SACL3 represses the function of LHW, a key bHLH transcription factor required for xylem proliferation, through direct interaction. We found that the lhw mutant is also hypersensitive to thermospermine, while this sensitivity was suppressed by the sac51 sacl3 double knockout. Yeast two-hybrid assays demonstrated that all four SAC51 family members interact with LHW and its family members. These findings suggest that overaccumulation of SAC51 family proteins leads to thermospermine hypersensitivity by repressing the function of LHW family proteins, whose activity must be fine-tuned to ensure proper xylem development.
en-copyright=
kn-copyright=
en-aut-name=XuYao
en-aut-sei=Xu
en-aut-mei=Yao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SaraumiMitsuru
en-aut-sei=Saraumi
en-aut-mei=Mitsuru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ToyoshimaTomohiko
en-aut-sei=Toyoshima
en-aut-mei=Tomohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MotoseHiroyasu
en-aut-sei=Motose
en-aut-mei=Hiroyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakahashiTaku
en-aut-sei=Takahashi
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Arabidopsis thaliana
kn-keyword=Arabidopsis thaliana
en-keyword=LHW family
kn-keyword=LHW family
en-keyword=SAC51 family
kn-keyword=SAC51 family
en-keyword=thermospermine
kn-keyword=thermospermine
en-keyword=xylem
kn-keyword=xylem
END
start-ver=1.4
cd-journal=joma
no-vol=123
cd-vols=
no-issue=5
article-no=
start-page=e70476
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=RNA processing/modifying enzymes play key roles in the response to thermospermine in Arabidopsis thaliana
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Thermospermine is involved in negative regulation of xylem differentiation by enhancing the translation of mRNAs of the SAC51 gene family in Arabidopsis (Arabidopsis thaliana). These mRNAs contain conserved upstream open reading frames (uORFs) that interfere with the translation of the main ORF. To investigate the mechanism by which thermospermine acts in this process, we isolated mutants insensitive to thermospermine, named ‘its’. We show that the four genes responsible for these mutants, its1 to its4, encode: (i) a homolog of SPOUT RNA methyltransferase, (ii) an rRNA pseudouridine synthase CBF5/NAP57, (iii) a putative spliceosome disassembly factor STIPL1/NTR1, and (iv) a plant-specific RNA-binding protein PHIP1. These four mutants were found to have much higher levels of thermospermine than the wild-type. While all these mutants except its1 appear almost normal, they enhance the dwarf phenotype of a mutant of ACL5, which encodes thermospermine synthase, resulting in tiny plants resembling a double knockout of ACL5 and SACL3, a member of the SAC51 family. Reporter assays revealed that GUS activity from the CaMV 35S promoter-SAC51 5′-GUS fusion construct was significantly reduced in its1 and its4 or not affected in its2 and its3, while it was slightly increased in its1, its3, and its4, or not changed in its2 by thermospermine. These findings underscore the critical role of RNA processing and modification in the thermospermine-dependent translational regulation of uORF-containing transcripts.
en-copyright=
kn-copyright=
en-aut-name=SaraumiMitsuru
en-aut-sei=Saraumi
en-aut-mei=Mitsuru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaTakahiro
en-aut-sei=Tanaka
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KoyamaDaiki
en-aut-sei=Koyama
en-aut-mei=Daiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NishiYoshitaka
en-aut-sei=Nishi
en-aut-mei=Yoshitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakahashiYoshihiro
en-aut-sei=Takahashi
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MotoseHiroyasu
en-aut-sei=Motose
en-aut-mei=Hiroyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakahashiTaku
en-aut-sei=Takahashi
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Engineering, Kyushu Sangyo University
kn-affil=
affil-num=5
en-affil=Department of Life Science, Faculty of Life Science, Kyushu Sangyo University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=thermospermine
kn-keyword=thermospermine
en-keyword=uORF
kn-keyword=uORF
en-keyword=translation
kn-keyword=translation
en-keyword=xylem
kn-keyword=xylem
en-keyword=RNA methyltransferase
kn-keyword=RNA methyltransferase
en-keyword=pseudouridine synthase
kn-keyword=pseudouridine synthase
en-keyword=SPOUT domain
kn-keyword=SPOUT domain
en-keyword=spliceosome disassembly
kn-keyword=spliceosome disassembly
END
start-ver=1.4
cd-journal=joma
no-vol=105
cd-vols=
no-issue=4
article-no=
start-page=1157
end-page=1167
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250505
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effect of environmental conditions on seed germination and seedling growth in Cuscuta campestris
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Dodder (Cuscuta) is an obligate parasitic plant that cannot survive without a host and causes significant damage to crop yields. To understand its growth characteristics before parasitism, we examined the effects of environmental conditions on seed germination and seedling growth in Cuscuta campestris Yunck. Among various factors, we focused on the effects of light, pH, temperature, sugars, salts, hormones, amino acids and polyamines on seeds sown on agar plates. Regarding the effect of light on germination, far-red light was preferable rather than red light and the reversible response of seeds to red and far-red light was confirmed, implicating a phytochrome-mediated signaling pathway opposite to that in many seed plants. Among the amino acids, aspartic acid and alanine had a promotive effect, while histidine had an inhibitory effect on germination. We further found that, in addition to gibberellic acid, methyl jasmonate stimulated both germination and shoot elongation. While 2,4-D extended the viability of trichomes around the root cap, kinetin induced the formation of scale leaves on the shoot and undifferentiated cell clusters at the base of the shoot and root tip. Real-time reverse transcriptase PCR (RT-PCR) experiments confirmed that the expression of a putative RbcS gene for photosynthesis showed no response to light, whereas that of a Phytochrome A homolog increased in the dark. Our results indicate that some of the molecular mechanisms involved in responding to light and hormone signals are uniquely modified in dodder seedlings, providing clues for understanding the survival strategy of parasitic plants.
en-copyright=
kn-copyright=
en-aut-name=NagaoKoki
en-aut-sei=Nagao
en-aut-mei=Koki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakahashiTaku
en-aut-sei=Takahashi
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YokoyamaRyusuke
en-aut-sei=Yokoyama
en-aut-mei=Ryusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Life Sciences, Tohoku University
kn-affil=
en-keyword=Cuscuta
kn-keyword=Cuscuta
en-keyword=Environmental conditions
kn-keyword=Environmental conditions
en-keyword=Germination
kn-keyword=Germination
en-keyword=Hormone responses
kn-keyword=Hormone responses
en-keyword=Seedling growth
kn-keyword=Seedling growth
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=34768
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251006
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Continuous glucose monitoring reveals periodontitis-induced glucose variability, insulin resistance, and gut microbiota dysbiosis in mice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Diabetes mellitus (DM) management has advanced from self-monitoring blood glucose (SMBG) to continuous glucose monitoring (CGM), which better prevents complications. However, the influence of periodontitis?a common DM complication?on glucose variability is unclear. This study examined glucose variability in mice with periodontitis using CGM. Periodontitis was induced in 9-week-old male C57BL/6J mice via silk ligatures around the upper second molars. Glucose levels were monitored over 14 days with CGM, validated by SMBG. On day 14, samples were collected to assess alveolar bone resorption and serum levels of tumor necrosis factor-α (TNF-α), insulin, and amyloid A. Glucose tolerance test (GTT) and insulin tolerance test (ITT) were conducted to evaluate insulin resistance. Gut microbiota diversity was also analyzed. By day 10, mice with periodontitis exhibited higher mean glucose levels and time above range than controls. On day 14, serum insulin and amyloid A levels significantly increased, while TNF-α remained unchanged. GTT and ITT indicated insulin resistance. Microbiota analysis showed reduced alpha- and altered beta-diversity, with decreased Coprococcus spp. and increased Prevotella spp., linking dysbiosis to insulin resistance. Periodontitis disrupts glucose regulation by promoting insulin resistance and gut microbiota imbalance, leading to significant glucose variability.
en-copyright=
kn-copyright=
en-aut-name=Kubota-TakamoriMoyuka
en-aut-sei=Kubota-Takamori
en-aut-mei=Moyuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OmoriKazuhiro
en-aut-sei=Omori
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=Kamei-NagataChiaki
en-aut-sei=Kamei-Nagata
en-aut-mei=Chiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KiyamaFumiko
en-aut-sei=Kiyama
en-aut-mei=Fumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IshiiTakayuki
en-aut-sei=Ishii
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakayamaMasaaki
en-aut-sei=Nakayama
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=GotohKazuyoshi
en-aut-sei=Gotoh
en-aut-mei=Kazuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HiraiKimito
en-aut-sei=Hirai
en-aut-mei=Kimito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=Shinoda-ItoYuki
en-aut-sei=Shinoda-Ito
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OkuboKeisuke
en-aut-sei=Okubo
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NakamuraShin
en-aut-sei=Nakamura
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=IkedaAtsushi
en-aut-sei=Ikeda
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=SaitoTsugumichi
en-aut-sei=Saito
en-aut-mei=Tsugumichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=TakashibaShogo
en-aut-sei=Takashiba
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Oral Microbiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Medical Laboratory Science, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=8
en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital
kn-affil=
affil-num=13
en-affil=Department of Health & Sports Sciences, Faculty of Education, Tokyo Gakugei University
kn-affil=
affil-num=14
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=15
en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Continuous glucose monitoring
kn-keyword=Continuous glucose monitoring
en-keyword=Periodontal disease
kn-keyword=Periodontal disease
en-keyword=Insulin resistance
kn-keyword=Insulin resistance
en-keyword=Chronic inflammation
kn-keyword=Chronic inflammation
en-keyword=Gut flora
kn-keyword=Gut flora
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=10
article-no=
start-page=e94062
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251007
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Refractive Error Correction With Glasses in Congenital Ocular Fundus Anomalies: A Retrospective Series of 18 Children With Different Disease Entities Followed Up for More Than 10 Years
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objectives: Children with congenital anomalies of the posterior segment of the eye are in the process of visual development, and thus, their refractive errors should be detected by cycloplegic refraction testing to prescribe full-correction glasses, if required, and to help their visual acuity develop with growth. This study aimed to review refractive correction in children with congenital ocular fundus anomalies.
Methods: A retrospective review was conducted on 18 consecutive children (11 female and seven male children) who were diagnosed with ocular fundus anomalies and followed for 10 years or more by a single ophthalmologist at a referral-based hospital. The age at the initial visit ranged from 10 days after birth to 11 years, with a median of one year and four months, and the age at the last visit ranged from 10 to 32 years, with a median of 15 years. The follow-up periods ranged from 10 to 21 years at a median of 15 years.
Results: The diagnoses were familial exudative vitreoretinopathy (FEVR) in eight children, persistent fetal vasculature (PFV) in five, morning glory disc anomaly in two, optic nerve and choroidal coloboma (CHARGE syndrome) in two, and Coats disease in one. Full-correction glasses were prescribed in eight children, while the remaining 10 children did not wear glasses. Among nine children with the uncorrected visual acuity of 1.0 or better in one eye and the visual acuity in the other eye ranging from light perception to 0.01, eight children did not wear glasses, and one child wore glasses with hyperopic correction. The diagnoses in these nine children were PFV in five children, morning glory disc anomaly in two, FEVR in one, and Coats disease in one. In seven children who wore full-correction glasses, the best corrected visual acuity in the better eye ranged from 0.2 to 0.9 at a median of 0.5. In contrast, the visual acuity in the other eye ranged from light perception to 0.1 at a median of 0.03. The diagnoses of these seven children were FEVR in five children and CHARGE syndrome in two. The five children with FEVR showed myopic astigmatism in both eyes, while the two children with CHARGE syndrome showed hyperopic astigmatism in both eyes.
Conclusion: Children with unilateral eye anomalies such as PFV and morning glory disc anomaly did not wear glasses since their healthy eyes had good uncorrected visual acuity. In contrast, children with involvement of both eyes in FEVR and CHARGE syndrome wore full-correction glasses. Rough information regarding full-correction glasses in each category would help clinicians cope with rare congenital eye diseases. However, this conclusion is generally applicable to the standard practice of pediatric ophthalmology.
en-copyright=
kn-copyright=
en-aut-name=MatsuoToshihiko
en-aut-sei=Matsuo
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Ophthalmology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=charge syndrome
kn-keyword=charge syndrome
en-keyword=choroidal coloboma
kn-keyword=choroidal coloboma
en-keyword=coats disease
kn-keyword=coats disease
en-keyword=congenital eye anomalies
kn-keyword=congenital eye anomalies
en-keyword=cycloplegic refraction
kn-keyword=cycloplegic refraction
en-keyword=familial exudative vitreoretinopathy (fevr)
kn-keyword=familial exudative vitreoretinopathy (fevr)
en-keyword=full-correction glasses
kn-keyword=full-correction glasses
en-keyword=morning glory disc anomaly
kn-keyword=morning glory disc anomaly
en-keyword=optic nerve coloboma
kn-keyword=optic nerve coloboma
en-keyword=persistent fetal vasculature (pfv)
kn-keyword=persistent fetal vasculature (pfv)
END
start-ver=1.4
cd-journal=joma
no-vol=28
cd-vols=
no-issue=4
article-no=
start-page=51
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250930
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Cancer-associated fibroblast-derived SOD3 enhances lymphangiogenesis to drive metastasis in lung adenocarcinoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Despite advancements in diagnostic and therapeutic strategies, lung adenocarcinoma (LUAD) remains a leading cause of cancer-related mortality due to its aggressive metastatic potential. Extracellular superoxide dismutase (SOD3) is an antioxidant enzyme that regulates oxidative stress and is regarded as a tumor suppressor. However, studies have demonstrated that SOD3 can either promote or inhibit cell proliferation and survival in various cancers, and its molecular mechanisms within the tumor microenvironment are poorly understood. In this study, we report a breakthrough in uncovering the role of SOD3 derived from cancer-associated fibroblasts (CAFs) in LUAD. Using LUAD xenograft models co-implanted with SOD3-overexpressing CAFs (CAFSOD3), we observe an aggressive tumor phenotype characterized by increased lymphangiogenesis and lymphatic vessel invasion (LVI) of the tumor. Additionally, LUAD patients with elevated SOD3 levels exhibit a higher incidence of LVI and metastasis. Notably, RNA sequencing of CAFSOD3 reveals that SOD3-mediated VEGF-dependent tumor progression and lymphangiogenesis are up-regulated. Furthermore, single-cell transcriptomic analysis of LUAD clinical samples confirms a strong correlation between SOD3 expression in fibroblasts and characteristics of tumor exacerbation, such as lymphangiogenesis and metastasis. These findings underscore new insights into the role of CAF-derived SOD3 in LUAD progression and highlight its potential as a biomarker and therapeutic target.
en-copyright=
kn-copyright=
en-aut-name=OoMay Wathone
en-aut-sei=Oo
en-aut-mei=May Wathone
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HikitaTakao
en-aut-sei=Hikita
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MashimaTomoha
en-aut-sei=Mashima
en-aut-mei=Tomoha
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TorigataKosuke
en-aut-sei=Torigata
en-aut-mei=Kosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ThuYin Min
en-aut-sei=Thu
en-aut-mei=Yin Min
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HabuTomohiro
en-aut-sei=Habu
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KawaiHotaka
en-aut-sei=Kawai
en-aut-mei=Hotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OharaToshiaki
en-aut-sei=Ohara
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TomidaShuta
en-aut-sei=Tomida
en-aut-mei=Shuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ItoSachio
en-aut-sei=Ito
en-aut-mei=Sachio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=SuzawaKen
en-aut-sei=Suzawa
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NagatsukaHitoshi
en-aut-sei=Nagatsuka
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=NakayamaMasanori
en-aut-sei=Nakayama
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Pathophysiology and Drug Discovery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pathophysiology and Drug Discovery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Pathophysiology and Drug Discovery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=School of Medicine, Kobe University
kn-affil=
affil-num=5
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Pathophysiology and Drug Discovery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Thoracic Surgery, National Hospital Organization, Shikoku Cancer Center
kn-affil=
affil-num=13
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=14
en-affil=Department of Pathophysiology and Drug Discovery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Cancer-associated fibroblast
kn-keyword=Cancer-associated fibroblast
en-keyword=Superoxide dismutase 3
kn-keyword=Superoxide dismutase 3
en-keyword=Lymphangiogenesis
kn-keyword=Lymphangiogenesis
en-keyword=Angiogenesis
kn-keyword=Angiogenesis
en-keyword=Metastasis
kn-keyword=Metastasis
en-keyword=Lung adenocarcinoma
kn-keyword=Lung adenocarcinoma
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=11
article-no=
start-page=102658
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202511
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Pathophysiology and Therapeutic Needs in Nonobstructive Hypertrophic Cardiomyopathy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Hypertrophic cardiomyopathy (HCM) affects individuals worldwide with an estimated prevalence of over 1 in 500 individuals. Nonobstructive HCM accounts for approximately 30% to 70% of cases, is extremely heterogeneous, and is associated with a notable degree of morbidity, including daily life limitations, ventricular tachyarrhythmias, progression to heart failure, and atrial fibrillation. No approved pharmaceutical therapies target the pathophysiology of nonobstructive HCM, although several clinical trials are underway. This narrative review provides a comprehensive overview of nonobstructive HCM, focusing on epidemiology, natural history, genetics, pathophysiology, clinical manifestations, diagnosis, burden of disease, and current treatments and ongoing clinical trials.
en-copyright=
kn-copyright=
en-aut-name=DesaiMilind Y.
en-aut-sei=Desai
en-aut-mei=Milind Y.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MauriziNiccolo
en-aut-sei=Maurizi
en-aut-mei=Niccolo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=BiaginiElena
en-aut-sei=Biagini
en-aut-mei=Elena
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=CharronPhilippe
en-aut-sei=Charron
en-aut-mei=Philippe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FernandesFabio
en-aut-sei=Fernandes
en-aut-mei=Fabio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=Gonz?lez-L?pezEsther
en-aut-sei=Gonz?lez-L?pez
en-aut-mei=Esther
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=van HaelstPaul L.
en-aut-sei=van Haelst
en-aut-mei=Paul L.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HaugaaKristina Hermann
en-aut-sei=Haugaa
en-aut-mei=Kristina Hermann
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KramerChristopher M.
en-aut-sei=Kramer
en-aut-mei=Christopher M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MederBenjamin
en-aut-sei=Meder
en-aut-mei=Benjamin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MichelsMichelle
en-aut-sei=Michels
en-aut-mei=Michelle
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=OwensAnjali
en-aut-sei=Owens
en-aut-mei=Anjali
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=YuasaShinsuke
en-aut-sei=Yuasa
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=ElliottPerry
en-aut-sei=Elliott
en-aut-mei=Perry
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=HCM Center, Department of Cardiovascular Medicine, Cleveland Clinic
kn-affil=
affil-num=2
en-affil=Cardiomyopathy Unit, Careggi University Hospital
kn-affil=
affil-num=3
en-affil=Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna
kn-affil=
affil-num=4
en-affil=European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart)
kn-affil=
affil-num=5
en-affil=InCor, Faculdade de Medicina da Universidade de S?o Paulo
kn-affil=
affil-num=6
en-affil=Puerta de Hierro Majadahonda University Hospital, Health Research Institute of the Puerta de Hierro Majadahonda-Segovia de Arana University Hospital (IDIPHISA)
kn-affil=
affil-num=7
en-affil=Cardiovascular Division, Department of Medicine, University of Virginia Health
kn-affil=
affil-num=8
en-affil=Cardiovascular Division, Department of Medicine, University of Virginia Health
kn-affil=
affil-num=9
en-affil=Cardiovascular Division, Department of Medicine, University of Virginia Health
kn-affil=
affil-num=10
en-affil=Department of Internal Medicine III, Institute for Cardiomyopathies, University of Heidelberg
kn-affil=
affil-num=11
en-affil=European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart)
kn-affil=
affil-num=12
en-affil=Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania
kn-affil=
affil-num=13
en-affil=Department of Cardiovascular Medicine, Academic Field, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=14
en-affil=UCL Institute of Cardiovascular Science and St Bartholomew’s Hospital
kn-affil=
en-keyword=heart failure
kn-keyword=heart failure
en-keyword=hypertrophic cardiomyopathy
kn-keyword=hypertrophic cardiomyopathy
en-keyword=nonobstructive
kn-keyword=nonobstructive
END
start-ver=1.4
cd-journal=joma
no-vol=29
cd-vols=
no-issue=5
article-no=
start-page=650
end-page=661
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250106
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Development and validation of an algorithm for identifying patients undergoing dialysis from patients with advanced chronic kidney disease
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Identifying patients on dialysis among those with an estimated glomerular filtration rate (eGFR)?15 mL/min/1.73 m2 remains challenging. To facilitate clinical research in advanced chronic kidney disease (CKD) using electronic health records, we aimed to develop algorithms to identify dialysis patients using laboratory data obtained in routine practice.
Methods We collected clinical data of patients with an eGFR?15 mL/min/1.73 m2 from six clinical research core hospitals across Japan: four hospitals for the derivation cohort and two for the validation cohort. The candidate factors for the classification models were identified using logistic regression with stepwise backward selection. To ensure transplant patients were not included in the non-dialysis population, we excluded individuals with the disease code Z94.0.
Results We collected data from 1142 patients, with 640 (56%) currently undergoing hemodialysis or peritoneal dialysis (PD), including 426 of 763 patients in the derivation cohort and 214 of 379 patients in the validation cohort. The prescription of PD solutions perfectly identified patients undergoing dialysis. After excluding patients prescribed PD solutions, seven laboratory parameters were included in the algorithm. The areas under the receiver operation characteristic curve were 0.95 and 0.98 and the positive and negative predictive values were 90.9% and 91.4% in the derivation cohort and 96.2% and 94.6% in the validation cohort, respectively. The calibrations were almost linear.
Conclusions We identified patients on dialysis among those with an eGFR?15 ml/min/1.73 m2. This study paves the way for database research in nephrology, especially for patients with non-dialysis-dependent advanced CKD.
en-copyright=
kn-copyright=
en-aut-name=ImaizumiTakahiro
en-aut-sei=Imaizumi
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YokotaTakashi
en-aut-sei=Yokota
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FunakoshiKouta
en-aut-sei=Funakoshi
en-aut-mei=Kouta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YasudaKazushi
en-aut-sei=Yasuda
en-aut-mei=Kazushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HattoriAkiko
en-aut-sei=Hattori
en-aut-mei=Akiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MorohashiAkemi
en-aut-sei=Morohashi
en-aut-mei=Akemi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KusakabeTatsumi
en-aut-sei=Kusakabe
en-aut-mei=Tatsumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ShojimaMasumi
en-aut-sei=Shojima
en-aut-mei=Masumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NagamineSayoko
en-aut-sei=Nagamine
en-aut-mei=Sayoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NakanoToshiaki
en-aut-sei=Nakano
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HuangYong
en-aut-sei=Huang
en-aut-mei=Yong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MorinagaHiroshi
en-aut-sei=Morinaga
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=OhtaMiki
en-aut-sei=Ohta
en-aut-mei=Miki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=NagashimaSatomi
en-aut-sei=Nagashima
en-aut-mei=Satomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=InoueRyusuke
en-aut-sei=Inoue
en-aut-mei=Ryusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=NakamuraNaoki
en-aut-sei=Nakamura
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=OtaHideki
en-aut-sei=Ota
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=MaruyamaTatsuya
en-aut-sei=Maruyama
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=GobaraHideo
en-aut-sei=Gobara
en-aut-mei=Hideo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=EndohAkira
en-aut-sei=Endoh
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=AndoMasahiko
en-aut-sei=Ando
en-aut-mei=Masahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=ShiratoriYoshimune
en-aut-sei=Shiratori
en-aut-mei=Yoshimune
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=MaruyamaShoichi
en-aut-sei=Maruyama
en-aut-mei=Shoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
affil-num=1
en-affil=Department of Nephrology, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital
kn-affil=
affil-num=3
en-affil=Kyusyu University Hospital
kn-affil=
affil-num=4
en-affil=Department of Nephrology, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Nephrology, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Advanced Medicine, Nagoya University Hospital
kn-affil=
affil-num=7
en-affil=Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital
kn-affil=
affil-num=8
en-affil=Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University
kn-affil=
affil-num=9
en-affil=Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University
kn-affil=
affil-num=10
en-affil=Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University
kn-affil=
affil-num=11
en-affil=Division of Medical Informatics, Okayama University Hospital
kn-affil=
affil-num=12
en-affil=Department of Comprehensive Therapy for Chronic Kidney Disease, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Clinical Research Promotion Center, The University of Tokyo Hospital
kn-affil=
affil-num=14
en-affil=Department of Healthcare Information Management, The University of Tokyo Hospital
kn-affil=
affil-num=15
en-affil=Medical Information Technology Center, Tohoku University Hospital
kn-affil=
affil-num=16
en-affil=Medical Information Technology Center, Tohoku University Hospital
kn-affil=
affil-num=17
en-affil=Medical Information Technology Center, Tohoku University Hospital
kn-affil=
affil-num=18
en-affil=Clinical Research Promotion Center, The University of Tokyo Hospital
kn-affil=
affil-num=19
en-affil=Division of Medical Informatics, Okayama University Hospital
kn-affil=
affil-num=20
en-affil=Department of Medical Informatics, Hokkaido University Hospital
kn-affil=
affil-num=21
en-affil=Department of Nephrology, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=22
en-affil=Medical IT Center, Nagoya University Hospital
kn-affil=
affil-num=23
en-affil=Department of Nephrology, Nagoya University Graduate School of Medicine
kn-affil=
en-keyword=Chronic kidney disease
kn-keyword=Chronic kidney disease
en-keyword=Algorithm
kn-keyword=Algorithm
en-keyword=Classification
kn-keyword=Classification
en-keyword=Dialysis
kn-keyword=Dialysis
END
start-ver=1.4
cd-journal=joma
no-vol=36
cd-vols=
no-issue=1
article-no=
start-page=6
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241219
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Optical bandgap tuning in SnO2?MoS2 nanocomposites: manipulating the mass of SnO2 and MoS2 using sonochemical solution mixing
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study investigates controlled optical bandgap tuning through precise adjustment of the SnO2 and MoS2 mass in nanocomposites. A sonochemical solution mixing method, coupled with bath sonication, is employed for the preparation of SnO2?MoS2 nanocomposite. This approach allows for comprehensive characterization using UV?Vis FTIR, XRD, EDX, Raman spectroscopies, and FESEM, providing insights into morphology, chemical, and optical properties. Increasing the SnO2 mass leads to a linear decrease in the optical bandgap energy, from 3.0 to 1.7 eV. Similarly, increasing the MoS2 mass also results in a decrease in the optical bandgap energy, with a limitation of around 2.01 eV. This work demonstrates superior control over optical bandgap by manipulating the SnO2 mass compared to MoS2, highlighting the complexities introduced by MoS2 2D nanosheets during sonication. These findings hold significant value for optoelectronic applications, emphasizing enhanced control of optical bandgap through systematic mass manipulation.
en-copyright=
kn-copyright=
en-aut-name=OngChinkhai
en-aut-sei=Ong
en-aut-mei=Chinkhai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=LeeWeng Nam
en-aut-sei=Lee
en-aut-mei=Weng Nam
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TanYee Seng
en-aut-sei=Tan
en-aut-mei=Yee Seng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OhbergPatrik
en-aut-sei=Ohberg
en-aut-mei=Patrik
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HayashiYasuhiko
en-aut-sei=Hayashi
en-aut-mei=Yasuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NishikawaTakeshi
en-aut-sei=Nishikawa
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YapYuenkiat
en-aut-sei=Yap
en-aut-mei=Yuenkiat
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=School of Engineering and Physical Sciences, Heriot-Watt University Malaysia
kn-affil=
affil-num=2
en-affil=Heriot-Watt Global College, Heriot-Watt University Malaysia
kn-affil=
affil-num=3
en-affil=Sunway Biofunctional Molecules Discovery Centre, School of Medical and Life Sciences, Sunway University
kn-affil=
affil-num=4
en-affil=School of Engineering and Physical Sciences, Institute of Photonics and Quantum Sciences, Heriot-Watt University
kn-affil=
affil-num=5
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Heriot-Watt Global College, Heriot-Watt University Malaysia
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=58
cd-vols=
no-issue=2
article-no=
start-page=196
end-page=212
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240228
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Influence of Dilution Upon the Ultraviolet-Visible Peak Absorbance and Optical Bandgap Estimation of Tin(IV) Oxide and Tin(IV) Oxide-Molybdenum(IV) Sulfide?Solutions
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The study investigated the constraints associated with the dilution technique in determining the optical bandgap of nanoparticle dispersion and modified nanocomposites, utilizing ultraviolet-visible absorbance spectra and Tauc plot analysis. A case study involving SnO2 dispersion and SnO2-MoS2 nanocomposite solutions, prepared through the direct solution mixing method, was conducted to assess the implications of dilution upon the absorbance spectra and bandgap estimation. The results emphasize the considerable impact of the dilution technique on the measured optical bandgap, demonstrating that higher dilution factors lead to shift in bandgap values. Furthermore, the study highlights that dilution can induce variations in the average nanoparticle sizes due to agglomeration, thereby influencing bandgap estimation. In the context of nanocomposites, the interaction between SnO2 nanoparticles and exfoliated MoS2 nanosheets diminishes with increasing dilution, leading to the estimated optical bandgap being primarily attributable to SnO2 nanoparticles alone. These observations underscore the necessity for caution when employing the dilution technique for bandgap estimation in nanoparticles dispersion and nanocomposites, offering valuable insights for researchers and practitioners in the field.
en-copyright=
kn-copyright=
en-aut-name=OngChin Khai
en-aut-sei=Ong
en-aut-mei=Chin Khai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=LeeWeng Nam
en-aut-sei=Lee
en-aut-mei=Weng Nam
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KhalidMohammad
en-aut-sei=Khalid
en-aut-mei=Mohammad
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=Mohd AbdahMuhammad Amirul Aizat
en-aut-sei=Mohd Abdah
en-aut-mei=Muhammad Amirul Aizat
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OhbergPatrik
en-aut-sei=Ohberg
en-aut-mei=Patrik
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=LimLing Hong
en-aut-sei=Lim
en-aut-mei=Ling Hong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HayashiYasuhiko
en-aut-sei=Hayashi
en-aut-mei=Yasuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NishikawaTakeshi
en-aut-sei=Nishikawa
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YapYuenkiat
en-aut-sei=Yap
en-aut-mei=Yuenkiat
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=School of Engineering and Physical Sciences, Heriot-Watt University Malaysia
kn-affil=
affil-num=2
en-affil=Heriot-Watt Global College, Heriot-Watt University Malaysia
kn-affil=
affil-num=3
en-affil=Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University
kn-affil=
affil-num=4
en-affil=Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University
kn-affil=
affil-num=5
en-affil=Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University
kn-affil=
affil-num=6
en-affil=Heriot-Watt Global College, Heriot-Watt University Malaysia
kn-affil=
affil-num=7
en-affil=Graduate School of Natural Science and Technology, Faculty of Engineering, Okayama University
kn-affil=
affil-num=8
en-affil=Graduate School of Natural Science and Technology, Faculty of Engineering, Okayama University
kn-affil=
affil-num=9
en-affil=Heriot-Watt Global College, Heriot-Watt University Malaysia
kn-affil=
en-keyword=Colorimetry
kn-keyword=Colorimetry
en-keyword=nanocomposite
kn-keyword=nanocomposite
en-keyword=optical bandgap
kn-keyword=optical bandgap
en-keyword=tin(IV) oxide, molybdenum disulfide, spectrophotometry
kn-keyword=tin(IV) oxide, molybdenum disulfide, spectrophotometry
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=3
article-no=
start-page=335
end-page=349
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Adaptive strategies and community engagement for sustainable conservation and tourism in Komodo National Park, Indonesia
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The sustainability of Komodo protection efforts is closely linked to tourism development. To achieve this, it is important to have a deep understanding of local community behaviors and adaptation strategies. This study focuses on the complex relationships between sociodemographic factors, attitudes towards forest conservation, participation in adaptive management programs, and willingness of local communities in the Komodo district to engage in sustainable tourism practices. Using structural equation modeling (SEM), we analyze the connections that either support or hinder the conservation of Komodo habitats while promoting responsible tourism growth. The results show that sociodemographic characteristics have a significant impact on conservation attitudes, leading to increased participation in adaptive programs that are crucial for sustainable tourism. Additionally, the willingness to adapt is a key factor that influences the level of community involvement in sustainable tourism initiatives. This study emphasizes the importance of developing behavioral and adaptive forest protection programs that cater to both Komodo conservation and the sustainable growth of tourism. Policy recommendations focus on community-centered conservation strategies, education on sustainable practices, and the implementation of adaptive management to ensure the long-term viability of Komodo habitats. Overall, this research provides a nuanced understanding of conservation behavior in regions with rich biodiversity. It highlights the pivotal role of community engagement and adaptive strategies in achieving sustainable tourism and conservation goals.
en-copyright=
kn-copyright=
en-aut-name=SianiparImelda Masni Juniaty
en-aut-sei=Sianipar
en-aut-mei=Imelda Masni Juniaty
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=LeeChun-Hung
en-aut-sei=Lee
en-aut-mei=Chun-Hung
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KimDoo-Chul
en-aut-sei=Kim
en-aut-mei=Doo-Chul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SuryawanI Wayan Koko
en-aut-sei=Suryawan
en-aut-mei=I Wayan Koko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of International Relations, Faculty of Social and Political Sciences, Universitas Kristen Indonesia
kn-affil=
affil-num=2
en-affil=Center for Environmental Solution (CVISION), Universitas Pertamina
kn-affil=
affil-num=3
en-affil=Faculty of Environmental and Life Science, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Environmental Engineering, Faculty of Infrastructure Planning, Universitas Pertamina
kn-affil=
en-keyword=Komodo conservation
kn-keyword=Komodo conservation
en-keyword=sustainable tourism
kn-keyword=sustainable tourism
en-keyword=forest protection
kn-keyword=forest protection
en-keyword=adaptive management programs
kn-keyword=adaptive management programs
en-keyword=sociodemographic influence
kn-keyword=sociodemographic influence
END
start-ver=1.4
cd-journal=joma
no-vol=76
cd-vols=
no-issue=9
article-no=
start-page=4815
end-page=4837
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202511
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Spatiotemporal evolution of ecosystem carbon storage under land use/land cover dynamics in the coastal region of Central Vietnam
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Ecosystem carbon storage is a cost-effective strategy for global climate change mitigation, and its fluctuation is markedly shaped by land use/land cover (LULC) dynamics. Taking Danang city as an example of Central Coastal Vietnam, this study aims to assess LULC changes and analyze the spatiotemporal evolution of carbon storage from 2023 to 2050 under four LULC change scenarios, including natural trend scenario (NTS), ecological protection scenario (EPS), economic development scenario (EDS), and cropland protection scenario (CPS), by integrating the support vector machine-cellular automata-Markov (SVM-CA-Markov) model and the InVEST model. The Optimal Parameters-based Geographical Detector (OPGD) model was subsequently employed to elucidate the impacts of driving factors on the spatial distribution of carbon storage. The results showed that, from 2007 to 2023, Danang city experienced a dramatic back-and-forth transformation between LULC types, with the predominant transitions being from natural forest to acacia tree-dominated plantation forest (6492.31 ha), and from cropland to settlements, acacia tree-dominated plantation forest, and other land (5483.05 ha, 3763.66 ha, 2762.35 ha, respectively). Between 2023 and 2050, LULC transformations in Danang city are projected to yield varying degrees of carbon storage levels across different scenarios. Specifically, carbon storage is anticipated to dwindle by 0.221 Mt, 0.223 Mt, and 0.298 Mt under NTS, EDS, and CPS, respectively, while enhancing by 0.141 Mt under EPS. Regarding the spatial distribution of carbon storage, high values will be chiefly found in the western high-elevation mountainous region, while low values will be concentrated mostly in the eastern lower-lying areas of the city. Additionally, elevation and temperature acted as the two most significant driving factors influencing the spatial distribution of carbon storage, with Q values of 0.88 and 0.86 (p-value < 0.05), respectively. For interaction detection, the combination of elevation and soil exhibited a synergistic reinforcement effect on the spatial partitioning of carbon storage, with a high Q value of 0.9566 (p-value < 0.05). Our study highlights the necessity of ecological conservation measures in Danang city in the on-track pursuit of national net-zero carbon emissions by 2050.
en-copyright=
kn-copyright=
en-aut-name=HoViet Hoang
en-aut-sei=Ho
en-aut-mei=Viet Hoang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MoritaHidenori
en-aut-sei=Morita
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HoThanh Ha
en-aut-sei=Ho
en-aut-mei=Thanh Ha
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=BachoferFelix
en-aut-sei=Bachofer
en-aut-mei=Felix
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=University of Agriculture and Forestry, Hue University
kn-affil=
affil-num=4
en-affil=German Aerospace Center (DLR), Earth Observation Center
kn-affil=
en-keyword=Carbon sequestration
kn-keyword=Carbon sequestration
en-keyword=Scenario-based modeling
kn-keyword=Scenario-based modeling
en-keyword=Remote sensing
kn-keyword=Remote sensing
en-keyword=Spatial autocorrelation analysis
kn-keyword=Spatial autocorrelation analysis
END
start-ver=1.4
cd-journal=joma
no-vol=1019
cd-vols=
no-issue=
article-no=
start-page=A22
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250918
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Experimental and numerical study on the inertial migration of hydrogel particles suspended in square channel flows
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The inertial migration of hydrogel particles suspended in a Newtonian fluid flowing through a square channel is studied both experimentally and numerically. Experimental results demonstrate significant differences in the focusing positions of the deformable and rigid particles, highlighting the role of particle deformability in inertial migration. At low Reynolds numbers (Re), hydrogel particles migrate towards the centre of the channel cross-section, whereas the rigid spheres exhibit negligible lateral motion. At finite Re, they focus at four points along the diagonals in the downstream cross-section, in contrast to the rigid particles which focus near the centre of the channel face at similar Re . Numerical simulations using viscous hyperelastic particles as a model for hydrogel particles reproduced the experimental results for the particle distribution with an appropriate Young’s modulus of the hyperelastic particles. Further numerical simulations over a broader range of Re and the capillary number (Ca) reveal various focusing patterns of the particles in the channel cross-section. The phase transitions between them are discussed in terms of the inertial lift and the lift due to particle deformation, which would act in the direction towards lower shear. The stability of the channel centre is analysed using an asymptotic expansion approach to the migration force at low Re and Ca. The theoretical analysis predicts the critical condition for the transition, which is consistent with the direct numerical simulation. These experimental, numerical and theoretical results contribute to a deeper understanding of inertial migration of deformable particles.
en-copyright=
kn-copyright=
en-aut-name=HirohataYuma
en-aut-sei=Hirohata
en-aut-mei=Yuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SaiKazusa
en-aut-sei=Sai
en-aut-mei=Kazusa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TangeYuki
en-aut-sei=Tange
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NishiyamaTomohiro
en-aut-sei=Nishiyama
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MinatoHaruka
en-aut-sei=Minato
en-aut-mei=Haruka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SuzukiDaisuke
en-aut-sei=Suzuki
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ItanoTomoaki
en-aut-sei=Itano
en-aut-mei=Tomoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SugiyamaKazuyasu
en-aut-sei=Sugiyama
en-aut-mei=Kazuyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=Sugihara-SekiMasako
en-aut-sei=Sugihara-Seki
en-aut-mei=Masako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Graduate School of Engineering Science, The University of Osaka
kn-affil=
affil-num=2
en-affil=Department of Pure and Applied Physics, Kansai University
kn-affil=
affil-num=3
en-affil=Department of Pure and Applied Physics, Kansai University
kn-affil=
affil-num=4
en-affil=Department of Pure and Applied Physics, Kansai University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental Life Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental Life Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Pure and Applied Physics, Kansai University
kn-affil=
affil-num=8
en-affil=Graduate School of Engineering Science, The University of Osaka
kn-affil=
affil-num=9
en-affil=Department of Pure and Applied Physics, Kansai University
kn-affil=
en-keyword=flow-structure interactions
kn-keyword=flow-structure interactions
en-keyword=microfluidics
kn-keyword=microfluidics
en-keyword=particle/fluid flow
kn-keyword=particle/fluid flow
END
start-ver=1.4
cd-journal=joma
no-vol=28
cd-vols=
no-issue=1
article-no=
start-page=e12658
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241212
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Can online interactions reduce loneliness in young adults during university closures in Japan? The directed acyclic graphs approach
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=As a countermeasure to the increased loneliness induced by the COVID-19 pandemic-related university closures, universities provided students with online interaction opportunities. However, whether these opportunities contributed to reducing loneliness during the university closures remains unclear, as previous studies have produced contradictory findings. We conducted a nationwide cross-sectional survey. Data were collected on demographics, social environment, social support, interactions, health and loneliness from 4949 students from 60 universities across Japan. We used psychological network and Directed Acyclic Graphs (DAGs) to examine the effect of online interactions on loneliness during university closures during COVID-19. The results showed that the frequency of online interactions with friends did not exert a significant influence on loneliness during university closures. A comparative examination of the DAGs further illuminated that the social environment exhibited fewer pathways for interpersonal interactions and social support during these closure periods. The psychosocial pathways influencing young adults' loneliness show variations contingent on the university's closure status. Notably, the impact of heightened online interactions with friends on loneliness appears to be less pronounced among young adults in the context of university closure.
en-copyright=
kn-copyright=
en-aut-name=KambaraKohei
en-aut-sei=Kambara
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ToyaAkihiro
en-aut-sei=Toya
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=LeeSumin
en-aut-sei=Lee
en-aut-mei=Sumin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ShimizuHaruka
en-aut-sei=Shimizu
en-aut-mei=Haruka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AbeKazuaki
en-aut-sei=Abe
en-aut-mei=Kazuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShigematsuJun
en-aut-sei=Shigematsu
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ZhangQingyuan
en-aut-sei=Zhang
en-aut-mei=Qingyuan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AbeNatsuki
en-aut-sei=Abe
en-aut-mei=Natsuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HayaseRyo
en-aut-sei=Hayase
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=AbeNobuhito
en-aut-sei=Abe
en-aut-mei=Nobuhito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NakaiRyusuke
en-aut-sei=Nakai
en-aut-mei=Ryusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=AokiShuntaro
en-aut-sei=Aoki
en-aut-mei=Shuntaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=AsanoKohei
en-aut-sei=Asano
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=AsanoRyosuke
en-aut-sei=Asano
en-aut-mei=Ryosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=FujimuraMakoto
en-aut-sei=Fujimura
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=FukuiKen’ichiro
en-aut-sei=Fukui
en-aut-mei=Ken’ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=FukumotoYoshihiro
en-aut-sei=Fukumoto
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=FurutaniKaichiro
en-aut-sei=Furutani
en-aut-mei=Kaichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=HasegawaKoji
en-aut-sei=Hasegawa
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=HashimotoHirofumi
en-aut-sei=Hashimoto
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=HashimotoMikoto
en-aut-sei=Hashimoto
en-aut-mei=Mikoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=HosogoshiHiroki
en-aut-sei=Hosogoshi
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=IkedaHiroshi
en-aut-sei=Ikeda
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=IshiokaToshiyuki
en-aut-sei=Ishioka
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=ItoChiharu
en-aut-sei=Ito
en-aut-mei=Chiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=IwanoSuguru
en-aut-sei=Iwano
en-aut-mei=Suguru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=KamadaMasafumi
en-aut-sei=Kamada
en-aut-mei=Masafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=KanaiYoshihiro
en-aut-sei=Kanai
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=KaritaTomonori
en-aut-sei=Karita
en-aut-mei=Tomonori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=KasagiYu
en-aut-sei=Kasagi
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=KashimaEmiko S.
en-aut-sei=Kashima
en-aut-mei=Emiko S.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=KatoJuri
en-aut-sei=Kato
en-aut-mei=Juri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
en-aut-name=KawachiYousuke
en-aut-sei=Kawachi
en-aut-mei=Yousuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=33
ORCID=
en-aut-name=KawaharaJun‐ichiro
en-aut-sei=Kawahara
en-aut-mei=Jun‐ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=34
ORCID=
en-aut-name=KimuraMasanori
en-aut-sei=Kimura
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=35
ORCID=
en-aut-name=KiraYugo
en-aut-sei=Kira
en-aut-mei=Yugo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=36
ORCID=
en-aut-name=Kiyonaga (Sakoda)Yuko
en-aut-sei=Kiyonaga (Sakoda)
en-aut-mei=Yuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=37
ORCID=
en-aut-name=KohguchiHiroshi
en-aut-sei=Kohguchi
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=38
ORCID=
en-aut-name=KomiyaAsuka
en-aut-sei=Komiya
en-aut-mei=Asuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=39
ORCID=
en-aut-name=MasuiKeita
en-aut-sei=Masui
en-aut-mei=Keita
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=40
ORCID=
en-aut-name=MidorikawaAkira
en-aut-sei=Midorikawa
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=41
ORCID=
en-aut-name=MifuneNobuhiro
en-aut-sei=Mifune
en-aut-mei=Nobuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=42
ORCID=
en-aut-name=MizukoshiAkimine
en-aut-sei=Mizukoshi
en-aut-mei=Akimine
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=43
ORCID=
en-aut-name=NawataKengo
en-aut-sei=Nawata
en-aut-mei=Kengo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=44
ORCID=
en-aut-name=NishimuraTakashi
en-aut-sei=Nishimura
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=45
ORCID=
en-aut-name=NogiwaDaisuke
en-aut-sei=Nogiwa
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=46
ORCID=
en-aut-name=OgawaKenji
en-aut-sei=Ogawa
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=47
ORCID=
en-aut-name=OkadaJunko
en-aut-sei=Okada
en-aut-mei=Junko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=48
ORCID=
en-aut-name=OkamotoAki
en-aut-sei=Okamoto
en-aut-mei=Aki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=49
ORCID=
en-aut-name=OkamotoReiko
en-aut-sei=Okamoto
en-aut-mei=Reiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=50
ORCID=
en-aut-name=SasakiKyoko
en-aut-sei=Sasaki
en-aut-mei=Kyoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=51
ORCID=
en-aut-name=SatoKosuke
en-aut-sei=Sato
en-aut-mei=Kosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=52
ORCID=
en-aut-name=ShimizuHiroshi
en-aut-sei=Shimizu
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=53
ORCID=
en-aut-name=SugimuraAtsushi
en-aut-sei=Sugimura
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=54
ORCID=
en-aut-name=SugitaniYoko
en-aut-sei=Sugitani
en-aut-mei=Yoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=55
ORCID=
en-aut-name=SugiuraHitomi
en-aut-sei=Sugiura
en-aut-mei=Hitomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=56
ORCID=
en-aut-name=SumiokaKyoko
en-aut-sei=Sumioka
en-aut-mei=Kyoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=57
ORCID=
en-aut-name=SunaguchiBumpei
en-aut-sei=Sunaguchi
en-aut-mei=Bumpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=58
ORCID=
en-aut-name=TakebeMasataka
en-aut-sei=Takebe
en-aut-mei=Masataka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=59
ORCID=
en-aut-name=TanabeHiroki C.
en-aut-sei=Tanabe
en-aut-mei=Hiroki C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=60
ORCID=
en-aut-name=TanakaAyumi
en-aut-sei=Tanaka
en-aut-mei=Ayumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=61
ORCID=
en-aut-name=TanakaMasanori
en-aut-sei=Tanaka
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=62
ORCID=
en-aut-name=TaniguchiJunichi
en-aut-sei=Taniguchi
en-aut-mei=Junichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=63
ORCID=
en-aut-name=TokunagaNamiji
en-aut-sei=Tokunaga
en-aut-mei=Namiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=64
ORCID=
en-aut-name=TomitaRyozo
en-aut-sei=Tomita
en-aut-mei=Ryozo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=65
ORCID=
en-aut-name=UedaYumiko
en-aut-sei=Ueda
en-aut-mei=Yumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=66
ORCID=
en-aut-name=YamashitaTomomi
en-aut-sei=Yamashita
en-aut-mei=Tomomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=67
ORCID=
en-aut-name=YamauraKazuho
en-aut-sei=Yamaura
en-aut-mei=Kazuho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=68
ORCID=
en-aut-name=YogoMasao
en-aut-sei=Yogo
en-aut-mei=Masao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=69
ORCID=
en-aut-name=YokotaniKenji
en-aut-sei=Yokotani
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=70
ORCID=
en-aut-name=YoshidaAyano
en-aut-sei=Yoshida
en-aut-mei=Ayano
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=71
ORCID=
en-aut-name=YoshidaHiroaki
en-aut-sei=Yoshida
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=72
ORCID=
en-aut-name=YoshiharaKatsue
en-aut-sei=Yoshihara
en-aut-mei=Katsue
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=73
ORCID=
en-aut-name=YoshikawaAyumi
en-aut-sei=Yoshikawa
en-aut-mei=Ayumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=74
ORCID=
en-aut-name=YanagisawaKuniaki
en-aut-sei=Yanagisawa
en-aut-mei=Kuniaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=75
ORCID=
en-aut-name=NakashimaKen'ichiro
en-aut-sei=Nakashima
en-aut-mei=Ken'ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=76
ORCID=
affil-num=1
en-affil=Doshisha University
kn-affil=
affil-num=2
en-affil=Hiroshima University
kn-affil=
affil-num=3
en-affil=Hiroshima University
kn-affil=
affil-num=4
en-affil=Nishikyushu Univ. Junior College
kn-affil=
affil-num=5
en-affil=Hiroshima University
kn-affil=
affil-num=6
en-affil=Toyama University
kn-affil=
affil-num=7
en-affil=Hiroshima University
kn-affil=
affil-num=8
en-affil=Hiroshima Bunkyo University
kn-affil=
affil-num=9
en-affil=Chubu University
kn-affil=
affil-num=10
en-affil=Kyoto University
kn-affil=
affil-num=11
en-affil=Kyoto University
kn-affil=
affil-num=12
en-affil=Fukushima Medical University
kn-affil=
affil-num=13
en-affil=Kyoto University
kn-affil=
affil-num=14
en-affil=Kurume University
kn-affil=
affil-num=15
en-affil=Fukuoka Jo Gakuin University
kn-affil=
affil-num=16
en-affil=Kwassui Women's University
kn-affil=
affil-num=17
en-affil=Kansai Medical University
kn-affil=
affil-num=18
en-affil=Kansai University
kn-affil=
affil-num=19
en-affil=Komazawa University
kn-affil=
affil-num=20
en-affil=Osaka Metropolitan University
kn-affil=
affil-num=21
en-affil=Chukyo Gakuin University
kn-affil=
affil-num=22
en-affil=Kansai University
kn-affil=
affil-num=23
en-affil=Kyushu University
kn-affil=
affil-num=24
en-affil=Kobe University
kn-affil=
affil-num=25
en-affil=University of Human Environments
kn-affil=
affil-num=26
en-affil=Fukushima Medical University
kn-affil=
affil-num=27
en-affil=Shujitsu Junior College
kn-affil=
affil-num=28
en-affil=Tohoku Gakuin University
kn-affil=
affil-num=29
en-affil=Ehime University
kn-affil=
affil-num=30
en-affil=Rissho University
kn-affil=
affil-num=31
en-affil=La Trobe University
kn-affil=
affil-num=32
en-affil=Kanazawa Institute of Technology
kn-affil=
affil-num=33
en-affil=Tohoku University
kn-affil=
affil-num=34
en-affil=Hokkaido University
kn-affil=
affil-num=35
en-affil=Graduate School of Business Administration, Kobe University
kn-affil=
affil-num=36
en-affil=Kurume University
kn-affil=
affil-num=37
en-affil=Kyushu Kyoritsu University
kn-affil=
affil-num=38
en-affil=Ryutsu Keizai University
kn-affil=
affil-num=39
en-affil=Hiroshima University
kn-affil=
affil-num=40
en-affil=Otemon Gakuin University
kn-affil=
affil-num=41
en-affil=Chuo University
kn-affil=
affil-num=42
en-affil=Kochi University of Technology
kn-affil=
affil-num=43
en-affil=Asahi University
kn-affil=
affil-num=44
en-affil=Fukuoka University
kn-affil=
affil-num=45
en-affil=Hiroshima International University
kn-affil=
affil-num=46
en-affil=Seikei University
kn-affil=
affil-num=47
en-affil=Hokkaido University
kn-affil=
affil-num=48
en-affil=Prefectural University of Hiroshima
kn-affil=
affil-num=49
en-affil=Okayama University
kn-affil=
affil-num=50
en-affil=Osaka University
kn-affil=
affil-num=51
en-affil=Kanagawa University of Human Services
kn-affil=
affil-num=52
en-affil=Kurume University
kn-affil=
affil-num=53
en-affil=Kwansei Gakuin University
kn-affil=
affil-num=54
en-affil=Tokai University
kn-affil=
affil-num=55
en-affil=Sophia University
kn-affil=
affil-num=56
en-affil=Kindai University
kn-affil=
affil-num=57
en-affil=Okayama University
kn-affil=
affil-num=58
en-affil=Graduate School of Business Administration, Kobe University
kn-affil=
affil-num=59
en-affil=Otsuma Women's University
kn-affil=
affil-num=60
en-affil=Nagoya University
kn-affil=
affil-num=61
en-affil=Doshisha University
kn-affil=
affil-num=62
en-affil=Hokkai‐Gakuen University
kn-affil=
affil-num=63
en-affil=Tezukayama University
kn-affil=
affil-num=64
en-affil=Ehime Prefectural University of Health Sciences
kn-affil=
affil-num=65
en-affil=Musashino University
kn-affil=
affil-num=66
en-affil=Asahi University
kn-affil=
affil-num=67
en-affil=Jumonji University
kn-affil=
affil-num=68
en-affil=Ritsumeikan University
kn-affil=
affil-num=69
en-affil=Doshisha University
kn-affil=
affil-num=70
en-affil=Tokushima University
kn-affil=
affil-num=71
en-affil=Tohoku Fukushi University
kn-affil=
affil-num=72
en-affil=Shinshu University
kn-affil=
affil-num=73
en-affil=Fukuoka Institute of Technology Junior College
kn-affil=
affil-num=74
en-affil=Osaka Dental University Faculty of Nursing
kn-affil=
affil-num=75
en-affil=Kobe University
kn-affil=
affil-num=76
en-affil=Hiroshima University
kn-affil=
en-keyword=directed acyclic graphs
kn-keyword=directed acyclic graphs
en-keyword=loneliness
kn-keyword=loneliness
en-keyword=online interactions
kn-keyword=online interactions
en-keyword=psychological network
kn-keyword=psychological network
en-keyword=university closures
kn-keyword=university closures
en-keyword=university students
kn-keyword=university students
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=1
article-no=
start-page=519
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250926
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Specific induction of right ventricular-like cardiomyocytes from human pluripotent stem cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Applications employing human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) require well-characterized, chamber-specific hPSC-CMs. Distinct first heart field (FHF) and second heart field (SHF) cardiac progenitor populations give rise to the left ventricular (LV) and right ventricular (RV) cardiomyocytes, respectively. This developmental difference in cardiomyocyte origin suggests that chamber-specific cardiomyocytes have unique characteristics. Therefore, efficient strategies to differentiate human pluripotent stem cells (hPSCs) specifically to LV-like or RV-like cardiomyocytes are needed and it is still unknown whether there is a phenotypic difference between LV-like cardiomyocytes and RV-like cardiomyocytes derived from hPSCs.
Methods An established hPSC cardiac differentiation protocol employing sequential GSK3β inhibition followed by Wnt inhibition (GiWi) was modified by addition of insulin or BMP antagonists during mesoderm formation. Cardiac progenitor populations were evaluated for FHF and SHF markers, and differentiated hPSC-CMs were characterized for chamber-specific markers.
Results The GiWi protocol produced mainly FHF-like progenitor cells that gave rise to LV-like cardiomyocytes. Inhibition of endogenous BMP signaling during mesoderm induction using insulin or BMP antagonists reduced expression of FHF markers and increased expression of SHF markers in cardiac progenitor cells. hPSC-CMs arising from the SHF-like progenitor cells showed an RV-like gene expression pattern and exhibited phenotypic differences in spontaneous contraction rate, Ca2+ transients, and cell size compared to control LV-like cardiomyocytes.
Conclusion This study establishes methodology to generate RV-like hPSC-CMs to support the development of disease modeling research using chamber-specific hPSC-CMs.
en-copyright=
kn-copyright=
en-aut-name=SaitoYukihiro
en-aut-sei=Saito
en-aut-mei=Yukihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakamuraKazufumi
en-aut-sei=Nakamura
en-aut-mei=Kazufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KatanosakaYuki
en-aut-sei=Katanosaka
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IidaToshihiro
en-aut-sei=Iida
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KusumotoDai
en-aut-sei=Kusumoto
en-aut-mei=Dai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SatoRyushi
en-aut-sei=Sato
en-aut-mei=Ryushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=AdachiRiki
en-aut-sei=Adachi
en-aut-mei=Riki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ShimizuSatoshi
en-aut-sei=Shimizu
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KurokawaJunko
en-aut-sei=Kurokawa
en-aut-mei=Junko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=AkagiSatoshi
en-aut-sei=Akagi
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YoshidaMasashi
en-aut-sei=Yoshida
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MiyoshiToru
en-aut-sei=Miyoshi
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MoritaHiroshi
en-aut-sei=Morita
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=NaruseKeiji
en-aut-sei=Naruse
en-aut-mei=Keiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=NishidaMikako
en-aut-sei=Nishida
en-aut-mei=Mikako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=UdonoHeiichiro
en-aut-sei=Udono
en-aut-mei=Heiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=ZhangJianhua
en-aut-sei=Zhang
en-aut-mei=Jianhua
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=YuasaShinsuke
en-aut-sei=Yuasa
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=KampTimothy J.
en-aut-sei=Kamp
en-aut-mei=Timothy J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=ItoHiroshi
en-aut-sei=Ito
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Medicine, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Medicine, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Physiology, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Biomedical Informatics and Molecular Biology, The Sakaguchi Laboratory, Keio University School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
kn-affil=
affil-num=7
en-affil=Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
kn-affil=
affil-num=8
en-affil=Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
kn-affil=
affil-num=9
en-affil=Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
kn-affil=
affil-num=10
en-affil=Department of Cardiovascular Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Cardiovascular Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Cardiovascular Therapeutics, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Cardiovascular Physiology, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of Metabolic Immune Regulation, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of Metabolic Immune Regulation, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=17
en-affil=Department of Medicine, University of Wisconsin School of Medicine and Public Health
kn-affil=
affil-num=18
en-affil=Department of Cardiovascular Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=19
en-affil=Department of Medicine, University of Wisconsin School of Medicine and Public Health
kn-affil=
affil-num=20
en-affil=Department of Cardiovascular Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Human pluripotent stem cell-derived cardiomyocytes
kn-keyword=Human pluripotent stem cell-derived cardiomyocytes
en-keyword=Anterior second heart field
kn-keyword=Anterior second heart field
en-keyword=Right ventricle
kn-keyword=Right ventricle
en-keyword=Bone morphogenetic protein
kn-keyword=Bone morphogenetic protein
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=JE20250409
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effect modification and its impact on preventable and attributable fractions in the potential outcomes framework
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Policy decisions should be guided by measures that capture the impact of exposures on outcomes and that explicitly account for present-day exposure distribution. Both the preventable and attributable fractions have been used for this purpose; however, exposure effects can vary across subpopulations, and when this occurs, appropriate interpretation of these measures should be facilitated by a discussion of the contributions of different subpopulations.
Methods: We analyze preventable and attributable fractions in the presence of effect modification. In particular, we use potential outcomes to formally define these quantities and to clarify the weighting of different strata in the total population measures.
Results: Our derivations show that stratum-specific preventable and attributable fractions are weighted in proportion to the relative frequencies of effect modifiers among individuals with the outcome of interest. We also demonstrate that these weights are valid for the related quantities, preventable and attributable proportions. Finally, we present an example that illustrates how effect modification affects interpretation of these measures.
