このエントリーをはてなブックマークに追加


ID 33496
フルテキストURL
著者
Malafosse, Bruno de
Yassine, Adnan LMAH Université du Havre
抄録

In this paper we first recall some properties of triangle Toeplitz matrices of the Banach algebra Sr associated with power series. Then for boolean Toeplitz matrices M we explicitly calculate the product MN that gives the number of ways with N arcs associated with M. We compute the matrix BN (i, j), where B (i, j) is an infinite matrix whose the nonzero entries are on the diagonals m − n = i or m − n = j. Next among other things we consider the infinite boolean matrix B+ that have infinitely many diagonals with nonzero entries and we explicitly calculate (B+)N. Finally we give necessary and sufficient conditions for an infinite matrix M to map c (BN (i, 0)) to c.

キーワード
Matrix transformations
Banach algebra
boolean infinite matrix
optimization
発行日
2010-01
出版物タイトル
Mathematical Journal of Okayama University
52巻
1号
出版者
Department of Mathematics, Faculty of Science, Okayama University
開始ページ
179
終了ページ
198
ISSN
0030-1566
NCID
AA00723502
資料タイプ
学術雑誌論文
言語
英語
論文のバージョン
publisher
査読
有り
Submission Path
mjou/vol52/iss1/15
JaLCDOI