start-ver=1.4
cd-journal=joma
no-vol=779
cd-vols=
no-issue=
article-no=
start-page=152453
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250912
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=1,2-naphthoquinone enhances IFN-γ-induced MHC-I expression in dendritic cells, thereby inducing CD8 T cell activation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Dendritic cells play a crucial role in immune responses by capturing pathogens and presenting antigens to T cells via major histocompatibility complex (MHC) molecules, thus triggering adaptive immune responses. 1,2-naphthoquinone (1,2-NQ), a quinone found in diesel exhaust and cigarette smoke, has various physiological functions. In this study, we investigated the effect of 1,2-NQ on the expression of antigen presentation-related molecules in the dendritic cell line DC2.4. The results revealed that 1,2-NQ enhanced the IFN-γ-induced upregulation of MHC-I expression at the transcriptional level. Moreover, it upregulated the expression of NLRC5, a transcriptional activator of MHC-I. 1,2-NQ is a reactive oxygen species (ROS) producing reagent. The 1,2-NQ-induced upregulation of MHC-I expression and downregulation of MHC-II expression were abolished by the ROS scavenger N-acetylcysteine. Similar effects on MHC expression were also observed with ROS-inducing reagents, such as paraquat and diethyl maleate. In addition, dendritic cells stimulated with 1,2-NQ exhibited enhanced efficacy in CD8 T cell activation, which was accompanied by increased IFN-γ production by T cells. These findings demonstrate that 1,2-NQ enhances the IFN-γ-induced activation of dendritic cells and promotes the activation of CD8 T cells.
en-copyright=
kn-copyright=
en-aut-name=FurutaKazuyuki
en-aut-sei=Furuta
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyazatoKanon
en-aut-sei=Miyazato
en-aut-mei=Kanon
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KobataKai
en-aut-sei=Kobata
en-aut-mei=Kai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IshikawaKazuya
en-aut-sei=Ishikawa
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KaitoChikara
en-aut-sei=Kaito
en-aut-mei=Chikara
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=1,2-Napthoquinone
kn-keyword=1,2-Napthoquinone
en-keyword=Dendritic cell
kn-keyword=Dendritic cell
en-keyword=IFN-γ
kn-keyword=IFN-γ
en-keyword=MHC-I
kn-keyword=MHC-I
en-keyword=CD8 T cell
kn-keyword=CD8 T cell
END
start-ver=1.4
cd-journal=joma
no-vol=33
cd-vols=
no-issue=8
article-no=
start-page=3474
end-page=3475
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250806
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Gene replacement therapy for centronuclear myopathy: A breakthrough in complex genetic muscle disease
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=TakedaTetsuya
en-aut-sei=Takeda
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Biochemistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=77
cd-vols=
no-issue=8
article-no=
start-page=522
end-page=532
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240625
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Synthesis and biochemical characterization of naphthoquinone derivatives targeting bacterial histidine kinases
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Waldiomycin is an inhibitor of histidine kinases (HKs). Although most HK inhibitors target the ATP-binding region, waldiomycin binds to the intracellular dimerization domain (DHp domain) with its naphthoquinone moiety presumed to interact with the conserved H-box region. To further develop inhibitors targeting the H-box, various 2-aminonaphthoquinones with cyclic, aliphatic, or aromatic amino groups and naphtho [2,3-d] isoxazole-4,9-diones were synthesized. These compounds were tested for their inhibitory activity (IC50) against WalK, an essential HK for Bacillus subtilis growth, and their minimum inhibitory concentrations (MIC) against B. subtilis. As a result, 11 novel HK inhibitors were obtained as naphthoquinone derivatives (IC50: 12.6–305 µM, MIC: 0.5–128 µg ml−1). The effect of representative compounds on the expression of WalK/WalR regulated genes in B. subtilis was investigated. Four naphthoquinone derivatives induced the expression of iseA (formerly yoeB), whose expression is negatively regulated by the WalK/WalR system. This suggests that these compounds inhibit WalK in B. subtilis cells, resulting in antibacterial activity. Affinity selection/mass spectrometry analysis was performed to identify whether these naphthoquinone derivatives interact with WalK in a manner similar to waldiomycin. Three compounds were found to competitively inhibit the binding of waldiomycin to WalK, suggesting that they bind to the H-box region conserved in HKs and inhibit HK activity.
en-copyright=
kn-copyright=
en-aut-name=IshikawaTeruhiko
en-aut-sei=Ishikawa
en-aut-mei=Teruhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=EguchiYoko
en-aut-sei=Eguchi
en-aut-mei=Yoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IgarashiMasayuki
en-aut-sei=Igarashi
en-aut-mei=Masayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OkajimaToshihide
en-aut-sei=Okajima
en-aut-mei=Toshihide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MitaKohei
en-aut-sei=Mita
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamasakiYuri
en-aut-sei=Yamasaki
en-aut-mei=Yuri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SumikuraKaho
en-aut-sei=Sumikura
en-aut-mei=Kaho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OkumuraTaisei
en-aut-sei=Okumura
en-aut-mei=Taisei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TabuchiYuna
en-aut-sei=Tabuchi
en-aut-mei=Yuna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HayashiChigusa
en-aut-sei=Hayashi
en-aut-mei=Chigusa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=PasquaMartina
en-aut-sei=Pasqua
en-aut-mei=Martina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ColucciaMarco
en-aut-sei=Coluccia
en-aut-mei=Marco
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=ProssedaGianni
en-aut-sei=Prosseda
en-aut-mei=Gianni
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=ColonnaBianca
en-aut-sei=Colonna
en-aut-mei=Bianca
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KohayakawaChie
en-aut-sei=Kohayakawa
en-aut-mei=Chie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=TaniAkiyoshi
en-aut-sei=Tani
en-aut-mei=Akiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=HarutaJun-ichi
en-aut-sei=Haruta
en-aut-mei=Jun-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=UtsumiRyutaro
en-aut-sei=Utsumi
en-aut-mei=Ryutaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
affil-num=1
en-affil=Graduate School of Education, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Science and Technology on Food Safety, Faculty of Biology-Oriented Science and Technology, Kindai University
kn-affil=
affil-num=3
en-affil=Institute of Microbial Chemistry (BIKAKEN)
kn-affil=
affil-num=4
en-affil=SANKEN (The Institute of Scientific and Industrial Research), Osaka University
kn-affil=
affil-num=5
en-affil=Graduate School of Education, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Education, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Education, Okayama University
kn-affil=
affil-num=8
en-affil=Graduate School of Education, Okayama University
kn-affil=
affil-num=9
en-affil=Graduate School of Education, Okayama University
kn-affil=
affil-num=10
en-affil=Institute of Microbial Chemistry (BIKAKEN)
kn-affil=
affil-num=11
en-affil=Istituto Pasteur Italy, Department of Biology and Biotechnology, “C. Darwin”, Sapienza University of Rome
kn-affil=
affil-num=12
en-affil=Istituto Pasteur Italy, Department of Biology and Biotechnology, “C. Darwin”, Sapienza University of Rome
kn-affil=
affil-num=13
en-affil=Istituto Pasteur Italy, Department of Biology and Biotechnology, “C. Darwin”, Sapienza University of Rome
kn-affil=
affil-num=14
en-affil=Istituto Pasteur Italy, Department of Biology and Biotechnology, “C. Darwin”, Sapienza University of Rome
kn-affil=
affil-num=15
en-affil=Department of Lead Exploration Units, Graduate School of Pharmaceutical Sciences, Osaka University
kn-affil=
affil-num=16
en-affil=Compound Library Screening Center, Graduate School of Pharmaceutical Sciences, Osaka University
kn-affil=
affil-num=17
en-affil=Department of Lead Exploration Units, Graduate School of Pharmaceutical Sciences, Osaka University
kn-affil=
affil-num=18
en-affil=SANKEN (The Institute of Scientific and Industrial Research), Osaka University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=1
end-page=11
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250707
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Dual roles of suberin deposition at the endodermal Casparian strip in manganese uptake of rice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Rice roots are characterized by having two Casparian strips (CSs) at the exodermis and endodermis, where transporters for mineral nutrients are expressed. However, the exact role of the CS in expression of the transporters and subsequent nutrient uptake is poorly understood. Here, we first investigated the role of the CS in manganese (Mn) uptake by using a rice mutant (oscasp1) defective in formation of the endodermal CS. Knockout of OsCASP1 resulted in decreased Mn uptake under limited Mn conditions, but increased Mn uptake at high Mn concentration. Immunostaining revealed that knockout of OsCASP1 did not affect the cell specificity of localization of two transporters (OsNramp5 and OsMTP9) required for Mn uptake, but decreased the protein abundance of these transporters at the endodermis regardless of Mn concentrations tested. Furthermore, we found that overaccumulation of suberin at the endodermis of the mutants suppressed the expression of two transporters; the expression of the two transporters was only observed in the endodermal cells without suberin deposition, but not in the cells with suberin deposition. Taken together, our results indicate that there are two roles for the CS in Mn uptake; maintaining normal expression of the transporters at limited Mn concentration and preventing Mn diffusion to the stele at high Mn concentration.
en-copyright=
kn-copyright=
en-aut-name=FujiiToshiki
en-aut-sei=Fujii
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamajiNaoki
en-aut-sei=Yamaji
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MaJian Feng
en-aut-sei=Ma
en-aut-mei=Jian Feng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
en-keyword=Casparian strip
kn-keyword=Casparian strip
en-keyword=endodermis
kn-keyword=endodermis
en-keyword=manganese transporter
kn-keyword=manganese transporter
en-keyword=rice
kn-keyword=rice
en-keyword=root
kn-keyword=root
en-keyword=suberin deposition
kn-keyword=suberin deposition
END
start-ver=1.4
cd-journal=joma
no-vol=33
cd-vols=
no-issue=3
article-no=
start-page=99
end-page=117
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240429
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Generation and characterization of cerebellar granule neurons specific knockout mice of Golli-MBP
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Golli–myelin basic proteins, encoded by the myelin basic protein gene, are widely expressed in neurons and oligodendrocytes in the central nervous system. Further, prior research has shown that Golli–myelin basic protein is necessary for myelination and neuronal maturation during central nervous system development. In this study, we established Golli–myelin basic protein-floxed mice to elucidate the cell-type-specific effects of Golli–myelin basic protein knockout through the generation of conditional knockout mice (Golli–myelin basic proteinsfl/fl; E3CreN), in which Golli–myelin basic proteins were specifically deleted in cerebellar granule neurons, where Golli–myelin basic proteins are expressed abundantly in wild-type mice. To investigate the role of Golli–myelin basic proteins in cerebellar granule neurons, we further performed histopathological analyses of these mice, with results indicating no morphological changes or degeneration of the major cellular components of the cerebellum. Furthermore, behavioral analysis showed that Golli–myelin basic proteinsfl/fl; E3CreN mice were healthy and did not display any abnormal behavior. These results suggest that the loss of Golli–myelin basic proteins in cerebellar granule neurons does not lead to cerebellar perturbations or behavioral abnormalities. This mouse model could therefore be employed to analyze the effect of Golli–myelin basic protein deletion in specific cell types of the central nervous system, such as other neuronal cells and oligodendrocytes, or in lymphocytes of the immune system.
en-copyright=
kn-copyright=
en-aut-name=MiyazakiHaruko
en-aut-sei=Miyazaki
en-aut-mei=Haruko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishiokaSaki
en-aut-sei=Nishioka
en-aut-mei=Saki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamanakaTomoyuki
en-aut-sei=Yamanaka
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AbeManabu
en-aut-sei=Abe
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ImamuraYukio
en-aut-sei=Imamura
en-aut-mei=Yukio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MiyasakaTomohiro
en-aut-sei=Miyasaka
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KakudaNobuto
en-aut-sei=Kakuda
en-aut-mei=Nobuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OohashiToshitaka
en-aut-sei=Oohashi
en-aut-mei=Toshitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ShimogoriTomomi
en-aut-sei=Shimogori
en-aut-mei=Tomomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YamakawaKazuhiro
en-aut-sei=Yamakawa
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=IkawaMasahito
en-aut-sei=Ikawa
en-aut-mei=Masahito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NukinaNobuyuki
en-aut-sei=Nukina
en-aut-mei=Nobuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Molecular Biology and Biochemistry, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University
kn-affil=
affil-num=3
en-affil=Laboratory of Structural Neuropathology, Graduate School of Brain Science, Doshisha University
kn-affil=
affil-num=4
en-affil=Department of Animal Model Development, Brain Research Institute, Niigata University
kn-affil=
affil-num=5
en-affil=Laboratory of Structural Neuropathology, Graduate School of Brain Science, Doshisha University
kn-affil=
affil-num=6
en-affil=Faculty of Life and Medical Sciences, Doshisha University
kn-affil=
affil-num=7
en-affil=Faculty of Life and Medical Sciences, Doshisha University
kn-affil=
affil-num=8
en-affil=Department of Molecular Biology and Biochemistry, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science
kn-affil=
affil-num=10
en-affil=Laboratory for Neurogenetics, RIKEN Center for Brain Science
kn-affil=
affil-num=11
en-affil=Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University
kn-affil=
affil-num=12
en-affil=Laboratory of Structural Neuropathology, Graduate School of Brain Science, Doshisha University
kn-affil=
en-keyword=Golli-MBP
kn-keyword=Golli-MBP
en-keyword=Cerebellar granule neuron
kn-keyword=Cerebellar granule neuron
en-keyword=CRISPR/Cas9
kn-keyword=CRISPR/Cas9
en-keyword=Conditional knockout
kn-keyword=Conditional knockout
END
start-ver=1.4
cd-journal=joma
no-vol=6
cd-vols=
no-issue=1
article-no=
start-page=e70146
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250522
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Case of Gastric Atypical Lipomatous Tumor/Well‐Differentiated Liposarcoma With Endoscopic Morphological Changes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Atypical lipomatous tumor/well-differentiated liposarcoma is a locally aggressive mesenchymal neoplasm composed of adipocytes and stromal cells. Gastric cases are exceedingly rare, and their malignant potential remains unclear. We report a case of a woman in her 60s who was found to have multiple submucosal tumor-like lesions of the stomach. Over time, the tumors increased in size, requiring a laparoscopic partial gastrectomy. Histological examination revealed a tumor composed of both fatty tissue and fibrous stroma with nuclear atypia. Immunohistochemistry showed positivity for CDK4 and MDM2, and fluorescence in situ hybridization confirmed MDM2 amplification, leading to a diagnosis of atypical lipomatous tumor/well-differentiated liposarcoma. This case presented an unusual gastric manifestation, with multiple submucosal tumor-like lesions on endoscopy and exhibiting progressive morphological changes over several years.
en-copyright=
kn-copyright=
en-aut-name=OmoteRika
en-aut-sei=Omote
en-aut-mei=Rika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OmoteShizuma
en-aut-sei=Omote
en-aut-mei=Shizuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SonobeHiroshi
en-aut-sei=Sonobe
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HamanoRyosuke
en-aut-sei=Hamano
en-aut-mei=Ryosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ToyokawaTatsuya
en-aut-sei=Toyokawa
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OtsukaShinya
en-aut-sei=Otsuka
en-aut-mei=Shinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YanaiHiroyuki
en-aut-sei=Yanai
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=InagakiMasaru
en-aut-sei=Inagaki
en-aut-mei=Masaru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YamamotoHidetaka
en-aut-sei=Yamamoto
en-aut-mei=Hidetaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Diagnostic Pathology, NHO Fukuyama Medical Center
kn-affil=
affil-num=2
en-affil=Department of Internal Medicine, Fukuyama Minami Hospital
kn-affil=
affil-num=3
en-affil=Department of Diagnostic Pathology, NHO Fukuyama Medical Center
kn-affil=
affil-num=4
en-affil=Department of Surgery, NHO Fukuyama Medical Center
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology, NHO Fukuyama Medical Center
kn-affil=
affil-num=6
en-affil=Department of Surgery, NHO Fukuyama Medical Center
kn-affil=
affil-num=7
en-affil=Department of Pathology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Pathology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Surgery, NHO Fukuyama Medical Center
kn-affil=
affil-num=10
en-affil=Department of Pathology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=atypical lipomatous tumor
kn-keyword=atypical lipomatous tumor
en-keyword=CDK4
kn-keyword=CDK4
en-keyword=MDM2
kn-keyword=MDM2
en-keyword=stomach
kn-keyword=stomach
en-keyword=well-differentiated liposarcoma
kn-keyword=well-differentiated liposarcoma
END
start-ver=1.4
cd-journal=joma
no-vol=54
cd-vols=
no-issue=
article-no=
start-page=104719
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Near-infrared photoimmunotherapy for recurrent cancer at the base of the tongue
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Near-infrared photoimmunotherapy (NIR-PIT) is a novel therapeutic approach that targets epidermal growth factor receptor (EGFR). In NIR-PIT, administration of cetuximab sarotalocan sodium is followed by laser irradiation of the affected area, which theoretically should induce tumor cell death. However, residual tumors are occasionally observed. This study investigated factors that influence the therapeutic efficacy of NIR-PIT in cases of recurrence of cancer at the base of the tongue. Six patients undergoing 11 treatment cycles were analyzed, focusing on the puncture interval of cylindrical diffusers and the expression of EGFR in tumors. The results demonstrated that a puncture interval of ≤12 mm significantly enhanced therapeutic efficacy, with one case achieving complete response. EGFR expression was positive in all cases and expression score showed no significant change between before and after treatment. These findings suggest that puncture interval plays a critical role in therapeutic outcomes, whereas EGFR expression may not directly influence treatment efficacy.
en-copyright=
kn-copyright=
en-aut-name=MakinoTakuma
en-aut-sei=Makino
en-aut-mei=Takuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishikoriAsami
en-aut-sei=Nishikori
en-aut-mei=Asami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SatoYasuharu
en-aut-sei=Sato
en-aut-mei=Yasuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NaoiYuto
en-aut-sei=Naoi
en-aut-mei=Yuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MatsumotoJunya
en-aut-sei=Matsumoto
en-aut-mei=Junya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FujimotoShohei
en-aut-sei=Fujimoto
en-aut-mei=Shohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=AndoMizuo
en-aut-sei=Ando
en-aut-mei=Mizuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Otolaryngology - Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=3
en-affil=Department of Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=4
en-affil=Department of Otolaryngology - Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Otolaryngology - Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Otolaryngology - Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Otolaryngology - Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=ear-infrared photoimmunotherapy (NIR-PIT)
kn-keyword=ear-infrared photoimmunotherapy (NIR-PIT)
en-keyword=Epidermal growth factor receptor (EGFR)
kn-keyword=Epidermal growth factor receptor (EGFR)
en-keyword=Cylindrical diffuser
kn-keyword=Cylindrical diffuser
en-keyword=Puncture interval
kn-keyword=Puncture interval
en-keyword=Base of tongue cancer
kn-keyword=Base of tongue cancer
END
start-ver=1.4
cd-journal=joma
no-vol=10
cd-vols=
no-issue=1
article-no=
start-page=158
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250719
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Oncolytic virus-mediated p53 activation boosts the antitumor immunity of a p53-transduced dendritic cell vaccine
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Dendritic cells (DCs) transduced with replication-deficient, wild-type human p53-expressing adenovirus Ad-p53 (Ad-p53 DCs) induce p53-targeting cytotoxic T lymphocytes (CTLs). However, the antitumor efficacy of Ad-p53 DCs is diminished by weak p53 immunogenicity in tumor cells and poor immune responses. We developed a p53-armed oncolytic adenovirus, OBP-702, to induce tumor-specific p53 expression and antitumor immune response, suggesting a role for OBP-702 in enhancing the antitumor efficacy of Ad-p53 DCs. The combined effect of Ad-p53 DCs and OBP-702 was investigated using murine colon cancer (CC) tumor models. Ad-p53 DCs were obtained by stimulating bone marrow-derived cells with granulocyte-macrophage colony-stimulating factor, interleukin-4, and Ad-p53. Subcutaneous tumor models of CT26 (p53 wild-type) and MC38 (p53 mutant-type) murine CC cell lines were used to evaluate the therapeutic potential of combination therapy in the terms of tumor growth, abscopal effect, antitumor immune response, and presentation of p53 peptides in tumor cells. Combination therapy with Ad-p53 DCs and OBP-702 significantly suppressed the growth of p53-intact CT26 tumors at treated and untreated sites by inducing tumor-infiltration of CD8+ CTLs and CD11c+ DCs. OBP-702-infected tumor cells presented human p53 epitopes in the context of major histocompatibility complex molecules, which were recognized by CTLs induced by Ad-p53 DCs. Combination therapy significantly suppressed the growth of p53-mutant MC38 tumors by activating the antitumor immune response. Our results suggest that OBP-702-mediated presentation of p53 epitopes on tumor cells enhances the antitumor efficacy of Ad-p53 DCs against murine CC tumors by attracting p53-targeting CTLs.
en-copyright=
kn-copyright=
en-aut-name=YamadaMotohiko
en-aut-sei=Yamada
en-aut-mei=Motohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TazawaHiroshi
en-aut-sei=Tazawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SuemoriKanto
en-aut-sei=Suemori
en-aut-mei=Kanto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OkadaNaohiro
en-aut-sei=Okada
en-aut-mei=Naohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KajiwaraYoshinori
en-aut-sei=Kajiwara
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShojiRyohei
en-aut-sei=Shoji
en-aut-mei=Ryohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NagaiYasuo
en-aut-sei=Nagai
en-aut-mei=Yasuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=InoueHiroaki
en-aut-sei=Inoue
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HashimotoNaoyuki
en-aut-sei=Hashimoto
en-aut-mei=Naoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KanayaNobuhiko
en-aut-sei=Kanaya
en-aut-mei=Nobuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KikuchiSatoru
en-aut-sei=Kikuchi
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KurodaShinji
en-aut-sei=Kuroda
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MichiueHiroyuki
en-aut-sei=Michiue
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=UrataYasuo
en-aut-sei=Urata
en-aut-mei=Yasuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KagawaShunsuke
en-aut-sei=Kagawa
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Neutron Therapy Research Center, Okayama University Hospital
kn-affil=
affil-num=14
en-affil=Oncolys BioPharma, Inc
kn-affil=
affil-num=15
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=199
cd-vols=
no-issue=
article-no=
start-page=108027
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Real-world status of multimodal treatment of Stage IIIA-N2 non-small cell lung cancer in Japan: Results from the SOLUTION study, a non-interventional, multicenter cohort study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objectives: There is limited consensus on resectability criteria for Stage IIIA-N2 non-small cell lung cancer (NSCLC). We examined the patient characteristics, N2 status, treatment decisions, and clinical outcomes according to the treatment modality for Stage IIIA-N2 NSCLC in Japan.
Materials and methods: Patients with Stage IIIA-N2 NSCLC in Japan were consecutively registered in the SOLUTION study between 2013 and 2014. Patients were divided according to treatment (chemoradiotherapy [CRT], surgery + perioperative therapy [neoadjuvant and/or adjuvant therapy], surgery alone). Demographic characteristics, N2 status (number and morphological features), pathological information, and treatments were analyzed descriptively. Overall survival (OS), progression-free survival (PFS), and disease-free survival (DFS) were estimated using the Kaplan–Meier method.
Results: Of 227 patients registered, 133 underwent CRT, 56 underwent surgery + perioperative therapy, and 38 underwent surgery alone. The physicians reported the following reasons for unresectability for 116 of 133 CRT patients: large number of metastatic lymph nodes (70.7 %), extranodal infiltration (25.0 %), poor surgical tolerance (19.0 %), or other reasons (18.1 %). CRT was more frequently performed in patients whose lymph nodes had an infiltrative appearance (64.3 %) and was the predominant treatment in patients with multiple involved stations (discrete: 60.0 %; infiltrative: 80.4 %). Distant metastasis with/without local progression was found in 50.4 %, 50.0 %, and 36.8 % of patients in the CRT, surgery + perioperative therapy, and surgery alone groups, respectively. The respective 3-year OS and DFS/PFS rates (median values) were as follows: surgery + perioperative therapy—61.9 % (not reached) and 37.1 % (22.4 months; DFS); CRT group—42.2 % (31.9 months) and 26.8 % (12.0 months; PFS); surgery alone group—37.7 % (26.5 months) and 28.7 % (12.6 months; DFS).
Conclusion: This study has illuminated the real-world decision rules for choosing between surgical and non-surgical approaches in patients with Stage IIIA-N2 NSCLC. Our landmark data could support treatment decision making for using immune checkpoint inhibitors and targeted therapy for driver oncogenes in the perioperative therapy era.
en-copyright=
kn-copyright=
en-aut-name=HorinouchiHidehito
en-aut-sei=Horinouchi
en-aut-mei=Hidehito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MurakamiHaruyasu
en-aut-sei=Murakami
en-aut-mei=Haruyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HaradaHideyuki
en-aut-sei=Harada
en-aut-mei=Hideyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SobueTomotaka
en-aut-sei=Sobue
en-aut-mei=Tomotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KatoTomohiro
en-aut-sei=Kato
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AtagiShinji
en-aut-sei=Atagi
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KozukiToshiyuki
en-aut-sei=Kozuki
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TokitoTakaaki
en-aut-sei=Tokito
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OizumiSatoshi
en-aut-sei=Oizumi
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SeikeMasahiro
en-aut-sei=Seike
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OhashiKadoaki
en-aut-sei=Ohashi
en-aut-mei=Kadoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MioTadashi
en-aut-sei=Mio
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=SoneTakashi
en-aut-sei=Sone
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=IwaoChikako
en-aut-sei=Iwao
en-aut-mei=Chikako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=IwaneTakeshi
en-aut-sei=Iwane
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=KotoRyo
en-aut-sei=Koto
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=TsuboiMasahiro
en-aut-sei=Tsuboi
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
affil-num=1
en-affil=Department of Thoracic Oncology, National Cancer Center Hospital
kn-affil=
affil-num=2
en-affil=Department of Thoracic Oncology, Shizuoka Cancer Center
kn-affil=
affil-num=3
en-affil=Division of Radiation Therapy, Shizuoka Cancer Center
kn-affil=
affil-num=4
en-affil=Division of Environmental Medicine and Population Sciences, Graduate School of Medicine, Osaka University
kn-affil=
affil-num=5
en-affil=Department of Respiratory Medicine, National Hospital Organization Himeji Medical Cente
kn-affil=
affil-num=6
en-affil=Department of Thoracic Oncology, National Hospital Organization Kinki-Chuo Chest Medical Center
kn-affil=
affil-num=7
en-affil=Department of Thoracic Oncology and Medicine, National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=8
en-affil=Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University Hospital
kn-affil=
affil-num=9
en-affil=Department of Respiratory Medicine, National Hospital Organization Hokkaido Cancer Center
kn-affil=
affil-num=10
en-affil=Department of Pulmonary Medicine and Oncology, Nippon Medical School Hospital
kn-affil=
affil-num=11
en-affil=Department of Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=12
en-affil=Department of Respiratory Medicine, National Hospital Organization Kyoto Medical Center
kn-affil=
affil-num=13
en-affil=Department of Respiratory Medicine, Kanazawa University Hospital
kn-affil=
affil-num=14
en-affil=Department of Medical, AstraZeneca K.K.
kn-affil=
affil-num=15
en-affil=Department of Medical, AstraZeneca K.K.
kn-affil=
affil-num=16
en-affil=Department of Medical, AstraZeneca K.K.
kn-affil=
affil-num=17
en-affil=Department of Thoracic Surgery, National Cancer Center Hospital East
kn-affil=
en-keyword=Non-small cell lung cancer
kn-keyword=Non-small cell lung cancer
en-keyword=Surgery
kn-keyword=Surgery
en-keyword=Adjuvant therapy
kn-keyword=Adjuvant therapy
en-keyword=Neoadjuvant therapy
kn-keyword=Neoadjuvant therapy
en-keyword=Chemoradiotherapy
kn-keyword=Chemoradiotherapy
en-keyword=Observational study
kn-keyword=Observational study
en-keyword=Retrospective study
kn-keyword=Retrospective study
END
start-ver=1.4
cd-journal=joma
no-vol=20
cd-vols=
no-issue=40
article-no=
start-page=3355-
end-page=3364
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241112
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Plain language summary: tarlatamab for patients with previously treated small cell lung cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=AhnMyung-Ju
en-aut-sei=Ahn
en-aut-mei=Myung-Ju
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ChoByoung Chul
en-aut-sei=Cho
en-aut-mei=Byoung Chul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FelipEnriqueta
en-aut-sei=Felip
en-aut-mei=Enriqueta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KorantzisIppokratis
en-aut-sei=Korantzis
en-aut-mei=Ippokratis
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OhashiKadoaki
en-aut-sei=Ohashi
en-aut-mei=Kadoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MajemMargarita
en-aut-sei=Majem
en-aut-mei=Margarita
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=Juan-VidalOscar
en-aut-sei=Juan-Vidal
en-aut-mei=Oscar
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HandzhievSabin
en-aut-sei=Handzhiev
en-aut-mei=Sabin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IzumiHiroki
en-aut-sei=Izumi
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=LeeJong-Seok
en-aut-sei=Lee
en-aut-mei=Jong-Seok
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=DziadziuszkoRafal
en-aut-sei=Dziadziuszko
en-aut-mei=Rafal
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=WolfJürgen
en-aut-sei=Wolf
en-aut-mei=Jürgen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=BlackhallFiona
en-aut-sei=Blackhall
en-aut-mei=Fiona
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=ReckMartin
en-aut-sei=Reck
en-aut-mei=Martin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=AlvarezJean Bustamante
en-aut-sei=Alvarez
en-aut-mei=Jean Bustamante
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=HummelHorst-Dieter
en-aut-sei=Hummel
en-aut-mei=Horst-Dieter
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=DingemansAnne-Marie C.
en-aut-sei=Dingemans
en-aut-mei=Anne-Marie C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=SandsJacob
en-aut-sei=Sands
en-aut-mei=Jacob
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=AkamatsuHiroaki
en-aut-sei=Akamatsu
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=OwonikokoTaofeek K.
en-aut-sei=Owonikoko
en-aut-mei=Taofeek K.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=RamalingamSuresh S.
en-aut-sei=Ramalingam
en-aut-mei=Suresh S.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=BorghaeiHossein
en-aut-sei=Borghaei
en-aut-mei=Hossein
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=JohnsonMelissa L.
en-aut-sei=Johnson
en-aut-mei=Melissa L.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=HuangShuang
en-aut-sei=Huang
en-aut-mei=Shuang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=MukherjeeSujoy
en-aut-sei=Mukherjee
en-aut-mei=Sujoy
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=MinochaMukul
en-aut-sei=Minocha
en-aut-mei=Mukul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=JiangTony
en-aut-sei=Jiang
en-aut-mei=Tony
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=MartinezPablo
en-aut-sei=Martinez
en-aut-mei=Pablo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=AndersonErik S.
en-aut-sei=Anderson
en-aut-mei=Erik S.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=Paz-AresLuis
en-aut-sei=Paz-Ares
en-aut-mei=Luis
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
affil-num=1
en-affil=Samsung Medical Center, Sungkyunkwan University School of Medicine
kn-affil=
affil-num=2
en-affil=Yonsei Cancer Center, Yonsei University College of Medicine
kn-affil=
affil-num=3
en-affil=Vall d’Hebron University Hospital and Vall d’Hebron Institute of Oncology
kn-affil=
affil-num=4
en-affil=Department of Medical Oncology, Saint Loukas Hospital
kn-affil=
affil-num=5
en-affil=Department of Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Hospital de la Santa Creu i Sant Pau
kn-affil=
affil-num=7
en-affil=
kn-affil=
affil-num=8
en-affil=Klinische Abteilung für Pneumologie, Universitätsklinikum Krems
kn-affil=
affil-num=9
en-affil=Department of Thoracic Oncology, National Cancer Center Hospital East
kn-affil=
affil-num=10
en-affil=Seoul National University Bundang Hospital
kn-affil=
affil-num=11
en-affil=Department of Oncology and Radiotherapy and Early Phase Clinical Trials Center, Medical University of Gdansk
kn-affil=
affil-num=12
en-affil=Department of Internal Medicine, Center for Integrated Oncology, University Hospital Cologne
kn-affil=
affil-num=13
en-affil=Christie NHS Foundation Trust and University of Manchester
kn-affil=
affil-num=14
en-affil=Lungen Clinic, Airway Research Center North, German Center for Lung Research
kn-affil=
affil-num=15
en-affil=West Virginia University Health Sciences Center
kn-affil=
affil-num=16
en-affil=Translational Oncology–Early Clinical Trial Unit, Comprehensive Cancer Center Mainfranken and Bavarian Cancer Research Center, Universitätsklinikum Würzburg
kn-affil=
affil-num=17
en-affil=Department of Pulmonary Medicine, Erasmus MC Cancer Institute
kn-affil=
affil-num=18
en-affil=Dana–Farber Cancer Institute, Harvard Medical School
kn-affil=
affil-num=19
en-affil=Wakayama Medical University Hospital
kn-affil=
affil-num=20
en-affil=Division of Hematology–Oncology, Hillman Cancer Center, University of Pittsburgh Medical Center
kn-affil=
affil-num=21
en-affil=Winship Cancer Institute of Emory University
kn-affil=
affil-num=22
en-affil=Fox Chase Cancer Center
kn-affil=
affil-num=23
en-affil=Sarah Cannon Research Institute at Tennessee Oncology
kn-affil=
affil-num=24
en-affil=Amgen
kn-affil=
affil-num=25
en-affil=Amgen
kn-affil=
affil-num=26
en-affil=Amgen
kn-affil=
affil-num=27
en-affil=Amgen
kn-affil=
affil-num=28
en-affil=Amgen
kn-affil=
affil-num=29
en-affil=Amgen
kn-affil=
affil-num=30
en-affil=Hospital Universitario 12 de Octubre, CNIO-H12o Lung Cancer Unit, Complutense University and Ciberonc
kn-affil=
en-keyword=Clinical trials
kn-keyword=Clinical trials
en-keyword=DeLLphi-301
kn-keyword=DeLLphi-301
en-keyword=DLL3
kn-keyword=DLL3
en-keyword=Immunotherapy
kn-keyword=Immunotherapy
en-keyword=SCLC
kn-keyword=SCLC
en-keyword=Small cell lung cancer
kn-keyword=Small cell lung cancer
en-keyword=T cell
kn-keyword=T cell
en-keyword=Tarlatamab
kn-keyword=Tarlatamab
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=23
article-no=
start-page=2715
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241202
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Predicting Surgical Site Infections in Spine Surgery: Association of Postoperative Lymphocyte Reduction
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective: Postoperative lymphopenia is reported as an excellent indicator to predict surgical-site infection (SSI) after spine surgery. However, there is still controversy concerning which serological markers can predict spinal SSI. This study aims to evaluate excellent and early indicators for detecting SSI, focusing on spine instrumented surgery. Materials and Methods: This study included 268 patients who underwent spinal instrumented surgery from January 2022 to December 2023 (159 female and 109 male, average 62.9 years). The SSI group included 20 patients, and the non-SSI group comprised 248 patients. Surgical time, intraoperative blood loss, and glycemic levels were measured in both groups. The complete blood cell counts, differential counts, albumin, and C-reactive protein (CRP) levels were measured pre-surgery and postoperative on Days 1, 3, and 7. In comparing the groups, the Mann–Whitney U test analysis was used for continuous variables, while the chi-squared test and Fisher’s exact test were used for dichotomous variables. Results: The incidence of SSI after spinal instrumentation was 7.46% and was relatively higher in scoliosis surgery. The SSI group had significantly longer surgical times (248 min vs. 180 min, p = 0.0004) and a higher intraoperative blood loss (772 mL vs. 372 mL, p < 0.0001) than the non-SSI group. In the SSI group, the Day 3 (10.5 ± 6.2% vs. 13.8 ± 6.0%, p = 0.012) and Day 7 (14.4 ± 4.8% vs. 18.8 ± 7.1%, p = 0.012) lymphocyte ratios were lower than the non-SSI group. Albumin levels on Day 1 in the SSI group were lower than in the non-SSI group (2.94 ± 0.30 mg/dL vs. 3.09 ± 0.38 mg/dL, p = 0.045). There is no difference in CRP and lymphocyte count between the two groups. Conclusions: SSI patients had lower lymphocyte percentages than non-SSI patients, which was a risk factor for SSI, with constant high inflammation. The Day 3 lymphocyte percentage may predict SSI after spinal instrumented surgery.