Conclusions: In sum, when effect modification is present, investigators should consider reporting these measures by the relevant population strata, and information that would allow quantification of their implicit weights in the total population estimate. Our study provides a formal justification for this approach.
en-copyright=
kn-copyright=
en-aut-name=Gon?alvesBronner P.
en-aut-sei=Gon?alves
en-aut-mei=Bronner P.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SuzukiEtsuji
en-aut-sei=Suzuki
en-aut-mei=Etsuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Faculty of Health and Medical Sciences, University of Surrey
kn-affil=
affil-num=2
en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=preventable fraction
kn-keyword=preventable fraction
en-keyword=attributable fraction
kn-keyword=attributable fraction
en-keyword=effect modification
kn-keyword=effect modification
en-keyword=causality
kn-keyword=causality
END
start-ver=1.4
cd-journal=joma
no-vol=36
cd-vols=
no-issue=6
article-no=
start-page=732
end-page=740
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202511
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Causal Approaches to Disease Progression Analyses
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Epidemiologic analyses that aim to quantify exposure effects on disease progression are not uncommon. Understanding the implications of these studies, however, is complicated, in part because different causal estimands could, at least in theory, be the target of such analyses. Here, to facilitate interpretation of these studies, we describe different settings in which causal questions related to disease progression can be asked, and consider possible estimands. For clarity, our discussion is structured around settings defined based on two factors: whether the disease occurrence is manipulable or not, and the type of outcome. We describe relevant causal structures and sets of response types, which consist of joint potential outcomes of disease occurrence and disease progression, and argue that settings where interventions to manipulate disease occurrence are not plausible are more common, and that, in this case, principal stratification might be an appropriate framework to conceptualize the analysis. Further, we suggest that the precise definition of the outcome of interest, in particular of what constitutes its permissible levels, might determine whether potential outcomes linked to disease progression are definable in different strata of the population. Our hope is that this paper will encourage additional methodological work on causal analysis of disease progression, as well as serve as a resource for future applied studies.
en-copyright=
kn-copyright=
en-aut-name=Gon?alvesBronner P.
en-aut-sei=Gon?alves
en-aut-mei=Bronner P.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SuzukiEtsuji
en-aut-sei=Suzuki
en-aut-mei=Etsuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Faculty of Health and Medical Sciences, University of Surrey
kn-affil=
affil-num=2
en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=disease progression
kn-keyword=disease progression
en-keyword=causal inference
kn-keyword=causal inference
en-keyword=principal stratification
kn-keyword=principal stratification
en-keyword=controlled direct effects
kn-keyword=controlled direct effects
en-keyword=potential outcomes
kn-keyword=potential outcomes
END
start-ver=1.4
cd-journal=joma
no-vol=19
cd-vols=
no-issue=5
article-no=
start-page=939
end-page=948
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250905
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Study on an Effective Coolant Supply Method in the Side Plunge Grinding Process
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Grinding is widely used for finishing components with journal and thrust surfaces, such as crankshafts. Side-plunge grinding enables the simultaneous finishing of thrust and cylindrical surfaces in a single plunge. However, compared to cylindrical grinding, it involves a larger contact area between the grinding wheel and the workpiece, leading to increased heat generation. In particular, poor coolant penetration near internal corners can degrade surface quality, potentially causing stress concentrations and cracks. To enhance coolant effectiveness in side-plunge grinding, this study installs a high-pressure nozzle that supplies coolant from the side of the grinding wheel. The effectiveness of this setup is experimentally verified. Additionally, the distribution of coolant flow within the contact area between the grinding wheel and the workpiece is measured to determine the optimal nozzle position for efficient coolant delivery. The nozzle’s performance is evaluated by measuring the workpiece surface temperature using a wire/workpiece thermocouple, the amount of coolant discharged from the grinding wheel, and the residual stress distribution. The results show that coolant penetrates the grinding wheel and effectively reaches the grinding zone, enhancing the cooling effect. This study clarifies the relationship between effective coolant supply and the position of the side nozzle. Considering physical constraints, such as potential interference during grinding, the optimal nozzle location is as close as possible to both the edge of the grinding wheel and the workpiece. This positioning ensures maximum coolant delivery, reduces grinding temperature, and helps suppress drastic variations in residual stress.
en-copyright=
kn-copyright=
en-aut-name=GaoLingxiao
en-aut-sei=Gao
en-aut-mei=Lingxiao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujimotoTaichi
en-aut-sei=Fujimoto
en-aut-mei=Taichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KodamaHiroyuki
en-aut-sei=Kodama
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OhashiKazuhito
en-aut-sei=Ohashi
en-aut-mei=Kazuhito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=grinding
kn-keyword=grinding
en-keyword=thrust surface
kn-keyword=thrust surface
en-keyword=grinding temperature
kn-keyword=grinding temperature
en-keyword=coolant flow
kn-keyword=coolant flow
en-keyword=residual stress
kn-keyword=residual stress
END
start-ver=1.4
cd-journal=joma
no-vol=66
cd-vols=
no-issue=7
article-no=
start-page=1044
end-page=1060
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250527
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Oxygen supply is a prerequisite for response to aluminum in cultured cells of tobacco (Nicotiana tabacum)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Responses to aluminum (Al) were investigated in tobacco cells (cell line SL) in a calcium-sucrose solution for up to 24 h under shaking (aerobic) condition. Microarray analysis of upregulated and downregulated genes under Al exposure and following Gene Ontology (GO) enrichment analysis of biological process category revealed only one GO term to be enriched for the upregulated genes, “response to chitin,” annotated with genes encoding transcription factors (NtERF1 and NtMYB3) and MAP kinase (WIPK), and nine GO terms for the downregulated genes, including “cell wall loosening” and “lipid transport,” annotated with genes encoding expansin (NtEXPA4) and lipid transfer protein (LTP)/LTP-like (NtLTP3 and NtEIG-C29), respectively. Al triggered the production of nitric oxide (NO) then reactive oxygen species (ROS). Addition of NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide decreased the levels of NO and a part of the transcriptional changes described above, but increased the levels of ROS and a loss of growth capacity, suggesting a role of the NO to induce the transcriptional changes partly and to repress these toxic responses under Al exposure. Under non-shaking (anaerobic) condition, the cells exhibited upregulation of several hypoxia-responsive genes. The cells exposed to Al exhibited the same level of Al accumulation but much lower levels of the Al responses including NO production, ROS production, a loss of growth capacity, citrate secretion, and a part of the transcriptional changes described above, compared with the cells under shaking condition. These results suggest that coexistence of oxygen with Al is necessary to trigger the Al responses related to toxicity and tolerance.
en-copyright=
kn-copyright=
en-aut-name=TsuchiyaYoshiyuki
en-aut-sei=Tsuchiya
en-aut-mei=Yoshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KatsuharaMaki
en-aut-sei=Katsuhara
en-aut-mei=Maki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SasakiTakayuki
en-aut-sei=Sasaki
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamamotoYoko
en-aut-sei=Yamamoto
en-aut-mei=Yoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=4
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
en-keyword=aluminum toxicity
kn-keyword=aluminum toxicity
en-keyword=aluminum-responsive genes
kn-keyword=aluminum-responsive genes
en-keyword=cell wall loosening
kn-keyword=cell wall loosening
en-keyword=chitin-responsive genes
kn-keyword=chitin-responsive genes
en-keyword=dioxygen
kn-keyword=dioxygen
en-keyword=hypoxia
kn-keyword=hypoxia
END
start-ver=1.4
cd-journal=joma
no-vol=25
cd-vols=
no-issue=21
article-no=
start-page=11479
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Dennd2c Negatively Controls Multinucleation and Differentiation in Osteoclasts by Regulating Actin Polymerization and Protrusion Formation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Osteoclasts are bone-resorbing multinucleated giant cells formed by the fusion of monocyte/macrophage lineages. Various small GTPases are involved in the multinucleation and differentiation of osteoclasts. However, the roles of small GTPases regulatory molecules in osteoclast differentiation remain unclear. In the present study, we examined the role of Dennd2c, a putative guanine nucleotide exchange factor for Rab GTPases, in osteoclast differentiation. Knockdown of Dennd2c promoted osteoclast differentiation, resorption, and expression of osteoclast markers. Morphologically, Dennd2c knockdown induced the formation of larger osteoclasts with several protrusions. In contrast, overexpression of Dennd2c inhibited the multinucleation and differentiation of osteoclasts, bone resorption, and the expression of osteoclast markers. Dennd2c-overexpressing macrophages exhibited spindle-shaped mononuclear cells and long thin protrusions. Treatment of Dennd2c-overexpressing cells with the Cdc42 inhibitor ML-141 or the Rac1 inhibitor 6-thio-GTP prevented protrusion formation. Moreover, treatment of Dennd2c-overexpressing cells with the actin polymerization inhibitor latrunculin B restored multinucleated and TRAP-positive osteoclast formation. These results indicate that Dennd2c negatively regulates osteoclast differentiation and multinucleation by modulating protrusion formation in macrophages.
en-copyright=
kn-copyright=
en-aut-name=KoyanagiYu
en-aut-sei=Koyanagi
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SakaiEiko
en-aut-sei=Sakai
en-aut-mei=Eiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamaguchiYu
en-aut-sei=Yamaguchi
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FarhanaFatima
en-aut-sei=Farhana
en-aut-mei=Fatima
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TairaYohsuke
en-aut-sei=Taira
en-aut-mei=Yohsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OkamotoKuniaki
en-aut-sei=Okamoto
en-aut-mei=Kuniaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MurataHiroshi
en-aut-sei=Murata
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TsukubaTakayuki
en-aut-sei=Tsukuba
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University
kn-affil=
affil-num=2
en-affil=Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University
kn-affil=
affil-num=3
en-affil=Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University
kn-affil=
affil-num=4
en-affil=Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University
kn-affil=
affil-num=5
en-affil=Division of Cariology and Restorative Dentistry, Department of Prosthetic Dentistry, Graduate School of Biomedical Sciences, Nagasaki University
kn-affil=
affil-num=6
en-affil=Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Division of Cariology and Restorative Dentistry, Department of Prosthetic Dentistry, Graduate School of Biomedical Sciences, Nagasaki University
kn-affil=
affil-num=8
en-affil=Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University
kn-affil=
en-keyword=osteoclast
kn-keyword=osteoclast
en-keyword=actin polymerization
kn-keyword=actin polymerization
en-keyword=protrusion formation
kn-keyword=protrusion formation
en-keyword=Dennd2c
kn-keyword=Dennd2c
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=20056
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250612
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Pharmacokinetics and the effectiveness of pyrogen-free bioabsorbable wet adhesives
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Bioabsorbable materials are essential for advanced therapies, including surgical sealing, cell therapy, and drug delivery. Natural bioabsorbable materials, including collagen and hyaluronic acid, have better biocompatibility than synthetic bioabsorbable polymers; however, they are mainly derived from animals, presenting infection risks. Non-animal origin polymers have a lower molecular weight than those of animal origins. Their viscosity increases with increase in molecular weight, making endotoxin removal difficult. Here, using the phosphoryl chloride disposal method, we present a strategy for synthesizing pyrogen-free bioabsorbable adhesives with controlled molecular weight. Phosphopullulan, a polysaccharide derivative, had less than detectable endotoxin levels and controllable average molecular weight of approximately 300,000 to over 1,400,000. Furthermore, it is important to ensure the safety as well as efficacy of bio-implantable materials. We have evaluated the biosafety of polysaccharide derivatives we are developing, and have examined their cell phagocytosis and pharmacokinetics in vitro and in vivo, and have confirmed that they are safe. We have also evaluated their adhesion to wet tissue adhesions and confirmed that they leak less than existing materials.
en-copyright=
kn-copyright=
en-aut-name=OshimaRisa
en-aut-sei=Oshima
en-aut-mei=Risa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YoshiharaKumiko
en-aut-sei=Yoshihara
en-aut-mei=Kumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakanishiKo
en-aut-sei=Nakanishi
en-aut-mei=Ko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AkasakaTsukasa
en-aut-sei=Akasaka
en-aut-mei=Tsukasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShimojiShinji
en-aut-sei=Shimoji
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakamuraTeppei
en-aut-sei=Nakamura
en-aut-mei=Teppei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OkiharaTakumi
en-aut-sei=Okihara
en-aut-mei=Takumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakamuraMariko
en-aut-sei=Nakamura
en-aut-mei=Mariko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MatsukawaAkihiro
en-aut-sei=Matsukawa
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TamadaIkkei
en-aut-sei=Tamada
en-aut-mei=Ikkei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=Van MeerbeekBart
en-aut-sei=Van Meerbeek
en-aut-mei=Bart
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=SugayaTsutomu
en-aut-sei=Sugaya
en-aut-mei=Tsutomu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=YoshidaYasuhiro
en-aut-sei=Yoshida
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Periodontology, Faculty of Dental Medicine, Hokkaido University
kn-affil=
affil-num=2
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University
kn-affil=
affil-num=4
en-affil=Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University
kn-affil=
affil-num=5
en-affil=Department of Periodontology, Faculty of Dental Medicine, Hokkaido University
kn-affil=
affil-num=6
en-affil=Department of Applied Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University
kn-affil=
affil-num=7
en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Clinical Psychology, School of Clinical Psychology, Kyushu University of Medical and Science
kn-affil=
affil-num=9
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Plastic and Reconstructive Surgery, Tokyo Metropolitan Children’s Medical Center
kn-affil=
affil-num=11
en-affil=BIOMAT, Department of Oral Health Sciences, & UZ Leuven, Dentistry, KU Leuven
kn-affil=
affil-num=12
en-affil=Department of Periodontology, Faculty of Dental Medicine, Hokkaido University
kn-affil=
affil-num=13
en-affil=Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University
kn-affil=
en-keyword=Phosphopullulan
kn-keyword=Phosphopullulan
en-keyword=Polysaccharide
kn-keyword=Polysaccharide
en-keyword=ADME
kn-keyword=ADME
en-keyword=Animal study
kn-keyword=Animal study
en-keyword=Endodontic sealer
kn-keyword=Endodontic sealer
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=38
article-no=
start-page=eadv9952
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250919
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Polymeric microwave rectifiers enabled by monolayer-thick ionized donors
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Solution processing of polymeric semiconductors provides a facile way to fabricate functional diodes. However, energy barriers at metal-semiconductor interfaces often limit their performance. Here, we report rectifying polymer diodes with markedly modified energy-level alignments. The gold electrode surface was treated with a dimeric metal complex, which resulted in a shallow work function of 3.7 eV by forming a monolayer-thick ionized donor layer. When a polymeric semiconductor was coated on the treated electrode, most of the ionized donors remained at the metal-semiconductor interface. The confined ionized donors with the ideal thickness enabled fabrication of a polymer diode with a forward current density of over 100 A cm?2. Furthermore, a power conversion efficiency of 7.9% was observed for rectification at a microwave frequency of 920 MHz, which is orders of magnitude higher than that reported for organic diodes. Our findings will pave a way to solution-processed high-frequency and high-power devices.
en-copyright=
kn-copyright=
en-aut-name=OsakabeNobutaka
en-aut-sei=Osakabe
en-aut-mei=Nobutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HerJeongeun
en-aut-sei=Her
en-aut-mei=Jeongeun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KanetaTakahiro
en-aut-sei=Kaneta
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TajimaAkiko
en-aut-sei=Tajima
en-aut-mei=Akiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=LonghiElena
en-aut-sei=Longhi
en-aut-mei=Elena
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TangKan
en-aut-sei=Tang
en-aut-mei=Kan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=FujimoriKazuhiro
en-aut-sei=Fujimori
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=BarlowStephen
en-aut-sei=Barlow
en-aut-mei=Stephen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MarderSeth R.
en-aut-sei=Marder
en-aut-mei=Seth R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=WatanabeShun
en-aut-sei=Watanabe
en-aut-mei=Shun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TakeyaJun
en-aut-sei=Takeya
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=YamashitaYu
en-aut-sei=Yamashita
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo
kn-affil=
affil-num=2
en-affil=Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo
kn-affil=
affil-num=3
en-affil=Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo
kn-affil=
affil-num=4
en-affil=Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo
kn-affil=
affil-num=5
en-affil=School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology
kn-affil=
affil-num=6
en-affil=Renewable and Sustainable Energy Institute, University of Colorado Boulder
kn-affil=
affil-num=7
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology
kn-affil=
affil-num=9
en-affil=School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology
kn-affil=
affil-num=10
en-affil=Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo
kn-affil=
affil-num=11
en-affil=Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo
kn-affil=
affil-num=12
en-affil=Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=9
cd-vols=
no-issue=9
article-no=
start-page=660
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250921
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Application of LMM-Derived Prompt-Based AIGC in Low-Altitude Drone-Based Concrete Crack Monitoring
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In recent years, large multimodal models (LMMs), such as ChatGPT 4o and DeepSeek R1?artificial intelligence systems capable of multimodal (e.g., image and text) human?computer interaction?have gained traction in industrial and civil engineering applications. Concurrently, insufficient real-world drone-view data (specifically close-distance, high-resolution imagery) for civil engineering scenarios has heightened the importance of artificially generated content (AIGC) or synthetic data as supplementary inputs. AIGC is typically produced via text-to-image generative models (e.g., Stable Diffusion, DALL-E) guided by user-defined prompts. This study leverages LMMs to interpret key parameters for drone-based image generation (e.g., color, texture, scene composition, photographic style) and applies prompt engineering to systematize these parameters. The resulting LMM-generated prompts were used to synthesize training data for a You Only Look Once version 8 segmentation model (YOLOv8-seg). To address the need for detailed crack-distribution mapping in low-altitude drone-based monitoring, the trained YOLOv8-seg model was evaluated on close-distance crack benchmark datasets. The experimental results confirm that LMM-prompted AIGC is a viable supplement for low-altitude drone crack monitoring, achieving >80% classification accuracy (images with/without cracks) at a confidence threshold of 0.5.
en-copyright=
kn-copyright=
en-aut-name=PanShijun
en-aut-sei=Pan
en-aut-mei=Shijun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FanZhun
en-aut-sei=Fan
en-aut-mei=Zhun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshidaKeisuke
en-aut-sei=Yoshida
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=QinShujia
en-aut-sei=Qin
en-aut-mei=Shujia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KojimaTakashi
en-aut-sei=Kojima
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NishiyamaSatoshi
en-aut-sei=Nishiyama
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Shenzhen Institute for Advanced Study, UESTC, University of Electronic Science and Technology of China
kn-affil=
affil-num=2
en-affil=Shenzhen Institute for Advanced Study, UESTC, University of Electronic Science and Technology of China
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=4
en-affil=Shenzhen Academy of Robotics
kn-affil=
affil-num=5
en-affil=TOKEN C.E.E. Consultants Co., Ltd.
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=artificial intelligence
kn-keyword=artificial intelligence
en-keyword=large multimodal model
kn-keyword=large multimodal model
en-keyword=unmanned aerial vehicle
kn-keyword=unmanned aerial vehicle
en-keyword=crack
kn-keyword=crack
END
start-ver=1.4
cd-journal=joma
no-vol=25
cd-vols=
no-issue=1
article-no=
start-page=1333
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250816
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Phosphorylated pullulan as a local drug delivery matrix for cationic antibacterial chemicals to prevent oral biofilm
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Preventing oral infections, such as oral caries and periodontal disease, helps reduce the risks of various systemic diseases. In this study, the polysaccharide pullulan produced by the black yeast Aureobasidium pullulans was modified in combination with the cationic surfactant cetylpyridinium chloride (CPC) to create a local drug delivery system, and its antibacterial potential on oral bacteria was examined in vitro.
Methods Pullulan was phosphorylated at the CH2OH residue of α6 in the maltotriose structure and mixed with CPC. Bacterial attachment of cariogenic Streptococcus mutans on hydroxyapatite plates (HAPs) treated with the phosphorylated pullulan (PP) and CPC compound (0.01% PP and 0.001? 0.03% CPC, and vice versa) was assessed by observing bacteria using a field emission scanning electron microscope (FE-SEM) and quantified through 16 S rRNA amplification via real-time polymerase chain reaction (PCR). Additionally, the quartz crystal microbalance (QCM) method was employed to evaluate the sustained release of CPC.
Results PP-CPC compound maintained significant bactericidal activity even at 0.01%, which is one-fifth of the conventional applicable concentration of CPC. Additionally, a residual mixture was detected by the hydroxyapatite sensor of the crystal oscillator microbalance detector, suggesting an unknown molecular interaction that enables the sustained release of CPC after attachment to hydroxyapatite.
Conclusions The combination of PP and CPC may contribute to the low concentration and effective prevention of oral infections, such as dental caries.
en-copyright=
kn-copyright=
en-aut-name=Namba-KoideNaoko
en-aut-sei=Namba-Koide
en-aut-mei=Naoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YoshidaYasuhiro
en-aut-sei=Yoshida
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NagaokaNoriyuki
en-aut-sei=Nagaoka
en-aut-mei=Noriyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OkiharaTakumi
en-aut-sei=Okihara
en-aut-mei=Takumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KawataYusuke
en-aut-sei=Kawata
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ItoMasahiro
en-aut-sei=Ito
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ItoTakashi
en-aut-sei=Ito
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=Takeuchi-HatanakaKazu
en-aut-sei=Takeuchi-Hatanaka
en-aut-mei=Kazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=Shinoda-ItoYuki
en-aut-sei=Shinoda-Ito
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OmoriKazuhiro
en-aut-sei=Omori
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YamamotoTadashi
en-aut-sei=Yamamoto
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TakashibaShogo
en-aut-sei=Takashiba
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University
kn-affil=
affil-num=3
en-affil=Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School
kn-affil=
affil-num=4
en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Pathophysiology - Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Pathophysiology - Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Pathophysiology - Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Pathophysiology - Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Phosphorylated Pullulan
kn-keyword=Phosphorylated Pullulan
en-keyword=Local drug delivery system
kn-keyword=Local drug delivery system
en-keyword=Cationic antimicrobial agents
kn-keyword=Cationic antimicrobial agents
en-keyword=Cetylpyridinium chloride
kn-keyword=Cetylpyridinium chloride
en-keyword=Oral biofilm
kn-keyword=Oral biofilm
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250922
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Applicability of Effective Atomic Number (Z eff) Image Analysis of Coronary Plaques Measured With Photon- Counting Computed Tomography
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective: Coronary computed tomography (CT) allows the assessment of cardiovascular risk by imaging calcified plaques in coronary arteries. Because photon-counting CT (PC-CT) can analyze the effective atomic number (Zeff) of the subject, it is expected to be applied to the analysis of plaque components. The purpose of this study was to investigate the applicability of plaque analysis based on Zeff images with continuous gradation.
Methods: Zeff images were generated from virtual monoenergetic images (VMIs) obtained by PC-CT. Zeff values were derived from the difference between linear attenuation coefficients (μ) at low and high energies using an in-house program. Coronary CT images of 64 plaques in 10 patients were analyzed. The Zeff score, calculated as the sum of Zeff values within the plaque region, was calculated and compared with the conventional Agatston score and mean coronary artery calcium (CAC) score.
Results: The systematic uncertainty of Zeff images was estimated to be ±0.08. The Zeff score of actual patient data showed strong positive correlations with the conventional Agatston and mean CAC scores. The Zeff score uses all voxel data in the plaque area, whereas conventional scores consider only data from voxels with a CT value >130. We found that the conventional scores excluded 39% of the plaque area, and the Zeff score permitted the analysis of low- and high-density plaques.
Conclusions: Zeff imaging was shown to be applicable to plaque analysis that reflects the entire plaque volume. This study demonstrated its technical feasibility as a compositional analysis method using the Zeff image.
en-copyright=
kn-copyright=
en-aut-name=AsaharaTakashi
en-aut-sei=Asahara
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MitaniMana
en-aut-sei=Mitani
en-aut-mei=Mana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KimotoNatsumi
en-aut-sei=Kimoto
en-aut-mei=Natsumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NishigamiRina
en-aut-sei=Nishigami
en-aut-mei=Rina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakegamiKazuki
en-aut-sei=Takegami
en-aut-mei=Kazuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MorimitsuYusuke
en-aut-sei=Morimitsu
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=AkagiNoriaki
en-aut-sei=Akagi
en-aut-mei=Noriaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MiyoshiToru
en-aut-sei=Miyoshi
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KanazawaYuki
en-aut-sei=Kanazawa
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=IguchiToshihiro
en-aut-sei=Iguchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HayashiHiroaki
en-aut-sei=Hayashi
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Medical Support Department, Division of Radiology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Radiological Science, Faculty of Health Sciences, Junshin Gakuen University
kn-affil=
affil-num=4
en-affil=Graduate School of Medical Sciences, Kanazawa University
kn-affil=
affil-num=5
en-affil=Department of Radiological Technology, Yamaguchi University Hospital
kn-affil=
affil-num=6
en-affil=Medical Support Department, Division of Radiology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Medical Support Department, Division of Radiology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Faculty of Life Science, Kumamoto University
kn-affil=
affil-num=10
en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=College of Transdisciplinary Sciences for Innovation, Kanazawa University
kn-affil=
en-keyword=effective atomic number image
kn-keyword=effective atomic number image
en-keyword=photon-counting computed tomography
kn-keyword=photon-counting computed tomography
en-keyword=virtual monoenergetic images
kn-keyword=virtual monoenergetic images
en-keyword=coronary CT
kn-keyword=coronary CT
en-keyword=coronary plaques
kn-keyword=coronary plaques
en-keyword=Agatston score
kn-keyword=Agatston score
END
start-ver=1.4
cd-journal=joma
no-vol=40
cd-vols=
no-issue=4
article-no=
start-page=463
end-page=474
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241225
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Nationwide diversity of symbolic “city flowers” in Japan is increasing
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Recognizing and maintaining locally rooted human?nature interactions is essential for utilizing ecosystem services. Although the general public's awareness of biodiversity and ecosystem services has been examined using various proxies, it remains unclear how local governments?key sectors in creating conservation policies?appreciate them within a solid local context. Here, we focused on the “city flower,” an official symbolic species of Japanese cities, as a new proxy for measuring governmental attitudes toward biota and its services. We aimed to capture temporal changes in the awareness of species with locally relevant value at the city government level by examining the changes in city flowers over more than half a century. Data from the official websites of municipalities, including the names, the adoption years, and the reasons for adoption, revealed two major periods of adoption, with a notable increase in species diversity in and after 1993. This increase could be attributed to a recent reduction in bias toward popular flowers and growing interest in alternative, less popular flowers. Analysis of the reasons for adoption suggested that the temporal change in adopted flower species was related to the increasing emphasis on species with an explicit local context, especially those with instrumental value to the city. Our findings indicate the tendency for local governments to increasingly recognize their biocultural backgrounds and the ecosystem services of plants within their regions. The growing awareness of the local governments regarding their biocultural background is a positive sign for the conservation of biodiversity and ecosystem services.
en-copyright=
kn-copyright=
en-aut-name=TsuzukiYoichi
en-aut-sei=Tsuzuki
en-aut-mei=Yoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OhsakiHaruna
en-aut-sei=Ohsaki
en-aut-mei=Haruna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KawaguchiYawako W.
en-aut-sei=Kawaguchi
en-aut-mei=Yawako W.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SuzukiSayaka
en-aut-sei=Suzuki
en-aut-mei=Sayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HaradaShogo
en-aut-sei=Harada
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OtakeYurie
en-aut-sei=Otake
en-aut-mei=Yurie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ShinoharaNaoto
en-aut-sei=Shinohara
en-aut-mei=Naoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KatsuharaKoki R.
en-aut-sei=Katsuhara
en-aut-mei=Koki R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Health and Environmental Risk Division, National Institute for Environmental Studies
kn-affil=
affil-num=2
en-affil=Department of Biological Sciences, Tokyo Metropolitan University
kn-affil=
affil-num=3
en-affil=Department of Biological Sciences, Graduate School of Science, The University of Tokyo
kn-affil=
affil-num=4
en-affil=Center for Ecological Research, Kyoto University
kn-affil=
affil-num=5
en-affil=Department of Biology, Graduate School of Science, Osaka City University
kn-affil=
affil-num=6
en-affil=Center for Ecological Research, Kyoto University
kn-affil=
affil-num=7
en-affil=Center for Ecological Research, Kyoto University
kn-affil=
affil-num=8
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=awareness of local governments
kn-keyword=awareness of local governments
en-keyword=biocultural diversity
kn-keyword=biocultural diversity
en-keyword=ecosystem services
kn-keyword=ecosystem services
en-keyword=manual web scraping
kn-keyword=manual web scraping
en-keyword=temporal trend
kn-keyword=temporal trend
END
start-ver=1.4
cd-journal=joma
no-vol=96
cd-vols=
no-issue=1
article-no=
start-page=e70055
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Presence of a Deletion Mutation of Myostatin (MSTN) Gene Associated With Double-Muscling Phenotype in Japanese Black Cattle Population
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Mutations in the bovine myostatin (MSTN) gene have been identified as the causative factor for the double-muscling phenotype in several European cattle breeds, including Belgian Blue, Piedmontese, and Shorthorn. In Japan, following the Meiji Restoration, several European breeds, including Shorthorn, Brown Swiss, Devon, Simmental, and Ayrshire, were introduced and crossbred with native cattle to develop modern Japanese beef cattle breeds, such as Japanese Black cattle. Historical records regarding the breeding of Japanese Black cattle indicate that the double-muscling phenotype, referred to as “Butajiri,” occasionally appeared in Japanese Black cattle population. These historical observations suggest the potential presence of MSTN gene mutation in the Japanese Black cattle population. The aim of this study was, therefore, to investigate the presence of MSTN gene mutation in the current Japanese Black cattle population. Through screening 400 reproductive females, we identified one cow carrying an 11-bp deletion in the MSTN gene. While further investigation of the animals in the pedigree of this cow could not reveal any living animals with this mutation, this is the first report demonstrating the presence of the MSTN mutation in the Japanese Black cattle population.
en-copyright=
kn-copyright=
en-aut-name=LeNu?Anh?Thu
en-aut-sei=Le
en-aut-mei=Nu?Anh?Thu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KuboRena
en-aut-sei=Kubo
en-aut-mei=Rena
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=BorjiginLiushiqi
en-aut-sei=Borjigin
en-aut-mei=Liushiqi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IbiTakayuki
en-aut-sei=Ibi
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SasakiShinji
en-aut-sei=Sasaki
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KuniedaTetsuo
en-aut-sei=Kunieda
en-aut-mei=Tetsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Faculty of Veterinary Medicine Okayama University of Science Imabari
kn-affil=
affil-num=2
en-affil=Faculty of Veterinary Medicine Okayama University of Science Imabari
kn-affil=
affil-num=3
en-affil=Faculty of Veterinary Medicine Okayama University of Science Imabari
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Faculty of Agriculture Ryukyu University Nishihara
kn-affil=
affil-num=6
en-affil=Faculty of Veterinary Medicine Okayama University of Science Imabari
kn-affil=
en-keyword=double muscle
kn-keyword=double muscle
en-keyword=Japanese Black cattle
kn-keyword=Japanese Black cattle
en-keyword=myostatin gene
kn-keyword=myostatin gene
END
start-ver=1.4
cd-journal=joma
no-vol=142
cd-vols=
no-issue=
article-no=
start-page=104967
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Cross-feeding between beneficial and pathogenic bacteria to utilize eukaryotic host cell-derived sialic acids and bacteriophages shape the pathogen-host interface milieu
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Under an inflamed-intestinal milieu, increased free sialic acids are associated with the overgrowth of some pathogenic bacterial strains. Recently, the protective immunomodulatory activity of gut bacteriophages (phages) has also been highlighted. However, the role of phages in triple reciprocal interactions between pathogenic bacteria, beneficial bacteria, and their host cell sialic acids has not been studied so far. We established a sialidase-explicit model in which beneficial and pathogenic bacteria interact through cross-feeding and competition for free sialic acid using a human triple co-culture cell model incorporating colonocytes (T84 cells), monocytes (THP-1 cells), and hepatocytes (Huh7 cells). Triple co-cultured cells were challenged with Gram-positive Bifidobacterium bifidum (B. bifidum) and Gram-negative Pseudomonas aeruginosa PAO1 (P. a PAO1) in the absence or presence of its KPP22 phage in two different cell culture mediums: 1) standard Dulbecco's Modified Eagle Medium (DMEM) and 2) DMEM with 2,3-dehydro-2-deoxy-N-acetylneuraminic acid (DANA). Changes in physiological, functional, and structural health markers of stimulated cocultured cells were evaluated. The concentrations of sialic acid and pro-inflammatory cytokines in the cell culture supernatants were quantified. P. a PAO1 triggered the release of interleukin 6 and 8 (IL-6 and IL-8), accompanied by increased levels of free sialic acid, reduced viability of co-cultured cells, and disrupted the integrity of the cellular monolayer. These disruptive effects were markedly attenuated by KPP22 phage and B. bifidum. In addition to well-documented differences in the structure and composition of the bacterial cell walls of Gram-negative pathogenic bacteria and bifidobacteria, two distinct factors seem to be pivotal in modulating the pathogen-host interface milieu: (i) the presence of phages and (ii) the utilization of free sialic acids secreted from host cells by bifidobacteria.
en-copyright=
kn-copyright=
en-aut-name=GhadimiDarab
en-aut-sei=Ghadimi
en-aut-mei=Darab
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=F?lster-HolstRegina
en-aut-sei=F?lster-Holst
en-aut-mei=Regina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=Bl?merSophia
en-aut-sei=Bl?mer
en-aut-mei=Sophia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=EbsenMichael
en-aut-sei=Ebsen
en-aut-mei=Michael
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=R?ckenChristoph
en-aut-sei=R?cken
en-aut-mei=Christoph
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UchiyamaJumpei
en-aut-sei=Uchiyama
en-aut-mei=Jumpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsuzakiShigenobu
en-aut-sei=Matsuzaki
en-aut-mei=Shigenobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=BockelmannWilhelm
en-aut-sei=Bockelmann
en-aut-mei=Wilhelm
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Microbiology and Biotechnology, Max Rubner-Institut
kn-affil=
affil-num=2
en-affil=Clinic of Dermatology, Venerology und Allergology, University Hospital Schleswig-Holstein
kn-affil=
affil-num=3
en-affil=Clinic of Dermatology, Venerology und Allergology, University Hospital Schleswig-Holstein
kn-affil=
affil-num=4
en-affil=St?dtisches MVZ Kiel GmbH (Kiel City Hospital), Department of Pathology
kn-affil=
affil-num=5
en-affil=Institute of Pathology, Kiel University, University Hospital, Schleswig-Holstein
kn-affil=
affil-num=6
en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Medical Laboratory Science, Faculty of Health Sciences, Kochi Gakuen University
kn-affil=
affil-num=8
en-affil=Department of Microbiology and Biotechnology, Max Rubner-Institut
kn-affil=
en-keyword=Bacterial sialidase
kn-keyword=Bacterial sialidase
en-keyword=Inflammation
kn-keyword=Inflammation
en-keyword=Cytokines
kn-keyword=Cytokines
en-keyword=Infection
kn-keyword=Infection
en-keyword=Bifidobacteria
kn-keyword=Bifidobacteria
en-keyword=Phages
kn-keyword=Phages
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=9
article-no=
start-page=e93012
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250923
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Impact of a Peer-Led International Training Program on Work Motivation Among Early-Career Psychiatrists: A Mixed-Methods Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background
The Japan Young Psychiatrists Organization (JYPO) has conducted a Course for Academic Development of Psychiatrists (CADP), a peer-led residential international training program, since 2002 to promote the professional development of early-career psychiatrists. This study aimed to evaluate the impact of CADP on participants' work motivation using a psychometric scale and to identify the factors contributing to these changes.
Methods
We conducted a mixed-method study with 23 Japanese participants of the 21st CADP from March 8 to 10, 2024, in Himeji, Japan. Work motivation was assessed using the abbreviated version of the Measure of Multifaceted Work Motivations (MWM-12) at two time points: two weeks before and three months after the course. The total and subitem scores of the MWM-12 were analyzed using the Wilcoxon signed-rank test. Furthermore, free-text responses collected before and after the course were subjected to qualitative analyses.
Results
Significant improvements were observed in the MWM-12 total score from pre-course to post-course. Significant increases were also identified in specific sub-items: M1 (directionality of achievement-oriented motivation), M4 (directionality of competition-oriented motivation), M6 (sustainability of competition-oriented motivation), and M9 (sustainability of cooperation-oriented motivation). Qualitative analysis revealed changes in key categories, including growth as a psychiatrist, personal networking, personal growth, and increased motivation. The integration of quantitative and qualitative findings suggested that enhanced career perspectives (M1), professional growth and peer interaction (M4), and increased self-confidence and support networks (M6 and M9) contributed to improved motivation.
Conclusion
This study demonstrated that a three-day, two-night peer-led training program positively influenced work motivation among early-career psychiatrists.
en-copyright=
kn-copyright=
en-aut-name=ShimizuToshihiro
en-aut-sei=Shimizu
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KitaokaJunko
en-aut-sei=Kitaoka
en-aut-mei=Junko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SuzutaniKen
en-aut-sei=Suzutani
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SatakeYuto
en-aut-sei=Satake
en-aut-mei=Yuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KodaMasahide
en-aut-sei=Koda
en-aut-mei=Masahide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KuramochiIzumi
en-aut-sei=Kuramochi
en-aut-mei=Izumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SartoriusNorman
en-aut-sei=Sartorius
en-aut-mei=Norman
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Psychiatry, Saitama Prefectural Psychiatric Hospital
kn-affil=
affil-num=2
en-affil=Department of Psychiatry, Fukkoukai Tarumi Hospital
kn-affil=
affil-num=3
en-affil=Department of Psychiatry, Aizu Medical Center
kn-affil=
affil-num=4
en-affil=Department of Psychiatry, The University of Osaka
kn-affil=
affil-num=5
en-affil=Co-learning Community Healthcare Re-innovation Office, Graduate School of Medicine, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Epileptology and Psychiatry, National Center of Neurology and Psychiatry
kn-affil=
affil-num=7
en-affil=Psychiatry, Association for the Improvement of Mental Health Programs (AIMHP)
kn-affil=
en-keyword=cadp
kn-keyword=cadp
en-keyword=early-career psychiatrists
kn-keyword=early-career psychiatrists
en-keyword=jypo
kn-keyword=jypo
en-keyword=peer-led training
kn-keyword=peer-led training
en-keyword=peer networking
kn-keyword=peer networking
en-keyword=professional development
kn-keyword=professional development
en-keyword=professional identity
kn-keyword=professional identity
en-keyword=work motivation
kn-keyword=work motivation
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=12
article-no=
start-page=25
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241216
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Disruption of the Enterococcus faecalis?Induced Biofilm on the Intraocular Lens Using Bacteriophages
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose: To compare the effects of bacteriophages (phages) and vancomycin on Enterococcus faecalis?induced biofilms on the intraocular lens.
Methods: E. faecalis strains EF24, GU02, GU03, and phiEF14H1 were used. The expression of the enterococcus surface protein (esp) gene was analyzed using polymerase chain reaction. Phages or vancomycin was added to the biofilms formed on culture plates or acrylic intraocular lenses. The biofilms were quantified after staining with crystal violet. The structure of the biofilms was analyzed using scanning electron microscopy.
Results: E. faecalis strains EF24, GU02, and GU03 formed biofilms on cell culture plates; however, the esp-negative GU03 strain had a significantly lower biofilm-forming ability than the esp-positive strains EF24 and GU02. The addition of phiEF14H1 resulted in a significant reduction in biofilm mass produced by both EF24 and GU02 compared with the untreated control. However, the addition of vancomycin did not degrade the biofilms. Phages significantly degraded biofilms and reduced the viable EF24 and GU02 bacteria on the intraocular lens.
Conclusions: Phages can degrade biofilms formed on the intraocular lens and destroy the bacteria within it. Thus, phage therapy may be a new treatment option for refractory and recurrent endophthalmitis caused by biofilm-forming bacteria.
Translational Relevance: Phage therapy, a novel treatment option for refractory and recurrent endophthalmitis caused by biofilm-forming bacteria, effectively lyses E. faecalis?induced biofilms.
en-copyright=
kn-copyright=
en-aut-name=KishimotoTatsuma
en-aut-sei=Kishimoto
en-aut-mei=Tatsuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FukudaKen
en-aut-sei=Fukuda
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IshidaWaka
en-aut-sei=Ishida
en-aut-mei=Waka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KuwanaAozora
en-aut-sei=Kuwana
en-aut-mei=Aozora
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TodokoroDaisuke
en-aut-sei=Todokoro
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UchiyamaJumpei
en-aut-sei=Uchiyama
en-aut-mei=Jumpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsuzakiShigenobu
en-aut-sei=Matsuzaki
en-aut-mei=Shigenobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YamashiroKenji
en-aut-sei=Yamashiro
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University
kn-affil=
affil-num=2
en-affil=Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University
kn-affil=
affil-num=3
en-affil=Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University
kn-affil=
affil-num=4
en-affil=Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University
kn-affil=
affil-num=5
en-affil=Department of Ophthalmology, Gunma University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Medical Laboratory Science, Faculty of Health Sciences, Kochi Gakuen University
kn-affil=
affil-num=8
en-affil=Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University
kn-affil=
en-keyword=biofilm
kn-keyword=biofilm
en-keyword=bacteriophage
kn-keyword=bacteriophage
en-keyword=intraocular lens
kn-keyword=intraocular lens
en-keyword=endophthalmitis
kn-keyword=endophthalmitis
en-keyword=cataract
kn-keyword=cataract
en-keyword=enterococcus faecalis
kn-keyword=enterococcus faecalis
END
start-ver=1.4
cd-journal=joma
no-vol=23
cd-vols=
no-issue=5
article-no=
start-page=209
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250514
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Novel Anti-MRSA Peptide from Mangrove-Derived Virgibacillus chiguensis FN33 Supported by Genomics and Molecular Dynamics
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Antimicrobial resistance (AMR) is a global health threat, with methicillin-resistant Staphylococcus aureus (MRSA) being one of the major resistant pathogens. This study reports the isolation of a novel mangrove-derived bacterium, Virgibacillus chiguensis FN33, as identified through genome analysis and the discovery of a new anionic antimicrobial peptide (AMP) exhibiting anti-MRSA activity. The AMP was composed of 23 amino acids, which were elucidated as NH3-Glu-Gly-Gly-Cys-Gly-Val-Asp-Thr-Trp-Gly-Cys-Leu-Thr-Pro-Cys-His-Cys-Asp-Leu-Phe-Cys-Thr-Thr-COOH. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for MRSA were 8 ?g/mL and 16 ?g/mL, respectively. FN33 AMP induced cell membrane permeabilization, suggesting a membrane-disrupting mechanism. The AMP remained stable at 30?40 °C but lost activity at higher temperatures and following exposure to proteases, surfactants, and extreme pH. All-atom molecular dynamics simulations showed that the AMP adopts a β-sheet structure upon membrane interaction. These findings suggest that Virgibacillus chiguensis FN33 is a promising source of novel antibacterial agents against MRSA, supporting alternative strategies for drug-resistant infections.
en-copyright=
kn-copyright=
en-aut-name=SermkaewNamfa
en-aut-sei=Sermkaew
en-aut-mei=Namfa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AtipairinApichart
en-aut-sei=Atipairin
en-aut-mei=Apichart
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=BoonruamkaewPhetcharat
en-aut-sei=Boonruamkaew
en-aut-mei=Phetcharat
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KrobthongSucheewin
en-aut-sei=Krobthong
en-aut-mei=Sucheewin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AonbangkhenChanat
en-aut-sei=Aonbangkhen
en-aut-mei=Chanat
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UchiyamaJumpei
en-aut-sei=Uchiyama
en-aut-mei=Jumpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YingchutrakulYodying
en-aut-sei=Yingchutrakul
en-aut-mei=Yodying
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SongnakaNuttapon
en-aut-sei=Songnaka
en-aut-mei=Nuttapon
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=School of Pharmacy, Walailak University
kn-affil=
affil-num=2
en-affil=School of Pharmacy, Walailak University
kn-affil=
affil-num=3
en-affil=School of Pharmacy, Walailak University
kn-affil=
affil-num=4
en-affil=Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University
kn-affil=
affil-num=5
en-affil=Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University
kn-affil=
affil-num=6
en-affil=Department of Bacteriology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency
kn-affil=
affil-num=8
en-affil=School of Pharmacy, Walailak University
kn-affil=
en-keyword=anionic AMP
kn-keyword=anionic AMP
en-keyword=AMP
kn-keyword=AMP
en-keyword=antimicrobial peptide
kn-keyword=antimicrobial peptide
en-keyword=antimicrobial resistance
kn-keyword=antimicrobial resistance
en-keyword=FN33
kn-keyword=FN33
en-keyword=genome
kn-keyword=genome
en-keyword=molecular dynamics simulations
kn-keyword=molecular dynamics simulations
en-keyword=MRSA
kn-keyword=MRSA
en-keyword=Virgibacillus chiguensis
kn-keyword=Virgibacillus chiguensis
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=2500368
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250629
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Integration of Cholesterol Oxidase‐Based Biosensors on a Smart Contact Lens for Wireless Cholesterol Monitoring from Tears
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Cholesterol plays a critical role in physiological functions, but elevated levels increase the risk of cardiovascular disease. Regular cholesterol monitoring is essential for elderly or obese individuals. Current methods, such as blood tests, are invasive, inconvenient, and require a professional operator. In contrast, tears, as an accessible body fluid, offer a promising alternative for noninvasive monitoring due to their correlation with blood cholesterol levels. Herein, a noninvasive approach for monitoring cholesterol levels in tears using a biosensor integrated into a smart contact lens is reported. The biosensor employs cholesterol oxidases as the biocatalyst, coupled with an osmium-based mediator, to detect cholesterol concentrations ranging from 0.1?mM to 1.2?mM in artificial tears. A key challenge is the extremely low cholesterol concentration in tears, which is addressed using a parity-time (P-T) symmetry-based magnetic resonance coupling system. This system enables wireless signal reading and achieves high sensitivity due to its high-quality (Q) factor, which can achieve a detection limit of 0.061?mM. This portable, high-sensitivity smart contact lens demonstrates significant potential as a wearable device for continuous, noninvasive cholesterol monitoring. The findings contribute to advancing tear-based diagnostic systems and highlight the scientific importance of utilizing tear biomarkers for health monitoring.
en-copyright=
kn-copyright=
en-aut-name=CuiYang
en-aut-sei=Cui
en-aut-mei=Yang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ZhuoLin
en-aut-sei=Zhuo
en-aut-mei=Lin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AzhariSaman
en-aut-sei=Azhari
en-aut-mei=Saman
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MiyakeTakeo
en-aut-sei=Miyake
en-aut-mei=Takeo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate school of Information, Production and Systems, Waseda University
kn-affil=
affil-num=2
en-affil=Graduate school of Information, Production and Systems, Waseda University
kn-affil=
affil-num=3
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate school of Information, Production and Systems, Waseda University
kn-affil=
affil-num=5
en-affil=Graduate school of Information, Production and Systems, Waseda University
kn-affil=
en-keyword=cholesterol
kn-keyword=cholesterol
en-keyword=magnetic resonance coupling
kn-keyword=magnetic resonance coupling
en-keyword=parity-time symmetry
kn-keyword=parity-time symmetry
en-keyword=smart contact lens
kn-keyword=smart contact lens
END
start-ver=1.4
cd-journal=joma
no-vol=133
cd-vols=
no-issue=9
article-no=
start-page=555
end-page=561
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250901
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Preparation and structural characterization of nanoporous silica/magnesium(II)-whitlockite composite particles
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The preparation of particles composed of nanoporous silica (NS) and Mg2+-whitlockite (Mg-WH) would provide valuable insights for designing particles for biomedical applications. In this study, NS and Mg-WH composite particles were successfully synthesized. The addition of chitosan during synthesis possibly promoted the crystallization of calcium phosphate phases in the composite particles. Pore size distribution analysis of the particles showed a maximum at 3.2 nm. Investigating the adsorption of methylene blue onto the particles in a phosphate buffer (pH 7.4) showed that the saturated adsorption amount of methylene blue on the particles was significantly higher than that on commercial hydroxyapatite. The composite particles provided important results for potential applications as drug carriers for bone regeneration and repair.
en-copyright=
kn-copyright=
en-aut-name=KataokaTakuya
en-aut-sei=Kataoka
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HirotaDaiki
en-aut-sei=Hirota
en-aut-mei=Daiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FujiiEiji
en-aut-sei=Fujii
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YoshiokaTomohiko
en-aut-sei=Yoshioka
en-aut-mei=Tomohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HayakawaSatoshi
en-aut-sei=Hayakawa
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=3
en-affil=Industrial Technology Center of Okayama Prefecture
kn-affil=
affil-num=4
en-affil=Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=5
en-affil=Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=Nanoporous silica
kn-keyword=Nanoporous silica
en-keyword=Magnesium(II)-whitlockite
kn-keyword=Magnesium(II)-whitlockite
en-keyword=Composite particle
kn-keyword=Composite particle
en-keyword=Drug carriers for bone regeneration and repair
kn-keyword=Drug carriers for bone regeneration and repair
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=17
article-no=
start-page=6049
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250826
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Photon-Counting CT Enhances Diagnostic Accuracy in Stable Coronary Artery Disease: A Comparative Study with Conventional CT
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Objectives: Coronary CT angiography (CCTA) is a cornerstone in evaluating stable coronary artery disease (CAD), but conventional energy-integrating detector CT (EID-CT) has limitations, including calcium blooming and limited spatial resolution. Photon-counting detector CT (PCD-CT) may overcome these drawbacks through enhanced spatial resolution and improved tissue characterization. Methods: In this retrospective, propensity score?matched study, we compared CCTA findings from 820 patients (410 per group) who underwent either EID-CT or PCD-CT for suspected stable CAD. Primary outcomes included stenosis severity, high-risk plaque features, and downstream invasive coronary angiography (ICA) referral and yield. Results: The matched cohorts were balanced in demographics and cardiovascular risk factors (mean age 67 years, 63% male). PCD-CT showed a favorable shift in stenosis severity distribution (p = 0.03). High-risk plaques were detected less frequently with PCD-CT (22.7% vs. 30.5%, p = 0.01). Median coronary calcium scores did not differ (p = 0.60). Among patients referred for ICA, those initially evaluated with PCD-CT were more likely to undergo revascularization (62.5% vs. 44.1%), and fewer underwent potentially unnecessary ICA without revascularization (3.7% vs. 8.0%, p = 0.001). The specificity in diagnosing significant stenosis requiring revascularization was 0.74 with EID-CT and 0.81 with PCD-CT (p = 0.04). Conclusions: PCD-CT improved diagnostic specificity for CAD, reducing unnecessary ICA referrals while maintaining detection of clinically significant disease. This advanced CT technology holds promise for more accurate, efficient, and patient-centered CAD evaluation.
en-copyright=
kn-copyright=
en-aut-name=NakashimaMitsutaka
en-aut-sei=Nakashima
en-aut-mei=Mitsutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyoshiToru
en-aut-sei=Miyoshi
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HaraShohei
en-aut-sei=Hara
en-aut-mei=Shohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MiyagiRyosuke
en-aut-sei=Miyagi
en-aut-mei=Ryosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NishiharaTakahiro
en-aut-sei=Nishihara
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MikiTakashi
en-aut-sei=Miki
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OsawaKazuhiro
en-aut-sei=Osawa
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YuasaShinsuke
en-aut-sei=Yuasa
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of General Internal Medicine 3, Kawasaki Medical School General Medicine Centre
kn-affil=
affil-num=8
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=photon-counting CT
kn-keyword=photon-counting CT
en-keyword=coronary CT angiography
kn-keyword=coronary CT angiography
en-keyword=diagnostic accuracy
kn-keyword=diagnostic accuracy
en-keyword=invasive coronary angiography
kn-keyword=invasive coronary angiography
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250921
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Urbanised landscape and microhabitat differences can influence flowering phenology and synchrony in an annual herb
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=1. Flowering phenology, a crucial determinant of plant reproductive success and biotic interactions, is susceptible to urbanisation. Numerous studies have shown the impact of urbanised landscapes on flowering phenology based on comparisons along urban?rural gradients. Phenological patterns among microenvironments in the urban ecosystem have received less attention, although they often offer unique habitats with varying artificial influences, such as roadsides, drainage ditches and vacant lots. If differences in microenvironments diversify flowering phenology, the urban matrix might reduce flowering synchrony with neighbouring populations, limiting outcrossing opportunities and therefore reducing reproductive success.
2. We investigated the flowering phenology and synchrony of the native annual herb Commelina communis in approximately 250 populations at two rural and two urban sites over 3?years. To determine the effect of microhabitat differences, we categorised the microhabitats of C. communis populations into five types: drains, roadsides, vacant land, farmland and forest edge. In some study populations, we investigated reproductive success (seed set) to estimate the degree of outcross pollination limitation.
3. Our findings revealed that populations in urban sites exhibited earlier flowering onset and longer flowering duration compared to rural locations. Besides, we did not detect consistent patterns of flowering onset, peak and duration among the different microhabitat types. For flowering synchrony, we found that the population in urban sites, growing in drain habitats, and with artificial disturbances exhibited relatively lower interpopulation flowering synchrony, suggesting their phenology differed from neighbouring populations within the same landscape. Additionally, populations in urban sites, especially those growing in drain and roadside habitats, suffered severe outcross pollen limitation compared to those in rural landscapes.
4. Synthesis and applications. In conclusion, our results indicate that in addition to landscape changes associated with urbanisation, variations in local microhabitats also influence the flowering phenology and synchrony of C. communis populations. Urbanised landscapes and differences in microhabitats could contribute to the diversification of phenological patterns between populations, potentially having a negative impact on the reproductive success of native plant species. These findings highlight the need to consider not only spatial but also temporal fragmentation from diversified flowering phenology when addressing conservation in the urban matrix.
en-copyright=
kn-copyright=
en-aut-name=FujiwaraHinata
en-aut-sei=Fujiwara
en-aut-mei=Hinata
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamaguchiHiroto
en-aut-sei=Yamaguchi
en-aut-mei=Hiroto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakataKazuyoshi
en-aut-sei=Nakata
en-aut-mei=Kazuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KatsuharaKoki R.
en-aut-sei=Katsuhara
en-aut-mei=Koki R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=artificial disturbance
kn-keyword=artificial disturbance
en-keyword=Commelina
kn-keyword=Commelina
en-keyword=drainage ditches
kn-keyword=drainage ditches
en-keyword=flowering synchrony
kn-keyword=flowering synchrony
en-keyword=roadside
kn-keyword=roadside
en-keyword=ruderal plants
kn-keyword=ruderal plants
en-keyword=temporal fragmentation
kn-keyword=temporal fragmentation
en-keyword=urban ecology
kn-keyword=urban ecology
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=1
end-page=3
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250919
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Dual-action intranasal oxytocin enhances both male sexual performance and fertility in rats
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=EnomotoChica
en-aut-sei=Enomoto
en-aut-mei=Chica
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OtiTakumi
en-aut-sei=Oti
en-aut-mei=Takumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamanakaTakahiro
en-aut-sei=Yamanaka
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ShimadaMasayuki
en-aut-sei=Shimada
en-aut-mei=Masayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SakamotoHirotaka
en-aut-sei=Sakamoto
en-aut-mei=Hirotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Biology, Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Biology, Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Laboratory of Reproductive Endocrinology, Graduate School of Integrated Sciences for Life, Hiroshima University
kn-affil=
affil-num=4
en-affil=Laboratory of Reproductive Endocrinology, Graduate School of Integrated Sciences for Life, Hiroshima University
kn-affil=
affil-num=5
en-affil=Department of Biology, Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=oxytocin
kn-keyword=oxytocin
en-keyword=intranasal administration
kn-keyword=intranasal administration
en-keyword=sexual behavior
kn-keyword=sexual behavior
en-keyword=sperm motility
kn-keyword=sperm motility
en-keyword=paraventricular nucleus
kn-keyword=paraventricular nucleus
en-keyword=male sexual function
kn-keyword=male sexual function
en-keyword=androgen signaling
kn-keyword=androgen signaling
END
start-ver=1.4
cd-journal=joma
no-vol=133
cd-vols=
no-issue=1
article-no=
start-page=15
end-page=24
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Comparative study of the effects of fluoride treatment with cyclic variations in pH on the structures of stoichiometric, calcium-deficient, and carbonated hydroxyapatites
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The primary objective of this study was to analyze the effects of fluoride treatment with cyclic variations in pH on the structure of stoichiometric hydroxyapatite (HAp), calcium-deficient HAp (CDHAp), and carbonated HAp (CHAp) powders. The structures of HAp, CDHAp, and CHAp before and after fluoride treatment were investigated using X-ray diffraction, Fourier-transform infrared, Raman, and nuclear magnetic resonance spectroscopic analyses. The fluoride treatment with cyclic variations in pH increased the calcium deficiency in HAp and CHAp but decreased in CDHAp. During fluoride treatment, fluoridated CDHAp or fluoridated calcium-deficient CHAp was formed on the surface of the HAp samples via dissolution and crystal growth, accompanied by the selective elution of component ions and partial substitution of OH? groups in the HAp hexagonal lattice with F? ions. No evidence of the formation of Ca(OH)2 and OH? groups outside the HAp crystal lattice was obtained. A new perspective on the formation of structured water at the surface termination of the OH columns (disordered region), with possible interactions with adsorbed water molecules or nonspecifically adsorbed F? ions was provided. The top surface of the fluoridated CDHAp consisted of an amorphous fluoride-rich hydrated layer, which included calcium phosphate and CaF2.
en-copyright=
kn-copyright=
en-aut-name=HayakawaSatoshi
en-aut-sei=Hayakawa
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkadaYu
en-aut-sei=Okada
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshiokaTomohiko
en-aut-sei=Yoshioka
en-aut-mei=Tomohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=Hydroxyapatite
kn-keyword=Hydroxyapatite
en-keyword=Fluoride treatment
kn-keyword=Fluoride treatment
en-keyword=Microstructure
kn-keyword=Microstructure
en-keyword=Calcium fluoride
kn-keyword=Calcium fluoride
en-keyword=Structured water
kn-keyword=Structured water
END
start-ver=1.4
cd-journal=joma
no-vol=4
cd-vols=
no-issue=9
article-no=
start-page=1135
end-page=1151
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250910
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Heart failure-specific cardiac fibroblasts contribute to cardiac dysfunction via the MYC?CXCL1?CXCR2 axis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Heart failure (HF) is a growing global health issue. While most studies focus on cardiomyocytes, here we highlight the role of cardiac fibroblasts (CFs) in HF. Single-cell RNA sequencing of mouse hearts under pressure overload identified six CF subclusters, with one specific to the HF stage. This HF-specific CF population highly expresses the transcription factor Myc. Deleting Myc in CFs improves cardiac function without reducing fibrosis. MYC directly regulates the expression of the chemokine CXCL1, which is elevated in HF-specific CFs and downregulated in Myc-deficient CFs. The CXCL1 receptor, CXCR2, is expressed in cardiomyocytes, and blocking the CXCL1?CXCR2 axis mitigates HF. CXCL1 impairs contractility in neonatal rat and human iPSC-derived cardiomyocytes. Human CFs from failing hearts also express MYC and CXCL1, unlike those from controls. These findings reveal that HF-specific CFs contribute to HF via the MYC?CXCL1?CXCR2 pathway, offering a promising therapeutic target beyond cardiomyocytes.
en-copyright=
kn-copyright=
en-aut-name=KomuroJin
en-aut-sei=Komuro
en-aut-mei=Jin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HashimotoHisayuki
en-aut-sei=Hashimoto
en-aut-mei=Hisayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KatsukiToshiomi
en-aut-sei=Katsuki
en-aut-mei=Toshiomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KusumotoDai
en-aut-sei=Kusumoto
en-aut-mei=Dai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KatohManami
en-aut-sei=Katoh
en-aut-mei=Manami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KoToshiyuki
en-aut-sei=Ko
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ItoMasamichi
en-aut-sei=Ito
en-aut-mei=Masamichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KatagiriMikako
en-aut-sei=Katagiri
en-aut-mei=Mikako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KubotaMasayuki
en-aut-sei=Kubota
en-aut-mei=Masayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YamadaShintaro
en-aut-sei=Yamada
en-aut-mei=Shintaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NakamuraTakahiro
en-aut-sei=Nakamura
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=AkibaYohei
en-aut-sei=Akiba
en-aut-mei=Yohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KoukaThukaa
en-aut-sei=Kouka
en-aut-mei=Thukaa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KomuroKaoruko
en-aut-sei=Komuro
en-aut-mei=Kaoruko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KimuraMai
en-aut-sei=Kimura
en-aut-mei=Mai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=ItoShogo
en-aut-sei=Ito
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=NomuraSeitaro
en-aut-sei=Nomura
en-aut-mei=Seitaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=KomuroIssei
en-aut-sei=Komuro
en-aut-mei=Issei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=FukudaKeiichi
en-aut-sei=Fukuda
en-aut-mei=Keiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=YuasaShinsuke
en-aut-sei=Yuasa
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=IedaMasaki
en-aut-sei=Ieda
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
affil-num=1
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Frontier Cardiovascular Science, Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Frontier Cardiovascular Science, Graduate School of Medicine
kn-affil=
affil-num=7
en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=8
en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=9
en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=10
en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=11
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=12
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=13
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=14
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=15
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=16
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=17
en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=18
en-affil=Department of Frontier Cardiovascular Science, Graduate School of Medicine
kn-affil=
affil-num=19
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=20
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=21
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=118
cd-vols=
no-issue=10
article-no=
start-page=146
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250901
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Duganella hordei sp. nov., Duganella caerulea sp. nov., and Duganella rhizosphaerae sp. nov., isolated from barley rhizosphere
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Duganella sp. strains R1T, R57T, and R64T, isolated from barley roots in Japan, are Gram-stain-negative, motile, rod-shaped bacteria. Duganella species abundantly colonized barley roots. Strains R1T, R57T, and R64T were capable of growth at 4 °C, suggesting adaptation to colonize winter barley roots. Strains R57T and R64T formed purple colonies, indicating violacein production, while strain R1T did not. Based on 16S rRNA gene sequence similarities, strains R1T, R57T, and R64T were most closely related to D. violaceipulchra HSC-15S17T (99.10%), D. vulcania FT81WT (99.45%), and D. violaceipulchra HSC-15S17T (99.86%), respectively. Their genome sizes ranged from 7.05 to 7.38 Mbp, and their genomic G+C contents were 64.2?64.7%. The average nucleotide identity and digital DNA?DNA hybridization values between R1T and D. violaceipulchra HSC-15S17T, R57T and D. vulcania FT81WT, R64T and D. violaceipulchra HSC-15S17T were 86.0% and 33.2%, 95.7% and 67.9%, and 92.7% and 52.6%, respectively. Their fatty acids were predominantly composed of C16:0, C17:0 cyclo, and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c). Based on their distinct genetic and phenotypic characteristics, and supported by chemotaxonomic analyses, we propose that strains R1T, R57T, and R64T represent novel species within the Duganella genus, for which the names Duganella hordei (type strain R1T?=?NBRC 115982 T?=?DSM 115069 T), Duganella caerulea (type strain R57T?=?NBRC 115983 T?=?DSM 115070 T), and Duganella rhizosphaerae (type strain R64T?=?NBRC 115984 T?=?DSM 115071 T) are proposed.
en-copyright=
kn-copyright=
en-aut-name=KishiroKatsumoto
en-aut-sei=Kishiro
en-aut-mei=Katsumoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SahinNurettin
en-aut-sei=Sahin
en-aut-mei=Nurettin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SaishoDaisuke
en-aut-sei=Saisho
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamajiNaoki
en-aut-sei=Yamaji
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamashitaJun
en-aut-sei=Yamashita
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MondenYuki
en-aut-sei=Monden
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakagawaTomoyuki
en-aut-sei=Nakagawa
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MochidaKeiichi
en-aut-sei=Mochida
en-aut-mei=Keiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TaniAkio
en-aut-sei=Tani
en-aut-mei=Akio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Egitim Fakultesi, Mugla Sitki Kocman University
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=4
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=5
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Faculty of Applied Biological Sciences, Gifu University
kn-affil=
affil-num=8
en-affil=RIKEN Center for Sustainable Resource Science
kn-affil=
affil-num=9
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
en-keyword=Barley
kn-keyword=Barley
en-keyword=Duganella
kn-keyword=Duganella
en-keyword=Novel species
kn-keyword=Novel species
en-keyword=Rhizosphere
kn-keyword=Rhizosphere
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=pcaf098
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250822
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Thylakostasis: key factors in thylakoid membrane organization with emphasis on biogenesis and remodeling proteins in vascular plants
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The thylakoid membrane (TM), a defining feature for almost all oxygen-evolving photosynthetic organisms, serves as the structural foundation for light-driven energy conversion. In vascular plants, the TM evolved into a complex architecture composed of single-layered stroma thylakoids and stacked grana thylakoids, enabling the spatial organization of two photosystems (PSII and PSI) to optimize light capture and energy transfer. In addition, two membrane regions, one connecting these two compartments (grana margin) and the other corresponding to the curvature domain in grana, function in dissipating excess energy, balancing electron transfer, and maintaining functional PSII. Recent advances in electron microscopy imaging and proteome analysis of membrane subcompartments have provided new insights into the structure and dynamic adaptations of the TM in response to diverse environmental conditions. To describe the mechanisms that govern TM architecture, dynamics, and integrity, I am introducing the concept of “thylakostasis” (thylakoid homeostasis). Here, I provide an overview of the molecular components and processes central to thylakostasis, including the biosynthesis of lipids, chlorophyll, and proteins. I focus particularly on the membrane remodeling proteins whose functions have been elucidated recently, such as VIPP1, a member of the evolutionarily conserved PspA/ESCRT-III superfamily; FZL, a dynamin-like GTPase; and CURT1, a curvature-inducing protein unique to photosynthetic organisms. Together, these factors orchestrate TM biogenesis, remodeling, and adaptive flexibility that is essential for photosynthetic efficiency.
en-copyright=
kn-copyright=
en-aut-name=SakamotoWataru
en-aut-sei=Sakamoto
en-aut-mei=Wataru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
en-keyword=chloroplast
kn-keyword=chloroplast
en-keyword=ESCRT-III (endosomal sorting complex required for transport complex III)
kn-keyword=ESCRT-III (endosomal sorting complex required for transport complex III)
en-keyword=grana
kn-keyword=grana
en-keyword=membrane trafficking
kn-keyword=membrane trafficking
en-keyword=photosynthesis
kn-keyword=photosynthesis
en-keyword=stroma thylakoid
kn-keyword=stroma thylakoid
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Generation of alkyl radicals via C(sp3)?C(sp3) bond cleavage of xanthene-based precursors for photocatalytic Giese-type reaction
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Novel xanthene-based alkyl radical precursors were developed and subjected to photocatalytic C(sp3)?C(sp3) bond cleavage for the efficient generation of alkyl radicals, which were subsequently reacted with various alkenes to afford the corresponding Giese-type products. After the reaction, the produced xanthones can be recovered in high yield.
en-copyright=
kn-copyright=
en-aut-name=HoriuchiShuta
en-aut-sei=Horiuchi
en-aut-mei=Shuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OishiMasato
en-aut-sei=Oishi
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MizutaniAsuka
en-aut-sei=Mizutani
en-aut-mei=Asuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakamuraHiroyoshi
en-aut-sei=Takamura
en-aut-mei=Hiroyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KadotaIsao
en-aut-sei=Kadota
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TanakaKenta
en-aut-sei=Tanaka
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=18
cd-vols=
no-issue=1
article-no=
start-page=wrae175
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Cyanorhodopsin-II represents a yellow-absorbing proton-pumping rhodopsin clade within cyanobacteria
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Microbial rhodopsins are prevalent in many cyanobacterial groups as a light-energy-harvesting system in addition to the photosynthetic system. It has been suggested that this dual system allows efficient capture of sunlight energy using complementary ranges of absorption wavelengths. However, the diversity of cyanobacterial rhodopsins, particularly in accumulated metagenomic data, remains underexplored. Here, we used a metagenomic mining approach, which led to the identification of a novel rhodopsin clade unique to cyanobacteria, cyanorhodopsin-II (CyR-II). CyR-IIs function as light-driven outward H+ pumps. CyR-IIs, together with previously identified cyanorhodopsins (CyRs) and cyanobacterial halorhodopsins (CyHRs), constitute cyanobacterial ion-pumping rhodopsins (CyipRs), a phylogenetically distinct family of rhodopsins. The CyR-II clade is further divided into two subclades, YCyR-II and GCyR-II, based on their specific absorption wavelength. YCyR-II absorbed yellow light (λmax?=?570 nm), whereas GCyR-II absorbed green light (λmax?=?550 nm). X-ray crystallography and mutational analysis revealed that the difference in absorption wavelengths is attributable to slight changes in the side chain structure near the retinal chromophore. The evolutionary trajectory of cyanobacterial rhodopsins suggests that the function and light-absorbing range of these rhodopsins have been adapted to a wide range of habitats with variable light and environmental conditions. Collectively, these findings shed light on the importance of rhodopsins in the evolution and environmental adaptation of cyanobacteria.
en-copyright=
kn-copyright=
en-aut-name=Hasegawa-TakanoMasumi
en-aut-sei=Hasegawa-Takano
en-aut-mei=Masumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HosakaToshiaki
en-aut-sei=Hosaka
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KojimaKeiichi
en-aut-sei=Kojima
en-aut-mei=Keiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NishimuraYosuke
en-aut-sei=Nishimura
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KuriharaMarie
en-aut-sei=Kurihara
en-aut-mei=Marie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakajimaYu
en-aut-sei=Nakajima
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=Ishizuka-KatsuraYoshiko
en-aut-sei=Ishizuka-Katsura
en-aut-mei=Yoshiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=Kimura-SomeyaTomomi
en-aut-sei=Kimura-Someya
en-aut-mei=Tomomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ShirouzuMikako
en-aut-sei=Shirouzu
en-aut-mei=Mikako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SudoYuki
en-aut-sei=Sudo
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YoshizawaSusumu
en-aut-sei=Yoshizawa
en-aut-mei=Susumu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Atmosphere and Ocean Research Institute, The University of Tokyo
kn-affil=
affil-num=2
en-affil=Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research
kn-affil=
affil-num=3
en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Atmosphere and Ocean Research Institute, The University of Tokyo
kn-affil=
affil-num=5
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Atmosphere and Ocean Research Institute, The University of Tokyo
kn-affil=
affil-num=7
en-affil=Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research
kn-affil=
affil-num=8
en-affil=Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research
kn-affil=
affil-num=9
en-affil=Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research
kn-affil=
affil-num=10
en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Atmosphere and Ocean Research Institute, The University of Tokyo
kn-affil=
en-keyword=cyanobacteria
kn-keyword=cyanobacteria
en-keyword=microbial rhodopsin
kn-keyword=microbial rhodopsin
en-keyword=ecology
kn-keyword=ecology
en-keyword=evolution
kn-keyword=evolution
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=10
article-no=
start-page=4724
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250515
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Stem Cell Factors BAM1 and WOX1 Suppressing Longitudinal Cell Division of Margin Cells Evoked by Low-Concentration Auxin in Young Cotyledon of Arabidopsis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Highly differentiated tissues and organs play essential biological functions in multicellular organisms. Coordination of organ developmental process with tissue differentiation is necessary to achieve proper development of mature organs, but mechanisms for such coordination are not well understood. We used cotyledon margin cells from Arabidopsis plant as a new model system to investigate cell elongation and cell division during organ growth and found that margin cells endured a developmental phase transition from the “elongation” phase to the “elongation and division” phase at the early stage in germinating seedlings. We also discovered that the stem cell factors BARELY ANY MERISTEM 1 (BAM1) and WUSCHEL-related homeobox1 (WOX1) are involved in the regulation of margin cell developmental phase transition. Furthermore, exogenous auxin treatment (1 nanomolar,nM) promotes cell division, especially longitudinal cell division. This promotion of cell division did not occur in bam1 and wox1 mutants. Based on these findings, we hypothesized a new “moderate auxin concentration” model which emphasizes that a moderate auxin concentration is the key to triggering the developmental transition of meristematic cells.
en-copyright=
kn-copyright=
en-aut-name=JiangYuli
en-aut-sei=Jiang
en-aut-mei=Yuli
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=LiangJian
en-aut-sei=Liang
en-aut-mei=Jian
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WangChunyan
en-aut-sei=Wang
en-aut-mei=Chunyan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanLi
en-aut-sei=Tan
en-aut-mei=Li
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KawanoYoji
en-aut-sei=Kawano
en-aut-mei=Yoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NagawaShingo
en-aut-sei=Nagawa
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Institute for Translational Brain Reaearch, Fudan University
kn-affil=
affil-num=2
en-affil=Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences
kn-affil=
affil-num=3
en-affil=Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences
kn-affil=
affil-num=4
en-affil=Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences
kn-affil=
affil-num=5
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=6
en-affil=Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences
kn-affil=
en-keyword=BAM1
kn-keyword=BAM1
en-keyword=WOX1
kn-keyword=WOX1
en-keyword=margin cells
kn-keyword=margin cells
en-keyword=auxin
kn-keyword=auxin
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=95
end-page=143
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250729
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Low-Threshold Raman Silicon Lasers Using Photonic Crystal High-Q Nanocavities
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=By utilizing stimulated Raman scattering, it is possible to generate continuous-wave laser light in silicon, an indirect bandgap semiconductor. The first part of this chapter explains the mechanism of the Raman laser using a silicon resonator with a high-quality factor (Q). In the second part, the mechanism of the ultra-low threshold Raman silicon laser using a photonic crystal high-Q nanocavity is summarized, and recent advancements are explained.
en-copyright=
kn-copyright=
en-aut-name=TakahashiYasushi
en-aut-sei=Takahashi
en-aut-mei=Yasushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AsanoTakashi
en-aut-sei=Asano
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NodaSusumu
en-aut-sei=Noda
en-aut-mei=Susumu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Okayama University
kn-affil=
affil-num=2
en-affil=Kyoto University
kn-affil=
affil-num=3
en-affil=Kyoto University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=31
cd-vols=
no-issue=6
article-no=
start-page=103174
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202510
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Evaluation of a method to predict positioning errors in orthopantomography using cephalography
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction: Various radiographic examinations are used to diagnose diseases and determine treatment plans, and the quality of radiographic images affects diagnostic accuracy. This study assessed the relationship between orthopantomography and cephalometric analysis in predicting positioning errors before orthopantomography.
