
| ID | 60873 |
| フルテキストURL | |
| 著者 |
Chinen, Koji
Department of Mathematics, School of Science and Engineering, Kindai University
|
| 抄録 | In this note, we establish an analog of the Mallows-Sloane bound for Type III formal weight enumerators. This completes the bounds for all types (Types I through IV) in synthesis of our previous results. Next we show by using the binomial moments that there exists a family of polynomials divisible by three, which are not related to linear codes but are invariant under the MacWilliams transform for the value 3/2. We also discuss some properties of the zeta functions for such polynomials.
|
| キーワード | Binomial moment
Divisible code
Invariant polynomial ring
Zeta function for codes
Riemann hypothesis
|
| 備考 | Mathematics Subject Classification. Primary 11T71; Secondary 13A50, 12D10.
|
| 発行日 | 2021-01
|
| 出版物タイトル |
Mathematical Journal of Okayama University
|
| 巻 | 63巻
|
| 号 | 1号
|
| 出版者 | Department of Mathematics, Faculty of Science, Okayama University
|
| 開始ページ | 175
|
| 終了ページ | 182
|
| ISSN | 0030-1566
|
| NCID | AA00723502
|
| 資料タイプ |
学術雑誌論文
|
| 言語 |
英語
|
| 著作権者 | Copyright©2021 by the Editorial Board of Mathematical Journal of Okayama University
|
| 論文のバージョン | publisher
|
| 査読 |
有り
|
| Submission Path | mjou/vol63/iss1/11
|