en-copyright=
kn-copyright=
en-aut-name=MiyamotoAkiyoshi
en-aut-sei=Miyamoto
en-aut-mei=Akiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaMasato
en-aut-sei=Tanaka
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FloresAngel Oscar Paz
en-aut-sei=Flores
en-aut-mei=Angel Oscar Paz
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YuDongwoo
en-aut-sei=Yu
en-aut-mei=Dongwoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=JainMukul
en-aut-sei=Jain
en-aut-mei=Mukul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HengChristan
en-aut-sei=Heng
en-aut-mei=Christan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KomatsubaraTadashi
en-aut-sei=Komatsubara
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AratakiShinya
en-aut-sei=Arataki
en-aut-mei=Shinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OdaYoshiaki
en-aut-sei=Oda
en-aut-mei=Yoshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ShinoharaKensuke
en-aut-sei=Shinohara
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=UotaniKoji
en-aut-sei=Uotani
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=2
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=3
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=4
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=5
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=6
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=7
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=8
en-affil=Department of Orthopedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=9
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
en-keyword=surgical site infection
kn-keyword=surgical site infection
en-keyword=spine surgery
kn-keyword=spine surgery
en-keyword=instrumentation
kn-keyword=instrumentation
en-keyword=diagnosis
kn-keyword=diagnosis
en-keyword=lymphocyte
kn-keyword=lymphocyte
END
start-ver=1.4
cd-journal=joma
no-vol=37
cd-vols=
no-issue=2
article-no=
start-page=395
end-page=412.e6
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202502
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Maternal circadian rhythms during pregnancy dictate metabolic plasticity in offspring
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Tissue-level oscillation is achieved by tissue-intrinsic clocks along with network-dependent signals originating from distal organs and organismal behavior. Yet, it remains unexplored whether maternal circadian rhythms during pregnancy influence fetal rhythms and impact long-term susceptibility to dietary challenges in offspring. Here, we demonstrate that circadian disruption during pregnancy decreased placental and neonatal weight yet retained transcriptional and structural maturation. Intriguingly, diet-induced obesity was exacerbated in parallel with arrhythmic feeding behavior, hypothalamic leptin resistance, and hepatic circadian reprogramming in offspring of chronodisrupted mothers. In utero circadian desynchrony altered the phase-relationship between the mother and fetus and impacted placental efficiency. Temporal feeding restriction in offspring failed to fully prevent obesity, whereas the circadian alignment of caloric restriction with the onset of the active phase virtually ameliorated the phenotype. Thus, maternal circadian rhythms during pregnancy confer adaptive properties to metabolic functions in offspring and provide insights into the developmental origins of health and disease.
en-copyright=
kn-copyright=
en-aut-name=YaoNa
en-aut-sei=Yao
en-aut-mei=Na
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KinouchiKenichiro
en-aut-sei=Kinouchi
en-aut-mei=Kenichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KatohManami
en-aut-sei=Katoh
en-aut-mei=Manami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AshtianiKousha Changizi
en-aut-sei=Ashtiani
en-aut-mei=Kousha Changizi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AbdelkarimSherif
en-aut-sei=Abdelkarim
en-aut-mei=Sherif
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MorimotoHiroyuki
en-aut-sei=Morimoto
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TorimitsuTakuto
en-aut-sei=Torimitsu
en-aut-mei=Takuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KozumaTakahide
en-aut-sei=Kozuma
en-aut-mei=Takahide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IwaharaAkihide
en-aut-sei=Iwahara
en-aut-mei=Akihide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KosugiShotaro
en-aut-sei=Kosugi
en-aut-mei=Shotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KomuroJin
en-aut-sei=Komuro
en-aut-mei=Jin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KatoKyosuke
en-aut-sei=Kato
en-aut-mei=Kyosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TonomuraShun
en-aut-sei=Tonomura
en-aut-mei=Shun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=NakamuraToshifumi
en-aut-sei=Nakamura
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=ItohArata
en-aut-sei=Itoh
en-aut-mei=Arata
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=YamaguchiShintaro
en-aut-sei=Yamaguchi
en-aut-mei=Shintaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=YoshinoJun
en-aut-sei=Yoshino
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=IrieJunichiro
en-aut-sei=Irie
en-aut-mei=Junichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=HashimotoHisayuki
en-aut-sei=Hashimoto
en-aut-mei=Hisayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=YuasaShinsuke
en-aut-sei=Yuasa
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=SatohAkiko
en-aut-sei=Satoh
en-aut-mei=Akiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=MikamiYohei
en-aut-sei=Mikami
en-aut-mei=Yohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=UchidaShusaku
en-aut-sei=Uchida
en-aut-mei=Shusaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=UekiTakatoshi
en-aut-sei=Ueki
en-aut-mei=Takatoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=NomuraSeitaro
en-aut-sei=Nomura
en-aut-mei=Seitaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=BaldiPierre
en-aut-sei=Baldi
en-aut-mei=Pierre
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=HayashiKaori
en-aut-sei=Hayashi
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=ItohHiroshi
en-aut-sei=Itoh
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
affil-num=1
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=2
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=4
en-affil=Department of Computer Science, University of California
kn-affil=
affil-num=5
en-affil=Department of Computer Science, University of California
kn-affil=
affil-num=6
en-affil=Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences
kn-affil=
affil-num=7
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=8
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=9
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=10
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=12
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=13
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=14
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=15
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=16
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=17
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=18
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=19
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=20
en-affil=Department of Cardiovascular Medicine, Academic Field, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=21
en-affil=Department of Integrative Physiology, Institute of Development, Aging and Cancer, Tohoku University
kn-affil=
affil-num=22
en-affil=Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=23
en-affil=Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences
kn-affil=
affil-num=24
en-affil=Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences
kn-affil=
affil-num=25
en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=26
en-affil=Department of Computer Science, University of California
kn-affil=
affil-num=27
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
affil-num=28
en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine
kn-affil=
en-keyword=circadian rhythm
kn-keyword=circadian rhythm
en-keyword=metabolism
kn-keyword=metabolism
en-keyword=circadian clock
kn-keyword=circadian clock
en-keyword=pregnancy
kn-keyword=pregnancy
en-keyword=developmental origins of health and disease
kn-keyword=developmental origins of health and disease
en-keyword=obesity
kn-keyword=obesity
en-keyword=leptin
kn-keyword=leptin
en-keyword=time-restricted feeding
kn-keyword=time-restricted feeding
en-keyword=caloric restriction
kn-keyword=caloric restriction
en-keyword=eating behavior
kn-keyword=eating behavior
END
start-ver=1.4
cd-journal=joma
no-vol=106
cd-vols=
no-issue=7
article-no=
start-page=002114
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250725
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Summary of taxonomy changes ratified by the International Committee on Taxonomy of Viruses from the Plant Viruses Subcommittee, 2025
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In March 2025, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote, newly proposed taxa were added to those under the mandate of the Plant Viruses Subcommittee. In brief, 1 new order, 3 new families, 6 new genera, 2 new subgenera and 206 new species were created. Some taxa were reorganized. Genus Cytorhabdovirus in the family Rhabdoviridae was abolished and its taxa were redistributed into three new genera Alphacytorhabdovirus, Betacytorhabdovirus and Gammacytorhabdovirus. Genus Waikavirus in the family Secoviridae was reorganized into two subgenera (Actinidivirus and Ritunrivirus). One family and four previously unaffiliated genera were moved to the newly established order Tombendovirales. Twelve species not assigned to a genus were abolished. To comply with the ICTV mandate of a binomial format for virus species, eight species were renamed. Demarcation criteria in the absence of biological information were defined in the genus Ilarvirus (family Bromoviridae). This article presents the updated taxonomy put forth by the Plant Viruses Subcommittee and ratified by the ICTV.
en-copyright=
kn-copyright=
en-aut-name=RubinoLuisa
en-aut-sei=Rubino
en-aut-mei=Luisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AbrahamianPeter
en-aut-sei=Abrahamian
en-aut-mei=Peter
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AnWenxia
en-aut-sei=An
en-aut-mei=Wenxia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ArandaMiguel A.
en-aut-sei=Aranda
en-aut-mei=Miguel A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=Ascencio-IbañezJosé T.
en-aut-sei=Ascencio-Ibañez
en-aut-mei=José T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=BejermanNicolas
en-aut-sei=Bejerman
en-aut-mei=Nicolas
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=BlouinArnaud G.
en-aut-sei=Blouin
en-aut-mei=Arnaud G.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=CandresseThierry
en-aut-sei=Candresse
en-aut-mei=Thierry
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=CantoTomas
en-aut-sei=Canto
en-aut-mei=Tomas
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=CaoMengji
en-aut-sei=Cao
en-aut-mei=Mengji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=CarrJohn P.
en-aut-sei=Carr
en-aut-mei=John P.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ChoWon Kyong
en-aut-sei=Cho
en-aut-mei=Won Kyong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=ConstableFiona
en-aut-sei=Constable
en-aut-mei=Fiona
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=DasguptaIndranil
en-aut-sei=Dasgupta
en-aut-mei=Indranil
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=DebatHumberto
en-aut-sei=Debat
en-aut-mei=Humberto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=DietzgenRalf G.
en-aut-sei=Dietzgen
en-aut-mei=Ralf G.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=DigiaroMichele
en-aut-sei=Digiaro
en-aut-mei=Michele
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=DonaireLivia
en-aut-sei=Donaire
en-aut-mei=Livia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=ElbeainoToufic
en-aut-sei=Elbeaino
en-aut-mei=Toufic
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=FargetteDenis
en-aut-sei=Fargette
en-aut-mei=Denis
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=FilardoFiona
en-aut-sei=Filardo
en-aut-mei=Fiona
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=FischerMatthias G.
en-aut-sei=Fischer
en-aut-mei=Matthias G.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=FontdevilaNuria
en-aut-sei=Fontdevila
en-aut-mei=Nuria
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=FoxAdrian
en-aut-sei=Fox
en-aut-mei=Adrian
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=Freitas-AstuaJuliana
en-aut-sei=Freitas-Astua
en-aut-mei=Juliana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=FuchsMarc
en-aut-sei=Fuchs
en-aut-mei=Marc
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=GeeringAndrew D.W.
en-aut-sei=Geering
en-aut-mei=Andrew D.W.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=GhafariMahan
en-aut-sei=Ghafari
en-aut-mei=Mahan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=HafrénAnders
en-aut-sei=Hafrén
en-aut-mei=Anders
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=HammondJohn
en-aut-sei=Hammond
en-aut-mei=John
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=HammondRosemarie
en-aut-sei=Hammond
en-aut-mei=Rosemarie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=Hasiów-JaroszewskaBeata
en-aut-sei=Hasiów-Jaroszewska
en-aut-mei=Beata
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
en-aut-name=HebrardEugenie
en-aut-sei=Hebrard
en-aut-mei=Eugenie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=33
ORCID=
en-aut-name=HernándezCarmen
en-aut-sei=Hernández
en-aut-mei=Carmen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=34
ORCID=
en-aut-name=HilyJean-Michel
en-aut-sei=Hily
en-aut-mei=Jean-Michel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=35
ORCID=
en-aut-name=HosseiniAhmed
en-aut-sei=Hosseini
en-aut-mei=Ahmed
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=36
ORCID=
en-aut-name=HullRoger
en-aut-sei=Hull
en-aut-mei=Roger
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=37
ORCID=
en-aut-name=Inoue-NagataAlice K.
en-aut-sei=Inoue-Nagata
en-aut-mei=Alice K.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=38
ORCID=
en-aut-name=JordanRamon
en-aut-sei=Jordan
en-aut-mei=Ramon
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=39
ORCID=
en-aut-name=KondoHideki
en-aut-sei=Kondo
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=40
ORCID=
en-aut-name=KreuzeJan F.
en-aut-sei=Kreuze
en-aut-mei=Jan F.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=41
ORCID=
en-aut-name=KrupovicMart
en-aut-sei=Krupovic
en-aut-mei=Mart
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=42
ORCID=
en-aut-name=KubotaKenji
en-aut-sei=Kubota
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=43
ORCID=
en-aut-name=KuhnJens H.
en-aut-sei=Kuhn
en-aut-mei=Jens H.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=44
ORCID=
en-aut-name=LeisnerScott
en-aut-sei=Leisner
en-aut-mei=Scott
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=45
ORCID=
en-aut-name=LettJean-Michel
en-aut-sei=Lett
en-aut-mei=Jean-Michel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=46
ORCID=
en-aut-name=LiChengyu
en-aut-sei=Li
en-aut-mei=Chengyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=47
ORCID=
en-aut-name=LiFan
en-aut-sei=Li
en-aut-mei=Fan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=48
ORCID=
en-aut-name=LiJun Min
en-aut-sei=Li
en-aut-mei=Jun Min
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=49
ORCID=
en-aut-name=López-LambertiniPaola M.
en-aut-sei=López-Lambertini
en-aut-mei=Paola M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=50
ORCID=
en-aut-name=Lopez-MoyaJuan J.
en-aut-sei=Lopez-Moya
en-aut-mei=Juan J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=51
ORCID=
en-aut-name=MaclotFrancois
en-aut-sei=Maclot
en-aut-mei=Francois
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=52
ORCID=
en-aut-name=MäkinenKristiina
en-aut-sei=Mäkinen
en-aut-mei=Kristiina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=53
ORCID=
en-aut-name=MartinDarren
en-aut-sei=Martin
en-aut-mei=Darren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=54
ORCID=
en-aut-name=MassartSebastien
en-aut-sei=Massart
en-aut-mei=Sebastien
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=55
ORCID=
en-aut-name=MillerW. Allen
en-aut-sei=Miller
en-aut-mei=W. Allen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=56
ORCID=
en-aut-name=MohammadiMusa
en-aut-sei=Mohammadi
en-aut-mei=Musa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=57
ORCID=
en-aut-name=MollovDimitre
en-aut-sei=Mollov
en-aut-mei=Dimitre
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=58
ORCID=
en-aut-name=MullerEmmanuelle
en-aut-sei=Muller
en-aut-mei=Emmanuelle
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=59
ORCID=
en-aut-name=NagataTatsuya
en-aut-sei=Nagata
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=60
ORCID=
en-aut-name=Navas-CastilloJesús
en-aut-sei=Navas-Castillo
en-aut-mei=Jesús
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=61
ORCID=
en-aut-name=NeriyaYutaro
en-aut-sei=Neriya
en-aut-mei=Yutaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=62
ORCID=
en-aut-name=Ochoa-CoronaFrancisco M.
en-aut-sei=Ochoa-Corona
en-aut-mei=Francisco M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=63
ORCID=
en-aut-name=OhshimaKazusato
en-aut-sei=Ohshima
en-aut-mei=Kazusato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=64
ORCID=
en-aut-name=PallásVicente
en-aut-sei=Pallás
en-aut-mei=Vicente
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=65
ORCID=
en-aut-name=PappuHanu
en-aut-sei=Pappu
en-aut-mei=Hanu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=66
ORCID=
en-aut-name=PetrzikKarel
en-aut-sei=Petrzik
en-aut-mei=Karel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=67
ORCID=
en-aut-name=PoogginMikhail
en-aut-sei=Pooggin
en-aut-mei=Mikhail
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=68
ORCID=
en-aut-name=PrigigalloMaria Isabella
en-aut-sei=Prigigallo
en-aut-mei=Maria Isabella
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=69
ORCID=
en-aut-name=Ramos-GonzálezPedro L.
en-aut-sei=Ramos-González
en-aut-mei=Pedro L.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=70
ORCID=
en-aut-name=RibeiroSimone
en-aut-sei=Ribeiro
en-aut-mei=Simone
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=71
ORCID=
en-aut-name=Richert-PöggelerKatja R.
en-aut-sei=Richert-Pöggeler
en-aut-mei=Katja R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=72
ORCID=
en-aut-name=RoumagnacPhilippe
en-aut-sei=Roumagnac
en-aut-mei=Philippe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=73
ORCID=
en-aut-name=RoyAvijit
en-aut-sei=Roy
en-aut-mei=Avijit
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=74
ORCID=
en-aut-name=SabanadzovicSead
en-aut-sei=Sabanadzovic
en-aut-mei=Sead
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=75
ORCID=
en-aut-name=ŠafářováDana
en-aut-sei=Šafářová
en-aut-mei=Dana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=76
ORCID=
en-aut-name=SaldarelliPasquale
en-aut-sei=Saldarelli
en-aut-mei=Pasquale
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=77
ORCID=
en-aut-name=SanfaçonHélène
en-aut-sei=Sanfaçon
en-aut-mei=Hélène
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=78
ORCID=
en-aut-name=SarmientoCecilia
en-aut-sei=Sarmiento
en-aut-mei=Cecilia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=79
ORCID=
en-aut-name=SasayaTakahide
en-aut-sei=Sasaya
en-aut-mei=Takahide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=80
ORCID=
en-aut-name=ScheetsKay
en-aut-sei=Scheets
en-aut-mei=Kay
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=81
ORCID=
en-aut-name=SchravesandeWillem E.W.
en-aut-sei=Schravesande
en-aut-mei=Willem E.W.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=82
ORCID=
en-aut-name=SealSusan
en-aut-sei=Seal
en-aut-mei=Susan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=83
ORCID=
en-aut-name=ShimomotoYoshifumi
en-aut-sei=Shimomoto
en-aut-mei=Yoshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=84
ORCID=
en-aut-name=SõmeraMerike
en-aut-sei=Sõmera
en-aut-mei=Merike
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=85
ORCID=
en-aut-name=StavoloneLivia
en-aut-sei=Stavolone
en-aut-mei=Livia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=86
ORCID=
en-aut-name=StewartLucy R.
en-aut-sei=Stewart
en-aut-mei=Lucy R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=87
ORCID=
en-aut-name=TeycheneyPierre-Yves
en-aut-sei=Teycheney
en-aut-mei=Pierre-Yves
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=88
ORCID=
en-aut-name=ThomasJohn E.
en-aut-sei=Thomas
en-aut-mei=John E.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=89
ORCID=
en-aut-name=ThompsonJeremy R.
en-aut-sei=Thompson
en-aut-mei=Jeremy R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=90
ORCID=
en-aut-name=TiberiniAntonio
en-aut-sei=Tiberini
en-aut-mei=Antonio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=91
ORCID=
en-aut-name=TomitakaYasuhiro
en-aut-sei=Tomitaka
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=92
ORCID=
en-aut-name=TzanetakisIoannis
en-aut-sei=Tzanetakis
en-aut-mei=Ioannis
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=93
ORCID=
en-aut-name=UmberMarie
en-aut-sei=Umber
en-aut-mei=Marie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=94
ORCID=
en-aut-name=UrbinoCica
en-aut-sei=Urbino
en-aut-mei=Cica
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=95
ORCID=
en-aut-name=van den BurgHarrold A.
en-aut-sei=van den Burg
en-aut-mei=Harrold A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=96
ORCID=
en-aut-name=Van der VlugtRené A.A.
en-aut-sei=Van der Vlugt
en-aut-mei=René A.A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=97
ORCID=
en-aut-name=VarsaniArvind
en-aut-sei=Varsani
en-aut-mei=Arvind
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=98
ORCID=
en-aut-name=VerhageAdriaan
en-aut-sei=Verhage
en-aut-mei=Adriaan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=99
ORCID=
en-aut-name=VillamorDan
en-aut-sei=Villamor
en-aut-mei=Dan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=100
ORCID=
en-aut-name=von BargenSusanne
en-aut-sei=von Bargen
en-aut-mei=Susanne
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=101
ORCID=
en-aut-name=WalkerPeter J.
en-aut-sei=Walker
en-aut-mei=Peter J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=102
ORCID=
en-aut-name=WetzelThierry
en-aut-sei=Wetzel
en-aut-mei=Thierry
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=103
ORCID=
en-aut-name=WhitfieldAnna E.
en-aut-sei=Whitfield
en-aut-mei=Anna E.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=104
ORCID=
en-aut-name=WylieStephen J.
en-aut-sei=Wylie
en-aut-mei=Stephen J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=105
ORCID=
en-aut-name=YangCaixia
en-aut-sei=Yang
en-aut-mei=Caixia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=106
ORCID=
en-aut-name=ZerbiniF. Murilo
en-aut-sei=Zerbini
en-aut-mei=F. Murilo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=107
ORCID=
en-aut-name=ZhangSong
en-aut-sei=Zhang
en-aut-mei=Song
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=108
ORCID=
affil-num=1
en-affil=Istituto per la Protezione Sostenibile delle Piante, CNR
kn-affil=
affil-num=2
en-affil=USDA-ARS, BARC, National Germplasm Resources Laboratory
kn-affil=
affil-num=3
en-affil=Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, Shenyang University
kn-affil=
affil-num=4
en-affil=Centro de Edafología y Biología Aplicada del Segura-CSIC
kn-affil=
affil-num=5
en-affil=Department of Molecular and Structural Biochemistry, North Carolina State University
kn-affil=
affil-num=6
en-affil=Unidad de Fitopatología y Modelización Agrícola (UFYMA) INTA-CONICET
kn-affil=
affil-num=7
en-affil=Plant Protection Department
kn-affil=
affil-num=8
en-affil=UMR 1332 Biologie du Fruit et Pathologie, University of Bordeaux, INRAE
kn-affil=
affil-num=9
en-affil=Margarita Salas Center for Biological Research (CIB-CSIC) Spanish Council for Scientific Research (CSIC)
kn-affil=
affil-num=10
en-affil=National Citrus Engineering and Technology Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University
kn-affil=
affil-num=11
en-affil=Department of Plant Sciences, University of Cambridge
kn-affil=
affil-num=12
en-affil=Agriculture and Life Sciences Research Institute, Kangwon National University
kn-affil=
affil-num=13
en-affil=Agriculture Victoria Research, Department of Energy, Environment and Climate Action and School of Applied Systems Biology, La Trobe University
kn-affil=
affil-num=14
en-affil=University of Delhi South Campu
kn-affil=
affil-num=15
en-affil=Unidad de Fitopatología y Modelización Agrícola (UFYMA) INTA-CONICET
kn-affil=
affil-num=16
en-affil=Queensland Alliance for Agriculture and Food Innovation, The University of Queensland
kn-affil=
affil-num=17
en-affil=CIHEAM, Istituto Agronomico Mediterraneo of Bari
kn-affil=
affil-num=18
en-affil=Centro de Edafología y Biología Aplicada del Segura-CSIC
kn-affil=
affil-num=19
en-affil=CIHEAM, Istituto Agronomico Mediterraneo of Bari
kn-affil=
affil-num=20
en-affil=Virus South Data
kn-affil=
affil-num=21
en-affil=Queensland Department of Primary Industries
kn-affil=
affil-num=22
en-affil=Max Planck Institute for Marine Microbiology
kn-affil=
affil-num=23
en-affil=Plant Protection Department
kn-affil=
affil-num=24
en-affil=Fera Science Ltd (Fera), York Biotech Campus
kn-affil=
affil-num=25
en-affil=Embrapa Cassava and Fruits, Brazilian Agricultural Research Corporation
kn-affil=
affil-num=26
en-affil=Plant Pathology, Cornell University
kn-affil=
affil-num=27
en-affil=Queensland Alliance for Agriculture and Food Innovation, The University of Queensland
kn-affil=
affil-num=28
en-affil=Department of Biology, University of Oxford
kn-affil=
affil-num=29
en-affil=Swedish University of Agriculture
kn-affil=
affil-num=30
en-affil=USDA-ARS, USNA, Floral and Nursery Plants Research Unit
kn-affil=
affil-num=31
en-affil=USDA-ARS, BARC, Molecular Plant Pathology Laboratory
kn-affil=
affil-num=32
en-affil=Institute of Plant Protection-NRI
kn-affil=
affil-num=33
en-affil=PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro
kn-affil=
affil-num=34
en-affil=Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de Valencia-CSIC
kn-affil=
affil-num=35
en-affil=Institut Français de la Vigne et du Vin
kn-affil=
affil-num=36
en-affil=Vali-e-Asr University of Rafsanjan, Department of Plant Protection
kn-affil=
affil-num=37
en-affil=Retired from John Innes Centre
kn-affil=
affil-num=38
en-affil=Embrapa Hortaliças
kn-affil=
affil-num=39
en-affil=USDA-ARS, USNA, Floral and Nursery Plants Research Unit
kn-affil=
affil-num=40
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=41
en-affil=International Potato Center (CIP)
kn-affil=
affil-num=42
en-affil=Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit
kn-affil=
affil-num=43
en-affil=Institute for Plant Protection, NARO
kn-affil=
affil-num=44
en-affil=Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health
kn-affil=
affil-num=45
en-affil=Department of Biological Sciences, University of Toledo
kn-affil=
affil-num=46
en-affil=CIRAD, UMR PVBMT
kn-affil=
affil-num=47
en-affil=Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, Shenyang University
kn-affil=
affil-num=48
en-affil=State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University
kn-affil=
affil-num=49
en-affil=Institute of Plant Virology, Ningbo University
kn-affil=
affil-num=50
en-affil=Instituto de Patología Vegetal (IPAVE), INTA, Unidad de Fitopatología y Modelización Agrícola (UFYMA) INTA-CONICET
kn-affil=
affil-num=51
en-affil=Centre for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB)
kn-affil=
affil-num=52
en-affil=UMR 1332 Biologie du Fruit et Pathologie, University of Bordeaux, INRAE
kn-affil=
affil-num=53
en-affil=Department of Agricultural Sciences, University of Helsinki
kn-affil=
affil-num=54
en-affil=Institute of Infectious Disease and Molecular Medicine, University of Cape Town
kn-affil=
affil-num=55
en-affil=Plant Pathology Laboratory, TERRA Gembloux Agro-Bio Tech, University of Liege
kn-affil=
affil-num=56
en-affil=Department of Plant Pathology, Entomology and Microbiology, Iowa State University
kn-affil=
affil-num=57
en-affil=Department of Plant Protection, Gorgan University of Agricultural Sciences and Natural Resources
kn-affil=
affil-num=58
en-affil=USDA-APHIS, Plant Protection and Quarantine
kn-affil=
affil-num=59
en-affil=CIRAD, AGAP Institut; AGAP Institut, University of Montpellier; CIRAD, INRAE
kn-affil=
affil-num=60
en-affil=Instituto de Ciências Biológicas, Universidade de Brasília
kn-affil=
affil-num=61
en-affil=Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas
kn-affil=
affil-num=62
en-affil=Utsunomiya University
kn-affil=
affil-num=63
en-affil=Oklahoma State University, Institute for Biosecurity & Microbial Forensics
kn-affil=
affil-num=64
en-affil=Saga University
kn-affil=
affil-num=65
en-affil=Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de Valencia-CSIC
kn-affil=
affil-num=66
en-affil=Department of Plant Pathology, Washington State University
kn-affil=
affil-num=67
en-affil=Institute of Plant Molecular Biology
kn-affil=
affil-num=68
en-affil=PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD
kn-affil=
affil-num=69
en-affil=Istituto per la Protezione Sostenibile delle Piante, CNR
kn-affil=
affil-num=70
en-affil=Applied Molecular Biology Laboratory, Instituto Biológico de São Paulo
kn-affil=
affil-num=71
en-affil=Embrapa Recursos Genéticos e Biotecnologia
kn-affil=
affil-num=72
en-affil=Julius Kühn Institute, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics
kn-affil=
affil-num=73
en-affil=CIRAD, UMR PHIM
kn-affil=
affil-num=74
en-affil=USDA-ARS, BARC, Molecular Plant Pathology Laboratory, Beltsville, MD, USA
kn-affil=
affil-num=75
en-affil=Department of Agricultural Science and Plant Protection, Mississippi State University
kn-affil=
affil-num=76
en-affil=Department of Cell Biology and Genetics, Faculty of Science, Palacký University Olomouc
kn-affil=
affil-num=77
en-affil=Istituto per la Protezione Sostenibile delle Piante, CNR
kn-affil=
affil-num=78
en-affil=Summerland Research and Development Centre, Agriculture and Agri-Food Canada
kn-affil=
affil-num=79
en-affil=Department of Chemistry and Biotechnology, Tallinn University of Technology
kn-affil=
affil-num=80
en-affil=Strategic Planning Headquarters, NARO
kn-affil=
affil-num=81
en-affil=Department of Plant Pathology, Ecology and Evolution, Oklahoma State University
kn-affil=
affil-num=82
en-affil=Molecular Plant Pathology, University of Amsterdam
kn-affil=
affil-num=83
en-affil=Natural Resources Institute, University of Greenwich
kn-affil=
affil-num=84
en-affil=Kochi Agricultural Research Center
kn-affil=
affil-num=85
en-affil=Department of Chemistry and Biotechnology, Tallinn University of Technology
kn-affil=
affil-num=86
en-affil=Istituto per la Protezione Sostenibile delle Piante, CNR
kn-affil=
affil-num=87
en-affil=Currently unaffiliated
kn-affil=
affil-num=88
en-affil=CIRAD, UMR PVBMT & UMR PVBMT, Université de la Réunion
kn-affil=
affil-num=89
en-affil=Queensland Alliance for Agriculture and Food Innovation, The University of Queensland
kn-affil=
affil-num=90
en-affil=Plant Health and Environment Laboratory
kn-affil=
affil-num=91
en-affil=Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification
kn-affil=
affil-num=92
en-affil=Institute for Plant Protection, NARO
kn-affil=
affil-num=93
en-affil=Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System
kn-affil=
affil-num=94
en-affil=INRAE, UR ASTRO
kn-affil=
affil-num=95
en-affil=PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro
kn-affil=
affil-num=96
en-affil=Molecular Plant Pathology, University of Amsterdam
kn-affil=
affil-num=97
en-affil=Wageningen University and Research
kn-affil=
affil-num=98
en-affil=The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University
kn-affil=
affil-num=99
en-affil=Rijk Zwaan Breeding B.V.
kn-affil=
affil-num=100
en-affil=Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System
kn-affil=
affil-num=101
en-affil=Humboldt-Universität zu Berlin, Thaer-Institute of Agricultural and Horticultural Sciences
kn-affil=
affil-num=102
en-affil=The University of Queensland
kn-affil=
affil-num=103
en-affil=Dienstleistungszentrum Ländlicher Raum Rheinpfalz
kn-affil=
affil-num=104
en-affil=North Carolina State University
kn-affil=
affil-num=105
en-affil=Food Futures Institute, Murdoch University
kn-affil=
affil-num=106
en-affil=Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, Shenyang University
kn-affil=
affil-num=107
en-affil=Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa
kn-affil=
affil-num=108
en-affil=National Citrus Engineering and Technology Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=19
cd-vols=
no-issue=12
article-no=
start-page=2429
end-page=2437
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241112
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Discovery of a Compound That Inhibits IRE1α S-Nitrosylation and Preserves the Endoplasmic Reticulum Stress Response under Nitrosative Stress
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Inositol-requiring enzyme 1α (IRE1α) is a sensor of endoplasmic reticulum (ER) stress and drives ER stress response pathways. Activated IRE1α exhibits RNase activity and cleaves mRNA encoding X-box binding protein 1, a transcription factor that induces the expression of genes that maintain ER proteostasis for cell survival. Previously, we showed that IRE1α undergoes S-nitrosylation, a post-translational modification induced by nitric oxide (NO), resulting in reduced RNase activity. Therefore, S-nitrosylation of IRE1α compromises the response to ER stress, making cells more vulnerable. We conducted virtual screening and cell-based validation experiments to identify compounds that inhibit the S-nitrosylation of IRE1α by targeting nitrosylated cysteine residues. We ultimately identified a compound (1ACTA) that selectively inhibits the S-nitrosylation of IRE1α and prevents the NO-induced reduction of RNase activity. Furthermore, 1ACTA reduces the rate of NO-induced cell death. Our research identified S-nitrosylation as a novel target for drug development for IRE1α and provides a suitable screening strategy.
en-copyright=
kn-copyright=
en-aut-name=KurogiHaruna
en-aut-sei=Kurogi
en-aut-mei=Haruna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakasugiNobumasa
en-aut-sei=Takasugi
en-aut-mei=Nobumasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KubotaSho
en-aut-sei=Kubota
en-aut-mei=Sho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KumarAshutosh
en-aut-sei=Kumar
en-aut-mei=Ashutosh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SuzukiTakehiro
en-aut-sei=Suzuki
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=DohmaeNaoshi
en-aut-sei=Dohmae
en-aut-mei=Naoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SawadaDaisuke
en-aut-sei=Sawada
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ZhangKam Y.J.
en-aut-sei=Zhang
en-aut-mei=Kam Y.J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=UeharaTakashi
en-aut-sei=Uehara
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN
kn-affil=
affil-num=5
en-affil=Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science
kn-affil=
affil-num=6
en-affil=Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science
kn-affil=
affil-num=7
en-affil=Department of Fine Organic Synthesis, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN
kn-affil=
affil-num=9
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=47
cd-vols=
no-issue=6
article-no=
start-page=466
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250617
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Artificial Intelligence Approach in Machine Learning-Based Modeling and Networking of the Coronavirus Pathogenesis Pathway
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The coronavirus pathogenesis pathway, which consists of severe acute respiratory syndrome (SARS) coronavirus infection and signaling pathways, including the interferon pathway, the transforming growth factor beta pathway, the mitogen-activated protein kinase pathway, the apoptosis pathway, and the inflammation pathway, is activated upon coronaviral infection. An artificial intelligence approach based on machine learning was utilized to develop models with images of the coronavirus pathogenesis pathway to predict the activation states. Data on coronaviral infection held in a database were analyzed with Ingenuity Pathway Analysis (IPA), a network pathway analysis tool. Data related to SARS coronavirus 2 (SARS-CoV-2) were extracted from more than 100,000 analyses and datasets in the IPA database. A total of 27 analyses, including nine analyses of SARS-CoV-2-infected human-induced pluripotent stem cells (iPSCs) and iPSC-derived cardiomyocytes and fibroblasts, and a total of 22 analyses of SARS-CoV-2-infected lung adenocarcinoma (LUAD), were identified as being related to “human” and “SARS coronavirus 2” in the database. The coronavirus pathogenesis pathway was activated in SARS-CoV-2-infected iPSC-derived cells and LUAD cells. A prediction model was developed in Python 3.11 using images of the coronavirus pathogenesis pathway under different conditions. The prediction model of activation states of the coronavirus pathogenesis pathway may aid in treatment identification.
en-copyright=
kn-copyright=
en-aut-name=TanabeShihori
en-aut-sei=Tanabe
en-aut-mei=Shihori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=QuaderSabina
en-aut-sei=Quader
en-aut-mei=Sabina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OnoRyuichi
en-aut-sei=Ono
en-aut-mei=Ryuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanakaHiroyoshi Y.
en-aut-sei=Tanaka
en-aut-mei=Hiroyoshi Y.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamamotoAkihisa
en-aut-sei=Yamamoto
en-aut-mei=Akihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KojimaMotohiro
en-aut-sei=Kojima
en-aut-mei=Motohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=PerkinsEdward J.
en-aut-sei=Perkins
en-aut-mei=Edward J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=CabralHoracio
en-aut-sei=Cabral
en-aut-mei=Horacio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences
kn-affil=
affil-num=2
en-affil=Innovation Centre of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion
kn-affil=
affil-num=3
en-affil=Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences
kn-affil=
affil-num=4
en-affil=Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Mechanical Systems Engineering, Graduate School of Systems Design Tokyo Metropolitan University
kn-affil=
affil-num=6
en-affil=Department of Surgical Pathology, Kyoto Prefecture University of Medicine
kn-affil=
affil-num=7
en-affil=US Army Engineer Research and Development Center
kn-affil=
affil-num=8
en-affil=Department of Bioengineering, Graduate School of Engineering, The University of Tokyo
kn-affil=
en-keyword=artificial intelligence
kn-keyword=artificial intelligence
en-keyword=coronavirus
kn-keyword=coronavirus
en-keyword=coronaviral infection
kn-keyword=coronaviral infection
en-keyword=machine learning
kn-keyword=machine learning
en-keyword=pathway analysis
kn-keyword=pathway analysis
en-keyword=predictionmodel
kn-keyword=predictionmodel
en-keyword=molecular network
kn-keyword=molecular network
en-keyword=molecular pathway image
kn-keyword=molecular pathway image
en-keyword=network analysis
kn-keyword=network analysis
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=11
article-no=
start-page=4984
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250522
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Induced Pluripotent Stem Cells in Cardiomyopathy: Advancing Disease Modeling, Therapeutic Development, and Regenerative Therapy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Cardiomyopathies are a heterogeneous group of heart muscle diseases that can lead to heart failure, arrhythmias, and sudden cardiac death. Traditional animal models and in vitro systems have limitations in replicating the complex pathology of human cardiomyopathies. Induced pluripotent stem cells (iPSCs) offer a transformative platform by enabling the generation of patient-specific cardiomyocytes, thus opening new avenues for disease modeling, drug discovery, and regenerative therapy. This process involves reprogramming somatic cells into iPSCs and subsequently differentiating them into functional cardiomyocytes, which can be characterized using techniques such as electrophysiology, contractility assays, and gene expression profiling. iPSC-derived cardiomyocyte (iPSC-CM) platforms are also being explored for drug screening and personalized medicine, including high-throughput testing for cardiotoxicity and the identification of patient-tailored therapies. While iPSC-CMs already serve as valuable models for understanding disease mechanisms and screening drugs, ongoing advances in maturation and bioengineering are bringing iPSC-based therapies closer to clinical application. Furthermore, the integration of multi-omics approaches and artificial intelligence (AI) is enhancing the predictive power of iPSC models. iPSC-based technologies are paving the way for a new era of personalized cardiology, with the potential to revolutionize the management of cardiomyopathies through patient-specific insights and regenerative strategies.