Methods: This study evaluated four human head phantom types and included 300 patients aged ?18 years who underwent orthopantomography. The correlation between the Frankfort horizontal plane and occlusal plane angles in the orthopantomogram was analyzed. The occlusal plane angle at a Frankfort horizontal plane of 0° was estimated using a linear approximation formula. Frankfort horizontal plane and occlusal plane angles were measured on the cephalograms, and their differences were analyzed for correlation with the occlusal plane angle at a Frankfort horizontal plane of 0° in the corresponding orthopantomograms. The cephalogram’s condylar plane?corpus line angle was also compared with orthopantomogram measurements.
Results: Frankfort horizontal and occlusal plane angles demonstrated a strong negative correlation (r < ?0.9) in phantom studies and moderate negative correlation (r < ?0.4) in clinical orthopantomograms. In the phantoms, the occlusal plane at a Frankfort horizontal of 0° in the orthopantomogram strongly correlated with the difference between the Frankfort horizontal and condylar plane?corpus line angles in the cephalogram.
Conclusion: Adjusting patient positioning based on individual skeletal differences and angles may reduce positioning errors and improve image quality. Cephalogram analysis could help determine an appropriate Frankfort plane angle for each patient when acquiring orthopantomograms.
Implications for practice: Integrating cephalometric analysis into positioning protocols enhances radiographic accuracy, reduces retakes, and improves diagnostic reliability in clinical positioning. This research could improve image quality by identifying reference indicators for orthopantomography by incorporating data from images other than cephalograms, such as computed tomography and magnetic resonance imaging.
en-copyright=
kn-copyright=
en-aut-name=ImajoS.
en-aut-sei=Imajo
en-aut-mei=S.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HondaM.
en-aut-sei=Honda
en-aut-mei=M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TanabeY.
en-aut-sei=Tanabe
en-aut-mei=Y.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Division of Radiology, Medical Support Department, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Division of Radiology, Medical Support Department, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Faculty of Medicine, Graduate School of Health Sciences, Okayama University
kn-affil=
en-keyword=Cephalogram
kn-keyword=Cephalogram
en-keyword=Orthopantomogram
kn-keyword=Orthopantomogram
en-keyword=Panoramic radiography
kn-keyword=Panoramic radiography
en-keyword=Frankfort horizontal plane
kn-keyword=Frankfort horizontal plane
en-keyword=Occlusal plane angle
kn-keyword=Occlusal plane angle
en-keyword=Patient positioning
kn-keyword=Patient positioning
END
start-ver=1.4
cd-journal=joma
no-vol=25
cd-vols=
no-issue=1
article-no=
start-page=305
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250818
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Precise stratification of prognosis in pancreatic ductal adenocarcinoma patients based on pre- and postoperative genomic information
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Pancreatic ductal adenocarcinoma (PDAC) has the highest mortality rate among all cancers; hence, multidisciplinary treatment is essential for patients with PDAC. Although the resectability status, tumour marker, KRAS circulating tumour DNA (mutKRAS-ctDNA) mutations, and GATA binding 6 (GATA6) expression status are promising prognostic biomarkers, their effective integration before and after surgery remains unclear.
Methods In this retrospective cohort study, patients with PDAC who had undergone radical resection were enrolled, and pre- and postoperative independent factors associated with poor prognosis were identified using Cox hazard modelling. Risk stratification systems were developed using the identified prognostic factors and investigated for the ability to predict prognosis.
Results A total of 91 patients with PDAC were included (median follow-up duration, 28 months). Borderline resectable or locally advanced cancer at diagnosis, elevated carbohydrate antigen 19?9 (CA19-9) level, and mutKRAS-ctDNA-positive status were identified as independent preoperative factors associated with poor prognosis. The postoperative factors significantly associated with shorter overall survival were low GATA6 expression, elevated CA19-9 level, and mutKRAS-ctDNA-positive status. Finally, the preoperative and postoperative risk scoring systems developed using Cox modelling hazard ratio values could significantly stratify prognosis after curative resection for PDAC.
Conclusion A risk stratification system based on liquid biopsy, specialised for each phase (pre- and post-surgery), has been proven to be a useful, simple, and practical prognostic prediction clinical tool to determine the optimal multidisciplinary treatment protocol for PDAC.
en-copyright=
kn-copyright=
en-aut-name=MiyamotoKokichi
en-aut-sei=Miyamoto
en-aut-mei=Kokichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YoshidaRyuichi
en-aut-sei=Yoshida
en-aut-mei=Ryuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YasuiKazuya
en-aut-sei=Yasui
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ShigeyasuKunitoshi
en-aut-sei=Shigeyasu
en-aut-mei=Kunitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YoshidaKazuhiro
en-aut-sei=Yoshida
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FujiTomokazu
en-aut-sei=Fuji
en-aut-mei=Tomokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakagiKosei
en-aut-sei=Takagi
en-aut-mei=Kosei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=UmedaYuzo
en-aut-sei=Umeda
en-aut-mei=Yuzo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MatsumotoKazuyuki
en-aut-sei=Matsumoto
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=FujiiYuki
en-aut-sei=Fujii
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TakahashiToshiaki
en-aut-sei=Takahashi
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MoriwakeKazuya
en-aut-sei=Moriwake
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KayanoMasashi
en-aut-sei=Kayano
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=NishiyamaTakeyoshi
en-aut-sei=Nishiyama
en-aut-mei=Takeyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=NagaiYasuo
en-aut-sei=Nagai
en-aut-mei=Yasuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=YamamotoHideki
en-aut-sei=Yamamoto
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=KatoHironari
en-aut-sei=Kato
en-aut-mei=Hironari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=TazawaHiroshi
en-aut-sei=Tazawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=MoritaMizuki
en-aut-sei=Morita
en-aut-mei=Mizuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science
kn-affil=
affil-num=11
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=17
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science
kn-affil=
affil-num=18
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=19
en-affil=Department of Biomedical Informatics, Okayama University Graduate School of Interdisciplinary Science and Engineering in Health Systems
kn-affil=
affil-num=20
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science
kn-affil=
affil-num=21
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=Pancreatic ductal adenocarcinoma
kn-keyword=Pancreatic ductal adenocarcinoma
en-keyword=Risk stratification
kn-keyword=Risk stratification
en-keyword=Prognosis
kn-keyword=Prognosis
en-keyword=Tumour marker
kn-keyword=Tumour marker
en-keyword=KRAS
kn-keyword=KRAS
END
start-ver=1.4
cd-journal=joma
no-vol=18
cd-vols=
no-issue=1
article-no=
start-page=e70149
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Clinical Impacts of Minimally Invasive Transperineal Abdominoperineal Resection in Crohn's Disease: A Retrospective Analysis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction: Crohn's disease (CD) often leads to complex anorectal complications, posing significant challenges in surgical management. Transperineal abdominoperineal resection (TpAPR) has emerged as a minimally invasive alternative to APR. This study aims to evaluate the safety and efficacy of TpAPR compared to APR in patients with CD.
Methods: A retrospective analysis was conducted on 19 CD patients who underwent either minimally invasive TpAPR (n?=?11) or APR (n?=?8) between 2008 and 2023 from a single institution. The primary outcomes were assessed: intraoperative blood loss, operative time, and surgical site infection (SSI) rates.
Results: The minimally invasive TpAPR group exhibited significantly reduced intraoperative blood loss (223?mL vs. 533?mL, p?=?0.04) and a lower incidence of SSI rates (36.4% vs. 75%, p?=?0.07). Operative time and hospital stay were comparable between groups.
Conclusion: Minimally invasive TpAPR demonstrates potential benefits over APR in reducing blood loss and SSI rates in CD patients. Further large-scale studies are warranted to confirm these findings.
en-copyright=
kn-copyright=
en-aut-name=KondoYoshitaka
en-aut-sei=Kondo
en-aut-mei=Yoshitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KanayaNobuhiko
en-aut-sei=Kanaya
en-aut-mei=Nobuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShojiRyohei
en-aut-sei=Shoji
en-aut-mei=Ryohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=InokuchiToshihiro
en-aut-sei=Inokuchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HiraokaSakiko
en-aut-sei=Hiraoka
en-aut-mei=Sakiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YoshidaYusuke
en-aut-sei=Yoshida
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsumiYuki
en-aut-sei=Matsumi
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ShigeyasuKunitoshi
en-aut-sei=Shigeyasu
en-aut-mei=Kunitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TeraishiFuminori
en-aut-sei=Teraishi
en-aut-mei=Fuminori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KurodaShinji
en-aut-sei=Kuroda
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Research Center for Intestinal Health Science, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Crohn's disease
kn-keyword=Crohn's disease
en-keyword=intraoperative blood loss
kn-keyword=intraoperative blood loss
en-keyword=minimally invasive surgery
kn-keyword=minimally invasive surgery
en-keyword=surgical site infection (SSI)
kn-keyword=surgical site infection (SSI)
en-keyword=transperineal abdominoperineal resection (TpAPR)
kn-keyword=transperineal abdominoperineal resection (TpAPR)
END
start-ver=1.4
cd-journal=joma
no-vol=65
cd-vols=
no-issue=9
article-no=
start-page=396
end-page=406
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250915
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Real-world Experience of Embolization for Intracranial Tumors in Japan: Analysis of 2,756 Cases from Japanese Registry of NeuroEndovascular Therapy 4
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Embolization of intracranial tumors is predominantly performed in Japan, primarily before neurosurgical resection. The Japanese Registry of NeuroEndovascular Therapy (JR-NET) Study Group, established in 2005, aims to clarify the factors influencing the outcomes of neuroendovascular treatment. Japanese Registry of NeuroEndovascular Therapy 4 is a nationwide, multicenter retrospective observational study that evaluates real-world data on intracranial tumor embolization in Japan. Japanese Registry of NeuroEndovascular Therapy 4 is based on data collected from 166 neurosurgical centers in Japan between January 2015 and December 2019. Of 63,230 patients, 2,664 (4.2%) with intracranial tumors underwent embolization. The primary endpoint was the proportion of patients with a modified Rankin scale (mRS) score of 0-2 at 30 days post-procedure. Secondary endpoints included procedure-related complications. Among the 2,664 patients, 61 records lacked sufficient data, leaving 2,603 patients (1,612 females, median age: 61 years [interquartile range 51-71]). The proportion of patients with mRS scores ?2 at 30 days after the procedure was 86.9%. The overall incidence of procedure-related complications was 4.8%, with 1.8% hemorrhagic, 2.0% ischemic, and 1.0% classified as other complications. In the multivariate analysis, general anesthesia and embolization of vessels other than the external carotid artery were identified as risk factors for the development of complications. Meningioma cases had a complication rate of 4.3%, with major complications occurring in 3.5%. Hemangioblastoma cases had a 14.9% complication rate, with major complications at 9.9%. Japanese Registry of NeuroEndovascular Therapy 4 provides comprehensive real-world data on intracranial tumor embolization in Japan, identifying risk factors to inform and improve the safe practice of intracranial tumor embolization in neuroendovascular therapy.
en-copyright=
kn-copyright=
en-aut-name=HARUMAJun
en-aut-sei=HARUMA
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SUGIUKenji
en-aut-sei=SUGIU
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HISHIKAWATomohito
en-aut-sei=HISHIKAWA
en-aut-mei=Tomohito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SOUTOMEYuta
en-aut-sei=SOUTOME
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=EBISUDANIYuki
en-aut-sei=EBISUDANI
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KIMURARyu
en-aut-sei=KIMURA
en-aut-mei=Ryu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=EDAKIHisanori
en-aut-sei=EDAKI
en-aut-mei=Hisanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KAWAKAMIMasato
en-aut-sei=KAWAKAMI
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MURAISatoshi
en-aut-sei=MURAI
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HIRAMATSUMasafumi
en-aut-sei=HIRAMATSU
en-aut-mei=Masafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TANAKAShota
en-aut-sei=TANAKA
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=SATOWTetsu
en-aut-sei=SATOW
en-aut-mei=Tetsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=IIHARAKoji
en-aut-sei=IIHARA
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=IMAMURAHirotoshi
en-aut-sei=IMAMURA
en-aut-mei=Hirotoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=ISHIIAkira
en-aut-sei=ISHII
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=MATSUMARUYuji
en-aut-sei=MATSUMARU
en-aut-mei=Yuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=SAKAIChiaki
en-aut-sei=SAKAI
en-aut-mei=Chiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=YOSHIMURAShinichi
en-aut-sei=YOSHIMURA
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=SAKAINobuyuki
en-aut-sei=SAKAI
en-aut-mei=Nobuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=Japanese Registry of Neuroendovascular Therapy (JR-NET) Investigators
en-aut-sei=Japanese Registry of Neuroendovascular Therapy (JR-NET) Investigators
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
affil-num=1
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Neurosurgery, Kawasaki Medical School
kn-affil=
affil-num=8
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Neurosurgery, Kawasaki Medical School
kn-affil=
affil-num=10
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Neurosurgery, Kindai University
kn-affil=
affil-num=13
en-affil=Department of Neurosurgery, National Cerebral and Cardiovascular Center
kn-affil=
affil-num=14
en-affil=Department of Neurosurgery, National Cerebral and Cardiovascular Center
kn-affil=
affil-num=15
en-affil=Department of Neurosurgery, Juntendo University Graduate School of Medicine
kn-affil=
affil-num=16
en-affil=Department of Neurosurgery, Institute of Medicine, University of Tsukuba
kn-affil=
affil-num=17
en-affil=Department of Neurosurgery, Kyoto University
kn-affil=
affil-num=18
en-affil=Department of Neurosurgery, Hyogo Medical University
kn-affil=
affil-num=19
en-affil=Department of Neurological Surgery, Shimizu Hospital
kn-affil=
affil-num=20
en-affil=
kn-affil=
en-keyword=complication
kn-keyword=complication
en-keyword=intracranial tumor
kn-keyword=intracranial tumor
en-keyword=embolization
kn-keyword=embolization
en-keyword=Japanese registry
kn-keyword=Japanese registry
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250905
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Double-blind randomized noninferiority study of the effect of pharyngeal lidocaine anesthesia on EUS
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background and objectives: EUS is typically performed under sedation, often with concomitant analgesics to reduce pain. Traditionally used pharyngeal anesthesia, commonly with lidocaine, may cause pharyngeal discomfort and allergic reactions. This study investigated whether lidocaine-based pharyngeal anesthesia is necessary for EUS under sedation with analgesics.
Methods: A double-blind, randomized, noninferiority study was conducted on EUS cases that met the selection criteria. Patients were randomly assigned to receive either 5 sprays of 8% lidocaine (lidocaine group: LG) or saline spray (placebo group: PG) as endoscopy pretreatment. The primary outcome was EUS tolerability, analyzed separately for endoscopists and patients, with a noninferiority margin set at 15%. Secondary outcomes included endoscopist and patient satisfaction, midazolam/pethidine doses, number of gag events, number of esophageal insertion attempts, use of sedative/analgesic antagonists, interruptions due to body movements, throat symptoms after endoscopy, and sedation-related adverse events.
Results: Favorable tolerance was 85% in LG and 88% for PG among endoscopists (percent difference: 3.0 [95% confidence interval, ?6.6 to 12.6]) and 90% in LG and 91% in PG among patients (percent difference, 0.94 [95% confidence interval, ?7.5 to 9.4]). Both groups exceeded the noninferiority margin (P = 0.0002 for endoscopists and patients). Patient satisfaction was significantly higher in PG (P = 0.0080), but no intergroup differences were found in other secondary outcomes.
Conclusions: PG was noninferior to LG for pharyngeal anesthesia during EUS with sedation and analgesics. These results suggest that pharyngeal anesthesia with lidocaine can be omitted when performing EUS under sedation with concomitant analgesics. Omitting pharyngeal anesthesia with lidocaine may prevent discomfort and complications caused by pharyngeal anesthesia, shorten examination times, and reduce medical costs.
en-copyright=
kn-copyright=
en-aut-name=FujiiYuki
en-aut-sei=Fujii
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsumotoKazuyuki
en-aut-sei=Matsumoto
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HaradaKei
en-aut-sei=Harada
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HattoriNao
en-aut-sei=Hattori
en-aut-mei=Nao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SatoRyosuke
en-aut-sei=Sato
en-aut-mei=Ryosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ObataTaisuke
en-aut-sei=Obata
en-aut-mei=Taisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsumiAkihiro
en-aut-sei=Matsumi
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MiyamotoKazuya
en-aut-sei=Miyamoto
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=UchidaDaisuke
en-aut-sei=Uchida
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HoriguchiShigeru
en-aut-sei=Horiguchi
en-aut-mei=Shigeru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TsutsumiKoichiro
en-aut-sei=Tsutsumi
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MitsuhashiToshiharu
en-aut-sei=Mitsuhashi
en-aut-mei=Toshiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=12
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=13
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
en-keyword=EUS
kn-keyword=EUS
en-keyword=Lidocaine
kn-keyword=Lidocaine
en-keyword=Tolerance
kn-keyword=Tolerance
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250909
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=S100A8/A9-MCAM signaling promotes gastric cancer cell progression via ERK-c-Jun activation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=S100 protein family members S100A8 and S100A9 function primarily as a heterodimer complex (S100A8/A9) in vivo. This complex has been implicated in various cancers, including gastric cancer (GC). Recent studies suggest that these proteins play significant roles in tumor progression, inflammation, and metastasis. However, the exact mechanisms by which S100A8/A9 contributes to GC pathogenesis remain unclear. This study investigates the role of S100A8/A9 and its receptor in GC. Immunohistochemical analysis was performed on GC tissue samples to assess the expression of the S100A8/A9 receptor melanoma cell adhesion molecule (MCAM). In vitro transwell migration and invasion assays were used to evaluate the motility and invasiveness of GC cells. Cell proliferation was assessed using a growth assay, and Western blotting (WB) was employed to examine downstream signaling pathways, including ERK and the transcription factor c-Jun, in response to S100A8/A9?MCAM interaction. S100A8/A9 stimulation enhanced both proliferation and migration through MCAM binding in GC cell lines. These cellular events were accompanied by ERK activation and c-Jun induction. Downregulation of MCAM suppressed both ERK phosphorylation and c-Jun expression, highlighting the importance of the S100A8/A9?MCAM?ERK?c-Jun axis in promoting GC progression. These findings indicate that S100A8/A9 contributes to GC progression via MCAM, which activates the ERK?c-Jun pathway. The S100A8/A9?signaling axis may represent a novel therapeutic target in GC.
en-copyright=
kn-copyright=
en-aut-name=ChenYouyi
en-aut-sei=Chen
en-aut-mei=Youyi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YangXu
en-aut-sei=Yang
en-aut-mei=Xu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KinoshitaRie
en-aut-sei=Kinoshita
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TomonobuNahoko
en-aut-sei=Tomonobu
en-aut-mei=Nahoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=PanBo
en-aut-sei=Pan
en-aut-mei=Bo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=WuFangping
en-aut-sei=Wu
en-aut-mei=Fangping
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ZhangXu
en-aut-sei=Zhang
en-aut-mei=Xu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SagayamaKazumi
en-aut-sei=Sagayama
en-aut-mei=Kazumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SunBei
en-aut-sei=Sun
en-aut-mei=Bei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=The First Affiliated Hospital, Zhejiang University School of Medicine
kn-affil=
affil-num=6
en-affil=School of Pharmaceutical Sciences, Zhejiang Chinese Medical University
kn-affil=
affil-num=7
en-affil=Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine
kn-affil=
affil-num=8
en-affil=Faculties of Educational and Research Management Field, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University
kn-affil=
affil-num=10
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=Gastric cancer
kn-keyword=Gastric cancer
en-keyword=S100 protein
kn-keyword=S100 protein
en-keyword=MCAM
kn-keyword=MCAM
en-keyword=Inflammation
kn-keyword=Inflammation
en-keyword=Metastasis
kn-keyword=Metastasis
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202505
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Development of 50 krpm Ultra-High Speed IPMSM For EV Traction
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This paper develops an ultra-high-speed 50 krpm motor for traction applications. A typical IPMSM structure is used for the rotor in this paper. At ultra-high speeds, the winding structure has a large effect on winding losses. Hence, this paper investigates the AC loss of the winding. The AC loss includes the eddy current loss and circulating current loss in the winding. Additionally, the ultra-high speed raises concerns about the rotor's critical speed. Therefore, in this paper, the shaft of the developed motor is manufactured, and the critical speed is evaluated.
en-copyright=
kn-copyright=
en-aut-name=TsunataRen
en-aut-sei=Tsunata
en-aut-mei=Ren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KimuraMasaki
en-aut-sei=Kimura
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakemotoMasatsugu
en-aut-sei=Takemoto
en-aut-mei=Masatsugu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ImaiJun
en-aut-sei=Imai
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Okayama University, Graduate School of Environmental, Life, Natural Science and Technology
kn-affil=
affil-num=2
en-affil=Okayama University, Graduate School of Environmental, Life, Natural Science and Technology
kn-affil=
affil-num=3
en-affil=Okayama University, Graduate School of Environmental, Life, Natural Science and Technology
kn-affil=
affil-num=4
en-affil=Okayama University, Graduate School of Environmental, Life, Natural Science and Technology
kn-affil=
en-keyword=IPMSM
kn-keyword=IPMSM
en-keyword=winding
kn-keyword=winding
en-keyword=traction motor
kn-keyword=traction motor
en-keyword=50 krpm
kn-keyword=50 krpm
en-keyword=eddy current loss
kn-keyword=eddy current loss
END
start-ver=1.4
cd-journal=joma
no-vol=34
cd-vols=
no-issue=2
article-no=
start-page=67
end-page=73
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240701
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Depletion of Lysyl Oxidase-Like 4 (LOXL4) Attenuates Colony Formation in vitro and Collagen Deposition in vivo Breast Cancer Model
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Lysyl oxidase (LOX) family proteins have recently become a topic in cancer progression. Our recent study found a high expression of LOX-like 4 (LOXL4) in MDA-MB-231 cells. Objective: To reveal the impact of depleted LOXL4 in both in vitro and in vivo breast cancer models from a histological perspective. Material and Method: Endogenous LOXL4 was depleted using the CRISPR/Cas9 on MDA-MB-231 parental cells. Based on the LOXL4 protein expression, the clone was determined for the next experiment, thus generating MDA-MB-231 LOXL4 KO. Cell assay was conducted using colony formation assay (n=3) followed by crystal violet staining. The indicated cells were inoculated orthotopically to female BALB/c nude mice (n=5). At the end of the experiment, tumors were isolated, fixed, and prepared for Masson Trichrome staining. Result: CRISPR/Cas9 completely depleted LOXL4 expression on clone number #2-22. Depletion of LOXL4 reduced the colony size formed by MDA-MB-231 cells. MDA-MB-231 LOXL4 KO #2-22 derived tumors showed depressed tumor volume compared to the parental group. Reduced collagen was also observed from the Masson Trichrome staining (p<0.001). Conclusion: Depletion of LOXL4 downregulates the growth of MDA-MB-231 cells in vitro and collagen deposition in vivo.
en-copyright=
kn-copyright=
en-aut-name=Ni Luh Gede Yoni Komalasari
en-aut-sei=Ni Luh Gede Yoni Komalasari
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=I Gde Haryo Ganesha
en-aut-sei=I Gde Haryo Ganesha
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=I Gusti Nyoman Sri Wiryawan
en-aut-sei=I Gusti Nyoman Sri Wiryawan
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TomonobuNahoko
en-aut-sei=Tomonobu
en-aut-mei=Nahoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Cell Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Histology, Faculty of Medicine, Udayana University
kn-affil=
affil-num=3
en-affil=Department of Histology, Faculty of Medicine, Udayana University
kn-affil=
affil-num=4
en-affil=Department of Cell Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Cell Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama University
kn-affil=
en-keyword=Good health
kn-keyword=Good health
en-keyword=Lysyl oxidase
kn-keyword=Lysyl oxidase
en-keyword=Extracellular matrix
kn-keyword=Extracellular matrix
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=16
article-no=
start-page=2634
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250812
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Prognostic Impact of Gastrointestinal Immune-Related Adverse Events Depends on Nutritional Status in Cancer Patients Treated with Immune Checkpoint Inhibitors
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Gastrointestinal immune-related adverse events (GI-irAEs) are recognized complications of immune checkpoint inhibitors (ICIs), but their prognostic relevance and associated risk factors remain unclear. This study aimed to assess whether baseline nutritional status, measured using the prognostic nutritional index (PNI), modifies the prognostic impact of GI-irAEs, and to identify clinical factors associated with their occurrence. Methods: We retrospectively analyzed 1104 cancer patients treated with ICIs at a single institution. GI-irAEs were defined as gastrointestinal symptoms requiring clinical intervention. Patients were stratified by irAE type and PNI (?40 vs. <40), and differences in survival and treatment response were evaluated. Potential risk factors for developing GI-irAEs were also examined. Results: GI-irAEs occurred in 2.7% of patients and were associated with prolonged overall survival (median: 28.7 vs. 14.0 months) among those with PNI ? 40. This survival advantage was not observed in patients with PNI < 40. The PNI-dependent prognostic pattern was specific to GI-irAEs and not observed for non-GI irAEs. Similar trends were confirmed in 4- and 8-week landmark analyses. Differences in objective response rate and disease control rate by PNI status were most pronounced in patients with GI-irAEs. The use of anti-CTLA-4 antibodies was significantly associated with GI-irAE development (odds ratio 4.24; 95% confidence interval 1.73?10.39). Conclusions: GI-irAEs appear to confer a survival benefit primarily in patients with preserved nutritional status. PNI may serve as a useful tool to contextualize the clinical relevance of GI-irAEs and help identify patients most likely to benefit from immune activation during ICI therapy.
en-copyright=
kn-copyright=
en-aut-name=HirataShoichiro
en-aut-sei=Hirata
en-aut-mei=Shoichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KonoYoshiyasu
en-aut-sei=Kono
en-aut-mei=Yoshiyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TanakaEmi
en-aut-sei=Tanaka
en-aut-mei=Emi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SueMasahiko
en-aut-sei=Sue
en-aut-mei=Masahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakeuchiYasuto
en-aut-sei=Takeuchi
en-aut-mei=Yasuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YoshikawaTomoki
en-aut-sei=Yoshikawa
en-aut-mei=Tomoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MakiYoshie
en-aut-sei=Maki
en-aut-mei=Yoshie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KamioTomohiro
en-aut-sei=Kamio
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KametakaDaisuke
en-aut-sei=Kametaka
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MatsuedaKatsunori
en-aut-sei=Matsueda
en-aut-mei=Katsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=SakaguchiChihiro
en-aut-sei=Sakaguchi
en-aut-mei=Chihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=HamadaKenta
en-aut-sei=Hamada
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=IwamuroMasaya
en-aut-sei=Iwamuro
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KawanoSeiji
en-aut-sei=Kawano
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KawaharaYoshiro
en-aut-sei=Kawahara
en-aut-mei=Yoshiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
affil-num=1
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Practical Gastrointestinal Endoscopy, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=14
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=15
en-affil=Department of Practical Gastrointestinal Endoscopy, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=16
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=gastrointestinal immune-related adverse events
kn-keyword=gastrointestinal immune-related adverse events
en-keyword=immune checkpoint inhibitors
kn-keyword=immune checkpoint inhibitors
en-keyword=prognostic nutrition index
kn-keyword=prognostic nutrition index
END
start-ver=1.4
cd-journal=joma
no-vol=6
cd-vols=
no-issue=
article-no=
start-page=1370
end-page=1386
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250815
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Time-Efficient and Practical Design Method for Skewed PMSMs: Integrating Numerical Calculations With Limited 3-D-FEA
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This article proposes a time-efficient and practical design method for determining appropriate skew structures for permanent magnet synchronous motors (PMSMs). Various PMSMs use skew to suppress torque ripple, but 3-D finite element analysis (3-D-FEA) is required in order to accurately determine an appropriate structure for skewed PMSMs, resulting in a long analysis time. Therefore, this article constructs a hybrid analysis method that combines numerical calculations and minimal 3-D-FEA. The aim of this method is to be practical and easy to use, even for novice designers, and to accurately and quickly design skewed PMSMs. In this article, the effectiveness of the proposed method is clarified through several case studies, and then, a skewed PMSM designed using the proposed method is verified experimentally. It is also revealed that suppression of voltage harmonics contributes to improving the performance of PMSMs in experiments.
en-copyright=
kn-copyright=
en-aut-name=TsunataRen
en-aut-sei=Tsunata
en-aut-mei=Ren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IchimuraYu
en-aut-sei=Ichimura
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakemotoMasatsugu
en-aut-sei=Takemoto
en-aut-mei=Masatsugu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ImaiJun
en-aut-sei=Imai
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Design method
kn-keyword=Design method
en-keyword=efficiency
kn-keyword=efficiency
en-keyword=field weakening control
kn-keyword=field weakening control
en-keyword=interior permanent magnet synchronous motor (IPMSM)
kn-keyword=interior permanent magnet synchronous motor (IPMSM)
en-keyword=PMSMs
kn-keyword=PMSMs
en-keyword=skew
kn-keyword=skew
en-keyword=torque ripple
kn-keyword=torque ripple
en-keyword=voltage harmonics
kn-keyword=voltage harmonics
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250830
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Pseudohypoxia induced by iron chelator activates tumor immune response in lung cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Hypoxia-inducible factor (HIF) signaling plays a critical role in immune cell function. Pseudohypoxia is characterized as iron-mediated stabilization of HIF-1α under normoxic conditions, which can be induced by iron chelators. This study explored whether iron chelators exert antitumor effects by enhancing tumor immune responses and elucidating the underlying mechanisms. The iron chelators Super?polyphenol 10 (SP10) and Deferoxamine (DFO) were used to create iron-deficient and pseudohypoxia conditions. Pseudohypoxia induced by iron chelators stimulates IL-2 secretion from T cells and from both human and murine nonsmall cell lung cancer (NSCLC) cell lines (A549, PC-3, and LLC). Administration of SP10 reduced tumor growth when LLC tumors were implanted in C57BL/6 mice; however, this was not observed in immunodeficient RAG1-deficient C57BL/6 mice. SP10 itself did not directly inhibit LLC cells proliferation in vitro, suggesting an activation of the tumor immune response. SP10 synergistically enhanced the efficacy of PD-1 antibody therapy in lung cancer by increasing the number of tumor-infiltrating lymphocytes (TILs). In conclusion, iron chelation-induced pseudohypoxia activates tumor immune responses by directly upregulating HIF-1α, augmenting T cell function, and inducing IL-2 secretion from T cells, and cancer cells, thereby amplifying the immune efficacy of the PD-1 antibody in lung cancer treatment.
en-copyright=
kn-copyright=
en-aut-name=HamadaYusuke
en-aut-sei=Hamada
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OharaToshiaki
en-aut-sei=Ohara
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ChenYuehua
en-aut-sei=Chen
en-aut-mei=Yuehua
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TeradaManato
en-aut-sei=Terada
en-aut-mei=Manato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WangYuze
en-aut-sei=Wang
en-aut-mei=Yuze
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KawaiHotaka
en-aut-sei=Kawai
en-aut-mei=Hotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=FujisawaMasayoshi
en-aut-sei=Fujisawa
en-aut-mei=Masayoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YoshimuraTeizo
en-aut-sei=Yoshimura
en-aut-mei=Teizo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MatsukawaAkihiro
en-aut-sei=Matsukawa
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Lung cancer
kn-keyword=Lung cancer
en-keyword=iron
kn-keyword=iron
en-keyword=hypoxia-inducible factor
kn-keyword=hypoxia-inducible factor
en-keyword=immune checkpoint inhibitors
kn-keyword=immune checkpoint inhibitors
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250902
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=An Alternative Approach Based on Skin Electrical Impedance to Determine Transepidermal Water Loss for Skin Barrier Function Assessments
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose: The transepidermal water loss (TEWL) has long been measured as an indicator to assess the skin barrier function in dermatological research and clinical practice. However, practical limitations such as time requirement, environmental sensitivity, and measurement complexity hinder the widespread uptake of conventional TEWL measurements in clinical settings and routine monitoring. Consequently, there is a growing need for rapid, robust, and clinically applicable alternatives to conventional TEWL measurements. Here, we present a simple, non-invasive, and time-efficient method based on the skin electrical impedance for skin barrier function assessments.
Methods: The skin electrical impedance, TEWL, stratum corneum (SC) thickness, and SC surface water content of 25 healthy adult participants with no history of dermatological diseases were measured at two adjacent forearm sites: intact site with a normal skin barrier and tape-stripped site with an impaired skin barrier. The measured impedance was used to calculate the SC thickness and surface water content, from which the TEWL was estimated and then compared against the TEWL measured using a Tewameter. The estimation accuracy was evaluated by determining the correlation coefficient (R) and root mean square error (RMSE) between estimated and measured TEWL.
Results: A strong correlation (R?=?0.891) was observed between estimated and measured TEWL, with an RMSE of 6.05 g/m?/h, indicating high accuracy of the proposed method.
Conclusion: This impedance-based method provides accurate estimations of the TEWL, indicating its potential as a practical alternative to conventional TEWL measurements for skin barrier function assessments, particularly in clinical or high-throughput settings.
en-copyright=
kn-copyright=
en-aut-name=UeharaOsamu
en-aut-sei=Uehara
en-aut-mei=Osamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakamuraTakao
en-aut-sei=Nakamura
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Radiological Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Radiological Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
en-keyword=Transepidermal water loss
kn-keyword=Transepidermal water loss
en-keyword=Electrical impedance
kn-keyword=Electrical impedance
en-keyword=Stratum corneum
kn-keyword=Stratum corneum
en-keyword=Skin barrier
kn-keyword=Skin barrier
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=17
article-no=
start-page=8145
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250822
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Augmentation of the Benzyl Isothiocyanate-Induced Antiproliferation by NBDHEX in the HCT-116 Human Colorectal Cancer Cell Line
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Increased drug metabolism and elimination are prominent mechanisms mediating multidrug resistance (MDR) to not only chemotherapy drugs but also anti-cancer natural products, such as benzyl isothiocyanate (BITC). To evaluate the possibility of combined utilization of a certain compound to overcome this resistance, we focused on glutathione S-transferase (GST)-dependent metabolism of BITC. The pharmacological treatment of a pi-class GST-selective inhibitor, 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol (NBDHEX), significantly increased BITC-induced toxicity in human colorectal cancer HCT-116 cells. However, NBDHEX unexpectedly increased the level of the BITC?glutathione (GSH) conjugate as well as BITC-modified proteins, suggesting that NBDHEX might increase BITC-modified protein accumulation by inhibiting BITC?GSH excretion instead of inhibiting GST. Furthermore, NBDHEX significantly potentiated BITC-induced apoptosis with the enhanced activation of apoptosis-related pathways, such as c-Jun N-terminal kinase and caspase-3 pathways. These results suggested that combination treatment with NBDHEX may be an effective way to overcome MDR with drug efflux and thus induce the biological activity of BITC at lower doses.
en-copyright=
kn-copyright=
en-aut-name=SunRuitong
en-aut-sei=Sun
en-aut-mei=Ruitong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YanoAina
en-aut-sei=Yano
en-aut-mei=Aina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SatohAyano
en-aut-sei=Satoh
en-aut-mei=Ayano
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MunemasaShintaro
en-aut-sei=Munemasa
en-aut-mei=Shintaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MurataYoshiyuki
en-aut-sei=Murata
en-aut-mei=Yoshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakamuraToshiyuki
en-aut-sei=Nakamura
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakamuraYoshimasa
en-aut-sei=Nakamura
en-aut-mei=Yoshimasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=benzyl isothiocyanate
kn-keyword=benzyl isothiocyanate
en-keyword=multidrug resistance
kn-keyword=multidrug resistance
en-keyword=glutathione S-transferase
kn-keyword=glutathione S-transferase
en-keyword=NBDHEX
kn-keyword=NBDHEX
en-keyword=apoptosis
kn-keyword=apoptosis
en-keyword=c-Jun N-terminal kinase
kn-keyword=c-Jun N-terminal kinase
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=27047
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250725
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Prevalence of Streptococcus mutans harboring the cnm gene encoding cell surface protein Cnm in Japanese children
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Dental caries is a highly prevalent infectious disease primarily caused by the pathogenic bacterium Streptococcus mutans, which has also been associated with systemic disease. A 120-kDa collagen-binding protein (Cnm) produced by S. mutans contributes to cardiovascular disease pathogenicity. Few studies have addressed the current prevalence of S. mutans and the cnm gene in Japanese children or examined caries pathology in relation to cnm presence. Here, we investigated the prevalence of S. mutans and the distribution of cnm-positive S. mutans among 490 children who visited two university hospitals in Japan. The caries experience index (dmft/DMFT) was calculated, and the collagen-binding ability of cnm-positive S. mutans strains was assessed. S. mutans was isolated from the oral cavities of 158 patients (36.8%); 10.1% (16/158) harbored cnm-positive S. mutans. When caries experience indices were compared across dentitions, patients harboring cnm-positive strains had significantly higher dmft/DMFT scores than those with cnm-negative strains (P?0.05). Additionally, a positive correlation was observed between the collagen-binding capacity of cnm-positive S. mutans and the dmft/DMFT score (r?=?0.601, P?0.05). These findings suggest that cnm contributes to caries progression through collagen-mediated adherence to tooth surfaces. The presence of cnm-positive S. mutans may represent a risk factor for increased caries susceptibility in children.
en-copyright=
kn-copyright=
en-aut-name=SuehiroYuto
en-aut-sei=Suehiro
en-aut-mei=Yuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkudaMakoto
en-aut-sei=Okuda
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OtsuguMasatoshi
en-aut-sei=Otsugu
en-aut-mei=Masatoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OchiaiMarin
en-aut-sei=Ochiai
en-aut-mei=Marin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakagiMisato
en-aut-sei=Takagi
en-aut-mei=Misato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TojoFumikazu
en-aut-sei=Tojo
en-aut-mei=Fumikazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MikasaYusuke
en-aut-sei=Mikasa
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakaShuhei
en-aut-sei=Naka
en-aut-mei=Shuhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=Matsumoto-NakanoMichiyo
en-aut-sei=Matsumoto-Nakano
en-aut-mei=Michiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=LapirattanakulJinthana
en-aut-sei=Lapirattanakul
en-aut-mei=Jinthana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OkawaRena
en-aut-sei=Okawa
en-aut-mei=Rena
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NomuraRyota
en-aut-sei=Nomura
en-aut-mei=Ryota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=NakanoKazuhiko
en-aut-sei=Nakano
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Pediatric Dentistry, Graduate School of Dentistry, The University of Osaka
kn-affil=
affil-num=2
en-affil=Department of Pediatric Dentistry, Graduate School of Dentistry, The University of Osaka
kn-affil=
affil-num=3
en-affil=Department of Pediatric Dentistry, Graduate School of Dentistry, The University of Osaka
kn-affil=
affil-num=4
en-affil=Department of Pediatric Dentistry, Graduate School of Dentistry, The University of Osaka
kn-affil=
affil-num=5
en-affil=Department of Pediatric Dentistry, Graduate School of Dentistry, The University of Osaka
kn-affil=
affil-num=6
en-affil=Department of Pediatric Dentistry, Graduate School of Dentistry, The University of Osaka
kn-affil=
affil-num=7
en-affil=Department of Pediatric Dentistry, Graduate School of Dentistry, The University of Osaka
kn-affil=
affil-num=8
en-affil=Department of Pediatric Dentistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Pediatric Dentistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Oral Microbiology, Faculty of Dentistry, Mahidol University
kn-affil=
affil-num=11
en-affil=Department of Pediatric Dentistry, Graduate School of Dentistry, The University of Osaka
kn-affil=
affil-num=12
en-affil=Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University
kn-affil=
affil-num=13
en-affil=Department of Pediatric Dentistry, Graduate School of Dentistry, The University of Osaka
kn-affil=
en-keyword=Streptococcus mutans
kn-keyword=Streptococcus mutans
en-keyword=Collagen-binding protein
kn-keyword=Collagen-binding protein
en-keyword=Cnm
kn-keyword=Cnm
en-keyword=Prevalence
kn-keyword=Prevalence
en-keyword=Dental caries
kn-keyword=Dental caries
en-keyword=Japanese population
kn-keyword=Japanese population
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=
article-no=
start-page=113544
end-page=113556
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250630
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Optimized Ensemble Deep Learning for Real-Time Intrusion Detection on Resource-Constrained Raspberry Pi Devices
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The rapid growth of Internet of Things (IoT) networks has increased security risks, making it essential to have effective Intrusion Detection Systems (IDS) for real-time threat detection. Deep learning techniques offer promising solutions for such detection due to their superior complex pattern recognition and anomaly detection capabilities in large datasets. This paper proposes an optimized ensemble-based IDS designed specifically for efficient deployment on edge hardware. However, deploying such computationally intensive models on resource-limited edge devices remains a significant challenge due to model size and computational overhead on devices with limited processing capabilities. Building upon our previously developed stacked Long Short-Term Memory (LSTM) model integrated with ANOVA feature selection, we optimize it by integrating dual-stage model compression: pruning and quantization to create a lightweight model suitable for real-time inference on Raspberry Pi devices. To evaluate the system under realistic conditions, we combined with a Kafka-based testbed to simulate dynamic IoT environments with variable traffic loads, delays, and multiple simultaneous attack sources. This enables the assessment of detection performance under varying traffic volumes, latency, and overlapping attack scenarios. The proposed system maintains high detection performance with accuracy of 97.3% across all test scenarios, while efficiently leveraging multi-core processing with peak CPU usage reaching 111.8%. These results demonstrate the system’s practical viability for real-time IoT security at the edge.
en-copyright=
kn-copyright=
en-aut-name=MusthafaMuhammad Bisri
en-aut-sei=Musthafa
en-aut-mei=Muhammad Bisri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HudaSamsul
en-aut-sei=Huda
en-aut-mei=Samsul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NguyenTuy Tan
en-aut-sei=Nguyen
en-aut-mei=Tuy Tan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KoderaYuta
en-aut-sei=Kodera
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NogamiYasuyuki
en-aut-sei=Nogami
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Interdisciplinary Education and Research Field, Okayama University
kn-affil=
affil-num=3
en-affil=School of Informatics, Computing, and Cyber Systems, Northern Arizona University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Internet of things
kn-keyword=Internet of things
en-keyword=intrusion detection system
kn-keyword=intrusion detection system
en-keyword=stacked lstm
kn-keyword=stacked lstm
en-keyword=pruning model
kn-keyword=pruning model
en-keyword=optimizing model
kn-keyword=optimizing model
en-keyword=quantization model
kn-keyword=quantization model
en-keyword=raspberry pi
kn-keyword=raspberry pi
en-keyword=real-time detection
kn-keyword=real-time detection
en-keyword=apache kafka
kn-keyword=apache kafka
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=
article-no=
start-page=89003
end-page=89024
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250519
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Security in Post-Quantum Era: A Comprehensive Survey on Lattice-Based Algorithms
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Lattice-based post-quantum cryptography (PQC) has attracted significant attention as a promising solution to the security challenges posed by quantum computing. Unlike traditional cryptographic algorithms, lattice-based schemes are expected to remain secure even in the presence of quantum attacks, making them essential for securing future data. Despite their strong theoretical foundations, lattice-based schemes face several practical challenges, particularly in optimizing performance and scalability for real-world applications. This survey provides a novel taxonomy that categorizes lattice-based PQC designs, with an emphasis on computational paradigms and security considerations. We systematically evaluate lattice-based PQC implementations across both software platforms, including central processing units and graphics processing units, as well as hardware platforms like field-programmable gate arrays and application-specific integrated circuits, highlighting their strengths and limitations. In addition, we explore the practical applications of lattice-based cryptography in fields such as secure communication, critical infrastructure, privacy-preserving data analytics, artificial intelligence, and trust and authentication systems. By offering a comprehensive overview of the current state of lattice-based PQC, this survey aims to provide valuable insights into the ongoing advancements and future research directions in the field as we transition to a post-quantum era.
en-copyright=
kn-copyright=
en-aut-name=NguyenHien
en-aut-sei=Nguyen
en-aut-mei=Hien
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HudaSamsul
en-aut-sei=Huda
en-aut-mei=Samsul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NogamiYasuyuki
en-aut-sei=Nogami
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NguyenTuy Tan
en-aut-sei=Nguyen
en-aut-mei=Tuy Tan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=School of Informatics, Computing, and Cyber Systems, Northern Arizona University
kn-affil=
affil-num=2
en-affil=Interdisciplinary Education and Research Field, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=School of Informatics, Computing, and Cyber Systems, Northern Arizona University
kn-affil=
en-keyword=Post-quantum cryptography
kn-keyword=Post-quantum cryptography
en-keyword=lattice-based cryptography
kn-keyword=lattice-based cryptography
en-keyword=number theoretic transform
kn-keyword=number theoretic transform
en-keyword=hardware and software implementation
kn-keyword=hardware and software implementation
END
start-ver=1.4
cd-journal=joma
no-vol=18
cd-vols=
no-issue=8
article-no=
start-page=e70325
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Cardiotoxicity Assessment of EGFR Tyrosine Kinase Inhibitors Using Human iPS Cell‐Derived Cardiomyocytes and FDA Adverse Events Reporting System
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Recent advances in the development of anti-cancer drugs have contributed to prolonged survival of cancer patients. In contrast, drug-induced cardiotoxicity, particularly cardiac contractile dysfunction, is of growing concern in cancer treatment. Therefore, it is important to understand the risks of anti-cancer drug-induced cardiac contractile dysfunction in drug development. We have previously developed image-based motion analysis using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to assess the effect of drugs on contractility. However, the utility and predictive potential of image-based motion analysis using hiPSC-CMs for anti-cancer drug-induced cardiac contractile dysfunction have not been well understood. Here we focused on epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) and investigated the correlation between the hiPSC-CMs data and clinical signals of adverse events related to cardiac contractile dysfunction. We examined the effects of the four EGFR-TKIs, osimertinib, gefitinib, afatinib, and erlotinib, on the contractility of hiPSC-CMs using image-based motion analysis. We found that osimertinib decreased contraction velocity and deformation distance in a dose- and time-dependent manner, whereas gefitinib, afatinib, and erlotinib had little effect on these parameters. Next, we examined the real-world data of the EGFR-TKIs using FDA Adverse Event Reporting System (FAERS; JAPIC AERS). Only osimertinib showed significant clinical signals of adverse events related to cardiac contractile dysfunction. These data suggest that hiPSC-CM data correlate with clinical signals in FAERS analysis for four EGFR-TKIs. Thus, image-based motion analysis using hiPSC-CMs can be a useful platform for predicting the risk of anti-cancer drug-induced cardiac contractile dysfunction in patients.
en-copyright=
kn-copyright=
en-aut-name=YanagidaShota
en-aut-sei=Yanagida
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawagishiHiroyuki
en-aut-sei=Kawagishi
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SaitoMitsuo
en-aut-sei=Saito
en-aut-mei=Mitsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HamanoHirofumi
en-aut-sei=Hamano
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ZamamiYoshito
en-aut-sei=Zamami
en-aut-mei=Yoshito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KandaYasunari
en-aut-sei=Kanda
en-aut-mei=Yasunari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Division of Pharmacology, National Institute of Health Sciences (NIHS)
kn-affil=
affil-num=2
en-affil=Division of Pharmacology, National Institute of Health Sciences (NIHS)
kn-affil=
affil-num=3
en-affil=Japan Pharmaceutical Information Center (JAPIC)
kn-affil=
affil-num=4
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Division of Pharmacology, National Institute of Health Sciences (NIHS)
kn-affil=
en-keyword=cardiomyocytes
kn-keyword=cardiomyocytes
en-keyword=cardiotoxicity
kn-keyword=cardiotoxicity
en-keyword=contractility
kn-keyword=contractility
en-keyword=EGFR-tyrosine kinase inhibitor
kn-keyword=EGFR-tyrosine kinase inhibitor
en-keyword=FAERS
kn-keyword=FAERS
en-keyword=human iPS cell
kn-keyword=human iPS cell
END
start-ver=1.4
cd-journal=joma
no-vol=188
cd-vols=
no-issue=
article-no=
start-page=118137
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202507
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Unravelling the cardioprotective effects of calcitriol in Sunitinib-induced toxicity: A comprehensive in silico and in vitro study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Sunitinib (SUN), a drug used to treat advanced renal cell carcinoma and other cancers, causes cardiotoxicity. This study aimed to identify a potential drug candidate to counteract SUN-induced cardiotoxicity. We analysed real-world data from adverse event report databases of existing clinically approved drugs to identify potential candidates. Through in silico analyses and in vitro experiments, the mechanisms of action were determined. The study identified calcitriol (CTL), an active form of vitamin D, as a promising candidate against SUN-induced cardiotoxicity. In H9c2 cells, SUN decreased cell viability significantly, whereas CTL mitigated this effect significantly. The SUN-treated group exhibited increased autophagy in H9c2 cells, which was reduced significantly in the CTL group. Bioinformatics analysis using Ingenuity Pathway Analysis revealed the mechanistic target of rapamycin (mTOR) as a common factor between autophagy and CTL. Notably, rapamycin, an mTOR inhibitor, nullified the effects of CTL on cell viability and autophagy. Furthermore, SUN treatment led to significant reductions in cardiomyocyte diameters and increases in their widths, changes that were inhibited by CTL. SUN also induced morphological changes in surviving H9c2 cells, causing them to adopt a rounded shape, whereas CTL improved their morphology to resemble the elongated shape of the control group. In conclusion, the findings of the present study suggest that CTL has the potential to prevent SUN-induced cardiomyocyte damage through autophagy, particularly via mTOR-mediated pathways. The findings indicate that CTL could serve as an effective prophylactic agent against SUN-induced cardiotoxicity, offering a promising avenue for further research and potential clinical applications.
en-copyright=
kn-copyright=
en-aut-name=SakamotoYoshika
en-aut-sei=Sakamoto
en-aut-mei=Yoshika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NiimuraTakahiro
en-aut-sei=Niimura
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=GodaMitsuhiro
en-aut-sei=Goda
en-aut-mei=Mitsuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TomochikaNanami
en-aut-sei=Tomochika
en-aut-mei=Nanami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MurakawaWakana
en-aut-sei=Murakawa
en-aut-mei=Wakana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AizawaFuka
en-aut-sei=Aizawa
en-aut-mei=Fuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YagiKenta
en-aut-sei=Yagi
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HamanoHirofumi
en-aut-sei=Hamano
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=Izawa-IshizawaYuki
en-aut-sei=Izawa-Ishizawa
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ZamamiYoshito
en-aut-sei=Zamami
en-aut-mei=Yoshito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=IshizawaKeisuke
en-aut-sei=Ishizawa
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences
kn-affil=
affil-num=2
en-affil=Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences
kn-affil=
affil-num=3
en-affil=Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences
kn-affil=
affil-num=4
en-affil=Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences
kn-affil=
affil-num=5
en-affil=Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences
kn-affil=
affil-num=6
en-affil=Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences
kn-affil=
affil-num=7
en-affil=Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences
kn-affil=
affil-num=8
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences
kn-affil=
affil-num=10
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences
kn-affil=
en-keyword=Sunitinib
kn-keyword=Sunitinib
en-keyword=Advanced renal cell carcinoma
kn-keyword=Advanced renal cell carcinoma
en-keyword=Cardiotoxicity
kn-keyword=Cardiotoxicity
en-keyword=Calcitriol
kn-keyword=Calcitriol
en-keyword=Autophagy
kn-keyword=Autophagy
en-keyword=MTOR
kn-keyword=MTOR
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=1
article-no=
start-page=40
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250428
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Time dependent predictors of cardiac inflammatory adverse events in cancer patients receiving immune checkpoint inhibitors
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Cardio-inflammatory immune related adverse events (irAEs) while receiving immune checkpoint inhibitor (ICI) therapy are particularly consequential due to their associations with poorer treatment outcomes. Evaluation of predictive factors of these serious irAEs with a time dependent approach allows better understanding of patients most at risk.
Objective: To identify different elements of patient data that are significant predictors of early and late-onset or delayed cardio-inflammatory irAEs through various predictive modeling strategies.
Methods: A cohort of patients receiving ICI therapy from January 1, 2010 to May 1, 2022 was identified from TriNetX meeting inclusion/exclusion criteria. Patient data collected included occurrence of early and later cardio-inflammatory irAEs, patient survival time, patient demographic information, ICI therapies, comorbidities, and medication histories. Predictive and statistical modeling approaches identified unique risk factors for early and later developing cardio-inflammatory irAEs.
Results: A cohort of 66,068 patients on ICI therapy were identified in the TriNetX platform; 193 (0.30%) experienced early cardio-inflammatory irAEs and 175 (0.26%) experienced later cardio-inflammatory irAEs. Significant predictors for early irAEs included: anti-PD-1 therapy at index, combination ICI therapy at index, and history of peripheral vascular disease. Significant predictors for later irAEs included: a history of myocarditis and/or pericarditis, cerebrovascular disease, and history of non-steroidal anti-inflammatory medication use.
Conclusions: Cardio-inflammatory irAEs can be divided into clinically meaningful categories of early and late based on time since initiation of ICI therapy. Considering distinct risk factors for early-onset and late-onset events may allow for more effective patient monitoring and risk assessment.
en-copyright=
kn-copyright=
en-aut-name=SayerMichael
en-aut-sei=Sayer
en-aut-mei=Michael
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HamanoHirofumi
en-aut-sei=Hamano
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NagasakaMisako
en-aut-sei=Nagasaka
en-aut-mei=Misako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=LeeBenjamin J.
en-aut-sei=Lee
en-aut-mei=Benjamin J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=DohJean
en-aut-sei=Doh
en-aut-mei=Jean
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=PatelPranav M.
en-aut-sei=Patel
en-aut-mei=Pranav M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ZamamiYoshito
en-aut-sei=Zamami
en-aut-mei=Yoshito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OzakiAya F.
en-aut-sei=Ozaki
en-aut-mei=Aya F.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=School of Pharmacy & Pharmaceutical Sciences, University of California
kn-affil=
affil-num=2
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Division of Hematology and Oncology, University of California
kn-affil=
affil-num=4
en-affil=Department of Pharmacy, University of California Irvine Health
kn-affil=
affil-num=5
en-affil=Department of Pharmacy, University of California Irvine Health
kn-affil=
affil-num=6
en-affil=Division of Cardiology, Department of Medicine, University of California
kn-affil=
affil-num=7
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=School of Pharmacy & Pharmaceutical Sciences, University of California
kn-affil=
en-keyword=Immune checkpoint inhibitors
kn-keyword=Immune checkpoint inhibitors
en-keyword=Immune-Related adverse events
kn-keyword=Immune-Related adverse events
en-keyword=Myocarditis
kn-keyword=Myocarditis
en-keyword=Pericarditis
kn-keyword=Pericarditis
en-keyword=Predictive modeling
kn-keyword=Predictive modeling
en-keyword=TriNetx
kn-keyword=TriNetx
END
start-ver=1.4
cd-journal=joma
no-vol=239
cd-vols=
no-issue=
article-no=
start-page=113260
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2026
dt-pub=202602
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Helical X-ray tube trajectory estimation via image noise analysis for enhanced CT dosimetry
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Information on the helical trajectory of the X-ray tube is necessary for accurate dose evaluation during computed tomography (CT). We aimed to propose a methodology for analyzing the trajectory of the X-ray tube. The novelty of this paper is that the incident direction of X-rays is estimated from the standard deviation (SD) distribution. The X-ray incident direction for each slice was analyzed using a distribution function of SD values, in which the analysis regions were placed in the air region. Then, the helical trajectory of the CT scan was estimated by fitting a three-dimensional helical function to the analyzed data. The robustness of our algorithm was verified through phantom studies: the analyzed X-ray incident directions were compared with instrumental log data, in which cylindrical polyoxymethylene resin phantoms and a whole-body phantom were scanned. Chest CT scanning was mimicked, in which the field of view (FOV) was set at the lung region. The procedure for analyzing the X-ray incident direction was applicable to cylindrical phantoms regardless of the phantom size. In contrast, in the case of the whole-body phantom, although it was possible to apply our procedure to the chest and abdomen regions, the shoulder slices were inappropriate to analyze. Therefore, the helical trajectory was determined based on chest and abdominal CT images. The accuracy in X-ray incident direction analysis was evaluated to be 7.5°. In conclusion, we have developed an algorithm to estimate a three-dimensional helical trajectory that can be used for dose measurements and simulations.
en-copyright=
kn-copyright=
en-aut-name=MaedaTatsuya
en-aut-sei=Maeda
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakegamiKazuki
en-aut-sei=Takegami
en-aut-mei=Kazuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=GotoSota
en-aut-sei=Goto
en-aut-mei=Sota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AsaharaTakashi
en-aut-sei=Asahara
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KobayashiDaiki
en-aut-sei=Kobayashi
en-aut-mei=Daiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NishigamiRina
en-aut-sei=Nishigami
en-aut-mei=Rina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KimotoNatsumi
en-aut-sei=Kimoto
en-aut-mei=Natsumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YamashitaKazuta
en-aut-sei=Yamashita
en-aut-mei=Kazuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HigashinoKosaku
en-aut-sei=Higashino
en-aut-mei=Kosaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MorimotoShinichi
en-aut-sei=Morimoto
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KonishiTakeshi
en-aut-sei=Konishi
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MakiMotochika
en-aut-sei=Maki
en-aut-mei=Motochika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=HayashiHiroaki
en-aut-sei=Hayashi
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Graduate School of Medical Sciences, Kanazawa University
kn-affil=
affil-num=2
en-affil=Department of Radiological Technology, Yamaguchi University Hospital
kn-affil=
affil-num=3
en-affil=Faculty of Health Sciences, Kobe Tokiwa University
kn-affil=
affil-num=4
en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Medical Sciences, Kanazawa University
kn-affil=
affil-num=6
en-affil=Graduate School of Medical Sciences, Kanazawa University
kn-affil=
affil-num=7
en-affil=Department of Radiological Science, Faculty of Health Sciences, Junshin Gakuen University
kn-affil=
affil-num=8
en-affil=Department of Orthopedics, School of Medicine, Tokushima University
kn-affil=
affil-num=9
en-affil=Shikoku Medical Center for Children and Adults
kn-affil=
affil-num=10
en-affil=MEDITEC JAPAN Co., Ltd., Yamaguchi Kosan Bld.
kn-affil=
affil-num=11
en-affil=MEDITEC JAPAN Co., Ltd., Yamaguchi Kosan Bld.
kn-affil=
affil-num=12
en-affil=MEDITEC JAPAN Co., Ltd., Yamaguchi Kosan Bld.
kn-affil=
affil-num=13
en-affil=College of Transdisciplinary Sciences for Innovation, Kanazawa University
kn-affil=
en-keyword=X-ray medical diagnosis
kn-keyword=X-ray medical diagnosis
en-keyword=Helical CT scan
kn-keyword=Helical CT scan
en-keyword=CT image
kn-keyword=CT image
en-keyword=X-ray incident direction
kn-keyword=X-ray incident direction
en-keyword=Helical trajectory
kn-keyword=Helical trajectory
en-keyword=Radiation dose measurement
kn-keyword=Radiation dose measurement
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=24040
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250705
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Lactose fermenting enteroinvasive Escherichia coli from diarrhoeal cases confers enhanced virulence
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Enteroinvasive Escherichia coli (EIEC), known for causing bacillary dysentery akin to Shigella species, comprises both lactose-fermenting (LF) and non-lactose-fermenting (NLF) isolates. While NLF-EIEC is a well-established pathogen associated with acute dysentery and harbours classical Shigella-like virulence factors, the role of LF-EIEC in human disease remains underexplored. In this study, we sought to characterize LF-EIEC clinical isolates and assessed their pathogenic potential in comparison to NLF-EIEC. Among 13,682 diarrhoeal stool specimens, six LF and nine NLF-EIEC were isolated, predominantly belonging to serogroups O28ac, O125, O136, and O152. Unlike other E. coli, all the EIEC isolates were non-motile. Both the types of EIEC had multiple plasmids harbouring several virulence encoding genes (ipaBCD, ial, virF, sig, sepA and ipaH). Resistance to recent generation antibiotics were mostly confined to NLF-EIEC but some of the LF-EIEC were resistant only to ceftriaxone. Higher invasion ability and significant increase in the expression of virulence encoding genes by the LF-EIEC (p?0.05) were noted during infection to Int407 cell-line. Additionally, LF-EIEC exhibited extensive colonization of the mouse intestine and expressed severe keratoconjunctivitis in guinea pigs. Together, our findings highlight LF-EIEC as an emerging pathogenic variant warranting heightened surveillance and comprehensive investigation to better understand its epidemiological and clinical significance.
en-copyright=
kn-copyright=
en-aut-name=GhoshDebjani
en-aut-sei=Ghosh
en-aut-mei=Debjani
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HalderProlay
en-aut-sei=Halder
en-aut-mei=Prolay
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SamantaProsenjit
en-aut-sei=Samanta
en-aut-mei=Prosenjit
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ChowdhuryGoutam
en-aut-sei=Chowdhury
en-aut-mei=Goutam
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShawSreeja
en-aut-sei=Shaw
en-aut-mei=Sreeja
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=BosePuja
en-aut-sei=Bose
en-aut-mei=Puja
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=RoyDeboleena
en-aut-sei=Roy
en-aut-mei=Deboleena
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=RoyNivedita
en-aut-sei=Roy
en-aut-mei=Nivedita
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KitaharaKei
en-aut-sei=Kitahara
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=RamamurthyThandavarayan
en-aut-sei=Ramamurthy
en-aut-mei=Thandavarayan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KoleyHemanta
en-aut-sei=Koley
en-aut-mei=Hemanta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MiyoshiShin-ichi
en-aut-sei=Miyoshi
en-aut-mei=Shin-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=DuttaShanta
en-aut-sei=Dutta
en-aut-mei=Shanta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=MukhopadhyayAsish Kumar
en-aut-sei=Mukhopadhyay
en-aut-mei=Asish Kumar
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI)
kn-affil=
affil-num=2
en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI)
kn-affil=
affil-num=3
en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI)
kn-affil=
affil-num=4
en-affil=Collaborative Research Centre of Okayama University for Infectious Diseases, ICMR-National Institute for Research in Bacterial Infections
kn-affil=
affil-num=5
en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI)
kn-affil=
affil-num=6
en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI)
kn-affil=
affil-num=7
en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI)
kn-affil=
affil-num=8
en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI)
kn-affil=
affil-num=9
en-affil=Collaborative Research Centre of Okayama University for Infectious Diseases, ICMR-National Institute for Research in Bacterial Infections
kn-affil=
affil-num=10
en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI)
kn-affil=
affil-num=11
en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI)
kn-affil=
affil-num=12
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI)
kn-affil=
affil-num=14
en-affil=Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (ICMR-NIRBI)
kn-affil=
en-keyword=Antibiotic resistance
kn-keyword=Antibiotic resistance
en-keyword=Bacterial infections
kn-keyword=Bacterial infections
en-keyword=Diarrhoea
kn-keyword=Diarrhoea
en-keyword=Enteroinvasive Escherichia coli
kn-keyword=Enteroinvasive Escherichia coli
en-keyword=Keratoconjunctivitis
kn-keyword=Keratoconjunctivitis
en-keyword=Pathogenesis
kn-keyword=Pathogenesis
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=4
article-no=
start-page=139
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250402
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=An Implementation of Creep Test Assisting System with Dial Gauge Needle Reading and Smart Lighting Function for Laboratory Automation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=For decades, analog dial gauges have been essential for measuring and monitoring data at various industrial instruments including production machines and laboratory equipment. Among them, we focus on the instrument for creep test in a mechanical engineering laboratory, which evaluates material strength under sustained stress. Manual reading of gauges imposes significant labor demands, especially in long-duration tests. This burden further increases under low-lighting environments, where poor visibility can lead to misreading data points, potentially compromising the accuracy of test results. In this paper, to address the challenges, we implement a creep test assisting system that possesses the following features: (1) to save the installation cost, a web camera and Raspberry Pi are employed to capture images of the dial gauge and automate the needle reading by image processing in real time, (2) to ensure reliability under low-lighting environments, a smart lighting mechanism is integrated to turn on a supplementary light when the dial gauge is not clearly visible, and (3) to allow a user to stay in a distant place from the instrument during a creep test, material break is detected and the corresponding message is notified to a laboratory staff using LINE automatically. For evaluations, we install the implemented system into a material strength measuring instrument at Okayama University, Japan, and confirm the effectiveness and accuracy through conducting experiments under various lighting conditions.
en-copyright=
kn-copyright=
en-aut-name=KongDezheng
en-aut-sei=Kong
en-aut-mei=Dezheng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FunabikiNobuo
en-aut-sei=Funabiki
en-aut-mei=Nobuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FangShihao
en-aut-sei=Fang
en-aut-mei=Shihao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=Noprianto
en-aut-sei=Noprianto
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OkayasuMitsuhiro
en-aut-sei=Okayasu
en-aut-mei=Mitsuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=PuspitaningayuPradini
en-aut-sei=Puspitaningayu
en-aut-mei=Pradini
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil= Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil= Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil= Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil= Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil= Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil= Department of Electrical Engineering, Universitas Negeri Surabaya
kn-affil=
en-keyword=creep test
kn-keyword=creep test
en-keyword=Raspberry Pi
kn-keyword=Raspberry Pi
en-keyword=dial gauge
kn-keyword=dial gauge
en-keyword=needle reading
kn-keyword=needle reading
en-keyword=smart lighting
kn-keyword=smart lighting
END
start-ver=1.4
cd-journal=joma
no-vol=20
cd-vols=
no-issue=4
article-no=
start-page=401
end-page=409
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=High-Definition Topographic Archiving and Educational Applications in Regions Affected by the 2024 Noto Peninsula Earthquake
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The 2024 Noto Peninsula earthquake (Mw 7.5) caused extensive damage in Ishikawa Prefecture, Japan, and surrounding areas, with considerable coastal uplift and tsunami flooding. Past 100 years’ records show no earthquake above Mw 7.0 in the Noto Peninsula, so for everyone alive today, this event is truly without precedent. Therefore, we aimed to support disaster prevention education by developing teaching materials using unmanned aerial vehicles (UAVs) based on digitally archived topographic changes. High-definition topographic data collected from multiple UAV surveys were processed into digital and analog formats, including 3D models, spherical panorama images, and 3D printings. These materials were designed to provide detailed and intuitive representations of post-disaster landforms and were used as educational tools in schools. The learning materials were introduced during a workshop for disaster-affected teachers, featuring hands-on activities to help participants familiarize themselves with the materials, and explore their integration into geography and science classes. Feedback from participants indicated that these tools were highly effective in enhancing classroom learning. The results of this study are expected to contribute to preserving disaster records while enhancing disaster awareness in educational settings and local communities.
en-copyright=
kn-copyright=
en-aut-name=OguraTakuro
en-aut-sei=Ogura
en-aut-mei=Takuro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamauchiHiroyuki
en-aut-sei=Yamauchi
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AokiTatsuto
en-aut-sei=Aoki
en-aut-mei=Tatsuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MattaNobuhisa
en-aut-sei=Matta
en-aut-mei=Nobuhisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IizukaKotaro
en-aut-sei=Iizuka
en-aut-mei=Kotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IwasaYoshiya
en-aut-sei=Iwasa
en-aut-mei=Yoshiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakahashiTakayuki
en-aut-sei=Takahashi
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HayashiKiyomi
en-aut-sei=Hayashi
en-aut-mei=Kiyomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HattanjiTsuyoshi
en-aut-sei=Hattanji
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OguchiTakashi
en-aut-sei=Oguchi
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Graduate School of Education, Hyogo University of Teacher Education
kn-affil=
affil-num=2
en-affil=Art Research Center, Ritsumeikan University
kn-affil=
affil-num=3
en-affil=Faculty of Regional Development Studies, Kanazawa University
kn-affil=
affil-num=4
en-affil=Graduate School of Education, Okayama University
kn-affil=
affil-num=5
en-affil=Center for Spatial Information Science, The University of Tokyo
kn-affil=
affil-num=6
en-affil=Faculty of Education, University of Teacher Education Fukuoka
kn-affil=
affil-num=7
en-affil=International Research Institute of Disaster Science, Tohoku University
kn-affil=
affil-num=8
en-affil=Faculty of Regional Development Studies, Kanazawa University
kn-affil=
affil-num=9
en-affil=Institute of Life and Environmental Sciences, University of Tsukuba
kn-affil=
affil-num=10
en-affil=Center for Spatial Information Science, The University of Tokyo
kn-affil=
en-keyword=disaster risk-reduction education
kn-keyword=disaster risk-reduction education
en-keyword=uplift area
kn-keyword=uplift area
en-keyword=UAV
kn-keyword=UAV
en-keyword=3D printing
kn-keyword=3D printing
END
start-ver=1.4
cd-journal=joma
no-vol=131
cd-vols=
no-issue=9
article-no=
start-page=744
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250828
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Optical and chemical properties of silver tree-like structure treated with gold galvanic substitution
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Galvanic gold substitution was executed in the presence of trisodium citrate on silver tree-like structures. No discernible difference in geometry was observed between the pre- and post-gold substitution phases, which benefited from the presence of citrate ions. The extent of gold substitution was regulated by the amount of gold ion solution added. After the gold substitution, an increase in extinction was observed in the ultraviolet region, indicating that gold was deposited at the surface. Raman scattering of para-toluenethiol was measured on the gold/silver tree-like structures at 488 nm excitations, where a decrease in the Raman peak intensity was observed as the quantity of gold ion solution increased. The results indicated that the optical property of silver was lost due to the increase of the amount of gold deposition. Concurrently, an investigation was conducted into the chemical resistance of the gold/silver tree-like structures, which was evaluated by measuring the resistivity inverse-proportional to the amount of silver ions dissolved by the diluted nitric acid. As the amount of gold ion solution added increased, the resistivity increased and became constant. The result implied that the surface chemical property had undergone a complete transformation into gold.
en-copyright=
kn-copyright=
en-aut-name=HondaKazushi
en-aut-sei=Honda
en-aut-mei=Kazushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakeyasuNobuyuki
en-aut-sei=Takeyasu
en-aut-mei=Nobuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Gold/silver tree-like structures
kn-keyword=Gold/silver tree-like structures
en-keyword=Galvanic substitution
kn-keyword=Galvanic substitution
en-keyword=SERS
kn-keyword=SERS
en-keyword=Raman mapping
kn-keyword=Raman mapping
END
start-ver=1.4
cd-journal=joma
no-vol=31
cd-vols=
no-issue=6
article-no=
start-page=103121
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202510
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Impact of pre-reconstruction filtering with butterworth filter on 111In-pentetreotide SPECT image quality and quantitative accuracy: A phantom study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction: This study evaluates the image quality and quantitative accuracy of SPECT images with pre- and post-reconstruction smoothing filters in somatostatin receptor scintigraphy using phantom data.
Methods: We evaluated the spatial resolution, the contrast-to-noise ratio (CNR), and the quantitative accuracy using a NEMA IEC body phantom filled with a 111In solution. SPECT images were obtained with a Siemens Symbia T16 SPECT/CT system. Quantitative accuracy refers to the ability to accurately estimate the radioactive concentration of 111In in the phantom from the image. SPECT reconstructions were performed using three methods: post-reconstruction Gaussian filtering (post-G), pre-reconstruction Gaussian filtering (pre-G), and pre-reconstruction Butterworth filtering (pre-B). To verify each filtering method, the cut-off frequency of the Butterworth filter and the full width at half maximum (FWHM) of the Gaussian filter were each changed to eight different settings.
Results: FWHMs were 21.2, 19.8, and 18.0 mm for post-G, pre-G, and pre-B. CNRs (37-mm sphere) were 47.2, 63.8, and 69.5. Pre-B showed a 12.0 % error rate at 0.40 cycles/cm, while post-G and pre-G showed 20.2 % and 22.0 % at 7.2-mm FWHM. Pre-B outperformed other methods for resolution, CNR, and quantitative accuracy.
Conclusion: For 111In-pentetreotide SPECT images, image reconstruction with a Butterworth filter applied to the projection image before reconstruction was found to be superior to reconstruction with a Gaussian filter in terms of image quality and quantitative accuracy.
This method can be easily implemented in routine clinical SPECT imaging workflows and has the potential to improve diagnostic confidence.
Implications for practice: The proposed method with a pre-reconstruction Butterworth filter has great potential to improve the image quality and quantitative accuracy of 111In-SPECT images.
en-copyright=
kn-copyright=
en-aut-name=HasegawaD.
en-aut-sei=Hasegawa
en-aut-mei=D.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IguchiT.
en-aut-sei=Iguchi
en-aut-mei=T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakashimaM.
en-aut-sei=Nakashima
en-aut-mei=M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YoshitomiK.
en-aut-sei=Yoshitomi
en-aut-mei=K.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MiyaiM.
en-aut-sei=Miyai
en-aut-mei=M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KojimaK.
en-aut-sei=Kojima
en-aut-mei=K.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=AsaharaT.
en-aut-sei=Asahara
en-aut-mei=T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Radiological Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Radiological Technology, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Radiological Technology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Radiological Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University
kn-affil=
en-keyword=SPECT
kn-keyword=SPECT
en-keyword=Butterworth filter
kn-keyword=Butterworth filter
en-keyword=Gaussian filter
kn-keyword=Gaussian filter
en-keyword=111In-pentetreotide
kn-keyword=111In-pentetreotide
en-keyword=Quantification
kn-keyword=Quantification
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=
dt-pub=
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
END
start-ver=1.4
cd-journal=joma
no-vol=137
cd-vols=
no-issue=2
article-no=
start-page=58
end-page=64
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=The process of left-hand writing improvement in patients with right hemiplegic stroke: Occupational therapists' observations
kn-title=脳卒中右片麻痺者における左手書字の上達過程を捉える作業療法士の観察内容
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= This study explored the observations of occupational therapists regarding the early stages of left-hand writing improvement in patients with right hemiplegic stroke. Semi-structured interviews using interview guides were conducted with 12 occupational therapists, and the qualitative data were analyzed inductively. From 79 descriptive codes, 33 interpretive codes were generated and grouped into 12 subcategories. These were further classified into five main categories : ‘letter neatness,’ ‘tool operability, postural optimization,’ ‘practical utility of writing,’ and ‘autonomy in writing.’ These results revealed that the occupational therapists observed improvements in handwriting from a multifaceted perspective, including not only the patients' motor skills but also psychological and behavioral aspects. The findings of this study capture the contents of occupational therapists' observations regarding the process of the early improvement of left-hand writing, and the insights suggest that, in supporting left-hand writing for stroke patients with right hemiplegia ? among whom it is necessary to grasp changes within a limited intervention period ? these observations are potentially useful for occupational therapists to assess handwriting improvement and provide support, regardless of their years of experience.
en-copyright=
kn-copyright=
en-aut-name=DaitoMaki
en-aut-sei=Daito
en-aut-mei=Maki
kn-aut-name=大東真紀
kn-aut-sei=大東
kn-aut-mei=真紀
aut-affil-num=1
ORCID=
en-aut-name=MorimotoMichiko
en-aut-sei=Morimoto
en-aut-mei=Michiko
kn-aut-name=森本美智子
kn-aut-sei=森本
kn-aut-mei=美智子
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Graduate School of Health Sciences, Okayama University
kn-affil=岡山大学大学院保健学研究科
affil-num=2
en-affil=Division of Nursing, Faculty of Health Sciences, Okayama University
kn-affil=岡山大学学術研究院保健学域 看護学
en-keyword=書字 (handwriting)
kn-keyword=書字 (handwriting)
en-keyword=脳卒中患者 (stroke patient)
kn-keyword=脳卒中患者 (stroke patient)
en-keyword=作業療法士 (occupational therapist)
kn-keyword=作業療法士 (occupational therapist)
en-keyword=観察 (observation)
kn-keyword=観察 (observation)
en-keyword=質的研究 (qualitative study)
kn-keyword=質的研究 (qualitative study)
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250902
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Neutrophil-to-lymphocyte ratio affects the impact of proton pump inhibitors on efficacy of immune checkpoint inhibitors in patients with non?small-cell lung cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background The neutrophil-to-lymphocyte ratio (NLR) at the initiation of immune checkpoint inhibitor (ICI) therapy is a known predictor of prognosis. Proton pump inhibitors (PPIs) reportedly attenuate the therapeutic efficacy of ICIs. However, the attenuation effects are not consistently observed across all patients. This study aimed to evaluate whether NLR serves as a stratification factor to determine the impact of PPI on the efficacy of ICI.
Methods This retrospective study was conducted in patients with NSCLC treated with ICI monotherapy. Patients were stratified into two groups (higher NLR (??4) and lower NLR (4)). PPI use was defined as the administration of PPIs within 30 days before or after ICI initiation. The primary outcome was progression-free survival (PFS) and the secondary outcome was overall survival (OS).
Results Among the 132 patients included, PPI users exhibited significantly shorter median PFS and OS than non-PPI users. In the higher NLR group (n?=?61), PPI users had a markedly shorter PFS and OS than non-PPI users (median PFS: 1.6 vs. 8.2 months; p?0.01, median OS: 3.3 vs. 19.6 months; p?=?0.015). Conversely, in the lower NLR group (n?=?71), no significant difference in PFS and OS was observed between PPI users and non-PPI users (median PFS: 2.8 vs. 7.3 months, p?=?0.83, median OS: 17.6 vs. 24.4 months, p?=?0.40).
Conclusion NLR may be a significant stratification factor for evaluating the impact of PPI on PFS and OS in patients with NSCLC undergoing ICI monotherapy.
en-copyright=
kn-copyright=
en-aut-name=HoriTomoki
en-aut-sei=Hori
en-aut-mei=Tomoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamamotoKazuhiro
en-aut-sei=Yamamoto
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ItoTakefumi
en-aut-sei=Ito
en-aut-mei=Takefumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IkushimaShigeki
en-aut-sei=Ikushima
en-aut-mei=Shigeki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OmuraTomohiro
en-aut-sei=Omura
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YanoIkuko
en-aut-sei=Yano
en-aut-mei=Ikuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Pharmacy, Nara Prefecture General Medical Center
kn-affil=
affil-num=2
en-affil=Department of Integrated Clinical and Basic Pharmaceutical Science, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Respiratory Medicine, Nara Prefecture General Medical Center
kn-affil=
affil-num=4
en-affil=Department of Pharmacy, Nara Prefecture General Medical Center
kn-affil=
affil-num=5
en-affil=Department of Pharmacy, Kobe University Hospital
kn-affil=
affil-num=6
en-affil=Department of Pharmacy, Kobe University Hospital
kn-affil=
en-keyword=Immune checkpoint inhibitor
kn-keyword=Immune checkpoint inhibitor
en-keyword=Neutrophil-to-lymphocyte ratio
kn-keyword=Neutrophil-to-lymphocyte ratio
en-keyword=Non-small-cell lung cancer
kn-keyword=Non-small-cell lung cancer
en-keyword=Proton pump inhibitor
kn-keyword=Proton pump inhibitor
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250612
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Asymptomatic intracranial vascular lesions and cognitive function in a general population of Japanese men: Shiga Epidemiological Study of Subclinical Atherosclerosis (SESSA)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction: Intracranial subclinical vessel diseases are considered important indicators of cognitive impairment. However, a comprehensive assessment of various types of vessel disease, particularly in Asian populations, is lacking. We aimed to compare multiple types of intracranial vessel disease in association with cognitive function among a community-based Japanese male population. Methods: The Shiga Epidemiological Study of Subclinical Atherosclerosis (SESSA) randomly recruited and examined a community-based cohort of Japanese men from Shiga, Japan. We analyzed those who underwent the Cognitive Abilities Screening Instrument (CASI) assessment and cranial magnetic resonance imaging/angiogram (MRI/MRA) in 2010?2015. Using MRI/MRA, we assessed lacunar infarction, microbleeds, periventricular hyperintensity (PVH), deep subcortical white matter hyperintensity (DSWMH), and intracranial artery stenosis (ICAS). We divided these subclinical cerebrovascular diseases (SCDs) into three categories according to severity. Using linear regression, we calculated the CASI score according to the grade of each vessel disease, adjusted for age and years of education. Results: In the adjusted models, CASI scores were significantly associated with both PVH and DSWMH. Specifically, multivariable-adjusted CASI scores declined across increasing severity categories of DSWMH (91.7, 91.2, and 90.4; p for trend = 0.011) and PVH (91.5, 90.4, and 89.7; p for trend = 0.006). Other SCDs did not show significant associations. In stratified analyses based on the presence or absence of each SCD, both DSWMH and PVH demonstrated significant inverse trends with CASI scores in the absence of lacunar infarcts and microbleeds and in the presence of ICAS. Additionally, among participants with PVH (+), ?moderate ICAS was significantly associated with lower CASI scores. Conclusion: PVH and DSWMH showed significant dose-response relationships with cognitive function among community-based Japanese men. These findings suggest that white matter lesions may be an important indicator of early cognitive impairment, and severe ICAS may also play a role in those with PVH.
en-copyright=
kn-copyright=
en-aut-name=ItoTakahiro
en-aut-sei=Ito
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujiyoshiAkira
en-aut-sei=Fujiyoshi
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OhkuboTakayoshi
en-aut-sei=Ohkubo
en-aut-mei=Takayoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ShiinoAkihiko
en-aut-sei=Shiino
en-aut-mei=Akihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShitaraSatoshi
en-aut-sei=Shitara
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MiyagawaNaoko
en-aut-sei=Miyagawa
en-aut-mei=Naoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ToriiSayuki
en-aut-sei=Torii
en-aut-mei=Sayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HisamatsuTakashi
en-aut-sei=Hisamatsu
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SegawaHiroyoshi
en-aut-sei=Segawa
en-aut-mei=Hiroyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KondoKeiko
en-aut-sei=Kondo
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KadotaAya
en-aut-sei=Kadota
en-aut-mei=Aya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TooyamaIkuo
en-aut-sei=Tooyama
en-aut-mei=Ikuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=WatanabeYoshiyuki
en-aut-sei=Watanabe
en-aut-mei=Yoshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=YoshidaKazumichi
en-aut-sei=Yoshida
en-aut-mei=Kazumichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=NozakiKazuhiko
en-aut-sei=Nozaki
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=MiuraKatsuyuki
en-aut-sei=Miura
en-aut-mei=Katsuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=The SESSA Research Group
en-aut-sei=The SESSA Research Group
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
affil-num=1
en-affil=Department of Radiology, Shiga University of Medical Science
kn-affil=
affil-num=2
en-affil=Department of Radiology, Shiga University of Medical Science
kn-affil=
affil-num=3
en-affil=Department of Hygiene and Public Health, Teikyo University School of Medicine
kn-affil=
affil-num=4
en-affil=Molecular Neuroscience Research Center, Shiga University of Medical Science
kn-affil=
affil-num=5
en-affil=Department of Neurosurgery, Shiga University of Medical Science
kn-affil=
affil-num=6
en-affil=Department of Preventive Medicine and Public Health, Keio University School of Medicine
kn-affil=
affil-num=7
en-affil=Department of Radiology, Shiga University of Medical Science
kn-affil=
affil-num=8
en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Radiology, Shiga University of Medical Science
kn-affil=
affil-num=10
en-affil=Department of Radiology, Shiga University of Medical Science
kn-affil=
affil-num=11
en-affil=Department of Radiology, Shiga University of Medical Science
kn-affil=
affil-num=12
en-affil=Molecular Neuroscience Research Center, Shiga University of Medical Science
kn-affil=
affil-num=13
en-affil=Department of Radiology, Shiga University of Medical Science
kn-affil=
affil-num=14
en-affil=Department of Neurosurgery, Shiga University of Medical Science
kn-affil=
affil-num=15
en-affil=Department of Neurosurgery, Shiga University of Medical Science
kn-affil=
affil-num=16
en-affil=Department of Radiology, Shiga University of Medical Science
kn-affil=
affil-num=17
en-affil=
kn-affil=
en-keyword=Cognitive impairment
kn-keyword=Cognitive impairment
en-keyword=Cerebrovascular disease
kn-keyword=Cerebrovascular disease
en-keyword=Brain magnetic resonance imaging
kn-keyword=Brain magnetic resonance imaging
en-keyword=White matter lesion
kn-keyword=White matter lesion
en-keyword=Community-based population study
kn-keyword=Community-based population study
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=
article-no=
start-page=e72549
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250624
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Optimization of Preemptive Therapy for Cytomegalovirus Infections With Valganciclovir Based on Therapeutic Drug Monitoring: Protocol for a Phase II, Single-Center, Single-Arm Trial
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Valganciclovir (VGCV) is the first-line drug for preemptive therapy of cytomegalovirus (CMV) infections. However, even when administered at the dose specified in the package insert, there is significant interindividual variability in the plasma concentrations of ganciclovir (GCV). In addition, correlations have been reported between the area under the concentration?time curve and therapeutic efficacy or adverse events. Therefore, therapeutic drug monitoring (TDM) can be used to improve the efficacy and safety of preemptive VGCV therapy.
Objective: This study aims to evaluate whether the dosage adjustment of VGCV based on TDM in patients undergoing preemptive therapy for CMV infections is associated with the successful completion rate of treatment without severe hematological adverse effects.
Methods: This phase II, single-center, single-arm trial aims to enroll 40 patients admitted at the Department of Rheumatology and Clinical Immunology, Kobe University Hospital, who will receive oral VGCV as preemptive therapy for CMV infections. Participants will begin treatment with VGCV at the dose recommended in the package insert, with subsequent dose adjustments based on weekly TDM results. The primary end point will be the proportion of patients who achieve CMV antigenemia negativity within 3 weeks without severe hematological adverse events. The secondary end points will include weekly changes in CMV antigen levels, total VGCV dose, and duration of preemptive therapy. For safety evaluation, the occurrence, type, and severity of VGCV-related adverse events will be analyzed. Additionally, this study will explore the correlations between the efficacy and safety of preemptive therapy and the pharmacokinetic parameters of GCV, CMV-polymerase chain reaction values, and nudix hydrolase 15 (NUDT15) genetic polymorphisms. The correlation between GCV plasma concentrations obtained from regular venous blood and blood concentrations will be examined using dried blood spots.
Results: This study began with patient recruitment in September 2024, with 5 participants enrolled as of June 16, 2025. The target enrollment is 40 participants, and the anticipated study completion is set for July 2027.
Conclusions: This is the first study to investigate the impact of TDM intervention in patients receiving VGCV as preemptive therapy. The findings are postulated to provide valuable evidence regarding the utility of TDM in patients receiving VGCV as preemptive therapy.
Trial Registration: Japan Registry of Clinical Trials jRCTs051240080; https://jrct.mhlw.go.jp/latest-detail/jRCTs051240080
International Registered Report Identifier (IRRID): DERR1-10.2196/72549
en-copyright=
kn-copyright=
en-aut-name=TamuraNaoki
en-aut-sei=Tamura
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ItoharaKotaro
en-aut-sei=Itohara
en-aut-mei=Kotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UedaYo
en-aut-sei=Ueda
en-aut-mei=Yo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KitahiroYumi
en-aut-sei=Kitahiro
en-aut-mei=Yumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamamotoKazuhiro
en-aut-sei=Yamamoto
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OmuraTomohiro
en-aut-sei=Omura
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SakaneToshiyasu
en-aut-sei=Sakane
en-aut-mei=Toshiyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SaegusaJun
en-aut-sei=Saegusa
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YanoIkuko
en-aut-sei=Yano
en-aut-mei=Ikuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Pharmacy, Kobe University Hospital
kn-affil=
affil-num=2
en-affil=Department of Pharmacy, Kobe University Hospital
kn-affil=
affil-num=3
en-affil=Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Pharmacy, Kobe University Hospital
kn-affil=
affil-num=5
en-affil=Department of Integrated Clinical and Basic Pharmaceutical Sciences, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Pharmacy, Kobe University Hospital
kn-affil=
affil-num=7
en-affil=Department of Pharmaceutical Technology, Kobe Pharmaceutical University
kn-affil=
affil-num=8
en-affil=Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Pharmacy, Kobe University Hospital
kn-affil=
en-keyword=valganciclovir
kn-keyword=valganciclovir
en-keyword=ganciclovir
kn-keyword=ganciclovir
en-keyword=cytomegalovirus
kn-keyword=cytomegalovirus
en-keyword=therapeutic drug monitoring
kn-keyword=therapeutic drug monitoring
en-keyword=preemptive therapy
kn-keyword=preemptive therapy
en-keyword=dried blood spots
kn-keyword=dried blood spots
END
start-ver=1.4
cd-journal=joma
no-vol=287
cd-vols=
no-issue=
article-no=
start-page=117674
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A plant-insertable multi-enzyme biosensor for the real-time monitoring of stomatal sucrose uptake
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Monitoring sucrose transport in plants is essential for understanding plant physiology and improving agricultural practices, yet effective sensors for continuous and real-time in-vivo monitoring are lacking. In this study, we developed a plant-insertable sucrose sensor capable of real-time sucrose concentration monitoring and demonstrated its application as a useful tool for plant research by monitoring the sugar-translocating path from leaves to the lower portion of plants through the stem in living plants. The biosensor consists of a bilirubin oxidase-based biocathode and a needle-type bioanode integrating glucose oxidase, invertase, and mutarotase, with the two electrodes separated by an agarose gel for ionic connection. The sensor exhibits a sensitivity of 6.22 μA mM?1 cm?2, a limit of detection of 100 μM, a detection range up to 60 mM, and a response time of 90 s at 100 μM sucrose. Additionally, the sensor retained 86 % of its initial signal after 72 h of continuous measurement. Day-night monitoring from the biosensor inserted in strawberry guava (Psidium cattleianum) showed higher sucrose transport activity at night, following well the redistribution of photosynthetically produced sugars. In addition, by monitoring the forced translocation of sucrose dissolved in the stable isotopically labeled water, we demonstrated that a young seedling of Japanese cedar known as Sugi (Cryptomeria japonica) can absorb and transport both water and sucrose through light-dependently opened stomata, which is the recently revealed path for liquid uptake by higher plants. These findings highlight the potential of our sensor for studying dynamic plant processes and its applicability in real-time monitoring of sugar transport under diverse environmental conditions.
en-copyright=
kn-copyright=
en-aut-name=WuShiqi
en-aut-sei=Wu
en-aut-mei=Shiqi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakagawaWakutaka
en-aut-sei=Nakagawa
en-aut-mei=Wakutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MoriYuki
en-aut-sei=Mori
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AzhariSaman
en-aut-sei=Azhari
en-aut-mei=Saman
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=M?hesG?bor
en-aut-sei=M?hes
en-aut-mei=G?bor
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KawanoTomonori
en-aut-sei=Kawano
en-aut-mei=Tomonori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MiyakeTakeo
en-aut-sei=Miyake
en-aut-mei=Takeo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Graduate School of Information, Production and Systems, Waseda University
kn-affil=
affil-num=2
en-affil=Graduate School of Information, Production and Systems, Waseda University
kn-affil=
affil-num=3
en-affil=Faculty and Graduate School of Environmental Engineering, The University of Kitakyushu
kn-affil=
affil-num=4
en-affil=Graduate School of Information, Production and Systems, Waseda University
kn-affil=
affil-num=5
en-affil=Graduate School of Information, Production and Systems, Waseda University
kn-affil=
affil-num=6
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=7
en-affil=Faculty and Graduate School of Environmental Engineering, The University of Kitakyushu
kn-affil=
affil-num=8
en-affil=Graduate School of Information, Production and Systems, Waseda University
kn-affil=
en-keyword=Flexible wearable sensor
kn-keyword=Flexible wearable sensor
en-keyword=Plant monitoring
kn-keyword=Plant monitoring
en-keyword=Carbon fiber
kn-keyword=Carbon fiber
en-keyword=Multi-enzyme system
kn-keyword=Multi-enzyme system
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=8
article-no=
start-page=e91072
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250826
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Craniofacial Fibrous Dysplasia to Affect or Not the Optic Nerve in Long-Term Follow-Up of Three Cases
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Fibrous dysplasia of the bone is characterized by immature fibrous bones of trabeculae and fibrovascular proliferation in the medulla. In this study, we report three consecutive patients with craniofacial fibrous dysplasia with or without optic nerve involvement. In Case 1, a 43-year-old man with blurred vision in the right eye at the first visit was well until the age of 54 years, when he came back with symptoms suggestive of paranasal sinusitis. Computed tomography scans disclosed a mucocele in the right sphenoid sinus and thickened bilateral ethmoid, sphenoid, and frontal bones. He underwent an emergency nasal endoscopic surgery to make a drainage opening to the sphenoid and ethmoid sinuses on the right side with incomplete success. The pathology of the resected tissue confirmed fibrous dysplasia. With intravenous antibiotics, he recovered from blepharoptosis, complete ophthalmoplegia, and visual acuity decrease on the right side. He was well until the age of 71 years when he had a self-limiting episode of visual field cloudiness caused by the right sphenoid sinus mucocele. At the age of 75 years, he developed abrupt vision loss to no light perception in the right eye. He underwent an open skull surgery to extirpate the sphenoid mucocele on the right side and died of an unknown cause two years later. In Case 2, a 29-year-old man had a two-week-long headache, and computed tomography scans revealed fibrous dysplasia in the bilateral sphenoid bones. Nasal biopsy at the spheno-ethmoid recess proved a pathological diagnosis of fibrous dysplasia. Goldmann perimetry showed normal visual fields in both eyes. He was followed every year by magnetic resonance imaging to maintain normal visual fields until the latest visit at the age of 41 years. In Case 3, a 12-year-old girl was referred to an ophthalmologist to check her vision. She had been diagnosed with fibrous dysplasia of the left maxillary bone at the age of six years by a dentist. She had a gingival resection on the left maxilla at the age of 15 years and had a left maxillary bone resection at 18 years at another hospital. One month after the resection, Goldmann perimetry showed superior peripheral field depression in the left eye, in contrast with the normal visual field in the right eye. She maintained the visual acuity of 1.5 in both eyes until the last visit at the age of 21 years. In fibrous dysplasia as a rare disease, functional and cosmetic problems, including vision problems, should be considered in a case-based approach.
en-copyright=
kn-copyright=
en-aut-name=MatsuoToshihiko
en-aut-sei=Matsuo
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamadaKiyoshi
en-aut-sei=Yamada
en-aut-mei=Kiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OkanoMitsuhiro
en-aut-sei=Okano
en-aut-mei=Mitsuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Ophthalmology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Otorhinolaryngology, School of Medicine, International University of Health and Welfare
kn-affil=
en-keyword=computed tomography (ct) scan
kn-keyword=computed tomography (ct) scan
en-keyword=craniofacial bone
kn-keyword=craniofacial bone
en-keyword=fibrous dysplasia
kn-keyword=fibrous dysplasia
en-keyword=goldmann perimetry
kn-keyword=goldmann perimetry
en-keyword=magnetic resonance imaging
kn-keyword=magnetic resonance imaging
en-keyword=monostotic
kn-keyword=monostotic
en-keyword=optic nerve
kn-keyword=optic nerve
en-keyword=pathology
kn-keyword=pathology
en-keyword=visual acuity
kn-keyword=visual acuity
en-keyword=visual field
kn-keyword=visual field
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=10
article-no=
start-page=2373
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241017
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Development and Characterization of a Three-Dimensional Organotypic In Vitro Oral Cancer Model with Four Co-Cultured Cell Types, Including Patient-Derived Cancer-Associated Fibroblasts
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Objectives: Cancer organoids have emerged as a valuable tool of three-dimensional (3D) cell cultures to investigate tumor heterogeneity and predict tumor behavior and treatment response. We developed a 3D organotypic culture model of oral squamous cell carcinoma (OSCC) to recapitulate the tumor?stromal interface by co-culturing four cell types, including patient-derived cancer-associated fibroblasts (PD-CAFs). Methods: A stainless-steel ring was used twice to create the horizontal positioning of the cancer stroma (adjoining normal oral mucosa connective tissue) and the OSCC layer (surrounding normal oral mucosa epithelial layer). Combined with a structured bi-layered model of the epithelial component and the underlying stroma, this protocol enabled us to construct four distinct portions mimicking the oral cancer tissue arising in the oral mucosa. Results: In this model, α-smooth muscle actin-positive PD-CAFs were localized in close proximity to the OSCC layer, suggesting a crosstalk between them. Furthermore, a linear laminin-γ2 expression was lacking at the interface between the OSCC layer and the underlying stromal layer, indicating the loss of the basement membrane-like structure. Conclusions: Since the specific 3D architecture and polarity mimicking oral cancer in vivo provides a more accurate milieu of the tumor microenvironment (TME), it could be crucial in elucidating oral cancer TME.
en-copyright=
kn-copyright=
en-aut-name=AizawaYuka
en-aut-sei=Aizawa
en-aut-mei=Yuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HagaKenta
en-aut-sei=Haga
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshibaNagako
en-aut-sei=Yoshiba
en-aut-mei=Nagako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YortchanWitsanu
en-aut-sei=Yortchan
en-aut-mei=Witsanu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakadaSho
en-aut-sei=Takada
en-aut-mei=Sho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TanakaRintaro
en-aut-sei=Tanaka
en-aut-mei=Rintaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NaitoEriko
en-aut-sei=Naito
en-aut-mei=Eriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=Ab?Tatsuya
en-aut-sei=Ab?
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MaruyamaSatoshi
en-aut-sei=Maruyama
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YamazakiManabu
en-aut-sei=Yamazaki
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TanumaJun-ichi
en-aut-sei=Tanuma
en-aut-mei=Jun-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=IgawaKazuyo
en-aut-sei=Igawa
en-aut-mei=Kazuyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TomiharaKei
en-aut-sei=Tomihara
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TogoShinsaku
en-aut-sei=Togo
en-aut-mei=Shinsaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=IzumiKenji
en-aut-sei=Izumi
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=2
en-affil=Division of Reconstructive Surgery for Oral and Maxillofacial Region, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=3
en-affil=Department of Oral Health and Welfare, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=4
en-affil=Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=5
en-affil=Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=6
en-affil=Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=7
en-affil=Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=8
en-affil=Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=9
en-affil=Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=10
en-affil=Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=11
en-affil=Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=12
en-affil=Neutron Therapy Research Center, Okayama University
kn-affil=
affil-num=13
en-affil=Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=14
en-affil=Department of Respiratory Medicine, Graduate School of Medicine, Juntendo University
kn-affil=
affil-num=15
en-affil=Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
en-keyword=oral cancer
kn-keyword=oral cancer
en-keyword=cancer-associated fibroblasts
kn-keyword=cancer-associated fibroblasts
en-keyword=oral mucosa
kn-keyword=oral mucosa
en-keyword=patient-derived
kn-keyword=patient-derived
en-keyword=organotypic culture
kn-keyword=organotypic culture
en-keyword=3D in vitro model
kn-keyword=3D in vitro model
en-keyword=polarity
kn-keyword=polarity
END
start-ver=1.4
cd-journal=joma
no-vol=156
cd-vols=
no-issue=2
article-no=
start-page=473
end-page=479.e1
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Dried blood spot proteome identifies subclinical interferon signature in neonates with type I interferonopathy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Type I interferonopathy is characterized by aberrant upregulation of type I interferon signaling. The mRNA interferon signature is a useful marker for activation of the interferon pathway and for diagnosis of type I interferonopathy; however, early diagnosis is challenging.
Objective: This study sought to identify the proteomic interferon signature in dried blood spot (DBS) samples. The aim was to evaluate the usefulness of the interferon signature for neonatal screening and to gain insight into presymptomatic state of neonates with inborn errors of immunity (IEIs).
Methods: DBS samples from healthy newborns/adults, patients with type I interferonopathy or other IEIs as well as from neonates with viral infections, including some samples obtained during the presymptomatic neonatal period, were examined by nontargeted proteome analyses. Expression of interferon-stimulated genes (ISGs) was evaluated and a DBS-interferon signature was defined. Differential expression/pathway analysis was also performed.
Results: The ISG products IFIT5, ISG15, and OAS2 were detected. Expression of IFIT5 and ISG15 was upregulated significantly in individuals with type I interferonopathy. We defined the sum of the z scores for these as the DBS-interferon signature, and found that patients with IEIs other than type I interferonopathy, such as chronic granulomatous disease (CGD), also showed significant elevation. Additionally, neonatal samples of type I interferonopathy and CGD patients showed high interferon signatures. Pathway analysis of neonatal CGD samples revealed upregulation of systemic lupus erythematosus?like pathways.
Conclusion: Upregulation of the interferon pathway exists already at birth?not only in neonates with type I interferonopathy but also in other IEIs, including CGD.
en-copyright=
kn-copyright=
en-aut-name=NihiraHiroshi
en-aut-sei=Nihira
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakajimaDaisuke
en-aut-sei=Nakajima
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IzawaKazushi
en-aut-sei=Izawa
en-aut-mei=Kazushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KawashimaYusuke
en-aut-sei=Kawashima
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShibataHirofumi
en-aut-sei=Shibata
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KonnoRyo
en-aut-sei=Konno
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HigashiguchiMotoko
en-aut-sei=Higashiguchi
en-aut-mei=Motoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MiyamotoTakayuki
en-aut-sei=Miyamoto
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=Nishitani-IsaMasahiko
en-aut-sei=Nishitani-Isa
en-aut-mei=Masahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HiejimaEitaro
en-aut-sei=Hiejima
en-aut-mei=Eitaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HondaYoshitaka
en-aut-sei=Honda
en-aut-mei=Yoshitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MatsubayashiTadashi
en-aut-sei=Matsubayashi
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=IshiharaTakashi
en-aut-sei=Ishihara
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=YashiroMasato
en-aut-sei=Yashiro
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=IwataNaomi
en-aut-sei=Iwata
en-aut-mei=Naomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=OhwadaYoko
en-aut-sei=Ohwada
en-aut-mei=Yoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=TomotakiSeiichi
en-aut-sei=Tomotaki
en-aut-mei=Seiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=KawaiMasahiko
en-aut-sei=Kawai
en-aut-mei=Masahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=MurakamiKosaku
en-aut-sei=Murakami
en-aut-mei=Kosaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=OhnishiHidenori
en-aut-sei=Ohnishi
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=IshimuraMasataka
en-aut-sei=Ishimura
en-aut-mei=Masataka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=OkadaSatoshi
en-aut-sei=Okada
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=YamashitaMotoi
en-aut-sei=Yamashita
en-aut-mei=Motoi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=MorioTomohiro
en-aut-sei=Morio
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=HoshinoAkihiro
en-aut-sei=Hoshino
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=KaneganeHirokazu
en-aut-sei=Kanegane
en-aut-mei=Hirokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=ImaiKohsuke
en-aut-sei=Imai
en-aut-mei=Kohsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=NakamuraYasuko
en-aut-sei=Nakamura
en-aut-mei=Yasuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=NonoyamaShigeaki
en-aut-sei=Nonoyama
en-aut-mei=Shigeaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=UchiyamaToru
en-aut-sei=Uchiyama
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=OnoderaMasafumi
en-aut-sei=Onodera
en-aut-mei=Masafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=IshikawaTakashi
en-aut-sei=Ishikawa
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
en-aut-name=KawaiToshinao
en-aut-sei=Kawai
en-aut-mei=Toshinao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=33
ORCID=
en-aut-name=TakitaJunko
en-aut-sei=Takita
en-aut-mei=Junko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=34
ORCID=
en-aut-name=NishikomoriRyuta
en-aut-sei=Nishikomori
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=35
ORCID=
en-aut-name=OharaOsamu
en-aut-sei=Ohara
en-aut-mei=Osamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=36
ORCID=
en-aut-name=YasumiTakahiro
en-aut-sei=Yasumi
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=37
ORCID=
affil-num=1
en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Applied Genomics, Kazusa DNA Research Institute
kn-affil=
affil-num=3
en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Applied Genomics, Kazusa DNA Research Institute
kn-affil=
affil-num=5
en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Applied Genomics, Kazusa DNA Research Institute
kn-affil=
affil-num=7
en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=12
en-affil=Department of Pediatrics, Seirei Hamamatsu General Hospital
kn-affil=
affil-num=13
en-affil=Department of Pediatrics, Nara Medical University
kn-affil=
affil-num=14
en-affil=Department of Pediatrics, Okayama University
kn-affil=
affil-num=15
en-affil=Department of Infection and Immunology, Aichi Children’s Health and Medical Center
kn-affil=
affil-num=16
en-affil=Department of Pediatrics, Dokkyo Medical University School of Medicine
kn-affil=
affil-num=17
en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=18
en-affil=Department of Neonatology, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=19
en-affil=Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=20
en-affil=Department of Pediatrics, Gifu University Graduate School of Medicine
kn-affil=
affil-num=21
en-affil=Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University
kn-affil=
affil-num=22
en-affil=Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences
kn-affil=
affil-num=23
en-affil=Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (SCIENCE TOKYO)
kn-affil=
affil-num=24
en-affil=Laboratory of Immunology and Molecular Medicine, Advanced Research Initiative, Institute of Science Tokyo (SCIENCE TOKYO)
kn-affil=
affil-num=25
en-affil=Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (SCIENCE TOKYO)
kn-affil=
affil-num=26
en-affil=Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (SCIENCE TOKYO)
kn-affil=
affil-num=27
en-affil=Department of Pediatrics, National Defense Medical College
kn-affil=
affil-num=28
en-affil=Department of Pediatrics, National Defense Medical College
kn-affil=
affil-num=29
en-affil=Department of Pediatrics, National Defense Medical College
kn-affil=
affil-num=30
en-affil=Department of Human Genetics, National Center for Child Health and Development
kn-affil=
affil-num=31
en-affil=Department of Human Genetics, National Center for Child Health and Development
kn-affil=
affil-num=32
en-affil=Division of Immunology, National Center for Child Health and Development
kn-affil=
affil-num=33
en-affil=Division of Immunology, National Center for Child Health and Development
kn-affil=
affil-num=34
en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=35
en-affil=Department of Pediatrics and Child Health, Kurume University School of Medicine
kn-affil=
affil-num=36
en-affil=Department of Applied Genomics, Kazusa DNA Research Institute
kn-affil=
affil-num=37
en-affil=Department of Pediatrics, Kyoto University Graduate School of Medicine
kn-affil=
en-keyword=Inborn errors of immunity
kn-keyword=Inborn errors of immunity
en-keyword=interferonopathy
kn-keyword=interferonopathy
en-keyword=signature
kn-keyword=signature
en-keyword=proteome
kn-keyword=proteome
en-keyword=dried blood spot
kn-keyword=dried blood spot
en-keyword=CGD
kn-keyword=CGD
en-keyword=WAS
kn-keyword=WAS
en-keyword=newborn
kn-keyword=newborn
en-keyword=neonate
kn-keyword=neonate
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=roaf042
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250603
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Recommendations for the treatment of juvenile idiopathic arthritis with oligoarthritis or polyarthritis from the 2024 update of the Japan College of Rheumatology Clinical Practice Guidelines for the management of rheumatoid arthritis including juvenile idiopathic arthritis with oligoarthritis or polyarthritis ? secondary publication
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objectives: To conduct systematic reviews (SRs) and develop clinical practice guidelines (CPGs) for managing juvenile idiopathic arthritis (JIA) with oligoarthritis or polyarthritis.
Methods: The Grading of Recommendations, Assessment, Development, and Evaluation methodology was employed to carry out SRs and formulate the CPGs. An expert panel, including patients, paediatric and nonpaediatric rheumatologists, guideline specialists, and patient representatives, used the Delphi method to discuss and agree on the recommendations.
Results: Six clinical questions (CQs) on the efficacy and safety of medical treatments were evaluated. These included CQ1 on methotrexate (MTX), CQ2 on non-MTX conventional synthetic disease-modifying antirheumatic drugs, CQ3 on glucocorticoids, CQ4 on tumour necrosis factor inhibitors, CQ5 on interleukin-6 inhibitors, and CQ6 on Janus kinase inhibitors. Two randomized controlled trials were identified for CQ1, three for CQ2, two for CQ3, eight for CQ4, two for CQ5, and two for CQ6. Based on these evaluations, three strong and three conditional recommendations were established. The CPGs have been endorsed by the Japan College of Rheumatology and the Pediatric Rheumatology Association of Japan.
Conclusions: The SRs provided the necessary evidence to develop the CPGs, which are intended to guide not only paediatric but also nonpaediatric rheumatologists, caregivers, patients, and their families in treatment decision-making.
en-copyright=
kn-copyright=
en-aut-name=MiyamaeTakako
en-aut-sei=Miyamae
en-aut-mei=Takako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkamotoNami
en-aut-sei=Okamoto
en-aut-mei=Nami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=InoueYuzaburo
en-aut-sei=Inoue
en-aut-mei=Yuzaburo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KubotaTomohiro
en-aut-sei=Kubota
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=EbatoTakasuke
en-aut-sei=Ebato
en-aut-mei=Takasuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IrabuHitoshi
en-aut-sei=Irabu
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KamedaHideto
en-aut-sei=Kameda
en-aut-mei=Hideto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KanekoYuko
en-aut-sei=Kaneko
en-aut-mei=Yuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KuboHiroshi
en-aut-sei=Kubo
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MitsunagaKanako
en-aut-sei=Mitsunaga
en-aut-mei=Kanako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MoriMasaaki
en-aut-sei=Mori
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NakajimaAyako
en-aut-sei=Nakajima
en-aut-mei=Ayako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=NishimuraKenichi
en-aut-sei=Nishimura
en-aut-mei=Kenichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=OhkuboNaoaki
en-aut-sei=Ohkubo
en-aut-mei=Naoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=SatoTomomi
en-aut-sei=Sato
en-aut-mei=Tomomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=SugitaYuko
en-aut-sei=Sugita
en-aut-mei=Yuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=TakanashiSatoshi
en-aut-sei=Takanashi
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=TanakaTakayuki
en-aut-sei=Tanaka
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=UmebayashiHiroaki
en-aut-sei=Umebayashi
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=YashiroMasato
en-aut-sei=Yashiro
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=YamanishiShingo
en-aut-sei=Yamanishi
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=FusamaMie
en-aut-sei=Fusama
en-aut-mei=Mie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=HirataShintaro
en-aut-sei=Hirata
en-aut-mei=Shintaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=KishimotoMitsumasa
en-aut-sei=Kishimoto
en-aut-mei=Mitsumasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=KohnoMasataka
en-aut-sei=Kohno
en-aut-mei=Masataka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=KojimaMasayo
en-aut-sei=Kojima
en-aut-mei=Masayo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=KojimaToshihisa
en-aut-sei=Kojima
en-aut-mei=Toshihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=MorinobuAkio
en-aut-sei=Morinobu
en-aut-mei=Akio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=SugiharaTakahiko
en-aut-sei=Sugihara
en-aut-mei=Takahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=TanakaEiichi
en-aut-sei=Tanaka
en-aut-mei=Eiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=YajimaNobuyuki
en-aut-sei=Yajima
en-aut-mei=Nobuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=YanaiRyo
en-aut-sei=Yanai
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
en-aut-name=KawahitoYutaka
en-aut-sei=Kawahito
en-aut-mei=Yutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=33
ORCID=
en-aut-name=HarigaiMasayoshi
en-aut-sei=Harigai
en-aut-mei=Masayoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=34
ORCID=
affil-num=1
en-affil=Department of Pediatric Rheumatology, Institute of Rheumatology, Tokyo Women’s Medical University Hospital
kn-affil=
affil-num=2
en-affil=Department of Pediatrics, Osaka Rosai Hospital, Japan Organization of Occupational Health and Safety
kn-affil=
affil-num=3
en-affil=Department of General Medical Science, Graduate School of Medicine, Chiba University
kn-affil=
affil-num=4
en-affil=Department of Pediatrics, Kagoshima Prefectural Satsunan Hospital
kn-affil=
affil-num=5
en-affil=Department of Pediatrics, Kitasato University
kn-affil=
affil-num=6
en-affil=Department of Pediatrics and Development Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
kn-affil=
affil-num=7
en-affil=Division of Rheumatology, Department of Internal Medicine, Toho University
kn-affil=
affil-num=8
en-affil=Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
kn-affil=
affil-num=10
en-affil=Department of Allergy and Rheumatology, Chiba Children's Hospital
kn-affil=
affil-num=11
en-affil=Department of Lifetime Clinical Immunology, Tokyo Medical and Dental University
kn-affil=
affil-num=12
en-affil=Center for Rheumatic Diseases, Mie University Hospital
kn-affil=
affil-num=13
en-affil=Department of Pediatrics, Yokohama City University Graduate School of Medicine
kn-affil=
affil-num=14
en-affil=Iizuka Hospital
kn-affil=
affil-num=15
en-affil=Clinical Education Center For Physicians, Shiga University of Medical Science
kn-affil=
affil-num=16
en-affil=Department of Pediatrics, School of Medicine, Osaka Medical and Pharmaceutical University
kn-affil=
affil-num=17
en-affil=Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=18
en-affil=Department of Pediatrics, Japanese Red Cross Otsu Hospital
kn-affil=
affil-num=19
en-affil=Department of Rheumatology and Infectious Diseases, Miyagi Children’s Hospital
kn-affil=
affil-num=20
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
affil-num=21
en-affil=Department of Pediatrics, Nippon Medical School
kn-affil=
affil-num=22
en-affil=Health Sciences Department of Nursing, Kansai University of International Studies
kn-affil=
affil-num=23
en-affil=Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital
kn-affil=
affil-num=24
en-affil=Department of Nephrology and Rheumatology, Kyorin University School of Medicine
kn-affil=
affil-num=25
en-affil=Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
kn-affil=
affil-num=26
en-affil=Graduate School of Medical Sciences, Nagoya City University
kn-affil=
affil-num=27
en-affil=Department of Orthopedic Surgery, National Hospital Organization Nagoya Medical Center
kn-affil=
affil-num=28
en-affil=Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=29
en-affil=Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine
kn-affil=
affil-num=30
en-affil=Division of Rheumatology, Department of Internal Medicine, School of Medicine, Tokyo Women's Medical University
kn-affil=
affil-num=31
en-affil=Division of Rheumatology, Department of Medicine, Showa University School of Medicine
kn-affil=
affil-num=32
en-affil=Division of Rheumatology, Department of Medicine, Showa University School of Medicine
kn-affil=
affil-num=33
en-affil=Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
kn-affil=
affil-num=34
en-affil=Division of Rheumatology, Department of Internal Medicine, School of Medicine, Tokyo Women's Medical University
kn-affil=
en-keyword=Clinical practice guidelines
kn-keyword=Clinical practice guidelines
en-keyword=baricitinib
kn-keyword=baricitinib
en-keyword=GRADE (Grading of Recommendations, Assessment, Development, and Evaluation)
kn-keyword=GRADE (Grading of Recommendations, Assessment, Development, and Evaluation)
en-keyword=juvenile idiopathic arthritis
kn-keyword=juvenile idiopathic arthritis
en-keyword=systematic review
kn-keyword=systematic review
END
start-ver=1.4
cd-journal=joma
no-vol=18
cd-vols=
no-issue=
article-no=
start-page=244
end-page=256
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Postnatal expression of Cat-315-positive perineuronal nets in the SAMP10 mouse primary somatosensory cortex
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Perineuronal nets (PNNs) form at the end of the critical period of plasticity in the mouse primary somatosensory cortex. PNNs are said to have functions that control neuroplasticity and provide neuroprotection. However, it is not clear which molecules in PNNs have these functions. We have previously reported that Cat-315-positive molecules were not expressed in the PNNs of the senescence-accelerated model (SAM)P10 strain model mice at 12 months of age. To confirm whether the loss of Cat-315-positive molecules occurred early in life in SAMP10 mice, we examined Cat-315-positive PNNs in the primary somatosensory cortex during postnatal development. This research helps to elucidate the function of PNNs and the mechanism of cognitive decline associated with ageing. To confirm whether Cat-315-positive PNNs changed in an age-dependent manner in SAMP10 mice, we examined the primary somatosensory cortex at 21, 28, and 56 days after birth. We compared these results with those of senescence-accelerated mouse-resistant (SAMR) mice. In SAMP10 mice, Cat-315-positive PNNs were expressed in the primary somatosensory cortex early after birth, but their expression was significantly lower than that in SAMR1 mice. Many other molecules that calibrated the PNN were unchanged between SAMP10 and SAMR1 mice. This study revealed that the expression of the Cat-315 epitope was decreased in the primary somatosensory cortex of SAMP10 mice during postnatal development. SAMP10 mice have had histological abnormalities in their brains since early life. Furthermore, using SAMP10 will be useful in elucidating the mechanism of age-related abnormalities in brain function as well as in elucidating the function and structure of PNNs.
en-copyright=
kn-copyright=
en-aut-name=UenoHiroshi
en-aut-sei=Ueno
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakahashiYu
en-aut-sei=Takahashi
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MoriSachiko
en-aut-sei=Mori
en-aut-mei=Sachiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KitanoEriko
en-aut-sei=Kitano
en-aut-mei=Eriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MurakamiShinji
en-aut-sei=Murakami
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=WaniKenta
en-aut-sei=Wani
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsumotoYosuke
en-aut-sei=Matsumoto
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OkamotoMotoi
en-aut-sei=Okamoto
en-aut-mei=Motoi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IshiharaTakeshi
en-aut-sei=Ishihara
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Medical Technology, Kawasaki University of Medical Welfare
kn-affil=
affil-num=2
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=3
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=4
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=5
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=6
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=7
en-affil=Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
en-keyword=Ageing
kn-keyword=Ageing
en-keyword=Brain function
kn-keyword=Brain function
en-keyword=Neuroplasticity
kn-keyword=Neuroplasticity
en-keyword=Neuroprotection
kn-keyword=Neuroprotection
en-keyword=Cognitive decline
kn-keyword=Cognitive decline
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=1
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250225
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Age-related behavioural abnormalities in C57BL/6.KOR?Apoe shl mice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Spontaneously hyperlipidaemic (Apoeshl) mice were discovered in 1999 as mice lacking apolipoprotein E (ApoE) owing to a mutation in the Apoe gene. However, age-related behavioural changes in commercially available Apoeshl mice have not yet been clarified. The behavioural abnormalities of ApoE-deficient mice, which are genetically modified mice artificially deficient in ApoE, have been investigated in detail, and it has been reported that they can serve as a model of Alzheimer’s disease (AD). To understand whether Apoeshl mice can also serve as a murine model of AD, it is necessary to investigate age-related behavioural abnormalities in Apoeshl mice. In this study, we conducted a series of behavioural experiments on 7- and 11-month-old Apoeshl mice to investigate the behavioural abnormalities associated with ageing in Apoeshl mice. In this study, 7-month-old Apoeshl mice showed decreased body weight and grip strength compared to age-matched wild-type mice. In the open field test, 7-month-old Apoeshl mice showed increased anxiety-like behaviour compared to wild-type mice, whereas 11-month-old Apoeshl mice showed decreased anxiety-like behaviour. Moreover, Apoeshl mice aged 7 and 11 months had increased serum cholesterol levels. These results indicate that the behaviour of Apoeshl mice changes with age. However, 11-month-old Apoeshl mice did not show a decline in cognitive function or memory ability similar to murine models of AD. Our findings indicate that Apoeshl mice can be used to investigate the function of ApoE in the central nervous system.
en-copyright=
kn-copyright=
en-aut-name=UenoHiroshi
en-aut-sei=Ueno
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakahashiYu
en-aut-sei=Takahashi
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MoriSachiko
en-aut-sei=Mori
en-aut-mei=Sachiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KitanoEriko
en-aut-sei=Kitano
en-aut-mei=Eriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MurakamiShinji
en-aut-sei=Murakami
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=WaniKenta
en-aut-sei=Wani
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MiyazakiTetsuji
en-aut-sei=Miyazaki
en-aut-mei=Tetsuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MatsumotoYosuke
en-aut-sei=Matsumoto
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OkamotoMotoi
en-aut-sei=Okamoto
en-aut-mei=Motoi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=IshiharaTakeshi
en-aut-sei=Ishihara
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Medical Technology, Kawasaki University of Medical Welfare
kn-affil=
affil-num=2
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=3
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=4
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=5
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=6
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=7
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=8
en-affil=Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
en-keyword=age
kn-keyword=age
en-keyword=apolipoprotein
kn-keyword=apolipoprotein
en-keyword=behavioural test
kn-keyword=behavioural test
en-keyword=central nervous system
kn-keyword=central nervous system
en-keyword=mouse
kn-keyword=mouse
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=1
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250222
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Rearing in an envy-like environment increases anxiety-like behaviour in mice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Interest in the societal and psychological harm caused by widespread envy and social comparison is increasing. Envy is associated with anxiety and depression, though the mechanism by which envy affects neuropsychiatric disorders, such as depression, remains unclear. Clarifying the neurobiological basis of envy’s effects on behaviour and emotion regulation in experimental mice is essential for developing disease-prevention and treatment strategies. As mice recognize other mice in neighbouring cages, this study investigated whether they recognize neighbouring cages housed in environmentally enriched cages and suffer psychological stress due to envy. After being raised in an envy-like environment for 3 weeks, we revealed changes in the behaviour of the mice through a series of behavioural experiments. Mice raised in an envious environment showed increased body weight and anxiety-like behaviour but decreased social behaviour and serum corticosterone levels compared to control mice. Thus, mice recognize their neighbouring cages and experience psychological stress due to envy. This study revealed a part of the scientific basis for why envy increased anxiety. Using this novel experimental breeding environment, it may be possible to create an experimental animal model of anxiety disorders.
en-copyright=
kn-copyright=
en-aut-name=UenoHiroshi
en-aut-sei=Ueno
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KitanoEriko
en-aut-sei=Kitano
en-aut-mei=Eriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakahashiYu
en-aut-sei=Takahashi
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MoriSachiko
en-aut-sei=Mori
en-aut-mei=Sachiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MurakamiShinji
en-aut-sei=Murakami
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=WaniKenta
en-aut-sei=Wani
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsumotoYosuke
en-aut-sei=Matsumoto
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OkamotoMotoi
en-aut-sei=Okamoto
en-aut-mei=Motoi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IshiharaTakeshi
en-aut-sei=Ishihara
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Medical Technology, Kawasaki University of Medical Welfare
kn-affil=
affil-num=2
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=3
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=4
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=5
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=6
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=7
en-affil=Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
en-keyword=behaviour
kn-keyword=behaviour
en-keyword=anxiety
kn-keyword=anxiety
en-keyword=mouse
kn-keyword=mouse
en-keyword=envy
kn-keyword=envy
en-keyword=rodent
kn-keyword=rodent
END
start-ver=1.4
cd-journal=joma
no-vol=2024
cd-vols=
no-issue=
article-no=
start-page=9215607
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Mice Recognise Mice in Neighbouring Rearing Cages and Change Their Social Behaviour
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Mice are social animals that change their behaviour primarily in response to visual, olfactory, and auditory information from conspecifics. Rearing conditions such as cage size and colour are important factors influencing mouse behaviour. In recent years, transparent plastic cages have become standard breeding cages. The advantage of using a transparent cage is that the experimenter can observe the mouse from outside the cage without touching the cage. However, mice may recognise the environment outside the cage and change their behaviour. We speculated that mice housed in transparent cages might recognise mice in neighbouring cages. We used only male mice in this experiment. C57BL/6 mice were kept in transparent rearing cages with open lids, and the cage positions were maintained for 3 weeks. Subsequently, we examined how mice behaved toward cagemate mice, mice from neighbouring cages, and mice from distant cages. We compared the level of interest in mice using a social preference test. Similar to previous reports, subject mice showed a high degree of interest in unfamiliar mice from distant cages. By contrast, subject mice reacted to mice from neighbouring cages as familiar mice, similar to cagemate mice. This suggests that mice housed in transparent cages with open lids perceive the external environment and identify mice in neighbouring cages. Researchers should pay attention to the environment outside the mouse cage, especially for the social preference test.