en-copyright=
kn-copyright=
en-aut-name=VoQuan Duy
en-aut-sei=Vo
en-aut-mei=Quan Duy
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakamuraKazufumi
en-aut-sei=Nakamura
en-aut-mei=Kazufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SaitoYukihiro
en-aut-sei=Saito
en-aut-mei=Yukihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AkagiSatoshi
en-aut-sei=Akagi
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MiyoshiToru
en-aut-sei=Miyoshi
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YuasaShinsuke
en-aut-sei=Yuasa
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Medicine, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=induced pluripotent stem cells
kn-keyword=induced pluripotent stem cells
en-keyword=cardiomyopathy
kn-keyword=cardiomyopathy
en-keyword=disease modeling
kn-keyword=disease modeling
en-keyword=drug screening
kn-keyword=drug screening
en-keyword=regenerative therapy
kn-keyword=regenerative therapy
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=13
article-no=
start-page=7238
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250627
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Protective Effects of the Ethyl Acetate Fraction of Distylium racemosum Against Metabolic Dysfunction-Associated Steatohepatitis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Metabolic dysfunction-associated steatohepatitis (MASH), previously referred to as non-alcoholic steatohepatitis (NASH), which is a progressive non-alcoholic fatty liver disease, is accompanied by hepatic steatosis, inflammation, and fibrosis. Despite its increasing prevalence, available treatment options for MASH are limited. Here, we investigated the protective effects of the Distylium racemosum ethyl acetate fraction (DRE) using MASH models and explored its key physiologically active components. Palmitic acid (PA)-induced AML12 hepatocytes and high-fat methionine- and choline-deficient-fed C57BL/6 mice were used as MASH models. Lipid accumulation was evaluated via triglyceride measurement, oil red O staining, and histological analysis. Lipid accumulation, inflammation, and fibrosis-associated gene expression were evaluated via real-time polymerase chain reaction. The physiologically active components of DRE were identified via high-performance liquid chromatography. Lipid accumulation and triglyceride levels were significantly reduced in PA-treated AML12 cells following DRE treatment. Additionally, DRE inhibited the expression of genes involved in lipogenesis (FAS and SREBP1c), inflammation (CD68, IL-6, and MCP-1), and fibrosis (COL1A1, COL1A2, and TIMP1). DRE reduced the liver weight, liver-to-body weight ratio, and hepatic steatosis in MASH model mice. It increased carnitine palmitoyltransferase-1 levels and decreased CD36 and transforming growth factor-β levels in the MASH mouse liver. High-performance liquid chromatography revealed that the extract contained rutin flavonoid family members. Overall, DRE was involved in lipid metabolism, inflammation, and fibrosis regulation, exerting potent hepatoprotective effects partly attributed to rutin and serving as a potential preventive candidate for MASH.
en-copyright=
kn-copyright=
en-aut-name=LeeYoung-Hyeon
en-aut-sei=Lee
en-aut-mei=Young-Hyeon
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YeoMin-Ho
en-aut-sei=Yeo
en-aut-mei=Min-Ho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ChangKyung-Soo
en-aut-sei=Chang
en-aut-mei=Kyung-Soo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YoonWeon-Jong
en-aut-sei=Yoon
en-aut-mei=Weon-Jong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KimHye-Sook
en-aut-sei=Kim
en-aut-mei=Hye-Sook
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KimJongwan
en-aut-sei=Kim
en-aut-mei=Jongwan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KimHye-Ran
en-aut-sei=Kim
en-aut-mei=Hye-Ran
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Clinical Laboratory Science, Catholic University of Pusan
kn-affil=
affil-num=2
en-affil=Department of Clinical Laboratory Science, Catholic University of Pusan
kn-affil=
affil-num=3
en-affil=Department of Clinical Laboratory Science, Catholic University of Pusan
kn-affil=
affil-num=4
en-affil=Clean Bio Business Division, Biodiversity Research Institute (JBRI), Jeju Technopark (JTP)
kn-affil=
affil-num=5
en-affil=Department of International Infectious Diseases Control, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Anatomy, College of Medicine, Dongguk University
kn-affil=
affil-num=7
en-affil=Department of Biomedical Laboratory Science, Dong-Eui Institute of Technology
kn-affil=
en-keyword=metabolic dysfunction-associated steatohepatitis
kn-keyword=metabolic dysfunction-associated steatohepatitis
en-keyword=Distylium racemosum
kn-keyword=Distylium racemosum
en-keyword=ethyl acetate fraction
kn-keyword=ethyl acetate fraction
en-keyword=extract
kn-keyword=extract
END
start-ver=1.4
cd-journal=joma
no-vol=30
cd-vols=
no-issue=8
article-no=
start-page=1621
end-page=1630
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250606
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Percutaneous cryoablation versus robot-assisted partial nephrectomy for small renal cell carcinoma: a retrospective cost analysis at Japanese single-institution
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: No direct cost comparison has been conducted between percutaneous cryoablation (PCA) and robot-assisted partial nephrectomy (RAPN) for clinical T1a renal cell carcinoma (RCC) in Japan. This study aimed to compare their costs.
Methods: We retrospectively analyzed data from 212 PCAs (including 155 with transcatheter arterial embolization) and 119 RAPN cases performed between December 2017 and May 2022.
Results: PCA patients were older with higher American Society of Anesthesiologists scores, Charlson Comorbidity Index, and history of previous RCC treatment, cardiovascular disease, and antithrombotic drug use than RAPN patients. PCA was associated with a significantly shorter procedure time and hospitalization duration with fewer major complications than those associated with RAPN. While PCA incurred a slightly lower total cost (1,123,000 vs. 1,155,000 yen), it had a significantly higher procedural cost (739,000 vs. 693,000 yen) and markedly worse total (− 93,000 vs. 249,000 yen) and procedural income-expenditure balance (− 189,000 vs. 231,000 yen) than those of RAPN. After statistical adjustment, PCA demonstrated significantly higher total (difference: 114,000 yen) and procedural costs (difference: 72,000 yen), alongside significantly worse total (difference: − 358,000 yen) and procedural income-expenditure balances (difference: − 439,000 yen). The incremental cost-effectiveness ratio was more favorable for PCA than for RAPN.
Conclusion: For high- risk patients, PCA demonstrated a safer option with shorter hospitalization duration than those of RAPN. Although PCA was more cost-effective, its higher procedural cost and unfavorable income-expenditure balance require careful evaluation, especially for large tumors that require three or more needles.
en-copyright=
kn-copyright=
en-aut-name=UkaMayu
en-aut-sei=Uka
en-aut-mei=Mayu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IguchiToshihiro
en-aut-sei=Iguchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=BekkuKensuke
en-aut-sei=Bekku
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamanoiTomoaki
en-aut-sei=Yamanoi
en-aut-mei=Tomoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MitsuhashiToshiharu
en-aut-sei=Mitsuhashi
en-aut-mei=Toshiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=GobaraHideo
en-aut-sei=Gobara
en-aut-mei=Hideo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=UmakoshiNoriyuki
en-aut-sei=Umakoshi
en-aut-mei=Noriyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KawabataTakahiro
en-aut-sei=Kawabata
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TomitaKoji
en-aut-sei=Tomita
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MatsuiYusuke
en-aut-sei=Matsui
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=HirakiTakao
en-aut-sei=Hiraki
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Division of Medical Informatics, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Renal cancer
kn-keyword=Renal cancer
en-keyword=Cryoablation
kn-keyword=Cryoablation
en-keyword=Robot-assisted partial nephrectomy
kn-keyword=Robot-assisted partial nephrectomy
en-keyword=Cost
kn-keyword=Cost
en-keyword=Cost effectiveness
kn-keyword=Cost effectiveness
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=27163
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250725
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Eosinophils as a predictive marker of treatment-related adverse events in mRCC patients treated with first-line immune-checkpoint inhibitor combination therapy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Immune checkpoint inhibitors (ICIs) are a key component of first-line treatment for metastatic renal cell carcinoma (mRCC). However, predicting treatment-related adverse events (TRAEs) remains challenging. This study investigated the utility of eosinophil-related biomarkers as predictors of Common Terminology Criteria for Adverse Events grade ≥ 3 TRAEs in mRCC patients undergoing ICI combination therapy. In this retrospective analysis across 21 hospitals in Japan, we examined 180 patients treated with ICI/ICI therapy and 216 patients treated with ICI/tyrosine kinase inhibitor (TKI) therapy. Grade ≥ 3 TRAEs occurred in 39.4% and 31.9% of patients in the ICI/ICI and ICI/TKI groups, respectively. An elevated eosinophil proportion of ≥ 2.0% (odds ratio [OR]: 2.36; 95% CI [confidence interval] 1.23–4.54, p = 0.01) and a low neutrophil/eosinophil ratio (NER) of ≤ 40.0 (OR: 2.78, 95% CI 1.39–5.53, p = 0.004) were significant predictors of severe TRAEs in the ICI/ICI group. However, no significant associations were found in the ICI/TKI group. These findings may help identify patients who suffer from grade ≥ 3 TRAEs and help determine individualized treatment strategies in patients with mRCC.
en-copyright=
kn-copyright=
en-aut-name=KawadaTatsushi
en-aut-sei=Kawada
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KatayamaSatoshi
en-aut-sei=Katayama
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YanagisawaTakafumi
en-aut-sei=Yanagisawa
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MoriKeiichiro
en-aut-sei=Mori
en-aut-mei=Keiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FukuokayaWataru
en-aut-sei=Fukuokaya
en-aut-mei=Wataru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KomuraKazumasa
en-aut-sei=Komura
en-aut-mei=Kazumasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TsujinoTakuya
en-aut-sei=Tsujino
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MaenosonoRyoichi
en-aut-sei=Maenosono
en-aut-mei=Ryoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TakaharaKiyoshi
en-aut-sei=Takahara
en-aut-mei=Kiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NukayaTakuhisa
en-aut-sei=Nukaya
en-aut-mei=Takuhisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=InokiLan
en-aut-sei=Inoki
en-aut-mei=Lan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ToyodaShingo
en-aut-sei=Toyoda
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=HashimotoTakeshi
en-aut-sei=Hashimoto
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=HirasawaYosuke
en-aut-sei=Hirasawa
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=EdamuraKohei
en-aut-sei=Edamura
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=KobayashiTomoko
en-aut-sei=Kobayashi
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=BekkuKensuke
en-aut-sei=Bekku
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=NishimuraShingo
en-aut-sei=Nishimura
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=IwataTakehiro
en-aut-sei=Iwata
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=SadahiraTakuya
en-aut-sei=Sadahira
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=TominagaYusuke
en-aut-sei=Tominaga
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=YamanoiTomoaki
en-aut-sei=Yamanoi
en-aut-mei=Tomoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=YoshinagaKasumi
en-aut-sei=Yoshinaga
en-aut-mei=Kasumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=TsuboiKazuma
en-aut-sei=Tsuboi
en-aut-mei=Kazuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=KobayashiYasuyuki
en-aut-sei=Kobayashi
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=TakamotoAtsushi
en-aut-sei=Takamoto
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=KuroseKyohei
en-aut-sei=Kurose
en-aut-mei=Kyohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=KimuraTakahiro
en-aut-sei=Kimura
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=AzumaHaruhito
en-aut-sei=Azuma
en-aut-mei=Haruhito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=ShirokiRyoichi
en-aut-sei=Shiroki
en-aut-mei=Ryoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=FujitaKazutoshi
en-aut-sei=Fujita
en-aut-mei=Kazutoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=OhnoYoshio
en-aut-sei=Ohno
en-aut-mei=Yoshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=33
ORCID=
affil-num=1
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Urology, The Jikei University School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Urology, The Jikei University School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Urology, The Jikei University School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Urology, Osaka Medical and Pharmaceutical University
kn-affil=
affil-num=7
en-affil=Department of Urology, Osaka Medical and Pharmaceutical University
kn-affil=
affil-num=8
en-affil=Department of Urology, Osaka Medical and Pharmaceutical University
kn-affil=
affil-num=9
en-affil=Department of Urology, Fujita Health University School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Urology, Fujita Health University School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Urology, Kindai University Faculty of Medicine
kn-affil=
affil-num=12
en-affil=Department of Urology, Kindai University Faculty of Medicine
kn-affil=
affil-num=13
en-affil=Department of Urology, Tokyo Medical University
kn-affil=
affil-num=14
en-affil=Department of Urology, Tokyo Medical University
kn-affil=
affil-num=15
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=17
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=18
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=19
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=20
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=21
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=22
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=23
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=24
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=25
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=26
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=27
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=28
en-affil=Department of Urology, The Jikei University School of Medicine
kn-affil=
affil-num=29
en-affil=Department of Urology, Osaka Medical and Pharmaceutical University
kn-affil=
affil-num=30
en-affil=Department of Urology, Fujita Health University School of Medicine
kn-affil=
affil-num=31
en-affil=Department of Urology, Kindai University Faculty of Medicine
kn-affil=
affil-num=32
en-affil=Department of Urology, Tokyo Medical University
kn-affil=
affil-num=33
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Renal cell carcinoma
kn-keyword=Renal cell carcinoma
en-keyword=Immune checkpoint inhibitor
kn-keyword=Immune checkpoint inhibitor
en-keyword=ICI
kn-keyword=ICI
en-keyword=Eosinophil
kn-keyword=Eosinophil
en-keyword=Immune-related adverse event
kn-keyword=Immune-related adverse event
en-keyword=Treatment-related adverse event
kn-keyword=Treatment-related adverse event
END
start-ver=1.4
cd-journal=joma
no-vol=135
cd-vols=
no-issue=13
article-no=
start-page=e172988
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250513
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=LAG3 regulates antibody responses in a murine model of kidney transplantation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Lymphocyte activation gene 3 (LAG3) is a coinhibitory receptor expressed by various immune cells. Although the immunomodulatory potential of LAG3 is being explored in cancer and autoimmunity, there is no information on its role after organ transplantation. Our study investigated the functions of LAG3 in a mouse model of renal allograft rejection. LAG3–/– recipients rapidly rejected MHC-mismatched renal allografts that were spontaneously accepted by WT recipients, with graft histology characteristic of antibody-mediated rejection. Depletion of recipient B cells but not CD8+ T cells significantly extended kidney allograft survival in LAG3–/– recipients. Treatment of WT recipients with an antagonistic LAG3 antibody enhanced anti-donor immune responses and induced kidney damage associated with chronic rejection. The studies of conditional LAG3–/– recipients and mixed bone marrow chimeras demonstrated that LAG3 expression on either T or B cells is sufficient to regulate anti-donor humoral immunity but not to induce acute allograft rejection. The numbers and proinflammatory functions of graft-infiltrating NK cells were markedly increased in LAG3–/– recipients, suggesting that LAG3 also regulates the effector stage of antibody-mediated rejection. These findings identified LAG3 as a regulator of immune responses to kidney allografts and a potential therapeutic target for antibody-mediated rejection prevention and treatment.
en-copyright=
kn-copyright=
en-aut-name=NicosiaMichael
en-aut-sei=Nicosia
en-aut-mei=Michael
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FanRan
en-aut-sei=Fan
en-aut-mei=Ran
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=LeeJuyeun
en-aut-sei=Lee
en-aut-mei=Juyeun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AllGabriella
en-aut-sei=All
en-aut-mei=Gabriella
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=GorbachevaVictoria
en-aut-sei=Gorbacheva
en-aut-mei=Victoria
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ValenzuelaJosé I.
en-aut-sei=Valenzuela
en-aut-mei=José I.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YamamotoYosuke
en-aut-sei=Yamamoto
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=BeaversAshley
en-aut-sei=Beavers
en-aut-mei=Ashley
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=DvorinaNina
en-aut-sei=Dvorina
en-aut-mei=Nina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=BaldwinWilliam M.
en-aut-sei=Baldwin
en-aut-mei=William M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=ChuluyanEduardo
en-aut-sei=Chuluyan
en-aut-mei=Eduardo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=GaudetteBrian T.
en-aut-sei=Gaudette
en-aut-mei=Brian T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=FairchildRobert L.
en-aut-sei=Fairchild
en-aut-mei=Robert L.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=MinBooki
en-aut-sei=Min
en-aut-mei=Booki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=ValujskikhAnna
en-aut-sei=Valujskikh
en-aut-mei=Anna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
affil-num=1
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=2
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=4
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=5
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=6
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=7
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=8
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=9
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=10
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=11
en-affil=Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Facultad de Medicina
kn-affil=
affil-num=12
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=14
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=15
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
affil-num=16
en-affil=Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=15
article-no=
start-page=7275
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250728
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Acquired Radioresistance Through Adaptive Evolution with Gamma Radiation as Selection Pressure: Increased Expression and Induction of Anti-Stress Genes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Elucidating the mechanisms of radioresistance in highly radiotolerant organisms can provide valuable insights into the adaptation and evolution of organisms. However, research has been limited on many naturally occurring radioresistant organisms due to a lack of information regarding their genetic and biochemical characteristics and the difficulty of handling them experimentally. To address this, we conducted an experiment on adaptive evolution using gamma radiation as the selection pressure to generate evolved Escherichia coli with gamma radiation resistance approximately one order of magnitude greater than that of wild-type E. coli. Gene expressions in all wild-type and evolved radioresistant E. coli in the presence or absence of gamma irradiation were analyzed and compared using RNA sequencing. Under steady-state conditions, the genes involved in survival, cell recovery, DNA repair, and response following stress exposure were upregulated in evolved E. coli compared with those in wild-type E. coli. Furthermore, the evolved E. coli induced these genes more efficiently following gamma irradiation and greater DNA repair activity than that in the wild-type E. coli. Our results indicate that an increased steady-state expression of various anti-stress genes, including DNA repair-related genes, and their highly efficient induction under irradiation are responsible for the remarkable radioresistance of evolved E. coli.
en-copyright=
kn-copyright=
en-aut-name=SaitoTakeshi
en-aut-sei=Saito
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TeratoHiroaki
en-aut-sei=Terato
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Division of Radiation Life Science, Institute for Integrated Radiation and Nuclear Science, Kyoto University
kn-affil=
affil-num=2
en-affil=Department of Radiation Research, Advanced Science Research Center, Okayama University
kn-affil=
en-keyword=radioresistant bacteria
kn-keyword=radioresistant bacteria
en-keyword=Escherichia coli
kn-keyword=Escherichia coli
en-keyword=adaptive evolution
kn-keyword=adaptive evolution
en-keyword=gene expression changes
kn-keyword=gene expression changes
en-keyword=anti-stress genes
kn-keyword=anti-stress genes
en-keyword=DNA repair
kn-keyword=DNA repair
en-keyword=cell recovery
kn-keyword=cell recovery
END
start-ver=1.4
cd-journal=joma
no-vol=37
cd-vols=
no-issue=7
article-no=
start-page=koaf142
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250610
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Pancentromere analysis of Allium species reveals diverse centromere positions in onion and gigantic centromeres in garlic
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In eukaryotes, centromeres interact with the kinetochore for distribution of genetic information in cell division, yet their sequence and size are diverse among species. However, their position on chromosomes is considered to be conserved within a species. In this study, we analyzed the centromeres of 3 Allium species, namely, Welsh onion (Allium fistulosum), onion (Allium cepa), and garlic (Allium sativum) via pancentromere analysis and repetitive sequence analysis of centromeres and their neighborhoods and revealed their mobility, sequence organization, and size. Among the 3 species, Welsh onion and garlic had stable centromeres, but the onion centromere appeared to be polymorphic and frequently differed in position by up to 28.0 Mb among cultivars and between multiple individuals of the same cultivar. This mobility was stabilized by hybridization with Welsh onions. Furthermore, these 3 species have very different centromere sequence organization, including differences in the existence and maturity of centromeric satellites, and differences in centromere size, with Welsh onion having a centromere of 1.9 Mb, and garlic having a centromere of ∼10.6 Mb, the largest of any organism with monocentric chromosomes analyzed to date. Our pancentromere analysis of these Allium species reveals the variation in sequence organization, size, and position of this important chromosomal region.
en-copyright=
kn-copyright=
en-aut-name=NagakiKiyotaka
en-aut-sei=Nagaki
en-aut-mei=Kiyotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UshijimaKoichiro
en-aut-sei=Ushijima
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AkagiTakashi
en-aut-sei=Akagi
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanakaKeisuke
en-aut-sei=Tanaka
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KobayashiHisato
en-aut-sei=Kobayashi
en-aut-mei=Hisato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=4
en-affil=NODAI Genome Research Center, Tokyo University of Agriculture
kn-affil=
affil-num=5
en-affil=NODAI Genome Research Center, Tokyo University of Agriculture
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=10
article-no=
start-page=2401783
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241010
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Biocompatibility of Water-Dispersible Pristine Graphene and Graphene Oxide Using a Close-to-Human Animal Model: A Pilot Study on Swine
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Graphene-based materials (GBMs) are of considerable interest for biomedical applications, and the pilot study on the toxicological and immunological impact of pristine graphene (GR) and graphene oxide (GO) using swine as a close-to-human provides valuable insights. First, ex vivo experiments are conducted on swine blood cells, then GBMs are injected intraperitoneally (i.p.) into swine. Hematological and biochemical analyses at various intervals indicate that neither GO nor GR cause systemic inflammation, pro-coagulant responses, or renal or hepatic dysfunction. Importantly, no systemic toxicity is observed. Analysis of a panel of 84 immune-related genes shows minimal impact of GO and GR. The animals are sacrificed 21 days post-injection, and transient absorption imaging and Raman mapping show the presence of GO and GR in the mesentery only. Histological evaluation reveals no signs of alterations in other organs. Thus, clusters of both materials are detected in the mesentery, and GO aggregates are surrounded only by macrophages with the formation of granulomas. In contrast, modest local reactions are observed around the GR clusters. Overall, these results reveal that i.p. injection of GBMs resulted in a modest local tissue reaction without systemic toxicity. This study, performed in swine, provides essential guidance for future biomedical applications of graphene.
en-copyright=
kn-copyright=
en-aut-name=NicolussiPaola
en-aut-sei=Nicolussi
en-aut-mei=Paola
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=PiloGiovannantonio
en-aut-sei=Pilo
en-aut-mei=Giovannantonio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=CanceddaMaria Giovanna
en-aut-sei=Cancedda
en-aut-mei=Maria Giovanna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=PengGuotao
en-aut-sei=Peng
en-aut-mei=Guotao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ChauNgoc Do Quyen
en-aut-sei=Chau
en-aut-mei=Ngoc Do Quyen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=De la CadenaAlejandro
en-aut-sei=De la Cadena
en-aut-mei=Alejandro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=VannaRenzo
en-aut-sei=Vanna
en-aut-mei=Renzo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SamadYarjan Abdul
en-aut-sei=Samad
en-aut-mei=Yarjan Abdul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=AhmedTanweer
en-aut-sei=Ahmed
en-aut-mei=Tanweer
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MarcellinoJeremia
en-aut-sei=Marcellino
en-aut-mei=Jeremia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TeddeGiuseppe
en-aut-sei=Tedde
en-aut-mei=Giuseppe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=GiroLinda
en-aut-sei=Giro
en-aut-mei=Linda
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=YlmazerAcelya
en-aut-sei=Ylmazer
en-aut-mei=Acelya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=LoiFederica
en-aut-sei=Loi
en-aut-mei=Federica
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=CartaGavina
en-aut-sei=Carta
en-aut-mei=Gavina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=SecchiLoredana
en-aut-sei=Secchi
en-aut-mei=Loredana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=Dei GiudiciSilvia
en-aut-sei=Dei Giudici
en-aut-mei=Silvia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=MacciocuSimona
en-aut-sei=Macciocu
en-aut-mei=Simona
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=PolliDario
en-aut-sei=Polli
en-aut-mei=Dario
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=LigiosCiriaco
en-aut-sei=Ligios
en-aut-mei=Ciriaco
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=CerulloGiulio
en-aut-sei=Cerullo
en-aut-mei=Giulio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=FerrariAndrea
en-aut-sei=Ferrari
en-aut-mei=Andrea
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=BiancoAlberto
en-aut-sei=Bianco
en-aut-mei=Alberto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=FadeelBengt
en-aut-sei=Fadeel
en-aut-mei=Bengt
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=FranzoniGiulia
en-aut-sei=Franzoni
en-aut-mei=Giulia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=DeloguLucia Gemma
en-aut-sei=Delogu
en-aut-mei=Lucia Gemma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
affil-num=1
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=2
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=3
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=4
en-affil=Institute of Environmental Medicine, Karolinska Institutet
kn-affil=
affil-num=5
en-affil=CNRS, Immunology, Immunopathology and Therapeutic Chemistry
kn-affil=
affil-num=6
en-affil=Dipartimento di Fisica, Politecnico di Milano
kn-affil=
affil-num=7
en-affil=Istituto di Fotonica e Nanotecnologie – CNR
kn-affil=
affil-num=8
en-affil=Cambridge Graphene Centre, University of Cambridge
kn-affil=
affil-num=9
en-affil=Cambridge Graphene Centre, University of Cambridge
kn-affil=
affil-num=10
en-affil=Cambridge Graphene Centre, University of Cambridge
kn-affil=
affil-num=11
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=12
en-affil=ImmuneNano Laboratory, Department of Biomedical Sciences
kn-affil=
affil-num=13
en-affil=Department of Biomedical Engineering, Ankara University
kn-affil=
affil-num=14
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=15
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=16
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=17
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=18
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=19
en-affil=Dipartimento di Fisica, Politecnico di Milano
kn-affil=
affil-num=20
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=21
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=22
en-affil=Dipartimento di Fisica, Politecnico di Milano
kn-affil=
affil-num=23
en-affil=Cambridge Graphene Centre, University of Cambridge
kn-affil=
affil-num=24
en-affil=CNRS, Immunology, Immunopathology and Therapeutic Chemistry
kn-affil=
affil-num=25
en-affil=Institute of Environmental Medicine, Karolinska Institutet
kn-affil=
affil-num=26
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=27
en-affil=ImmuneNano Laboratory, Department of Biomedical Sciences
kn-affil=
en-keyword=2D materials
kn-keyword=2D materials
en-keyword=biocompatibility
kn-keyword=biocompatibility
en-keyword=immune system
kn-keyword=immune system
en-keyword=porcine model
kn-keyword=porcine model
en-keyword=toxicity
kn-keyword=toxicity
END
start-ver=1.4
cd-journal=joma
no-vol=4
cd-vols=
no-issue=4
article-no=
start-page=263
end-page=272
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240607
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Light-Responsive and Antibacterial Graphenic Materials as a Holistic Approach to Tissue Engineering
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=While the continuous development of advanced bioprinting technologies is under fervent study, enhancing the regenerative potential of hydrogel-based constructs using external stimuli for wound dressing has yet to be tackled. Fibroblasts play a significant role in wound healing and tissue implants at different stages, including extracellular matrix production, collagen synthesis, and wound and tissue remodeling. This study explores the synergistic interplay between photothermal activity and nanomaterial-mediated cell proliferation. The use of different graphene-based materials (GBM) in the development of photoactive bioinks is investigated. In particular, we report the creation of a skin-inspired dressing for wound healing and regenerative medicine. Three distinct GBM, namely, graphene oxide (GO), reduced graphene oxide (rGO), and graphene platelets (GP), were rigorously characterized, and their photothermal capabilities were elucidated. Our investigations revealed that rGO exhibited the highest photothermal efficiency and antibacterial properties when irradiated, even at a concentration as low as 0.05 mg/mL, without compromising human fibroblast viability. Alginate-based bioinks alongside human fibroblasts were employed for the bioprinting with rGO. The scaffold did not affect the survival of fibroblasts for 3 days after bioprinting, as cell viability was not affected. Remarkably, the inclusion of rGO did not compromise the printability of the hydrogel, ensuring the successful fabrication of complex constructs. Furthermore, the presence of rGO in the final scaffold continued to provide the benefits of photothermal antimicrobial therapy without detrimentally affecting fibroblast growth. This outcome underscores the potential of rGO-enhanced hydrogels in tissue engineering and regenerative medicine applications. Our findings hold promise for developing game-changer strategies in 4D bioprinting to create smart and functional tissue constructs with high fibroblast proliferation and promising therapeutic capabilities in drug delivery and bactericidal skin-inspired dressings.
en-copyright=
kn-copyright=
en-aut-name=FerrerasAndrea
en-aut-sei=Ferreras
en-aut-mei=Andrea
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatesanzAna
en-aut-sei=Matesanz
en-aut-mei=Ana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MendizabalJabier
en-aut-sei=Mendizabal
en-aut-mei=Jabier
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ArtolaKoldo
en-aut-sei=Artola
en-aut-mei=Koldo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AcedoPablo
en-aut-sei=Acedo
en-aut-mei=Pablo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=JorcanoJosé L.
en-aut-sei=Jorcano
en-aut-mei=José L.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=RuizAmalia
en-aut-sei=Ruiz
en-aut-mei=Amalia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ReinaGiacomo
en-aut-sei=Reina
en-aut-mei=Giacomo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MartínCristina
en-aut-sei=Martín
en-aut-mei=Cristina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Bioengineering, Universidad Carlos III de Madrid
kn-affil=
affil-num=2
en-affil=Department of Electronic Technology, Universidad Carlos III de Madrid
kn-affil=
affil-num=3
en-affil=Domotek ingeniería prototipado y formación S.L.
kn-affil=
affil-num=4
en-affil=Domotek ingeniería prototipado y formación S.L.
kn-affil=
affil-num=5
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Electronic Technology, Universidad Carlos III de Madrid
kn-affil=
affil-num=7
en-affil=Department of Bioengineering, Universidad Carlos III de Madrid
kn-affil=
affil-num=8
en-affil=Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford
kn-affil=
affil-num=9
en-affil=Empa Swiss Federal Laboratories for Materials Science and Technology
kn-affil=
affil-num=10
en-affil=Department of Bioengineering, Universidad Carlos III de Madrid
kn-affil=
en-keyword=photothermal therapy
kn-keyword=photothermal therapy
en-keyword=graphene derivatives
kn-keyword=graphene derivatives
en-keyword=4D bioprinting
kn-keyword=4D bioprinting
en-keyword=alginate
kn-keyword=alginate
en-keyword=tissue engineering
kn-keyword=tissue engineering
END
start-ver=1.4
cd-journal=joma
no-vol=36
cd-vols=
no-issue=12
article-no=
start-page=4932
end-page=4951
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241021
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The leucine-rich repeat receptor kinase QSK1 regulates PRR-RBOHD complexes targeted by the bacterial effector HopF2Pto
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Plants detect pathogens using cell-surface pattern recognition receptors (PRRs) such as ELONGATION Factor-TU (EF-TU) RECEPTOR (EFR) and FLAGELLIN SENSING 2 (FLS2), which recognize bacterial EF-Tu and flagellin, respectively. These PRRs belong to the leucine-rich repeat receptor kinase (LRR-RK) family and activate the production of reactive oxygen species via the NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD). The PRR-RBOHD complex is tightly regulated to prevent unwarranted or exaggerated immune responses. However, certain pathogen effectors can subvert these regulatory mechanisms, thereby suppressing plant immunity. To elucidate the intricate dynamics of the PRR-RBOHD complex, we conducted a comparative coimmunoprecipitation analysis using EFR, FLS2, and RBOHD in Arabidopsis thaliana. We identified QIAN SHOU KINASE 1 (QSK1), an LRR-RK, as a PRR-RBOHD complex-associated protein. QSK1 downregulated FLS2 and EFR abundance, functioning as a negative regulator of PRR-triggered immunity (PTI). QSK1 was targeted by the bacterial effector HopF2Pto, a mono-ADP ribosyltransferase, reducing FLS2 and EFR levels through both transcriptional and transcription-independent pathways, thereby inhibiting PTI. Furthermore, HopF2Pto transcriptionally downregulated PROSCOOP genes encoding important stress-regulated phytocytokines and their receptor MALE DISCOVERER 1-INTERACTING RECEPTOR-LIKE KINASE 2. Importantly, HopF2Pto requires QSK1 for its accumulation and virulence functions within plants. In summary, our results provide insights into the mechanism by which HopF2Pto employs QSK1 to desensitize plants to pathogen attack.
en-copyright=
kn-copyright=
en-aut-name=GotoYukihisa
en-aut-sei=Goto
en-aut-mei=Yukihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KadotaYasuhiro
en-aut-sei=Kadota
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MbengueMalick
en-aut-sei=Mbengue
en-aut-mei=Malick
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=LewisJennifer D
en-aut-sei=Lewis
en-aut-mei=Jennifer D
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MatsuiHidenori
en-aut-sei=Matsui
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MakiNoriko
en-aut-sei=Maki
en-aut-mei=Noriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NgouBruno Pok Man
en-aut-sei=Ngou
en-aut-mei=Bruno Pok Man
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SklenarJan
en-aut-sei=Sklenar
en-aut-mei=Jan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=DerbyshirePaul
en-aut-sei=Derbyshire
en-aut-mei=Paul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ShibataArisa
en-aut-sei=Shibata
en-aut-mei=Arisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=IchihashiYasunori
en-aut-sei=Ichihashi
en-aut-mei=Yasunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=GuttmanDavid S
en-aut-sei=Guttman
en-aut-mei=David S
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=NakagamiHirofumi
en-aut-sei=Nakagami
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=SuzukiTakamasa
en-aut-sei=Suzuki
en-aut-mei=Takamasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=MenkeFrank L H
en-aut-sei=Menke
en-aut-mei=Frank L H
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=RobatzekSilke
en-aut-sei=Robatzek
en-aut-mei=Silke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=DesveauxDarrell
en-aut-sei=Desveaux
en-aut-mei=Darrell
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=ZipfelCyril
en-aut-sei=Zipfel
en-aut-mei=Cyril
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=ShirasuKen
en-aut-sei=Shirasu
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
affil-num=1
en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS)
kn-affil=
affil-num=2
en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS)
kn-affil=
affil-num=3
en-affil=The Sainsbury Laboratory, University of East Anglia
kn-affil=
affil-num=4
en-affil=Department of Cell and System Biology, Centre for the Analysis of Genome Function and Evolution, University of Toronto
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=6
en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS)
kn-affil=
affil-num=7
en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS)
kn-affil=
affil-num=8
en-affil=The Sainsbury Laboratory, University of East Anglia
kn-affil=
affil-num=9
en-affil=The Sainsbury Laboratory, University of East Anglia
kn-affil=
affil-num=10
en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS)
kn-affil=
affil-num=11
en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS)
kn-affil=
affil-num=12
en-affil=Department of Cell and System Biology, Centre for the Analysis of Genome Function and Evolution, University of Toronto
kn-affil=
affil-num=13
en-affil=Plant Proteomics Research Unit, RIKEN CSRS
kn-affil=
affil-num=14
en-affil=College of Bioscience and Biotechnology, Chubu University
kn-affil=
affil-num=15
en-affil=The Sainsbury Laboratory, University of East Anglia
kn-affil=
affil-num=16
en-affil=The Sainsbury Laboratory, University of East Anglia
kn-affil=
affil-num=17
en-affil=Department of Cell and System Biology, Centre for the Analysis of Genome Function and Evolution, University of Toronto
kn-affil=
affil-num=18
en-affil=Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich
kn-affil=
affil-num=19
en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS)
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=7
article-no=
start-page=e88945
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250728
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Six-Year Remission With No Relapse After Four-Time Weekly Rituximab Only for Bilateral Ocular Adnexal Follicular Lymphoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Follicular lymphoma mostly takes an indolent course, and thus, observation with watchful waiting is a main therapeutic strategy. Recent long-term studies suggest earlier treatment with rituximab monotherapy may benefit patients by delaying the need for treatment in the later phase of exacerbation. In this study, we reported a patient with bilateral orbital follicular lymphoma who received four-time weekly rituximab monotherapy as an induction therapy only and maintained the remission for 5 years with no treatment. The patient was a 51-year-old woman who developed a right upper orbital mass and was diagnosed with follicular lymphoma grade 1 by the excisional biopsy. Two years later, at the age of 53 years, she developed a left lacrimal gland mass and underwent excision. The pathological diagnosis was follicular lymphoma grade 1. She did not have any other systemic lesions by fluorodeoxyglucose positron emission tomography. At the age of 54 years, she developed a new mass on the nasal side of the right orbit and underwent weekly rituximab monotherapy (375 mg/m2) four times a month, leading to the reduction of the mass in 3 months. Two high uptake sites on the temporal and nasal side of the right superior orbit by fluorodeoxyglucose positron emission tomography disappeared one year later at the age of 55 years. She was followed with no treatment for 6 years until the age of 60 years at the latest visit. In case of a local orbital relapse, local radiotherapy would be the standard, but rituximab monotherapy as an induction therapy only was chosen in the present patient. Rituximab monotherapy in place of local radiotherapy would be a treatment option for orbital follicular lymphoma.