en-copyright=
kn-copyright=
en-aut-name=UenoHiroshi
en-aut-sei=Ueno
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakahashiYu
en-aut-sei=Takahashi
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MoriSachiko
en-aut-sei=Mori
en-aut-mei=Sachiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MurakamiShinji
en-aut-sei=Murakami
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WaniKenta
en-aut-sei=Wani
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MatsumotoYosuke
en-aut-sei=Matsumoto
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OkamotoMotoi
en-aut-sei=Okamoto
en-aut-mei=Motoi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IshiharaTakeshi
en-aut-sei=Ishihara
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Medical Technology, Kawasaki University of Medical Welfare
kn-affil=
affil-num=2
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=3
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=4
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=5
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
affil-num=6
en-affil=Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Psychiatry, Kawasaki Medical School
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=12
article-no=
start-page=1399
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250611
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Association Between Chewing Status and Steatotic Liver Disease in Japanese People Aged ?50 Years: A Cohort Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Objectives: In this longitudinal study, the relationship between chewing status and steatotic liver disease (SLD) was examined in 3775 people aged ?50 years who underwent medical checkups at Junpukai Health Maintenance Center in Okayama, Japan. Methods: Participants without SLD at the time of a baseline survey in 2018 were followed until 2022. Chewing status was assessed by a self-administered questionnaire. The presence or absence of SLD was ascertained from the medical records of Junpukai Health Maintenance Center. Results: A total of 541 participants (14%) were diagnosed as having a poor chewing status at baseline. Furthermore, 318 (8%) participants were newly diagnosed with SLD at follow-up. In multivariate logistic regression analyses, the presence or absence of SLD was found to be associated with the following characteristics at baseline: sex (male: odds ratio [ORs] = 1.806; 95% confidence interval [CIs]: 1.399?2.351), age (ORs = 0.969; 95% CIs: 0.948?0.991), body mass index (?25.0 kg/m2; ORs = 1.934; 95% CIs: 1.467?2.549), diastolic blood pressure (ORs = 1.017; 95% CIs: 1.002?1.032), and chewing status (poor: ORs = 1.472; 95% CIs: 1.087?1.994). Conclusions: The results indicate that a poor chewing status was associated with SLD development after 4 years. Aggressively recommending dental visits to participants with poor chewing status may not only improve their ability to chew well but may also reduce the incidence of SLD.
en-copyright=
kn-copyright=
en-aut-name=IwaiKomei
en-aut-sei=Iwai
en-aut-mei=Komei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=EkuniDaisuke
en-aut-sei=Ekuni
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AzumaTetsuji
en-aut-sei=Azuma
en-aut-mei=Tetsuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YonenagaTakatoshi
en-aut-sei=Yonenaga
en-aut-mei=Takatoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TabataKoichiro
en-aut-sei=Tabata
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ToyamaNaoki
en-aut-sei=Toyama
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KataokaKota
en-aut-sei=Kataoka
en-aut-mei=Kota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MaruyamaTakayuki
en-aut-sei=Maruyama
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TomofujiTakaaki
en-aut-sei=Tomofuji
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Community Oral Health, School of Dentistry, Asahi University
kn-affil=
affil-num=2
en-affil=Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Community Oral Health, School of Dentistry, Asahi University
kn-affil=
affil-num=4
en-affil=Department of Community Oral Health, School of Dentistry, Asahi University
kn-affil=
affil-num=5
en-affil=Department of Community Oral Health, School of Dentistry, Asahi University
kn-affil=
affil-num=6
en-affil=Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Community Oral Health, School of Dentistry, Asahi University
kn-affil=
en-keyword=oral health
kn-keyword=oral health
en-keyword=liver diseases
kn-keyword=liver diseases
en-keyword=longitudinal studies
kn-keyword=longitudinal studies
en-keyword=mastication
kn-keyword=mastication
en-keyword=physical examination
kn-keyword=physical examination
en-keyword=surveys and questionnaires
kn-keyword=surveys and questionnaires
END
start-ver=1.4
cd-journal=joma
no-vol=64
cd-vols=
no-issue=4
article-no=
start-page=292
end-page=296
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241225
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Computed tomography findings of idiopathic multicentric Castleman disease subtypes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study retrospectively evaluated the computed tomography (CT) findings of idiopathic multicentric Castleman disease (iMCD) at a single center and compared the CT findings of iMCD-TAFRO with those of iMCD-non-TAFRO. CT images obtained within 30 days before diagnostic confirmation were reviewed for 20 patients with iMCD (8 men and 12 women, mean age 52.8 ± 12.3 years, range 25?74 years). Twelve patients were diagnosed with iMCD-TAFRO, five with iMCD-idiopathic plasmacytic lymphadenopathy, and three with iMCD-not otherwise specified. CT images revealed anasarca and lymphadenopathy in all 20 patients. The iMCD-TAFRO group showed significantly higher frequencies of ascites (100% vs. 37.5%, P = 0.004), gallbladder wall edema (75.0% vs. 12.5%, P = 0.020), periportal collar (91.7% vs. 25.0%, P = 0.004), and anterior mediastinal lesions (non-mass-forming infiltrative lesions) (66.7% vs. 12.5%, P = 0.028). Para-aortic edema tended to be more frequent in patients with the iMCD-TAFRO group (83.3% vs. 37.5%, P = 0.062), while the absence of anterior mediastinal lesions tended to be more frequent in the iMCD-non-TAFRO group (16.7% vs. 62.5%, P = 0.062). These CT findings may have clinical implications for improving the accuracy and speed of iMCD diagnosis and differentiating iMCD-TAFRO from other subtypes.
en-copyright=
kn-copyright=
en-aut-name=IguchiToshihiro
en-aut-sei=Iguchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishikoriAsami
en-aut-sei=Nishikori
en-aut-mei=Asami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SatoYasuharu
en-aut-sei=Sato
en-aut-mei=Yasuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NishimuraMidori Filiz
en-aut-sei=Nishimura
en-aut-mei=Midori Filiz
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IwakiNoriko
en-aut-sei=Iwaki
en-aut-mei=Noriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KojimaKatsuhide
en-aut-sei=Kojima
en-aut-mei=Katsuhide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=AsaharaTakashi
en-aut-sei=Asahara
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OtsukaFumio
en-aut-sei=Otsuka
en-aut-mei=Fumio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MaedaYoshinobu
en-aut-sei=Maeda
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HirakiTakao
en-aut-sei=Hiraki
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=3
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=4
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=5
en-affil=Department of Hematology, National Cancer Center Hospital
kn-affil=
affil-num=6
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=idiopathic multicentric Castleman disease
kn-keyword=idiopathic multicentric Castleman disease
en-keyword=TAFRO syndrome
kn-keyword=TAFRO syndrome
en-keyword=computed tomography
kn-keyword=computed tomography
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=9
article-no=
start-page=4310
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Possibility of Plasma Membrane Transporters as Drug Targets in Oral Cancers
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Plasma membrane transporters are increasingly recognized as potential drug targets for oral cancer, particularly oral squamous cell carcinoma (OSCC). These transporters play crucial roles in cancer cell metabolism, drug resistance, and the tumor microenvironment, making them attractive targets for therapeutic intervention. Among the two main families of plasma membrane transporters, ATP-binding cassette (ABC) transporters have long been known to be involved in drug efflux and contribute to chemoresistance in cancer cells. On the other hand, solute carriers (SLCs) are also a family of transporters that facilitate the transport of various substrates, including nutrients and drugs, and have recently been shown to contribute to cancer chemosensitivity, metabolism, and proliferation. SLC transporters have been identified as potential cancer biomarkers and therapeutic targets, and their expression profiles suggest that they could be utilized in precision oncology approaches. We summarize previous reports on the expression and role of ABC and SLC transporters in oral cancer and discuss their potential as therapeutic targets.
en-copyright=
kn-copyright=
en-aut-name=SogawaChiharu
en-aut-sei=Sogawa
en-aut-mei=Chiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShimadaKatsumitsu
en-aut-sei=Shimada
en-aut-mei=Katsumitsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakanoKeisuke
en-aut-sei=Nakano
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Food and Health Sciences, Faculty of Environmental Studies, Hiroshima Institute of Technology
kn-affil=
affil-num=2
en-affil=Department of Clinical Phathophysiology, Matsumoto Dental University
kn-affil=
affil-num=3
en-affil=Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=SLC transporter
kn-keyword=SLC transporter
en-keyword=ABC transporter
kn-keyword=ABC transporter
en-keyword=oral cancer
kn-keyword=oral cancer
en-keyword=oral squamous cell carcinoma
kn-keyword=oral squamous cell carcinoma
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=26737
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250723
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Coronary cross-sectional area stenosis severity determined using coronary CT highly correlated with coronary functional flow reserve: a pilot study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Fractional flow reserve (FFR) is the gold standard for assessing the physiological significance of coronary stenosis. We examined the potential correlation between digitally measured coronary cross-sectional area stenosis using coronary computed tomography (CT) angiography and FFR. We analyzed data of 32 consecutive patients with stenoses who underwent invasive FFR determination. The cross-sectional area was assessed using 128-slice coronary detector-based spectral CT angiography. Power analysis revealed that the sample size enabled the detection of an area under the receiver operating characteristic (ROC) curve (AUC) of 0.90. FFR???0.8 and?>?0.8 were defined as FFR-positive and FFR-negative, respectively. Intra- and interobserver differences were negligible. Percentage cross-sectional area stenosis was calculated as 100?×?(A?B)/A, where A is the cross-sectional area at non-stenotic pre-stenotic segment and B is the cross-sectional area of the most severe stenotic lesion. AUC indicated that percentage cross-sectional area stenosis effectively discriminated between FFR-positive and FFR-negative cases, yielding a sensitivity of 0.882 and specificity of 0.933 at a cutoff of 50% area reduction, with an AUC of 0.976. Lesions with less than 45% cross-sectional area stenosis on coronary CT angiography were not FFR-positive. When ROC analysis was conducted for lesion characteristics, AUC did not significantly improve. In conclusion, the percent coronary cross-sectional area stenosis measured using coronary CT angiography distinguished between FFR-positive and FFR-negative lesions with high accuracy. The severity of coronary cross-sectional area stenosis determined using CT angiography is clinically useful for predicting FFR.
en-copyright=
kn-copyright=
en-aut-name=KoumotoTakuto
en-aut-sei=Koumoto
en-aut-mei=Takuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KusachiShozo
en-aut-sei=Kusachi
en-aut-mei=Shozo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TomiyaTakumi
en-aut-sei=Tomiya
en-aut-mei=Takumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AkagiTakuya
en-aut-sei=Akagi
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KawamuraHiroshi
en-aut-sei=Kawamura
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HirohataSatoshi
en-aut-sei=Hirohata
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YamajiHirosuke
en-aut-sei=Yamaji
en-aut-mei=Hirosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MurakamiTakashi
en-aut-sei=Murakami
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KamikawaShigeshi
en-aut-sei=Kamikawa
en-aut-mei=Shigeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MurakamiMasaaki
en-aut-sei=Murakami
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Division of Radiation, Okayama Heart Clinic
kn-affil=
affil-num=2
en-affil=Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=3
en-affil=Division of Cardiovascular Intervention, Okayama Heart Clinic
kn-affil=
affil-num=4
en-affil=Division of Cardiovascular Intervention, Okayama Heart Clinic
kn-affil=
affil-num=5
en-affil=Division of Cardiovascular Medicine, Okayama Heart Clinic
kn-affil=
affil-num=6
en-affil=Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=7
en-affil=Division of Cardiovascular Medicine, Okayama Heart Clinic
kn-affil=
affil-num=8
en-affil=Division of Cardiovascular Medicine, Okayama Heart Clinic
kn-affil=
affil-num=9
en-affil=Division of Cardiovascular Intervention, Okayama Heart Clinic
kn-affil=
affil-num=10
en-affil=Division of Cardiovascular Intervention, Okayama Heart Clinic
kn-affil=
en-keyword=Ischemic heart disease
kn-keyword=Ischemic heart disease
en-keyword=Reversible ischemia
kn-keyword=Reversible ischemia
en-keyword=Coronary pressure
kn-keyword=Coronary pressure
en-keyword=Multi-slice CT
kn-keyword=Multi-slice CT
en-keyword=Coronary hemodynamics
kn-keyword=Coronary hemodynamics
END
start-ver=1.4
cd-journal=joma
no-vol=31
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202503
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Activated Clotting Time Requires Adaptation Across Altered Measurement Devices: Determination of Appropriate Range During Atrial Fibrillation Ablation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Methods for measuring activated clotting time (ACT) are not yet standardized.
Objectives: To adjust and compare values between two measurement systems and to optimize ACT during atrial fibrillation (AF) ablation.
Methods: Two systems were compared: electromagnetic detection using a rotating tube (EM system; Hemochron Response) and photo-optical detection using a cartridge immersed in blood (PO system; ACT CA-300TM).
Results: ACT was measured simultaneously in 124 instances in 53 patients before and during AF ablations using both methods. A linear regression analysis showed ACT (EM system)?=?1.19?×?ACT (PO system)?+?9.03 (p?.001, r?=?0.90). Bland?Altman plots indicated an average difference of 50?s between the two systems. In 3364 ACT measurements from 1161 ablations, the EM system recorded a mean ACT of 320?±?44?s (range 156-487?s). Estimating the target range as mean?±?1 SD range, the EM system's range was 275-365?s, in 5-s increments. The pre-ablation ACT measured on the EM system was 143?±?28?s (115-170?s). Cardiac tamponade occurred in 4 out of 2085 ablations (0.19%) over 5 years, with ACT values ranging from 330 to 391?s on the EM system. Based on these findings, the estimated optimal ACT range for the PO system was adjusted to 225-300?s to align with the EM system's range of 275-365?s.
Conclusions: ACT target ranges should be system-specific, and direct extrapolation between devices is not recommended. Adjustment is clinically necessary when switching systems.
en-copyright=
kn-copyright=
en-aut-name=SakanoueHaruna
en-aut-sei=Sakanoue
en-aut-mei=Haruna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamajiHirosuke
en-aut-sei=Yamaji
en-aut-mei=Hirosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OkamotoSayaka
en-aut-sei=Okamoto
en-aut-mei=Sayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OkanoKumi
en-aut-sei=Okano
en-aut-mei=Kumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FujitaYuka
en-aut-sei=Fujita
en-aut-mei=Yuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HigashiyaShunichi
en-aut-sei=Higashiya
en-aut-mei=Shunichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MurakamiTakashi
en-aut-sei=Murakami
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HirohataSatoshi
en-aut-sei=Hirohata
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KusachiShozo
en-aut-sei=Kusachi
en-aut-mei=Shozo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Nursing, Okayama Heart Clinic
kn-affil=
affil-num=2
en-affil=Heart Rhythm Center, Okayama Heart Clinic
kn-affil=
affil-num=3
en-affil=Department of Nursing, Okayama Heart Clinic
kn-affil=
affil-num=4
en-affil=Department of Nursing, Okayama Heart Clinic
kn-affil=
affil-num=5
en-affil=Department of Nursing, Okayama Heart Clinic
kn-affil=
affil-num=6
en-affil=Heart Rhythm Center, Okayama Heart Clinic
kn-affil=
affil-num=7
en-affil=Heart Rhythm Center, Okayama Heart Clinic
kn-affil=
affil-num=8
en-affil=Department of Medical Technology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=9
en-affil=Department of Medical Technology, Okayama University Graduate School of Health Sciences
kn-affil=
en-keyword=anticoagulation
kn-keyword=anticoagulation
en-keyword=heparin
kn-keyword=heparin
en-keyword=catheter
kn-keyword=catheter
en-keyword=supraventricular arrhythmia
kn-keyword=supraventricular arrhythmia
en-keyword=point-of-care testing
kn-keyword=point-of-care testing
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=
article-no=
start-page=1561628
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250321
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Histidine-rich glycoprotein inhibits TNF-α?induced tube formation in human vascular endothelial cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction: Tumor necrosis factor-α (TNF-α)-induced angiogenesis plays a critical role in tumor progression and metastasis, making it an important therapeutic target in cancer treatment. Suppressing angiogenesis can effectively limit tumor growth and metastasis. However, despite advancements in understanding angiogenic pathways, effective strategies to inhibit TNF-α-mediated angiogenesis remain limited.
Methods: This study investigates the antiangiogenic effects of histidine-rich glycoprotein (HRG), a multifunctional plasma protein with potent antiangiogenic properties, on TNF-α-stimulated human endothelial cells (EA.hy926). Tube formation assays were performed to assess angiogenesis, and gene/protein expression analyses were conducted to evaluate HRG’s effects on integrins αV and β8. The role of nuclear factor erythroid 2-related factor 2 (NRF2) in HRG-mediated antiangiogenic activity was also examined through nuclear translocation assays and NRF2 activation studies.
Results: At physiological concentrations, HRG effectively suppressed TNF-α-induced tube formation in vitro and downregulated TNF-α-induced expression of integrins αV and β8 at both the mRNA and protein levels. HRG treatment promoted NRF2 nuclear translocation in a time-dependent manner. Furthermore, activation of NRF2 significantly reduced TNF-α-induced tube formation and integrin expression, suggesting that NRF2 plays a key role in HRG-mediated antiangiogenic effects.
Discussion and Conclusion: Our findings indicate that HRG suppresses TNF-α-induced angiogenesis by promoting NRF2 nuclear translocation and transcriptional activation, which in turn inhibits integrin αV and β8 expression. Given the essential role of angiogenesis in tumor progression, HRG’s ability to regulate this process presents a promising therapeutic strategy for cancer treatment.
en-copyright=
kn-copyright=
en-aut-name=HatipogluOmer Faruk
en-aut-sei=Hatipoglu
en-aut-mei=Omer Faruk
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishinakaTakashi
en-aut-sei=Nishinaka
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YaykasliKursat Oguz
en-aut-sei=Yaykasli
en-aut-mei=Kursat Oguz
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MoriShuji
en-aut-sei=Mori
en-aut-mei=Shuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WatanabeMasahiro
en-aut-sei=Watanabe
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ToyomuraTakao
en-aut-sei=Toyomura
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NishiboriMasahiro
en-aut-sei=Nishibori
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HirohataSatoshi
en-aut-sei=Hirohata
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=WakeHidenori
en-aut-sei=Wake
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TakahashiHideo
en-aut-sei=Takahashi
en-aut-mei=Hideo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Pharmacology, Kindai University Faculty of Medicine
kn-affil=
affil-num=2
en-affil=Department of Pharmacology, Kindai University Faculty of Medicine
kn-affil=
affil-num=3
en-affil=Department of Internal Medicine 3?Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-N?rnberg (FAU) and Universit?tsklinikum Erlangen
kn-affil=
affil-num=4
en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University
kn-affil=
affil-num=5
en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University
kn-affil=
affil-num=6
en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University
kn-affil=
affil-num=7
en-affil=Department of Translational Research and Dug Development, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Pharmacology, Kindai University Faculty of Medicine
kn-affil=
affil-num=10
en-affil=Department of Pharmacology, Kindai University Faculty of Medicine
kn-affil=
en-keyword=histidine-rich glycoprotein
kn-keyword=histidine-rich glycoprotein
en-keyword=tumor necrosis factor-α
kn-keyword=tumor necrosis factor-α
en-keyword=integrin
kn-keyword=integrin
en-keyword=tube formation
kn-keyword=tube formation
en-keyword=angiogenesis
kn-keyword=angiogenesis
en-keyword=factor erythroid 2-related factor 2
kn-keyword=factor erythroid 2-related factor 2
END
start-ver=1.4
cd-journal=joma
no-vol=43
cd-vols=
no-issue=8
article-no=
start-page=1261
end-page=1268
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250505
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Overview of task shifting guidelines in Japan: from radiologists to radiological technologists
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=As one of the key pillars of work style reform for physicians, task shifting and sharing from radiologists to radiological technologists has been considered. In May 2021, the Radiological Technologists Act was amended, allowing for the expansion of several duties. Alongside these legal and regulatory changes, a notice from Ministry of Health, Labour and Welfare was issued, highlighting tasks to be particularly promoted under the current system prior to the amendment of the Radiological Technologists Act. These amendments authorize radiological technologists to perform advanced and specialized tasks, such as securing venous access for contrast agent administration, which require significantly higher skill levels than their traditional roles. However, the amended legislation did not include specific guidelines, rules, or considerations for the practical implementation of these new duties in daily medical practice, especially from the perspectives of patient safety and quality of care. To address this, the Japan Radiological Society, the Japanese College of Radiology, and the Japan Association of Radiological Technologists collaborated with other related societies to develop guidelines on five key topics:-Guidelines for Safe Conduct of CT/MRI Contrast-Enhanced Examinations: Considering the expanded scope of practice for radiological technologists. -Guidelines for Safe Conduct of Nuclear Medicine Examinations: Aligned with the expanded responsibilities of radiological technologists. -Guidelines for Clinical application of Image-Guided Radiation Therapy (IGRT). -Guidelines for Safe Conduct of Angiography and Interventional Radiology (IR): Adapted for the expanded roles of radiological technologists. -Guidelines for Reporting Findings of STAT Imaging: Addressing urgent conditions with potential impact on life prognosis.
en-copyright=
kn-copyright=
en-aut-name=KidoAki
en-aut-sei=Kido
en-aut-mei=Aki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OhnoKazuko
en-aut-sei=Ohno
en-aut-mei=Kazuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamadaKei
en-aut-sei=Yamada
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamakadoKoichiro
en-aut-sei=Yamakado
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HirakiTakao
en-aut-sei=Hiraki
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MizowakiTakashi
en-aut-sei=Mizowaki
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=AidaNoriko
en-aut-sei=Aida
en-aut-mei=Noriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=Oyama-ManabeNoriko
en-aut-sei=Oyama-Manabe
en-aut-mei=Noriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KodamaNaoki
en-aut-sei=Kodama
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=UedaKatsuhiko
en-aut-sei=Ueda
en-aut-mei=Katsuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=AokiShigeki
en-aut-sei=Aoki
en-aut-mei=Shigeki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TomiyamaNoriyuki
en-aut-sei=Tomiyama
en-aut-mei=Noriyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Radiology, Toyama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Radiological Technology, Kyoto University of Medial Science
kn-affil=
affil-num=3
en-affil=Department of Radiology, Kyoto Prefectural University of Medicine
kn-affil=
affil-num=4
en-affil=Department of Radiology, The Hospital of Hyogo College of Medicine
kn-affil=
affil-num=5
en-affil=Department of Radiology, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=7
en-affil=Department of Diagnostic Radiology, Yokohama City University Graduate School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Radiology, Jichi Medical University Saitama Medical Center
kn-affil=
affil-num=9
en-affil=Department of Radiological Technology, Faculty of Medical Technology, Niigata University of Health and Welfare
kn-affil=
affil-num=10
en-affil=Department of Radiological Sciences, School of Health Sciences at Narita, International University of Health and Welfare
kn-affil=
affil-num=11
en-affil=Health Data Science, Department of Radiology/Data Science, Graduate School of Medicine, Juntendo University
kn-affil=
affil-num=12
en-affil=Department of Radiology, Osaka University Graduate School of Medicine
kn-affil=
en-keyword=Task shifting and sharing
kn-keyword=Task shifting and sharing
en-keyword=Radiological technologists
kn-keyword=Radiological technologists
en-keyword=Guideline
kn-keyword=Guideline
en-keyword=IGRT
kn-keyword=IGRT
en-keyword=STAT
kn-keyword=STAT
END
start-ver=1.4
cd-journal=joma
no-vol=1863
cd-vols=
no-issue=
article-no=
start-page=149752
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Spearmint extract Neumentix downregulates amyloid-β accumulation by promoting phagocytosis in APP23 mice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In recent years, many researchers have focused on natural compounds that can effectively delay symptoms of Alzheimer’s disease (AD). The spearmint extract Neumentix, which is rich in phenolic compounds, has been shown to reduce inflammatory responses and oxidative stress in mice. However, the effect of Neumentix on AD has not been thoroughly studied. In this study, APP23 transgenic female and male mice were administered Neumentix orally from 4 to 18 months of age at a dosage of 2.65 g/kg/day (containing 0.41 g/kg/day of rosmarinic acid). The impact was evaluated by behavioral tests and histological analyses and compared with APP23 mice to which Neumentix was not administered. The results showed that Neumentix administration increased the survival rate of APP23 mice and effectively reduced Aβ accumulation by enhancing its phagocytosis by microglial cells. These findings suggest that Neumentix is a potential natural nutritional treatment for improving the progression of AD.
en-copyright=
kn-copyright=
en-aut-name=HuXinran
en-aut-sei=Hu
en-aut-mei=Xinran
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MoriharaRyuta
en-aut-sei=Morihara
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FukuiYusuke
en-aut-sei=Fukui
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=BianYuting
en-aut-sei=Bian
en-aut-mei=Yuting
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SunHongming
en-aut-sei=Sun
en-aut-mei=Hongming
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=Ota-ElliottRicardo Satoshi
en-aut-sei=Ota-Elliott
en-aut-mei=Ricardo Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AbeKoji
en-aut-sei=Abe
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YamashitaToru
en-aut-sei=Yamashita
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=National Center Hospital, National Center of Neurology and Psychiatry
kn-affil=
affil-num=9
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Alzheimer's disease
kn-keyword=Alzheimer's disease
en-keyword=Amyloid-beta
kn-keyword=Amyloid-beta
en-keyword=Inflammation
kn-keyword=Inflammation
en-keyword=Neumentix
kn-keyword=Neumentix
en-keyword=Phagocytosis
kn-keyword=Phagocytosis
en-keyword=Survival rate
kn-keyword=Survival rate
END
start-ver=1.4
cd-journal=joma
no-vol=89
cd-vols=
no-issue=8
article-no=
start-page=1217
end-page=1226
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250527
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Microbial biotransformation of proteins into amino acids in unpolished Thai and polished Japanese rice varieties cultivated with distinct industrial strains of koji mold
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We previously reported the cultivation of industrial koji mold strains to produce unpolished Thai-colored rice kojis. These kojis, along with those made from unpolished Thai white rice and polished Japanese white rice, showed increased polyphenol content after cultivation, with the highest levels observed in unpolished Thai-colored rice kojis. In this study, an increase in both proteinogenic and non-proteinogenic amino acid contents, particularly γ-aminobutyric acid (GABA) content, was observed in both unpolished Thai and polished Japanese rice kojis, suggesting the ability of koji mold in the biotransformation of proteins. This increase was almost comparable even when using different rice varieties; in contrast, it varied depending on the koji mold strain used. The observed increase in both polyphenol and functional amino acid contents, especially GABA content, highlights the potential of unpolished Thai and polished Japanese rice kojis, particularly unpolished Thai-colored rice koji, as multifunctional materials, benefiting from polyphenol and amino acid functionalities.
en-copyright=
kn-copyright=
en-aut-name=JitpakdeeJirayu
en-aut-sei=Jitpakdee
en-aut-mei=Jirayu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ItoKazunari
en-aut-sei=Ito
en-aut-mei=Kazunari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TaninoYuka
en-aut-sei=Tanino
en-aut-mei=Yuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakeuchiHayato
en-aut-sei=Takeuchi
en-aut-mei=Hayato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamashitaHideyuki
en-aut-sei=Yamashita
en-aut-mei=Hideyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakagawaTakuro
en-aut-sei=Nakagawa
en-aut-mei=Takuro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NitodaTeruhiko
en-aut-sei=Nitoda
en-aut-mei=Teruhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KanzakiHiroshi
en-aut-sei=Kanzaki
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Industrial Technology Center of Okayama Prefecture
kn-affil=
affil-num=3
en-affil=Industrial Technology Center of Okayama Prefecture
kn-affil=
affil-num=4
en-affil=Industrial Technology Center of Okayama Prefecture
kn-affil=
affil-num=5
en-affil=Higuchi Matsunosuke Shoten Co., Ltd.
kn-affil=
affil-num=6
en-affil=Higuchi Matsunosuke Shoten Co., Ltd.
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Amino acid
kn-keyword=Amino acid
en-keyword=GABA
kn-keyword=GABA
en-keyword=koji mold
kn-keyword=koji mold
en-keyword=rice koji
kn-keyword=rice koji
en-keyword=Thai-colored rice
kn-keyword=Thai-colored rice
END
start-ver=1.4
cd-journal=joma
no-vol=98
cd-vols=
no-issue=6
article-no=
start-page=uoaf044
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250516
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Redox-potential-controlled intermolecular [2 + 2] cycloaddition of styrenes for the regio- and diastereoselective synthesis of multisubstituted halogenocyclobutanes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The redox potential is an important factor for controlling the outcome of photoredox catalysis. Particularly, the selective oxidation of substrates and the control over the reactions are challenging when using photoredox catalysts that have high excited-state reduction potentials. In this study, a redox-potential-controlled intermolecular [2 + 2] cycloaddition of styrenes using a thioxanthylium organophotoredox (TXT) catalyst has been developed. This TXT catalyst selectively oxidizes β-halogenostyrenes and smoothly promotes the subsequent intermolecular [2 + 2] cycloadditions to give multisubstituted halogenocyclobutanes with excellent regio- and diastereoselectivity, which has not been effectively achieved by the hitherto reported representative photoredox catalysts. The synthesized halogenocyclobutanes exhibit interesting free radical scavenging activity. The present reaction contributes to the field of redox-potential-controlled electron transfer chemistry.
en-copyright=
kn-copyright=
en-aut-name=MizutaniAsuka
en-aut-sei=Mizutani
en-aut-mei=Asuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KondoMomo
en-aut-sei=Kondo
en-aut-mei=Momo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ItakuraShoko
en-aut-sei=Itakura
en-aut-mei=Shoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakamuraHiroyoshi
en-aut-sei=Takamura
en-aut-mei=Hiroyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HoshinoYujiro
en-aut-sei=Hoshino
en-aut-mei=Yujiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NishikawaMakiya
en-aut-sei=Nishikawa
en-aut-mei=Makiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KadotaIsao
en-aut-sei=Kadota
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KusamoriKosuke
en-aut-sei=Kusamori
en-aut-mei=Kosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TanakaKenta
en-aut-sei=Tanaka
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science
kn-affil=
affil-num=3
en-affil=Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environment and Information Sciences, Yokohama National University
kn-affil=
affil-num=6
en-affil=Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Laboratory of Cellular Drug Discovery and Development, Faculty of Pharmaceutical Sciences, Tokyo University of Science
kn-affil=
affil-num=9
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
en-keyword=redox potential
kn-keyword=redox potential
en-keyword=photoredox catalysis
kn-keyword=photoredox catalysis
en-keyword=[2 + 2] cycloaddition
kn-keyword=[2 + 2] cycloaddition
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250813
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The stress?strain behavior of poly(methyl acrylate) microparticle-based polymers determined via optical microscopy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The structural integrity of microparticle-based films is maintained through interpenetration of the superficial polymer chains of the microparticles that physically crosslink neighboring microparticles. This structural feature is fundamentally different from those of conventional polymers prepared by solvent casting or bulk polymerization. To understand the mechanical properties of such microparticle-based films, it is necessary to investigate the behavior of their constituent particles. However, methods are still being developed to evaluate microscale structural changes in microparticle-based films during the stretching process leading to film fracture. In this study, we propose a method that combines a stretching stage with optical microscopy to investigate the changes in particle morphology and its positional relationship with surrounding particles during uniaxial tensile tests on microparticle-based films. In a film consisting of cross-linked poly(methyl acrylate) microparticles, the deformation of the particles deviated from affine deformation due to the cross-linked structure. However, the deformation of a group of several (local) particles was confirmed to be location-dependent and larger than that of each particle forming the film. The method established here can be used to contribute to the design of tough microparticle-based films.
en-copyright=
kn-copyright=
en-aut-name=NishizawaYuichiro
en-aut-sei=Nishizawa
en-aut-mei=Yuichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawamuraYuto
en-aut-sei=Kawamura
en-aut-mei=Yuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SasakiYuma
en-aut-sei=Sasaki
en-aut-mei=Yuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SuzukiDaisuke
en-aut-sei=Suzuki
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=raduate School of Textile Science & Technology, Shinshu University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=101
cd-vols=
no-issue=
article-no=
start-page=173
end-page=211
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202502
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Next frontier in photocatalytic hydrogen production through CdS heterojunctions
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Photocatalytic hydrogen (H?) generation via solar-powered water splitting represents a sustainable solution to the global energy crisis. Cadmium sulfide (CdS) has emerged as a promising semiconductor photocatalyst due to its tunable bandgap, high physicochemical stability, cost-effectiveness, and widespread availability. This review systematically examines recent advancements in CdS-based heterojunctions, categorized into CdS-metal (Schottky), CdS-semiconductor (p-n, Z-scheme, S-scheme), and CdS-carbon heterojunctions. Various strategies employed to enhance photocatalytic efficiency and stability are discussed, including band structure engineering, surface modification, and the incorporation of crosslinked architectures. A critical evaluation of the underlying photocatalytic mechanisms highlights recent efforts to improve charge separation and photostability under operational conditions. This review highlights the challenges and opportunities in advancing CdS-based photocatalysts and provides a direction for future research. The insights presented aim to accelerate the development of efficient and durable CdS-based photocatalysts for sustainable H? production.
en-copyright=
kn-copyright=
en-aut-name=IslamAminul
en-aut-sei=Islam
en-aut-mei=Aminul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MalekAbdul
en-aut-sei=Malek
en-aut-mei=Abdul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IslamMd. Tarekul
en-aut-sei=Islam
en-aut-mei=Md. Tarekul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NipaFarzana Yeasmin
en-aut-sei=Nipa
en-aut-mei=Farzana Yeasmin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=RaihanObayed
en-aut-sei=Raihan
en-aut-mei=Obayed
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MahmudHasan
en-aut-sei=Mahmud
en-aut-mei=Hasan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=UddinMd. Elias
en-aut-sei=Uddin
en-aut-mei=Md. Elias
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IbrahimMohd Lokman
en-aut-sei=Ibrahim
en-aut-mei=Mohd Lokman
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=Abdulkareem-AlsultanG.
en-aut-sei=Abdulkareem-Alsultan
en-aut-mei=G.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MondalAlam Hossain
en-aut-sei=Mondal
en-aut-mei=Alam Hossain
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HasanMd. Munjur
en-aut-sei=Hasan
en-aut-mei=Md. Munjur
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=SalmanMd. Shad
en-aut-sei=Salman
en-aut-mei=Md. Shad
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KubraKhadiza Tul
en-aut-sei=Kubra
en-aut-mei=Khadiza Tul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=HasanMd. Nazmul
en-aut-sei=Hasan
en-aut-mei=Md. Nazmul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=SheikhMd. Chanmiya
en-aut-sei=Sheikh
en-aut-mei=Md. Chanmiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=UchidaTetsuya
en-aut-sei=Uchida
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=RaseeAdiba Islam
en-aut-sei=Rasee
en-aut-mei=Adiba Islam
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=RehanAriyan Islam
en-aut-sei=Rehan
en-aut-mei=Ariyan Islam
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=AwualMrs Eti
en-aut-sei=Awual
en-aut-mei=Mrs Eti
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=HossainMohammed Sohrab
en-aut-sei=Hossain
en-aut-mei=Mohammed Sohrab
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=WaliullahR.M.
en-aut-sei=Waliullah
en-aut-mei=R.M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=AwualMd. Rabiul
en-aut-sei=Awual
en-aut-mei=Md. Rabiul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
affil-num=1
en-affil=Department of Petroleum and Mining Engineering, Jashore University of Science and Technology
kn-affil=
affil-num=2
en-affil=Department of Petroleum and Mining Engineering, Jashore University of Science and Technology
kn-affil=
affil-num=3
en-affil=Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering and Technology
kn-affil=
affil-num=4
en-affil=Department of Petroleum and Mining Engineering, Jashore University of Science and Technology
kn-affil=
affil-num=5
en-affil=Department of Pharmaceutical Sciences, College of Health Sciences and Pharmacy, Chicago State University
kn-affil=
affil-num=6
en-affil=Bangladesh Energy and Power Research Council (BEPRC)
kn-affil=
affil-num=7
en-affil=Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering and Technology
kn-affil=
affil-num=8
en-affil=School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA
kn-affil=
affil-num=9
en-affil=Catalysis Science and Technology Research Centre, Faculty of Science, Universiti Putra Malaysia
kn-affil=
affil-num=10
en-affil=USAID - Bangladesh Advancing Development and Growth through Energy (BADGE) Project, Tetra Tech
kn-affil=
affil-num=11
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=12
en-affil=Institute for Chemical Research, Kyoto University
kn-affil=
affil-num=13
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=14
en-affil=Department of Chemistry, School of Science, The University of Tokyo
kn-affil=
affil-num=15
en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=16
en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=17
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=18
en-affil=Department of Chemistry, School of Science, The University of Tokyo
kn-affil=
affil-num=19
en-affil=Institute for Chemical Research, Kyoto University
kn-affil=
affil-num=20
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=21
en-affil=Institute for Chemical Research, Kyoto University
kn-affil=
affil-num=22
en-affil=Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University
kn-affil=
en-keyword=H2
kn-keyword=H2
en-keyword=Sustainability
kn-keyword=Sustainability
en-keyword=Photocatalytic
kn-keyword=Photocatalytic
en-keyword=Photo-stability
kn-keyword=Photo-stability
en-keyword=Heterojunction
kn-keyword=Heterojunction
en-keyword=CdS
kn-keyword=CdS
END
start-ver=1.4
cd-journal=joma
no-vol=390
cd-vols=
no-issue=
article-no=
start-page=116594
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Extension-type flexible pneumatic actuator with a large extension force using a cross-link mechanism based on pantographs
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this study, we propose an extension-type flexible pneumatic actuator (EFPA) with a high extension force and no buckling. In a previous study, soft actuators that extended in the axial direction by applying a supply pressure were unable to generate the extension’s pushing force because the actuators buckled owing to their high flexibility. To generate a pushing force, the circumferential stiffness of an extension-type flexible soft actuator must be reinforced. Therefore, a cross-linked EFPA (CL-EFPA) was developed, inspired by a pantograph that restrains the EFPA three-dimensionally using the proposed link mechanism. The proposed CL-EFPA consists of three EFPAs and a cross-linking mechanism for integrating each EFPA circumference. The pushing force of the CL-EFPA is approximately 3.0 times compared with that generated by the previous EFPA with plates to restrain its plane. To perform various bending motions, attitude control was performed using an analytical model and a system that included valves, sensors, and controllers.
en-copyright=
kn-copyright=
en-aut-name=ShimookaSo
en-aut-sei=Shimooka
en-aut-mei=So
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TadachiKazuma
en-aut-sei=Tadachi
en-aut-mei=Kazuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KamegawaTetsushi
en-aut-sei=Kamegawa
en-aut-mei=Tetsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Mechanical and Systems Engineering Program, School of Engineering, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Soft robot
kn-keyword=Soft robot
en-keyword=Extension soft actuator
kn-keyword=Extension soft actuator
en-keyword=Link mechanism
kn-keyword=Link mechanism
en-keyword=Pantograph
kn-keyword=Pantograph
en-keyword=Attitude control
kn-keyword=Attitude control
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=From sewage sludge to agriculture: governmental initiatives, technologies, and sustainable practices in Japan
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Sewage sludge (SS), an underutilized but valuable resource for agriculture, contains essential nutrients, such as phosphorus. In Japan, where dependence on imported fertilizers is high and global price fluctuations persist, using SS as fertilizer presents a sustainable alternative aligned with circular economy goals. This review analyzes Japan’s current efforts to repurpose SS, focusing on technological developments and key policy initiatives that promote safe and effective application. Selective phosphorus recovery technologies mitigate resource depletion, while holistic approaches, such as composting and carbonization, maximize sludge utilization for agricultural applications. Government-led initiatives, including public awareness campaigns, quality assurance standards and research support, have facilitated the adoption of sludge-based fertilizers. To contextualize Japan’s position, international trends, particularly in the EU, are also examined. These comparisons reveal both common strategies and areas for policy and technological advancement, especially regarding regulation of emerging contaminants. By integrating national case studies with global perspectives, the study offers insights into the economic, environmental, and social benefits of SS reuse, contributing to Japan’s goals of resource self-sufficiency and carbon neutrality, while also informing broader sustainable agriculture transitions worldwide.
en-copyright=
kn-copyright=
en-aut-name=NguyenThu Huong
en-aut-sei=Nguyen
en-aut-mei=Thu Huong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujiwaraTaku
en-aut-sei=Fujiwara
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamashitaHiromasa
en-aut-sei=Yamashita
en-aut-mei=Hiromasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TogawaHironori
en-aut-sei=Togawa
en-aut-mei=Hironori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MiyakeHaruo
en-aut-sei=Miyake
en-aut-mei=Haruo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=GotoMasako
en-aut-sei=Goto
en-aut-mei=Masako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NagareHideaki
en-aut-sei=Nagare
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakamuraMasato
en-aut-sei=Nakamura
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OritateFumiko
en-aut-sei=Oritate
en-aut-mei=Fumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=IharaHirotaka
en-aut-sei=Ihara
en-aut-mei=Hirotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MaedaMorihiro
en-aut-sei=Maeda
en-aut-mei=Morihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Graduate School of Engineering, Kyoto University
kn-affil=
affil-num=2
en-affil=Graduate School of Engineering, Kyoto University
kn-affil=
affil-num=3
en-affil=Water Supply and Sewerage Department, National Institute for Land and Infrastructure Management
kn-affil=
affil-num=4
en-affil=Water Supply and Sewerage Department, National Institute for Land and Infrastructure Management
kn-affil=
affil-num=5
en-affil=R & D Department, Japan Sewage Works Agency
kn-affil=
affil-num=6
en-affil=1St Research Department, Japan Institute of Wastewater Engineering and Technology
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Institute for Rural Engineering, NARO
kn-affil=
affil-num=9
en-affil=Institute for Rural Engineering, NARO
kn-affil=
affil-num=10
en-affil=Institute for Agro-Environmental Sciences, NARO
kn-affil=
affil-num=11
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Japan
kn-keyword=Japan
en-keyword=Sewage sludge
kn-keyword=Sewage sludge
en-keyword=Agriculture
kn-keyword=Agriculture
en-keyword=Sludge fertilizers
kn-keyword=Sludge fertilizers
en-keyword=Governmental initiatives
kn-keyword=Governmental initiatives
END
start-ver=1.4
cd-journal=joma
no-vol=63
cd-vols=
no-issue=23
article-no=
start-page=3243
end-page=3248
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Successful Treatment for Life Threatening Recurrent Non-traumatic Rectus Sheath Hematoma in a Case with Microscopic Polyangiitis with Rapidly Progressive Glomerulonephritis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A 68-year-old woman was admitted to our hospital because of a rapid progression of renal dysfunction with positive myeloperoxidase antineutrophil cytoplasmic antibody and was diagnosed with rapidly progressive glomerulonephritis associated with microscopic polyangiitis (MPA). Severe right rectus sheath hematoma (RSH) bleeding from the inferior epigastric artery developed after starting hemodialysis, which required 4 transarterial embolizations due to recurrent bleeding. After additional treatment with methylprednisolone pulse therapy and rituximab, no rebleeding occurred. Although the giant hematoma reached the pelvis, it shrank spontaneously without any intervention. Nontraumatic RSH should therefore be considered when treating patients with multiple risk factors.
en-copyright=
kn-copyright=
en-aut-name=NakanohHiroyuki
en-aut-sei=Nakanoh
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakeuchiHidemi
en-aut-sei=Takeuchi
en-aut-mei=Hidemi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MorimotoShiho
en-aut-sei=Morimoto
en-aut-mei=Shiho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TerajimaYuya
en-aut-sei=Terajima
en-aut-mei=Yuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OkamotoShugo
en-aut-sei=Okamoto
en-aut-mei=Shugo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OnishiYasuhiro
en-aut-sei=Onishi
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TanakaKeiko
en-aut-sei=Tanaka
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KatsuyamaTakayuki
en-aut-sei=Katsuyama
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TsujiKenji
en-aut-sei=Tsuji
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MatsumotoYoshinori
en-aut-sei=Matsumoto
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TanabeKatsuyuki
en-aut-sei=Tanabe
en-aut-mei=Katsuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MorinagaHiroshi
en-aut-sei=Morinaga
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=UkaMayu
en-aut-sei=Uka
en-aut-mei=Mayu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TomitaKoji
en-aut-sei=Tomita
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=UchidaHaruhito A.
en-aut-sei=Uchida
en-aut-mei=Haruhito A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=HirakiTakao
en-aut-sei=Hiraki
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=14
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=15
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=17
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=rectus sheath hematoma
kn-keyword=rectus sheath hematoma
en-keyword=microscopic polyangiitis
kn-keyword=microscopic polyangiitis
en-keyword=hemodialysis
kn-keyword=hemodialysis
END
start-ver=1.4
cd-journal=joma
no-vol=343
cd-vols=
no-issue=
article-no=
start-page=103558
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Progress in silicon-based materials for emerging solar-powered green hydrogen (H2) production
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The imperative demand for sustainable and renewable energy solutions has precipitated profound scientific investigations into photocatalysts designed for the processes of water splitting and hydrogen fuel generation. The abundance, low toxicity, high conductivity, and cost-effectiveness of silicon-based compounds make them attractive candidates for hydrogen production, driving ongoing research and technological advancements. Developing an effective synthesis method that is simple, economically feasible, and environmentally friendly is crucial for the widespread implementation of silicon-based heterojunctions for sustainable hydrogen production. Balancing the performance benefits with the economic and environmental considerations is a key challenge in the development of these systems. The specific performance of each catalyst type can vary depending on the synthesis method, surface modifications, catalyst loading, and reaction conditions. The confluence of high crystallinity, reduced oxygen concentration, and calcination temperature within the silicon nanoparticle has significantly contributed to its noteworthy hydrogen evolution rate. This review provides an up-to-date evaluation of Si-based photocatalysts, summarizing recent developments, guiding future research directions, and identifying areas that require further investigation. By combining theoretical insights and experimental findings, this review offers a comprehensive understanding of Si-based photocatalysts for water splitting. Through a comprehensive analysis, it aims to elucidate existing knowledge gaps and inspire future research directions towards optimized photocatalytic performance and scalability, ultimately contributing to the realization of sustainable hydrogen generation.
en-copyright=
kn-copyright=
en-aut-name=IslamAminul
en-aut-sei=Islam
en-aut-mei=Aminul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IslamMd. Tarekul
en-aut-sei=Islam
en-aut-mei=Md. Tarekul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TeoSiow Hwa
en-aut-sei=Teo
en-aut-mei=Siow Hwa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MahmudHasan
en-aut-sei=Mahmud
en-aut-mei=Hasan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SwarazA.M.
en-aut-sei=Swaraz
en-aut-mei=A.M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=RehanAriyan Islam
en-aut-sei=Rehan
en-aut-mei=Ariyan Islam
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=RaseeAdiba Islam
en-aut-sei=Rasee
en-aut-mei=Adiba Islam
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KubraKhadiza Tul
en-aut-sei=Kubra
en-aut-mei=Khadiza Tul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HasanMd. Munjur
en-aut-sei=Hasan
en-aut-mei=Md. Munjur
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SalmanMd. Shad
en-aut-sei=Salman
en-aut-mei=Md. Shad
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=WaliullahR.M.
en-aut-sei=Waliullah
en-aut-mei=R.M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=HasanMd. Nazmul
en-aut-sei=Hasan
en-aut-mei=Md. Nazmul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=SheikhMd. Chanmiya
en-aut-sei=Sheikh
en-aut-mei=Md. Chanmiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=UchidaTetsuya
en-aut-sei=Uchida
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=AwualMrs Eti
en-aut-sei=Awual
en-aut-mei=Mrs Eti
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=HossainMohammed Sohrab
en-aut-sei=Hossain
en-aut-mei=Mohammed Sohrab
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=ZnadHussein
en-aut-sei=Znad
en-aut-mei=Hussein
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=AwualMd. Rabiul
en-aut-sei=Awual
en-aut-mei=Md. Rabiul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
affil-num=1
en-affil=Department of Petroleum and Mining Engineering, Jashore University of Science and Technology
kn-affil=
affil-num=2
en-affil=Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering and Technology
kn-affil=
affil-num=3
en-affil=Industrial Chemistry Program, Faculty of Science and Natural Resources, Universiti Malaysia Sabah
kn-affil=
affil-num=4
en-affil=Bangladesh Energy and Power Research Council (BEPRC)
kn-affil=
affil-num=5
en-affil=Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology
kn-affil=
affil-num=6
en-affil=Department of Chemistry, School of Science, The University of Tokyo
kn-affil=
affil-num=7
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=8
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=9
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=10
en-affil=Institute for Chemical Research, Kyoto University
kn-affil=
affil-num=11
en-affil=Institute for Chemical Research, Kyoto University
kn-affil=
affil-num=12
en-affil=Department of Chemistry, School of Science, The University of Tokyo
kn-affil=
affil-num=13
en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=14
en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=15
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=16
en-affil=Department of Chemistry, Graduate School of Science, Osaka University
kn-affil=
affil-num=17
en-affil=Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University
kn-affil=
affil-num=18
en-affil=Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University
kn-affil=
en-keyword=Silicon-based materials
kn-keyword=Silicon-based materials
en-keyword=Water splitting
kn-keyword=Water splitting
en-keyword=Hydrogen
kn-keyword=Hydrogen
en-keyword=Sustainable
kn-keyword=Sustainable
en-keyword=Clean and renewable energy
kn-keyword=Clean and renewable energy
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250810
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Elucidation of the relationship between solid‐state photoluminescence and crystal structures in 2,6‐substituted naphthalene derivatives
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Polycyclic aromatic hydrocarbons (PAHs) are known to exhibit fluorescence in solution, but generally do not emit in the solid state, with the notable exception of anthracene. We previously reported that PAHs containing multiple chromophores show solid-state emission, and we have investigated the relationship between their crystal structures and photoluminescence properties. In particular, PAHs with herringbone-type crystal packing, such as 2,6-diphenylnaphthalene (DPhNp), which has a slender and elongated molecular structure, exhibits red-shifted solid-state fluorescence spectra relative to their solution-phase counterparts. In this study, we synthesized 2,6-naphthalene derivatives bearing phenyl and/or pyridyl substituents (PhPyNp and DPyNp) and observed distinct, red-shifted emission in the solid state compared with that in solution. Crystallographic analysis revealed that both PhPyNp and DPyNp adopt herringbone packing motifs. These findings support our hypothesis that the spectral characteristics of PAH emission are closely linked to crystal packing arrangements, providing a useful strategy for screening PAH candidates for applications in organic semiconducting materials.
en-copyright=
kn-copyright=
en-aut-name=YamajiMinoru
en-aut-sei=Yamaji
en-aut-mei=Minoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YoshikawaIsao
en-aut-sei=Yoshikawa
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MutaiToshiki
en-aut-sei=Mutai
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HoujouHirohiko
en-aut-sei=Houjou
en-aut-mei=Hirohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=GotoKenta
en-aut-sei=Goto
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TaniFumito
en-aut-sei=Tani
en-aut-mei=Fumito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SuzukiKengo
en-aut-sei=Suzuki
en-aut-mei=Kengo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OkamotoHideki
en-aut-sei=Okamoto
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Applied Chemistry, Division of Materials and Environment, Graduate School of Science and Engineering, Gunma University
kn-affil=
affil-num=2
en-affil=Department of Materials and Environmental Science, Institute of Industrial Science, The University of Tokyo
kn-affil=
affil-num=3
en-affil=Technology Transfer Service Corporation
kn-affil=
affil-num=4
en-affil=Department of Materials and Environmental Science, Institute of Industrial Science, The University of Tokyo
kn-affil=
affil-num=5
en-affil=Institute for Materials Chemistry and Engineering, Kyushu University
kn-affil=
affil-num=6
en-affil=Institute for Materials Chemistry and Engineering, Kyushu University
kn-affil=
affil-num=7
en-affil=Hamamatsu Photonics K.K
kn-affil=
affil-num=8
en-affil=Department of Chemistry, Faculty of Environment, Life, Natural Sciences and Technology, Okayama University
kn-affil=
en-keyword=herringbone
kn-keyword=herringbone
en-keyword=polycyclic aromatic hydrocarbon
kn-keyword=polycyclic aromatic hydrocarbon
en-keyword=solid-state emission
kn-keyword=solid-state emission
END
start-ver=1.4
cd-journal=joma
no-vol=23
cd-vols=
no-issue=2
article-no=
start-page=71
end-page=81
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Study on the Removal Technology of Trichloramine from Drinking Water Using Ultraviolet Light
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Trichloramine (NCl3) is an inorganic chloramine that causes a pungent chlorine-like odor, and it is difficult to remove its precursors (nitrogen organic compounds and/or ammonia) completely from water. Powdered activated carbon, ozonation, and UV treatment have been applied for decomposing NCl3, but free chlorine was also decomposed. So, it is necessary to develop a technique that can selectively control NCl3 without losing free chlorine. UV light-emitting diodes (265, 280, and 300?nm) and plasma emission UV sheet (347 ± 52?nm, hereafter 350?nm) were compared to find the optimal wavelengths that decompose NCl3 but not free chlorine. As a result, 90.6, 96.7, 92.5, and 77.8% of NCl3 were removed at 265, 280, 300 (3,600?mJ/cm2), and 350?nm (14,400?mJ/cm2), respectively. On the other hand, free chlorine at neutral pH (hypochlorous acid is dominant) and slightly alkaline pH (hypochlorite ion is dominant) was not decomposed at 350?nm, but at other wavelengths (i.e., 265, 280, and 300?nm) the removals were more than 64%. Therefore, UV radiation at 350?nm can be candidates to remove NCl3 while maintaining free chlorine. However, this method requires high input energy, and further study is needed for evaluating the practical applicability of this method by considering optimal reactor design.
en-copyright=
kn-copyright=
en-aut-name=HashiguchiAyumi
en-aut-sei=Hashiguchi
en-aut-mei=Ayumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YoshidaShiho
en-aut-sei=Yoshida
en-aut-mei=Shiho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=EchigoShinya
en-aut-sei=Echigo
en-aut-mei=Shinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakanamiRyohei
en-aut-sei=Takanami
en-aut-mei=Ryohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NagareHideaki
en-aut-sei=Nagare
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Shimane University
kn-affil=
affil-num=3
en-affil=Graduate School of Global Environmental Studies, Kyoto University
kn-affil=
affil-num=4
en-affil=Faculty of Design Technology, Osaka Sangyo University
kn-affil=
affil-num=5
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=trichloramine
kn-keyword=trichloramine
en-keyword=disinfection byproducts
kn-keyword=disinfection byproducts
en-keyword=drinking water
kn-keyword=drinking water
en-keyword=ultraviolet light
kn-keyword=ultraviolet light
END
start-ver=1.4
cd-journal=joma
no-vol=37
cd-vols=
no-issue=1
article-no=
start-page=43
end-page=53
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250220
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Fan-Shaped Pneumatic Soft Actuator that Can Operate Bending Motion for Ankle-Joint Rehabilitation Device
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Nowadays, owing to declining birthrates and an aging population, patients and the elderly requiring rehabilitation are not getting enough physical activity. In addressing this issue, devices for rehabilitating them have been researched and developed. However, rehabilitation devices are almost exclusively used for patients who can get up, rather than those who are bedridden. In this study, we aim to develop a rehabilitation device that can provide passive exercise for bedridden patients. The ankle joint was selected as the target joint because the patients who have undergone surgery for cerebrovascular disease remain bedridden, and early recovery in the acute stage is highly desirable. We proposed and tested a fan-shaped pneumatic soft actuator (FPSA) that can expand and bend stably at angles when supply pressure is applied as an actuator for a rehabilitation device to encourage patient exercise. However, the previous FPSA’s movement deviates from the arch of the foot owing to increased supply pressure. In the ideal case, FPSA should push the arch of the foot in an arc motion. This study proposes and tests the FPSA that can operate a bending motion to provide passive exercise to the ankle joint using tensile springs and a winding mechanism powered by a servo motor. The proposed FPSA has a significant advantage of exhibiting no hysteresis in its pressure-displacement characteristics. The configuration and static analytical model of the improved FPSA are described.
en-copyright=
kn-copyright=
en-aut-name=ShimookaSo
en-aut-sei=Shimooka
en-aut-mei=So
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YokoyaHirosato
en-aut-sei=Yokoya
en-aut-mei=Hirosato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HamadaMasanori
en-aut-sei=Hamada
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ShiomiShun
en-aut-sei=Shiomi
en-aut-mei=Shun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=UeharaTakenori
en-aut-sei=Uehara
en-aut-mei=Takenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HirayamaTakahiro
en-aut-sei=Hirayama
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KamegawaTetsushi
en-aut-sei=Kamegawa
en-aut-mei=Tetsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Rehabilitation Medicine, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Rehabilitation Medicine, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, NHO Okayama Medical Center
kn-affil=
affil-num=6
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=fan-shaped pneumatic soft actuator
kn-keyword=fan-shaped pneumatic soft actuator
en-keyword=ankle-joint rehabilitation device
kn-keyword=ankle-joint rehabilitation device
en-keyword=hysteresis
kn-keyword=hysteresis
en-keyword=range of motion
kn-keyword=range of motion
END
start-ver=1.4
cd-journal=joma
no-vol=329
cd-vols=
no-issue=1
article-no=
start-page=L183
end-page=L196
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250701
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Activated factor X inhibition ameliorates NF-κB-IL-6-mediated perivascular inflammation and pulmonary hypertension
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Activated factor X (FXa) induces inflammatory response and cell proliferation in various cell types via activation of proteinase-activated receptor-1 (PAR1) and/or PAR2. We thus aimed to investigate the impact of FXa on the development of pulmonary arterial hypertension (PAH) and the mechanisms involved. The effects of edoxaban, a selective FXa inhibitor, on hemodynamic, right ventricular (RV) hypertrophy, and vascular remodeling were evaluated in a monocrotaline (MCT)-exposed pulmonary hypertension (PH) rat model. At 21 days after a single subcutaneous injection of MCT of 60 mg/kg, right ventricular systolic pressure (RVSP) and total pulmonary vascular resistance index (TPRI) were elevated concomitant with the increased plasma FXa and lung interleukin-6 (IL-6) mRNA. Daily administration of edoxaban (10 mg/kg/day, by gavage) starting from the day of MCT injection for 21 days ameliorated RVSP, TPRI, RV hypertrophy, pulmonary vascular remodeling, and macrophage accumulation. Edoxaban reduced nuclear factor-kappa B (NF-κB) activity and IL-6 mRNA level in the lungs of MCT-exposed rats. mRNA levels of FXa, PAR1, and PAR2 in cultured pulmonary arterial smooth muscle cells (PASMCs) isolated from patients with PAH were higher than those seen in normal PASMCs. FXa stimulation increased cell proliferation and mRNA level of IL-6 in normal PASMCs, both of which were blunted by edoxaban and PAR1 antagonist. Moreover, FXa stimulation activated extracellularly regulated kinases 1/2 in a PAR1-dependent manner. Inhibition of FXa ameliorates NF-κB-IL-6-mediated perivascular inflammation, pulmonary vascular remodeling, and the development of PH in MCT-exposed rats, suggesting that FXa may be a potential target for the treatment of PAH.
NEW & NOTEWORTHY This study demonstrated that chronic treatment with activated factor X (FXa) inhibitor ameliorated NF-κB-IL-6-mediated perivascular inflammation in a rat model with pulmonary arterial hypertension, which is associated with elevated FXa activity. FXa may act on pulmonary arterial smooth muscle cells, inducing cell proliferation and inflammatory response via upregulated PAR1, thereby contributing to pulmonary vascular remodeling. Understanding the patient-specific pathophysiology is a prerequisite for applying FXa-targeted therapy to the treatment of pulmonary arterial hypertension.
en-copyright=
kn-copyright=
en-aut-name=ImakiireSatomi
en-aut-sei=Imakiire
en-aut-mei=Satomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KimuroKeiji
en-aut-sei=Kimuro
en-aut-mei=Keiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshidaKeimei
en-aut-sei=Yoshida
en-aut-mei=Keimei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MasakiKohei
en-aut-sei=Masaki
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IzumiRyo
en-aut-sei=Izumi
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ImabayashiMisaki
en-aut-sei=Imabayashi
en-aut-mei=Misaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=WatanabeTakanori
en-aut-sei=Watanabe
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IshikawaTomohito
en-aut-sei=Ishikawa
en-aut-mei=Tomohito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HosokawaKazuya
en-aut-sei=Hosokawa
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MatsushimaShouji
en-aut-sei=Matsushima
en-aut-mei=Shouji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HashimotoToru
en-aut-sei=Hashimoto
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ShinoharaKeisuke
en-aut-sei=Shinohara
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KatsukiShunsuke
en-aut-sei=Katsuki
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=MatobaTetsuya
en-aut-sei=Matoba
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=NakamuraKazufumi
en-aut-sei=Nakamura
en-aut-mei=Kazufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=HiranoKatsuya
en-aut-sei=Hirano
en-aut-mei=Katsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=TsutsuiHiroyuki
en-aut-sei=Tsutsui
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=AbeKohtaro
en-aut-sei=Abe
en-aut-mei=Kohtaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=6
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=7
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=8
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=9
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=10
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=11
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=12
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=13
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=14
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=15
en-affil=Department of Cardiovascular Medicine, Okayama University
kn-affil=
affil-num=16
en-affil=Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University
kn-affil=
affil-num=17
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
affil-num=18
en-affil=Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
kn-affil=
en-keyword=factor Xa
kn-keyword=factor Xa
en-keyword=IL-6
kn-keyword=IL-6
en-keyword=proteinase-activated receptor
kn-keyword=proteinase-activated receptor
en-keyword=pulmonary arterial hypertension
kn-keyword=pulmonary arterial hypertension
en-keyword=pulmonary hypertension
kn-keyword=pulmonary hypertension
END
start-ver=1.4
cd-journal=joma
no-vol=67
cd-vols=
no-issue=1
article-no=
start-page=e70090
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Changes in body mass index during early childhood on school‐age asthma prevalence classified by phenotypes and sex
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Few studies have explored the relationship between changes in body mass index(BMI) during early childhood and asthma prevalence divided by phenotypes and sex, and the limited results are conflicting. This study assessed the impact of BMI changes during early childhood on school-age asthma, classified by phenotypes and sex, using a nationwide longitudinal survey in Japan.
Methods: From children born in 2001 (n =?47,015), we divided participants into BMI quartiles (Q1, Q2, Q3, and Q4) and the following BMI categories: Q1Q1 (i.e., Q1 at birth and Q1 at age 7), Q1Q4, Q4Q1, Q4Q4, and others. Asthma history from ages 7 to 8 was analyzed, with bronchial asthma (BA) further categorized as allergic asthma (AA) or nonallergic asthma (NA) based on the presence of other allergic diseases. Using logistic regression, we estimated the asthma odds ratio (OR) and 95% confidence intervals (CIs) for each BMI category.
Results: Q1Q4 showed significantly higher risks of BA, AA, and NA. In boys, BA and NA risks were significantly higher in Q1Q4 (adjusted OR: 1.47 [95% CI: 1.17?1.85], at 1.56 [95% CI: 1.16?2.1]), with no significant difference in AA risk. In girls, no increased asthma risk was observed in Q1Q4, but AA risk was significantly higher in Q4Q4 (adjusted OR: 1.78 [95% CI: 1.21?2.6]).
Conclusion: Our results demonstrated that BMI changes during early childhood impact asthma risks, particularly that the risk of NA in boys increases with BMI changes during early childhood, and the risk of AA in girls increases with consistently high BMI.
en-copyright=
kn-copyright=
en-aut-name=YabuuchiToshihiko
en-aut-sei=Yabuuchi
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IkedaMasanori
en-aut-sei=Ikeda
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MatsumotoNaomi
en-aut-sei=Matsumoto
en-aut-mei=Naomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TsugeMitsuru
en-aut-sei=Tsuge
en-aut-mei=Mitsuru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YorifujiTakashi
en-aut-sei=Yorifuji
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TsukaharaHirokazu
en-aut-sei=Tsukahara
en-aut-mei=Hirokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Pediatrics, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pediatrics, Okayama University Medical School
kn-affil=
affil-num=3
en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Pediatrics, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Pediatrics, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=asthma
kn-keyword=asthma
en-keyword=body mass index
kn-keyword=body mass index
en-keyword=child
kn-keyword=child
en-keyword=phenotypes
kn-keyword=phenotypes
en-keyword=sex
kn-keyword=sex
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=30648
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250820
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effect of mechanical stretching stimulation on maturation of human iPS cell-derived cardiomyocytes co-cultured with human gingival fibroblasts
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In the realm of regenerative medicine, despite the various techniques available for inducing the differentiation of induced pluripotent stem (iPS) cells into cardiomyocytes, there remains a need to enhance the maturation of the cardiomyocytes. This study aimed to improve the differentiation and subsequent maturation of iPS-derived cardiomyocytes (iPS-CMs) by incorporating mechanical stretching. Human iPS cells were co-cultured with human gingival fibroblasts (HGF) on a polydimethylsiloxane (PDMS) stretch chamber, where mechanical stretching stimulation was applied during the induction of cardiomyocyte differentiation. The maturation of iPS-CMs was assessed using qRT-PCR, immunocytochemistry, transmission electron microscopy, calcium imaging and contractility comparisons. Results indicated significantly elevated gene expression levels of cardiomyocyte markers (cTnT) and the mesodermal marker (Nkx2.5) in the stretch group compared to the control group. Fluorescent immunocytochemical staining revealed the presence of cardiac marker proteins (cTnT and MYL2) in both groups, with higher protein expression in the stretch group. Additionally, structural maturation of iPS-CMs in the stretch group was notably better than in the control group. A significant increase in the contractility and calcium cycle of iPS-CMs was observed in the stretch group. These findings demonstrate that mechanical stretching stimulation enhances the maturation of iPS-CMs co-cultured with HGF.
en-copyright=
kn-copyright=
en-aut-name=WangMengxue
en-aut-sei=Wang
en-aut-mei=Mengxue
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IdeiHarumi
en-aut-sei=Idei
en-aut-mei=Harumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WangChen
en-aut-sei=Wang
en-aut-mei=Chen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=LiangYin
en-aut-sei=Liang
en-aut-mei=Yin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=LiuYun
en-aut-sei=Liu
en-aut-mei=Yun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MatsudaYusuke
en-aut-sei=Matsuda
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakahashiKen
en-aut-sei=Takahashi
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KamiokaHiroshi
en-aut-sei=Kamioka
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NaruseKeiji
en-aut-sei=Naruse
en-aut-mei=Keiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Nursing, School of Life and Health Sciences, HuZhou College
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Human induced pluripotent stem cell
kn-keyword=Human induced pluripotent stem cell
en-keyword=Cardiomyocyte
kn-keyword=Cardiomyocyte
en-keyword=Human gingival fibroblast
kn-keyword=Human gingival fibroblast
en-keyword=Mechanical stretching
kn-keyword=Mechanical stretching
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=19206
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250601
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Association between cesarean delivery and childhood allergic diseases in a longitudinal population-based birth cohort from Japan
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The association between cesarean delivery and childhood allergic diseases, such as atopic dermatitis, food allergy, and bronchial asthma, remains unclear, with limited evidence from Asian populations. We analyzed population-based data of 2,114 children born in Japan in 2010 from the Longitudinal Survey of Babies in the 21st Century, linked to the Perinatal Research Network Database. Comparisons were made between children born by cesarean delivery and those born vaginally. Longitudinal outcomes were atopic dermatitis, food allergy, and bronchial asthma during childhood for each age group up to 9 years of age. We performed Poisson regression analyses with robust variance, and adjusted for child and parent variables, followed by supplementary analyses using generalized estimating equations (GEE). Children born by cesarean delivery did not have a higher risk of most outcomes compared to those born vaginally. GEE analysis found no association between cesarean delivery and atopic dermatitis (adjusted risk ratio [aRR] 0.8, 95% confidence interval [CI] 0.5?1.2), food allergy (aRR 1.1, 95% CI 0.7?1.7), bronchial asthma (aRR 1.0, 95% CI 0.8?1.4), or allergic rhinoconjunctivitis (aRR 0.9, 95% CI 0.8?1.1). This study shows no clear evidence of an association between delivery mode and childhood allergic diseases in Japan.
en-copyright=
kn-copyright=
en-aut-name=TamaiKei
en-aut-sei=Tamai
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsumotoNaomi
en-aut-sei=Matsumoto
en-aut-mei=Naomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MitsuiTakashi
en-aut-sei=Mitsui
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MasuyamaHisashi
en-aut-sei=Masuyama
en-aut-mei=Hisashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YorifujiTakashi
en-aut-sei=Yorifuji
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Epidemiology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Epidemiology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Epidemiology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=43
cd-vols=
no-issue=2
article-no=
start-page=282
end-page=289
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240917
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Evaluation of a novel central venous access port for direct catheter insertion without a peel-away sheath
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose This study retrospectively evaluated the feasibility and safety of implanting a newly developed central venous access port (CV-port) that allows catheter insertion into a vein without the use of a peel-away sheath, with a focus on its potential to minimize risks associated with conventional implantation methods.
Materials and methods All procedures were performed using a new device (P-U CelSite Port? MS; Toray Medical, Tokyo, Japan) under ultrasound guidance. The primary endpoint was the implantation success rate. The secondary endpoints were the safety and risk factors for infection in the early postprocedural period (30 days).
Results We assessed 523 CV-port implantations performed in a cumulative total of 523 patients (240 men and 283 women; mean age, 61.6?±?13.1 years; range, 18?85 years). All implantations were successfully performed using an inner guide tube and over-the-wire technique through 522 internal jugular veins and one subclavian vein. The mean procedural time was 33.2?±?10.9 min (range 15?112 min). Air embolism, rupture/perforation of the superior vena cava, or hemothorax did not occur during catheter insertion. Eleven (2.1%) intraprocedural complications occurred, including Grade I arrhythmia (n?=?8) and subcutaneous bleeding (n?=?1), Grade II arrhythmia (n?=?1), and Grade IIIa pneumothorax (n?=?1). Furthermore, 496 patients were followed up for???30 days. Six early postprocedural complications were encountered (1.1%), including Grade IIIa infection (n?=?4), catheter occlusion (n?=?1), and skin necrosis due to subcutaneous leakage of trabectedin (n?=?1). These six CV-ports were withdrawn, and no significant risk factors for infection in the early postprocedural period were identified.
Conclusion The implantation of this CV-port device demonstrated comparable success and complication rates to conventional devices, with the added potential benefit of eliminating complications associated with the use of a peel-away sheath.
en-copyright=
kn-copyright=
en-aut-name=IguchiToshihiro
en-aut-sei=Iguchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawabataTakahiro
en-aut-sei=Kawabata
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MatsuiYusuke
en-aut-sei=Matsui
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TomitaKoji
en-aut-sei=Tomita
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=UkaMayu
en-aut-sei=Uka
en-aut-mei=Mayu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UmakoshiNoriyuki
en-aut-sei=Umakoshi
en-aut-mei=Noriyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OkamotoSoichiro
en-aut-sei=Okamoto
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MunetomoKazuaki
en-aut-sei=Munetomo
en-aut-mei=Kazuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HirakiTakao
en-aut-sei=Hiraki
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Central venous catheters
kn-keyword=Central venous catheters
en-keyword=Vascular access device
kn-keyword=Vascular access device
en-keyword=Treatment outcome
kn-keyword=Treatment outcome
en-keyword=Safety
kn-keyword=Safety
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=5
article-no=
start-page=e240601
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250320
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Is subclinical hypothyroidism associated with cardiovascular disease in the elderly?
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Subclinical hypothyroidism (SCH) is diagnosed when thyroid function tests show that the serum thyrotropin (TSH) level is elevated and the serum free thyroxine (FT4) level is normal. SCH is mainly caused by Hashimoto’s thyroiditis, the prevalence of which increases with aging. Recently, it has been revealed that SCH is associated with risk factors for cardiovascular diseases (CVDs), including atherosclerosis, dyslipidemia and hypertension, leading to cardiovascular morbidity and mortality. However, there are still controversies regarding the diagnosis and treatment of SCH in elderly patients. In this review, we present recent evidence regarding the relationship between SCH and CVD and treatment recommendations for SCH, especially in elderly patients. Studies have shown that SCH is associated with CVD and all-cause mortality. Patients aged less than 65 years showed significant associations of SCH with CVD risk and all-cause mortality, whereas patients aged 65 or older did not show such associations. It was shown that levothyroxine therapy was associated with lower all-cause mortality and cardiovascular mortality in younger SCH patients (<65?70 years) but not in SCH patients aged 65?70 years or older. In elderly SCH patients, levothyroxine treatment should be considered individually according to the patient’s age, serum TSH level, hypothyroid symptoms, CVD risk and other comorbidities. To further elucidate the impact of SCH on CVD in elderly patients, studies should be conducted using age-specific reference ranges of results of thyroid function tests, focusing on elderly patients, specific serum TSH levels, thyroid antibody status and cardiovascular risk factors.
en-copyright=
kn-copyright=
en-aut-name=YamamotoKoichiro
en-aut-sei=Yamamoto
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakanoYasuhiro
en-aut-sei=Nakano
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SoejimaYoshiaki
en-aut-sei=Soejima
en-aut-mei=Yoshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SuyamaAtsuhito
en-aut-sei=Suyama
en-aut-mei=Atsuhito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OguniKohei
en-aut-sei=Oguni
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HasegawaKou
en-aut-sei=Hasegawa
en-aut-mei=Kou
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OtsukaFumio
en-aut-sei=Otsuka
en-aut-mei=Fumio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=cardiovascular disease
kn-keyword=cardiovascular disease
en-keyword=elderly patients
kn-keyword=elderly patients
en-keyword=subclinical hypothyroidism
kn-keyword=subclinical hypothyroidism
en-keyword=thyroid disease
kn-keyword=thyroid disease
END
start-ver=1.4
cd-journal=joma
no-vol=487
cd-vols=
no-issue=
article-no=
start-page=137307
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Co-precipitating calcium phosphate as oral detoxification of cadmium
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Bone-eating (also known as osteophagia), found in wild animals, is primarily recognized as a means to supplement phosphorus and calcium intake. Herein, we describe a novel function of bone-eating in detoxifying heavy metal ions through the dissolution and co-precipitation of bone minerals as they travel through the gastrointestinal (GI) tract. In this study, cadmium (Cd), a heavy metal ion, served as a toxic model. We demonstrated that hydroxyapatite (HAp), the major calcium phosphate (CaP) in bone, dissolves in the stomach and acts as a co-precipitant in the intestine for Cd detoxification. We compared HAp to a common antidote, activated charcoal (AC), which did not precipitate within the GI tract. In vitro experiments showed that HAp dissolves under acidic conditions and, upon return to a neutral environment, efficiently re-sequesters Cd. Similarly, oral administration of HAp effectively prevented Cd absorption and accumulation, resulting in enhanced Cd excretion in the feces when compared to AC. A co-precipitating CaP in the GI tract could serve as an excellent detoxification system, as it helps prevent the accumulation of toxic substances and aids in developing appropriate strategies to reduce tissue toxicity. Moreover, understanding this detoxification system would be a valuable indicator for designing efficient detoxification materials.
en-copyright=
kn-copyright=
en-aut-name=BikharudinAhmad
en-aut-sei=Bikharudin
en-aut-mei=Ahmad
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkadaMasahiro
en-aut-sei=Okada
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SungPing-chin
en-aut-sei=Sung
en-aut-mei=Ping-chin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MatsumotoTakuya
en-aut-sei=Matsumoto
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Cadmium detoxification
kn-keyword=Cadmium detoxification
en-keyword=Coprecipitation
kn-keyword=Coprecipitation
en-keyword=Calcium phosphate
kn-keyword=Calcium phosphate
en-keyword=Gastrointestinal tract
kn-keyword=Gastrointestinal tract
END
start-ver=1.4
cd-journal=joma
no-vol=32
cd-vols=
no-issue=5
article-no=
start-page=567
end-page=579
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=ChatGPT Responses to Clinical Questions in the Japan Atherosclerosis Society Guidelines for Prevention of Atherosclerotic Cardiovascular Disease 2022
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Aims: Artificial intelligence is increasingly used in the medical field. We assessed the accuracy and reproducibility of responses by ChatGPT to clinical questions (CQs) in the Japan Atherosclerosis Society Guidelines for Prevention Atherosclerotic Cardiovascular Diseases 2022 (JAS Guidelines 2022).
Methods: In June 2024, we assessed responses by ChatGPT (version 3.5) to CQs, including background questions (BQs) and foreground questions (FQs). Accuracy was assessed independently by three researchers using six-point Likert scales ranging from 1 (“completely incorrect”) to 6 (“completely correct”) by evaluating responses to CQs in Japanese or translated into English. For reproducibility assessment, responses to each CQ asked five times separately in a new chat were scored using six-point Likert scales, and Fleiss kappa coefficients were calculated.
Results: The median (25th?75th percentile) score for ChatGPT’s responses to BQs and FQs was 4 (3?5) and 5 (5?6) for Japanese CQs and 5 (3?6) and 6 (5?6) for English CQs, respectively. Response scores were higher for FQs than those for BQs (P values <0.001 for Japanese and English). Similar response accuracy levels were observed between Japanese and English CQs (P value 0.139 for BQs and 0.586 for FQs). Kappa coefficients for reproducibility were 0.76 for BQs and 0.90 for FQs.
Conclusions: ChatGPT showed high accuracy and reproducibility in responding to JAS Guidelines 2022 CQs, especially FQs. While ChatGPT primarily reflects existing guidelines, its strength could lie in rapidly organizing and presenting relevant information, thus supporting instant and more efficient guideline interpretation and aiding in medical decision-making.
en-copyright=
kn-copyright=
en-aut-name=HisamatsuTakashi
en-aut-sei=Hisamatsu
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FukudaMari
en-aut-sei=Fukuda
en-aut-mei=Mari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KinutaMinako
en-aut-sei=Kinuta
en-aut-mei=Minako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KandaHideyuki
en-aut-sei=Kanda
en-aut-mei=Hideyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Autonomic intelligence
kn-keyword=Autonomic intelligence
en-keyword=ChatGPT
kn-keyword=ChatGPT
en-keyword=Accuracy
kn-keyword=Accuracy
en-keyword=Reproducibility
kn-keyword=Reproducibility
en-keyword=Guidelines
kn-keyword=Guidelines
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250704
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Primary tumour resection plus systemic therapy versus systemic therapy alone in metastatic breast cancer (JCOG1017, PRIM-BC): a randomised clinical trial
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Several prospective studies have evaluated the benefit of primary tumour resection (PTR) in de novo Stage IV breast cancer (BC) patients, but it remains controversial. We aimed to investigate whether PTR improves the survival of de novo stage IV BC patients.
Methods: De novo stage IV BC patients were enrolled in the first registration and received systemic therapies according to clinical subtypes. Patients without progression after primary systemic therapy for 3 months were randomly assigned 1:1 to systemic therapy alone (arm A) or PTR plus systemic therapy (arm B). The primary endpoint was overall survival (OS), and the secondary endpoints included local relapse-free survival (LRFS).
Results: Five hundred seventy patients were enrolled between May 5, 2011, and May 31, 2018. Of these, 407 were randomised to arm A (N?=?205) or arm B (N?=?202). The median follow-up time of all randomised patients was 60 months. The difference in OS was not statistically significant (HR 0.86 90% CI 0.69?1.07, one-sided p?=?0.13). Median OS was 69 months (arm A) and 75 months (arm B). In the subgroup analysis, PTR was associated with improved OS in pre-menopausal patients, or those with single-organ metastasis. LRFS in arm B was significantly longer than that in arm A (median LRFS 20 vs. 63 months: HR 0.42, 95% CI 0.33?0.53, p?0.0001). There were no treatment-related deaths.
Conclusions: PTR did not prolong OS. However, it improved local control and might benefit a subset of patients, such as those with premenopausal status or with single-organ metastasis. It also improved local relapse-free survival (LRFS), which is a clinically meaningful outcome in trials of systemic therapy.
Clinical trial registration: UMIN Clinical Trials Registry (UMIN000005586); Japan Registry of Clinical Trials (jRCTs031180151).
en-copyright=
kn-copyright=
en-aut-name=ShienTadahiko
en-aut-sei=Shien
en-aut-mei=Tadahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HaraFumikata
en-aut-sei=Hara
en-aut-mei=Fumikata
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AogiKenjiro
en-aut-sei=Aogi
en-aut-mei=Kenjiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YanagidaYasuhiro
en-aut-sei=Yanagida
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TsuneizumiMichiko
en-aut-sei=Tsuneizumi
en-aut-mei=Michiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamamotoNaohito
en-aut-sei=Yamamoto
en-aut-mei=Naohito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsumotoHiroshi
en-aut-sei=Matsumoto
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SutoAkihiko
en-aut-sei=Suto
en-aut-mei=Akihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=WatanabeKenichi
en-aut-sei=Watanabe
en-aut-mei=Kenichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HaraoMichiko
en-aut-sei=Harao
en-aut-mei=Michiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KanbayashiChizuko
en-aut-sei=Kanbayashi
en-aut-mei=Chizuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ItohMitsuya
en-aut-sei=Itoh
en-aut-mei=Mitsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KadoyaTakayuki
en-aut-sei=Kadoya
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=AnanKeisei
en-aut-sei=Anan
en-aut-mei=Keisei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=MaedaShigeto
en-aut-sei=Maeda
en-aut-mei=Shigeto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=SasakiKeita
en-aut-sei=Sasaki
en-aut-mei=Keita
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=OgawaGakuto
en-aut-sei=Ogawa
en-aut-mei=Gakuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=SajiShigehira
en-aut-sei=Saji
en-aut-mei=Shigehira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=FukudaHaruhiko
en-aut-sei=Fukuda
en-aut-mei=Haruhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=IwataHiroji
en-aut-sei=Iwata
en-aut-mei=Hiroji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
affil-num=1
en-affil=Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Cancer Institute Hospital
kn-affil=
affil-num=3
en-affil=National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=4
en-affil=Shizuoka General Hospital
kn-affil=
affil-num=5
en-affil=Gunma Prefectural Cancer Center
kn-affil=
affil-num=6
en-affil=Chiba Prefectural Cancer Center
kn-affil=
affil-num=7
en-affil=Saitama Prefectural Cancer Center
kn-affil=
affil-num=8
en-affil=National Cancer Center Hospital
kn-affil=
affil-num=9
en-affil=Hokkaido Cancer Center
kn-affil=
affil-num=10
en-affil=Jichi Medical University Hospital
kn-affil=
affil-num=11
en-affil=Niigata Prefectural Cancer Center
kn-affil=
affil-num=12
en-affil=Hiroshima City Hiroshima Citizen’s Hospital
kn-affil=
affil-num=13
en-affil=Hiroshima University Hospital
kn-affil=
affil-num=14
en-affil=Kitakyushu Municipal Medical Center
kn-affil=
affil-num=15
en-affil=Nagasaki Municipal Medical Center
kn-affil=
affil-num=16
en-affil=National Cancer Center Hospital
kn-affil=
affil-num=17
en-affil=National Cancer Center Hospital
kn-affil=
affil-num=18
en-affil=Fukushima Medical University
kn-affil=
affil-num=19
en-affil=National Cancer Center Hospital
kn-affil=
affil-num=20
en-affil=Aichi Cancer Center Hospital
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=6
cd-vols=
no-issue=2
article-no=
start-page=53
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250606
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=An Endocrine-Disrupting Chemical, Bisphenol A Diglycidyl Ether (BADGE), Accelerates Neuritogenesis and Outgrowth of Cortical Neurons via the G-Protein-Coupled Estrogen Receptor
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Bisphenol A diglycidyl ether (BADGE) is the main component of epoxy resin and is used for the inner coating of canned foods and plastic food containers. BADGE can easily migrate from containers and result in food contamination; the compound is known as an endocrine-disrupting chemical. We previously reported that maternal exposure to bisphenol A bis (2,3-dihydroxypropyl) ether (BADGE?2H2O), which is the most detected BADGE derivative not only in canned foods but also in human specimens, during gestation and lactation, could accelerate neuronal differentiation in the cortex of fetuses and induce anxiety-like behavior in juvenile mice. In this study, we investigated the effects of low-dose BADGE?2H2O (1?100 pM) treatment on neurites and the mechanism of neurite outgrowth in cortical neurons. BADGE?2H2O exposure significantly increased the number of dendrites and neurite length in cortical neurons; these accelerating effects were inhibited by estrogen receptor (ER) antagonist ICI 182,780 and G-protein-coupled estrogen receptor (GPER) antagonist G15. BADGE?2H2O down-regulated Hes1 expression, which is a transcriptional repressor, and increased levels of neuritogenic factor neurogenin-3 (Ngn3) in the cortical neurons; the changes were significantly blocked by G15. These data suggest that direct BADGE?2H2O exposure can accelerate neuritogenesis and outgrowth in cortical neurons through down-regulation of Hes1 and by increasing Ngn3 levels through ERs, particularly GPER.
en-copyright=
kn-copyright=
en-aut-name=MiyazakiIkuko
en-aut-sei=Miyazaki
en-aut-mei=Ikuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishiyamaChiharu
en-aut-sei=Nishiyama
en-aut-mei=Chiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NagoshiTakeru
en-aut-sei=Nagoshi
en-aut-mei=Takeru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MiyakoAkane
en-aut-sei=Miyako
en-aut-mei=Akane
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OnoSuzuka
en-aut-sei=Ono
en-aut-mei=Suzuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MisawaIchika
en-aut-sei=Misawa
en-aut-mei=Ichika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IsseAika
en-aut-sei=Isse
en-aut-mei=Aika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TomimotoKana
en-aut-sei=Tomimoto
en-aut-mei=Kana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MasaiKaori
en-aut-sei=Masai
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ZenshoKazumasa
en-aut-sei=Zensho
en-aut-mei=Kazumasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=AsanumaMasato
en-aut-sei=Asanuma
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Medical Neurobiology, Okayama University Medical School
kn-affil=
affil-num=3
en-affil=Department of Medical Neurobiology, Okayama University Medical School
kn-affil=
affil-num=4
en-affil=Department of Medical Neurobiology, Okayama University Medical School
kn-affil=
affil-num=5
en-affil=Department of Medical Neurobiology, Okayama University Medical School
kn-affil=
affil-num=6
en-affil=Department of Medical Neurobiology, Okayama University Medical School
kn-affil=
affil-num=7
en-affil=Department of Medical Neurobiology, Okayama University Medical School
kn-affil=
affil-num=8
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=BADGE
kn-keyword=BADGE
en-keyword=neurite outgrowth
kn-keyword=neurite outgrowth
en-keyword=estrogen receptor
kn-keyword=estrogen receptor
en-keyword=GPER
kn-keyword=GPER
en-keyword=Hes1
kn-keyword=Hes1
en-keyword=neurogenin-3
kn-keyword=neurogenin-3
END
start-ver=1.4
cd-journal=joma
no-vol=3
cd-vols=
no-issue=4
article-no=
start-page=350
end-page=359
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241211
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=N-Phenylphenothiazine Radical Cation with Extended π-Systems: Enhanced Heat Resistance of Triarylamine Radical Cations as Near-Infrared Absorbing Dyes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=N-Phenylphenothiazine derivatives extended with various aryl groups were designed and synthesized. These derivatives have bent conformation in crystal and exhibit high solubility. Radical cations obtained by one-electron oxidation of these derivatives gave stable radical cations in solution and showed absorption in the near-infrared region. A radical cation was isolated as a stable salt, which exhibited heat resistance up to around 200 °C. A design strategy for radical cation-based near-infrared absorbing dyes, which are easily oxidized and stable not only as a solution but in solid form, is described.
en-copyright=
kn-copyright=
en-aut-name=YanoMasafumi
en-aut-sei=Yano
en-aut-mei=Masafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UedaMinami
en-aut-sei=Ueda
en-aut-mei=Minami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YajimaTatsuo
en-aut-sei=Yajima
en-aut-mei=Tatsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MitsudoKoichi
en-aut-sei=Mitsudo
en-aut-mei=Koichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KashiwagiYukiyasu
en-aut-sei=Kashiwagi
en-aut-mei=Yukiyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Faculty of Chemistry, Material and Bioengineering, Kansai University
kn-affil=
affil-num=2
en-affil=Faculty of Chemistry, Material and Bioengineering, Kansai University
kn-affil=
affil-num=3
en-affil=Faculty of Chemistry, Material and Bioengineering, Kansai University
kn-affil=
affil-num=4
en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Osaka Research Institute of Industrial Science and Technology
kn-affil=
en-keyword=triarylamines
kn-keyword=triarylamines
en-keyword=N-phenylphenothiazine
kn-keyword=N-phenylphenothiazine
en-keyword=radical cation
kn-keyword=radical cation
en-keyword=near-infrared absorption
kn-keyword=near-infrared absorption
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=1
article-no=
start-page=e003250
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Clinical impact of combined assessment of myocardial inflammation and fibrosis using myocardial biopsy in patients with dilated cardiomyopathy: a multicentre, retrospective cohort study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Among patients with dilated cardiomyopathy (DCM), myocardial inflammation and fibrosis are risk factors for poor clinical outcomes. Here, we investigated the combined prognostic value of these two factors, as evaluated using myocardial biopsy samples.
Methods This retrospective and multicentre study included patients with DCM?defined as LVEF of ?45% and left diastolic diameter of >112% of predicted value, without evidence of secondary or ischaemic cardiomyopathy. In myocardial biopsy samples, inflammatory cells were counted using immunohistochemistry, and Masson’s Trichrome staining was performed to quantify the myocardial fibrosis as collagen area fraction (CAF). Higher myocardial inflammation was defined as leucocytes of ?14/mm?, including ?4 monocytes/mm?, with CD3+ T lymphocytes of?7/mm?. Greater myocardial fibrosis was defined as CAF of>5.9% by the Youden’s index. The primary endpoint was cardiac death or left ventricular assist device implantation.
Results A total of 255 DCM patients were enrolled (average age, 53.1 years; 78% males). Within this cohort, the mean LVEF was 28.0%, mean CAF was 10.7% and median CD3+ cell count was 8.3/mm2. During the median follow-up period of 2688 days, 46 patients met the primary endpoint. Multivariable Cox proportional hazard analyses revealed that CD3+ cell count and CAF were independent determinants of the primary endpoint. Kaplan?Meier analysis showed that patients with both higher myocardial inflammation and greater fibrosis had the worst prognosis (log-rank p<0.001). When myocardial inflammation was graded as one of three degrees: T lymphocytes of <13/mm? (low); 13 of 13.1?23.9/mm? (moderate); and T lymphocytes of ?24?/mm? (high), patients with moderate inflammation exhibited a superior survival rate when CAF was ?5.9%, but a worse survival rate when CAF was >5.9%.
Conclusions Having both biopsy-proven higher myocardial inflammation and greater fibrosis predicted the worst clinical prognosis in patients with DCM.
en-copyright=
kn-copyright=
en-aut-name=NakayamaTakafumi
en-aut-sei=Nakayama
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OgoKeiko Ohta
en-aut-sei=Ogo
en-aut-mei=Keiko Ohta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SuganoYasuo
en-aut-sei=Sugano
en-aut-mei=Yasuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YokokawaTetsuro
en-aut-sei=Yokokawa
en-aut-mei=Tetsuro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KanamoriHiromitsu
en-aut-sei=Kanamori
en-aut-mei=Hiromitsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IkedaYoshihiko
en-aut-sei=Ikeda
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HiroeMichiaki
en-aut-sei=Hiroe
en-aut-mei=Michiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HatakeyamaKinta
en-aut-sei=Hatakeyama
en-aut-mei=Kinta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=Ishibashi-UedaHatsue
en-aut-sei=Ishibashi-Ueda
en-aut-mei=Hatsue
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NakamuraKazufumi
en-aut-sei=Nakamura
en-aut-mei=Kazufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=DohiKaoru
en-aut-sei=Dohi
en-aut-mei=Kaoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=AnzaiToshihisa
en-aut-sei=Anzai
en-aut-mei=Toshihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=SeoYoshihiro
en-aut-sei=Seo
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=Imanaka-YoshidaKyoko
en-aut-sei=Imanaka-Yoshida
en-aut-mei=Kyoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Cardiology, Nagoya City University Graduate School of Medical Sciences
kn-affil=
affil-num=2
en-affil=Department of Pathology, National Cerebral and Cardiovascular Center
kn-affil=
affil-num=3
en-affil=Department of Cardiology, Keiyu Hospital
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Medicine, Fukushima Medical University
kn-affil=
affil-num=5
en-affil=Department of Cardiology, Gifu University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Pathology, National Cerebral and Cardiovascular Center
kn-affil=
affil-num=7
en-affil=Department of Cardiology, National Center for Global Health and Medicine
kn-affil=
affil-num=8
en-affil=Department of Pathology, National Cerebral and Cardiovascular Center
kn-affil=
affil-num=9
en-affil=Department of Pathology, National Cerebral and Cardiovascular Center
kn-affil=
affil-num=10
en-affil=Center for Advanced Heart Failure, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Cardiology and Nephrology, Mie University Graduate School of Medicine
kn-affil=
affil-num=12
en-affil=Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine
kn-affil=
affil-num=13
en-affil=Department of Cardiology, Nagoya City University Graduate School of Medical Sciences
kn-affil=
affil-num=14
en-affil=Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=56
cd-vols=
no-issue=1
article-no=
start-page=64
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250527
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Evaluating a discretized data acquisition method for couch modeling to streamline the commissioning process of radiological instruments
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background The commissioning of radiotherapy treatment planning system (RTPS) involves many time-consuming tests to maintain consistency between actual and planned dose. As the number of new technologies and peripheral devices increases year by year, there is a need for time-efficient and accurate commissioning of radiation therapy equipment. Couch modeling is one type of commissioning, and there are no recommended values for CT due to differences in equipment calibration between facilities. This study evaluated the optimal electron density (ED) for the couch using discretized gantry angles.
Results All discrete-angle groups showed a high correlation between the surface ED and dose difference between the actual and planned doses (|r|>?0.9). AcurosXB did not demonstrate a significant correlation between dose differences and each energy. For a small number of discretized gantry groups, the optimal couch modeling results revealed several combinations of surface and interior ED with the same score. Upon adding all couch thickness scores, all energy scores, and both algorithm scores, the optimal surface and interior EDs with the highest score across all couch thicknesses were 0.4 and 0.07, respectively.
Conclusions The optimal couch surface ED dose difference trend was identified, and the effectiveness indicated using the dose difference score from discrete-angle couch modeling. Using this method, couch modeling can be evaluated in a highly precise and quick manner, which helps in the commissioning of complicated linear accelerator and radiological treatment plans.
en-copyright=
kn-copyright=
en-aut-name=TomimotoSyouta
en-aut-sei=Tomimoto
en-aut-mei=Syouta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SaekiYusuke
en-aut-sei=Saeki
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MotodaOkihiro
en-aut-sei=Motoda
en-aut-mei=Okihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanakaMasato
en-aut-sei=Tanaka
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TsumotoSyouki
en-aut-sei=Tsumoto
en-aut-mei=Syouki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NishikawaHana
en-aut-sei=Nishikawa
en-aut-mei=Hana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MiyashimaYuki
en-aut-sei=Miyashima
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HiguchiMakiko
en-aut-sei=Higuchi
en-aut-mei=Makiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TaniTadashi
en-aut-sei=Tani
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KatsuiKuniaki
en-aut-sei=Katsui
en-aut-mei=Kuniaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TanabeYoshinori
en-aut-sei=Tanabe
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Radiological Technology, Faculty of Medicine, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Radiological Technology, Kawasaki Medical School Hospital
kn-affil=
affil-num=3
en-affil=Department of Radiological Technology, Kawasaki Medical School Hospital
kn-affil=
affil-num=4
en-affil=Department of Radiological Technology, Kawasaki Medical School Hospital
kn-affil=
affil-num=5
en-affil=Department of Radiological Technology, Faculty of Medicine, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Radiological Technology, Faculty of Medicine, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Radiological Technology, Kawasaki Medical School Hospital
kn-affil=
affil-num=8
en-affil=Department of Radiological Technology, Kawasaki Medical School Hospital
kn-affil=
affil-num=9
en-affil=Department of Radiological Technology, Kawasaki Medical School Hospital
kn-affil=
affil-num=10
en-affil=Department of Radiology, Kawasaki Medical School
kn-affil=
affil-num=11
en-affil=Department of Radiological Technology, Faculty of Medicine, Graduate School of Health Sciences, Okayama University
kn-affil=
en-keyword=Couch modeling
kn-keyword=Couch modeling
en-keyword=Commissioning
kn-keyword=Commissioning
en-keyword=Attenuation of couch
kn-keyword=Attenuation of couch
en-keyword=Linear accelerator
kn-keyword=Linear accelerator
en-keyword=Radiotherapy planning system
kn-keyword=Radiotherapy planning system
END
start-ver=1.4
cd-journal=joma
no-vol=5
cd-vols=
no-issue=2
article-no=
start-page=606
end-page=617
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250130
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Mechanistic Insights Into Oxidative Response of Heat Shock Factor 1 Condensates
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Heat shock factor 1 (Hsf1), a hub protein in the stress response and cell fate decisions, senses the strength, type, and duration of stress to balance cell survival and death through an unknown mechanism. Recently, changes in the physical property of Hsf1 condensates due to persistent stress have been suggested to trigger apoptosis, highlighting the importance of biological phase separation and transition in cell fate decisions. In this study, the mechanism underlying Hsf1 droplet formation and oxidative response was investigated through 3D refractive index imaging of the internal architecture, corroborated by molecular dynamics simulations and biophysical/biochemical experiments. We found that, in response to oxidative conditions, Hsf1 formed liquid condensates that suppressed its internal mobility. Furthermore, these conditions triggered the hyper-oligomerization of Hsf1, mediated by disulfide bonds and secondary structure stabilization, leading to the formation of dense core particles in the Hsf1 droplet. Collectively, these data demonstrate how the physical property of Hsf1 condensates undergoes an oxidative transition by sensing redox conditions to potentially drive cell fate decisions.
en-copyright=
kn-copyright=
en-aut-name=KawagoeSoichiro
en-aut-sei=Kawagoe
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsusakiMotonori
en-aut-sei=Matsusaki
en-aut-mei=Motonori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MabuchiTakuya
en-aut-sei=Mabuchi
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OgasawaraYuto
en-aut-sei=Ogasawara
en-aut-mei=Yuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WatanabeKazunori
en-aut-sei=Watanabe
en-aut-mei=Kazunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IshimoriKoichiro
en-aut-sei=Ishimori
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SaioTomohide
en-aut-sei=Saio
en-aut-mei=Tomohide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Institute of Advanced Medical Sciences, Tokushima University
kn-affil=
affil-num=2
en-affil=Institute of Advanced Medical Sciences, Tokushima University
kn-affil=
affil-num=3
en-affil=Frontier Research Institute for Interdisciplinary Sciences, Tohoku University
kn-affil=
affil-num=4
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Chemistry, Faculty of Science, Hokkaido University
kn-affil=
affil-num=7
en-affil=Institute of Advanced Medical Sciences, Tokushima University
kn-affil=
en-keyword=heat shock factor 1
kn-keyword=heat shock factor 1
en-keyword=oxidative hyper-oligomerization
kn-keyword=oxidative hyper-oligomerization
en-keyword=biological phase transition
kn-keyword=biological phase transition
en-keyword=stress response
kn-keyword=stress response
en-keyword=biophysics
kn-keyword=biophysics
END
start-ver=1.4
cd-journal=joma
no-vol=64
cd-vols=
no-issue=15
article-no=
start-page=2290
end-page=2294
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Clinical and Genetic Analyses of SPG7 in Japanese Patients with Undiagnosed Ataxia
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective Spastic paraplegia 7 (SPG7) is an autosomal recessive neurodegenerative disorder caused by biallelic pathogenic variants in SPG7. It is predominantly characterized by adult-onset slowly progressive spastic paraparesis. While SPG7 presenting with ataxia with or without spasticity is relatively common in Europe and North America, it is considered rare in Japan. This study aimed to identify SPG7 patients among those with undiagnosed ataxia within the Japanese population.
Methods We retrospectively selected 351 patients with undiagnosed ataxia, excluding those with secondary and common spinocerebellar ataxia. Whole-exome sequence analysis was conducted, and homozygosity of the identified variants was confirmed using droplet digital polymerase chain reaction (ddPCR).
Results Among the 351 patients, 2 were diagnosed with SPG7, and homozygosity was confirmed by ddPCR. Both patients carried homozygous pathogenic variants in SPG7: c.1948G>A, p.Asp650Asn, and c.1192C>T, p.Arg398Ter (NM_003119.4). Clinically, both patients presented with progressive ataxia. In addition, Patient 1 exhibited partial ophthalmoplegia and spastic paraparesis, whereas Patient 2 demonstrated cerebellar ataxia without spasticity.
Conclusion The rarity of SPG7 in Japan may be attributed to variation in the minor allele frequency of the c.1529C>T, p.Ala510Val variant, which is more prevalent in Europe and North America than in other areas.
en-copyright=
kn-copyright=
en-aut-name=MitsutakeAkihiko
en-aut-sei=Mitsutake
en-aut-mei=Akihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsukawaTakashi
en-aut-sei=Matsukawa
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HinoRimi
en-aut-sei=Hino
en-aut-mei=Rimi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FujinoGo
en-aut-sei=Fujino
en-aut-mei=Go
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SakaiYuto
en-aut-sei=Sakai
en-aut-mei=Yuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MitsuiJun
en-aut-sei=Mitsui
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=K. IwataNobue
en-aut-sei=K. Iwata
en-aut-mei=Nobue
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TsujiShoji
en-aut-sei=Tsuji
en-aut-mei=Shoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TodaTatsushi
en-aut-sei=Toda
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=2
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=3
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=4
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=5
en-affil=Department of Neurology, International University of Health and Welfare Mita Hospital
kn-affil=
affil-num=6
en-affil=Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=7
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Neurology, International University of Health and Welfare Mita Hospital
kn-affil=
affil-num=9
en-affil=Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=10
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
en-keyword=cerebellar ataxia
kn-keyword=cerebellar ataxia
en-keyword=spastic paraparesis
kn-keyword=spastic paraparesis
en-keyword=whole-exome sequence analysis
kn-keyword=whole-exome sequence analysis
en-keyword=SPG7
kn-keyword=SPG7
END
start-ver=1.4
cd-journal=joma
no-vol=156
cd-vols=
no-issue=2
article-no=
start-page=151
end-page=159.e1
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202502
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The greater palatine nerve and artery both supply the maxillary teeth
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background. It is generally accepted that the greater palatine nerve and artery supply the palatal mucosa, gingiva, and glands, but not the bone or tooth adjacent to those tissues. When the bony palate is observed closely, multiple small foramina are seen on the palatal surface of the alveolar process. The authors hypothesized that the greater palatine nerve and artery might supply the maxillary teeth via the foramina on the palatal surface of the alveolar process and the superior alveolar nerve and artery. The authors aimed to investigate the palatal innervation and blood supply of the maxillary teeth.
Methods. Eight cadaveric maxillae containing most teeth or alveolar sockets were selected. The mean age at the time of death was 82.4 years. The samples were examined with colored water injection, latex injection, microcomputed tomography with contrast dye, gross anatomic dissection, and histologic observation.
Results. Through both injection studies and microcomputed tomographic analysis, the authors found that the small foramina on and around the greater palatine groove connected to the alveolar process and tooth sockets. The small foramina in the greater palatine and incisive canal also continued inside the alveolar process and the tooth sockets.
Conclusions. The alveolar branches of the greater palatine nerve and artery as well as the nasopalatine nerve and sphenopalatine artery supply maxillary teeth, alveolar bone, and periodontal tissue via the palatal alveolar foramina with superior alveolar nerves and arteries.
Practical Implications. This knowledge is essential for dentists when administering local anesthetic to the maxillary teeth and performing an osteotomy. Anatomic and dental textbooks should be updated with this new knowledge for better patient care.
en-copyright=
kn-copyright=
en-aut-name=IwanagaJoe
en-aut-sei=Iwanaga
en-aut-mei=Joe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakeshitaYohei
en-aut-sei=Takeshita
en-aut-mei=Yohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AnbalaganMuralidharan
en-aut-sei=Anbalagan
en-aut-mei=Muralidharan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ZouBinghao
en-aut-sei=Zou
en-aut-mei=Binghao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ToriumiTaku
en-aut-sei=Toriumi
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KunisadaYuki
en-aut-sei=Kunisada
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IbaragiSoichiro
en-aut-sei=Ibaragi
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TubbsR. Shane
en-aut-sei=Tubbs
en-aut-mei=R. Shane
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Division of Gross and Clinical Anatomy, Department of Anatomy, School of Medicine, Kurume University
kn-affil=
affil-num=2
en-affil=Department of Oral and Maxillofacial Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Structural and Cellular Biology, School of Medicine, Tulane University
kn-affil=
affil-num=4
en-affil=Department of Structural and Cellular Biology, School of Medicine, Tulane University
kn-affil=
affil-num=5
en-affil=Department of Anatomy, School of Life Dentistry at Niigata, The Nippon Dental University
kn-affil=
affil-num=6
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=University of Queensland
kn-affil=
en-keyword=Maxillary teeth
kn-keyword=Maxillary teeth
en-keyword=dental pulp
kn-keyword=dental pulp
en-keyword=anatomy
kn-keyword=anatomy
en-keyword=nerve block
kn-keyword=nerve block
en-keyword=root canal treatment
kn-keyword=root canal treatment
en-keyword=cadaver
kn-keyword=cadaver
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=10
article-no=
start-page=1151
end-page=1159
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202412
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=NCF-1 plays a pivotal role in the survival of adenocarcinoma cells of pancreatic and gastric origins
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Reactive oxygen species (ROS) play a pivotal biological role in cells, with ROS function differing depending on cellular conditions and the extracellular environment. Notably, ROS act as cytotoxic factors to eliminate infectious pathogens or promote cell death under cellular stress, while also facilitating cell growth (via ROS-sensing pathways) by modifying gene expression. Among ROS-related genes, neutrophil cytosolic factor-1 (NCF-1; p47phox) was identified as a ROS generator in neutrophils. This product is a subunit of a cytosolic NADPH oxidase complex activated in response to pathogens such as bacteria and viruses. NCF-1 has been examined primarily in terms of ROS-production pathways in macrophages and neutrophils; however, the expression of this protein and its biological role in cancer cells remain unclear. Here, we report expression of NCF-1 in pancreatic and gastric cancers, and demonstrate its biological significance in these tumor cells. Abundant expression of NCF-1 was observed in pancreatic adenocarcinoma (PDAC) lines and in patient tissues, as well as in gastric adenocarcinomas. Accumulation of the protein was also detected in the invasive/metastatic foci of these tumors. Unexpectedly, BxPC-3 underwent apoptotic cell death when transfected with a small interfering RNA (siRNA) specific to NCF-1, whereas the cells treated with a control siRNA proliferated in a time-dependent manner. A similar phenomenon was observed in HSC-58, a poorly differentiated gastric adenocarcinoma line. Consequently, the tumor cells highly expressing NCF-1 obtained coincident accumulation of ROS and reduced glutathione (GSH) with expression of glutathione peroxidase 4 (GPX4), a quencher involved in ferroptosis. Unlike the conventional role of ROS as a representative cytotoxic factor, these findings suggest that NCF-1-mediated ROS generation may be required for expansive growth of PDAC and gastric cancers.
en-copyright=
kn-copyright=
en-aut-name=Furuya-IkudeChiemi
en-aut-sei=Furuya-Ikude
en-aut-mei=Chiemi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KittaAkane
en-aut-sei=Kitta
en-aut-mei=Akane
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TomonobuNaoko
en-aut-sei=Tomonobu
en-aut-mei=Naoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KawasakiYoshihiro
en-aut-sei=Kawasaki
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KondoEisaku
en-aut-sei=Kondo
en-aut-mei=Eisaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Division of Tumor Pathology, NIR-PIT Research Institute, Kansai Medical University
kn-affil=
affil-num=2
en-affil=Division of Tumor Pathology, NIR-PIT Research Institute, Kansai Medical University
kn-affil=
affil-num=3
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Division of Tumor Pathology, NIR-PIT Research Institute, Kansai Medical University
kn-affil=
affil-num=5
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Division of Tumor Pathology, NIR-PIT Research Institute, Kansai Medical University
kn-affil=
en-keyword=NCF-1 (p47phox)
kn-keyword=NCF-1 (p47phox)
en-keyword=ROS
kn-keyword=ROS
en-keyword=Cancer
kn-keyword=Cancer
en-keyword=Tumor growth
kn-keyword=Tumor growth
en-keyword=Apoptosis
kn-keyword=Apoptosis
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=2
article-no=
start-page=373
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250205
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Asia-Pacific Body Mass Index Classification and New-Onset Chronic Kidney Disease in Non-Diabetic Japanese Adults: A Community-Based Longitudinal Study from 1998 to 2023
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Objectives: Obesity is a risk factor for chronic kidney disease (CKD) in Asians. The Asia-Pacific body mass index (BMI) classification sets lower obesity cutoffs than the conventional BMI classification for all races, generally reflecting the lower BMIs in Asians. This longitudinal study evaluated the association between BMI, as classified by the Asia-Pacific BMI system, and CKD development in non-diabetic Asian adults. Methods: A population-based longitudinal study (1998?2023) was conducted in non-diabetic Japanese adults (hemoglobin A1c < 6.5%) in Zentsuji City (Kagawa Prefecture, Japan). The generalized gamma model was used to assess the relationship between time-varying BMI categories and CKD development, stratified by sex. CKD was defined as an estimated glomerular filtration rate of <60 mL/min/1.73 m2. BMI was calculated as weight (kg) divided by the square of height (m2) and categorized per the Asia-Pacific classification as overweight (23.0?24.9 kg/m2), obesity class I (25.0?29.9 kg/m2), and obesity class II (?30.0 kg/m2). Results: CKD developed in 34.2% of 3098 men and 34.8% of 4391 women. The mean follow-up times were 7.41 years for men and 8.25 years for women. During follow-up, the BMI distributions for men were 5.0% underweight, 43.3% normal weight, 25.6% overweight, 24.1% obesity class I, and 2.0% obesity class II; those for women were 7.7%, 50.5%, 20.5%, 18.3%, and 2.9%, respectively. Compared with normal weight, obesity class I was associated with a 6% (95% confidence interval [CI]: 2?10%) shorter time to CKD onset in men and 5% (95% CI: 2?7%) in women. In both sexes, obesity class II showed shorter survival times than normal weight by point estimates, although all 95% CIs crossed the null value. Conclusions: Obesity, as classified by the Asia-Pacific BMI system, shortened the time to CKD onset in non-diabetic Asians. The conventional BMI cutoff for obesity (?30.0 kg/m2) may be too high to identify CKD risk in this population. The findings of this study may be useful for public health professionals in designing interventions to prevent CKD.
en-copyright=
kn-copyright=
en-aut-name=OkawaYukari
en-aut-sei=Okawa
en-aut-mei=Yukari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MitsuhashiToshiharu
en-aut-sei=Mitsuhashi
en-aut-mei=Toshiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TsudaToshihide
en-aut-sei=Tsuda
en-aut-mei=Toshihide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Public Health and Welfare, Zentsuji City Hall
kn-affil=
affil-num=2
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=body mass index
kn-keyword=body mass index
en-keyword=chronic kidney disease
kn-keyword=chronic kidney disease
en-keyword=East Asian
kn-keyword=East Asian
en-keyword=longitudinal studies
kn-keyword=longitudinal studies
en-keyword=risk factors
kn-keyword=risk factors
END
start-ver=1.4
cd-journal=joma
no-vol=472
cd-vols=
no-issue=
article-no=
start-page=123486
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202505
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Clinical, neuroimaging and genetic findings in the Japanese case series of CLCN2-related leukoencephalopathy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Biallelic loss-of-function variants in CLCN2 lead to CLCN2-related leukoencephalopathy (CC2L), also called leukoencephalopathy with ataxia (LKPAT). CC2L is characterized clinically by a spectrum of clinical presentations including childhood- to adult-onset mild ataxia, spasticity, cognitive decline, and vision loss as well as typical MRI findings of symmetrical high signal intensities on the DWIs/T2WIs of the middle cerebellar peduncles (MCPs). We searched for pathogenic variants of CLCN2 in a case series of undiagnosed leukoencephalopathy accompanied by MCP signs, which led to the identification of four Japanese patients with CC2L. All the patients carried at least one allele of c.61dupC (p.Leu21Profs*27) in CLCN2, including compound heterozygosity with either the novel pathogenic variant c.983 + 2 T > A or the previously reported pathogenic variant c.1828C > T (p.Arg610*). Of note, all the four previously reported cases from Japan also harbored c.61dupC, and no reports of this variant have been documented from outside Japan. The allele frequency of c.61dupC in the Japanese population is 0.002152, raising the possibility of a relatively high prevalence of CC2L in Japan. Patients in this study developed symptoms after the age of 30, and demonstrated neurological signs including cerebellar ataxia, pyramidal signs, and mild cognitive impairment, consistent with previous reports. One male patient had two children, supporting preserved fertility, and another patient had calcifications in the cerebral and cerebellar surfaces. These findings provide valuable insights into the broader clinical and genetic spectra of CC2L in the Japanese population, and emphasize the importance of considering this disease in the differential diagnoses of leukoencephalopathy with MCP signs.
en-copyright=
kn-copyright=
en-aut-name=OrimoKenta
en-aut-sei=Orimo
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsukawaTakashi
en-aut-sei=Matsukawa
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MitsutakeAkihiko
en-aut-sei=Mitsutake
en-aut-mei=Akihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ChoTakusei
en-aut-sei=Cho
en-aut-mei=Takusei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NaruseHiroya
en-aut-sei=Naruse
en-aut-mei=Hiroya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SakiyamaYoshio
en-aut-sei=Sakiyama
en-aut-mei=Yoshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SumiKensho
en-aut-sei=Sumi
en-aut-mei=Kensho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=UchioNaohiro
en-aut-sei=Uchio
en-aut-mei=Naohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SatakeAkane
en-aut-sei=Satake
en-aut-mei=Akane
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TakiyamaYoshihisa
en-aut-sei=Takiyama
en-aut-mei=Yoshihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MatsushitaTakuya
en-aut-sei=Matsushita
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=OmaeYosuke
en-aut-sei=Omae
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KawaiYosuke
en-aut-sei=Kawai
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TokunagaKatsushi
en-aut-sei=Tokunaga
en-aut-mei=Katsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=MitsuiJun
en-aut-sei=Mitsui
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=TsujiShoji
en-aut-sei=Tsuji
en-aut-mei=Shoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=TodaTatsushi
en-aut-sei=Toda
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=2
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=3
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=4
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=5
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=6
en-affil=Division of Neurology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University
kn-affil=
affil-num=7
en-affil=Department of Neurology, Mitsui Memorial Hospital
kn-affil=
affil-num=8
en-affil=Department of Neurology, Mitsui Memorial Hospital
kn-affil=
affil-num=9
en-affil=Department of Neurology, Fuefuki Central Hospital
kn-affil=
affil-num=10
en-affil=Department of Neurology, Fuefuki Central Hospital
kn-affil=
affil-num=11
en-affil=Department of Neurology, Kochi Medical School, Kochi University
kn-affil=
affil-num=12
en-affil=Genome Medical Science Project, National Center for Global Health and Medicine
kn-affil=
affil-num=13
en-affil=Genome Medical Science Project, National Center for Global Health and Medicine
kn-affil=
affil-num=14
en-affil=Genome Medical Science Project, National Center for Global Health and Medicine
kn-affil=
affil-num=15
en-affil=Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=16
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=17
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=18
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
en-keyword=Leukodystrophy
kn-keyword=Leukodystrophy
en-keyword=CC2L
kn-keyword=CC2L
en-keyword=CLCN2
kn-keyword=CLCN2
en-keyword=MCP sign
kn-keyword=MCP sign
END
start-ver=1.4
cd-journal=joma
no-vol=39
cd-vols=
no-issue=12
article-no=
start-page=2664
end-page=2671
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241014
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Long‐term outcomes of endoscopic resection of superficial esophageal squamous cell carcinoma in late‐elderly patients
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background and Aim: As the population ages, the number of elderly patients with superficial esophageal squamous cell carcinoma (ESCC) is increasing. We aimed to clarify the indications for endoscopic resection (ER) in late-elderly patients with ESCC in terms of life expectancy.
Methods: Patients aged ?75 years who underwent ER for ESCC at our institution from January 2005 to December 2018 were enrolled. Clinical data, including the Eastern Cooperative Oncology Group performance status, American Society of Anesthesiologists physical status (ASA-PS), Charlson comorbidity index, and prognostic nutritional index (PNI), were collected at the time of ER. The main outcome measure was overall survival (OS).
Results: Two hundred eight consecutive patients were enrolled. The patients' median age was 78 years (range, 75?89 years). The 5-year follow-up rate was 88.5% (median follow-up period, 6.6 years). The 5-year OS rate was 79.2% (95% confidence interval [CI], 72.2?84.8), and 5-year net survival standardized for age, sex, and calendar year was 1.04 (95% CI, 0.98?1.09). In the multivariate analysis, an ASA-PS of 3 (hazard ratio, 2.45; 95% CI, 1.16?5.17) and PNI of <44.0 (hazard ratio, 2.73; 95% CI, 1.38?5.40) were independent prognostic factors. When neither of these factors was met, the 5-year OS rate was 87.8% (95% CI, 80.0?92.9), and 5-year net survival was 1.08 (95% CI, 1.02?1.14).
Conclusions: ER for ESCC in late-elderly patients may improve life expectancy. ER is recommended in patients with a good ASA-PS and PNI.
en-copyright=
kn-copyright=
en-aut-name=MatsuedaKatsunori
en-aut-sei=Matsueda
en-aut-mei=Katsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawanoSeiji
en-aut-sei=Kawano
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FukuiKeisuke
en-aut-sei=Fukui
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HirataShoichiro
en-aut-sei=Hirata
en-aut-mei=Shoichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SatomiTakuya
en-aut-sei=Satomi
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=InooShoko
en-aut-sei=Inoo
en-aut-mei=Shoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HamadaKenta
en-aut-sei=Hamada
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KonoYoshiyasu
en-aut-sei=Kono
en-aut-mei=Yoshiyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IwamuroMasaya
en-aut-sei=Iwamuro
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KawaharaYoshiro
en-aut-sei=Kawahara
en-aut-mei=Yoshiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Faculty of Societal Safety Sciences, Kansai University
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Practical Gastrointestinal Endoscopy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
en-keyword=endoscopic resection
kn-keyword=endoscopic resection
en-keyword=esophageal cancer
kn-keyword=esophageal cancer
en-keyword=late-elderly patient
kn-keyword=late-elderly patient
en-keyword=long-term outcome
kn-keyword=long-term outcome
END
start-ver=1.4
cd-journal=joma
no-vol=4
cd-vols=
no-issue=1
article-no=
start-page=e261
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230703
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Alcohol consumption, multiple Lugol‐voiding lesions, and field cancerization
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The development of multiple squamous cell carcinomas (SCC) in the upper aerodigestive tract, which includes the oral cavity, pharynx, larynx, and esophagus, is explained by field cancerization and is associated with alcohol consumption and cigarette smoking. We reviewed the association between alcohol consumption, multiple Lugol-voiding lesions, and field cancerization, mainly based on the Japan Esophageal Cohort study. The Japan Esophageal Cohort study is a prospective cohort study that enrolled patients with esophageal SCC after endoscopic resection. Enrolled patients received surveillance by gastrointestinal endoscopy every 6 months and surveillance by an otolaryngologist every 12 months. The Japan Esophageal Cohort study showed that esophageal SCC and head and neck SCC that developed after endoscopic resection for esophageal SCC were associated with genetic polymorphisms related to alcohol metabolism. They were also associated with Lugol-voiding lesions grade in the background esophageal mucosa, the score of the health risk appraisal model for predicting the risk of esophageal SCC, macrocytosis, and score on alcohol use disorders identification test. The standardized incidence ratio of head and neck SCC in patients with esophageal SCC after endoscopic resection was extremely high compared to the general population. Drinking and smoking cessation is strongly recommended to reduce the risk of metachronous esophageal SCC after treatment of esophageal SCC. Risk factors for field cancerization provide opportunities for early diagnosis and minimally invasive treatment. Lifestyle guidance of alcohol consumption and cigarette smoking for esophageal precancerous conditions, which are endoscopically visualized as multiple Lugol-voiding lesions, may play a pivotal role in decreasing the incidence and mortality of esophageal SCC.
en-copyright=
kn-copyright=
en-aut-name=KatadaChikatoshi
en-aut-sei=Katada
en-aut-mei=Chikatoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YokoyamaTetsuji
en-aut-sei=Yokoyama
en-aut-mei=Tetsuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YanoTomonori
en-aut-sei=Yano
en-aut-mei=Tomonori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SuzukiHaruhisa
en-aut-sei=Suzuki
en-aut-mei=Haruhisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FurueYasuaki
en-aut-sei=Furue
en-aut-mei=Yasuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamamotoKeiko
en-aut-sei=Yamamoto
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=DoyamaHisashi
en-aut-sei=Doyama
en-aut-mei=Hisashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KoikeTomoyuki
en-aut-sei=Koike
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TamaokiMasashi
en-aut-sei=Tamaoki
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KawataNoboru
en-aut-sei=Kawata
en-aut-mei=Noboru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HiraoMotohiro
en-aut-sei=Hirao
en-aut-mei=Motohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KawaharaYoshiro
en-aut-sei=Kawahara
en-aut-mei=Yoshiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=OgataTakashi
en-aut-sei=Ogata
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KatagiriAtsushi
en-aut-sei=Katagiri
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=YamanouchiTakenori
en-aut-sei=Yamanouchi
en-aut-mei=Takenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=KiyokawaHirofumi
en-aut-sei=Kiyokawa
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=KawakuboHirofumi
en-aut-sei=Kawakubo
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=KonnoMaki
en-aut-sei=Konno
en-aut-mei=Maki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=YokoyamaAkira
en-aut-sei=Yokoyama
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=OhashiShinya
en-aut-sei=Ohashi
en-aut-mei=Shinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=KondoYuki
en-aut-sei=Kondo
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=KishimotoYo
en-aut-sei=Kishimoto
en-aut-mei=Yo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=KanoKoichi
en-aut-sei=Kano
en-aut-mei=Koichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=MureKanae
en-aut-sei=Mure
en-aut-mei=Kanae
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=HayashiRyuichi
en-aut-sei=Hayashi
en-aut-mei=Ryuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=IshikawaHideki
en-aut-sei=Ishikawa
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=YokoyamaAkira
en-aut-sei=Yokoyama
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=MutoManabu
en-aut-sei=Muto
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
affil-num=1
en-affil=Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=2
en-affil=Department of Health and Promotion, National Institute of Public Health
kn-affil=
affil-num=3
en-affil=Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East
kn-affil=
affil-num=4
en-affil=Endoscopy Division, National Cancer Center Hospital
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology, Kitasato University School of Medicine
kn-affil=
affil-num=6
en-affil=Division of Endoscopy, Hokkaido University Hospital
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology, Ishikawa Prefectural Central Hospital
kn-affil=
affil-num=8
en-affil=Division of Gastroenterology, Tohoku University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=10
en-affil=Division of Endoscopy, Shizuoka Cancer Center
kn-affil=
affil-num=11
en-affil=Department of Surgery, National Hospital Organization Osaka National Hospital
kn-affil=
affil-num=12
en-affil=Department of Practical Gastrointestinal Endoscopy, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Gastroenterology, Kanagawa Cancer Center
kn-affil=
affil-num=14
en-affil=Department of Medicine, Division of Gastroenterology, Showa University Hospital
kn-affil=
affil-num=15
en-affil=Department of Gastroenterology, Kumamoto Regional Medical Center
kn-affil=
affil-num=16
en-affil=Division of Gastroenterology, Department of Internal Medicine, St. Marianna University School of Medicine
kn-affil=
affil-num=17
en-affil=Department of Surgery, Kawasaki Municipal Kawasaki Hospital
kn-affil=
affil-num=18
en-affil=Department of Gastroenterology, Tochigi Cancer Center
kn-affil=
affil-num=19
en-affil=Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=20
en-affil=Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=21
en-affil=Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=22
en-affil=Department of Otolaryngology-Head and Neck Surgery, Kyoto University Hospital
kn-affil=
affil-num=23
en-affil=Department of Otorhinolaryngology-Head and Neck Surgery, Kitasato University School of Medicine
kn-affil=
affil-num=24
en-affil=Department of Public Health, Wakayama Medical University School of Medicine
kn-affil=
affil-num=25
en-affil=Department of Head and Neck Surgery, National Cancer Center Hospital East
kn-affil=
affil-num=26
en-affil=Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
kn-affil=
affil-num=27
en-affil=Clinical Research Unit, National Hospital Organization Kurihama Medical and Addiction Center
kn-affil=
affil-num=28
en-affil=Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University
kn-affil=
en-keyword=alcohol
kn-keyword=alcohol
en-keyword=esophageal cancer
kn-keyword=esophageal cancer
en-keyword=field cancerization
kn-keyword=field cancerization
en-keyword=head and neck cancer
kn-keyword=head and neck cancer
en-keyword=JEC study
kn-keyword=JEC study
END
start-ver=1.4
cd-journal=joma
no-vol=52
cd-vols=
no-issue=8
article-no=
start-page=e18026
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Commissioning of respiratory‐gated 4D dynamic dose calculations for various gating widths without spot timestamp in proton pencil beam scanning
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Proton pencil beam scanning (PBS) is susceptible to dose degradation because of interplay effects on moving targets. For cases of unacceptable motion, respiratory-gated (RG) irradiation is an effective alternative to free breathing (FB) irradiation. However, the introduction of RG irradiation with larger gate widths (GW) is hindered by interplay effects, which are analogous to those observed with FB irradiation. Accurate estimation of interplay effects can be performed by recording spot timestamps. However, our machine lacks this feature, making it imperative to find an alternative approach. Thus, we developed an RG 4-dimensional dynamic dose (RG-4DDD) system without spot timestamps.
Purpose: This study aimed to investigate the accuracy of calculated doses from the RG-4DDD system for PBS plans with varying breathing curves, amplitudes, and periods for 10%?50% GW.
Methods: RG-4DDDs were reconstructed using in-house developed software that assigned timestamps to individual spots, integrated start times for spills with breathing curves, and utilized deformable registrations for dose accumulation. Three cubic verification plans were created using a heterogeneous phantom. Additionally, typical liver and lung cases were employed for patient plan validation. Single- and multi-field-optimized (SFO and IMPT) plans (ten beams in total) were created for the liver and lung cases in a homogeneous phantom. Lateral profile measurements were obtained under both motion and no-motion conditions using a 2D ionization chamber array (2D-array) and EBT3 Gafchromic films on the CIRS dynamic platform. Breathing curves from the cubic plans were used to assess nine patterns of sine curves, with amplitudes of 5.0?10.0 mm (10.0?20.0 mm target motions) and periods of 3?6 sec. Patient field verifications were conducted using a representative patient curve with an average amplitude of 6.4 mm and period of 3.2 sec. Additional simulations were performed assuming a ± 10% change in assigned timestamps for the dose rate (DR), spot spill (0.08-s), and gate time delay (0.1-s) to evaluate the effect of parameter selection on our 4DDD models. The 4DDDs were compared with measured values using the 2D gamma index and absolute doses over that required for dosing 95% of the target.
Results: The 2D-array measurements showed that average gamma scores for the reference (no motion) and 4DDD plans for all GWs were at least 99.9 ± 0.2% and 98.2 ± 2.4% at 3%/3 mm, respectively. The gamma scores of the 4DDDs in film measurements exceeded 95.4% and 92.9% at 2%/2 mm for the cubic and patient plans, respectively. The 4DDD calculations were acceptable under DR changes of ±10% and both spill and gate time delays of ±0.18 sec. For the 4DDD plan using all GWs for all measurement points, the absolute point differences for all validation plans were within ±5.0% for 99.1% of the points.
Conclusions: The RG-4DDD calculations (less than 50% GW) of the heterogeneous and actual patient plans showed good agreement with measurements for various breathing curves in the amplitudes and periods described above. The proposed system allows us to evaluate actual RG irradiation without requiring the ability to record spot timestamps.
en-copyright=
kn-copyright=
en-aut-name=TominagaYuki
en-aut-sei=Tominaga
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WakisakaYushi
en-aut-sei=Wakisaka
en-aut-mei=Yushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KatoTakahiro
en-aut-sei=Kato
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IchiharaMasaya
en-aut-sei=Ichihara
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YasuiKeisuke
en-aut-sei=Yasui
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SasakiMotoharu
en-aut-sei=Sasaki
en-aut-mei=Motoharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OitaMasataka
en-aut-sei=Oita
en-aut-mei=Masataka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NishioTeiji
en-aut-sei=Nishio
en-aut-mei=Teiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Radiotherapy, Medical Co. Hakuhokai, Osaka Proton Therapy Clinic
kn-affil=
affil-num=2
en-affil=Department of Radiotherapy, Medical Co. Hakuhokai, Osaka Proton Therapy Clinic
kn-affil=
affil-num=3
en-affil=Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University
kn-affil=
affil-num=4
en-affil=Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, The University of Osaka
kn-affil=
affil-num=5
en-affil=School of Medical Sciences, Fujita Health University
kn-affil=
affil-num=6
en-affil=Graduate School of Biomedical Sciences, Tokushima University
kn-affil=
affil-num=7
en-affil=Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=8
en-affil=Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, The University of Osaka
kn-affil=
en-keyword=4D dynamic dose
kn-keyword=4D dynamic dose
en-keyword=interplay effect
kn-keyword=interplay effect
en-keyword=pencil beam scanning
kn-keyword=pencil beam scanning
en-keyword=proton therapy
kn-keyword=proton therapy
en-keyword=respiratory gating
kn-keyword=respiratory gating
END
start-ver=1.4
cd-journal=joma
no-vol=238
cd-vols=
no-issue=
article-no=
start-page=113243
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2026
dt-pub=202601
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Bone-enhanced high contrast X-ray images derived from attenuation estimation related to ultra-low energy X-rays ? An application of an energy-resolving photon-counting detector (ERPCD)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose: X-ray diagnosis in medicine is often used for bone diagnosis based on qualitative observation analysis. However, there are often cases where the contrast of bones is reduced because of the existence of soft-tissues, making it difficult to accurately diagnose the bone conditions. Although the algorithm for bone extraction images was proposed using an energy-resolving photon-counting detector (ERPCD), this algorithm can depict “one” bone material (such as hydroxyapatite under the assumption), and it is difficult to adequately depict other components. The purpose of this study is to develop an algorithm for bone-enhanced high-contrast images that can be virtually represented by the attenuation of extremely low-energy X-rays without making any special assumptions.