en-copyright=
kn-copyright=
en-aut-name=MatsuoToshihiko
en-aut-sei=Matsuo
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FujiiNobuharu
en-aut-sei=Fujii
en-aut-mei=Nobuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Ophthalmology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, and Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Division of Transfusion and Cell Therapy, Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
en-keyword=claustrophobia
kn-keyword=claustrophobia
en-keyword=extranodal marginal zone b-cell lymphoma mucosa-associated lymphoid tissue (malt) type
kn-keyword=extranodal marginal zone b-cell lymphoma mucosa-associated lymphoid tissue (malt) type
en-keyword=fluorodeoxyglucose positron emission tomography
kn-keyword=fluorodeoxyglucose positron emission tomography
en-keyword=follicular lymphoma
kn-keyword=follicular lymphoma
en-keyword=magnetic resonance imaging
kn-keyword=magnetic resonance imaging
en-keyword=mucosaassociated lymphoid tissue (malt) lymphoma
kn-keyword=mucosaassociated lymphoid tissue (malt) lymphoma
en-keyword=ocular adnexa
kn-keyword=ocular adnexa
en-keyword=orbital mass
kn-keyword=orbital mass
en-keyword=radiotherapy
kn-keyword=radiotherapy
en-keyword=rituximab
kn-keyword=rituximab
END
start-ver=1.4
cd-journal=joma
no-vol=22
cd-vols=
no-issue=6
article-no=
start-page=271
end-page=285
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=2024
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effects of Sediment Microbial Fuel Cells on CH4 and CO2 Emissions from Straw Amended Paddy Soil
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Straw returning into paddy soil enhances soil organic matter which usually promotes the emission of greenhouse gases to the atmosphere. The application of sediment microbial fuel cells (SMFCs) to paddy soil activates power-generating microorganisms and enhances organic matter biodegradation. In the present study, rice straw addition in SMFCs was examined to determine its effect on CH4 and CO2 emissions. Columns (height, 25 cm; inner diameter, 9 cm) with four treatments: soil without and with rice straw under SMFC and without SMFC conditions were incubated at 25°C for 70 days. Anodic potential values at 7 cm depth sediment were kept higher by SMFCs than those without SMFCs. Cumulative CH4 emission was significantly reduced by SMFC with straw amendment (p < 0.05) with no significant effect on CO2 emission. 16S rRNA gene analysis results showed that Firmicutes at the phylum, Closteridiales and Acidobacteriales at order level were dominant on the anode of straw-added SMFC, whereas Methanomicrobiales were in the treatment without SMFC, indicating that a certain group of methanogens were suppressed by SMFC. Our results suggest that the anodic redox environment together with the enrichment of straw-degrading bacteria contributed to a competitive advantage of electrogenesis over methanogenesis in straw-added SMFC system.
en-copyright=
kn-copyright=
en-aut-name=BekeleAdhena Tesfau
en-aut-sei=Bekele
en-aut-mei=Adhena Tesfau
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MaedaMorihiro
en-aut-sei=Maeda
en-aut-mei=Morihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AkaoSatoshi
en-aut-sei=Akao
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SomuraHiroaki
en-aut-sei=Somura
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakanoChiyu
en-aut-sei=Nakano
en-aut-mei=Chiyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Science and Engineering, Doshisha University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=5
en-affil=Organization for Research Strategy and Development, Okayama University
kn-affil=
affil-num=6
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
en-keyword=straw
kn-keyword=straw
en-keyword=methane mitigation
kn-keyword=methane mitigation
en-keyword=SMFC
kn-keyword=SMFC
en-keyword=microorganisms
kn-keyword=microorganisms
en-keyword=current generation
kn-keyword=current generation
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=14
article-no=
start-page=6927
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250718
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Inhibitory Effects of Vandetanib on Catecholamine Synthesis in Rat Pheochromocytoma PC12 Cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Gain-of-function gene alterations in rearranged during transfection (RET), a receptor tyrosine kinase, are observed in both sporadic and hereditary medullary thyroid cancers (MTCs) and pheochromocytomas and paragangliomas (PPGLs). Several tyrosine kinase inhibitors (TKIs) that target RET have been proven to be effective on MTCs and PCCs. Recently, TKIs, namely, sunitinib and selpercatinib, which were clinically used to target PPGLs, have been reported to decrease catecholamine levels without reducing tumor size. Our clinical case of metastatic medullary thyroid cancer, which is associated with RET mutations undergoing treatment with vandetanib, also suggests that vandetanib can decrease catecholamine levels. Therefore, we investigated the effect of vandetanib, a representative multi-targeted TKI for RET-related MTC, on cell proliferation and catecholamine synthesis in rat pheochromocytoma PC12 cells. Vandetanib reduced viable cells in a concentration-dependent manner. The dopamine and noradrenaline levels of the cell lysate were reduced in a concentration-dependent manner. They also decreased more prominently at lower concentrations of vandetanib compared to the inhibition of cell proliferation. The RNA knockdown study of Ret revealed that this inhibitory effect on catecholamine synthesis is mainly mediated by the suppression of RET signaling. Next, we focused on two signaling pathways downstream of RET, namely, ERK and AKT signaling. Treatment with vandetanib reduced both ERK and AKT phosphorylation in PC12 cells. Moreover, both an MEK inhibitor U0126 and a PI3K/AKT inhibitor LY294002 suppressed catecholamine synthesis without decreasing viable cells. This study in rat pheochromocytoma PC12 cells reveals the direct inhibitory effects of vandetanib on catecholamine synthesis via the suppression of RET-ERK and RET-AKT signaling.
en-copyright=
kn-copyright=
en-aut-name=ItohYoshihiko
en-aut-sei=Itoh
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=InagakiKenichi
en-aut-sei=Inagaki
en-aut-mei=Kenichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TerasakaTomohiro
en-aut-sei=Terasaka
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MorimotoEisaku
en-aut-sei=Morimoto
en-aut-mei=Eisaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IshiiTakahiro
en-aut-sei=Ishii
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamaokaKimitomo
en-aut-sei=Yamaoka
en-aut-mei=Kimitomo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=FujisawaSatoshi
en-aut-sei=Fujisawa
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=tyrosine kinase inhibitor
kn-keyword=tyrosine kinase inhibitor
en-keyword=multiple endocrine neoplasia type 2
kn-keyword=multiple endocrine neoplasia type 2
en-keyword=paraganglioma
kn-keyword=paraganglioma
en-keyword=RET
kn-keyword=RET
en-keyword=ERK
kn-keyword=ERK
en-keyword=AKT
kn-keyword=AKT
END
start-ver=1.4
cd-journal=joma
no-vol=186
cd-vols=
no-issue=
article-no=
start-page=118030
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202505
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=(+)-Terrein exerts anti-obesity and anti-diabetic effects by regulating the differentiation and thermogenesis of brown adipocytes in mice fed a high-fat diet
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective: (+)-Terrein, a low-molecular-weight secondary metabolite from Aspergillus terreus, inhibits adipocyte differentiation in vitro. However, the precise mechanisms underlying the effects of (+)-terrein on adipocytes remain unclear. We hypothesized that (+)-terrein modulates adipogenesis and glucose homeostasis in obesity and diabetes via anti-inflammatory action and regulation of adipocyte differentiation. Hence, in this study, we aimed to investigate the in vivo anti-diabetic and anti-obesity effects of (+)-terrein.
Methods: Male C57BL/6 J mice were fed normal chow or high-fat (HF) diet and administered (+)-terrein (180 mg/kg) via intraperitoneal injection. Glucose and insulin tolerance tests, serum biochemical assays, and histological analyses were also performed. Rat brown preadipocytes, mouse brown preadipocytes (T37i cells), and inguinal white adipose tissue (ingWAT) preadipocytes were exposed to (+)-terrein during in vitro adipocyte differentiation. Molecular markers associated with thermogenesis and differentiation were quantified using real-time polymerase chain reaction and western blotting.
Results: (+)-Terrein-treated mice exhibited improved insulin sensitivity and reduced serum lipid and glucose levels, irrespective of the diet. Furthermore, (+)-terrein suppressed body weight gain and mitigated fat accumulation by activating brown adipose tissue in HF-fed mice. (+)-Terrein facilitated the in vitro differentiation of rat brown preadipocytes, T37i cells, and ingWAT preadipocytes by upregulating peroxisome proliferator-activated receptor-γ (PPARγ). This effect was synergistic with that of a PPARγ agonist.
Conclusion: This study demonstrated that (+)-terrein effectively induces PPARγ expression and brown adipocyte differentiation, leading to reduced weight gain and improved glucose and lipid profiles in HF-fed mice. Thus, (+)-terrein is a potent novel agent with potential anti-obesity and anti-diabetic properties.
en-copyright=
kn-copyright=
en-aut-name=Aoki-SaitoHaruka
en-aut-sei=Aoki-Saito
en-aut-mei=Haruka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MandaiHiroki
en-aut-sei=Mandai
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakakuraTakashi
en-aut-sei=Nakakura
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SasakiTsutomu
en-aut-sei=Sasaki
en-aut-mei=Tsutomu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KitamuraTadahiro
en-aut-sei=Kitamura
en-aut-mei=Tadahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OmoriKazuhiro
en-aut-sei=Omori
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HisadaTakeshi
en-aut-sei=Hisada
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OkadaShuichi
en-aut-sei=Okada
en-aut-mei=Shuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SugaSeiji
en-aut-sei=Suga
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YamadaMasanobu
en-aut-sei=Yamada
en-aut-mei=Masanobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=SaitoTsugumichi
en-aut-sei=Saito
en-aut-mei=Tsugumichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science
kn-affil=
affil-num=3
en-affil=Department of Anatomy, Teikyo University School of Medicine
kn-affil=
affil-num=4
en-affil=Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=5
en-affil=Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University
kn-affil=
affil-num=6
en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Gunma University Graduate School of Health Sciences
kn-affil=
affil-num=8
en-affil=Department of Diabetes, Soleiyu Asahi Clinic
kn-affil=
affil-num=9
en-affil=Division of Applied Chemistry, Graduate School of Natural Sciences and Technology, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Health & Sports Sciences, Faculty of Education, Tokyo Gakugei University
kn-affil=
en-keyword=(+)-Terrein
kn-keyword=(+)-Terrein
en-keyword=Brown adipose tissue
kn-keyword=Brown adipose tissue
en-keyword=Thermogenesis
kn-keyword=Thermogenesis
en-keyword=Obesity
kn-keyword=Obesity
en-keyword=PPARγ
kn-keyword=PPARγ
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=e00678
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250623
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Alkoxy‐Substituted Anthrabis(Thiadiazole)‐Terthiophene Copolymers for Organic Photovoltaics: A Unique Wavy Backbone Enhances Aggregation, Molecular Order, and Device Efficiency
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Two polymer donors, PATz3T-o6BO and PATz3T-o6HD, incorporating alkoxy-substituted anthra[1,2-c:5,6-c′]bis([1,2,5]thiadiazole), were strategically designed and synthesized. The unique wavy backbone of these polymers effectively reduced aggregation, leading to enhanced solubility and significantly improved molecular ordering. Consequently, the PATz3T-o6HD:Y12-based solar cells achieved a power conversion efficiency (PCE) of 7.94%. These findings provide valuable insights into the molecular design of high-performance polymer donors for organic photovoltaics (OPVs).
en-copyright=
kn-copyright=
en-aut-name=YanYi
en-aut-sei=Yan
en-aut-mei=Yi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MoriHiroki
en-aut-sei=Mori
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshinoTomoki
en-aut-sei=Yoshino
en-aut-mei=Tomoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=InamiRyuki
en-aut-sei=Inami
en-aut-mei=Ryuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ChangJiaxin
en-aut-sei=Chang
en-aut-mei=Jiaxin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=GaoJunqing
en-aut-sei=Gao
en-aut-mei=Junqing
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NishiharaYasushi
en-aut-sei=Nishihara
en-aut-mei=Yasushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
en-keyword=Aggregation
kn-keyword=Aggregation
en-keyword=Backbone conformation
kn-keyword=Backbone conformation
en-keyword=Conjugated polymers
kn-keyword=Conjugated polymers
en-keyword=Organic solar cells
kn-keyword=Organic solar cells
en-keyword=Semiconducting polymers
kn-keyword=Semiconducting polymers
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250603
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Amino Acid Substitutions in Loop C of Arabidopsis PIP2 Aquaporins Alters the Permeability of CO2
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The transport of CO2 across biomembranes in plant cells is essential for efficient photosynthesis. Some aquaporins capable of CO2 transport, referred to as ‘COOporins’, are postulated to play a crucial role in leaf CO2 diffusion. However, the structural basis of CO2 permeation through aquaporins remains largely unknown. Here, we show that amino acids in loop C are critical for the CO2 permeability of Arabidopsis thaliana PIP2 aquaporins. We found that swapping tyrosine and serine in loop C to histidine and phenylalanine, which differ between AtPIP2;1 and AtPIP2;3, altered CO2 permeability when examined in the Xenopus laevis oocyte heterologous expression system. AlphaFold2 modelling indicated that these substitution induced a conformational shift in the sidechain of arginine in the aromatic/arginine (ar/R) selectivity filter and in lysine at the extracellular mouth of the monomeric pore in PIP2 aquaporins. Our findings demonstrate that distal amino acid substitutions can trigger conformational changes of the ar/R filter in the monomeric pore, modulating CO2 permeability. Additionally, phylogenetic analysis suggested that aquaporins capable of dual water/CO2 permeability are ancestral to those that are water-selective and CO2-impermeable, and CO2-selective and water impermeable.
en-copyright=
kn-copyright=
en-aut-name=TaniaShaila Shermin
en-aut-sei=Tania
en-aut-mei=Shaila Shermin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UtsugiShigeko
en-aut-sei=Utsugi
en-aut-mei=Shigeko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TsuchiyaYoshiyuki
en-aut-sei=Tsuchiya
en-aut-mei=Yoshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SasanoShizuka
en-aut-sei=Sasano
en-aut-mei=Shizuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KatsuharaMaki
en-aut-sei=Katsuhara
en-aut-mei=Maki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MoriIzumi C.
en-aut-sei=Mori
en-aut-mei=Izumi C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=4
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=5
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=6
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
en-keyword=Arabidopsis thaliana
kn-keyword=Arabidopsis thaliana
en-keyword=CO2 transport
kn-keyword=CO2 transport
en-keyword=monomeric pore
kn-keyword=monomeric pore
en-keyword=PIP2 aquaporin
kn-keyword=PIP2 aquaporin
en-keyword=Xenopus laevis
kn-keyword=Xenopus laevis
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=23
article-no=
start-page=17720
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A meta-linked isomer of ITIC: influence of aggregation patterns on open-circuit voltage in organic solar cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Improving the open-circuit voltage (VOC) of organic solar cells (OSCs) remains an important challenge. While it is known that the energy levels at the donor/acceptor (D/A) interface affect the VOC, the impact of aggregation patterns on the energy levels at the D/A interface has not been fully elucidated. Herein, we focus on ITIC, a widely used acceptor in OSCs, and designed a meta-linked isomer of ITIC (referred to as im-ITIC) to alter molecular symmetry and modify substitution arrangements. Concentration-dependent 1H NMR spectra revealed that im-ITIC shows stronger aggregation behavior in solution. Single-crystal X-ray analysis showed that im-ITIC forms both tail-to-tail (J-aggregation) and face-to-face (H-aggregation) stacking modes, whereas ITIC exclusively forms tail-to-tail stacking. OSCs based on PBDB-T:im-ITIC showed a high VOC value of 1.02 V, which is 0.12 V higher than that of those based on PBDB-T:ITIC. Time-resolved infrared measurements revealed the lifetime of free electrons for the pristine and blend films. The energy levels of the charge transfer state (ECT) for PBDB-T:im-ITIC- and PBDB-T:ITIC OSCs were determined to be 1.57 and 1.39 eV, respectively, correlating with the VOC values. Theoretical calculations indicated that pronounced H-aggregation in im-ITIC increases the ECT compared with J-aggregation, contributing to the improved VOC. This study underscores the critical impact of molecular aggregation patterns on energy alignment and VOC enhancement, offering insights into molecular design for achieving high VOC in OSCs.
en-copyright=
kn-copyright=
en-aut-name=WangKai
en-aut-sei=Wang
en-aut-mei=Kai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=JinnaiSeihou
en-aut-sei=Jinnai
en-aut-mei=Seihou
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UesakaKaito
en-aut-sei=Uesaka
en-aut-mei=Kaito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamakataAkira
en-aut-sei=Yamakata
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IeYutaka
en-aut-sei=Ie
en-aut-mei=Yutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=The Institute of Scientific and Industrial Research (SANKEN), The University of Osaka
kn-affil=
affil-num=2
en-affil=The Institute of Scientific and Industrial Research (SANKEN), The University of Osaka
kn-affil=
affil-num=3
en-affil=Graduate School of Natural Science & Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Natural Science & Technology, Okayama University
kn-affil=
affil-num=5
en-affil=The Institute of Scientific and Industrial Research (SANKEN), The University of Osaka
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=262
cd-vols=
no-issue=2
article-no=
start-page=385
end-page=395
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241023
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Analysis of the effect of permeant solutes on the hydraulic resistance of the plasma membrane in cells of Chara corallina
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In the cells of Chara corallina, permeant monohydric alcohols including methanol, ethanol and 1-propanol increased the hydraulic resistance of the membrane (Lpm−1). We found that the relative value of the hydraulic resistance (rLpm−1) was linearly dependent on the concentration (Cs) of the alcohol. The relationship is expressed in the equation: rLpm−1 = ρmCs + 1, where ρm is the hydraulic resistance modifier coefficient of the membrane. Ye et al. (2004) showed that membrane-permeant glycol ethers also increased Lp−1. We used their data to estimate Lpm−1 and rLpm−1. The values of rLpm−1 fit the above relation we found for alcohols. When we plotted the ρm values of all the permeant alcohols and glycol ethers against their molecular weights (MW), we obtained a linear curve with a slope of 0.014 M−1/MW and with a correlation coefficient of 0.99. We analyzed the influence of the permeant solutes on the relative hydraulic resistance of the membrane (rLpm−1) as a function of the external (π0) and internal (πi) osmotic pressures. The analysis showed that the hydraulic resistance modifier coefficients (ρm) were linearly related to the MW of the permeant solutes with a slope of 0.012 M−1/MW and with a correlation coefficient of 0.84. The linear relationship between the effects of permeating solutes on the hydraulic resistance modifier coefficient (ρm) and the MW can be explained in terms of the effect of the effective osmotic pressure on the hydraulic conductivity of water channels. The result of the analysis suggests that the osmotic pressure and not the size of the permeant solute as proposed by (Ye et al., J Exp Bot 55:449–461, 2004) is the decisive factor in a solute’s influence on hydraulic conductivity. Thus, characean water channels (aquaporins) respond to permeant solutes with essentially the same mechanism as to impermeant solutes.
en-copyright=
kn-copyright=
en-aut-name=TazawaMasashi
en-aut-sei=Tazawa
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WayneRandy
en-aut-sei=Wayne
en-aut-mei=Randy
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KatsuharaMaki
en-aut-sei=Katsuhara
en-aut-mei=Maki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Yoshida Biological Laboratory
kn-affil=
affil-num=2
en-affil=Laboratory of Natural Philosophy, Plant Biology Section, Cornell University
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources (IPSR), Okayama University
kn-affil=
en-keyword=Chara corallina
kn-keyword=Chara corallina
en-keyword=Effective osmotic pressure
kn-keyword=Effective osmotic pressure
en-keyword=Hydraulic resistance
kn-keyword=Hydraulic resistance
en-keyword=Plasma membrane
kn-keyword=Plasma membrane
en-keyword=Reflection coefficient
kn-keyword=Reflection coefficient
END
start-ver=1.4
cd-journal=joma
no-vol=599
cd-vols=
no-issue=13
article-no=
start-page=1914
end-page=1924
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250525
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Characterization of molecular mechanisms of CaMKKα/1 oligomerization
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Calcium/calmodulin-dependent protein kinase kinase (CaMKK) is an activating kinase for calcium/calmodulin-dependent protein kinase type 1 (CaMKI), calcium/calmodulin-dependent protein kinase type IV (CaMKIV), RAC-alpha serine/threonine-protein kinase (PKB), and AMP-activated protein kinase (AMPK) that has been reported to form an active oligomer in cells. Glutathione S-transferase (GST) pulldown assay from the extracts of COS-7 cells expressing GST- and His6-CaMKKα/1 mutants showed that the C-terminal region containing the autoinhibitory and calmodulin (CaM)-binding sequence (residues 438–463) is required for CaMKKα/1 homo-oligomerization. This was confirmed by the fact that the GST-CaMKKα/1 C-terminal domain (residues 435–505) directly interacted with EGFP-CaMKKα/1 residues 435–505 as well as with wild-type CaMKKα/1. Notably, once oligomerized in cells, CaMKKα/1 is neither exchangeable between the oligomeric complexes nor dissociated by Ca2+/CaM binding. These results support stable oligomerization of CaMKK in the cells by intermolecular self-association of its C-terminal region containing a regulatory domain.
en-copyright=
kn-copyright=
en-aut-name=UenoyamaShun
en-aut-sei=Uenoyama
en-aut-mei=Shun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NittaHayato
en-aut-sei=Nitta
en-aut-mei=Hayato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OhtsukaSatomi
en-aut-sei=Ohtsuka
en-aut-mei=Satomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MagariMasaki
en-aut-sei=Magari
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SuizuFutoshi
en-aut-sei=Suizu
en-aut-mei=Futoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TokumitsuHiroshi
en-aut-sei=Tokumitsu
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Okayama University
kn-affil=
affil-num=3
en-affil=Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=4
en-affil=Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Medical Technology, Kagawa Prefectural University of Health Sciences
kn-affil=
affil-num=6
en-affil=
kn-affil=
en-keyword=calmodulin
kn-keyword=calmodulin
en-keyword=calmodulin-kinase cascade
kn-keyword=calmodulin-kinase cascade
en-keyword=CaMKKa/
kn-keyword=CaMKKa/
en-keyword=oligomerization
kn-keyword=oligomerization
en-keyword=protein–protein interaction
kn-keyword=protein–protein interaction
en-keyword=regulatory domain
kn-keyword=regulatory domain
END
start-ver=1.4
cd-journal=joma
no-vol=66
cd-vols=
no-issue=5
article-no=
start-page=705
end-page=721
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241220
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=SHORT AND CROOKED AWN, encoding the epigenetic regulator EMF1, promotes barley awn development
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The awn is a bristle-like extension from the tip of the lemma in grasses. In barley, the predominant cultivars possess long awns that contribute to grain yield and quality through photosynthesis. In addition, various awn morphological mutants are available in barley, rendering it a useful cereal crop to investigate the mechanims of awn development. Here, we identified the gene causative of the short and crooked awn (sca) mutant, which exhibits a short and curved awn phenotype. Intercrossing experiments revealed that the sca mutant induced in the Japanese cultivar (cv.) “Akashinriki” is allelic to the independently isolated moderately short-awn mutant breviaristatum-a (ari-a). Map-based cloning and sequencing revealed that SCA encodes the Polycomb group–associated protein EMBRYONIC FLOWER 1. We found that SCA affects awn development through the promotion of cell proliferation, elongation, and cell wall synthesis. RNA sequencing of cv. Bowman backcross-derived near-isogenic lines of sca and ari-a6 alleles showed that SCA is directly or indirectly involved in promoting the expression of genes related to awn development. Additionally, SCA represses various transcription factors essential for floral organ development and plant architecture, such as MADS-box and Knotted1-like homeobox genes. Notably, the repression of the C-class MADS-box gene HvMADS58 by SCA in awns is associated with the accumulation of the repressive histone modification H3K27me3. These findings highlight the potential role of SCA-mediated gene regulation, including histone modification, as a novel pathway in barley awn development.
en-copyright=
kn-copyright=
en-aut-name=NakamuraKoki
en-aut-sei=Nakamura
en-aut-mei=Koki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KikuchiYuichi
en-aut-sei=Kikuchi
en-aut-mei=Yuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShiragaMizuho
en-aut-sei=Shiraga
en-aut-mei=Mizuho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KotakeToshihisa
en-aut-sei=Kotake
en-aut-mei=Toshihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HyodoKiwamu
en-aut-sei=Hyodo
en-aut-mei=Kiwamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TaketaShin
en-aut-sei=Taketa
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IkedaYoko
en-aut-sei=Ikeda
en-aut-mei=Yoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Science and Engineering, Saitama University
kn-affil=
affil-num=5
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=6
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=7
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
en-keyword=barley
kn-keyword=barley
en-keyword=awn development
kn-keyword=awn development
en-keyword=EMBRYONIC FLOWER 1 (EMF1)
kn-keyword=EMBRYONIC FLOWER 1 (EMF1)
en-keyword=homeotic genes
kn-keyword=homeotic genes
en-keyword=H3K27 trimethylation
kn-keyword=H3K27 trimethylation
en-keyword=epigenetic regulation
kn-keyword=epigenetic regulation
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250710
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Tumor Microvessels with Specific Morphology as a Prognostic Factor in Esophageal Squamous Cell Carcinoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Angiogenesis is essential for tumor progression. Microvessel density (MVD) is a widely used histological method to assess angiogenesis using immunostained sections, but its prognostic significance in esophageal cancer remains controversial. Recently, the evaluation of microvascular architecture has gained importance as a method to assess tumor aggressiveness. The present study aimed to identify the histological characteristics of tumor microvessels that are associated with the aggressiveness of esophageal squamous cell carcinoma.
Patients and Methods A total of 108 esophageal squamous cell carcinoma tissues were immunohistochemically stained with blood vessel markers and angiogenesis-related markers, including CD31, alpha smooth muscle actin, vascular endothelial growth factor A (VEGF-A), CD206, and D2-40. MVD, microvessel pericyte coverage index (MPI), and tumor vascular morphology were evaluated by microscopy.
Results MVD was significantly associated with patient outcomes, whereas neither MPI nor VEGF-A expression throughout the tumor showed a significant correlation. In addition, the presence of blood vessels encircling clusters of tumor cells, termed C-shaped microvessels, and excessively branching microvessels, termed X-shaped microvessels, was significantly associated with poor prognosis. These vessel types were also correlated with clinicopathological parameters, including deeper invasion of the primary tumor, presence of lymph node metastasis, advanced pathological stage, and distant metastasis. Focal VEGF-A immunoexpression in tumor cells was higher in areas containing C-shaped or X-shaped microvessels compared with areas lacking these vessel morphologies.
Conclusions The data suggest that tumor microvessels with specific morphologies (C-shaped and X-shaped microvessels) may serve as a promising prognostic factor in esophageal squamous cell carcinoma.
en-copyright=
kn-copyright=
en-aut-name=TunHnin Thida
en-aut-sei=Tun
en-aut-mei=Hnin Thida
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujisawaMasayoshi
en-aut-sei=Fujisawa
en-aut-mei=Masayoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OharaToshiaki
en-aut-sei=Ohara
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NishimuraSeitaro
en-aut-sei=Nishimura
en-aut-mei=Seitaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KunitomoTomoyoshi
en-aut-sei=Kunitomo
en-aut-mei=Tomoyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NomaKazuhiro
en-aut-sei=Noma
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsukawaAkihiro
en-aut-sei=Matsukawa
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Esophageal neoplasms
kn-keyword=Esophageal neoplasms
en-keyword=Angiogenesis
kn-keyword=Angiogenesis
en-keyword=Microvessel density
kn-keyword=Microvessel density
en-keyword=Pericytes
kn-keyword=Pericytes
en-keyword=VEGF-A
kn-keyword=VEGF-A
en-keyword=Immunohistochemistry
kn-keyword=Immunohistochemistry
en-keyword=Prognosis
kn-keyword=Prognosis
END
start-ver=1.4
cd-journal=joma
no-vol=177
cd-vols=
no-issue=4
article-no=
start-page=e70396
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202507
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=CNGC2 Negatively Regulates Stomatal Closure and Is Not Required for flg22- and H2O2-Induced Guard Cell [Ca2+]cyt Elevation in Arabidopsis thaliana
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In guard cells, cytosolic Ca2+ acts as a second messenger that mediates abscisic acid (ABA)- and pathogen-associated molecular pattern (PAMP)-induced stomatal closure. It was reported that Arabidopsis cyclic nucleotide-gated ion channel 2 (CNGC2) functions as hydrogen peroxide (H2O2)- and PAMP-activated Ca2+-permeable channels at the plasma membrane of mesophyll cells and mediates Ca2+-dependent PAMP-triggered immunity. In this study, we examined the role of CNGC2 in the regulation of stomatal movement because CNGC2 is also expressed in guard cells. We found that stomata of the CNGC2 disruption mutant cngc2-3 are constitutively closed even in the absence of ABA or the flagellar-derived PAMP, flg22. Consistently, leaf temperatures of the cngc2-3 mutant were higher than those of wild-type (WT) plants. The stomatal phenotype of the cngc2-3 mutant was restored by complementation with wild-type CNGC2 under the control of the guard cell preferential promoter, pGC1. Elevation of cytosolic free Ca2+ concentration in guard cells induced by flg22 and H2O2 remained intact in the cngc2-3 mutant. The introduction of the ost1-3 mutation into the cngc2-3 background did not alter the stomatal phenotype. However, the stomatal phenotype of the cngc2-3 mutant was successfully rescued in the double disruption mutant cngc2-3aba2-2. Taken together, these results suggest that CNGC2 negatively regulates stomatal closure response and does not function as flg22– and H2O2-activated Ca2+ channels in guard cells. Though CNGC2 is responsive for H2O2- and flg22-induced [Ca2+]cyt elevation in mesophyll cells, the involvement of CNGC2 in the response to H2O2 and flg22 in guard cells is questionable.
en-copyright=
kn-copyright=
en-aut-name=AkterRojina
en-aut-sei=Akter
en-aut-mei=Rojina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=InoueYasuhiro
en-aut-sei=Inoue
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MasumotoSaori
en-aut-sei=Masumoto
en-aut-mei=Saori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MimataYoshiharu
en-aut-sei=Mimata
en-aut-mei=Yoshiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MatsuuraTakakazu
en-aut-sei=Matsuura
en-aut-mei=Takakazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MoriIzumi C.
en-aut-sei=Mori
en-aut-mei=Izumi C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakamuraToshiyuki
en-aut-sei=Nakamura
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakamuraYoshimasa
en-aut-sei=Nakamura
en-aut-mei=Yoshimasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MurataYoshiyuki
en-aut-sei=Murata
en-aut-mei=Yoshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MunemasaShintaro
en-aut-sei=Munemasa
en-aut-mei=Shintaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Agriculture, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=5
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=6
en-affil=
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=8
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=9
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=10
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=calcium signaling
kn-keyword=calcium signaling
en-keyword=CNGC
kn-keyword=CNGC
en-keyword=stomata
kn-keyword=stomata
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=10819
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241230
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A high-protein diet-responsive gut hormone regulates behavioral and metabolic optimization in Drosophila melanogaster
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Protein is essential for all living organisms; however, excessive protein intake can have adverse effects, such as hyperammonemia. Although mechanisms responding to protein deficiency are well-studied, there is a significant gap in our understanding of how organisms adaptively suppress excessive protein intake. In the present study, utilizing the fruit fly, Drosophila melanogaster, we discover that the peptide hormone CCHamide1 (CCHa1), secreted by enteroendocrine cells in response to a high-protein diet (HPD), is vital for suppressing overconsumption of protein. Gut-derived CCHa1 is received by a small subset of enteric neurons that produce short neuropeptide F, thereby modulating protein-specific satiety. Importantly, impairment of the CCHa1-mediated gut-enteric neuronal axis results in ammonia accumulation and a shortened lifespan under HPD conditions. Collectively, our findings unravel the crosstalk of gut hormone and neuronal pathways that orchestrate physiological responses to prevent and adapt to dietary protein overload.
en-copyright=
kn-copyright=
en-aut-name=YoshinariYuto
en-aut-sei=Yoshinari
en-aut-mei=Yuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishimuraTakashi
en-aut-sei=Nishimura
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshiiTaishi
en-aut-sei=Yoshii
en-aut-mei=Taishi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KondoShu
en-aut-sei=Kondo
en-aut-mei=Shu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TanimotoHiromu
en-aut-sei=Tanimoto
en-aut-mei=Hiromu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KobayashiTomoe
en-aut-sei=Kobayashi
en-aut-mei=Tomoe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsuyamaMakoto
en-aut-sei=Matsuyama
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NiwaRyusuke
en-aut-sei=Niwa
en-aut-mei=Ryusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University
kn-affil=
affil-num=2
en-affil=Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science
kn-affil=
affil-num=5
en-affil=Graduate School of Life Sciences, Tohoku University
kn-affil=
affil-num=6
en-affil=Division of Molecular Genetics, Shigei Medical Research Institute
kn-affil=
affil-num=7
en-affil=Division of Molecular Genetics, Shigei Medical Research Institute
kn-affil=
affil-num=8
en-affil=Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=5
article-no=
start-page=489
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250430
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Mutagenesis Targeting the S153 Residue Within the Transmembrane β-Hairpin of Mosquito-Larvicidal Mpp46Ab Affects Its Toxicity and the Synergistic Toxicity with Cry4Aa
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We constructed a library of Mpp46Ab mutants, in which S153 within the transmembrane β-hairpin was randomly replaced by other amino acids. Mutagenesis and subsequent primary screening yielded 10 different Mpp46Ab mutants in addition to the wild type. Remarkably, S153 was replaced with a more hydrophobic amino acid in most of the mutants, and the S153I mutant in particular exhibited significantly increased toxicity. Electrophysiologic analysis using artificial lipid bilayers revealed that the single-channel conductance and PK/PCl permeability ratio were significantly increased for S153I pores. This suggests that the formation of highly ion-permeable and highly cation-selective toxin pores increases the influx of cations and water into cells, thereby facilitating osmotic shock. In addition, the S153F, S153L, and S153I mutants exhibited significantly reduced synergistic toxicity with Cry4Aa. Electrophysiologic analysis showed that the S153F, S153L, and S153I mutants form toxin pores with a significantly reduced PK/PNa permeability ratio and a significantly increased PK/PCa permeability ratio compared to wild-type pores. Thus, our results suggest that pore formation is central to the insecticidal activity of Mpp46Ab and that the ion permeability of toxin pores is a potential indicator correlated with both toxicity and synergistic toxicity with other toxins.
en-copyright=
kn-copyright=
en-aut-name=HayakawaTohru
en-aut-sei=Hayakawa
en-aut-mei=Tohru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamaokaSyun
en-aut-sei=Yamaoka
en-aut-mei=Syun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AsakuraMami
en-aut-sei=Asakura
en-aut-mei=Mami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HiranoMinako
en-aut-sei=Hirano
en-aut-mei=Minako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IdeToru
en-aut-sei=Ide
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=Bacillus thuringiensis
kn-keyword=Bacillus thuringiensis
en-keyword=mosquito-larvicidal proteins
kn-keyword=mosquito-larvicidal proteins
en-keyword=synergistic toxicity
kn-keyword=synergistic toxicity
en-keyword=Culex pipiens mosquito larvae
kn-keyword=Culex pipiens mosquito larvae
en-keyword=side-directed mutagenesis
kn-keyword=side-directed mutagenesis
en-keyword=electrophysiologic analysis
kn-keyword=electrophysiologic analysis
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=
article-no=
start-page=100242
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Photochemical internalization of mRNA using a photosensitizer and nucleic acid carriers
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=mRNA has great potential for therapeutic applications because it can encode a variety of proteins and antigens, in addition to advantages over DNA in terms of gene expression without genomic integration, nuclear localization, or transcription. However, therapeutic applications of mRNA require safe and effective delivery into target cells. Therefore, we aimed to investigate photochemical internalization (PCI) as a promising strategy for delivering mRNA to target cells. In this strategy, mRNA is taken up into cells by endocytosis, accumulates in endosomes, and is released in a light-dependent manner from the endosomes using an endosome-accumulating photosensitizer, aluminum phthalocyanine disulfonate (AlPcS2a), in combination with nucleic acid carrier molecules. We compared the efficacy of various nucleic acid carriers, including branched polyethyleneimine (bPEI) and poly{N'-[N-(2-aminoethyl)-2-aminoethyl] aspartamide} (PAsp(DET)) under the same conditions for PCI-based mRNA delivery. Our results indicated that bPEI and PAsp(DET) at low N/P ratios exhibited efficient light-enhancement of mRNA expression by PCI with AlPcS2a. Notably, bPEI exhibited the highest light-dependent mRNA delivery among the carriers evaluated (including cationic polymers, cationic peptides, and lipids), whereas PAsp(DET) showed promise for clinical use because of its lower toxicity compared with bPEI. This PCI strategy allows effective cytosolic mRNA delivery at low N/P ratios, thereby reducing cationic carrier molecule-induced cytotoxicity. This method allows spatiotemporal control of protein expression and holds potential for novel light-dependent mRNA therapies. Overall, this study provided valuable insights into optimizing mRNA delivery systems for therapeutic applications.
en-copyright=
kn-copyright=
en-aut-name=MaemotoHayaki
en-aut-sei=Maemoto
en-aut-mei=Hayaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SuzakiRyohei
en-aut-sei=Suzaki
en-aut-mei=Ryohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WatanabeKazunori
en-aut-sei=Watanabe
en-aut-mei=Kazunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ItakaKeiji
en-aut-sei=Itaka
en-aut-mei=Keiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OhtsukiTakashi
en-aut-sei=Ohtsuki
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
kn-affil=
affil-num=5
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=mRNA
kn-keyword=mRNA
en-keyword=Photochemical internalization
kn-keyword=Photochemical internalization
en-keyword=Photosensitizer
kn-keyword=Photosensitizer
END
start-ver=1.4
cd-journal=joma
no-vol=25
cd-vols=
no-issue=1
article-no=
start-page=311
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250703
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Co-occurrence of interstitial lung disease and pulmonary embolism as adverse events of adjuvant osimertinib treatment for EGFR mutant non-small cell lung cancer: a case report
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Postoperative osimertinib for EGFR mutant non-small cell lung cancer has become the standard of care. However, its adverse events in clinical practice remain unclear. We report a case of interstitial lung disease and pulmonary embolism occurring simultaneously as adverse events during adjuvant osimertinib treatment.
Case presentation A 74-year-old woman, diagnosed with left lower lobe lung adenocarcinoma harboring an EGFR mutation, underwent a left lower lobectomy with lymph node dissection. During adjuvant osimertinib therapy, the patient developed respiratory distress with hypoxia, leading to the diagnosis of interstitial lung disease. Despite immediate steroid therapy, respiratory distress persisted, the patient developed leg edema. She was diagnosed with deep vein thrombosis and pulmonary embolism via contrast-enhanced computed tomography scan. Following treatment with steroid and anticoagulation, her clinical symptoms improved rapidly, and she showed no recurrence of interstitial lung disease, pulmonary embolism, or lung cancer over the following nine months.
Conclusions We encountered a case of interstitial lung disease and pulmonary embolism occurring simultaneously as adverse events during adjuvant osimertinib treatment. In patients with osimertinib-induced interstitial lung disease, particularly when respiratory symptoms show poor improvement with steroid treatment, the possibility of pulmonary embolism complications should be suspected.
en-copyright=
kn-copyright=
en-aut-name=ManabeKenta
en-aut-sei=Manabe
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShienKazuhiko
en-aut-sei=Shien
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FurukawaShinichi
en-aut-sei=Furukawa
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SenoTomoya
en-aut-sei=Seno
en-aut-mei=Tomoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IshimuraKousei
en-aut-sei=Ishimura
en-aut-mei=Kousei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TanakaShin
en-aut-sei=Tanaka
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SuzawaKen
en-aut-sei=Suzawa
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OkazakiMikio
en-aut-sei=Okazaki
en-aut-mei=Mikio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SugimotoSeiichiro
en-aut-sei=Sugimoto
en-aut-mei=Seiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
en-keyword=Osimertinib
kn-keyword=Osimertinib
en-keyword=Lung cancer
kn-keyword=Lung cancer
en-keyword=Interstitial lung disease
kn-keyword=Interstitial lung disease
en-keyword=Pulmonary embolism
kn-keyword=Pulmonary embolism
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=7
article-no=
start-page=808
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250630
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Carnosol, a Rosemary Ingredient Discovered in a Screen for Inhibitors of SARM1-NAD+ Cleavage Activity, Ameliorates Symptoms of Peripheral Neuropathy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Sterile alpha and Toll/interleukin receptor motif-containing protein 1 (SARM1) is a nicotinamide adenine dinucleotide (NAD+) hydrolase involved in axonal degeneration and neuronal cell death. SARM1 plays a pivotal role in triggering the neurodegenerative processes that underlie peripheral neuropathies, traumatic brain injury, and neurodegenerative diseases. Importantly, SARM1 knockdown or knockout prevents the degeneration; as a result, SARM1 has been attracting attention as a potent therapeutic target. In recent years, the development of several SARM1 inhibitors derived from synthetic chemical compounds has been reported; however, no dietary ingredients with SARM1 inhibitory activity have been identified. Therefore, we here focused on dietary ingredients and found that carnosol, an antioxidant contained in rosemary, inhibits the NAD+-cleavage activity of SARM1. Purified carnosol inhibited the enzymatic activity of SARM1 and suppressed neurite degeneration and cell death induced by the anti-cancer medicine vincristine (VCR). Carnosol also inhibited VCR-induced hyperalgesia symptoms, suppressed the loss of intra-epidermal nerve fibers in vivo, and reduced the blood fluid level of phosphorylated neurofilament-H caused by an axonal degeneration event. These results indicate that carnosol has a neuroprotective effect via SARM1 inhibition in addition to its previously known antioxidant effect via NF-E2-related factor 2 and thus suppresses neurotoxin-induced peripheral neuropathy.
en-copyright=
kn-copyright=
en-aut-name=MurataHitoshi
en-aut-sei=Murata
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OgawaKazuki
en-aut-sei=Ogawa
en-aut-mei=Kazuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YasuiYu
en-aut-sei=Yasui
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OchiToshiki
en-aut-sei=Ochi
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TomonobuNahoko
en-aut-sei=Tomonobu
en-aut-mei=Nahoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamamotoKen-Ichi
en-aut-sei=Yamamoto
en-aut-mei=Ken-Ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KinoshitaRie
en-aut-sei=Kinoshita
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=WadaYoji
en-aut-sei=Wada
en-aut-mei=Yoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NakamuraHiromichi
en-aut-sei=Nakamura
en-aut-mei=Hiromichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NishiboriMasahiro
en-aut-sei=Nishibori
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Tama Biochemical Co., Ltd.
kn-affil=
affil-num=3
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Tama Biochemical Co., Ltd.
kn-affil=
affil-num=9
en-affil=Tama Biochemical Co., Ltd.
kn-affil=
affil-num=10
en-affil=Department of Translational Research and Drug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=SARM1
kn-keyword=SARM1
en-keyword=carnosol
kn-keyword=carnosol
en-keyword=NAD+
kn-keyword=NAD+
en-keyword=axon degeneration
kn-keyword=axon degeneration
en-keyword=peripheral neuropathy
kn-keyword=peripheral neuropathy
END
start-ver=1.4
cd-journal=joma
no-vol=22
cd-vols=
no-issue=4
article-no=
start-page=510
end-page=524
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250626
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=C1orf50 Drives Malignant Melanoma Progression Through the Regulation of Stemness
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Aim: Recent advancements in omics analysis have significantly enhanced our understanding of the molecular pathology of malignant melanoma, leading to the development of novel therapeutic strategies that target specific vulnerabilities within the disease. Despite these improvements, the factors contributing to the poor prognosis of patients with malignant melanoma remain incompletely understood. The aim of this study was to investigate the role of C1orf50 (Chromosome 1 open reading frame 50), a gene previously of unknown function, as a prognostic biomarker in melanoma.
Materials and Methods: We performed comprehensive transcriptome data analysis and subsequent functional validation of the human Skin Cutaneous Melanoma project from The Cancer Genome Atlas (TCGA).
Results: Elevated expression levels of C1orf50 correlated with worse survival outcomes. Mechanistically, we revealed that C1orf50 plays a significant role in the regulation of cell cycle processes and cancer cell stemness, providing a potential avenue for novel therapeutic interventions in melanoma.
Conclusion: This study is the first to identify C1orf50 as a prognostic biomarker in melanoma. The clinical relevance of our results sheds light on the importance of further investigation into the biological mechanisms underpinning C1orf50’s impact on melanoma progression and patient prognosis.
en-copyright=
kn-copyright=
en-aut-name=OTANIYUSUKE
en-aut-sei=OTANI
en-aut-mei=YUSUKE
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MAEKAWAMASAKI
en-aut-sei=MAEKAWA
en-aut-mei=MASAKI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TANAKAATSUSHI
en-aut-sei=TANAKA
en-aut-mei=ATSUSHI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=PEÑATIRSO
en-aut-sei=PEÑA
en-aut-mei=TIRSO
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=CHINVANESSA D.
en-aut-sei=CHIN
en-aut-mei=VANESSA D.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ROGACHEVSKAYAANNA
en-aut-sei=ROGACHEVSKAYA
en-aut-mei=ANNA
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TOYOOKASHINICHI
en-aut-sei=TOYOOKA
en-aut-mei=SHINICHI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ROEHRLMICHAEL H.
en-aut-sei=ROEHRL
en-aut-mei=MICHAEL H.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=FUJIMURAATSUSHI
en-aut-sei=FUJIMURA
en-aut-mei=ATSUSHI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center
kn-affil=
affil-num=2
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center
kn-affil=
affil-num=3
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center
kn-affil=
affil-num=4
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center
kn-affil=
affil-num=5
en-affil=UMass Chan Medical School, UMass Memorial Medical Center
kn-affil=
affil-num=6
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center
kn-affil=
affil-num=7
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center
kn-affil=
affil-num=9
en-affil=Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=C1orf50
kn-keyword=C1orf50
en-keyword=melanoma
kn-keyword=melanoma
en-keyword=cancer stem cells
kn-keyword=cancer stem cells
en-keyword=YAP/TAZ
kn-keyword=YAP/TAZ
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250624
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Dual functions of SNAP25 in mouse taste buds
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Type III cells in mouse taste buds are considered to transmit aversive stimuli, such as sourness, to the gustatory nerve through vesicular synapses. Synaptosome-associated protein 25 (SNAP25) might contribute to synaptic vesicular release in sour sensation, although direct evidence has been lacking. Here, we demonstrated that epithelia-specific Snap25 conditional knockout (cKO) mice exhibited a significant reduction in the number of type III cells. Notably, the proportion of 5-ethynyl 2′-deoxyuridine-positive post-mitotic type III cells in Snap25 cKO mice was significantly lower on tracing day 14, but not at day 7, which suggests that SNAP25 contributes to the maintenance of type III cells. In a short-term lick test, Snap25 cKO (sour taste absent) and Snap25/ transient receptor potential vanilloid 1 double KO (sour taste and somatosensory absent) mice exhibit a significantly higher lick response to sour tastants, confirming the role of SNAP25 for sour sensation. Electrophysiological recordings of the chorda tympani nerve reveal nearly abolished ammonium and sour taste responses in Snap25 cKO mice, which concludes sour-dependent synapse transmission in type III cells. Overall, these data suggest that vesicular synapses in taste buds are indispensable for transmission of information from, and the replenishment of, sour-sensitive type III taste cells.
en-copyright=
kn-copyright=
en-aut-name=HorieKengo
en-aut-sei=Horie
en-aut-mei=Kengo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WangKuanyu
en-aut-sei=Wang
en-aut-mei=Kuanyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HuangHai
en-aut-sei=Huang
en-aut-mei=Hai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YasumatsuKeiko
en-aut-sei=Yasumatsu
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NinomiyaYuzo
en-aut-sei=Ninomiya
en-aut-mei=Yuzo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MitohYoshihiro
en-aut-sei=Mitoh
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YoshidaRyusuke
en-aut-sei=Yoshida
en-aut-mei=Ryusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Tokyo Dental Junior College
kn-affil=
affil-num=5
en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=sour taste
kn-keyword=sour taste
en-keyword=synapse
kn-keyword=synapse
en-keyword=taste buds
kn-keyword=taste buds
en-keyword=taste nerve
kn-keyword=taste nerve
en-keyword=Type III cells
kn-keyword=Type III cells
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=6
article-no=
start-page=e86695
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250624
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Managing Persistent Pupillary Membranes With Surgery or Medication: A Report of Three Cases
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The persistent pupillary membrane, as a congenital anomaly, is a remnant of a network of feeding blood vessels for the lens of the eye, called tunica vasculosa lentis. This study reports three patients with persistent pupillary membrane in both eyes who presented in different situations and were managed differently to achieve better vision. The first child (Case 1) who had been seen initially at the age of two years complained of severe photophobia even though he had good visual acuity, and hence, he and his family chose surgical resection of the pupillary membrane in both eyes at the age of six years just before the admission to an elementary school. He did not develop any surgical complications, such as cataract and glaucoma, and maintained the visual acuity in decimals of 1.2 in both eyes at the age of 17 years.
The second child (Case 2), who was seen first at the age of one month, had persistent pupillary membranes in both eyes, together with Peters' anomaly in the left eye. The iris process adhesion to the corneal inner surface was visualized later by optical coherence tomography. She wore full-correction glasses and obtained the visual acuity of 0.7 in the right eye, so she had no problem studying at an elementary school. She used topical 1% atropine once a week in both eyes to maintain pupillary dilation and also used 0.5% timolol and 1% brinzolamide as pressure-lowering eye drops in the left eye with Peters' anomaly.
The third patient (Case 3) with persistent pupillary membranes in both eyes complained of vision problems for the first time at the age of 49 years when she developed cataract. Surgical resection of the pupillary membrane was done in the initial phase of cataract surgery with intraocular lens implantation in both eyes. At surgical resection of the pupillary membrane, a safe and efficient way was to cut the root of the pupillary membrane on the iris surface with scissors, and then the isolated tissues of the pupillary membrane were pulled out with forceps from the side port at the corneal limbus. Pathological examinations of the excised tissues showed blood vessels with red blood cells in the lumen. In such a rare congenital disease as the persistent pupillary membrane, a case-based approach to choose a better option in different conditions from individual to individual is still required to have a better vision in learning at school and in daily working life.
en-copyright=
kn-copyright=
en-aut-name=MatsuoToshihiko
en-aut-sei=Matsuo
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Division of Healthcare Science, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=anterior segment dysgenesis
kn-keyword=anterior segment dysgenesis
en-keyword=cataract
kn-keyword=cataract
en-keyword=forceps
kn-keyword=forceps
en-keyword=optical coherence tomography
kn-keyword=optical coherence tomography
en-keyword=persistent pupillary membrane
kn-keyword=persistent pupillary membrane
en-keyword=peters anomaly
kn-keyword=peters anomaly
en-keyword=resection
kn-keyword=resection
en-keyword=scissors
kn-keyword=scissors
en-keyword=vitrectomy cutter
kn-keyword=vitrectomy cutter
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=6
article-no=
start-page=e85680
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250610
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Whole-Eye Radiation for the Local Control of Choroidal Lymphoma in Primary Central Nervous System Lymphoma: A 14-Year Case Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Involved-site radiation therapy is effective for curative and palliative treatments of cancers, including lymphoma. This case study describes the use of whole-eye radiation for primary intraocular lymphoma occurring during primary central nervous system lymphoma. The patient, a 68-year-old man, developed personality changes and apathy two weeks after cataract surgery combined with vitrectomy for vitreous opacity in the left eye. Magnetic resonance imaging revealed a mass lesion in the left frontal lobe, and biopsy by craniotomy confirmed diffuse large B-cell lymphoma. He underwent chemotherapy using rituximab combined with high-dose methotrexate and high-dose cytarabine in association with intrathecal methotrexate and cytarabine injections, leading to complete remission. At age 75, he noticed forgetfulness, and fluorodeoxyglucose positron emission tomography and magnetic resonance imaging revealed a relapse of lymphoma in the splenium of the corpus callosum. He underwent chemotherapy using rituximab combined with high-dose methotrexate, followed by monthly rituximab monotherapy for one year and then rituximab monotherapy every two months for one year. He maintained complete remission with no treatment until age 78, when he developed subretinal choroidal lesions in the left eye and underwent whole-eye radiation at 40 Gy. One year later, he developed subretinal choroidal lesions in the right eye and underwent whole-eye radiation at 40 Gy. At age 81, he had lower limb weakness with disorientation. Magnetic resonance imaging showed a relapse of lymphoma in the right frontal to temporal lobe. The brain lesions showed a marked response to four weeks of oral tirabrutinib as a salvage therapy, but the lesions regrew, and the patient died seven months later. Throughout the treatment, he maintained a visual acuity of 0.7 (decimal scale) in both eyes. In conclusion, whole-eye radiation should be considered as a treatment option for the local control of active intraocular lymphoma, especially choroidal lesions, for patients with primary central nervous system lymphoma with no active brain lesions and without systemic treatment.
en-copyright=
kn-copyright=
en-aut-name=MatsuoToshihiko
en-aut-sei=Matsuo
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YanoTomofumi
en-aut-sei=Yano
en-aut-mei=Tomofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshioKotaro
en-aut-sei=Yoshio
en-aut-mei=Kotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NishimuraHirotake
en-aut-sei=Nishimura
en-aut-mei=Hirotake
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MatsuokaKen-ichi
en-aut-sei=Matsuoka
en-aut-mei=Ken-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Internal Medicine, Okayama Rosai Hospital
kn-affil=
affil-num=3
en-affil=Department of Radiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Pathology, Kawasaki Medical School
kn-affil=
affil-num=6
en-affil=Department of Hematology and Oncology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=brain biopsy
kn-keyword=brain biopsy
en-keyword=bruton tyrosine kinase (btk) inhibitor
kn-keyword=bruton tyrosine kinase (btk) inhibitor
en-keyword=chemotherapy
kn-keyword=chemotherapy
en-keyword=diffuse large b-cell lymphoma
kn-keyword=diffuse large b-cell lymphoma
en-keyword=fluorodeoxyglucose positron emission tomography
kn-keyword=fluorodeoxyglucose positron emission tomography
en-keyword=primary central nervous system lymphoma
kn-keyword=primary central nervous system lymphoma
en-keyword=primary intraocular (vitreoretinal) lymphoma
kn-keyword=primary intraocular (vitreoretinal) lymphoma
en-keyword=radiation therapy (radiotherapy)
kn-keyword=radiation therapy (radiotherapy)
en-keyword=tirabrutinib
kn-keyword=tirabrutinib
en-keyword=whole-eye radiation
kn-keyword=whole-eye radiation
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=5
article-no=
start-page=e83484
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Detailed Ophthalmic and Pathological Features of Choroidal Metastasis From Breast Cancer: A Case Series of Five Patients
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Breast cancer causes choroidal metastases on rare occasions. This study presented the eye manifestations of choroidal metastases from breast cancer and their response to treatments in detail as well as their pathological correlation in five patients. The patients' age at the diagnosis of breast cancer ranged from 24 to 69 years (median: 37 years). The time from the diagnosis of breast cancer to the detection of metastases was concurrent in one patient, two years later in three patients, and six years later in the other patient. The time from the detection of systemic metastases to the detection of choroidal metastases was the same in one patient, while it ranged from one to seven years later in four patients. Choroidal metastases were in the unilateral eye of four patients, whereas they were in both eyes of one patient. Choroidal metastases manifested as one or a few nodular or flat choroidal lesions with serous retinal detachment. As for the treatment of choroidal metastases, enucleation of the right eye was chosen based on the patient's wish as well as the family's wish in the earliest patient when cancer notification was not the norm in Japan. In the other four patients, whole-eye radiation was performed to reduce the choroidal metastatic lesions. As regards the prognosis, which was available in four patients, three patients died within one year from the diagnosis of choroidal metastases, while one patient died one year and eight months later. Regarding the pathology of breast cancer, which was available in four patients, immunostaining of the preserved enucleated eye in the earliest patient revealed that breast cancer cells in the choroidal metastatic lesion were positive for estrogen receptor and negative for progesterone receptor and human epidermal growth factor receptor 2 (HER2). Invasive ductal carcinoma in two patients was positive for estrogen receptor and negative for HER2, while invasive ductal carcinoma in the other patient was triple-negative for estrogen receptor, progesterone receptor, and HER2 with a high Ki-67 index. In conclusion, the prognosis for life was poor in patients with breast cancer who developed choroidal metastases. Choroidal metastatic lesions showed a response to whole-eye radiation to improve the quality of vision at the end of life. Vision-related symptoms should be monitored in the course of chemotherapy for systemic metastases.
en-copyright=
kn-copyright=
en-aut-name=MatsuoToshihiko
en-aut-sei=Matsuo
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShienTadahiko
en-aut-sei=Shien
en-aut-mei=Tadahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MuraokaAtsushi
en-aut-sei=Muraoka
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=DoiharaHiroyoshi
en-aut-sei=Doihara
en-aut-mei=Hiroyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Division of Healthcare Science, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Surgery, Kagawa Rosai Hospital
kn-affil=
affil-num=5
en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital
kn-affil=
en-keyword=breast cancer
kn-keyword=breast cancer
en-keyword=chemotherapy
kn-keyword=chemotherapy
en-keyword=choroidal metastasis
kn-keyword=choroidal metastasis
en-keyword=estrogen receptor
kn-keyword=estrogen receptor
en-keyword=her2
kn-keyword=her2
en-keyword=immunostaining
kn-keyword=immunostaining
en-keyword=invasive ductal carcinoma
kn-keyword=invasive ductal carcinoma
en-keyword=ki-67
kn-keyword=ki-67
en-keyword=progesterone receptor
kn-keyword=progesterone receptor
en-keyword=radiation
kn-keyword=radiation
END
start-ver=1.4
cd-journal=joma
no-vol=166
cd-vols=
no-issue=8
article-no=
start-page=bqaf102
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250605
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Neuromedin U Deficiency Disrupts Daily Testosterone Fluctuation and Reduces Wheel-running Activity in Rats
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The objective of this study was to elucidate the role of endogenous Neuromedin U (NMU) in rats by performing NMU knockout (KO). Male, but not female NMU KO rats exhibited decreased wheel-running activity vs wildtype (WT), although overall home cage activity was not affected. Plasma testosterone in WT rats varied significantly over the course of a day, with a peak at ZT1 and a nadir at ZT18, whereas in NMU KO rats testosterone remained stable throughout the day. Chronic administration of testosterone restored wheel-running activity in NMU KO rats to the same level as in WT rats, suggesting that the decrease in wheel-running activity in NMU KO rats is due to the disruption of the diurnal change of testosterone. Accordingly, expression of the luteinizing hormone beta subunit (Lhb) mRNA in the pars distalis of anterior pituitary was significantly lower in NMU KO rats; immunostaining revealed that the size of luteinizing hormone (LH)–expressing cells was also relatively small in those animals. In the brain of male WT rats, Nmu was highly expressed in the pars tuberalis, and the NMU receptor Nmur2 was highly expressed in the ependymal cell layer of the third ventricle. This study reveals a novel function of NMU and indicates that endogenous NMU in rats plays a role in the regulation of motivated activity via regulation of testosterone.
en-copyright=
kn-copyright=
en-aut-name=OtsukaMai
en-aut-sei=Otsuka
en-aut-mei=Mai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakeuchiYu
en-aut-sei=Takeuchi
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MoriyamaMaho
en-aut-sei=Moriyama
en-aut-mei=Maho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=EgoshiSakura
en-aut-sei=Egoshi
en-aut-mei=Sakura
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=GotoYuki
en-aut-sei=Goto
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=GuTingting
en-aut-sei=Gu
en-aut-mei=Tingting
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KimuraAtsushi P
en-aut-sei=Kimura
en-aut-mei=Atsushi P
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HaraguchiShogo
en-aut-sei=Haraguchi
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YoshiiTaishi
en-aut-sei=Yoshii
en-aut-mei=Taishi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TakeuchiSakae
en-aut-sei=Takeuchi
en-aut-mei=Sakae
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MatsuyamaMakoto
en-aut-sei=Matsuyama
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=BentleyGeorge E
en-aut-sei=Bentley
en-aut-mei=George E
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=AizawaSayaka
en-aut-sei=Aizawa
en-aut-mei=Sayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Biology, Faculty of Science, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Biological Sciences, Faculty of Science, Hokkaido University
kn-affil=
affil-num=8
en-affil=Department of Biochemistry, Showa University School of Medicine
kn-affil=
affil-num=9
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=10
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=11
en-affil=Division of Molecular Genetics, Shigei Medical Research Institute
kn-affil=
affil-num=12
en-affil=Department of Integrative Biology and Helen Wills Neuroscience Institute, University of California at Berkeley
kn-affil=
affil-num=13
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Neuromedin U
kn-keyword=Neuromedin U
en-keyword=rat
kn-keyword=rat
en-keyword=motivation
kn-keyword=motivation
en-keyword=activity
kn-keyword=activity
en-keyword=testosterone
kn-keyword=testosterone
en-keyword=wheel-running
kn-keyword=wheel-running
END
start-ver=1.4
cd-journal=joma
no-vol=121
cd-vols=
no-issue=2
article-no=
start-page=232
end-page=243
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241216
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Outcomes of allogeneic SCT versus tisagenlecleucel in patients with R/R LBCL and poor prognostic factors
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study investigated the efficacy of tisagenlecleucel (tisa-cel) and allogeneic hematopoietic stem cell transplantation (allo-SCT) for patients with relapsed and/or refractory (r/r) large B-cell lymphoma (LBCL) with poor prognostic factors, defined as performance status (PS) ≥ 2, multiple extranodal lesions (EN), chemorefractory disease, or higher lactate dehydrogenase (LDH). Overall, the allo-SCT group demonstrated worse progression-free survival (PFS), higher non-relapse mortality, and a similar relapse/progression rate. Notably, the tisa-cel group showed better PFS than the allo-SCT group among patients with chemorefractory disease (3.2 vs. 2.0 months, p = 0.092) or higher LDH (4.0 vs. 2.0 months, p = 0.018), whereas PFS in the two cellular therapy groups was similar among those with PS ≥ 2 or multiple EN. Survival time after relapse post-cellular therapy in patients with poor prognostic factors was 1.6 with allo-SCT and 4.6 months with tisa-cel. These findings were confirmed in a propensity score matching cohort. In conclusion, tisa-cel resulted in better survival than allo-SCT in patients with poor prognostic factors. However, patients who relapsed post-cellular therapy had dismal outcomes regardless of therapy. Further strategies are warranted to improve outcomes in these patients.
en-copyright=
kn-copyright=
en-aut-name=HayashinoKenta
en-aut-sei=Hayashino
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TeraoToshiki
en-aut-sei=Terao
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishimoriHisakazu
en-aut-sei=Nishimori
en-aut-mei=Hisakazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KitamuraWataru
en-aut-sei=Kitamura
en-aut-mei=Wataru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KobayashiHiroki
en-aut-sei=Kobayashi
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KamoiChihiro
en-aut-sei=Kamoi
en-aut-mei=Chihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SeikeKeisuke
en-aut-sei=Seike
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=FujiwaraHideaki
en-aut-sei=Fujiwara
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=AsadaNoboru
en-aut-sei=Asada
en-aut-mei=Noboru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=EnnishiDaisuke
en-aut-sei=Ennishi
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=FujiiKeiko
en-aut-sei=Fujii
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=FujiiNobuharu
en-aut-sei=Fujii
en-aut-mei=Nobuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MatsuokaKen-ichi
en-aut-sei=Matsuoka
en-aut-mei=Ken-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=MaedaYoshinobu
en-aut-sei=Maeda
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
affil-num=14
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Okayama University
kn-affil=
en-keyword=Large B-cell lymphoma
kn-keyword=Large B-cell lymphoma
en-keyword=Allogeneic hematopoietic stem cell transplantation
kn-keyword=Allogeneic hematopoietic stem cell transplantation
en-keyword=CAR-T cell therapy
kn-keyword=CAR-T cell therapy
en-keyword=Tisagenlecleucel
kn-keyword=Tisagenlecleucel
en-keyword=Poor prognostic factors
kn-keyword=Poor prognostic factors
END
start-ver=1.4
cd-journal=joma
no-vol=31
cd-vols=
no-issue=6
article-no=
start-page=388.e1
end-page=388.e14
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Clinical effects of granulocyte colony-stimulating factor administration and the timing of its initiation on allogeneic hematopoietic cell transplantation outcomes for myelodysplastic syndrome
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Granulocyte colony-stimulating factor (G-CSF) accelerates neutrophil recovery after allogeneic hematopoietic cell transplantation (HCT). However, the optimal use of G-CSF and the timing of its initiation after allogeneic HCT for myelodysplastic syndrome (MDS) according to graft type have not been determined. This retrospective study aimed to investigate the effects of using G-CSF administration and the timing of its initiation on transplant outcomes in adult patients with MDS undergoing allogeneic HCT. Using Japanese registry data, we retrospectively investigated the effects of G-CSF administration and the timing of its initiation on transplant outcomes among 4140 adults with MDS after bone marrow transplantation (BMT), peripheral blood stem cell transplantation (PBSCT), or single-unit cord blood transplantation (CBT) between 2013 and 2022. Multivariate analysis showed that early (days 0 to 4) and late (days 5 to 10) G-CSF administration significantly accelerated neutrophil recovery compared with no G-CSF administration following BMT, PBSCT, and CBT, but there was no benefit of early G-CSF initiation for early neutrophilic recovery regardless of graft type. Late G-CSF initiation was significantly associated with a higher risk of overall chronic GVHD following PBSCT (hazard ratio [HR], 1.63; 95% confidence interval [CI], 1.18 to 2.24; P = .002) and CBT (HR, 2.09; 95% CI, 1.21 to 3.60; P = .007) compared with no G-CSF administration. Late G-CSF initiation significantly improved OS compared with no G-CSF administration only following PBSCT (HR, 0.74; 95% CI, 0.58 to 0.94; P = .015). However, G-CSF administration and the timing of its initiation did not affect acute GVHD, relapse, or non-relapse mortality, irrespective of graft type. These results suggest that G-CSF administration significantly accelerated neutrophil recovery after BMT, PBSCT, and CBT, but increased risk of overall chronic GVHD after PBSCT and CBT. However, the effect of early and late G-CSF initiation on transplant outcomes needs further study in adult patients with MDS.
en-copyright=
kn-copyright=
en-aut-name=KonumaTakaaki
en-aut-sei=Konuma
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujiokaMachiko
en-aut-sei=Fujioka
en-aut-mei=Machiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FuseKyoko
en-aut-sei=Fuse
en-aut-mei=Kyoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HosoiHiroki
en-aut-sei=Hosoi
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MasamotoYosuke
en-aut-sei=Masamoto
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=DokiNoriko
en-aut-sei=Doki
en-aut-mei=Noriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=UchidaNaoyuki
en-aut-sei=Uchida
en-aut-mei=Naoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TanakaMasatsugu
en-aut-sei=Tanaka
en-aut-mei=Masatsugu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SawaMasashi
en-aut-sei=Sawa
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NishidaTetsuya
en-aut-sei=Nishida
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=IshikawaJun
en-aut-sei=Ishikawa
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=AsadaNoboru
en-aut-sei=Asada
en-aut-mei=Noboru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=NakamaeHirohisa
en-aut-sei=Nakamae
en-aut-mei=Hirohisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=HasegawaYuta
en-aut-sei=Hasegawa
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=OnizukaMakoto
en-aut-sei=Onizuka
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=MaedaTakeshi
en-aut-sei=Maeda
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=FukudaTakahiro
en-aut-sei=Fukuda
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=KawamuraKoji
en-aut-sei=Kawamura
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=KandaYoshinobu
en-aut-sei=Kanda
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=OhbikiMarie
en-aut-sei=Ohbiki
en-aut-mei=Marie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=AtsutaYoshiko
en-aut-sei=Atsuta
en-aut-mei=Yoshiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=ItonagaHidehiro
en-aut-sei=Itonaga
en-aut-mei=Hidehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
affil-num=1
en-affil=Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo
kn-affil=
affil-num=2
en-affil=Department of Hematology, Sasebo City General Hospital
kn-affil=
affil-num=3
en-affil=Faculty of Medicine, Department of Hematology, Endocrinology and Metabolism, Niigata University
kn-affil=
affil-num=4
en-affil=Department of Hematology/Oncology, Wakayama Medical University
kn-affil=
affil-num=5
en-affil=Department of Cell Therapy and Transplantation Medicine, The University of Tokyo Hospital
kn-affil=
affil-num=6
en-affil=Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital
kn-affil=
affil-num=7
en-affil=Department of Hematology, Toranomon Hospital
kn-affil=
affil-num=8
en-affil=Department of Hematology, Kanagawa Cancer Center
kn-affil=
affil-num=9
en-affil=Department of Hematology and Oncology, Anjo Kosei Hospital
kn-affil=
affil-num=10
en-affil=Department of Hematology, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital
kn-affil=
affil-num=11
en-affil=Department of Hematology, Osaka International Cancer Institute
kn-affil=
affil-num=12
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=13
en-affil=Department of Hematology, Osaka Metropolitan University Graduate School of Medicine
kn-affil=
affil-num=14
en-affil=Department of Hematology, Hokkaido University Hospital
kn-affil=
affil-num=15
en-affil=Department of Hematology and Oncology, Tokai University School of Medicine
kn-affil=
affil-num=16
en-affil=Department of Hematology and oncology, Kurashiki Central Hospital
kn-affil=
affil-num=17
en-affil=Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital
kn-affil=
affil-num=18
en-affil=Department of Hematology, Tottori University Hospital
kn-affil=
affil-num=19
en-affil=Division of Hematology, Jichi Medical University
kn-affil=
affil-num=20
en-affil=Japanese Data Center for Hematopoietic Cell Transplantation
kn-affil=
affil-num=21
en-affil=Japanese Data Center for Hematopoietic Cell Transplantation
kn-affil=
affil-num=22
en-affil=Transfusion and Cell Therapy Unit, Nagasaki University Hospital
kn-affil=
en-keyword=Granulocyte colony-stimulating factor
kn-keyword=Granulocyte colony-stimulating factor
en-keyword=Graft-versus-host disease
kn-keyword=Graft-versus-host disease
en-keyword=Bone marrow transplantation
kn-keyword=Bone marrow transplantation
en-keyword=Peripheral blood stem cell transplantation
kn-keyword=Peripheral blood stem cell transplantation
en-keyword=Cord blood transplantation
kn-keyword=Cord blood transplantation
en-keyword=Myelodysplastic syndrome
kn-keyword=Myelodysplastic syndrome
END
start-ver=1.4
cd-journal=joma
no-vol=58
cd-vols=
no-issue=2
article-no=
start-page=145
end-page=148
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250630
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The trochlea for the intermediate tendon of the digastric muscle: a review
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This review explores the novel perspective that the intermediate tendon of the digastric muscle may function as an anatomical trochlear pulley system within the human body, challenging the traditional understanding of trochlear systems. While widely recognized trochlear units include structures like the medial part of the humerus and the superior oblique muscle of the orbit, the review focuses on the unique anatomical arrangement of the intermediate tendon of the digastric muscle in connection with the anterior and posterior bellies of the digastric muscles. Despite current debates within the anatomical community about labeling the digastric muscles as having a trochlea, this paper delves into the scientific definition of a trochlear pulley system, presenting the intermediate tendon of the digastric muscle as a potential trochlea.
en-copyright=
kn-copyright=
en-aut-name=du PlooyXander
en-aut-sei=du Plooy
en-aut-mei=Xander
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KunisadaYuki
en-aut-sei=Kunisada
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=CardonaJuan J.