Methods: High-contrast images were virtually generated based on the attenuation rate of ultra-low energy X-rays. It was determined by fitting the mass attenuation coefficient (μ/ρ) curve to the X-ray attenuation values (μt values) measured at middle (30?40 keV) and high (40?60 keV) energy windows, and extrapolating the μt values to those for the low energy region (E = 5?20 keV). When performing the extrapolation, the effective atomic number (Zeff ) of the object was taken into consideration. The methodology was validated by simulating X-ray projections using a digital human body phantom. The frequency of correspondence between the pixel values in the high-contrast image and the Zeff image was analyzed for each pixel.
Results: We succeeded in creating virtual high-contrast X-ray images that reflect the image contrast of monochromatic X-rays of 5?20 keV. It was confirmed that the pixel values in the high-contrast image corresponding to an Zeff = 7.5 (soft-tissue) were completely separated from those corresponding to an Zeff = 9 (bone). The optimization of the energy related to the high contrast images was performed based on the contrast-to-noise ratio (CNR) analysis. The high contrast image with 10 keV showed a good CNR value.
Conclusions: Based on the analysis of the attenuation information of middle and high-energy X-rays measured by ERPCDs, we succeeded in creating a novel algorithm that can generate a virtual monochromatic image with high contrast.
en-copyright=
kn-copyright=
en-aut-name=NishigamiRina
en-aut-sei=Nishigami
en-aut-mei=Rina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KimotoNatsumi
en-aut-sei=Kimoto
en-aut-mei=Natsumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AsaharaTakashi
en-aut-sei=Asahara
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MaedaTatsuya
en-aut-sei=Maeda
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KobayashiDaiki
en-aut-sei=Kobayashi
en-aut-mei=Daiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=GotoSota
en-aut-sei=Goto
en-aut-mei=Sota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HabaTomonobu
en-aut-sei=Haba
en-aut-mei=Tomonobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KanazawaYuki
en-aut-sei=Kanazawa
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YamamotoShuichiro
en-aut-sei=Yamamoto
en-aut-mei=Shuichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HayashiHiroaki
en-aut-sei=Hayashi
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Graduate School of Medical Sciences, Kanazawa University
kn-affil=
affil-num=2
en-affil=Department of Radiological Science, Faculty of Health Sciences, Junshin Gakuen University
kn-affil=
affil-num=3
en-affil=Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Medical Sciences, Kanazawa University
kn-affil=
affil-num=5
en-affil=Graduate School of Medical Sciences, Kanazawa University
kn-affil=
affil-num=6
en-affil=Faculty of Health Sciences, Kobe Tokiwa University
kn-affil=
affil-num=7
en-affil=Faculty of Radiological Technology, School of Medical Science, Fujita Health University
kn-affil=
affil-num=8
en-affil=Faculty of Life Science, Kumamoto University
kn-affil=
affil-num=9
en-affil=JOB CORPORATION
kn-affil=
affil-num=10
en-affil=College of Transdisciplinary Sciences for Innovation, Kanazawa University
kn-affil=
en-keyword=Medical X-ray diagnosis
kn-keyword=Medical X-ray diagnosis
en-keyword=Photon-counting detector
kn-keyword=Photon-counting detector
en-keyword=High contrast image
kn-keyword=High contrast image
en-keyword=Virtual monochromatic image
kn-keyword=Virtual monochromatic image
en-keyword=Effective atomic number
kn-keyword=Effective atomic number
en-keyword=Ultra-low energy image
kn-keyword=Ultra-low energy image
END
start-ver=1.4
cd-journal=joma
no-vol=239
cd-vols=
no-issue=
article-no=
start-page=113237
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2026
dt-pub=202602
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Counting-loss correction procedure of X-ray imaging detectors with consideration for the effective atomic number of biological objects
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=It is necessary to correct counting loss caused by the pulse pile-up effect and dead time when using energy-resolving photon-counting detectors (ERPCDs) under “high-counting-rate” conditions in medical and/or industrial settings. We aimed to develop a novel counting-loss correction procedure in which biological objects having effective atomic numbers (Zeff values) of 6.5?13.0 are measured with polychromatic X-rays. To correct for counting loss, such a procedure must theoretically estimate the count value of an ideal X-ray spectrum without counting loss. In this study, we estimated the ideal X-ray spectrum by focusing on the following two points: (1) the X-ray attenuation in an object (Zeff values of 6.5?13.0) and (2) the detector response. Virtual materials having intermediate atomic numbers between 6.5 and 13.0 were generated by using a mixture of polymethylmethacrylate (PMMA, Zeff = 6.5) and aluminum (Al, Zeff = 13.0). We then constructed an algorithm that can perform the counting-loss correction based on the object’s true Zeff value. To demonstrate the applicability of our procedure, we analyzed investigational objects consisting of PMMA and Al using a prototype ERPCD system. A fresh fish sample was also analyzed. The Zeff values agree with the theoretical values within an accuracy of Zeff ±1. In conclusion, we have developed a highly accurate procedure for correcting counting losses for the quantitative X-ray imaging of biological objects.
en-copyright=
kn-copyright=
en-aut-name=KimotoNatsumi
en-aut-sei=Kimoto
en-aut-mei=Natsumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishigamiRina
en-aut-sei=Nishigami
en-aut-mei=Rina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KobayashiDaiki
en-aut-sei=Kobayashi
en-aut-mei=Daiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MaedaTatsuya
en-aut-sei=Maeda
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AsaharaTakashi
en-aut-sei=Asahara
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=GotoSota
en-aut-sei=Goto
en-aut-mei=Sota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KanazawaYuki
en-aut-sei=Kanazawa
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KatsumataAkitoshi
en-aut-sei=Katsumata
en-aut-mei=Akitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YamamotoShuichiro
en-aut-sei=Yamamoto
en-aut-mei=Shuichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HayashiHiroaki
en-aut-sei=Hayashi
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Radiological Science, Faculty of Health Sciences, Junshin Gakuen University
kn-affil=
affil-num=2
en-affil=Graduate School of Medical Sciences, Kanazawa University
kn-affil=
affil-num=3
en-affil=Graduate School of Medical Sciences, Kanazawa University
kn-affil=
affil-num=4
en-affil=Graduate School of Medical Sciences, Kanazawa University
kn-affil=
affil-num=5
en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Faculty of Health Science, Kobe Tokiwa University
kn-affil=
affil-num=7
en-affil=Faculty of Life Science, Kumamoto University
kn-affil=
affil-num=8
en-affil=Oral Radiology and Artificial Intelligence, Asahi University
kn-affil=
affil-num=9
en-affil=JOB CORPORATION
kn-affil=
affil-num=10
en-affil=College of Transdisciplinary Sciences for Innovation, Kanazawa University
kn-affil=
en-keyword=Photon-counting detector
kn-keyword=Photon-counting detector
en-keyword=Pulse pile-up
kn-keyword=Pulse pile-up
en-keyword=Dead time
kn-keyword=Dead time
en-keyword=Counting-loss correction
kn-keyword=Counting-loss correction
en-keyword=Charge-sharing effect
kn-keyword=Charge-sharing effect
en-keyword=Effective atomic number
kn-keyword=Effective atomic number
END
start-ver=1.4
cd-journal=joma
no-vol=54
cd-vols=
no-issue=8
article-no=
start-page=afaf224
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Oestrogen replacement combined with resistance exercise in older women with knee osteoarthritis: a randomised, double-blind, placebo-controlled clinical trial
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Interventions targeting physical function decline in older women with knee osteoarthritis (KOA) are vital for healthy ageing. The additive benefits of combining oestrogen replacement therapy (ERT) with resistance exercise remain unclear.
Objective: To evaluate the additive effect of low-dose ERT on physical performance when combined with a muscle resistance exercise programme (MREP) in older women with KOA.
Design: This is a placebo-controlled, double-blind, randomised clinical trial.
Subjects: The subjects were community-dwelling women aged ?65 years with chronic knee pain and KOA diagnosis.
Methods: Participants completed a 3-month MREP and were randomised to receive daily low-dose transdermal ERT (oestradiol 0.54 mg/day) or placebo. Outcomes were assessed at baseline, postintervention and 12 months later. The primary outcome was change in 30-second chair stand test (CS-30) score. Secondary outcomes included muscle mass, knee extension strength, walking performance, metabolic indicators, knee pain scale and 12-item short-form health survey (SF-12). Between-group differences in CS-30 changes were analysed using a linear regression model based on the intention-to-treat principle.
Results: Among 168 individuals screened, 75 participants (mean age 73.8 years, SD 5.8) were enrolled and randomised into an ERT group (n?=?37) or a placebo group (n?=?38). Baseline CS-30 scores were 14.81 (SD 3.95) in the ERT group and 15.58 (SD 3.48) in the placebo group. At 3 months, mean changes were 2.59 (SD 2.58) and 1.79 (SD 2.28) repetitions, respectively. The primary analysis showed no statistically significant between-group difference [regression coefficient: 0.81 (95% CI: ?0.31, 1.92); P?=?.16]. Post hoc subgroup and sensitivity analyses suggested that benefits may exist among early-stage KOA participants. SF-12 mental health scores also improved significantly in the ERT group. No serious adverse events occurred.
Conclusions: ERT did not confer significant additive benefits to resistance exercise overall but may improve outcomes in early-stage KOA and mental health domains. These exploratory findings warrant further investigation.
en-copyright=
kn-copyright=
en-aut-name=MitomaTomohiro
en-aut-sei=Mitoma
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OobaHikaru
en-aut-sei=Ooba
en-aut-mei=Hikaru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakahashiKasumi
en-aut-sei=Takahashi
en-aut-mei=Kasumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KondoTsunemasa
en-aut-sei=Kondo
en-aut-mei=Tsunemasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IkedaTomohiro
en-aut-sei=Ikeda
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SakamotoYoko
en-aut-sei=Sakamoto
en-aut-mei=Yoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MitsuhashiToshiharu
en-aut-sei=Mitsuhashi
en-aut-mei=Toshiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MakiJota
en-aut-sei=Maki
en-aut-mei=Jota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Medical Development Field, Center for Innovative Clinical Medicine, Okayama University
kn-affil=
affil-num=2
en-affil=Medical Development Field, Center for Innovative Clinical Medicine, Okayama University
kn-affil=
affil-num=3
en-affil=Obstetrics and Gynecology, Ochiai Hospital
kn-affil=
affil-num=4
en-affil=Obstetrics and Gynecology, Ochiai Hospital
kn-affil=
affil-num=5
en-affil=Rehabilitation Medicine, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Medical Development Field, Center for Innovative Clinical Medicine, Okayama University
kn-affil=
affil-num=7
en-affil=Medical Development Field, Center for Innovative Clinical Medicine, Okayama University
kn-affil=
affil-num=8
en-affil=Medical Development Field, Center for Innovative Clinical Medicine, Okayama University
kn-affil=
en-keyword=oestrogen replacement therapy
kn-keyword=oestrogen replacement therapy
en-keyword=muscle resistance exercise
kn-keyword=muscle resistance exercise
en-keyword=knee osteoarthritis
kn-keyword=knee osteoarthritis
en-keyword=physical performance
kn-keyword=physical performance
en-keyword=randomised controlled trial
kn-keyword=randomised controlled trial
en-keyword=older people
kn-keyword=older people
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=
dt-pub=
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
END
start-ver=1.4
cd-journal=joma
no-vol=27
cd-vols=
no-issue=3
article-no=
start-page=121
end-page=127
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=2024
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Association Between Early Mobilization and Postoperative Pneumonia Following Robot-assisted Minimally Invasive Esophagectomy in Patients with Thoracic Esophageal Squamous Cell Carcinoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective: The objective of this study was to confirm that early mobilization (EM) could reduce pneumonia in patients undergoing robot-assisted minimally invasive esophagectomy (RAMIE) for thoracic esophageal squamous cell carcinoma (TESCC). Methods: Postoperative pneumonia was defined as physician-diagnosed pneumonia using the Esophagectomy Complications Consensus Group definition of pneumonia with a Clavien?Dindo classification grade II?V on postoperative day (POD) 3?5. EM was defined as achieving an ICU Mobility Scale (IMS) ?7 by POD 2. Patients were divided into EM (n = 36) and non-EM (n = 35) groups. Barriers to EM included pain, orthostatic intolerance (OI), and orthostatic hypotension. Results: The overall incidence of postoperative pneumonia was 12.7%, with a significant difference between the EM (2.8%) and non-EM (22.9%) groups (P = 0.014). The odds ratio was 0.098 in the EM group compared to the non-EM group. A significant difference was found between the two groups in terms of the barriers to EM at POD 2 only for OI, with a higher incidence in the non-EM group. Multivariate logistic regression analysis showed that patients with OI were more likely to be unable to achieve EM than those without OI (odds ratio, 7.030; P = 0.006). Conclusion: EM within POD 2 may reduce the incidence of postoperative pneumonia in patients undergoing RAMIE for TESCC. Furthermore, it was suggested that OI can have a negative impact on the EM after RAMIE.
en-copyright=
kn-copyright=
en-aut-name=NOZAWAYasuaki
en-aut-sei=NOZAWA
en-aut-mei=Yasuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HARADAKazuhiro
en-aut-sei=HARADA
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NOMAKazuhiro
en-aut-sei=NOMA
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KATAYAMAYoshimi
en-aut-sei=KATAYAMA
en-aut-mei=Yoshimi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HAMADAMasanori
en-aut-sei=HAMADA
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OZAKIToshifumi
en-aut-sei=OZAKI
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Division of Physical Medicine and Rehabilitation, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Graduate School of Health Science Studies, Kibi International University
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Division of Physical Medicine and Rehabilitation, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Division of Physical Medicine and Rehabilitation, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Division of Physical Medicine and Rehabilitation, Okayama University Hospital
kn-affil=
en-keyword=Early mobilization
kn-keyword=Early mobilization
en-keyword=Postoperative pneumonia
kn-keyword=Postoperative pneumonia
en-keyword=Orthostatic intolerance
kn-keyword=Orthostatic intolerance
en-keyword=Thoracic esophageal squamous cell carcinoma
kn-keyword=Thoracic esophageal squamous cell carcinoma
en-keyword=Robot-assisted minimally invasive esophagectomy
kn-keyword=Robot-assisted minimally invasive esophagectomy
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250802
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Berberine Prevents NSAID-Induced Small Intestinal Injury by Protecting Intestinal Barrier and Inhibiting Inflammasome-Associated Activation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Nonsteroidal anti-inflammatory drugs (NSAID), which are commonly used to manage pain and inflammation, often cause gastrointestinal injuries, including small intestinal damage. Berberine (BBR) is a traditional Chinese medicine that protects against these injuries. However, the mechanism of action is not fully understood.
Aims This study aimed to evaluate the protective effects of BBR against NSAID-induced intestinal injury and elucidate the underlying molecular mechanisms.
Methods We evaluated the effects of BBR on NSAID-induced intestinal injury using a combination of mouse models and human gut organoids. Mice were treated with indomethacin with or without BBR to induce small intestinal injury. Human gut organoids were exposed to NSAID, with or without BBR, to assess their direct epithelial effects. Histological analyses, cytokine measurements, and Western blotting were performed to evaluate intestinal damage, tight junction integrity, and inflammasome-associated activation.
Results In NSAID-treated mice, BBR markedly reduced ulcers and adhesions and preserved ileal Claudin-1, Occludin, and Zonula Occludens-1 (ZO-1) levels. BBR inhibited both NOD-like receptor family pyrin domain-containing 6 and NOD-like receptor family caspase recruitment domain?containing protein 4 inflammasome activation, reducing Caspase-1 maturation and downstream interleukin-1β and tumor necrosis factor-α release. In human gut organoids, BBR demonstrated comparable protective effects by directly mitigating NSAID-induced epithelial barrier disruption caused by Claudin-1 and Occludin downregulation, although it did not restore ZO-1 expression.
Conclusions BBR effectively prevented NSAID-induced small intestinal injury by maintaining tight junction integrity and inhibiting inflammasome-associated activation, indicating its potential as a therapeutic agent against such damage.
en-copyright=
kn-copyright=
en-aut-name=IshiguroMikako
en-aut-sei=Ishiguro
en-aut-mei=Mikako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakaharaMasahiro
en-aut-sei=Takahara
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakakiAkinobu
en-aut-sei=Takaki
en-aut-mei=Akinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HiraokaSakiko
en-aut-sei=Hiraoka
en-aut-mei=Sakiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ToyosawaJyunki
en-aut-sei=Toyosawa
en-aut-mei=Jyunki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AoyamaYuki
en-aut-sei=Aoyama
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IgawaShoko
en-aut-sei=Igawa
en-aut-mei=Shoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YamasakiYasushi
en-aut-sei=Yamasaki
en-aut-mei=Yasushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=InokuchiToshihiro
en-aut-sei=Inokuchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KinugasaHideaki
en-aut-sei=Kinugasa
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
en-keyword=Nonsteroidal anti-inflammatory drugs-induced small intestinal injury
kn-keyword=Nonsteroidal anti-inflammatory drugs-induced small intestinal injury
en-keyword=Berberine
kn-keyword=Berberine
en-keyword=Tight junction protein
kn-keyword=Tight junction protein
en-keyword=Inflammasomes
kn-keyword=Inflammasomes
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250714
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Week 2 remission with vedolizumab as a predictor of long-term remission in patients with ulcerative colitis: a multicenter, retrospective, observational study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Aims Vedolizumab (VDZ), a gut-selective monoclonal antibody for ulcerative colitis (UC) treatment, has no established biomarkers or clinical features that predict long-term remission. Week 2 remission, a potential predictor of long-term remission, could inform maintenance treatment strategy.
Methods This retrospective, observational chart review included patients with UC in Japan who initiated VDZ between December 2018 and February 2020. Outcome measures included 14- and 54-week remission rates in patients with week 2 and non-week 2 remission (remission by week 14), 54-week remission rates in patients with week 14 remission and primary nonresponse, and predictive factors of week 2 and week 54 remission (logistic regression).
Results Overall, 332 patients with UC (176 biologic-na?ve and 156 biologic-non-na?ve) were included. Significantly more biologic-na?ve than biologic-non-na?ve patients achieved week 2 remission (36.9% vs. 28.2%; odds ratio [OR], 1.43; 95% confidence interval [CI], 1.05?1.94; P=0.0224). Week 54 remission rates were significantly different between week 14 remission and primary nonresponse (both groups: P<0.0001), and between week 2 and non-week 2 remission (all patients: OR, 2.41; 95% CI, 1.30?4.48; P=0.0052; biologic-na?ve patients: OR, 2.40; 95% CI, 1.10?5.24; P=0.0280). Week 2 remission predictors were male sex, no anti-tumor necrosis factor alpha exposure, and normal/mild endoscopic findings. Week 54 remission was significantly associated with week 2 remission and no tacrolimus use.
Conclusions Week 2 remission with VDZ is a predictor of week 54 remission in patients with UC. Week 2 may be used as an evaluation point for UC treatment decisions. (Japanese Registry of Clinical Trials: jRCT-1080225363)
en-copyright=
kn-copyright=
en-aut-name=KobayashiTaku
en-aut-sei=Kobayashi
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HisamatsuTadakazu
en-aut-sei=Hisamatsu
en-aut-mei=Tadakazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MotoyaSatoshi
en-aut-sei=Motoya
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FujiiToshimitsu
en-aut-sei=Fujii
en-aut-mei=Toshimitsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KunisakiReiko
en-aut-sei=Kunisaki
en-aut-mei=Reiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShibuyaTomoyoshi
en-aut-sei=Shibuya
en-aut-mei=Tomoyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsuuraMinoru
en-aut-sei=Matsuura
en-aut-mei=Minoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakeuchiKen
en-aut-sei=Takeuchi
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HiraokaSakiko
en-aut-sei=Hiraoka
en-aut-mei=Sakiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YasudaHiroshi
en-aut-sei=Yasuda
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YokoyamaKaoru
en-aut-sei=Yokoyama
en-aut-mei=Kaoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TakatsuNoritaka
en-aut-sei=Takatsu
en-aut-mei=Noritaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MaemotoAtsuo
en-aut-sei=Maemoto
en-aut-mei=Atsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TaharaToshiyuki
en-aut-sei=Tahara
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=TominagaKeiichi
en-aut-sei=Tominaga
en-aut-mei=Keiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=ShimadaMasaaki
en-aut-sei=Shimada
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=KunoNobuaki
en-aut-sei=Kuno
en-aut-mei=Nobuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=CavaliereMary
en-aut-sei=Cavaliere
en-aut-mei=Mary
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=IshiguroKaori
en-aut-sei=Ishiguro
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=FernandezJovelle L
en-aut-sei=Fernandez
en-aut-mei=Jovelle L
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=HibiToshifumi
en-aut-sei=Hibi
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
affil-num=1
en-affil=Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Kyorin University School of Medicine
kn-affil=
affil-num=3
en-affil=Inflammatory Bowel Disease Center, Sapporo-Kosei General Hospital
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology and Hepatology, Institute of Science Tokyo
kn-affil=
affil-num=5
en-affil=Inflammatory Bowel Disease Center, Yokohama City University Medical Center
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology, Juntendo University School of Medicine
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology and Hepatology, Kyorin University School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology and Hepatology, IBD Center, Tsujinaka Hospital Kashiwanoha
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology, St. Marianna University School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Gastroenterology, Kitasato University School of Medicine
kn-affil=
affil-num=12
en-affil=Inflammatory Bowel Disease Center, Fukuoka University Chikushi Hospital
kn-affil=
affil-num=13
en-affil=Inflammatory Bowel Disease Center, Sapporo Higashi Tokushukai Hospital
kn-affil=
affil-num=14
en-affil=Department of Gastroenterology, Saiseikai Utsunomiya Hospital
kn-affil=
affil-num=15
en-affil=Department of Gastroenterology, Dokkyo Medical University
kn-affil=
affil-num=16
en-affil=Department of Gastroenterology, NHO Nagoya Medical Center
kn-affil=
affil-num=17
en-affil=Department of Gastroenterology and Medicine, Fukuoka University Hospital
kn-affil=
affil-num=18
en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited
kn-affil=
affil-num=19
en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited
kn-affil=
affil-num=20
en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited
kn-affil=
affil-num=21
en-affil=Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital
kn-affil=
en-keyword=Colitis, ulcerative
kn-keyword=Colitis, ulcerative
en-keyword=Inflammatory bowel diseases
kn-keyword=Inflammatory bowel diseases
en-keyword=Japan
kn-keyword=Japan
en-keyword=Vedolizumab
kn-keyword=Vedolizumab
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250604
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The duration of prior anti-tumor necrosis factor agents is associated with the effectiveness of vedolizumab in patients with ulcerative colitis: a real-world multicenter retrospective study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Aims Previous literature suggests that the response of patients with ulcerative colitis to vedolizumab may be affected by previous biologic therapy exposure. This real-world study evaluated vedolizumab treatment effectiveness in biologicnon-na?ve patients.
Methods This was a multicenter, retrospective, observational chart review of records from 16 hospitals in Japan (December 1, 2018, to February 29, 2020). Included patients who had ulcerative colitis, were aged ? 20 years, and received at least 1 dose of vedolizumab. Outcomes included clinical remission rates from weeks 2 to 54 according to prior biologic exposure status and factors associated with clinical remission up to week 54.
Results A total of 370 eligible patients were included. Clinical remission rates were significantly higher in biologic-na?ve (n=197) than in biologic-non-na?ve (n=173) patients for weeks 2 to 54 of vedolizumab treatment. Higher clinical remission rates up to week 54 were significantly associated with lower disease severity (partial Mayo score ? 4, P= 0.001; albumin ? 3.0, P= 0.019) and the duration of prior anti-tumor necrosis factor α (anti-TNFα) therapy (P= 0.026). Patients with anti-TNFα therapy durations of < 3 months, 3 to < 12 months, and ? 12 months had clinical remission rates of 28.1%, 32.7%, and 60.0%, respectively (P= 0.001 across groups).
Conclusions The effectiveness of vedolizumab in biologic-non-na?ve patients was significantly influenced by duration of prior anti-TNFα therapy. (Japanese Registry of Clinical Trials: jRCT-1080225363)
en-copyright=
kn-copyright=
en-aut-name=KobayashiTaku
en-aut-sei=Kobayashi
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HisamatsuTadakazu
en-aut-sei=Hisamatsu
en-aut-mei=Tadakazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MotoyaSatoshi
en-aut-sei=Motoya
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MatsuuraMinoru
en-aut-sei=Matsuura
en-aut-mei=Minoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FujiiToshimitsu
en-aut-sei=Fujii
en-aut-mei=Toshimitsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KunisakiReiko
en-aut-sei=Kunisaki
en-aut-mei=Reiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ShibuyaTomoyoshi
en-aut-sei=Shibuya
en-aut-mei=Tomoyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakeuchiKen
en-aut-sei=Takeuchi
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HiraokaSakiko
en-aut-sei=Hiraoka
en-aut-mei=Sakiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YasudaHiroshi
en-aut-sei=Yasuda
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YokoyamaKaoru
en-aut-sei=Yokoyama
en-aut-mei=Kaoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TakatsuNoritaka
en-aut-sei=Takatsu
en-aut-mei=Noritaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MaemotoAtsuo
en-aut-sei=Maemoto
en-aut-mei=Atsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TaharaToshiyuki
en-aut-sei=Tahara
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=TominagaKeiichi
en-aut-sei=Tominaga
en-aut-mei=Keiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=ShimadaMasaaki
en-aut-sei=Shimada
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=KunoNobuaki
en-aut-sei=Kuno
en-aut-mei=Nobuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=CavaliereMary
en-aut-sei=Cavaliere
en-aut-mei=Mary
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=IshiguroKaori
en-aut-sei=Ishiguro
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=FernandezJovelle L
en-aut-sei=Fernandez
en-aut-mei=Jovelle L
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=HibiToshifumi
en-aut-sei=Hibi
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
affil-num=1
en-affil=Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Kyorin University School of Medicine
kn-affil=
affil-num=3
en-affil=Inflammatory Bowel Disease Center, Sapporo-Kosei General Hospital
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology and Hepatology, Kyorin University School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology and Hepatology, Institute of Science Tokyo
kn-affil=
affil-num=6
en-affil=Inflammatory Bowel Disease Center, Yokohama City University Medical Center
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology, Juntendo University School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology and Hepatology, IBD Center, Tsujinaka Hospital Kashiwanoha
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology, St. Marianna University School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Gastroenterology, Kitasato University School of Medicine
kn-affil=
affil-num=12
en-affil=Inflammatory Bowel Disease Center, Fukuoka University Chikushi Hospital
kn-affil=
affil-num=13
en-affil=Inflammatory Bowel Disease Center, Sapporo Higashi Tokushukai Hospital
kn-affil=
affil-num=14
en-affil=Department of Gastroenterology, Saiseikai Utsunomiya Hospital
kn-affil=
affil-num=15
en-affil=Department of Gastroenterology, Dokkyo Medical University
kn-affil=
affil-num=16
en-affil=Department of Gastroenterology, NHO Nagoya Medical Center
kn-affil=
affil-num=17
en-affil=Department of Gastroenterology and Medicine, Fukuoka University Hospital
kn-affil=
affil-num=18
en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited
kn-affil=
affil-num=19
en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited
kn-affil=
affil-num=20
en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited
kn-affil=
affil-num=21
en-affil=Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital
kn-affil=
en-keyword=Tumor necrosis factor-alpha
kn-keyword=Tumor necrosis factor-alpha
en-keyword=Real-world evidence
kn-keyword=Real-world evidence
en-keyword=Colitis
kn-keyword=Colitis
en-keyword=ulcerative
kn-keyword=ulcerative
en-keyword=Vedolizumab
kn-keyword=Vedolizumab
en-keyword=Sequencing
kn-keyword=Sequencing
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250116
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Factors affecting 1-year persistence with vedolizumab for ulcerative colitis: a multicenter, retrospective real-world study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Aims The objectives of this real-world study were to determine 1-year persistence with vedolizumab in patients with ulcerative colitis and to evaluate factors contributing to loss of response.
Methods In this multicenter, retrospective, observational chart review, patients with moderately to severely active ulcerative colitis who received ? 1 dose of vedolizumab in clinical practice at 16 tertiary hospitals in Japan (from December 2018 through February 2020) were enrolled.
Results Persistence with vedolizumab was 64.5% (n = 370); the median follow-up time was 53.2 weeks. Discontinuation due to loss of response among initial clinical remitters was reported in 12.5% (35/281) of patients. Multivariate analysis showed that concomitant use of tacrolimus (odds ratio [OR], 2.76; 95% confidence interval [CI], 1.00?7.62; P= 0.050) and shorter disease duration (OR for median duration ? 7.8 years vs. < 7.8 years, 0.33; 95% CI, 0.13?0.82; P= 0.017) were associated with discontinuation due to loss of response. Loss of response was not associated with prior use of anti-tumor necrosis factor alpha therapy, age at the time of treatment, disease severity, or concomitant corticosteroids or immunomodulators. Of the 25 patients with disease duration < 1 year, 32.0% discontinued due to loss of response.
Conclusions Persistence with vedolizumab was consistent with previous reports. Use of tacrolimus and shorter disease duration were the main predictors of decreased persistence.
en-copyright=
kn-copyright=
en-aut-name=KobayashiTaku
en-aut-sei=Kobayashi
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HisamatsuTadakazu
en-aut-sei=Hisamatsu
en-aut-mei=Tadakazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MotoyaSatoshi
en-aut-sei=Motoya
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FujiiToshimitsu
en-aut-sei=Fujii
en-aut-mei=Toshimitsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KunisakiReiko
en-aut-sei=Kunisaki
en-aut-mei=Reiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShibuyaTomoyoshi
en-aut-sei=Shibuya
en-aut-mei=Tomoyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsuuraMinoru
en-aut-sei=Matsuura
en-aut-mei=Minoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakeuchiKen
en-aut-sei=Takeuchi
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HiraokaSakiko
en-aut-sei=Hiraoka
en-aut-mei=Sakiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YasudaHiroshi
en-aut-sei=Yasuda
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YokoyamaKaoru
en-aut-sei=Yokoyama
en-aut-mei=Kaoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TakatsuNoritaka
en-aut-sei=Takatsu
en-aut-mei=Noritaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MaemotoAtsuo
en-aut-sei=Maemoto
en-aut-mei=Atsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TaharaToshiyuki
en-aut-sei=Tahara
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=TominagaKeiichi
en-aut-sei=Tominaga
en-aut-mei=Keiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=ShimadaMasaaki
en-aut-sei=Shimada
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=KunoNobuaki
en-aut-sei=Kuno
en-aut-mei=Nobuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=FernandezJovelle L.
en-aut-sei=Fernandez
en-aut-mei=Jovelle L.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=IshiguroKaori
en-aut-sei=Ishiguro
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=CavaliereMary
en-aut-sei=Cavaliere
en-aut-mei=Mary
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=DeguchiHisato
en-aut-sei=Deguchi
en-aut-mei=Hisato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=HibiToshifumi
en-aut-sei=Hibi
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
affil-num=1
en-affil=Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Kyorin University School of Medicine
kn-affil=
affil-num=3
en-affil=Inflammatory Bowel Disease Center, Sapporo-Kosei General Hospital
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology and Hepatology, Institute of Science Tokyo
kn-affil=
affil-num=5
en-affil=Inflammatory Bowel Disease Center, Yokohama City University Medical Center
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology, Juntendo University School of Medicine
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology and Hepatology, Kyorin University School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology and Hepatology, IBD Center
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology, St. Marianna University School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Gastroenterology, Kitasato University School of Medicine
kn-affil=
affil-num=12
en-affil=Inflammatory Bowel Disease Center, Fukuoka University Chikushi Hospital
kn-affil=
affil-num=13
en-affil=Inflammatory Bowel Disease Center, Sapporo Higashi Tokushukai Hospital
kn-affil=
affil-num=14
en-affil=Department of Gastroenterology, Saiseikai Utsunomiya Hospital
kn-affil=
affil-num=15
en-affil=Department of Gastroenterology, Dokkyo Medical University
kn-affil=
affil-num=16
en-affil=Department of Gastroenterology, NHO Nagoya Medical Center
kn-affil=
affil-num=17
en-affil=Department of Gastroenterology and Medicine, Fukuoka University Hospital
kn-affil=
affil-num=18
en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited
kn-affil=
affil-num=19
en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited
kn-affil=
affil-num=20
en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited
kn-affil=
affil-num=21
en-affil=Japan Medical Office, Takeda Pharmaceutical Company Limited
kn-affil=
affil-num=22
en-affil=Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital
kn-affil=
en-keyword=Colitis, ulcerative
kn-keyword=Colitis, ulcerative
en-keyword=Inflammatory bowel diseases
kn-keyword=Inflammatory bowel diseases
en-keyword=Japan
kn-keyword=Japan
en-keyword=Vedolizumab
kn-keyword=Vedolizumab
en-keyword=Medication persistence
kn-keyword=Medication persistence
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250102
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Health-related quality of life, work productivity, and persisting challenges in treated ulcerative colitis patients: a Japanese National Health and Wellness Survey
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Aims Despite available treatments for ulcerative colitis (UC), unmet needs persist among patients in Japan. This study explored the health-related quality of life (HRQoL), work productivity and activity impairment (WPAI), indirect cost, and unmet needs among treated UC patients in Japan.
Methods This cross-sectional, observational study utilized data from the online 2017, 2019, and 2021 Japan National Health and Wellness Survey. Respondents were aged ? 18 years and had undergone or were on UC treatment (5-aminosalicylic acid, steroids, immunomodulators/immunosuppressants, biologics/Janus kinase inhibitors [JAKi]). Demographic, general health, and clinical characteristics, medication adherence, HRQoL, WPAI, and indirect cost were collected and analyzed.
Results Among 293 treated UC patients, 83.6% were non-biologic/JAKi users, 29.0% had UC ? 15 years, 34.8% had moderate-to-severe disease severity, 55.3% experienced ? 1 persisting UC symptom, and 91.5% reported UC as bothersome to an extent. Patients reported EuroQoL visual analog scale score of 68.1 and ? 35% reported anxiety and depression. Mean work productivity loss was 29.3%, resulting in an annual mean indirect loss of 1.1 million JPY (45.3 thousand USD) per person. Higher WPAI (impairment) was associated with being male, moderate-to-severe disease severity, and low treatment adherence (P<0.05). Biologics/JAKi users had higher work impairment, and IM/IS users had higher activity impairment than 5-aminosalicylic acid users (P<0.05).
Conclusions Despite treatment, Japanese UC patients experienced high disease burden and persistent disease-related challenges. Overall HRQoL were lower than the mean healthy population and work productivity impairment led to high indirect costs. The findings suggest the importance of new interventions for optimizing UC outcomes.
en-copyright=
kn-copyright=
en-aut-name=HiraokaSakiko
en-aut-sei=Hiraoka
en-aut-mei=Sakiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HuangZhezhou
en-aut-sei=Huang
en-aut-mei=Zhezhou
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=QinFei
en-aut-sei=Qin
en-aut-mei=Fei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=Nathan ArokianathanFatima Megala
en-aut-sei=Nathan Arokianathan
en-aut-mei=Fatima Megala
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=Dav?Kiran
en-aut-sei=Dav?
en-aut-mei=Kiran
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShahShweta
en-aut-sei=Shah
en-aut-mei=Shweta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KimHyunchung
en-aut-sei=Kim
en-aut-mei=Hyunchung
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Gastroenterology, Okayama University
kn-affil=
affil-num=2
en-affil=Cerner Enviza
kn-affil=
affil-num=3
en-affil=Cerner Enviza
kn-affil=
affil-num=4
en-affil=Oracle Life Sciences
kn-affil=
affil-num=5
en-affil=Bristol Myers Squibb
kn-affil=
affil-num=6
en-affil=Bristol Myers Squibb
kn-affil=
affil-num=7
en-affil=Bristol Myers Squibb
kn-affil=
en-keyword=Quality of life
kn-keyword=Quality of life
en-keyword=Presenteeism
kn-keyword=Presenteeism
en-keyword=Absenteeism
kn-keyword=Absenteeism
en-keyword=Ulcerative colitis
kn-keyword=Ulcerative colitis
en-keyword=Japan
kn-keyword=Japan
END
start-ver=1.4
cd-journal=joma
no-vol=35
cd-vols=
no-issue=1
article-no=
start-page=245
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250614
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Favorable clinical outcomes are achieved in both male and female following medial meniscus posterior root repair
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose In recent years, medial meniscus (MM) posterior root tears (PRT) have received increasing attention due to their association with rapidly progressive knee osteoarthritis. MM posterior root (PR) repair has been reported to yield good clinical outcomes, but no study has yet to compare the postoperative outcomes after MMPR repair between sexes. The purpose of this study is evaluating the postoperative clinical outcomes following MMPR pullout repair by sex.
Methods Eighty-six patients who underwent pullout repair for isolated MMPRTs at our institution between October 2016 and November 2019 were evaluated. Patients were divided into two groups according to sex, and their clinical outcomes were compared preoperatively and at 2 years postoperatively.
Results The cohort was comprised of 21 male and 65 female patients. Three factors related to physical status (height (p?0.01), body weight (p?0.01), and BMI (p?=?0.02)) were significantly higher in male patients. No significant differences were observed in preoperative clinical scores between male and female. All clinical scores significantly improved at 2 years postoperatively in both sexes. In the clinical scores, the KOOS-symptom (p?=?0.03), KOOS-QOL (p?=?0.03), and Tegner activity scores (p?0.01) showed significantly better scores in male patients.
Conclusion Following MMPR pullout repair, the clinical outcomes significantly improved in both sexes. These results indicate that MMPR pullout repair is a universally effective technique regardless of the disadvantages of females in morphological characteristics.
en-copyright=
kn-copyright=
en-aut-name=KatayamaHaruyoshi
en-aut-sei=Katayama
en-aut-mei=Haruyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FurumatsuTakayuki
en-aut-sei=Furumatsu
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OkazakiYuki
en-aut-sei=Okazaki
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HigashiharaNaohiro
en-aut-sei=Higashihara
en-aut-mei=Naohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YokoyamaYusuke
en-aut-sei=Yokoyama
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TamuraMasanori
en-aut-sei=Tamura
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KawadaKoki
en-aut-sei=Kawada
en-aut-mei=Koki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HasegawaTsubasa
en-aut-sei=Hasegawa
en-aut-mei=Tsubasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KoharaToshiki
en-aut-sei=Kohara
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Okayama Red Cross General Hospital
kn-affil=
affil-num=3
en-affil=Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Okayama University Hospital
kn-affil=
en-keyword=Clinical outcome
kn-keyword=Clinical outcome
en-keyword=Medial meniscus
kn-keyword=Medial meniscus
en-keyword=Posterior root tear
kn-keyword=Posterior root tear
en-keyword=Pullout repair
kn-keyword=Pullout repair
en-keyword=Sex difference
kn-keyword=Sex difference
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=2
article-no=
start-page=e70139
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Progression of patellofemoral joint cartilage degeneration within 1 year after medial meniscus posterior root repair: A retrospective study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose: To assess postoperative progression of patellofemoral (PF) cartilage degeneration after medial meniscus posterior root (MMPR) repair and identify potential risk factors.
Methods: Data from patients who underwent transtibial pullout repair for complete radial MMPR tears between April 2018 and October 2021 were retrospectively investigated. Patients with severe chondral lesions of the PF joint at primary surgery were excluded. All patients underwent second-look arthroscopy at 12 months postoperatively. Postoperative changes using the International Cartilage Repair Society (ICRS) grade were evaluated. Associated open magnetic resonance imaging (MRI) findings were assessed.
Results: In total, 40 patients (30 women, 10 men; mean age: 64.0 years) were evaluated. PF joint cartilage degeneration progressed significantly postoperatively. Abnormal signal intensity (ASI) of the infrapatellar fat pad (IPFP) was observed in 15 (37.5%) patients. Arthroscopic findings in groups between IPFP with and without ASI were compared. The incidence of postoperative ICRS grade worsening (?2 grades) on the patella or trochlea was significantly higher among patients with ASI (53%) than among those without (20%, p?=?0.04). ICRS grade worsening in the medial femorotibial compartment and meniscus-healing status were comparable between the groups. Patients with ASI of the IPFP showed greater decrease in the distance between the patellar and anterior cruciate ligament insertions on knee flexion MRI (?1.5?±?0.7?mm) than that in those without (?0.2?±?0.3?mm, p?0.01). A delayed rehabilitation protocol was a risk factor according to the logistic regression analysis (p?=?0.01).
Conclusions: Progressive PF cartilage degeneration occurred following MMPR repair, highlighting the need for diligent postoperative PF joint management.
Level of Evidence: Level IV case series.
en-copyright=
kn-copyright=
en-aut-name=TamuraMasanori
en-aut-sei=Tamura
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FurumatsuTakayuki
en-aut-sei=Furumatsu
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YokoyamaYusuke
en-aut-sei=Yokoyama
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OkazakiYuki
en-aut-sei=Okazaki
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KawadaKoki
en-aut-sei=Kawada
en-aut-mei=Koki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HasegawaTsubasa
en-aut-sei=Hasegawa
en-aut-mei=Tsubasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Japanese Red Cross Okayama Hospital
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=medial meniscus
kn-keyword=medial meniscus
en-keyword=posterior root tear
kn-keyword=posterior root tear
en-keyword=pullout repair
kn-keyword=pullout repair
en-keyword=rehabilitation
kn-keyword=rehabilitation
en-keyword=second‐look arthroscopy
kn-keyword=second‐look arthroscopy
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=4
article-no=
start-page=299
end-page=303
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Pulmonary Calcium Phosphate Cement Embolism After Percutaneous Vertebroplasty for Thoracic Vertebrae Fractures
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Pulmonary cement embolism (PCE) is a rare but severe complication following percutaneous vertebroplasty (PVP). Calcium phosphate cement (CPC) has emerged as an alternative to traditional materials for vertebral augmentation. There appear to be no established guidelines for managing symptomatic PCE, and there is scarce literature on CPC embolisms. This is a first report of a case of pulmonary CPC embolism following PVP. The patient, a 63-year-old Chinese female, was administered anticoagulant treatment and achieved a satisfactory outcome. Her case highlights the severe potential morbidity associated with CPC leakage and emphasizes the efficacy of anticoagulant treatment for managing pulmonary CPC embolisms.
en-copyright=
kn-copyright=
en-aut-name=FengRuibin
en-aut-sei=Feng
en-aut-mei=Ruibin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ZhuBikang
en-aut-sei=Zhu
en-aut-mei=Bikang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WeiDanyun
en-aut-sei=Wei
en-aut-mei=Danyun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ZhuDingjiao
en-aut-sei=Zhu
en-aut-mei=Dingjiao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ChenCairu
en-aut-sei=Chen
en-aut-mei=Cairu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Orthopedics, the Ninth Affiliated Hospital of Guangxi Medical University
kn-affil=
affil-num=2
en-affil=Department of Orthopedics, the Ninth Affiliated Hospital of Guangxi Medical University
kn-affil=
affil-num=3
en-affil=Department of Orthopedics, the Ninth Affiliated Hospital of Guangxi Medical University
kn-affil=
affil-num=4
en-affil=Department of Radiology, the Ninth Affiliated Hospital of Guangxi Medical University
kn-affil=
affil-num=5
en-affil=Department of Orthopedics, the Ninth Affiliated Hospital of Guangxi Medical University
kn-affil=
en-keyword=percutaneous vertebroplasty
kn-keyword=percutaneous vertebroplasty
en-keyword=thoracic vertebrae fracture
kn-keyword=thoracic vertebrae fracture
en-keyword=calcium phosphate cement
kn-keyword=calcium phosphate cement
en-keyword=pulmonary embolism
kn-keyword=pulmonary embolism
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=4
article-no=
start-page=283
end-page=286
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Anterior Uveitis Secondary to an Infected Postoperative Maxillary Cyst
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A 76-year-old man presented with right eyelid swelling and deteriorated vision. Examination revealed anterior uveitis with hypopyon and a visual acuity of 20/2,000 in the right eye, with no abnormalities in the left. Computed tomography revealed enlargement of the right maxillary sinus and internal fluid accumulation, suggesting a postoperative maxillary cyst (POMC). Nasal endoscopic surgery drained the pus by opening the lower wall of the maxillary cyst. Following the procedure, intraocular inflammation resolved, and visual acuity in the right eye improved to 24/20. This is the first reported case of uveitis secondary to POMC.
en-copyright=
kn-copyright=
en-aut-name=ImamuraYuta
en-aut-sei=Imamura
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShiodeYusuke
en-aut-sei=Shiode
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KimuraShuhei
en-aut-sei=Kimura
en-aut-mei=Shuhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HosokawaMio
en-aut-sei=Hosokawa
en-aut-mei=Mio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MatobaRyo
en-aut-sei=Matoba
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KanzakiYuki
en-aut-sei=Kanzaki
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KindoHiroya
en-aut-sei=Kindo
en-aut-mei=Hiroya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MoritaTetsuro
en-aut-sei=Morita
en-aut-mei=Tetsuro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MuraiAya
en-aut-sei=Murai
en-aut-mei=Aya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=AndoMizuo
en-aut-sei=Ando
en-aut-mei=Mizuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MorizaneYuki
en-aut-sei=Morizane
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Otolaryngology-Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Otolaryngology-Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=anterior uveitis
kn-keyword=anterior uveitis
en-keyword=hypopyon
kn-keyword=hypopyon
en-keyword=maxillary sinus
kn-keyword=maxillary sinus
en-keyword=postoperative maxillary cyst
kn-keyword=postoperative maxillary cyst
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=4
article-no=
start-page=279
end-page=282
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Long-Term Survival Following Extended Cholecystectomy for Synchronous Gallbladder and Regional Lymph Node Metastasis of Lung Adenocarcinoma, with Subsequent Pulmonary Lobectomy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=An 80-year-old male underwent an extended cholecystectomy for node-positive gallbladder adenocarcinoma. Two weeks later, hemoptysis revealed a left hilar tumor obstructing the bronchus, which was diagnosed as adenocarcinoma. Three months post-cholecystectomy, a left upper pulmonary lobectomy was performed. Histological similarity and positive thyroid transcription factor-1 (TTF-1) immunostaining in both tumors confirmed lung adenocarcinoma with gallbladder metastasis. Despite the generally poor prognosis for gallbladder metastasis from lung cancer, the patient achieved 3 years of survival. Patients with isolated synchronous gallbladder metastasis from lung cancer may benefit from oligometastasectomy.
en-copyright=
kn-copyright=
en-aut-name=YoshikawaMao
en-aut-sei=Yoshikawa
en-aut-mei=Mao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TaoHiroyuki
en-aut-sei=Tao
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of General Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Thoracic Surgery, Japanese Red Cross Society Himeji Hospital
kn-affil=
en-keyword=gallbladder metastasis
kn-keyword=gallbladder metastasis
en-keyword=lung cancer
kn-keyword=lung cancer
en-keyword=oligometastatic disease
kn-keyword=oligometastatic disease
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=4
article-no=
start-page=261
end-page=267
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Outcome of Decompression Surgery Following Rapid Neurological Deterioration in Patients with Spinal Cord Injury Without Radiographic Evidence of Trauma (SCIWORET)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Cervical spondylotic myelopathy (CSM) and ossification of the posterior longitudinal ligament (OPLL) increase the likelihood of spinal cord injury without radiographic evidence of trauma (SCIWORET). Opinions regarding the optimal timing for surgery in such cases vary, however. We retrospectively investigated the demographics and outcomes of patients with SCIWORET who underwent surgery shortly after experiencing rapid neurological deterioration, and we matched patients who underwent standby surgery for CSM or OPLL. Although the optimal timing of surgery for SCIWORET remains unclear, our findings suggest that early stage surgery for SCIWORET may yield favorable neurological improvements.
en-copyright=
kn-copyright=
en-aut-name=HirataYuichi
en-aut-sei=Hirata
en-aut-mei=Yuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SugaharaChiaki
en-aut-sei=Sugahara
en-aut-mei=Chiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SasadaSusumu
en-aut-sei=Sasada
en-aut-mei=Susumu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MiyakeHayato
en-aut-sei=Miyake
en-aut-mei=Hayato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NagaseTakayuki
en-aut-sei=Nagase
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YasuharaTakao
en-aut-sei=Yasuhara
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TanakaShota
en-aut-sei=Tanaka
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=spinal trauma
kn-keyword=spinal trauma
en-keyword=SCIWORET
kn-keyword=SCIWORET
en-keyword=timing of surgery
kn-keyword=timing of surgery
en-keyword=cervical spondylotic myelopathy
kn-keyword=cervical spondylotic myelopathy
en-keyword=ossification of the posterior longitudinal ligament
kn-keyword=ossification of the posterior longitudinal ligament
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=4
article-no=
start-page=253
end-page=259
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Study of Periprosthetic Femoral Stem Fractures in Hip Arthroplasty for Femoral Neck Fracture
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study investigated the risk factors for bone fragility and perioperative periprosthetic femoral stem fractures in patients undergoing hip arthroplasty for femoral neck fractures. The records of 215 patients (42 male, 173 female; mean age, 84.4 years) were analyzed to assess correlations among periprosthetic fracture rates and sex, age, body mass index (BMI), Dorr classification, femoral stem fixation type (cemented/cementless), and bone mineral density (BMD) of the contralateral proximal femur. The overall prevalence of perioperative periprosthetic fractures was 4.7%. All patients with periprosthetic fractures were female, and all but one were ? 80 years of age. Fracture rates were higher in patients with lower BMI, although this difference was not significant. The fracture rates were 0%, 4.7%, and 7.9% for Dorr types A, B, and C, respectively, and 0% and 5.3% for patients who received cemented and cementless stems, respectively. The findings indicated that female patients, those of advanced age, those with lower BMI, and those with Dorr type C had lower BMDs. Although BMD was significantly lower in patients who received cemented stems compared to those who received cementless stems, no fractures were observed in the former group, suggesting that the use of cemented stems is safe for this high-risk population.
en-copyright=
kn-copyright=
en-aut-name=MiyakeYoshiaki
en-aut-sei=Miyake
en-aut-mei=Yoshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakagiToru
en-aut-sei=Takagi
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KonishiikeTaizo
en-aut-sei=Konishiike
en-aut-mei=Taizo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Japanese Red Cross Okayama Hospital
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Japanese Red Cross Okayama Hospital
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Japanese Red Cross Okayama Hospital
kn-affil=
en-keyword=bone mineral density
kn-keyword=bone mineral density
en-keyword=cemented stem
kn-keyword=cemented stem
en-keyword=Dorr classification
kn-keyword=Dorr classification
en-keyword=femoral neck fracture
kn-keyword=femoral neck fracture
en-keyword=periprosthetic femoral stem fracture
kn-keyword=periprosthetic femoral stem fracture
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=4
article-no=
start-page=243
end-page=251
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Work Productivity of Cancer-survivor and Non-cancer-survivor Workers
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We investigated the work productivity levels of employed cancer survivors and non-cancer-survivor workers by conducting a cross-sectional study in Japan between February and March 2019, using an online survey. A total of 561 employed individuals aged 20-64 years were analyzed. Work productivity was assessed using the Work Productivity and Activity Impairment-General Health questionnaire which evaluates absenteeism, presenteeism, and overall work productivity loss. The questionnaire responses demonstrated that the cancer survivors within 1 year of diagnosis had significantly higher absenteeism compared to the non-cancer workers (p=0.048). Although presenteeism and overall work productivity loss were also higher in the non-cancer-survivor group, the differences were not significant. Cancer survivors within 1 year of diagnosis exhibited higher absenteeism, but their work productivity appeared to recover to levels comparable to those of the non-cancer workers over time. These findings may contribute to workplace policies supporting cancer survivors’ return to work.
en-copyright=
kn-copyright=
en-aut-name=KamanoMika
en-aut-sei=Kamano
en-aut-mei=Mika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KandaKanae
en-aut-sei=Kanda
en-aut-mei=Kanae
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NgatuNlandu Roger
en-aut-sei=Ngatu
en-aut-mei=Nlandu Roger
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MurakamiAkitsu
en-aut-sei=Murakami
en-aut-mei=Akitsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamadoriYusuke
en-aut-sei=Yamadori
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HiraoTomohiro
en-aut-sei=Hirao
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Public Health, Faculty of Medicine, Kagawa University
kn-affil=
affil-num=2
en-affil=Department of Public Health, Faculty of Medicine, Kagawa University
kn-affil=
affil-num=3
en-affil=Department of Public Health, Faculty of Medicine, Kagawa University
kn-affil=
affil-num=4
en-affil=Cancer Center, Kagawa University Hospital
kn-affil=
affil-num=5
en-affil=Department of Anesthesiology, Faculty of Medicine, Kagawa University
kn-affil=
affil-num=6
en-affil=Department of Public Health, Faculty of Medicine, Kagawa University
kn-affil=
en-keyword=cancer survivor
kn-keyword=cancer survivor
en-keyword=work productivity
kn-keyword=work productivity
en-keyword=absenteeism
kn-keyword=absenteeism
en-keyword=presenteeism
kn-keyword=presenteeism
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=4
article-no=
start-page=231
end-page=242
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Bloodstream Infections Caused by Gram-Negative Bacteria in Geriatric Patients: Epidemiology, Antimicrobial Resistance and The Factors Affecting Mortality
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Bloodstream infections (BSIs) are an important cause of morbidity and mortality in geriatric patients. We retrospectively analyzed the cases of geriatric patients who developed BSIs due to gram-negative bacteria in order to evaluate the epidemiology, antimicrobial resistance, and the factors affecting mortality. The cases of 110 patients aged ? 65 years admitted to our hospital between January 1, 2017, and December 31, 2022 were assessed; 70 (63.6%) of the BSIs were healthcare-associated BSIs. The urinary system was the most common detectable source of infection at 43.6%. The most frequently isolated bacteria were Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae, in that order. Carbapenem resistance was detected in 17 patients (15.5%), and extended-spectrum beta-lactamase (ESBL) production from Enterobacterales family members was detected in 37 (51.4%) patients. Multivariate analysis revealed that (i) the probability of mortality in the patients with total bilirubin was increased by approx. sixfold and (ii) the likelihood of mortality for those with a Pitt bacteremia score (PBS) ? 4 points was approx. 17 times higher. PBS and simplified qPitt scores can help predict mortality and manage geriatric patients. There is a significant increase in mortality among patients with procalcitonin (PCT) levels at ? 2 nm/ml.
en-copyright=
kn-copyright=
en-aut-name=KardanM Enes
en-aut-sei=Kardan
en-aut-mei=M Enes
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ErdemIlknur
en-aut-sei=Erdem
en-aut-mei=Ilknur
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YildizEmre
en-aut-sei=Yildiz
en-aut-mei=Emre
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KirazNuri
en-aut-sei=Kiraz
en-aut-mei=Nuri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=?elikkolAliye
en-aut-sei=?elikkol
en-aut-mei=Aliye
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Infectious Diseases, Faculty of Medicine, Namik Kemal University
kn-affil=
affil-num=2
en-affil=Department of Infectious Diseases, Faculty of Medicine, Namik Kemal University
kn-affil=
affil-num=3
en-affil=Department of Infectious Diseases, Faculty of Medicine, Namik Kemal University
kn-affil=
affil-num=4
en-affil=Department of Medical Microbiology, Faculty of Medicine, Namik Kemal University
kn-affil=
affil-num=5
en-affil=Department of Biochemistry, Faculty of Medicine, Namik Kemal University
kn-affil=
en-keyword=geriatrics
kn-keyword=geriatrics
en-keyword=gram-negative bacteria
kn-keyword=gram-negative bacteria
en-keyword=epidemiology
kn-keyword=epidemiology
en-keyword=antimicrobial resistance
kn-keyword=antimicrobial resistance
en-keyword=mortality
kn-keyword=mortality
END
start-ver=1.4
cd-journal=joma
no-vol=31
cd-vols=
no-issue=
article-no=
start-page=100776
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Investigation of the relationship between 0.5?1200?Hz signal characteristics of cortical high-frequency oscillations and epileptogenicity through multivariate analysis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Fast ripples (FRs) (250?500 Hz) on the electroencephalogram (EEG) are closely related to epileptogenicity and are important to determine cortical regions resected in epilepsy surgery. However, FR-related epileptogenicity may be variable, and may depend on information associated with FRs. We enrolled nine epilepsy patients who had undergone intracranial 5 kHz-sampling-rate EEG for surgical treatment and had final Engel class I outcomes. Three electrodes were selected from each epileptogenic area (EA) and the unlikely EA (the region outside the EA) in each patient. Up to 100 candidate FRs were automatically detected from interictal nocturnal EEG at each of the selected electrodes and were visually reviewed independently by two researchers. Multivariate logistic regression analysis was performed using the frequency and log-power value of the corresponding FRs, presence of concurrent spike, ripple, very-high-frequency oscillations (vHFO)1 (500?600 Hz), and vHFO2 (600?1200 Hz), and whether the timing of the spectral peak of corresponding FRs was in the peak?trough or trough?peak transition of each slow activity (0.5?1, 1?2, 2?3, 3?4, and 4?8 Hz) as independent variables. Factors significantly related to epileptogenicity were FR power, the concurrent presence of spike and vHFO2, coupling with 0.5?1 and 1?2 Hz slow waves in the peak?trough transition, and coupling with 3?4 and 4?8 Hz slow waves in the trough?peak transition. Multifactorial analysis of FRs may increase their usefulness, potentially leading to improved treatment outcomes in epilepsy surgery.
en-copyright=
kn-copyright=
en-aut-name=ShibataTakashi
en-aut-sei=Shibata
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TsuchiyaHiroki
en-aut-sei=Tsuchiya
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AkiyamaMari
en-aut-sei=Akiyama
en-aut-mei=Mari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AkiyamaTomoyuki
en-aut-sei=Akiyama
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MatsuhashiMasao
en-aut-sei=Matsuhashi
en-aut-mei=Masao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KobayashiKatsuhiro
en-aut-sei=Kobayashi
en-aut-mei=Katsuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Pediatric Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Pediatric Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Pediatric Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Pediatric Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Epilepsy, Movement Disorders and Physiology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=6
en-affil=Department of Pediatric Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital
kn-affil=
en-keyword=Epilepsy surgery
kn-keyword=Epilepsy surgery
en-keyword=Multivariate logistic regression analysis
kn-keyword=Multivariate logistic regression analysis
en-keyword=Phase-amplitude coupling
kn-keyword=Phase-amplitude coupling
en-keyword=Ripple
kn-keyword=Ripple
en-keyword=Very high-frequency oscillations
kn-keyword=Very high-frequency oscillations
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250605
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Determinants of residual myometrial thickness after cesarean delivery: Comparative analysis of barbed versus conventional sutures?A sub‐analysis from the SPIRAL trial
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective: This sub-analysis aimed to determine whether conventional suture-associated risk factors for cesarean scar defect show similar outcomes with barbed continuous suturing, and to identify factors influencing residual myometrial thickness when using barbed continuous sutures.
Methods: This sub-analysis of a multicenter, parallel-group, randomized controlled trial across four Japanese obstetrics and gynecology departments included 1211 women who had their first cesarean delivery between May 2020 and March 2023. Among them, 298 women underwent a C-section, with 253 follow-up through July 2023. Singleton pregnancies were randomly assigned to receive either barbed or conventional double-layered continuous sutures in a 1:1 ratio; they were monitored from consent through their 6- to 7-month check-up. The effects of cervical ripening, facility characteristics, and surgeon experience were investigated using a two-way ANOVA.
Results: Of the remaining 253 patients, 33 were lost to follow-up and 220 completed follow-up (110 per group). One institution enrolled the largest proportion of participants (45.9%), whereas two other institutions had more experienced surgeons. Two-way ANOVA revealed that surgeon experience (P?=?0.020) and institutional factors (P?0.001) significantly influenced the residual myometrial thickness at 6?7?months after surgery, whereas cervical dilation during active labor did not (P?=?0.215). Additionally, a significant interaction was observed between institutional factors and suture type (barbed vs. conventional) on residual myometrial thickness (Pinteraction?<0.001).
Conclusion: Institutional factors and surgeon experience represent significant determinants of residual myometrial thickness when using barbed sutures for cesarean closure, highlighting the importance of standardized surgical protocols and training across facilities.
en-copyright=
kn-copyright=
en-aut-name=MakiJota
en-aut-sei=Maki
en-aut-mei=Jota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OobaHikaru
en-aut-sei=Ooba
en-aut-mei=Hikaru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MitomaTomohiro
en-aut-sei=Mitoma
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakatoHikari
en-aut-sei=Nakato
en-aut-mei=Hikari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SuemoriAyano
en-aut-sei=Suemori
en-aut-mei=Ayano
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KuriyamaChiaki
en-aut-sei=Kuriyama
en-aut-mei=Chiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SakataShujiro
en-aut-sei=Sakata
en-aut-mei=Shujiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MishimaSakurako
en-aut-sei=Mishima
en-aut-mei=Sakurako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OhiraAkiko
en-aut-sei=Ohira
en-aut-mei=Akiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=EtoEriko
en-aut-sei=Eto
en-aut-mei=Eriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MasuyamaHisashi
en-aut-sei=Masuyama
en-aut-mei=Hisashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=barbed suture
kn-keyword=barbed suture
en-keyword=cervical ripening
kn-keyword=cervical ripening
en-keyword=cesarean scar defect
kn-keyword=cesarean scar defect
en-keyword=cesarean scar disorder
kn-keyword=cesarean scar disorder
en-keyword=niche
kn-keyword=niche
en-keyword=residual myometrial thickness
kn-keyword=residual myometrial thickness
en-keyword=risk factors
kn-keyword=risk factors
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=30648
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250820
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effect of mechanical stretching stimulation on maturation of human iPS cell-derived cardiomyocytes co-cultured with human gingival fibroblasts
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In the realm of regenerative medicine, despite the various techniques available for inducing the differentiation of induced pluripotent stem (iPS) cells into cardiomyocytes, there remains a need to enhance the maturation of the cardiomyocytes. This study aimed to improve the differentiation and subsequent maturation of iPS-derived cardiomyocytes (iPS-CMs) by incorporating mechanical stretching. Human iPS cells were co-cultured with human gingival fibroblasts (HGF) on a polydimethylsiloxane (PDMS) stretch chamber, where mechanical stretching stimulation was applied during the induction of cardiomyocyte differentiation. The maturation of iPS-CMs was assessed using qRT-PCR, immunocytochemistry, transmission electron microscopy, calcium imaging and contractility comparisons. Results indicated significantly elevated gene expression levels of cardiomyocyte markers (cTnT) and the mesodermal marker (Nkx2.5) in the stretch group compared to the control group. Fluorescent immunocytochemical staining revealed the presence of cardiac marker proteins (cTnT and MYL2) in both groups, with higher protein expression in the stretch group. Additionally, structural maturation of iPS-CMs in the stretch group was notably better than in the control group. A significant increase in the contractility and calcium cycle of iPS-CMs was observed in the stretch group. These findings demonstrate that mechanical stretching stimulation enhances the maturation of iPS-CMs co-cultured with HGF.
en-copyright=
kn-copyright=
en-aut-name=WangMengxue
en-aut-sei=Wang
en-aut-mei=Mengxue
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IdeiHarumi
en-aut-sei=Idei
en-aut-mei=Harumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WangChen
en-aut-sei=Wang
en-aut-mei=Chen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=LiangYin
en-aut-sei=Liang
en-aut-mei=Yin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=LiuYun
en-aut-sei=Liu
en-aut-mei=Yun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MatsudaYusuke
en-aut-sei=Matsuda
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakahashiKen
en-aut-sei=Takahashi
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KamiokaHiroshi
en-aut-sei=Kamioka
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NaruseKeiji
en-aut-sei=Naruse
en-aut-mei=Keiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Nursing, School of Life and Health Sciences, HuZhou College
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Human induced pluripotent stem cell
kn-keyword=Human induced pluripotent stem cell
en-keyword=Cardiomyocyte
kn-keyword=Cardiomyocyte
en-keyword=Human gingival fibroblast
kn-keyword=Human gingival fibroblast
en-keyword=Mechanical stretching
kn-keyword=Mechanical stretching
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=7
article-no=
start-page=e70506
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250626
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Tongue Schwannoma at the Median Inferior Surface in the Elderly: A Case Report
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We report the extremely rare case of an atypical schwannoma that occurred at the median inferior surface of the tongue in an elderly patient. We performed an excisional biopsy to achieve a definitive diagnosis. Based on the histopathological findings, we diagnosed a schwannoma (mixed type, Antoni A/B).
en-copyright=
kn-copyright=
en-aut-name=FukushimaKiho
en-aut-sei=Fukushima
en-aut-mei=Kiho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OnoKisho
en-aut-sei=Ono
en-aut-mei=Kisho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ObataKyoichi
en-aut-sei=Obata
en-aut-mei=Kyoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamamotoIzumi
en-aut-sei=Yamamoto
en-aut-mei=Izumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KunisadaYuki
en-aut-sei=Kunisada
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YutoriHirokazu
en-aut-sei=Yutori
en-aut-mei=Hirokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IbaragiSoichiro
en-aut-sei=Ibaragi
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=elderly
kn-keyword=elderly
en-keyword=inferior surface of the tongue
kn-keyword=inferior surface of the tongue
en-keyword=schwannoma
kn-keyword=schwannoma
en-keyword=tongue tumor
kn-keyword=tongue tumor
END
start-ver=1.4
cd-journal=joma
no-vol=272
cd-vols=
no-issue=1
article-no=
start-page=36
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241212
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Genetic and functional analyses of SPTLC1 in juvenile amyotrophic lateral sclerosis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder of the motor system. Pathogenic variants in SPTLC1, encoding a subunit of serine palmitoyltransferase, cause hereditary sensory and autonomic neuropathy type 1 (HSAN1), and have recently been associated with juvenile ALS. SPTLC1 variants associated with ALS cause elevated levels of sphinganines and ceramides. Reports on ALS associated with SPTLC1 remain limited. This study aimed to investigate the frequency of SPTLC1 variants in ALS and relevant clinical characteristics.