en-aut-sei=Cardona
en-aut-mei=Juan J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TabiraYoko
en-aut-sei=Tabira
en-aut-mei=Yoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=BubbKathleen Carol
en-aut-sei=Bubb
en-aut-mei=Kathleen Carol
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=RaeburnKazzara
en-aut-sei=Raeburn
en-aut-mei=Kazzara
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IbaragiSoichiro
en-aut-sei=Ibaragi
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IwanagaJoe
en-aut-sei=Iwanaga
en-aut-mei=Joe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TubbsR. Shane
en-aut-sei=Tubbs
en-aut-mei=R. Shane
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Tulane University School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine
kn-affil=
affil-num=4
en-affil=Division of Gross and Clinical Anatomy, Department of Anatomy, Kurume University School of Medicine
kn-affil=
affil-num=5
en-affil=Anatomy Division, Department of Radiology, Weill Cornell Medical College
kn-affil=
affil-num=6
en-affil=Department of Anatomical Sciences, St. George’s University
kn-affil=
affil-num=7
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine
kn-affil=
en-keyword=Digastric muscles
kn-keyword=Digastric muscles
en-keyword=Intermediate tendon
kn-keyword=Intermediate tendon
en-keyword=Trochlea
kn-keyword=Trochlea
en-keyword=Anatomy
kn-keyword=Anatomy
en-keyword=Fascia
kn-keyword=Fascia
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250612
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Sulfur dioxide-induced guard cell death and stomatal closure are attenuated in nitrate/proton antiporter AtCLCa mutants
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Guard cells surrounding the stomata play a crucial role in regulating the entrance of hazardous gases such as SO2 into leaves. Stomatal closure could be a plant response to mitigate SO2 damage, although the mechanism for SO2-induced closure remains controversial. Proposed mediators for SO2-induced stomatal closure include phytohormones, reactive oxygen species, gasotransmitters, and cytosolic acidification. In this study, we investigated the mechanism of stomatal closure in Arabidopsis in response to SO2. Despite an increment in auxin and jasmonates after SO2 exposure, the addition of auxin did not cause stomatal closure and jasmonate-insensitive mutants exhibited SO2-induced stomatal closure suggesting auxin and jasmonates are not mediators leading to the closure. In addition, supplementation of scavenging reagents for reactive oxygen species and gasotransmitters did not inhibit SO2-induced closure. Instead, we found that cytosolic acidification is a credible mechanism for SO2-induced stomatal closure in Arabidopsis. CLCa mutants coding H+/nitrate antiporter, involved in cytosolic pH homeostasis, showed less sensitive stomatal phenotype against SO2. These results suggest that cytosolic pH homeostasis plays a tenable role in SO2 response in guard cells.
en-copyright=
kn-copyright=
en-aut-name=OoiLia
en-aut-sei=Ooi
en-aut-mei=Lia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsuuraTakakazu
en-aut-sei=Matsuura
en-aut-mei=Takakazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MoriIzumi C.
en-aut-sei=Mori
en-aut-mei=Izumi C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
en-keyword=airborne pollutants
kn-keyword=airborne pollutants
en-keyword=cytosolic acidification
kn-keyword=cytosolic acidification
en-keyword=stomatal closure
kn-keyword=stomatal closure
en-keyword=sulfur dioxide
kn-keyword=sulfur dioxide
END
start-ver=1.4
cd-journal=joma
no-vol=70
cd-vols=
no-issue=5
article-no=
start-page=733
end-page=747
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202503
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A PRA-Rab trafficking machinery modulates NLR immune receptor plasma membrane microdomain anchoring and blast resistance in rice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Nucleotide-binding leucine-rich repeat (NLR) receptors mediate pathogen effector-triggered immunity (ETI) in plants, and a subclass of NLRs are hypothesized to function at the plasma membrane (PM). However, how NLR traffic and PM delivery are regulated during immune responses remains largely unknown. The rice NLR PigmR confers broad-spectrum resistance to the blast fungus Magnaporthe oryzae. Here, we report that a PRA (Prenylated Rab acceptor) protein, PIBP4 (PigmR-INTERACTING and BLAST RESISTANCE PROTEIN 4), interacts with both PigmR and the active form of the Rab GTPase, OsRab5a, thereby loads a portion of PigmR on trafficking vesicles that target to PM microdomains. Microdomain-localized PigmR interacts with and activates the small GTPase OsRac1, which triggers reactive oxygen species signaling and hypersensitive response, leading to immune responses against blast infection. Thus, our study discovers a previously unknown mechanism that deploys a PRA-Rab protein delivering hub to ensure ETI, linking the membrane trafficking machinery with NLR function and immune activation in plants.
en-copyright=
kn-copyright=
en-aut-name=LiangDi
en-aut-sei=Liang
en-aut-mei=Di
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YangDongyong
en-aut-sei=Yang
en-aut-mei=Dongyong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=LiTai
en-aut-sei=Li
en-aut-mei=Tai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ZhuZhe
en-aut-sei=Zhu
en-aut-mei=Zhe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YanBingxiao
en-aut-sei=Yan
en-aut-mei=Bingxiao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HeYang
en-aut-sei=He
en-aut-mei=Yang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=LiXiaoyuan
en-aut-sei=Li
en-aut-mei=Xiaoyuan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ZhaiKeran
en-aut-sei=Zhai
en-aut-mei=Keran
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=LiuJiyun
en-aut-sei=Liu
en-aut-mei=Jiyun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KawanoYoji
en-aut-sei=Kawano
en-aut-mei=Yoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=DengYiwen
en-aut-sei=Deng
en-aut-mei=Yiwen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=WuXu Na
en-aut-sei=Wu
en-aut-mei=Xu Na
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=LiuJunzhong
en-aut-sei=Liu
en-aut-mei=Junzhong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=HeZuhua
en-aut-sei=He
en-aut-mei=Zuhua
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences
kn-affil=
affil-num=2
en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences
kn-affil=
affil-num=3
en-affil=Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University
kn-affil=
affil-num=4
en-affil=Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University
kn-affil=
affil-num=5
en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences
kn-affil=
affil-num=6
en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences
kn-affil=
affil-num=7
en-affil=School of Life Science and Technology, ShanghaiTech University
kn-affil=
affil-num=8
en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences
kn-affil=
affil-num=9
en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences
kn-affil=
affil-num=10
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=11
en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences
kn-affil=
affil-num=12
en-affil=Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University
kn-affil=
affil-num=13
en-affil=Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University
kn-affil=
affil-num=14
en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences
kn-affil=
en-keyword=Prenylated Rab acceptor
kn-keyword=Prenylated Rab acceptor
en-keyword=PigmR
kn-keyword=PigmR
en-keyword=Trafficking vesicles
kn-keyword=Trafficking vesicles
en-keyword=OsRab5a
kn-keyword=OsRab5a
en-keyword=Blast resistance
kn-keyword=Blast resistance
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250609
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The maxillary vein: an anatomical narrative review with clinical implications for oral and maxillofacial surgeons
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The maxillary vein, despite its clinical significance, remains underexplored in anatomical literature. It plays a crucial role in venous drainage of the maxillofacial region and is closely associated with surgical procedures such as sagittal split ramus osteotomy, mandibuloplasty, and condylar or parotid surgeries. Due to its variable anatomy and proximity to critical structures, the maxillary vein poses a risk of significant hemorrhage if injured. Its small size and deep location make preoperative identification challenging, especially without contrast-enhanced imaging. Embryologically, the maxillary vein originates from the primitive maxillary vein and develops through complex anastomoses with other craniofacial veins. Anatomical studies have revealed several variations, including the presence of accessory mandibular foramina and unusual venous connections, which may increase surgical risk. Understanding the detailed anatomy and potential variations of the maxillary vein is essential for minimizing complications and improving surgical outcomes. Despite its importance, more anatomical and clinical research is needed to better define its course, variations, and implications in oral and maxillofacial surgery.
en-copyright=
kn-copyright=
en-aut-name=RaeburnKazzara
en-aut-sei=Raeburn
en-aut-mei=Kazzara
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakeshitaYohei
en-aut-sei=Takeshita
en-aut-mei=Yohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakakuraHiroaki
en-aut-sei=Takakura
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KikutaShogo
en-aut-sei=Kikuta
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KunisadaYuki
en-aut-sei=Kunisada
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IbaragiSoichiro
en-aut-sei=Ibaragi
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SamridRarinthorn
en-aut-sei=Samrid
en-aut-mei=Rarinthorn
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=LoukasMarios
en-aut-sei=Loukas
en-aut-mei=Marios
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TubbsR. Shane
en-aut-sei=Tubbs
en-aut-mei=R. Shane
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=IwanagaJoe
en-aut-sei=Iwanaga
en-aut-mei=Joe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Anatomical Sciences, St. George’s University
kn-affil=
affil-num=2
en-affil=Department of Oral and Maxillofacial Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Dental and Oral Medical Center, Kurume University School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=
kn-affil=
affil-num=8
en-affil=Department of Anatomical Sciences, St. George’s University
kn-affil=
affil-num=9
en-affil=Department of Anatomical Sciences, St. George’s University
kn-affil=
affil-num=10
en-affil=Dental and Oral Medical Center, Kurume University School of Medicine
kn-affil=
en-keyword=Embryology
kn-keyword=Embryology
en-keyword=Anatomy
kn-keyword=Anatomy
en-keyword=Radiology
kn-keyword=Radiology
en-keyword=Cadaver
kn-keyword=Cadaver
en-keyword=Mandible
kn-keyword=Mandible
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=18981
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250530
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Role of galectin-9 in the development of gestational diabetes mellitus
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Galectin-9 (Gal-9) is highly expressed in trophoblasts in placenta. Interaction between Gal-9 and T-cell immunoglobulin and mucin-domain containing-3 (Tim-3) is important for the differentiation of tissue resident natural killer (trNK) cells in placenta and maintenance of normal pregnancy. Furthermore, the enhanced maternal systemic inflammation associated with increased proinflammatory cytokines in preeclampsia is mediated by enhanced interaction between Gal-9 and Tim-3. However, the role of Gal-9 in gestational diabetes (GDM) remains unexplored. Plasma Gal-9 levels were elevated at 3rd trimester in pregnant women with GDM and positively correlated with placenta and newborn weight. Lgals9 knockout pregnant mice fed with high fat diet (HFD KO) demonstrated maternal glucose intolerance and fetus macrosomia compared with controls (HFD WT). In HFD KO, increased proliferating cells, reduced apoptosis, and autophagy impairment were observed in junctional zones. The number of trNK cells and percentage of Tim-3 + trNK increased, while early apoptosis percentage in Tim-3 + trNK was reduced in placenta of HFD KO. The elevation of plasma Gal-9 may be a biomarker for prediction of maternal glucose intolerance and fetal macrosomia in pregnant women with GDM and Gal-9 functions as a compensation factor for GDM by inducing apoptosis in Tim-3 + trNK cells.
en-copyright=
kn-copyright=
en-aut-name=AlbuayjanHaya Hamed Hassan
en-aut-sei=Albuayjan
en-aut-mei=Haya Hamed Hassan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WatanabeMayu
en-aut-sei=Watanabe
en-aut-mei=Mayu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SugawaraRyosuke
en-aut-sei=Sugawara
en-aut-mei=Ryosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KatsuyamaEri
en-aut-sei=Katsuyama
en-aut-mei=Eri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MiseKoki
en-aut-sei=Mise
en-aut-mei=Koki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OiYukiko
en-aut-sei=Oi
en-aut-mei=Yukiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KannoAyaka
en-aut-sei=Kanno
en-aut-mei=Ayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YangBoXuan
en-aut-sei=Yang
en-aut-mei=BoXuan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TaharaToshihisa
en-aut-sei=Tahara
en-aut-mei=Toshihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NojimaIchiro
en-aut-sei=Nojima
en-aut-mei=Ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NakatsukaAtsuko
en-aut-sei=Nakatsuka
en-aut-mei=Atsuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=EguchiJun
en-aut-sei=Eguchi
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MakiJota
en-aut-sei=Maki
en-aut-mei=Jota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=EtoEriko
en-aut-sei=Eto
en-aut-mei=Eriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=HayataKei
en-aut-sei=Hayata
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=MasuyamaHisashi
en-aut-sei=Masuyama
en-aut-mei=Hisashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=14
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=15
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=16
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=17
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=孔辺細胞のシグナル伝達におけるGUARD CELL HYDROGEN PEROXIDE-RESISTANT1と内因性アブシジン酸の役割
kn-title=Roles of GUARD CELL HYDROGEN PEROXIDE-RESISTANT1 and endogenous abscisic acid in guard-cell signaling
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=SHAIEK Oumayma
en-aut-sei=SHAIEK Oumayma
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=持続可能な発展に向けた携帯電話リサイクルの推進:消費者行動分析、デジタルトランスフォーメーション戦略、および革新的インセンティブメカニズムの統合
kn-title=Optimizing cell phone recycling for sustainable development: Integrating consumer behavior analysis, digital transformation strategies, and innovative incentive mechanisms
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=DUYuxin
en-aut-sei=DU
en-aut-mei=Yuxin
kn-aut-name=杜余鑫
kn-aut-sei=杜
kn-aut-mei=余鑫
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=稲わら施用水田土壌からのCH4およびCO2 排出抑制に向けた底質微生物燃料電池の開発
kn-title=Development of sediment microbial fuel cells to reduce CH4 and CO2 emissions from straw-amended paddy soil
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=ADHENA TESFAU BEKELE
en-aut-sei=ADHENA TESFAU BEKELE
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=マウスIII型細胞におけるCcn3の機能の探索
kn-title=Exploring the Role of Ccn3 in Type III Cell of Mice Taste Buds
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=Kuanyu Wang
en-aut-sei=Kuanyu Wang
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=上顎洞に認められた扁平上皮癌および非扁平上皮癌のCT画像の評価
kn-title=Evaluation of CT Findings in Squamous and Non-Squamous Cell Carcinomas of the Maxillary Sinus
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=ASAUMIYuka
en-aut-sei=ASAUMI
en-aut-mei=Yuka
kn-aut-name=浅海結華
kn-aut-sei=浅海
kn-aut-mei=結華
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=細胞自己凝集化技術を用いた内皮層反転血管構造を有するユニークなin vitro血管モデルの開発
kn-title=Development of a unique tissue-engineered in vitro vascular model with endothelial layer-inverted vascular tissue structure using a cell self-aggregation technique
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=HASHIMOTOShingo
en-aut-sei=HASHIMOTO
en-aut-mei=Shingo
kn-aut-name=橋本真悟
kn-aut-sei=橋本
kn-aut-mei=真悟
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=腫瘍特異的疲弊CD8⁺T細胞に発現するCD106はTCRシグナル伝達を阻害し免疫抑制を引き起こす
kn-title=CD106 in Tumor-Specific Exhausted CD8+ T Cells Mediates Immunosuppression by Inhibiting TCR Signaling
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=NAOIYuto
en-aut-sei=NAOI
en-aut-mei=Yuto
kn-aut-name=直井勇人
kn-aut-sei=直井
kn-aut-mei=勇人
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=CTLA-4阻害の抗腫瘍効果はTreg細胞のCTLA-4非依存性免疫抑制機構の活性化によって減弱する
kn-title=Activated CTLA-4-independent immunosuppression of Treg cells disturbs CTLA-4 blockade-mediated antitumor immunity
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=WATANABETomofumi
en-aut-sei=WATANABE
en-aut-mei=Tomofumi
kn-aut-name=渡部智文
kn-aut-sei=渡部
kn-aut-mei=智文
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=血管内皮細胞、線維芽細胞、およびiPS心筋細胞からなるヒト心臓チップマイクロ生理システム
kn-title=Human heart‑on‑a‑chip microphysiological system comprising endothelial cells, fibroblasts, and iPSC‑derived cardiomyocytes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=LIUYUN
en-aut-sei=LIU
en-aut-mei=YUN
kn-aut-name=劉云
kn-aut-sei=劉
kn-aut-mei=云
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=樹状細胞の成熟は、腫瘍由来エクソソームを介してp53搭載腫瘍融解アデノウイルスによって誘導され、全身の抗腫瘍免疫を誘導する
kn-title=Dendritic cell maturation is induced by p53‑armed oncolytic adenovirus via tumor‑derived exosomes enhancing systemic antitumor immunity
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=OTANITomoko
en-aut-sei=OTANI
en-aut-mei=Tomoko
kn-aut-name=大谷朋子
kn-aut-sei=大谷
kn-aut-mei=朋子
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=ヒト肥満細胞における重合開始剤によるヒスタミン産生の誘導
kn-title=Photoinitiators Induce Histamine Production in Human Mast Cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=MIURATaro
en-aut-sei=MIURA
en-aut-mei=Taro
kn-aut-name=三浦太郎
kn-aut-sei=三浦
kn-aut-mei=太郎
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=心停止ドナーからの肺移植においてNr4a1の欠損は内皮細胞障害を抑制し血管外漏出を改善する
kn-title=Loss of Nr4a1 ameliorates endothelial cell injury and vascular leakage in lung transplantation from circulatory-death donor
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KAWANAShinichi
en-aut-sei=KAWANA
en-aut-mei=Shinichi
kn-aut-name=川名伸一
kn-aut-sei=川名
kn-aut-mei=伸一
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=ヒト臍帯血内皮前駆細胞はラット脳卒中モデルにおける動脈損傷の内膜過形成を緩和する
kn-title=Human Cord Blood–Endothelial Progenitor Cells Alleviate Intimal Hyperplasia of Arterial Damage in a Rat Stroke Model
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=SUNHONGMING
en-aut-sei=SUN
en-aut-mei=HONGMING
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=アドレナリンβ2受容体はリガンド非依存的にマスト細胞の IgE 誘導性カルシウム流入を促進する
kn-title=Ligand-independent function of β2-adrenergic receptor affects IgE-mediated Ca2+ influx in mast cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=NAGAOKei
en-aut-sei=NAGAO
en-aut-mei=Kei
kn-aut-name=長尾圭
kn-aut-sei=長尾
kn-aut-mei=圭
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=p53を搭載した腫瘍融解ウイルス療法は免疫原性細胞死を促進することにより骨肉腫にアブスコパル効果を誘導する
kn-title=p53-armed oncolytic virotherapy induces abscopal effect in osteosarcoma by promoting immunogenic cell death
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=DEMIYAKoji
en-aut-sei=DEMIYA
en-aut-mei=Koji
kn-aut-name=出宮光二
kn-aut-sei=出宮
kn-aut-mei=光二
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=38
cd-vols=
no-issue=8
article-no=
start-page=100782
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Involvement of PI3K–Akt Signaling in the Clinical and Pathological Findings of Idiopathic Multicentric Castleman Disease–Thrombocytopenia, Anasarca, Fever, Reticulin Fibrosis, and Organomegaly and Not Otherwise Specified Subtypes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Idiopathic multicentric Castleman disease is a rare lymphoproliferative disorder that is clinically classified into idiopathic plasmacytic lymphadenopathy (IPL); thrombocytopenia, anasarca, fever, reticulin fibrosis, and organomegaly (TAFRO); and not otherwise specified (NOS). Although each subtype shows varying degrees of hypervascularity, no statistical data on the degree of vascularization have been reported. Additionally, the mechanisms underlying vascularization in each clinical subtype are poorly understood. Here, we aimed to clarify these mechanisms by evaluating the histopathological characteristics of each clinical subtype across 37 patients and performing a whole-transcriptome analysis focusing on angiogenesis-related gene expression. Histologically, TAFRO and NOS exhibited a significantly higher degree of vascularization than IPL (IPL vs TAFRO, P < .001; IPL vs NOS, P = .002). In addition, the germinal centers (GCs) were significantly more atrophic in TAFRO than in IPL. In TAFRO and NOS, “whirlpool vessels” in GCs were seen in most cases (TAFRO, 9/9, 100%; NOS, 6/8, 75%) but not in IPL (IPL vs TAFRO, P < .001; IPL vs NOS, P = .007). Likewise, immunostaining for Ets-related gene revealed higher levels in endothelial cells of GCs in TAFRO than in IPL (P = .014), and TAFRO and NOS were associated with a significantly higher number of endothelial cells in interfollicular areas compared with that in IPL (TAFRO vs IPL, P < .001; NOS vs IPL, P = .002). Gene expression analysis revealed that the PI3K–Akt signaling pathway was significantly enriched in the TAFRO and NOS (TAFRO/NOS) groups. This pathway, which may be activated by vascular endothelial growth factor A and some integrins, is known to affect angiogenesis by increasing vascular permeability, which may explain the clinical manifestations of anasarca and/or fluid retention in TAFRO/NOS. These results suggest that the PI3K–Akt pathway plays an important role in the pathogenesis of TAFRO/NOS.
en-copyright=
kn-copyright=
en-aut-name=HaratakeTomoka
en-aut-sei=Haratake
en-aut-mei=Tomoka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishimuraMidori Filiz
en-aut-sei=Nishimura
en-aut-mei=Midori Filiz
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishikoriAsami
en-aut-sei=Nishikori
en-aut-mei=Asami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=GonzalezMichael V.
en-aut-sei=Gonzalez
en-aut-mei=Michael V.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=EnnishiDaisuke
en-aut-sei=Ennishi
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=LaiYou Cheng
en-aut-sei=Lai
en-aut-mei=You Cheng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OchiSayaka
en-aut-sei=Ochi
en-aut-mei=Sayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TsunodaManaka
en-aut-sei=Tsunoda
en-aut-mei=Manaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=FajgenbaumDavid C.
en-aut-sei=Fajgenbaum
en-aut-mei=David C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=van RheeFrits
en-aut-sei=van Rhee
en-aut-mei=Frits
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MomoseShuji
en-aut-sei=Momose
en-aut-mei=Shuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=SatoYasuharu
en-aut-sei=Sato
en-aut-mei=Yasuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=2
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=3
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=4
en-affil=Center for Cytokine Storm Treatment and Laboratory, Department of Medicine, Perelman School of Medicine, University of Pennsylvania
kn-affil=
affil-num=5
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Medical Biotechnology and Laboratory Science, Chang Gung University
kn-affil=
affil-num=7
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=8
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=9
en-affil=Center for Cytokine Storm Treatment and Laboratory, Department of Medicine, Perelman School of Medicine, University of Pennsylvania
kn-affil=
affil-num=10
en-affil=Center for Cytokine Storm Treatment and Laboratory, Department of Medicine, Perelman School of Medicine, University of Pennsylvania
kn-affil=
affil-num=11
en-affil=Department of Pathology, Saitama Medical Center, Saitama Medical University
kn-affil=
affil-num=12
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
en-keyword=idiopathic multicentric Castleman disease
kn-keyword=idiopathic multicentric Castleman disease
en-keyword=integrin subunit alpha 5
kn-keyword=integrin subunit alpha 5
en-keyword=PI3K–Akt signaling pathway
kn-keyword=PI3K–Akt signaling pathway
en-keyword=platelet-derived growth factor receptor beta
kn-keyword=platelet-derived growth factor receptor beta
en-keyword=vascular endothelial growth factor A
kn-keyword=vascular endothelial growth factor A
en-keyword=vascularity
kn-keyword=vascularity
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250519
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Novel method of leukocytapheresis using a highly concentrated sodium citrate solution alternative to acid citrate dextrose solution A
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Large-volume leukocytapheresis is time consuming. The upper limit of the inlet flow rate is determined by the inlet: anticoagulant (AC) ratio and can be changed by combining the AC with heparin. Here, we devised a protocol to increase the AC ratio using a highly concentrated sodium citrate solution without heparin.
Study Design and Methods: We collected data from 40 consecutive apheresis procedures performed using the Spectra Optia system on 40 donors for allogeneic peripheral blood stem cells between June 2022 and June 2023. We used AC containing 2.2% sodium citrate (normal concentrated sodium citrate [NSC]) and 5.32% sodium citrate (highly concentrated sodium citrate [HSC]). The AC ratios were set to 12:1 and 24:1 for the NSC and HSC, respectively.
Results: The processed volume was not different; the maximum inlet flow rate increased, the total processing time was reduced, the AC solution used was reduced, and the product volume was reduced in the HSC group, compared to the NSC group. Although the CD34+ cell CE2 was reduced in the HSC group, no difference was observed in the number of collected CD34+ cells. The incidences of citrate-related reactions were similar.
Discussion: We propose a novel leukocytapheresis method using HSC that shortens the procedure time and reduces the amount of AC solution used compared to the conventional method
en-copyright=
kn-copyright=
en-aut-name=AbeMasaya
en-aut-sei=Abe
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujiiKeiko
en-aut-sei=Fujii
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MitsuhashiToshiharu
en-aut-sei=Mitsuhashi
en-aut-mei=Toshiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KitamuraWataru
en-aut-sei=Kitamura
en-aut-mei=Wataru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IkeuchiKazuhiro
en-aut-sei=Ikeuchi
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FukumiTakuya
en-aut-sei=Fukumi
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=WashioKana
en-aut-sei=Washio
en-aut-mei=Kana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OtsukaFumio
en-aut-sei=Otsuka
en-aut-mei=Fumio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MaedaYoshinobu
en-aut-sei=Maeda
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=FujiiNobuharu
en-aut-sei=Fujii
en-aut-mei=Nobuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Division of Transfusion and Cell Therapy, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Division of Clinical Laboratory, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Division of Transfusion and Cell Therapy, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Division of Transfusion and Cell Therapy, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Division of Transfusion and Cell Therapy, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Pediatric Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Division of Clinical Laboratory, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Division of Transfusion and Cell Therapy, Okayama University Hospital
kn-affil=
en-keyword=anticoagulant
kn-keyword=anticoagulant
en-keyword=apheresis
kn-keyword=apheresis
en-keyword=high sodium citrate concentration
kn-keyword=high sodium citrate concentration
en-keyword=Spectra Optia
kn-keyword=Spectra Optia
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=3
article-no=
start-page=213
end-page=219
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Case of Chromophobe Renal Cell Carcinoma Metastasizing to the Cervical Lymph Nodes after Long-term Follow-up
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Renal cell carcinoma (RCC) can metastasize hematogenously and recur after a long dormancy. Chromophobe RCC metastasized to the cervical lymph nodes 10 years after the primary resection in a woman who underwent nephrectomy for RCC (T1aN0M0 stage I). Metastatic RCC diagnosis was confirmed by aspiration. The lymph node mass was resected, and the tumor cells matched chromophobe RCC metastasis. No adjuvant therapy was administered due to the lack of evidence regarding adjuvant therapy for chromophobe RCC. Long-term surveillance is crucial in RCC because of the possibility of late metastasis. We reviewed the clinical aspects and literature on metastatic cervical RCC.
en-copyright=
kn-copyright=
en-aut-name=WatanabeMakoto
en-aut-sei=Watanabe
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OgawaTomoyuki
en-aut-sei=Ogawa
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KobayashiKanao
en-aut-sei=Kobayashi
en-aut-mei=Kanao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KatsuyaNarutaka
en-aut-sei=Katsuya
en-aut-mei=Narutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IshikawaAkira
en-aut-sei=Ishikawa
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HamamotoTakao
en-aut-sei=Hamamoto
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TaharaHiroaki
en-aut-sei=Tahara
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=UedaTsutomu
en-aut-sei=Ueda
en-aut-mei=Tsutomu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TakenoSachio
en-aut-sei=Takeno
en-aut-mei=Sachio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Otolaryngology, Chugoku Rosai Hospital
kn-affil=
affil-num=2
en-affil=Department of Otolaryngology, Chugoku Rosai Hospital
kn-affil=
affil-num=3
en-affil=Department of Nephrology and Urological Surgery, Chugoku Rosai Hospital
kn-affil=
affil-num=4
en-affil=Department of Molecular Pathology, Graduate School of Medical Sciences, Hiroshima University
kn-affil=
affil-num=5
en-affil=Department of Molecular Pathology, Graduate School of Medical Sciences, Hiroshima University
kn-affil=
affil-num=6
en-affil=Department of Otolaryngology and Head and Neck Surgery, Hiroshima University Hospital
kn-affil=
affil-num=7
en-affil=Department of Otolaryngology and Head and Neck Surgery, Hiroshima University Hospital
kn-affil=
affil-num=8
en-affil=Department of Otolaryngology and Head and Neck Surgery, Hiroshima University Hospital
kn-affil=
affil-num=9
en-affil=Department of Otolaryngology and Head and Neck Surgery, Hiroshima University Hospital
kn-affil=
en-keyword=renal cell carcinoma
kn-keyword=renal cell carcinoma
en-keyword=cervical lymph node metastasis
kn-keyword=cervical lymph node metastasis
en-keyword=late recurrence
kn-keyword=late recurrence
en-keyword=head and neck
kn-keyword=head and neck
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=3
article-no=
start-page=197
end-page=203
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Rheumatoid Arthritis with Rapid Destructive Arthropathy of the Shoulder due to Calcium Pyrophosphate Deposition
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A 67-year-old woman with rheumatoid arthritis presented with an untriggered hematoma in the right shoulder joint. Radiographic findings showed humeral head collapse and destruction of the glenoid fossa with ectopic calcification. Calcium pyrophosphate deposition (CPPD) in the synovial fluid was observed using a polarizing microscope. Histopathological findings revealed chronic inflammatory cell infiltration and giant cells surrounded by CPPD. The patient was diagnosed with rapid destructive arthropathy (RDA). Endoscopic shoulder joint debridement was performed. Postoperatively, active flexion improved from 40 to 75 degrees. This case highlights that CPPD can cause RDA in the shoulder, detectable with detailed histopathology.
en-copyright=
kn-copyright=
en-aut-name=KondoNaoki
en-aut-sei=Kondo
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KakutaniRika
en-aut-sei=Kakutani
en-aut-mei=Rika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MochizukiTomoharu
en-aut-sei=Mochizuki
en-aut-mei=Tomoharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=WakuiJunichi
en-aut-sei=Wakui
en-aut-mei=Junichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HaoNariaki
en-aut-sei=Hao
en-aut-mei=Nariaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KinoshitaEiji
en-aut-sei=Kinoshita
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KawashimaHiroyuki
en-aut-sei=Kawashima
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences
kn-affil=
affil-num=2
en-affil=Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences
kn-affil=
affil-num=3
en-affil=Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences
kn-affil=
affil-num=4
en-affil=Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences
kn-affil=
affil-num=5
en-affil=Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences
kn-affil=
affil-num=6
en-affil=Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences
kn-affil=
affil-num=7
en-affil=Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences
kn-affil=
en-keyword=rheumatoid arthritis
kn-keyword=rheumatoid arthritis
en-keyword=calcium pyrophosphate deposition
kn-keyword=calcium pyrophosphate deposition
en-keyword=rapid destructive arthropathy
kn-keyword=rapid destructive arthropathy
en-keyword=case report
kn-keyword=case report
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=3
article-no=
start-page=167
end-page=176
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Promising Effectiveness of Combined Chemotherapy and Immunotherapy in Patients with Advanced Non-small Cell Lung Cancer: A Real-World Prospective Observational Study (CS-Lung-003)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This prospective observational study investigated the clinical status of patients with advanced non-small cell lung cancer (NSCLC) treated with cytotoxic chemotherapy+an immune checkpoint inhibitor (chemo + IO) as first-line treatment in a real-world setting. The cases of 98 patients treated with chemo + IO were prospectively collected and analyzed for effectiveness and safety. The response rate to chemo + IO was 46.9%, and the disease control rate was 76.5%. The median progression-free survival and overall survival (OS) in the total population were 5.2 and 22.3 months, respectively. The patients positive for PD-L1 (≥ 1%) showed significantly longer OS than the negative group (<1%) (median 26.7 vs. 18.7 months, p=0.04). Pre-existing interstitial lung disease (ILD) was associated with shorter OS than the absence of ILD (median 9.0 vs. 22.6 months, p<0.01). Immunerelated adverse events (irAEs) were observed in 28 patients (28.6%). The most frequent irAE was ILD (n=11); Grade 1 (n=1 patient), G2 (n=5), G3 (n=4), and only a single patient with a G5 irAE. In this CS-Lung-003 study, first-line chemo + IO in a real-world setting showed good effectiveness, comparable to that observed in international clinical trials. In real-world practice, chemo + IO is a promising and steadfast strategy.
en-copyright=
kn-copyright=
en-aut-name=KanajiNobuhiro
en-aut-sei=Kanaji
en-aut-mei=Nobuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishiiKazuya
en-aut-sei=Nishii
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TsubataYukari
en-aut-sei=Tsubata
en-aut-mei=Yukari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakaoMika
en-aut-sei=Nakao
en-aut-mei=Mika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OkunoTakae
en-aut-sei=Okuno
en-aut-mei=Takae
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OkawaSachi
en-aut-sei=Okawa
en-aut-mei=Sachi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakataKenji
en-aut-sei=Takata
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KodaniMasahiro
en-aut-sei=Kodani
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YamasakiMasahiro
en-aut-sei=Yamasaki
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=FujitakaKazunori
en-aut-sei=Fujitaka
en-aut-mei=Kazunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KubotaTetsuya
en-aut-sei=Kubota
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=InoueMasaaki
en-aut-sei=Inoue
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=WatanabeNaoki
en-aut-sei=Watanabe
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=HottaKatsuyuki
en-aut-sei=Hotta
en-aut-mei=Katsuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=CS-Lung-003 Investigator
en-aut-sei=CS-Lung-003 Investigator
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Department of Internal Medicine, Division of Hematology, Rheumatology and Respiratory Medicine, Faculty of Medicine, Kagawa University
kn-affil=
affil-num=2
en-affil=Department of Respiratory Medicine, National Hospital Organization Iwakuni Clinical Center
kn-affil=
affil-num=3
en-affil=Department of Internal Medicine, Division of Medical Oncology and Respiratory Medicine, Shimane University Faculty of Medicine
kn-affil=
affil-num=4
en-affil=Department of Internal Medicine, Division of Medical Oncology and Respiratory Medicine, Shimane University Faculty of Medicine
kn-affil=
affil-num=5
en-affil=Department of Internal Medicine, Division of Medical Oncology and Respiratory Medicine, Shimane University Faculty of Medicine
kn-affil=
affil-num=6
en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Division of Medical Oncology and Molecular Respirology, Faculty of Medicine, Tottori University
kn-affil=
affil-num=9
en-affil=Department of Respiratory Disease, Hiroshima Red Cross Hospital and Atomic-Bomb Survivors Hospital
kn-affil=
affil-num=10
en-affil=Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University
kn-affil=
affil-num=11
en-affil=Department of Respiratory Medicine and Allergology, Kochi University
kn-affil=
affil-num=12
en-affil=Department of Chest Surgery, Shimonoseki City Hospital
kn-affil=
affil-num=13
en-affil=Department of Internal Medicine, Division of Hematology, Rheumatology and Respiratory Medicine, Faculty of Medicine, Kagawa University
kn-affil=
affil-num=14
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=15
en-affil=
kn-affil=
en-keyword=non-small cell lung cancer
kn-keyword=non-small cell lung cancer
en-keyword=real-world
kn-keyword=real-world
en-keyword=first-line
kn-keyword=first-line
en-keyword=immune checkpoint inhibitor
kn-keyword=immune checkpoint inhibitor
en-keyword=combined immunotherapy
kn-keyword=combined immunotherapy
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=3
article-no=
start-page=157
end-page=166
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Continuous Stimulation with Glycolaldehyde-derived Advanced Glycation End Product Reduces Aggrecan and COL2A1 Production via RAGE in Human OUMS-27 Chondrosarcoma Cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Chondrocytes are responsible for the production of extracellular matrix (ECM) components such as collagen type II alpha-1 (COL2A1) and aggrecan, which are loosely distributed in articular cartilage. Chondrocyte dysfunction has been implicated in the pathogenesis of rheumatic diseases such as osteoarthritis (OA) and rheumatoid arthritis (RA). With age, advanced glycation end products (AGEs) accumulate in all tissues and body fluids, including cartilage and synovial fluid, causing and accelerating pathological changes associated with chronic diseases such as OA. Glycolaldehyde-derived AGE (AGE3), which is toxic to a variety of cell types, have a stronger effect on cartilage compared with other AGEs. To understand the long-term effects of AGE3 on cartilage, we stimulated a human chondrosarcoma cell line (OUMS-27), which exhibits a chondrocytic phenotype, with 10 μg/ml AGE3 for 4 weeks. As a result, the expressions of COL2A1 and aggrecan were significantly downregulated in the OUMS-27 cells without inducing cell death, but the expressions of proteases that play an important role in cartilage destruction were not affected. Inhibition of the receptor for advanced glycation end products (RAGE) suppressed the AGE3-induced reduction in cartilage component production, suggesting the involvement of RAGE in the action of AGE3.
en-copyright=
kn-copyright=
en-aut-name=HatipogluOmer Faruk
en-aut-sei=Hatipoglu
en-aut-mei=Omer Faruk
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishinakaTakashi
en-aut-sei=Nishinaka
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YaykasliKursat Oguz
en-aut-sei=Yaykasli
en-aut-mei=Kursat Oguz
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MoriShuji
en-aut-sei=Mori
en-aut-mei=Shuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WatanabeMasahiro
en-aut-sei=Watanabe
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ToyomuraTakao
en-aut-sei=Toyomura
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NishiboriMasahiro
en-aut-sei=Nishibori
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HirohataSatoshi
en-aut-sei=Hirohata
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TakahashiHideo
en-aut-sei=Takahashi
en-aut-mei=Hideo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=WakeHidenori
en-aut-sei=Wake
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Pharmacology, Faculty of Medicine, Kindai University
kn-affil=
affil-num=2
en-affil=Department of Pharmacology, Faculty of Medicine, Kindai University
kn-affil=
affil-num=3
en-affil=Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen
kn-affil=
affil-num=4
en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University
kn-affil=
affil-num=5
en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University
kn-affil=
affil-num=6
en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University
kn-affil=
affil-num=7
en-affil=Department of Translational Research & Dug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Pharmacology, Faculty of Medicine, Kindai University
kn-affil=
affil-num=10
en-affil=Department of Pharmacology, Faculty of Medicine, Kindai University
kn-affil=
en-keyword=advanced glycation end product
kn-keyword=advanced glycation end product
en-keyword=aging
kn-keyword=aging
en-keyword=cartilage
kn-keyword=cartilage
en-keyword=collagen
kn-keyword=collagen
en-keyword=aggrecan
kn-keyword=aggrecan
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=3
article-no=
start-page=147
end-page=155
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Immunometabolic Regulation of Innate Immunity in Systemic Lupus Erythematosus
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Pathogens or their components can induce long-lasting changes in the behavior of innate immune cells, a process analogous to “training” for future threats or environmental adaptation. However, such training can sometimes have unintended consequences, such as the development of autoimmunity. Systemic lupus erythematosus (SLE) is a chronic and heterogeneous autoimmune disease characterized by the production of autoantibodies and progressive organ damage. Innate immunity plays a central role in its pathogenesis, contributing through impaired clearance of apoptotic cells, excessive type I interferon production, and dysregulated formation of neutrophil extracellular traps. Recent studies have revealed that metabolites and nucleic acids derived from mitochondria, a crucial energy production site, directly regulate type I interferon and anti-inflammatory cytokine production. These insights have fueled interest in targeting metabolic pathways as a novel therapeutic approach for SLE, offering promise for improving long-term patient outcomes.
en-copyright=
kn-copyright=
en-aut-name=WatanabeHaruki
en-aut-sei=Watanabe
en-aut-mei=Haruki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsumotoYoshinori
en-aut-sei=Matsumoto
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=systemic lupus erythematosus
kn-keyword=systemic lupus erythematosus
en-keyword=interferon
kn-keyword=interferon
en-keyword=tricarboxylic acid cycle
kn-keyword=tricarboxylic acid cycle
en-keyword=innate immune memory
kn-keyword=innate immune memory
en-keyword=trained immunity
kn-keyword=trained immunity
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250220
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Supplement-induced acute kidney injury reproduced in kidney organoids
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction: Acute kidney injury associated with the consumption of Beni-koji CholesteHelp supplements, which contain red yeast rice (Beni-Koji), has become a significant public health concern in Japan. While renal biopsy findings from several case reports have suggested tubular damage, no definitive causal relationship has been established, and the underlying mechanisms of kidney injury remain poorly understood. The complexity of identifying toxic substances in supplements containing various bioactive compounds makes conventional investigative approaches both time-consuming and challenging. This highlights an urgent need to establish a reliable platform for assessing organ-specific toxicity in such supplements. In this study, we utilized a kidney organoid model derived from adult rat kidney stem cells (KS cells) to assess the potential tubular toxicity of these supplements. Methods: KS cell clusters were cultured in three-dimensional system supplemented with growth factors to promote kidney organoids. The organoids were subsequently exposed to Beni-koji CholesteHelp supplements or cisplatin, followed by histological and molecular analyses to evaluate structural impacts. Results: Established organoids had the kidney-like structures including tubular-like structures and glomerulus-like structures at the tips of multiple tubules. Treatment with Beni-koji CholesteHelp supplements induced significant tubular damage in the organoids, characterized by epithelial cell thinning, structural disruption, and increase in cleaved-caspase 3-positive apoptotic tubular cells, similar to the organoids treated with cisplatin. Conclusion: These findings provide the first evidence suggesting that certain toxicants in specific batches of Beni-koji CholesteHelp supplements cause direct renal tubular injury. This KS cell-based organoid system represents a cost-effective, reproducible, and technically simple platform for nephrotoxicity screening.
en-copyright=
kn-copyright=
en-aut-name=NakanohHiroyuki
en-aut-sei=Nakanoh
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TsujiKenji
en-aut-sei=Tsuji
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FukushimaKazuhiko
en-aut-sei=Fukushima
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HaraguchiSoichiro
en-aut-sei=Haraguchi
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KitamuraShinji
en-aut-sei=Kitamura
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Acute kidney injury
kn-keyword=Acute kidney injury
en-keyword=Drug-induced nephrotoxicity
kn-keyword=Drug-induced nephrotoxicity
en-keyword=Kidney organoid
kn-keyword=Kidney organoid
en-keyword=Kidney stem cell
kn-keyword=Kidney stem cell
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250429
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Comparative inhibitory effects of bepotastine and diphenhydramine on rituximab-induced infusion reactions
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose Infusion-related reaction (IRR) is a common adverse event induced by rituximab. Although first-generation histamine 1 receptor antagonists (H1RAs) are commonly used to prevent IRR, evidence on IRR suppression by the second-generation H1RA bepotastine is scarce. In this study, we assessed the inhibitory effects of bepotastine on rituximab-induced IRR and compared them with those of the first-generation H1RA diphenhydramine.
Methods We retrospectively evaluated IRR incidence in patients with B-cell non-Hodgkin lymphoma who received their first dose of rituximab.
Results The incidence of any grade IRR was 9.8% in the bepotastine group (n = 92), which was significantly lower than the 30.2% rate in the diphenhydramine group (n = 96; p < 0.001). The incidence of grade 2 or higher IRR was similar between the two groups (6.5% vs. 12.5%; p = 0.16). Multivariable logistic regression analysis revealed that the risk of any grade IRR incidence was higher in patients with B symptoms and bulky disease. Premedication with bepotastine was an independent factor in reducing the risk of any grade IRR incidence (odds ratio = 0.19, 95% confidence interval: 0.08–0.47).
Conclusion Bepotastine may be more effective than diphenhydramine in reducing the incidence of rituximab-induced IRR, particularly low-grade reactions.
en-copyright=
kn-copyright=
en-aut-name=HoriTomoki
en-aut-sei=Hori
en-aut-mei=Tomoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamamotoKazuhiro
en-aut-sei=Yamamoto
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakagawaTomoaki
en-aut-sei=Nakagawa
en-aut-mei=Tomoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakagawaRinako
en-aut-sei=Nakagawa
en-aut-mei=Rinako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OkayamaMasami
en-aut-sei=Okayama
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SudouTamika
en-aut-sei=Sudou
en-aut-mei=Tamika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HamasakiMoe
en-aut-sei=Hamasaki
en-aut-mei=Moe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YasudaMai
en-aut-sei=Yasuda
en-aut-mei=Mai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KobayashiShinya
en-aut-sei=Kobayashi
en-aut-mei=Shinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NakamuraFumihiko
en-aut-sei=Nakamura
en-aut-mei=Fumihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YagiHideo
en-aut-sei=Yagi
en-aut-mei=Hideo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KitahiroYumi
en-aut-sei=Kitahiro
en-aut-mei=Yumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=IkushimaShigeki
en-aut-sei=Ikushima
en-aut-mei=Shigeki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=YanoIkuko
en-aut-sei=Yano
en-aut-mei=Ikuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Pharmacy, Nara Prefecture General Medical Center
kn-affil=
affil-num=2
en-affil=Department of Integrated Clinical and Basic Pharmaceutical Sciences, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Pharmacy, Nara Prefecture General Medical Center
kn-affil=
affil-num=4
en-affil=Department of Pharmacy, Nara Prefecture General Medical Center
kn-affil=
affil-num=5
en-affil=Department of Pharmacy, Nara Prefecture General Medical Center
kn-affil=
affil-num=6
en-affil=Department of Pharmacy, Nara Prefecture General Medical Center
kn-affil=
affil-num=7
en-affil=Department of Pharmacy, Nara Prefecture General Medical Center
kn-affil=
affil-num=8
en-affil=Department of Pharmacy, Nara Prefecture General Medical Center
kn-affil=
affil-num=9
en-affil=Department of Hematology and Oncology, Nara Prefecture General Medical Center
kn-affil=
affil-num=10
en-affil=Department of Laboratory Medicine, Nara Prefecture General Medical Center
kn-affil=
affil-num=11
en-affil=Department of Hematology and Oncology, Nara Prefecture General Medical Center
kn-affil=
affil-num=12
en-affil=Department of Pharmacy, Kobe University Hospital
kn-affil=
affil-num=13
en-affil=Department of Pharmacy, Nara Prefecture General Medical Center
kn-affil=
affil-num=14
en-affil=Department of Pharmacy, Kobe University Hospital
kn-affil=
en-keyword=Rituximab
kn-keyword=Rituximab
en-keyword=Infusion reaction
kn-keyword=Infusion reaction
en-keyword=Bepotastine
kn-keyword=Bepotastine
en-keyword=Diphenhydramine
kn-keyword=Diphenhydramine
END
start-ver=1.4
cd-journal=joma
no-vol=74
cd-vols=
no-issue=7
article-no=
start-page=193
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Osteosarcoma cell-derived CCL2 facilitates lung metastasis via accumulation of tumor-associated macrophages
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Osteosarcoma (OS) is the most common malignant tumor of bone in children and adolescents. Although lung metastasis is a major obstacle to improving the prognosis of OS patients, the underlying mechanism of lung metastasis of OS is poorly understood. Tumor-associated macrophages (TAMs) with M2-like characteristics are reportedly associated with lung metastasis and poor prognosis in OS patients. In this study, we investigated the metastasis-associated tumor microenvironment (TME) in orthotopic OS tumor models with non-metastatic and metastatic OS cells. Non-metastatic and metastatic tumor cells derived from mouse OS (Dunn and LM8) and human OS (HOS and 143B) were used to analyze the TME associated with lung metastasis in orthotopic OS tumor models. OS cell-derived secretion factors were identified by cytokine array and enzyme-linked immunosorbent assay (ELISA). Orthotopic tumor models with metastatic LM8 and 143B cells were analyzed to evaluate the therapeutic potential of a neutralizing antibody in the development of primary and metastatic tumors. Metastatic OS cells developed metastatic tumors with infiltration of M2-like TAMs in the lungs. Cytokine array and ELISA demonstrated that metastatic mouse and human OS cells commonly secreted CCL2, which was partially encapsulated in extracellular vesicles. In vivo experiments demonstrated that while primary tumor growth was unaffected, administration of CCL2-neutralizing antibody led to a significant suppression of lung metastasis and infiltration of M2-like TAMs in the lung tissue. Our results suggest that CCL2 plays a crucial role in promoting the lung metastasis of OS cells via accumulation of M2-like TAMs.
en-copyright=
kn-copyright=
en-aut-name=KondoHiroya
en-aut-sei=Kondo
en-aut-mei=Hiroya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TazawaHiroshi
en-aut-sei=Tazawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FujiwaraTomohiro
en-aut-sei=Fujiwara
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YoshidaAki
en-aut-sei=Yoshida
en-aut-mei=Aki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KureMiho
en-aut-sei=Kure
en-aut-mei=Miho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=DemiyaKoji
en-aut-sei=Demiya
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KanayaNobuhiko
en-aut-sei=Kanaya
en-aut-mei=Nobuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HataToshiaki
en-aut-sei=Hata
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=UotaniKoji
en-aut-sei=Uotani
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HaseiJoe
en-aut-sei=Hasei
en-aut-mei=Joe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KunisadaToshiyuki
en-aut-sei=Kunisada
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KagawaShunsuke
en-aut-sei=Kagawa
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=YoshiokaYusuke
en-aut-sei=Yoshioka
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Departments of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Departments of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Departments of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Molecular and Cellular Medicine, Tokyo Medical University
kn-affil=
affil-num=14
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Departments of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Osteosarcoma
kn-keyword=Osteosarcoma
en-keyword=Lung metastasis
kn-keyword=Lung metastasis
en-keyword=Tumor-associated macrophage
kn-keyword=Tumor-associated macrophage
en-keyword=CCL2
kn-keyword=CCL2
en-keyword=Extracellular vesicle
kn-keyword=Extracellular vesicle
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=9
article-no=
start-page=1559
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250503
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Impacts of Dental Follicle Cells and Periodontal Ligament Cells on the Bone Invasion of Well-Differentiated Oral Squamous Cell Carcinoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Oral squamous cell carcinoma (OSCC) frequently invades the jawbone, leading to diagnostic and therapeutic challenges. While tumor-bone interactions have been studied, the specific roles of dental follicle cells (DFCs) and periodontal ligament cells (PDLCs) in OSCC-associated bone resorption remain unclear. This study aimed to compare the effects of DFCs and PDLCs on OSCC-induced bone invasion and elucidate the underlying mechanisms. Methods: Primary human DFCs and PDLCs were isolated from extracted third molars and characterized by Giemsa and immunofluorescence staining. An in vitro co-culture system and an in vivo xenograft mouse model were established using the HSC-2 OSCC cell line. Tumor invasion and osteoclast activation were assessed by hematoxylin and eosin (HE) and tartrate-resistant acid phosphatase (TRAP) staining. Immunohistochemical analysis was performed to evaluate the expression of receptor activator of NF-kappa B ligand (RANKL) and parathyroid hormone-related peptide (PTHrP). Results: DFCs significantly enhanced OSCC-induced bone resorption by promoting osteoclastogenesis and upregulating RANKL and PTHrP expression. In contrast, PDLCs suppressed RANKL expression and partially modulated PTHrP levels, thereby reducing osteoclast activity. Conclusions: DFCs and PDLCs exert opposite regulatory effects on OSCC-associated bone destruction. These findings underscore the importance of stromal heterogeneity and highlight the therapeutic potential of targeting specific stromal-tumor interactions to mitigate bone-invasive OSCC.
en-copyright=
kn-copyright=
en-aut-name=ChangAnqi
en-aut-sei=Chang
en-aut-mei=Anqi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakabatakeKiyofumi
en-aut-sei=Takabatake
en-aut-mei=Kiyofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=PiaoTianyan
en-aut-sei=Piao
en-aut-mei=Tianyan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ArashimaTakuma
en-aut-sei=Arashima
en-aut-mei=Takuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KawaiHotaka
en-aut-sei=Kawai
en-aut-mei=Hotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=EainHtoo Shwe
en-aut-sei=Eain
en-aut-mei=Htoo Shwe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SoeYamin
en-aut-sei=Soe
en-aut-mei=Yamin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MinZin Zin
en-aut-sei=Min
en-aut-mei=Zin Zin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NakanoKeisuke
en-aut-sei=Nakano
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NagatsukaHitoshi
en-aut-sei=Nagatsuka
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Oral Pathology and Medicine, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Oral Pathology and Medicine, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral Pathology and Medicine, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Oral Pathology and Medicine, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Oral Pathology and Medicine, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Oral Pathology and Medicine, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Oral Pathology and Medicine, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Oral Pathology and Medicine, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Oral Pathology and Medicine, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Oral Pathology and Medicine, Okayama University
kn-affil=
en-keyword=oral squamous cell carcinoma
kn-keyword=oral squamous cell carcinoma
en-keyword=dental follicle cells
kn-keyword=dental follicle cells
en-keyword=periodontal ligament cells
kn-keyword=periodontal ligament cells
en-keyword=bone invasion
kn-keyword=bone invasion
en-keyword=receptor activator of NF-kappa B ligand
kn-keyword=receptor activator of NF-kappa B ligand
en-keyword=parathyroid hormone-related peptide
kn-keyword=parathyroid hormone-related peptide
END
start-ver=1.4
cd-journal=joma
no-vol=74
cd-vols=
no-issue=7
article-no=
start-page=192
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=HIF-PH inhibitors induce pseudohypoxia in T cells and suppress the growth of microsatellite stable colorectal cancer by enhancing antitumor immune responses
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Recent studies have revealed that CD8+ T cells can be activated via genetic upregulation of HIF-1 alpha, thereby augmenting antitumor effector functions. HIF-1 alpha upregulation can be attained by inhibiting HIF-prolyl hydroxylase (HIF-PH) under normoxic conditions, termed pseudohypoxia. This study investigated whether pseudohypoxia induced by HIF-PH inhibitors suppresses Microsatellite stable (MSS) colorectal cancer (CRC) by affecting tumor immune response.
Methods The HIF-PH inhibitors Roxadustat and Vadadustat were utilized in this study. In vitro, we assessed the effects of HIF-PH inhibitors on human and murine colon cancer cell lines (SW480, HT29, Colon26) and murine T cells. In vivo experiments were performed with mice bearing Colon26 tumors to evaluate the effect of these inhibitors on tumor immune responses. Tumor and spleen samples were analyzed using immunohistochemistry, RT-qPCR, and flow cytometry to elucidate potential mechanisms.
Results HIF-PH inhibitors demonstrated antitumor effects in vivo but not in vitro. These inhibitors enhanced the tumor immune response by increasing the infiltration of CD8+ and CD4+ tumor-infiltrating lymphocytes (TILs). HIF-PH inhibitors induced IL-2 production in splenic and intratumoral CD4+ T cells, promoting T cell proliferation, differentiation, and immune responses. Roxadustat synergistically enhanced the efficacy of anti-PD-1 antibody for MSS cancer by increasing the recruitment of TILs and augmenting effector-like CD8+ T cells.
Conclusion Pseudohypoxia induced by HIF-PH inhibitors activates antitumor immune responses, at least in part, through the induction of IL-2 secretion from CD4+ T cells in the spleen and tumor microenvironment, thereby enhancing immune efficacy against MSS CRC.
en-copyright=
kn-copyright=
en-aut-name=ChenYuehua
en-aut-sei=Chen
en-aut-mei=Yuehua
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OharaToshiaki
en-aut-sei=Ohara
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HamadaYusuke
en-aut-sei=Hamada
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=WangYuze
en-aut-sei=Wang
en-aut-mei=Yuze
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TianMiao
en-aut-sei=Tian
en-aut-mei=Miao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NomaKazuhiro
en-aut-sei=Noma
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TazawaHiroshi
en-aut-sei=Tazawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=FujisawaMasayoshi
en-aut-sei=Fujisawa
en-aut-mei=Masayoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YoshimuraTeizo
en-aut-sei=Yoshimura
en-aut-mei=Teizo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MatsukawaAkihiro
en-aut-sei=Matsukawa
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Colorectal cancer
kn-keyword=Colorectal cancer
en-keyword=Microsatellite stable
kn-keyword=Microsatellite stable
en-keyword=Hypoxia-inducible factor
kn-keyword=Hypoxia-inducible factor
en-keyword=Immune checkpoint inhibitors
kn-keyword=Immune checkpoint inhibitors
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=5
article-no=
start-page=e70091
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250507
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Pseudomonas syringae pv. tabaci 6605 Requires Seven Type III Effectors to Infect Nicotiana benthamiana
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Type III effectors (T3Es), virulence factors injected into plant cells via the type III secretion system (T3SS), play essential roles in the infection of host plants. Pseudomonas syringae pv. tabaci 6605 (Pta 6605) is the causal agent of wildfire disease in tobacco and harbours at least 22 T3Es in its genome. However, the specific T3Es required by Pta 6605 to infect Nicotiana benthamiana remain unidentified. In this study, we investigated the T3Es that contribute to Pta 6605 infection of N. benthamiana. We constructed Pta 6605 poly-T3E-deficient mutants (Pta DxE) and inoculated them into N. benthamiana. Flood assay, which mimics natural opening-based entry, showed that mutant strains lacking 14-22 T3Es, namely, Pta D14E-D22E mutants, exhibited reduced disease symptoms. By contrast, infiltration inoculation, which involves direct injection into leaves, showed that the Pta D14E to Pta D20E mutants developed disease symptoms. Notably, the Pta D20E, containing AvrE1 and HopM1, induced weak but observable symptoms upon infiltration inoculation. Conversely, no symptoms were observed in either the flood assay or infiltration inoculation for Pta D21E and Pta D22E. Taken together, these findings indicate that the many T3Es such as AvrPto4/AvrPtoB, HopW1/HopAE1, and HopM1/AvrE1 in Pta 6605 collectively contribute to invasion through natural openings and symptom development in N. benthamiana. This study provides the basis for understanding virulence in the host by identifying the minimum T3E repertoire required by Pta 6605 to infect N. benthamiana.
en-copyright=
kn-copyright=
en-aut-name=KuroeKana
en-aut-sei=Kuroe
en-aut-mei=Kana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishimuraTakafumi
en-aut-sei=Nishimura
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KashiharaSachi
en-aut-sei=Kashihara
en-aut-mei=Sachi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SakataNanami
en-aut-sei=Sakata
en-aut-mei=Nanami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamamotoMikihiro
en-aut-sei=Yamamoto
en-aut-mei=Mikihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NoutoshiYoshiteru
en-aut-sei=Noutoshi
en-aut-mei=Yoshiteru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ToyodaKazuhiro
en-aut-sei=Toyoda
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IchinoseYuki
en-aut-sei=Ichinose
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MatsuiHidenori
en-aut-sei=Matsui
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=9
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=poly T3E mutant
kn-keyword=poly T3E mutant
en-keyword=type III effector
kn-keyword=type III effector
en-keyword=type III secretion system
kn-keyword=type III secretion system
END
start-ver=1.4
cd-journal=joma
no-vol=116
cd-vols=
no-issue=5
article-no=
start-page=1214
end-page=1226
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250227
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=High Antigenicity for Treg Cells Confers Resistance to PD-1 Blockade Therapy via High PD-1 Expression in Treg Cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Regulatory T (Treg) cells have an immunosuppressive function, and programmed death-1 (PD-1)-expressing Treg cells reportedly induce resistance to PD-1 blockade therapies through their reactivation. However, the effects of antigenicity on PD-1 expression in Treg cells and the resistance to PD-1 blockade therapy remain unclear. Here, we show that Treg cells gain high PD-1 expression through an antigen with high antigenicity. Additionally, tumors with high antigenicity for Treg cells were resistant to PD-1 blockade in vivo due to PD-1+ Treg-cell infiltration. Because such PD-1+ Treg cells have high cytotoxic T lymphocyte antigen (CTLA)-4 expression, resistance could be overcome by combination with an anti-CTLA-4 monoclonal antibody (mAb). Patients who responded to combination therapy with anti-PD-1 and anti-CTLA-4 mAbs sequentially after primary resistance to PD-1 blockade monotherapy showed high Treg cell infiltration. We propose that the high antigenicity of Treg cells confers resistance to PD-1 blockade therapy via high PD-1 expression in Treg cells, which can be overcome by combination therapy with an anti-CTLA-4 mAb.
en-copyright=
kn-copyright=
en-aut-name=MatsuuraHiroaki
en-aut-sei=Matsuura
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IshinoTakamasa
en-aut-sei=Ishino
en-aut-mei=Takamasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NinomiyaToshifumi
en-aut-sei=Ninomiya
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NinomiyaKiichiro
en-aut-sei=Ninomiya
en-aut-mei=Kiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TachibanaKota
en-aut-sei=Tachibana
en-aut-mei=Kota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=Honobe-TabuchiAkiko
en-aut-sei=Honobe-Tabuchi
en-aut-mei=Akiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MutoYoshinori
en-aut-sei=Muto
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=InozumeTakashi
en-aut-sei=Inozume
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=UedaYouki
en-aut-sei=Ueda
en-aut-mei=Youki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OhashiKadoaki
en-aut-sei=Ohashi
en-aut-mei=Kadoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MaedaYoshinobu
en-aut-sei=Maeda
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NagasakiJoji
en-aut-sei=Nagasaki
en-aut-mei=Joji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TogashiYosuke
en-aut-sei=Togashi
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Tumor Microenvironment, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Tumor Microenvironment, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Tumor Microenvironment, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Hematology, Oncology and Respiratory Medicine,Okayama University
kn-affil=
affil-num=5
en-affil=Department of Dermatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Dermatology, University of Yamanashi
kn-affil=
affil-num=7
en-affil=Department of Dermatology, University of Yamanashi
kn-affil=
affil-num=8
en-affil=Department of Dermatology, University of Yamanashi
kn-affil=
affil-num=9
en-affil=Department of Tumor Microenvironment, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Hematology, Oncology and Respiratory Medicine,Okayama University
kn-affil=
affil-num=11
en-affil=Department of Hematology, Oncology and Respiratory Medicine,Okayama University
kn-affil=
affil-num=12
en-affil=Department of Tumor Microenvironment, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Tumor Microenvironment, Okayama University
kn-affil=
en-keyword=antigenicity
kn-keyword=antigenicity
en-keyword=cancer immunotherapy
kn-keyword=cancer immunotherapy
en-keyword=CTLA-4
kn-keyword=CTLA-4
en-keyword=PD-1
kn-keyword=PD-1
en-keyword=regulatory T cell
kn-keyword=regulatory T cell
END
start-ver=1.4
cd-journal=joma
no-vol=214
cd-vols=
no-issue=
article-no=
start-page=32
end-page=41
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202505
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Medaka approach to evolutionary social neuroscience
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Previously, the integration of comparative biological and neuroscientific approaches has led to significant advancements in social neuroscience. This review highlights the potential and future directions of evolutionary social neuroscience research utilizing medaka fishes (the family Adrianichthyidae) including Japanese medaka (Oryzias latipes). We focus on medaka social cognitive capabilities and mate choice behavior, particularly emphasizing mate preference using visual cues. Medaka fishes are also advantageous due to their abundant genetic resources, extensive genomic information, and the relative ease of laboratory breeding and genetic manipulation. Here we present some research examples of both the conventional neuroscience approach and evolutionary approach involving medaka fishes and other species. We also discuss the prospects of uncovering the molecular and cellular mechanisms underlying the diversity of visual mate preference among species. Especially, we introduce that the single-cell transcriptome technology, particularly in conjunction with 'Adaptive Circuitry Census', is an innovative tool that bridges comparative biological methods and neuroscientific approaches. Evolutionary social neuroscience research using medaka has the potential to unveil fundamental principles in neuroscience and elucidate the mechanisms responsible for generating diversity in mating strategies.
en-copyright=
kn-copyright=
en-aut-name=AnsaiSatoshi
en-aut-sei=Ansai
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=Hiraki-KajiyamaTowako
en-aut-sei=Hiraki-Kajiyama
en-aut-mei=Towako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UedaRyutaro
en-aut-sei=Ueda
en-aut-mei=Ryutaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SekiTakahide
en-aut-sei=Seki
en-aut-mei=Takahide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YokoiSaori
en-aut-sei=Yokoi
en-aut-mei=Saori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KatsumuraTakafumi
en-aut-sei=Katsumura
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakeuchiHideaki
en-aut-sei=Takeuchi
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Ushimado Marine Institute, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Life Sciences, Tohoku University
kn-affil=
affil-num=3
en-affil=Graduate School of Life Sciences, Tohoku University
kn-affil=
affil-num=4
en-affil=Graduate School of Life Sciences, Tohoku University
kn-affil=
affil-num=5
en-affil=School of Pharmaceutical Sciences, Hokkaido University
kn-affil=
affil-num=6
en-affil=School of Medicine, Kitasato University
kn-affil=
affil-num=7
en-affil=Graduate School of Life Sciences, Tohoku University
kn-affil=
en-keyword=Evolutionary neuroscience
kn-keyword=Evolutionary neuroscience
en-keyword=Comparative neuroscience
kn-keyword=Comparative neuroscience
en-keyword=Medaka bioresource
kn-keyword=Medaka bioresource
en-keyword=Visual mate preference
kn-keyword=Visual mate preference
en-keyword=Sexual selection
kn-keyword=Sexual selection
en-keyword=Genetic manipulation
kn-keyword=Genetic manipulation
END
start-ver=1.4
cd-journal=joma
no-vol=4
cd-vols=
no-issue=2
article-no=
start-page=e70091
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250427
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Olanzapine enabled rechallenge after lorlatinib-induced psychosis: A case report
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Lorlatinib is a third-generation tyrosine kinase inhibitor for anaplastic lymphoma kinase (ALK)-positive non-small cell lung cancer (NSCLC). While it has a high intracranial lesion control rate, it can also cause central nervous system complications, including psychotic symptoms. We present a case of lorlatinib-induced psychosis successfully managed with olanzapine, enabling lorlatinib rechallenge.
Case Presentation: A 32-year-old woman with ALK-positive NSCLC and brain metastases was started on lorlatinib. After 18 months, she developed hallucinations and delusions. Despite treatment with risperidone, her psychotic symptoms persisted, leading to hospitalization. Her symptoms resolved upon lorlatinib discontinuation while risperidone was continued. Given the critical role of lorlatinib in controlling brain metastases, rechallenge was considered. To mitigate concerns regarding drug interactions, risperidone was replaced with olanzapine. Following lorlatinib rechallenge with olanzapine, no recurrence of psychiatric symptoms was observed, allowing continued lorlatinib treatment. Additionally, no progression of lung cancer was noted.
Conclusion: Lorlatinib is an essential drug for controlling brain metastases in ALK-positive NSCLC. However, it can induce psychotic symptoms. When psychiatrists are involved in managing adverse effects during cancer treatment, close collaboration among oncologists, psychiatrists, and patients is essential.
en-copyright=
kn-copyright=
en-aut-name=YokodeAkiyoshi
en-aut-sei=Yokode
en-aut-mei=Akiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujiwaraMasaki
en-aut-sei=Fujiwara
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakamuraYuko
en-aut-sei=Nakamura
en-aut-mei=Yuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OhashiKadoaki
en-aut-sei=Ohashi
en-aut-mei=Kadoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SakamotoShinji
en-aut-sei=Sakamoto
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TakakiManabu
en-aut-sei=Takaki
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Neuropsychiatry, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Neuropsychiatry, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Neuropsychiatry, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Neuropsychiatry, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine,Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=psycho-oncology
kn-keyword=psycho-oncology
en-keyword=lorlatinib
kn-keyword=lorlatinib
en-keyword=lung cancer
kn-keyword=lung cancer
en-keyword=medication-induced psychosis
kn-keyword=medication-induced psychosis
END
start-ver=1.4
cd-journal=joma
no-vol=137
cd-vols=
no-issue=1
article-no=
start-page=4
end-page=6
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=The 2023 Incentive Award of the Okayama Medical Association in General Medical Science (2023 Yuuki Prize)
kn-title=令和5年度岡山医学会賞 総合研究奨励賞(結城賞)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=SumiiYuichi
en-aut-sei=Sumii
en-aut-mei=Yuichi
kn-aut-name=住居優一
kn-aut-sei=住居
kn-aut-mei=優一
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=岡山大学大学院医歯薬学総合研究科 血液・腫瘍・呼吸器内科学
END
start-ver=1.4
cd-journal=joma
no-vol=24
cd-vols=
no-issue=1
article-no=
start-page=116
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250416
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=ADAR1-high tumor-associated macrophages induce drug resistance and are therapeutic targets in colorectal cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Colorectal cancer (CRC) is considered the third most common type of cancer worldwide. Tumor-associated macrophages (TAMs) have been shown to promote drug resistance. Adenosine-to-inosine RNA-editing, as regulated by adenosine deaminase acting on RNA (ADAR), is a process that induces the posttranscriptional modification of critical oncogenes. The aim of this study is to determine whether the signals from cancer cells would induce RNA-editing in macrophages.
Methods The effects of RNA-editing on phenotypes in macrophages were analyzed using clinical samples and in vitro and in vivo models.
Results The intensity of the RNA-editing enzyme ADAR1 (Adenosine deaminase acting on RNA 1) in cancer and mononuclear cells indicated a strong positive correlation between the nucleus and cytoplasm. The ADAR1-positive mononuclear cells were positive for CD68 and CD163, a marker for M2 macrophages. Cancer cells transport pro-inflammatory cytokines or ADAR1 protein directly to macrophages via the exosomes, promoting RNA-editing in AZIN1 (Antizyme Inhibitor 1) and GLI1 (Glioma-Associated Oncogene Homolog 1) and resulting in M2 macrophage polarization. GLI1 RNA-editing in the macrophages induced by cancer cells promotes the secretion of SPP1, which is supplied to the cancer cells. This activates the NF kappa B pathway in cancer cells, promoting oxaliplatin resistance. When the JAK inhibitors were administered, oncogenic RNA-editing in the macrophages was suppressed. This altered the macrophage polarization from M2 to M1 and decreased oxaliplatin resistance in cancer cells.
Conclusions This study revealed that ADAR1-high TAMs are crucial in regulating drug resistance in CRC and that targeting ADAR1 in TAMs could be a promising treatment approach for overcoming drug resistance in CRC.
en-copyright=
kn-copyright=
en-aut-name=UmedaHibiki
en-aut-sei=Umeda
en-aut-mei=Hibiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShigeyasuKunitoshi
en-aut-sei=Shigeyasu
en-aut-mei=Kunitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakahashiToshiaki
en-aut-sei=Takahashi
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MoriwakeKazuya
en-aut-sei=Moriwake
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KondoYoshitaka
en-aut-sei=Kondo
en-aut-mei=Yoshitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YoshidaKazuhiro
en-aut-sei=Yoshida
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakedaSho
en-aut-sei=Takeda
en-aut-mei=Sho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YanoShuya
en-aut-sei=Yano
en-aut-mei=Shuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MatsumiYuki
en-aut-sei=Matsumi
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KishimotoHiroyuki
en-aut-sei=Kishimoto
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=FujiTomokazu
en-aut-sei=Fuji
en-aut-mei=Tomokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=YasuiKazuya
en-aut-sei=Yasui
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=YamamotoHideki
en-aut-sei=Yamamoto
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TakagiKosei
en-aut-sei=Takagi
en-aut-mei=Kosei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KayanoMasashi
en-aut-sei=Kayano
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=MichiueHiroyuki
en-aut-sei=Michiue
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=NakamuraKeiichiro
en-aut-sei=Nakamura
en-aut-mei=Keiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=MoriYoshiko
en-aut-sei=Mori
en-aut-mei=Yoshiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=TeraishiFuminori
en-aut-sei=Teraishi
en-aut-mei=Fuminori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=TazawaHiroshi
en-aut-sei=Tazawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=UmedaYuzo
en-aut-sei=Umeda
en-aut-mei=Yuzo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=KagawaShunsuke
en-aut-sei=Kagawa
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=GoelAjay
en-aut-sei=Goel
en-aut-mei=Ajay
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Neutron Therapy Research Center, Okayama University
kn-affil=
affil-num=17
en-affil=Department of Obstetrics and Gynecology, Okayama University Gradu�ate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=18
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=19
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=20
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=21
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=22
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=23
en-affil=Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute, City of Hope Comprehensive Cancer Center
kn-affil=
affil-num=24
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=RNA-editing
kn-keyword=RNA-editing
en-keyword=Macrophage
kn-keyword=Macrophage
en-keyword=Chemoresistance
kn-keyword=Chemoresistance
en-keyword=Biomarker
kn-keyword=Biomarker
en-keyword=Colorectal cancer
kn-keyword=Colorectal cancer
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=8
article-no=
start-page=e70793
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250418
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Genomic Differences and Distinct TP53 Mutation Site-Linked Chemosensitivity in Early- and Late-Onset Gastric Cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Gastric cancer (GC) in younger patients often exhibits aggressive behavior and a poorer prognosis than that in older patients. Although the clinical differences may stem from oncogenic gene variations, it is unclear whether genetic differences exist between these groups. This study compared the genetic profiles of early- and late-onset GC and evaluated their impact on treatment outcomes.
Methods: We analyzed genetic data from 1284 patients with GC in the Japanese nationwide Center for Cancer Genomics and Advanced Therapeutics (C-CAT) database, comparing early-onset (<= 39 years; n = 143) and late-onset (>= 65 years; n = 1141) groups. The influence of TP53 mutations on the time to treatment failure (TTF) with platinum-based chemotherapy and the sensitivity of cancer cells with different TP53 mutation sites to oxaliplatin were assessed in vitro.
Results: Early- and late-onset GC showed distinct genetic profiles, with fewer neoantigen-associated genetic changes observed in early-onset cases. In particular, TP53 has distinct mutation sites; R175H and R273 mutations are more frequent in early- and late-onset GC, respectively. The R175H mutation showed higher sensitivity to oxaliplatin in vitro, consistent with the longer TTF in early-onset patients (17.3 vs. 7.0 months, p = 0.013) when focusing on the patients with TP53 mutations.