Methods We analyzed whole-exome and whole-genome sequence data from 40 probands with familial ALS and 413 patients with sporadic ALS without previously identified causative variants. Reverse transcription polymerase chain reaction (RT-PCR) analysis and droplet digital PCR (ddPCR) were used to assess splicing and mosaicism, respectively. Plasma sphingolipid levels were quantified to analyze biochemical consequences.
Results The heterozygous c.58G>A, p.Ala20Thr variant was identified in a 21-year-old Japanese female patient presenting with symmetric weakness which slowly progressed over 15 years. RT-PCR analysis showed no splice defects. Plasma sphingolipid levels in the patient were significantly increased compared to her asymptomatic parents. ddPCR revealed that the asymptomatic father harbored a mosaic variant with 17% relative mutant allele abundance in peripheral blood leukocytes.
Conclusions We identified a pathogenic c.58G>A, p.Ala20Thr SPTLC1 variant in a patient with juvenile ALS, likely inherited from an asymptomatic parent with mosaicism. Lipid analysis results are consistent with previous findings on SPTLC1-associated ALS. Further studies are necessary to determine the clinical effect of mosaic variants of SPTLC1.
en-copyright=
kn-copyright=
en-aut-name=OkuboSo
en-aut-sei=Okubo
en-aut-mei=So
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NaruseHiroya
en-aut-sei=Naruse
en-aut-mei=Hiroya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SudoAtsushi
en-aut-sei=Sudo
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=EsakiKayoko
en-aut-sei=Esaki
en-aut-mei=Kayoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MitsuiJun
en-aut-sei=Mitsui
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsukawaTakashi
en-aut-sei=Matsukawa
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SatakeWataru
en-aut-sei=Satake
en-aut-mei=Wataru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=GreimelPeter
en-aut-sei=Greimel
en-aut-mei=Peter
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ShingaiNanoka
en-aut-sei=Shingai
en-aut-mei=Nanoka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OyaYasushi
en-aut-sei=Oya
en-aut-mei=Yasushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=YoshikawaTakeo
en-aut-sei=Yoshikawa
en-aut-mei=Takeo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TsujiShoji
en-aut-sei=Tsuji
en-aut-mei=Shoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TodaTatsushi
en-aut-sei=Toda
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=2
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=3
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=5
en-affil=Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University
kn-affil=
affil-num=6
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=7
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=8
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=9
en-affil=Laboratory for Cell Function Dynamics, RIKEN Centre for Brain Sciences
kn-affil=
affil-num=10
en-affil=Division of Applied Life Science, Graduate School of Engineering, Sojo University
kn-affil=
affil-num=11
en-affil=Department of Neurology, National Center of Neurology and Psychiatry
kn-affil=
affil-num=12
en-affil=Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science
kn-affil=
affil-num=13
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=14
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
en-keyword=Juvenile amyotrophic lateral sclerosis
kn-keyword=Juvenile amyotrophic lateral sclerosis
en-keyword=SPTLC1
kn-keyword=SPTLC1
en-keyword=Sphingolipids
kn-keyword=Sphingolipids
en-keyword=Mosaicism
kn-keyword=Mosaicism
END
start-ver=1.4
cd-journal=joma
no-vol=64
cd-vols=
no-issue=12
article-no=
start-page=1900
end-page=1905
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250615
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Subacute Upper Motor Neuron Dysfunction Possibly Associated with the Anti-GM1 Autoantibody
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Anti-GM1 antibodies are associated with Guillain-Barr? syndrome (GBS), primarily peripheral neuropathy. However, there are cases of anti-GM1 IgG antibody-positive GBS with upper motor neuron (UMN) signs. We herein report a case of gastrointestinal infection followed by subacute gait disturbance with predominant signs of UMN on a neurological examination. The serum and cerebrospinal fluid tests were positive for anti-GM1 and anti-asialo-GM1 IgG antibodies. An electrophysiological evaluation revealed normal nerve conduction and prolonged central motor conduction times. No magnetic resonance imaging abnormalities were observed. The symptoms improved with treatment, which was accompanied by decreased antibody titers. This case highlights the fact that anti-GM1 IgG-associated disorders may present with predominant UMN involvement.
en-copyright=
kn-copyright=
en-aut-name=OkuboSo
en-aut-sei=Okubo
en-aut-mei=So
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MaedaMeiko
en-aut-sei=Maeda
en-aut-mei=Meiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KatsuseKazuto
en-aut-sei=Katsuse
en-aut-mei=Kazuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShirotaYuichiro
en-aut-sei=Shirota
en-aut-mei=Yuichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HamadaMasashi
en-aut-sei=Hamada
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SatakeWataru
en-aut-sei=Satake
en-aut-mei=Wataru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TodaTatsushi
en-aut-sei=Toda
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=2
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=3
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=4
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=6
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=7
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=8
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
en-keyword=anti-GM1 antibody
kn-keyword=anti-GM1 antibody
en-keyword=anti-GA1 antibody
kn-keyword=anti-GA1 antibody
en-keyword=upper motor neuron
kn-keyword=upper motor neuron
en-keyword=motor-evoked potentials
kn-keyword=motor-evoked potentials
en-keyword=central motor conduction time
kn-keyword=central motor conduction time
en-keyword=Guillain-Barr? syndrome
kn-keyword=Guillain-Barr? syndrome
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=15
article-no=
start-page=e71098
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Real‐World Data of Comprehensive Cancer Genomic Profiling Tests Performed in the Routine Clinical Setting in Sarcoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction: Next-generation sequencing-based comprehensive cancer genomic profiling (CGP) tests are beneficial for refining diagnosis and personalized treatment of various cancers. However, the clinical impact of CGP, as covered by public health insurance in the management of sarcomas, remains unknown. Especially, the data on the utility of the newly emerging dual DNA?RNA panel compared to the conventional DNA-only panel in clinical settings is lacking. Therefore, we evaluated the utility of CGP in routine clinical practice for sarcoma treatment.
Patients and Methods: In this study, three types of DNA panel and one DNA?RNA panel, reimbursed by Japanese public health insurance, were utilized. We detected oncogenic and druggable gene mutations and genotype-matched therapies.
Results: One hundred and thirty-six patients were included in this study. Based on the detection of highly histology-specific translocations in the sequencing results, 2.2% of patients were re-classified. In patients with translocation-related sarcomas, a DNA?RNA panel identified more histology-specific fusion genes than DNA panels (p?=?0.0035). Specifically, 86.8% and 39.0% of patients had oncogenic and druggable genomic alterations, respectively. Of these, 9.6% underwent genotype-matched therapy, with a 36.3% response rate and an 81.8% disease control rate. Patients who were administered genomically matched therapy had better overall survival (OS) than those who did not in patients with metastatic or advanced sarcoma with no prior chemotherapy (3-year OS: 83.3% vs. 48.0%, p?=?0.42). Patients with TP53 and RB1 mutations had worse OS than those without. Germline findings were detected in 11.0% of the patients, one of whom had a truly germline origin.
Conclusions: This study suggests that publicly reimbursed CGP tests, particularly the dual DNA?RNA panel, could be beneficial for refining diagnostic precision in selected sarcoma subtypes, treatment decisions, detecting the germline findings, and prognosis prediction in routine clinical settings for sarcoma. The implementation of genotype-matched therapies showed favorable clinical outcomes and improved the prognosis.
en-copyright=
kn-copyright=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=EnnishiDaisuke
en-aut-sei=Ennishi
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OsoneTatsunori
en-aut-sei=Osone
en-aut-mei=Tatsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NinomiyaKiichiro
en-aut-sei=Ninomiya
en-aut-mei=Kiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TomidaShuta
en-aut-sei=Tomida
en-aut-mei=Shuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ItanoTakuto
en-aut-sei=Itano
en-aut-mei=Takuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=FujiwaraTomohiro
en-aut-sei=Fujiwara
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KunisadaToshiyuki
en-aut-sei=Kunisada
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IdaNaoyuki
en-aut-sei=Ida
en-aut-mei=Naoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YamamotoHideki
en-aut-sei=Yamamoto
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=FutagawaMashu
en-aut-sei=Futagawa
en-aut-mei=Mashu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ShimoiTatsunori
en-aut-sei=Shimoi
en-aut-mei=Tatsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=YanaiHiroyuki
en-aut-sei=Yanai
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=HirasawaAkira
en-aut-sei=Hirasawa
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=TabataMasahiro
en-aut-sei=Tabata
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Medical Oncology, National Cancer Center Hospital
kn-affil=
affil-num=13
en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Center for Clinical Oncology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=17
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=comprehensive genomic profiling
kn-keyword=comprehensive genomic profiling
en-keyword=genotype-matched therapy
kn-keyword=genotype-matched therapy
en-keyword=multiplex gene panel test
kn-keyword=multiplex gene panel test
en-keyword=sarcoma
kn-keyword=sarcoma
END
start-ver=1.4
cd-journal=joma
no-vol=638
cd-vols=
no-issue=8049
article-no=
start-page=225
end-page=236
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250122
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Immune evasion through mitochondrial transfer in the tumour microenvironment
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Cancer cells in the tumour microenvironment use various mechanisms to evade the immune system, particularly T?cell attack1. For example, metabolic reprogramming in the tumour microenvironment and mitochondrial dysfunction in tumour-infiltrating lymphocytes (TILs) impair antitumour immune responses2,3,4. However, detailed mechanisms of such processes remain unclear. Here we analyse clinical specimens and identify mitochondrial DNA (mtDNA) mutations in TILs that are shared with cancer cells. Moreover, mitochondria with mtDNA mutations from cancer cells are able to transfer to TILs. Typically, mitochondria in TILs readily undergo mitophagy through reactive oxygen species. However, mitochondria transferred from cancer cells do not undergo mitophagy, which we find is due to mitophagy-inhibitory molecules. These molecules attach to mitochondria and together are transferred to TILs, which results in homoplasmic replacement. T?cells that acquire mtDNA mutations from cancer cells exhibit metabolic abnormalities and senescence, with defects in effector functions and memory formation. This in turn leads to impaired antitumour immunity both in vitro and in vivo. Accordingly, the presence of an mtDNA mutation in tumour tissue is a poor prognostic factor for immune checkpoint inhibitors in patients with melanoma or non-small-cell lung cancer. These findings reveal a previously unknown mechanism of cancer immune evasion through mitochondrial transfer and can contribute to the development of future cancer immunotherapies.
en-copyright=
kn-copyright=
en-aut-name=IkedaHideki
en-aut-sei=Ikeda
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawaseKatsushige
en-aut-sei=Kawase
en-aut-mei=Katsushige
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishiTatsuya
en-aut-sei=Nishi
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=WatanabeTomofumi
en-aut-sei=Watanabe
en-aut-mei=Tomofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakenagaKeizo
en-aut-sei=Takenaga
en-aut-mei=Keizo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=InozumeTakashi
en-aut-sei=Inozume
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IshinoTakamasa
en-aut-sei=Ishino
en-aut-mei=Takamasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AkiSho
en-aut-sei=Aki
en-aut-mei=Sho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=LinJason
en-aut-sei=Lin
en-aut-mei=Jason
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KawashimaShusuke
en-aut-sei=Kawashima
en-aut-mei=Shusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NagasakiJoji
en-aut-sei=Nagasaki
en-aut-mei=Joji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=UedaYouki
en-aut-sei=Ueda
en-aut-mei=Youki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=SuzukiShinichiro
en-aut-sei=Suzuki
en-aut-mei=Shinichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=MakinoshimaHideki
en-aut-sei=Makinoshima
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=ItamiMakiko
en-aut-sei=Itami
en-aut-mei=Makiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=NakamuraYuki
en-aut-sei=Nakamura
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=TatsumiYasutoshi
en-aut-sei=Tatsumi
en-aut-mei=Yasutoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=SuenagaYusuke
en-aut-sei=Suenaga
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=MorinagaTakao
en-aut-sei=Morinaga
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=Honobe-TabuchiAkiko
en-aut-sei=Honobe-Tabuchi
en-aut-mei=Akiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=OhnumaTakehiro
en-aut-sei=Ohnuma
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=KawamuraTatsuyoshi
en-aut-sei=Kawamura
en-aut-mei=Tatsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=UmedaYoshiyasu
en-aut-sei=Umeda
en-aut-mei=Yoshiyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=NakamuraYasuhiro
en-aut-sei=Nakamura
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=KiniwaYukiko
en-aut-sei=Kiniwa
en-aut-mei=Yukiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=IchiharaEiki
en-aut-sei=Ichihara
en-aut-mei=Eiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=HayashiHidetoshi
en-aut-sei=Hayashi
en-aut-mei=Hidetoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=IkedaJun-ichiro
en-aut-sei=Ikeda
en-aut-mei=Jun-ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=HanazawaToyoyuki
en-aut-sei=Hanazawa
en-aut-mei=Toyoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=ManoHiroyuki
en-aut-sei=Mano
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=SuzukiTakuji
en-aut-sei=Suzuki
en-aut-mei=Takuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
en-aut-name=OsawaTsuyoshi
en-aut-sei=Osawa
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=33
ORCID=
en-aut-name=KawazuMasahito
en-aut-sei=Kawazu
en-aut-mei=Masahito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=34
ORCID=
en-aut-name=TogashiYosuke
en-aut-sei=Togashi
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=35
ORCID=
affil-num=1
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=2
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=3
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Division of Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute
kn-affil=
affil-num=6
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=7
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Division of Nutriomics and Oncology, RCAST, The University of Tokyo
kn-affil=
affil-num=9
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=10
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan Department of Dermatology, Graduate School of Medicine, Chiba University
kn-affil=
affil-num=11
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Medical Oncology, Kindai University Faculty of Medicine
kn-affil=
affil-num=14
en-affil=Tsuruoka Metabolomics Laboratory, National Cancer Center
kn-affil=
affil-num=15
en-affil=Department of Surgical Pathology, Chiba Cancer Center
kn-affil=
affil-num=16
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=17
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=18
en-affil=Laboratory of Evolutionary Oncology, Chiba Cancer Center Research Institute
kn-affil=
affil-num=19
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=20
en-affil=Department of Dermatology, Faculty of Medicine, University of Yamanashi
kn-affil=
affil-num=21
en-affil=Department of Dermatology, Faculty of Medicine, University of Yamanashi
kn-affil=
affil-num=22
en-affil=Department of Dermatology, Faculty of Medicine, University of Yamanashi
kn-affil=
affil-num=23
en-affil=Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center
kn-affil=
affil-num=24
en-affil=Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center
kn-affil=
affil-num=25
en-affil=Department of Dermatology, Shinshu University School of Medicine
kn-affil=
affil-num=26
en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=27
en-affil=Department of Medical Oncology, Kindai University Faculty of Medicine
kn-affil=
affil-num=28
en-affil=Department of Diagnostic Pathology, Graduate School of Medicine, Chiba University
kn-affil=
affil-num=29
en-affil=Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine
kn-affil=
affil-num=30
en-affil=Department of General Thoracic Surgery and Endocrinological Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=31
en-affil=Division of Cellular Signalling, National Cancer Center Research Institute
kn-affil=
affil-num=32
en-affil=Department of Respirology, Graduate School of Medicine, Chiba University
kn-affil=
affil-num=33
en-affil=Division of Nutriomics and Oncology, RCAST, The University of Tokyo
kn-affil=
affil-num=34
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=35
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=409
cd-vols=
no-issue=1
article-no=
start-page=356
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241125
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Subjective global assessment for nutritional screening and its impact on surgical outcomes: A prospective study in older patients with colorectal cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose Our perioperative management center provides preoperative intervention and functional and nutritional assessments for colorectal cancer patients aged over 75 years. This study evaluated the associations of preoperative nutritional status with postoperative outcomes and prognosis in colorectal cancer patients aged 75 years or older.
Methods This was a prospective, observational study of 71 colorectal cancer patients aged 75 years or older who underwent surgery between July 2020 and September 2022. The Subjective Global Assessment (SGA) was evaluated as a nutritional index. The patients were classified into three groups: SGA-A (well nourished), B (moderately malnourished), and C (severely malnourished), and the correlations with postoperative outcomes and prognosis were examined.
Results The median age of the 71 patients (34 males, 37 females) was 78 (75?92) years, and their median body mass index (BMI) was 22.3 (13.4?31.9) kg/m2. Forty-eight patients had colon cancer, and 23 had rectal cancer. On the SGA, 28 patients were SGA-A, 25 SGA-B, and 18 SGA-C. The SGA-B/C group had significantly higher BMI (p?0.01) and more ICU admissions (p?=?0.02). The G8 score was significantly lower (p?=?0.03) in the SGA-B/C group, suggesting coexisting functional decline. In terms of postoperative outcomes, the SGA-B/C group had a significantly longer postoperative hospital stay (p?=?0.04). The 3-year OS rates for all stages were 100% in the SGA-A group and 49.7% in the SGA-B/C group (p?=?0.03), while the 3-year OS rates for patients excluding Stage IV were 100% in the SGA-A group and 68.5% in the SGA-B/C group, not significantly different (p?=?0.14). The 3-year RFS rate was 95.5% in the SGA-A group and 65.3% in the SGA-B/C group (p?=?0.15).
Conclusion The SGA is a promising nutritional index associated with short-term outcomes in older patients undergoing colorectal cancer surgery. The SGA can be assessed in a few minutes during an outpatient visit, making it useful for routine clinical use.
en-copyright=
kn-copyright=
en-aut-name=TeraishiFuminori
en-aut-sei=Teraishi
en-aut-mei=Fuminori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YoshidaYusuke
en-aut-sei=Yoshida
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShojiRyohei
en-aut-sei=Shoji
en-aut-mei=Ryohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KanayaNobuhiko
en-aut-sei=Kanaya
en-aut-mei=Nobuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MatsumiYuki
en-aut-sei=Matsumi
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShigeyasuKunitoshi
en-aut-sei=Shigeyasu
en-aut-mei=Kunitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KondoYoshitaka
en-aut-sei=Kondo
en-aut-mei=Yoshitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KagawaShunsuke
en-aut-sei=Kagawa
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TamuraRie
en-aut-sei=Tamura
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MatsuokaYoshikazu
en-aut-sei=Matsuoka
en-aut-mei=Yoshikazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MorimatsuHiroshi
en-aut-sei=Morimatsu
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MitsuhashiToshiharu
en-aut-sei=Mitsuhashi
en-aut-mei=Toshiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Perioperative Management Center, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Perioperative Management Center, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Perioperative Management Center, Okayama University Hospital
kn-affil=
affil-num=12
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=13
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Subjective global assessment
kn-keyword=Subjective global assessment
en-keyword=Colorectal cancer
kn-keyword=Colorectal cancer
en-keyword=Older patients
kn-keyword=Older patients
en-keyword=Surgical outcome
kn-keyword=Surgical outcome
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=5
article-no=
start-page=271
end-page=277
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240329
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Japan MSA registry: A multicenter cohort study of multiple system atrophy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Multiple system atrophy (MSA) is a neurodegenerative disorder characterized by autonomic failure and various motor symptoms. While MSA-C (cerebellar type) predominates in East Asia, MSA-P (parkinsonian type) predominates in Europe and North America. This nationwide patient registry aimed to (1) conduct a prospective natural history study of MSA in Japan, (2) facilitate patient recruitment for clinical trials, and (3) deposit bioresources and clinical information in a biobank.
Methods: Thirteen institutions participated in this study. Clinical information was obtained by neurologists from the patients visiting the hospital every 12?months to assess the UMSARS Part 2 scores and by telephone interviews by nurses every 6?months to assess UMSARS Part 1 scores and to determine whether clinical events had occurred.
Results: Demographic data from 329 MSA patients (216 MSA-C and 113 MSA-P) were analyzed. The mean age at symptom onset was 58.2?years (standard deviation, 8.9); the mean duration of symptoms at enrollment was 3.5?years (standard deviation, 2.2). The mean 12-month changes in the UMSARS Part 1 and Part 2 scores were 7.9 (standard deviation, 5.6) and 6.4 (standard deviation, 5.9), respectively. The patient registry proved useful in recruiting participants for clinical trials, including those with gene variants. Clinical information and biospecimens were deposited in a biobank.
Discussion: The study highlighted the importance of telephone interviews in minimizing drop-out rates in natural history studies and demonstrated similar MSA progression rates across populations. The deposited bioresources are available to researchers upon request, aiming to contribute to future MSA researches.
en-copyright=
kn-copyright=
en-aut-name=ChikadaAyaka
en-aut-sei=Chikada
en-aut-mei=Ayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OrimoKenta
en-aut-sei=Orimo
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MitsuiJun
en-aut-sei=Mitsui
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MatsukawaTakashi
en-aut-sei=Matsukawa
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TodaTatsushi
en-aut-sei=Toda
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MizusawaHidehiro
en-aut-sei=Mizusawa
en-aut-mei=Hidehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakahashiYuji
en-aut-sei=Takahashi
en-aut-mei=Yuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KatsunoMasahisa
en-aut-sei=Katsuno
en-aut-mei=Masahisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HaraKazuhiro
en-aut-sei=Hara
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OnoderaOsamu
en-aut-sei=Onodera
en-aut-mei=Osamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=IshiharaTomohiko
en-aut-sei=Ishihara
en-aut-mei=Tomohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TadaMasayoshi
en-aut-sei=Tada
en-aut-mei=Masayoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KuwabaraSatoshi
en-aut-sei=Kuwabara
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=SugiyamaAtsuhiko
en-aut-sei=Sugiyama
en-aut-mei=Atsuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=YamanakaYoshitaka
en-aut-sei=Yamanaka
en-aut-mei=Yoshitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=TakahashiRyosuke
en-aut-sei=Takahashi
en-aut-mei=Ryosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=SawamotoNobukatsu
en-aut-sei=Sawamoto
en-aut-mei=Nobukatsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=SakatoYusuke
en-aut-sei=Sakato
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=IshimotoTomoyuki
en-aut-sei=Ishimoto
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=HanajimaRitsuko
en-aut-sei=Hanajima
en-aut-mei=Ritsuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=WatanabeYasuhiro
en-aut-sei=Watanabe
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=TakigawaHiroshi
en-aut-sei=Takigawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=AdachiTadashi
en-aut-sei=Adachi
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=AbeKoji
en-aut-sei=Abe
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=YamashitaToru
en-aut-sei=Yamashita
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=TakashimaHiroshi
en-aut-sei=Takashima
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=HigashiKeiko
en-aut-sei=Higashi
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=KiraJunichi
en-aut-sei=Kira
en-aut-mei=Junichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=YabeIchiro
en-aut-sei=Yabe
en-aut-mei=Ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=MatsushimaMasaaki
en-aut-sei=Matsushima
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=OgataKatsuhisa
en-aut-sei=Ogata
en-aut-mei=Katsuhisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
en-aut-name=IshikawaKinya
en-aut-sei=Ishikawa
en-aut-mei=Kinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=33
ORCID=
en-aut-name=NishidaYoichiro
en-aut-sei=Nishida
en-aut-mei=Yoichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=34
ORCID=
en-aut-name=IshiguroTaro
en-aut-sei=Ishiguro
en-aut-mei=Taro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=35
ORCID=
en-aut-name=OzakiKokoro
en-aut-sei=Ozaki
en-aut-mei=Kokoro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=36
ORCID=
en-aut-name=NagataTetsuya
en-aut-sei=Nagata
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=37
ORCID=
en-aut-name=TsujiShoji
en-aut-sei=Tsuji
en-aut-mei=Shoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=38
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=2
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=3
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=4
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=5
en-affil=Department of Neurology, Okayama University Graduate School of Medicine and Dentistry
kn-affil=
affil-num=6
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=7
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=8
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=9
en-affil=Department of Neurology, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Neurology, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Neurology, Brain Research Institute, Niigata University
kn-affil=
affil-num=12
en-affil=Department of Neurology, Brain Research Institute, Niigata University
kn-affil=
affil-num=13
en-affil=Department of Neurology, Brain Research Institute, Niigata University
kn-affil=
affil-num=14
en-affil=Department of Neurology, Graduate School of Medicine, Chiba University
kn-affil=
affil-num=15
en-affil=Department of Neurology, Graduate School of Medicine, Chiba University
kn-affil=
affil-num=16
en-affil=Department of Neurology, Graduate School of Medicine, Chiba University
kn-affil=
affil-num=17
en-affil=Department of Neurology, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=18
en-affil=Department of Human Health Sciences, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=19
en-affil=Department of Neurology, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=20
en-affil=Department of Neurology, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=21
en-affil=Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University
kn-affil=
affil-num=22
en-affil=Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University
kn-affil=
affil-num=23
en-affil=Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University
kn-affil=
affil-num=24
en-affil=Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University
kn-affil=
affil-num=25
en-affil=Department of Neurology, Okayama University Graduate School of Medicine and Dentistry
kn-affil=
affil-num=26
en-affil=Department of Neurology, Okayama University Graduate School of Medicine and Dentistry
kn-affil=
affil-num=27
en-affil=Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University
kn-affil=
affil-num=28
en-affil=Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University
kn-affil=
affil-num=29
en-affil=Department of Neurology, Graduate School of Medical Sciences, Kyushu University
kn-affil=
affil-num=30
en-affil=Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University
kn-affil=
affil-num=31
en-affil=Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University
kn-affil=
affil-num=32
en-affil=Department of Neurology, Higashi-Saitama National Hospital
kn-affil=
affil-num=33
en-affil=Department of Neurology and Neurological Science, Tokyo Medical and Dental University
kn-affil=
affil-num=34
en-affil=Department of Neurology and Neurological Science, Tokyo Medical and Dental University
kn-affil=
affil-num=35
en-affil=Department of Neurology and Neurological Science, Tokyo Medical and Dental University
kn-affil=
affil-num=36
en-affil=Department of Neurology and Neurological Science, Tokyo Medical and Dental University
kn-affil=
affil-num=37
en-affil=Department of Neurology and Neurological Science, Tokyo Medical and Dental University
kn-affil=
affil-num=38
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
en-keyword=multicenter cohort study
kn-keyword=multicenter cohort study
en-keyword=multiple system atrophy
kn-keyword=multiple system atrophy
en-keyword=natural history
kn-keyword=natural history
en-keyword=patient registry
kn-keyword=patient registry
END
start-ver=1.4
cd-journal=joma
no-vol=508
cd-vols=
no-issue=
article-no=
start-page=111242
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Enhanced aboveground biomass density estimation in Central Vietnamese forests
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Accurate estimation of spatially explicit forest aboveground biomass density (AGBD) is essential for supporting climate change mitigation strategies. Recent studies have demonstrated the predictive effectiveness of the random forest (RF) algorithm in forest AGBD estimation utilizing multi-source remote sensing (RS) data. However, the RF-based estimates may be further enhanced by integrating RF with kriging techniques that account for spatial autocorrelation in model residuals. Therefore, we investigated the performance of random forest ordinary kriging (RFOK) and random forest co-kriging (RFCK) for estimating AGBD in Central Vietnamese forests using Advanced Land Observing Satellite-2 Phased Array L-band Synthetic Aperture Radar-2 (ALOS-2 PALSAR-2), Sentinel-1 (S1), and Sentinel-2 (S2) imageries. 277 predictors, including spectral bands, radar backscatter coefficients, vegetation indices, biophysical variables, and texture metrics, were derived from these RS datasets and statistically linked to field measurements from 104 geo-referenced forest inventory plots. The results showed that textures, modified chlorophyll absorption ratio index (MCARI), and radar backscatters were key contributors to AGBD variability. The fusion of ALOS-2 PALSAR-2 and S2 data yielded the highest RF performance, with coefficient of determination (R2), root mean square error (RMSE), and mean absolute error (MAE) achieving 0.75, 39.15 t.ha-1, and 32.20 t.ha-1, respectively. Incorporating interpolated residuals by ordinary kriging and co-kriging into RF predictions enhanced estimation accuracy, with relative improvements of 5.74?7.04 % in R2, 8.73?10.91 % in RMSE, and 13.62?15.27 % in MAE, yet these gains remained limited. Although RFOK achieved marginally better accuracy (R2 = 0.80, RMSE = 34.88 t.ha-1, MAE = 27.28 t.ha-1) compared to RFCK (R2 = 0.79, RMSE = 35.73 t.ha-1, MAE = 27.81 t.ha-1), the latter reduced estimation bias more effectively, likely due to the inclusion of elevation as a covariate in the co-kriging process. These findings underscore the potential of the hybrid RF-kriging frameworks for improving spatial AGBD estimation, offering a robust approach for carbon accounting in tropical ecosystems.
en-copyright=
kn-copyright=
en-aut-name=HoViet Hoang
en-aut-sei=Ho
en-aut-mei=Viet Hoang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MoritaHidenori
en-aut-sei=Morita
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=BachoferFelix
en-aut-sei=Bachofer
en-aut-mei=Felix
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HoThanh Ha
en-aut-sei=Ho
en-aut-mei=Thanh Ha
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=German Aerospace Center (DLR), Earth Observation Center
kn-affil=
affil-num=4
en-affil=University of Agriculture and Forestry, Hue University
kn-affil=
en-keyword=Forest aboveground biomass density
kn-keyword=Forest aboveground biomass density
en-keyword=Random forest
kn-keyword=Random forest
en-keyword=Ordinary kriging
kn-keyword=Ordinary kriging
en-keyword=Co-kriging
kn-keyword=Co-kriging
en-keyword=Multispectral
kn-keyword=Multispectral
en-keyword=Multi-frequency synthetic aperture radar
kn-keyword=Multi-frequency synthetic aperture radar
END
start-ver=1.4
cd-journal=joma
no-vol=25
cd-vols=
no-issue=5
article-no=
start-page=1554
end-page=1577
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250405
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Comparison of geostatistics, machine learning algorithms, and their hybrid approaches for modeling soil organic carbon density in tropical forests
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose Understanding the spatial variability of soil organic carbon density (SOCD) in tropical forests is necessary for efficient climate change mitigation initiatives. However, accurately modeling SOCD in these landscapes is challenging due to low-density sampling efforts and the limited availability of in-situ data caused by constrained accessibility. In this study, we aimed to explore the most suitable modeling technique for SOCD estimation in the context of tropical forest ecosystems.
Methods To support the research, thirty predictor covariates derived from remote sensing data, topographic attributes, climatic factors, and geographic positions were utilized, along with 104 soil samples collected from the top 30 cm of soil in Central Vietnamese tropical forests. We compared the effectiveness of geostatistics (ordinary kriging, universal kriging, and kriging with external drift), machine learning (ML) algorithms (random forest and boosted regression tree), and their hybrid approaches (random forest regression kriging and boosted regression tree regression kriging) for the prediction of SOCD. Prediction accuracy was evaluated using the coefficient of determination (R2), the root mean squared error (RMSE), and the mean absolute error (MAE) obtained from leave-one-out cross-validation.
Results The study results indicated that hybrid approaches performed best in predicting forest SOCD with the greatest values of R2 and the lowest values of MAE and RMSE, and the ML algorithms were more accurate than geostatistics. Additionally, the prediction maps produced by the hybridization showed the most realistic SOCD pattern, whereas the kriged maps were prone to have smoother patterns, and ML-based maps were inclined to possess more detailed patterns. The result also revealed the superiority of the ML plus residual kriging approaches over the ML models in reducing the underestimation of large SOCD values in high-altitude mountain areas and the overestimation of low SOCD values in low-lying terrain areas.
Conclusion Our findings suggest that the hybrid approaches of geostatistics and ML models are most suitable for modeling SOCD in tropical forests.
en-copyright=
kn-copyright=
en-aut-name=HoViet Hoang
en-aut-sei=Ho
en-aut-mei=Viet Hoang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MoritaHidenori
en-aut-sei=Morita
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HoThanh Ha
en-aut-sei=Ho
en-aut-mei=Thanh Ha
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=BachoferFelix
en-aut-sei=Bachofer
en-aut-mei=Felix
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NguyenThi Thuong
en-aut-sei=Nguyen
en-aut-mei=Thi Thuong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=University of Agriculture and Forestry, Hue University
kn-affil=
affil-num=4
en-affil=German Aerospace Center (DLR), Earth Observation Center
kn-affil=
affil-num=5
en-affil=University of Agriculture and Forestry, Hue University
kn-affil=
en-keyword=Digital soil mapping
kn-keyword=Digital soil mapping
en-keyword=Hybrid approaches
kn-keyword=Hybrid approaches
en-keyword=Kriging
kn-keyword=Kriging
en-keyword=Machine learning
kn-keyword=Machine learning
en-keyword=Soil organic carbon density
kn-keyword=Soil organic carbon density
en-keyword=Tropical forests
kn-keyword=Tropical forests
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=2
article-no=
start-page=159
end-page=161
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A novel de novo disease-causing variant in ATL1 in a pediatric patient with spastic paraplegia
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=NakamuraAyumi
en-aut-sei=Nakamura
en-aut-mei=Ayumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NaruseHiroya
en-aut-sei=Naruse
en-aut-mei=Hiroya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MitsutakeAkihiko
en-aut-sei=Mitsutake
en-aut-mei=Akihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MitsuiJun
en-aut-sei=Mitsui
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MorishitaShinichi
en-aut-sei=Morishita
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IwakoshiMie
en-aut-sei=Iwakoshi
en-aut-mei=Mie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TsujiShoji
en-aut-sei=Tsuji
en-aut-mei=Shoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TodaTatsushi
en-aut-sei=Toda
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=2
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=3
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=4
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=5
en-affil=Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo
kn-affil=
affil-num=6
en-affil=Department of Nursing, Faculty of Health Sciences, Kobe Tokiwa University
kn-affil=
affil-num=7
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Institute of Medical Genomics, International University of Health and Welfare
kn-affil=
affil-num=9
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=69
cd-vols=
no-issue=12
article-no=
start-page=613
end-page=621
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240718
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Association study of GBA1 variants with MSA based on comprehensive sequence analysis -Pitfalls in short-read sequence analysis depending on the human reference genome-
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Multiple system atrophy (MSA) is a neurodegenerative disorder characterized by various combinations of autonomic failure, parkinsonism, and cerebellar ataxia. To elucidate variants associated with MSA, we have been conducting short-read-based whole-genome sequence analysis. In the process of the association studies, we initially focused on GBA1, a previously proposed susceptibility gene for MSA, to evaluate whether GBA1 variants can be efficiently identified despite its extraordinarily high homology with its pseudogene, GBA1LP. To accomplish this, we conducted a short-read whole-genome sequence analysis with alignment to GRCh38 as well as Sanger sequence analysis and compared the results. We identified five variants with inconsistencies between the two pipelines, of which three variants (p.L483P, p.A495P?p.V499V, p.L483_M489delinsW) were the results of misalignment due to minor alleles in GBA1P1 registered in GRCh38. The miscalling events in these variants were resolved by alignment to GRCh37 as the reference genome, where the major alleles are registered. In addition, a structural variant was not properly identified either by short-read or by Sanger sequence analyses. Having accomplished correct variant calling, we identified three variants pathogenic for Gaucher disease (p.S310G, p.L483P, and p.L483_M489delinsW). Of these variants, the allele frequency of p.L483P (0.003) in the MSA cases was higher than that (0.0011) in controls. The meta-analysis incorporating a previous report demonstrated a significant association of p.L483P with MSA with an odds ratio of 2.85 (95% CI; 1.05 ? 7.76, p = 0.0400).
en-copyright=
kn-copyright=
en-aut-name=OrimoKenta
en-aut-sei=Orimo
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MitsuiJun
en-aut-sei=Mitsui
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MatsukawaTakashi
en-aut-sei=Matsukawa
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanakaMasaki
en-aut-sei=Tanaka
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NomotoJunko
en-aut-sei=Nomoto
en-aut-mei=Junko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OmaeYosuke
en-aut-sei=Omae
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KawaiYosuke
en-aut-sei=Kawai
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TokunagaKatsushi
en-aut-sei=Tokunaga
en-aut-mei=Katsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NCBN Controls WGS Consortium
en-aut-sei=NCBN Controls WGS Consortium
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TodaTatsushi
en-aut-sei=Toda
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TsujiShoji
en-aut-sei=Tsuji
en-aut-mei=Shoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=2
en-affil=Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=3
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=4
en-affil=Institute of Medical Genomics, International University of Health and Welfare
kn-affil=
affil-num=5
en-affil=Institute of Medical Genomics, International University of Health and Welfare
kn-affil=
affil-num=6
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Genome Medical Science Project, National Center for Global Health and Medicine
kn-affil=
affil-num=8
en-affil=Genome Medical Science Project, National Center for Global Health and Medicine
kn-affil=
affil-num=9
en-affil=Genome Medical Science Project, National Center for Global Health and Medicine
kn-affil=
affil-num=10
en-affil=
kn-affil=
affil-num=11
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=12
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=4
article-no=
start-page=244
end-page=254
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202408
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A novel brief questionnaire using a face rating scale to assess dental anxiety and fear
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=PURPOSE This study aimed to evaluate the reliability and validity of a four-item questionnaire using a face rating scale to measure dental trait anxiety (DTA), dental trait fear (DTF), dental state anxiety (DSA), and dental state fear (DSF).
MATERIALS AND METHODS Participants were consecutively selected from patients undergoing scaling (S-group; n = 47) and implant placement (I-group; n = 25). The S-group completed the questionnaire both before initial and second scaling, whereas the I-group responded on the pre-surgery day (Pre-day), the day of implant placement (Imp-day), and the day of suture removal (Post-day).
RESULTS The reliability in the S-group was evaluated using the test-retest method, showing a weighted kappa value of DTA, 0.61; DTF, 0.46; DSA, 0.67; DSF, 0.52. Criterion-related validity, assessed using the State-Trait Anxiety Inventory’s trait anxiety and state anxiety, revealed positive correlations between trait anxiety and DTA/DTF (DTA, ρ = 0.30; DTF, ρ = 0.27, ρ: correlation coefficient) and between state anxiety and all four items (DTA, ρ = 0.41; DTF, ρ = 0.32; DSA, ρ = 0.25; DSF, ρ = 0.25). Known-group validity was assessed using the initial data and Imp-day data from the S-group and I-group, respectively, revealing significantly higher DSA and DSF scores in the I-group than in the S-group. Responsiveness was gauged using I-group data, showing significantly lower DSA and DSF scores on post-day compared to other days.
CONCLUSION The newly developed questionnaire has acceptable reliability and validity for clinical use, suggesting its usefulness for research on dental anxiety and fear and for providing patient-specific dental care.
en-copyright=
kn-copyright=
en-aut-name=MinoTakuya
en-aut-sei=Mino
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=Kimura-OnoAya
en-aut-sei=Kimura-Ono
en-aut-mei=Aya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ArakawaHikaru
en-aut-sei=Arakawa
en-aut-mei=Hikaru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TokumotoKana
en-aut-sei=Tokumoto
en-aut-mei=Kana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KurosakiYoko
en-aut-sei=Kurosaki
en-aut-mei=Yoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MatsukaYoshizo
en-aut-sei=Matsuka
en-aut-mei=Yoshizo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MaekawaKenji
en-aut-sei=Maekawa
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KubokiTakuo
en-aut-sei=Kuboki
en-aut-mei=Takuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Stomatognathic Function and Occlusal Reconstruction, Graduate School of Biomedical Sciences, Tokushima University
kn-affil=
affil-num=7
en-affil=Department of Removable Prosthodontics and Occlusion, Osaka Dental University
kn-affil=
affil-num=8
en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=Dental anxiety
kn-keyword=Dental anxiety
en-keyword=Anxiety disorders
kn-keyword=Anxiety disorders
en-keyword=Surveys
kn-keyword=Surveys
en-keyword=Questionnaires
kn-keyword=Questionnaires
en-keyword=Validation study
kn-keyword=Validation study
en-keyword=Phobia
kn-keyword=Phobia
END
start-ver=1.4
cd-journal=joma
no-vol=88
cd-vols=
no-issue=9
article-no=
start-page=1398
end-page=1405
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240823
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Morphological Features of Patent Foramen Ovale Compared Between Older and Young Patients With Cryptogenic Ischemic Stroke
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: The morphology of a patent foramen ovale (PFO) with a high-risk for cryptogenic ischemic stroke (CS) is an important factor in the selection of patients for transcatheter closure, but the morphological features of PFO in older patients with a history of CS are less known because the most data are obtained from younger patients.
Methods and Results: The study included 169 patients who had a history of CS and PFO. The prevalence of high-risk morphologies of PFO assessed by transesophageal echocardiography was compared between patients aged ?60 years and patients aged <60 years. We also assessed the presence of septal malalignment of PFO on the aortic wall. The probability of CS due to PFO was evaluated using the PFO-Associated Stroke Causal Likelihood classification system. Patients aged ?60 years had a significantly higher prevalence of atrial septal aneurysm than patients aged <60 years. The prevalence of large right-to-left shunt, long-tunnel of PFO, or Eustachian valve or Chiari’s network was similar between patients aged ?60 years and <60 years. Septal malalignment was observed more frequently in patients aged ?60 years than in those <60 years old. Nearly 90% of patients aged ?60 years were classified as ‘possible’ in the PFO-Associated Stroke Causal Likelihood classification system.
Conclusions: High-risk morphologies of PFO are common in older patients with a history of CS, as well as in younger patients.
en-copyright=
kn-copyright=
en-aut-name=NakashimaMitsutaka
en-aut-sei=Nakashima
en-aut-mei=Mitsutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakayaYoichi
en-aut-sei=Takaya
en-aut-mei=Yoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakayamaRie
en-aut-sei=Nakayama
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TsujiMasahiro
en-aut-sei=Tsuji
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AkagiTeiji
en-aut-sei=Akagi
en-aut-mei=Teiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MikiTakashi
en-aut-sei=Miki
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakamuraKazufumi
en-aut-sei=Nakamura
en-aut-mei=Kazufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YuasaShinsuke
en-aut-sei=Yuasa
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Cryptogenic ischemic stroke
kn-keyword=Cryptogenic ischemic stroke
en-keyword=Older patients
kn-keyword=Older patients
en-keyword=Patent foramen ovale
kn-keyword=Patent foramen ovale
END
start-ver=1.4
cd-journal=joma
no-vol=23
cd-vols=
no-issue=3
article-no=
start-page=79
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250703
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Association of the expression of 5?FU biomarkers with aging and prognosis in elderly patients with lung cancer treated with S?1 adjuvant chemotherapy: Follow?up results of the Setouchi Lung Cancer Group Study 1201
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Managing elderly patients presents several challenges because of age?related declines; however, age should not be the sole determinant for adjuvant treatment decisions in patients with non?small cell lung cancer (NSCLC). Moreover, age may affect the expression of 5?fluorouracil (5?FU) biomarkers. The present study assessed: i) The effect of age on the expression levels of 5?FU biomarkers by analyzing a public database; and ii) the ability of these biomarkers to predict clinical outcomes in elderly patients with NSCLC who underwent complete resection in the Setouchi Lung Cancer Group Study 1201 (SCLG1201) followed by S?1 adjuvant chemotherapy. Changes in gene expression levels across age groups were assessed by analyzing The Cancer Genome Atlas (TCGA) database. The expression of 5?FU biomarkers, including thymidylate synthase (TS), dihydropyrimidine dehydrogenase (DPD), orotate phosphoribosyltransferase, epidermal growth factor receptor (EGFR) and excision repair cross?complementation group 1 (ERCC1), were assessed via quantitative reverse?transcription PCR assays in 89 elderly patients (?75 years) with NSCLC who received adjuvant chemotherapy with oral fluoropyrimidine prodrug S?1 in the SLCG1201 trial. TCGA database analysis (n=955) showed that TS expression decreased significantly with aging, especially in the age group ?75. In the SCLG1201 trial, univariate analysis revealed that EGFR upregulation and TS downregulation were correlated with favorable recurrence?free survival (RFS) and overall survival (OS), respectively. Multivariate analysis demonstrated that pathological stage was an independent prognostic factor for both RFS and OS. EGFR mutations were associated with upregulation of DPD and EGFR, and downregulation of TS and ERCC1. In conclusion, although pathological stage is an independent prognostic factor for survival, EGFR upregulation and TS downregulation may be a greater predictor of clinical outcomes in elderly patients with NSCLC treated with S?1 adjuvant chemotherapy. The age?related decrease in TS expression supports the potential benefit of 5?FU therapies in elderly patients. Nonetheless, further research is warranted to validate these results.
en-copyright=
kn-copyright=
en-aut-name=SohJunichi
en-aut-sei=Soh
en-aut-mei=Junichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamamotoHiromasa
en-aut-sei=Yamamoto
en-aut-mei=Hiromasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OkumuraNorihito
en-aut-sei=Okumura
en-aut-mei=Norihito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SuzukiHiroyuki
en-aut-sei=Suzuki
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakataMasao
en-aut-sei=Nakata
en-aut-mei=Masao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FujiwaraToshiya
en-aut-sei=Fujiwara
en-aut-mei=Toshiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=GembaKenicehi
en-aut-sei=Gemba
en-aut-mei=Kenicehi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SanoIsao
en-aut-sei=Sano
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=FujinagaTakuji
en-aut-sei=Fujinaga
en-aut-mei=Takuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KataokaMasafumi
en-aut-sei=Kataoka
en-aut-mei=Masafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TerasakiYasuhiro
en-aut-sei=Terasaki
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=FujimotoNobukazu
en-aut-sei=Fujimoto
en-aut-mei=Nobukazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KataokaKazuhiko
en-aut-sei=Kataoka
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KosakaShinji
en-aut-sei=Kosaka
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=YamashitaMotohiro
en-aut-sei=Yamashita
en-aut-mei=Motohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=InokawaHidetoshi
en-aut-sei=Inokawa
en-aut-mei=Hidetoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=InoueMasaaki
en-aut-sei=Inoue
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=NakamuraHiroshige
en-aut-sei=Nakamura
en-aut-mei=Hiroshige
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=YamashitaYoshinori
en-aut-sei=Yamashita
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=TakahashiYuta
en-aut-sei=Takahashi
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=TorigoeHidejiro
en-aut-sei=Torigoe
en-aut-mei=Hidejiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=SatoHiroki
en-aut-sei=Sato
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=TomidaShuta
en-aut-sei=Tomida
en-aut-mei=Shuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=HottaKatsuyuki
en-aut-sei=Hotta
en-aut-mei=Katsuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=YoshiokaHiroshige
en-aut-sei=Yoshioka
en-aut-mei=Hiroshige
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=MoritaSatoshi
en-aut-sei=Morita
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=MatsuoKeitaro
en-aut-sei=Matsuo
en-aut-mei=Keitaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=SakamotoJunichi
en-aut-sei=Sakamoto
en-aut-mei=Junichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=DateHiroshi
en-aut-sei=Date
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
affil-num=1
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Thoracic Surgery, Kurashiki Central Hospital
kn-affil=
affil-num=4
en-affil=Department of Chest Surgery, Fukushima Medical University Hospital
kn-affil=
affil-num=5
en-affil=Department of General Thoracic Surgery, Kawasaki Medical School Hospital
kn-affil=
affil-num=6
en-affil=Department of Thoracic Surgery, Hiroshima City Hiroshima Citizens Hospital
kn-affil=
affil-num=7
en-affil=Department of Respiratory Medicine, Chugoku Central Hospital, Fukuyama, Hiroshima 720?0001, Japan; 8Department of Respiratory Surgery, Japanese Red Cross Nagasaki Genbaku Hospital
kn-affil=
affil-num=8
en-affil=Department of Respiratory Surgery, Japanese Red Cross Nagasaki Genbaku Hospital
kn-affil=
affil-num=9
en-affil=Department of General Thoracic Surgery, National Hospital Organization Nagara Medical Center
kn-affil=
affil-num=10
en-affil=Department of Surgery and Respiratory Center, Okayama Saiseikai General Hospital
kn-affil=
affil-num=11
en-affil=Department of Respiratory Surgery, Saga Medical Center Koseikan
kn-affil=
affil-num=12
en-affil=Department of Medical Oncology and Respiratory Medicine, Okayama Rosai Hospital
kn-affil=
affil-num=13
en-affil=Department of Thoracic Surgery, National Hospital Organization Iwakuni Clinical Center
kn-affil=
affil-num=14
en-affil=Department of Thoracic Surgery, Shimane Prefectural Central Hospital
kn-affil=
affil-num=15
en-affil=Department of Thoracic Surgery, National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=16
en-affil=Department of Thoracic Surgery, National Hospital Organization Yamaguchi?Ube Medical Center
kn-affil=
affil-num=17
en-affil=Department of Thoracic Surgery, Shimonoseki City Hospital
kn-affil=
affil-num=18
en-affil=Division of General Thoracic Surgery, Tottori University Hospital
kn-affil=
affil-num=19
en-affil=Department of Thoracic Surgery, National Hospital Organization Kure Medical Center and Chugoku Cancer Center
kn-affil=
affil-num=20
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=21
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=22
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=23
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=24
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=25
en-affil=Department of Thoracic Oncology, Kansai Medical University Hospital
kn-affil=
affil-num=26
en-affil=Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=27
en-affil=Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute
kn-affil=
affil-num=28
en-affil=Tokai Central Hospital
kn-affil=
affil-num=29
en-affil=Department of Thoracic Surgery, Kyoto University Hospital
kn-affil=
affil-num=30
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
en-keyword=non?small cell lung cancer
kn-keyword=non?small cell lung cancer
en-keyword=elderly patients
kn-keyword=elderly patients
en-keyword=adjuvant chemotherapy
kn-keyword=adjuvant chemotherapy
en-keyword=S?1
kn-keyword=S?1
en-keyword=EGFR
kn-keyword=EGFR
en-keyword=TP
kn-keyword=TP
en-keyword=TS
kn-keyword=TS
en-keyword=OPRT
kn-keyword=OPRT
en-keyword=ERCC1
kn-keyword=ERCC1
en-keyword=DPD
kn-keyword=DPD
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=10
article-no=
start-page=1215
end-page=1227
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241121
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Enhanced design of pCMViR-TSC plasmid vector for sustainably high cargo gene expression in mammalian cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The first-generation pCMViR-TSC, implemented through the promoter sandwich rule, yields 10- to 100-fold higher gene expression than the standard plasmid used with the CMV (cytomegalovirus) or CAG promoter. However, the vector’s shortcomings limit its utility to transient expression only, as it is not suitable for establishing stable transformants in mammalian cells. To overcome this weakness, we here introduce the improved plasmid vector pSAKA-4B, derived from pCMViR-TSC as a second-generation chromosome-insertable vector. This vector facilitates the linear entry of the expression unit into the TTAA site of DNA universally with transposase assistance. The vector is helpful for the indefinite expression of our target gene. The new vector system is proven here to be efficient in establishing stable transformants with a high likelihood of positive clones that exhibit significantly elevated expression levels of the delivered foreign gene. This system, alongside the first-generation vector, is therefore instrumental for diverse basic research endeavors concerning genes, proteins, cells, and animals, and potentially for clinical applications such as gene therapy.
en-copyright=
kn-copyright=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KinoshitaRie
en-aut-sei=Kinoshita
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TomonobuNahoko
en-aut-sei=Tomonobu
en-aut-mei=Nahoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SakaguchiYoshihiko
en-aut-sei=Sakaguchi
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FutamiJunichiro
en-aut-sei=Futami
en-aut-mei=Junichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamauchiAkira
en-aut-sei=Yamauchi
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MurataHitoshi
en-aut-sei=Murata
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YamamotoKen-ichi
en-aut-sei=Yamamoto
en-aut-mei=Ken-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TakahashiTetta
en-aut-sei=Takahashi
en-aut-mei=Tetta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=GoharaYuma
en-aut-sei=Gohara
en-aut-mei=Yuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OchiToshiki
en-aut-sei=Ochi
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=JiangFan
en-aut-sei=Jiang
en-aut-mei=Fan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KomalasariNi Luh Gede Yoni
en-aut-sei=Komalasari
en-aut-mei=Ni Luh Gede Yoni
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=ChenYouyi
en-aut-sei=Chen
en-aut-mei=Youyi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=RumaI Made Winarsa
en-aut-sei=Ruma
en-aut-mei=I Made Winarsa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=SumardikaI Wayan
en-aut-sei=Sumardika
en-aut-mei=I Wayan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=ZhouJin
en-aut-sei=Zhou
en-aut-mei=Jin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=HonjoTomoko
en-aut-sei=Honjo
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=KuribayashiFutoshi
en-aut-sei=Kuribayashi
en-aut-mei=Futoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=SagayamaKazumi
en-aut-sei=Sagayama
en-aut-mei=Kazumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=KondoEisaku
en-aut-sei=Kondo
en-aut-mei=Eisaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=InoueYusuke
en-aut-sei=Inoue
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
affil-num=1
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Microbiology, Tokushima Bunri University
kn-affil=
affil-num=5
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Biochemistry, Kawasaki Medical School
kn-affil=
affil-num=7
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=12
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=13
en-affil=Faculty of Medicine, Udayana University
kn-affil=
affil-num=14
en-affil=Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine
kn-affil=
affil-num=15
en-affil=Faculty of Medicine, Udayana University
kn-affil=
affil-num=16
en-affil=Faculty of Medicine, Udayana University
kn-affil=
affil-num=17
en-affil=Medical Oncology Department of Gastrointestinal Tumors, Liaoning Cancer Hospital & Institute, Cancer Hospital of the Dalian University of Technology
kn-affil=
affil-num=18
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=19
en-affil=Department of Biochemistry, Kawasaki Medical School
kn-affil=
affil-num=20
en-affil=Organization for Research and Innovation Strategy, Okayama University
kn-affil=
affil-num=21
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=22
en-affil=Division of Tumor Pathology, Near InfraRed Photo-Immuno-Therapy Research Institute, Kansai Medical University
kn-affil=
affil-num=23
en-affil=Faculty of Science and Technology, Division of Molecular Science, Gunma University
kn-affil=
en-keyword=Plasmid
kn-keyword=Plasmid
en-keyword=Gene engineering
kn-keyword=Gene engineering
en-keyword=Cancer
kn-keyword=Cancer
en-keyword=Cell culture
kn-keyword=Cell culture
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=1892
end-page=1893
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250807
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Assessing the Proportion of Clinical Trial Eligibility Criteria Expressible with Standard EHR Data Elements
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Patient recruitment for clinical trials often requires substantial human effort and experiences delays, leading to increased drug development costs. Leveraging electronic health records (EHRs) may improve the accuracy of estimates of potentially recruitable patients. We evaluated the feasibility of using EHRs by analyzing the proportion of computable eligibility criteria.
en-copyright=
kn-copyright=
en-aut-name=OkazakiRisa
en-aut-sei=Okazaki
en-aut-mei=Risa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KamikawaKunihisa
en-aut-sei=Kamikawa
en-aut-mei=Kunihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UnoHideki
en-aut-sei=Uno
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OkudaHiroto
en-aut-sei=Okuda
en-aut-mei=Hiroto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NambaShihoko
en-aut-sei=Namba
en-aut-mei=Shihoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KanoMitsunobu
en-aut-sei=Kano
en-aut-mei=Mitsunobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MoritaMizuki
en-aut-sei=Morita
en-aut-mei=Mizuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Division of Clinical Research of New Drugs and Therapeutics, Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Division of Clinical Research of New Drugs and Therapeutics, Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Graduate School of Interdisciplinary Science and Technology in Health Systems, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Interdisciplinary Science and Technology in Health Systems, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=86
cd-vols=
no-issue=
article-no=
start-page=103389
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Global trends in mortality related to pulmonary embolism: an epidemiological analysis of data from the World Health Organization mortality database from 2001 to 2023
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=HagiyaHideharu
en-aut-sei=Hagiya
en-aut-mei=Hideharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HaradaKo
en-aut-sei=Harada
en-aut-mei=Ko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishimuraYoshito
en-aut-sei=Nishimura
en-aut-mei=Yoshito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamamotoMaki
en-aut-sei=Yamamoto
en-aut-mei=Maki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NishimuraSayoko
en-aut-sei=Nishimura
en-aut-mei=Sayoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamamotoMichio
en-aut-sei=Yamamoto
en-aut-mei=Michio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NiimuraTakahiro
en-aut-sei=Niimura
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OsakiYuka
en-aut-sei=Osaki
en-aut-mei=Yuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=VuQuynh Thi
en-aut-sei=Vu
en-aut-mei=Quynh Thi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=FujiiMariko
en-aut-sei=Fujii
en-aut-mei=Mariko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=SakoNanami
en-aut-sei=Sako
en-aut-mei=Nanami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TakedaTatsuaki
en-aut-sei=Takeda
en-aut-mei=Tatsuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=HamanoHirofumi
en-aut-sei=Hamano
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=ZamamiYoshito
en-aut-sei=Zamami
en-aut-mei=Yoshito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KoyamaToshihiro
en-aut-sei=Koyama
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Department of Infectious Diseases, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Brookdale Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai
kn-affil=
affil-num=3
en-affil=Division of Hematology and Oncology, Mayo Clinic
kn-affil=
affil-num=4
en-affil=Department of Health Data Science, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Health Data Science, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Human Sciences, Osaka University
kn-affil=
affil-num=7
en-affil=Department of Clinical Pharmacology and Therapeutics, Institute of Biomedical Sciences, Tokushima University Graduate School
kn-affil=
affil-num=8
en-affil=Department of Health Data Science, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Health Data Science, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Health Data Science, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Health Data Science, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Center for Education in Medicine and Health Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Pharmacy, Medical Development Field, Okayama University
kn-affil=
affil-num=14
en-affil=Department of Pharmacy, Medical Development Field, Okayama University
kn-affil=
affil-num=15
en-affil=Department of Health Data Science, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Pulmonary embolism
kn-keyword=Pulmonary embolism
en-keyword=Mortality
kn-keyword=Mortality
en-keyword=WHO
kn-keyword=WHO
en-keyword=Global trends
kn-keyword=Global trends
END
start-ver=1.4
cd-journal=joma
no-vol=6
cd-vols=
no-issue=1
article-no=
start-page=654
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250812
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Biogeochemical impact of nickel and urea in the great oxidation event
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The Great Oxidation Event marks the first substantial increase in atmospheric oxygen on Earth. Despite the oxygenic photosynthesis that emerged hundreds of million years before this event, the specific biogeochemical mechanisms responsible for maintaining low oxygen levels for an extended period remain elusive. Here, we show the critical role of urea as a nitrogen source for cyanobacteria, the cascading impact of nickel on abiotic urea production, and their combined effects on the proliferation of cyanobacteria leading to the great oxidation event. Urea formation was experimentally evaluated under simulated Archean conditions and cyanobacterial growth was monitored providing urea as the nitrogen source. Our findings demonstrate that urea can be produced in the Archean cyanobacterial habitats with UV-C irradiation, shedding light on the controversy regarding the evolution of nitrogen-fixing enzymes in primitive cyanobacteria. We propose that environmental conditions in the early Archean, characterized by elevated urea and nickel concentration, may have hindered cyanobacterial expansion, contributing to the delay between the evolution of oxygenic photosynthesis and the onset of the great oxidation event.
en-copyright=
kn-copyright=
en-aut-name=RatnayakeDilan M.
en-aut-sei=Ratnayake
en-aut-mei=Dilan M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaRyoji
en-aut-sei=Tanaka
en-aut-mei=Ryoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakamuraEizo
en-aut-sei=Nakamura
en-aut-mei=Eizo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=2
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=3
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=68
cd-vols=
no-issue=
article-no=
start-page=1319
end-page=1323
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Method for predicting crack size using amplitude change in titanium alloy under bending vibration
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The natural frequency of a material decreases owing to the presence of cracks. Thus, when a crack initiates in a material under vibration, the amplitude of the vibration changes with the crack propagation. In this study, we investigated a method for predicting crack size using the amplitude change in a plate specimen of a titanium alloy under bending vibration. The bending displacement amplitudes were measured using high-speed camera images of the specimens. The crack sizes were measured using optical microscopy images of plastic replicas of the specimen surfaces that were obtained after interrupting tests at specified intervals. By using the relationship between the total area of the cracks and bending displacement amplitude for tests at two different vibration frequencies as well as the relationship between the vibration frequency and bending displacement amplitude for an undamaged specimen, the bending displacement amplitude at any vibration frequency can be monitored to predict the total area of the cracks.
en-copyright=
kn-copyright=
en-aut-name=SakamotoJunji
en-aut-sei=Sakamoto
en-aut-mei=Junji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TadaNaoya
en-aut-sei=Tada
en-aut-mei=Naoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UemoriTakeshi
en-aut-sei=Uemori
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Okayama University, Faculty of Environmental, Life, Natural Science and Technology
kn-affil=
affil-num=2
en-affil=Okayama University, Faculty of Environmental, Life, Natural Science and Technology
kn-affil=
affil-num=3
en-affil=Okayama University, Faculty of Environmental, Life, Natural Science and Technology
kn-affil=
en-keyword=Vibration
kn-keyword=Vibration
en-keyword=Fatigue crack propagation
kn-keyword=Fatigue crack propagation
en-keyword=Non-destructive inspection
kn-keyword=Non-destructive inspection
en-keyword=Titanium alloy
kn-keyword=Titanium alloy
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250726
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Relationship between maternal body composition changes and heavy for date infants in pregnant women with diabetes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Aims/Introduction: Maternal hyperglycemia is associated with heavy for date (HFD) infants. Considering the association between body composition and hyperglycemia, we investigated the changes in maternal body composition and their relationship with HFD infants in pregnant women with diabetes.
Materials and Methods: Body composition was measured during pregnancy using a bioelectrical impedance analysis system. This retrospective study included 151 pregnant women; 27 women had type 1 diabetes mellitus (DM), 21 had type 2 DM, 101 were diagnosed with gestational DM, and 2 had overt DM. The number of HFD infants was 40.
Results: In the non-type 1 DM group, change in fat mass (ΔFM) (P?0.01) and pre-pregnancy BMI (P?0.05) were risk factors for HFD. In the insulin group, ΔFM, pre-pregnancy BMI, and age (all P?0.05) were risk factors for HFD. The area under the curve was 0.813 for the predictive model combined with ΔFM and pre-pregnancy BMI in the non-type 1 DM group and 0.818 for the model combined with ΔFM, pre-pregnancy BMI, and age in the insulin group.
Conclusions: The combination of body composition parameters and clinical data may predict HFD in pregnant women with diabetes.
en-copyright=
kn-copyright=
en-aut-name=EtoEriko
en-aut-sei=Eto
en-aut-mei=Eriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KatoMasakazu
en-aut-sei=Kato
en-aut-mei=Masakazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KirinoSatoe
en-aut-sei=Kirino
en-aut-mei=Satoe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KuriyamaChiaki
en-aut-sei=Kuriyama
en-aut-mei=Chiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SakataSyujiro
en-aut-sei=Sakata
en-aut-mei=Syujiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakatoHikari
en-aut-sei=Nakato
en-aut-mei=Hikari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MishimaSakurako
en-aut-sei=Mishima
en-aut-mei=Sakurako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OhiraAkiko
en-aut-sei=Ohira
en-aut-mei=Akiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MasuyamaHisashi
en-aut-sei=Masuyama
en-aut-mei=Hisashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=
kn-affil=
affil-num=4
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Fat mass gain
kn-keyword=Fat mass gain
en-keyword=Heavy for date
kn-keyword=Heavy for date
en-keyword=Maternal body composition
kn-keyword=Maternal body composition
END