Conclusion: Genomic differences, particularly in TP53 mutation sites, between early- and late-onset GC support the need for age-specific treatment strategies.
en-copyright=
kn-copyright=
en-aut-name=KamioTomohiro
en-aut-sei=Kamio
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KonoYoshiyasu
en-aut-sei=Kono
en-aut-mei=Yoshiyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HirosunaKensuke
en-aut-sei=Hirosuna
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OzatoToshiki
en-aut-sei=Ozato
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamamotoHideki
en-aut-sei=Yamamoto
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HirasawaAkira
en-aut-sei=Hirasawa
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=EnnishiDaisuke
en-aut-sei=Ennishi
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TomidaShuta
en-aut-sei=Tomida
en-aut-mei=Shuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Clinical Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Clinical Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=comprehensive genomic profiling
kn-keyword=comprehensive genomic profiling
en-keyword=early-onset gastric cancer
kn-keyword=early-onset gastric cancer
en-keyword=oxaliplatin
kn-keyword=oxaliplatin
en-keyword=TP53
kn-keyword=TP53
END
start-ver=1.4
cd-journal=joma
no-vol=9
cd-vols=
no-issue=4
article-no=
start-page=e70151
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250416
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Frequency and Characteristics of Gastrointestinal Diseases in Patients With Neurofibromatosis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background and Aim: Patients with neurofibromatosis (NF) frequently experience gastrointestinal symptoms, but the specific characteristics of these lesions are not well understood.
Methods: To investigate the prevalence and nature of gastrointestinal diseases in this population, we analyzed the gastrointestinal lesions identified through endoscopic examinations in patients with NF.
Results: We included 225 patients with NF type 1 (NF1) and 15 with NF type 2 (NF2). None of the NF2 patients underwent endoscopy. Among the NF1 patients, 27 received endoscopies, and 13 (59%) had gastrointestinal lesions. These 13 patients were predominantly male (10 males and three females), with a median age of 53 years (range: 19-76 years). The identified lesions included colorectal polyps (n = 6), gastrointestinal stromal tumors ([GIST], n = 4), subepithelial lesions (n = 3), gastric fundic gland polyps (n = 3), diffuse intestinal ganglioneuromatosis (n = 2), esophageal polyps (n = 2), a Schwann cell hamartoma (n = 1), esophageal cancer (n = 1), and a gastric hyperplastic polyp (n = 1). All GISTs and one case of diffuse intestinal ganglioneuromatosis were surgically resected. Interestingly, six out of 13 patients were asymptomatic. Additionally, all patients who required surgery were 40 years of age or older.
Conclusions: These findings suggest that routine endoscopic examinations, along with imaging techniques like computed tomography and magnetic resonance imaging, could be beneficial for the early detection of gastrointestinal lesions in NF1 patients aged 40 and above.
en-copyright=
kn-copyright=
en-aut-name=HondaManami
en-aut-sei=Honda
en-aut-mei=Manami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IwamuroMasaya
en-aut-sei=Iwamuro
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamasakiYasushi
en-aut-sei=Yamasaki
en-aut-mei=Yasushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KawanoSeiji
en-aut-sei=Kawano
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HiraokaSakiko
en-aut-sei=Hiraoka
en-aut-mei=Sakiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KawaharaYoshiro
en-aut-sei=Kawahara
en-aut-mei=Yoshiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Practical Gastrointestinal Endoscopy,Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=colonoscopy
kn-keyword=colonoscopy
en-keyword=esophagogastroduodenoscopy
kn-keyword=esophagogastroduodenoscopy
en-keyword=gastrointestinal neoplasms
kn-keyword=gastrointestinal neoplasms
en-keyword=gastrointestinal stromal tumor
kn-keyword=gastrointestinal stromal tumor
en-keyword=neurofibromatosis
kn-keyword=neurofibromatosis
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=2
article-no=
start-page=139
end-page=144
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Safe Resection of Esophageal Cancer with a Non-Recurrent Inferior Laryngeal Nerve Associated with an Aberrant Right Subclavian Artery Using Intraoperative Nerve Monitoring
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In thoracic esophageal cancer, lymph node dissection around the recurrent laryngeal nerve is crucial but poses a risk of nerve palsy, affecting postoperative quality of life. In cases with an aberrant right subclavian artery (ARSA), the right recurrent laryngeal nerve is absent, and the non-recurrent inferior laryngeal nerve (NRILN) enters the larynx directly from the vagus nerve in the cervical region. Identifying the course of the NRILN is vital to avoid injury. A case of esophageal cancer with an ARSA, in which the course of the NRILN was preserved using the Nerve Integrity Monitoring (NIM) system during surgery, is described.
en-copyright=
kn-copyright=
en-aut-name=TakedaYasushige
en-aut-sei=Takeda
en-aut-mei=Yasushige
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NomaKazuhiro
en-aut-sei=Noma
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MaedaNaoaki
en-aut-sei=Maeda
en-aut-mei=Naoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MizusawaYohei
en-aut-sei=Mizusawa
en-aut-mei=Yohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MatsumotoHijiri
en-aut-sei=Matsumoto
en-aut-mei=Hijiri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KondoYuhei
en-aut-sei=Kondo
en-aut-mei=Yuhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KunitomoTomoyoshi
en-aut-sei=Kunitomo
en-aut-mei=Tomoyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TanoueYukinori
en-aut-sei=Tanoue
en-aut-mei=Yukinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HashimotoMasashi
en-aut-sei=Hashimoto
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TanabeShunsuke
en-aut-sei=Tanabe
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Gastroenterological Surgery, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Gastroenterological Surgery, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Gastroenterological Surgery, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Gastroenterological Surgery, Okayama University Hospital
kn-affil=
en-keyword=esophageal cancer
kn-keyword=esophageal cancer
en-keyword=intraoperative nerve monitoring
kn-keyword=intraoperative nerve monitoring
en-keyword=aberrant right subclavian artery
kn-keyword=aberrant right subclavian artery
en-keyword=non-recurrent inferior laryngeal nerve
kn-keyword=non-recurrent inferior laryngeal nerve
en-keyword=thoracoscopic esophagectomy
kn-keyword=thoracoscopic esophagectomy
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=2
article-no=
start-page=129
end-page=134
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Case of Retinitis Pigmentosa Diagnosed with Severe Anterior Capsule Contraction after Cataract Surgery
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A 66-year-old woman presented with significant anterior capsule contraction and intraocular lens dislocation in both eyes 4 months after cataract surgery. Postoperative examinations such as fluorescein angiography, Goldmann perimetry, and electroretinography revealed retinitis pigmentosa (RP). Patients with significant anterior capsule contraction after cataract surgery should be closely examined because RP may be a contributing factor.
en-copyright=
kn-copyright=
en-aut-name=TsujiAkihiro
en-aut-sei=Tsuji
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShiodeYusuke
en-aut-sei=Shiode
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KimuraShuhei
en-aut-sei=Kimura
en-aut-mei=Shuhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HosokawaMio
en-aut-sei=Hosokawa
en-aut-mei=Mio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MatobaRyo
en-aut-sei=Matoba
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MoritaTetsuro
en-aut-sei=Morita
en-aut-mei=Tetsuro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakahashiKosuke
en-aut-sei=Takahashi
en-aut-mei=Kosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MorizaneYuki
en-aut-sei=Morizane
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Fukuyama City Hospital, Fukuyama City
kn-affil=
affil-num=8
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=retinitis pigmentosa
kn-keyword=retinitis pigmentosa
en-keyword=intraocular lens
kn-keyword=intraocular lens
en-keyword=anterior capsule contraction
kn-keyword=anterior capsule contraction
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=2
article-no=
start-page=117
end-page=121
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=From a Congenital Defect to Cancer: A Case of Squamous Cell Carcinoma in a Neglected Myelomeningocele
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Neural tube defects are common congenital anomalies, typically presenting early due to visible swelling and/or neurological deficits. Rarely, cystic swellings are neglected until adulthood, with only 14 cases of malignancy developing in an untreated meningomyelocele reported to date. We describe the case details of a 26-year-old Indian woman with this rare complication. Magnetic resonance imaging revealed a low-lying spinal cord with spinal dysraphism, cord herniation, and a cystic lesion. The biopsy confirmed a well-differentiated squamous cell carcinoma. Malignant transformation in an untreated myelomeningocele is rare, with chronic irritation and infection as proposed causes. Early biopsy and treatment are crucial for its management.
en-copyright=
kn-copyright=
en-aut-name=GautamAbhishek
en-aut-sei=Gautam
en-aut-mei=Abhishek
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KenawadekarRahul
en-aut-sei=Kenawadekar
en-aut-mei=Rahul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HattiholiVirupaxi
en-aut-sei=Hattiholi
en-aut-mei=Virupaxi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MastePraful Suresh
en-aut-sei=Maste
en-aut-mei=Praful Suresh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Neurosurgery, Jawaharlal Nehru Medical College, KAHER
kn-affil=
affil-num=2
en-affil=Department of General Surgery, Jawaharlal Nehru Medical College, KAHER
kn-affil=
affil-num=3
en-affil=Department of Radiology, Jawaharlal Nehru Medical College, KAHER
kn-affil=
affil-num=4
en-affil=Department of Neurosurgery, Jawaharlal Nehru Medical College, KAHER
kn-affil=
en-keyword=squamous cell carcinoma
kn-keyword=squamous cell carcinoma
en-keyword=meningomyelocele
kn-keyword=meningomyelocele
en-keyword=occult spinal dysraphism
kn-keyword=occult spinal dysraphism
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=2
article-no=
start-page=81
end-page=92
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Clinical Outcomes of Neoadjuvant Paclitaxel/Cisplatin/Gemcitabine Compared with Gemcitabine/Cisplatin for Muscle-Invasive Bladder Cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We retrospectively evaluated the oncologic outcomes of paclitaxel, cisplatin, and gemcitabine (PCG) with those of gemcitabine and cisplatin (GC) as neoadjuvant chemotherapy in muscle-invasive bladder cancer (MIBC) patients. The primary outcome was efficacy: pathological complete response (pCR), ypT0N0; and pathological objective response (pOR), ypT0N0, ≤ ypT1N0, or ypT0N1. Secondary outcomes included overall survival (OS), recurrence-free survival (RFS), predictive factors for pOR, OS, and RFS, and hematologic adverse events (AEs). Among 113 patients treated (PCG, n=28; GC, n=85), similar pOR and pCR rates were achieved by the groups (pOR: PCG, 57.1% vs. GC, 49. 4%; p=0.52; pCR: PCG, 39.3% vs. GC, 29.4%; p=0.36). No significant differences were observed in OS (p=1.0) or RFS (p=0.20). Multivariate logistic regression analysis showed that hydronephrosis (odds ratio [OR] 0.32, 95%CI: 0.11-0.92) and clinical node-positive status (cN+) (OR 0.22, 95%CI: 0.050-0.99) were significantly associated with a decreased probability of pOR. On multivariate Cox regression analyses, pOR achievement was associated with improved OS (hazard ratio [HR] 0.23, 95%CI: 0.10-0.56) and RFS (HR 0.30, 95%CI: 0.13-0.67). There were no significant between-group differences in the incidence of grade ≥ 3 hematologic AEs or dose-reduction required, but the PCG group had a higher incidence of grade 4 neutropenia.
en-copyright=
kn-copyright=
en-aut-name=KawadaTatsushi
en-aut-sei=Kawada
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KobayashiYasuyuki
en-aut-sei=Kobayashi
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TsugawaTakuji
en-aut-sei=Tsugawa
en-aut-mei=Takuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TsuboiKazuma
en-aut-sei=Tsuboi
en-aut-mei=Kazuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KatayamaSatoshi
en-aut-sei=Katayama
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IwataTakehiro
en-aut-sei=Iwata
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=BekkuKensuke
en-aut-sei=Bekku
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KobayashiTomoko
en-aut-sei=Kobayashi
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=EdamuraKohei
en-aut-sei=Edamura
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=EbaraShin
en-aut-sei=Ebara
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Urology, Hiroshima City Hiroshima Citizens Hospital
kn-affil=
affil-num=5
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Urology, Hiroshima City Hiroshima Citizens Hospital
kn-affil=
affil-num=11
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=urothelial carcinoma
kn-keyword=urothelial carcinoma
en-keyword=paclitaxel
kn-keyword=paclitaxel
en-keyword=cisplatin
kn-keyword=cisplatin
en-keyword=gemcitabine
kn-keyword=gemcitabine
en-keyword=neoadjuvant
kn-keyword=neoadjuvant
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=2
article-no=
start-page=65
end-page=73
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Association between the Pretreatment Body Mass Index and Anamorelin’s Efficacy in Patients with Cancer Cachexia: A Retrospective Cohort Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Anamorelin (ANAM) is used to treat cancer-associated cachexia, a syndrome involving muscle loss and anorexia. The timing of the initiation of ANAM treatment is crucial to its efficacy. Although the body mass index (BMI) is a diagnostic criterion for cancer cachexia, no studies have explored its association with ANAM efficacy. We conducted a single-center, retrospective cohort study to investigate the association between the pre-treatment BMI and ANAM efficacy in patients with cancer-associated cachexia (n=47). The ANAM treatment was considered effective if the patient’s appetite improved within 30 days of treatment initiation. We calculated a BMI cutoff value (19.5 kg/m2) and used it to divide the patients into high- and low-BMI groups. Their background, clinical laboratory values, cancer types, and treatment lines were investigated. Twenty (42.6%) had a high BMI (≥ 19.5 kg/m2) and 27 (57.4%) had a low BMI (< 19.5 kg/m2). High BMI was significantly associated with ANAM effectiveness (odds ratio 7.86, 95% confidence interval 1.99-31.00, p=0.003). Together these results indicate that it is beneficial to initiate ANAM treatment before a patient’s BMI drops below 19.5 kg/m2. Our findings will help advance cancer cachexia treatment and serve as a reference for clinicians to predict ANAM’s efficacy.
en-copyright=
kn-copyright=
en-aut-name=MakiMasatoshi
en-aut-sei=Maki
en-aut-mei=Masatoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakadaRyo
en-aut-sei=Takada
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IshigoTomoyuki
en-aut-sei=Ishigo
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FujiwaraMiki
en-aut-sei=Fujiwara
en-aut-mei=Miki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakahashiYoko
en-aut-sei=Takahashi
en-aut-mei=Yoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OtsukaShinya
en-aut-sei=Otsuka
en-aut-mei=Shinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TamuraKoji
en-aut-sei=Tamura
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HamaokaTerutaka
en-aut-sei=Hamaoka
en-aut-mei=Terutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Hospital Pharmacy, NHO Fukuyama Medical Center
kn-affil=
affil-num=2
en-affil=Department of Hospital Pharmacy, NHO Fukuyama Medical Center
kn-affil=
affil-num=3
en-affil=Department of Pharmacy, Sapporo Medical University Hospital
kn-affil=
affil-num=4
en-affil=Department of Hospital Pharmacy, NHO Fukuyama Medical Center
kn-affil=
affil-num=5
en-affil=Department of Hospital Pharmacy, NHO Fukuyama Medical Center
kn-affil=
affil-num=6
en-affil=Department of Surgery, NHO Fukuyama Medical Center
kn-affil=
affil-num=7
en-affil=Department of Hospital Pharmacy, NHO Fukuyama Medical Center
kn-affil=
affil-num=8
en-affil=Department of Hospital Pharmacy, NHO Fukuyama Medical Center
kn-affil=
en-keyword=anamorelin
kn-keyword=anamorelin
en-keyword=cancer-associated cachexia
kn-keyword=cancer-associated cachexia
en-keyword=body mass index
kn-keyword=body mass index
en-keyword=albumin
kn-keyword=albumin
en-keyword=efficacy rate
kn-keyword=efficacy rate
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250410
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Enterobacterial common antigen repeat-unit flippase WzxE is required for Escherichia coli growth under acidic conditions, low temperature, and high osmotic stress conditions
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Colanic acid and enterobacterial common antigen (ECA) are cell-surface polysaccharides that are produced by many Escherichia coli isolates. Colanic acid is induced under acidic, low temperature, and high-salt conditions and is important for E. coli resistance to these stresses; however, the role of ECA in these stresses is less clear. Here, we observed that knockout of flippase wzxE, which translocates lipid-linked ECA repeat units from the cytoplasmic side of the inner membrane to the periplasmic side, resulted in the sensitivity of E. coli BW25113 to acidic conditions. The wzxE-knockout mutant showed reduced growth potential and viable counts in vegetable extracts with acidic environments, including cherry tomatoes, carrots, celery, lettuce, and spinach. A double-knockout strain of wzxE and wecF (glycosyltransferase that adds the third-and-final sugar of the lipid-linked ECA repeat unit) was not sensitive to acidic conditions, with similar results obtained for a double-knockout strain of wzxE and wcaJ (glycosyltransferase that initiates colanic acid lipid-linked repeat-unit biosynthesis). The wzxE-knockout mutant was sensitive to low temperatures or high-salt conditions, which induced colanic acid synthesis, and these sensitivities were abolished by the additional knockout of wcaJ. These results suggest that lipid-linked ECA repeat units confer E. coli susceptibility to acidic, low temperatures, and high-salt conditions in a colanic acid-dependent manner and that wzxE suppresses this negative effect.
en-copyright=
kn-copyright=
en-aut-name=YamaguchiSaki
en-aut-sei=Yamaguchi
en-aut-mei=Saki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IshikawaKazuya
en-aut-sei=Ishikawa
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FurutaKazuyuki
en-aut-sei=Furuta
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KaitoChikara
en-aut-sei=Kaito
en-aut-mei=Chikara
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=wzxE flippase
kn-keyword=wzxE flippase
en-keyword=enterobacterial common antigen
kn-keyword=enterobacterial common antigen
en-keyword=low pH
kn-keyword=low pH
en-keyword=low temperature
kn-keyword=low temperature
en-keyword=hyperosmotic stress
kn-keyword=hyperosmotic stress
END
start-ver=1.4
cd-journal=joma
no-vol=75
cd-vols=
no-issue=2
article-no=
start-page=100016
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202507
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Changes in adrenoceptor expression level contribute to the cellular plasticity of glioblastoma cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Glioblastoma cells are known to regulate their cellular plasticity in response to their surrounding microenvironment, but it is not fully understood what factors contribute to the cells' changing plasticity. Here, we found that glioblastoma cells alter the expression level of adrenoreceptors depending on their differentiation stage. Catecholamines are abundant in the central nervous system, and we found that noradrenaline, in particular, enhances the stemness of glioblastoma cells and promotes the dedifferentiation potential of already differentiated glioblastoma cells. Antagonist and RNAi experiments revealed that signaling through alpha 1D-adrenoreceptor is important for noradrenaline action on glioblastoma cells. We also found that high alpha 1Dadrenoreceptor expression was associated with poor prognosis in patients with gliomas. These data suggest that glioblastoma cells increase the expression level of their own adrenoreceptors to alter the surrounding tumor microenvironment favorably for survival. We believe that our findings will contribute to the development of new therapeutic strategies for glioblastoma.
en-copyright=
kn-copyright=
en-aut-name=AsakaYutaro
en-aut-sei=Asaka
en-aut-mei=Yutaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MasumotoToshio
en-aut-sei=Masumoto
en-aut-mei=Toshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UnedaAtsuhito
en-aut-sei=Uneda
en-aut-mei=Atsuhito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ChinVanessa D.
en-aut-sei=Chin
en-aut-mei=Vanessa D.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OtaniYusuke
en-aut-sei=Otani
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=PenaTirso
en-aut-sei=Pena
en-aut-mei=Tirso
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KatayamaHaruyoshi
en-aut-sei=Katayama
en-aut-mei=Haruyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ItanoTakuto
en-aut-sei=Itano
en-aut-mei=Takuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=AndoTeruhiko
en-aut-sei=Ando
en-aut-mei=Teruhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HuangRongsheng
en-aut-sei=Huang
en-aut-mei=Rongsheng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=FujimuraAtsushi
en-aut-sei=Fujimura
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Division of Health Administration and Promotion, Department of Social Medicine, Faculty of Medicine, Tottori University
kn-affil=
affil-num=3
en-affil=Department of Neurosurgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=UMass Chan Medical School, UMass Memorial Medical Center
kn-affil=
affil-num=5
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School
kn-affil=
affil-num=6
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Trauma Orthopedics, The Second Hospital of Dalian Medical University
kn-affil=
affil-num=11
en-affil=Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=Adrenoceptors
kn-keyword=Adrenoceptors
en-keyword=Glioma stem-like cells
kn-keyword=Glioma stem-like cells
en-keyword=Differentiated glioma cells
kn-keyword=Differentiated glioma cells
en-keyword=Noradrenaline
kn-keyword=Noradrenaline
en-keyword=Cellular plasticity
kn-keyword=Cellular plasticity
END
start-ver=1.4
cd-journal=joma
no-vol=213
cd-vols=
no-issue=
article-no=
start-page=128
end-page=137
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The potential mechanism maintaining transactive response DNA binding protein 43 kDa in the mouse stroke model
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The disruption of transactive response DNA binding protein 43 kDa (TDP-43) shuttling leads to the depletion of nuclear localization and the cytoplasmic accumulation of TDP-43. We aimed to evaluate the mechanism underlying the behavior of TDP-43 in ischemic stroke. Adult male C57BL/6 J mice were subjected to 30 or 60 min of transient middle cerebral artery occlusion (tMCAO), and examined at 1, 6, and 24 h post reperfusion. Immunostaining was used to evaluate the expression of TDP-43, G3BP1, HDAC6, and RAD23B. The total and cytoplasmic number of TDP-43–positive cells increased compared with sham operation group and peaked at 6 h post reperfusion after tMCAO. The elevated expression of G3BP1 protein peaked at 6 h after reperfusion and decreased at 24 h after reperfusion in ischemic mice brains. We also observed an increase of expression level of HDAC6 and the number of RAD23B-positive cells increased after tMCAO. RAD23B was colocalized with TDP-43 24 h after tMCAO. We proposed that the formation of stress granules might be involved in the mislocalization of TDP-43, based on an evaluation of G3BP1 and HDAC6. Subsequently, RAD23B, may also contribute to the downstream degradation of mislocalized TDP-43 in mice tMCAO model.
en-copyright=
kn-copyright=
en-aut-name=BianYuting
en-aut-sei=Bian
en-aut-mei=Yuting
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FukuiYusuke
en-aut-sei=Fukui
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=Ota-ElliottRicardo Satoshi
en-aut-sei=Ota-Elliott
en-aut-mei=Ricardo Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HuXinran
en-aut-sei=Hu
en-aut-mei=Xinran
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SunHongming
en-aut-sei=Sun
en-aut-mei=Hongming
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=BianZhihong
en-aut-sei=Bian
en-aut-mei=Zhihong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ZhaiYun
en-aut-sei=Zhai
en-aut-mei=Yun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YuHaibo
en-aut-sei=Yu
en-aut-mei=Haibo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HuXiao
en-aut-sei=Hu
en-aut-mei=Xiao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=AnHangping
en-aut-sei=An
en-aut-mei=Hangping
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=LiuHongzhi
en-aut-sei=Liu
en-aut-mei=Hongzhi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MoriharaRyuta
en-aut-sei=Morihara
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=YamashitaToru
en-aut-sei=Yamashita
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=14
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=TDP-43
kn-keyword=TDP-43
en-keyword=ALS
kn-keyword=ALS
en-keyword=RNA-binding protein
kn-keyword=RNA-binding protein
en-keyword=Mislocalization
kn-keyword=Mislocalization
en-keyword=G3BP1
kn-keyword=G3BP1
en-keyword=HDAC6
kn-keyword=HDAC6
en-keyword=RAD23B
kn-keyword=RAD23B
en-keyword=tMCAO
kn-keyword=tMCAO
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=4
article-no=
start-page=e82348
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250416
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Bilateral Scleritis and Neutrophilic Dermatosis With Cytogenetic Chromosomal Aberrancy Related to Pyoderma Gangrenosum: A Case Report of a 20-Year Follow-Up
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Pyoderma gangrenosum is a non-infectious autoimmune disease with skin plaques and ulcers in the entity of neutrophilic dermatosis and may have a background of myelodysplastic syndromes. This study reported a 20-year follow-up of a patient with pyoderma gangrenosum and scleritis who showed chromosomal aberrancy from the initial phase and later in the course developed thrombocythemia. A 51-year-old man presented with widespread indurated erythematous plaques with scaling and pustules on the forehead, bilateral eyelids, and nasal bridge, in addition to nodular scleritis in the left eye and ulcer formation of the plaques in the lower legs. Skin biopsy revealed massive dermal infiltration mainly with neutrophils in the absence of neutrophilic vasculitis. Suspected of myelodysplastic syndromes, bone marrow biopsy was normal, while chromosomal aberrancy, 46, XY, del (20) (q11q13.3), was detected. In the diagnosis of neutrophilic dermatosis, probably of pyoderma gangrenosum, he began to have oral prednisolone 20 mg daily and colchicine 1 mg daily, leading to the subsidence of skin lesions. Four months later, he developed nodular scleritis in the right eye and began to use topical 0.1% betamethasone in both eyes. He was stable with only prednisolone 12.5 mg daily until the age of 55.5 years, when he showed an increase of serum lactate dehydrogenase. The bone marrow aspirate disclosed neither blast cell increase nor atypical cells. The same chromosomal aberrancy was repeatedly detected. One year later, he developed breathing difficulty and underwent tracheostomy. Laryngeal lesion biopsy disclosed squamous cell papilloma with human papillomavirus-6. At 60 years old, he showed marginal corneal infiltration in the left eye, and at 61 years old, hypopyon in the right eye. Platelets tended to increase up to 1000 × 103/µL, and bone marrow examinations were recommended but refused by the patient. At the latest follow-up at 71 years old, he was ambulatory in health and stable with a tracheostomy cannula. In conclusion, pyoderma gangrenosum with scleritis occurred in an undetermined hematological malignancy with chromosomal aberrancy.
en-copyright=
kn-copyright=
en-aut-name=MatsuoToshihiko
en-aut-sei=Matsuo
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AsadaNoboru
en-aut-sei=Asada
en-aut-mei=Noboru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ObikaMikako
en-aut-sei=Obika
en-aut-mei=Mikako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OmichiRyotaro
en-aut-sei=Omichi
en-aut-mei=Ryotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IwatsukiKeiji
en-aut-sei=Iwatsuki
en-aut-mei=Keiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Ophthalmology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Hematology and Oncology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of General Internal Medicine, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Dermatology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=corneal infiltration
kn-keyword=corneal infiltration
en-keyword=hypopyon
kn-keyword=hypopyon
en-keyword=myelodysplastic syndromes
kn-keyword=myelodysplastic syndromes
en-keyword=neutrophilic dermatosis
kn-keyword=neutrophilic dermatosis
en-keyword=peripheral keratitis
kn-keyword=peripheral keratitis
en-keyword=pyoderma gangrenosum
kn-keyword=pyoderma gangrenosum
en-keyword=scleritis
kn-keyword=scleritis
en-keyword=sweet syndrome
kn-keyword=sweet syndrome
END
start-ver=1.4
cd-journal=joma
no-vol=50
cd-vols=
no-issue=1
article-no=
start-page=100
end-page=107
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Investigating the Effects of Reconstruction Conditions on Image Quality and Radiomic Analysis in Photon-counting Computed Tomography
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction:Photon-counting computed tomography (CT) is equipped with an adaptive iterative reconstruction method called quantum iterative reconstruction (QIR), which allows the intensity to be changed during image reconstruction. It is known that the reconstruction conditions of CT images affect the analysis results when performing radiomic analysis. The aim of this study is to investigate the effect of QIR intensity on image quality and radiomic analysis of renal cell carcinoma (RCC).
Materials and Methods:The QIR intensities were selected as off, 2 and 4. The image quality evaluation items considered were task-based transfer function (TTF), noise power spectrum (NPS), and low-contrast object specific contrast-to-noise ratio (CNRLO). The influence on radiomic analysis was assessed using the discrimination accuracy of clear cell RCC.
Results:For image quality evaluation, TTF and NPS values were lower and CNRLO values were higher with increasing QIR intensity; for radiomic analysis, sensitivity, specificity, and accuracy were higher with increasing QIR intensity. Principal component analysis and receiver operating characteristics analysis also showed higher values with increasing QIR intensity.
Conclusion:It was confirmed that the intensity of the QIR intensity affects both the image quality and the radiomic analysis.
en-copyright=
kn-copyright=
en-aut-name=OhataMiyu
en-aut-sei=Ohata
en-aut-mei=Miyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FukuiRyohei
en-aut-sei=Fukui
en-aut-mei=Ryohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MorimitsuYusuke
en-aut-sei=Morimitsu
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KobayashiDaichi
en-aut-sei=Kobayashi
en-aut-mei=Daichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamauchiTakatsugu
en-aut-sei=Yamauchi
en-aut-mei=Takatsugu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AkagiNoriaki
en-aut-sei=Akagi
en-aut-mei=Noriaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HondaMitsugi
en-aut-sei=Honda
en-aut-mei=Mitsugi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HayashiAiko
en-aut-sei=Hayashi
en-aut-mei=Aiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HasegawaKoshi
en-aut-sei=Hasegawa
en-aut-mei=Koshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KidaKatsuhiro
en-aut-sei=Kida
en-aut-mei=Katsuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=GotoSachiko
en-aut-sei=Goto
en-aut-mei=Sachiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=HirakiTakao
en-aut-sei=Hiraki
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Radiological Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Division of Radiological Technology, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Division of Radiological Technology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Division of Radiological Technology, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Division of Radiological Technology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Division of Radiological Technology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Radiology, Hiroshima University Hospital
kn-affil=
affil-num=9
en-affil=Department of Radiological Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical, Okayama University
kn-affil=
en-keyword=Image quality
kn-keyword=Image quality
en-keyword=photon-counting computed tomography
kn-keyword=photon-counting computed tomography
en-keyword=quantum iterative reconstruction
kn-keyword=quantum iterative reconstruction
en-keyword=radiomics
kn-keyword=radiomics
en-keyword=renal cell carcinoma
kn-keyword=renal cell carcinoma
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=10462
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250326
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Gingipain regulates isoform switches of PD-L1 in macrophages infected with Porphyromonas gingivalis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Periodontal pathogen Porphyromonas gingivalis (P. gingivalis) is believed to possess immune evasion capabilities, but it remains unclear whether this immune evasion is related to host gene alternative splicing (AS). In this study, RNA-sequencing revealed significant changes in both AS landscape and transcriptomic profile of macrophages following P. gingivalis infection with/without knockout of gingipain (a unique toxic protease of P. gingivalis). P. gingivalis infection increased the PD-L1 transcripts expression and selectively upregulated a specific coding isoform that more effectively binds to PD-1 on T cells, thereby inhibiting immune function. Biological experiments also detected AS switch of PD-L1 in P. gingivalis-infected or gingipain-treated macrophages. AlphaFold 3 predictions indicated that the protein docking compatibility between PD-1 and P. gingivalis-upregulated PD-L1 isoform was over 80% higher than another coding isoform. These findings suggest that P. gingivalis employs gingipain to modulate the AS of PD-L1, facilitating immune evasion.
en-copyright=
kn-copyright=
en-aut-name=ZhengYilin
en-aut-sei=Zheng
en-aut-mei=Yilin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WangZiyi
en-aut-sei=Wang
en-aut-mei=Ziyi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WengYao
en-aut-sei=Weng
en-aut-mei=Yao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SitosariHeriati
en-aut-sei=Sitosari
en-aut-mei=Heriati
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HeYuhan
en-aut-sei=He
en-aut-mei=Yuhan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ZhangXiu
en-aut-sei=Zhang
en-aut-mei=Xiu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ShiotsuNoriko
en-aut-sei=Shiotsu
en-aut-mei=Noriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=FukuharaYoko
en-aut-sei=Fukuhara
en-aut-mei=Yoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IkegameMika
en-aut-sei=Ikegame
en-aut-mei=Mika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OkamuraHirohiko
en-aut-sei=Okamura
en-aut-mei=Hirohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Hospital, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Hospital, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Hospital, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Hospital, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Hospital, Okayama University
kn-affil=
affil-num=7
en-affil=Comprehensive Dental Clinic, Okayama University Hospital, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Hospital, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Hospital, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Hospital, Okayama University
kn-affil=
en-keyword=Porphyromonas gingivalis
kn-keyword=Porphyromonas gingivalis
en-keyword=Gingipain
kn-keyword=Gingipain
en-keyword=Macrophage
kn-keyword=Macrophage
en-keyword=Alternative splicing
kn-keyword=Alternative splicing
en-keyword=PD-L1
kn-keyword=PD-L1
en-keyword=Immune evasion
kn-keyword=Immune evasion
END
start-ver=1.4
cd-journal=joma
no-vol=96
cd-vols=
no-issue=3
article-no=
start-page=033907
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Development of density measurement at high pressure and high temperature using the x-ray absorption method combined with laser-heated diamond anvil cell
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The densities of liquid materials at high pressures and high temperatures are important information to understand the elastic behavior of liquids at extreme conditions, which is closely related to the formation and evolution processes of the Earth and planetary interiors. The x-ray absorption method is an effective method to measure the density of non-crystalline materials at high pressures. However, the temperature condition of the x-ray absorption method using a diamond anvil cell (DAC) has been limited to 720 K to date. To significantly expand the measurable temperature condition of this method, in this study, we developed a density measurement technique using the x-ray absorption method in combination with a laser-heated DAC. The density of solid Ni was measured up to 26 GPa and 1800 K using the x-ray absorption method and evaluated by comparison with the density obtained from the x-ray diffraction. The density of solid Ni with a thickness >17 μm was determined with an accuracy of 0.01%–2.2% (0.001–0.20 g/cm3) and a precision of 0.8%–1.8% (0.07–0.16 g/cm3) in the x-ray absorption method. The density of liquid Ni was also determined to be 8.70 ± 0.15–8.98 ± 0.38 g/cm3 at 16–23 GPa and 2230–2480 K. Consequently, the temperature limit of the x-ray absorption method can be expanded from 720 to 2480 K by combining it with a laser-heated DAC in this study.
en-copyright=
kn-copyright=
en-aut-name=TerasakiHidenori
en-aut-sei=Terasaki
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KaminaHiroyuki
en-aut-sei=Kamina
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KawaguchiSaori I.
en-aut-sei=Kawaguchi
en-aut-mei=Saori I.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KondoTadashi
en-aut-sei=Kondo
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MoriokaKo
en-aut-sei=Morioka
en-aut-mei=Ko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TsuruokaRyo
en-aut-sei=Tsuruoka
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SakuraiMoe
en-aut-sei=Sakurai
en-aut-mei=Moe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YonedaAkira
en-aut-sei=Yoneda
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KamadaSeiji
en-aut-sei=Kamada
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HiraoNaohisa
en-aut-sei=Hirao
en-aut-mei=Naohisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Earth Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Earth Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Japan Synchrotron Radiation Research Institute, SPring-8
kn-affil=
affil-num=4
en-affil=Department of Earth and Space Science, Osaka University
kn-affil=
affil-num=5
en-affil=Department of Earth Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Earth and Space Science, Osaka University
kn-affil=
affil-num=7
en-affil=Department of Earth Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Earth and Space Science, Osaka University
kn-affil=
affil-num=9
en-affil=AD Science Incorporation
kn-affil=
affil-num=10
en-affil=Japan Synchrotron Radiation Research Institute, SPring-8
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=6
article-no=
start-page=2485
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250311
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Vesicular Glutamate Transporter 3 Is Involved in Glutamatergic Signalling in Podocytes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Glomerular podocytes act as a part of the filtration barrier in the kidney. The activity of this filter is regulated by ionotropic and metabotropic glutamate receptors. Adjacent podocytes can potentially release glutamate into the intercellular space; however, little is known about how podocytes release glutamate. Here, we demonstrated vesicular glutamate transporter 3 (VGLUT3)-dependent glutamate release from podocytes. Immunofluorescence analysis revealed that rat glomerular podocytes and an immortal mouse podocyte cell line (MPC) express VGLUT1 and VGLUT3. Consistent with this finding, quantitative RT-PCR revealed the expression of VGLUT1 and VGLUT3 mRNA in undifferentiated and differentiated MPCs. In addition, the exocytotic proteins vesicle-associated membrane protein 2, synapsin 1, and synaptophysin 1 were present in punctate patterns and colocalized with VGLUT3 in MPCs. Interestingly, approximately 30% of VGLUT3 colocalized with VGLUT1. By immunoelectron microscopy, VGLUT3 was often observed around clear vesicle-like structures in differentiated MPCs. Differentiated MPCs released glutamate following depolarization with high potassium levels and after stimulation with the muscarinic agonist pilocarpine. The depletion of VGLUT3 in MPCs by RNA interference reduced depolarization-dependent glutamate release. These results strongly suggest that VGLUT3 is involved in glutamatergic signalling in podocytes and may be a new drug target for various kidney diseases.
en-copyright=
kn-copyright=
en-aut-name=NishiiNaoko
en-aut-sei=Nishii
en-aut-mei=Naoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawaiTomoko
en-aut-sei=Kawai
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YasuokaHiroki
en-aut-sei=Yasuoka
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AbeTadashi
en-aut-sei=Abe
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TatsumiNanami
en-aut-sei=Tatsumi
en-aut-mei=Nanami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HaradaYuika
en-aut-sei=Harada
en-aut-mei=Yuika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MiyajiTakaaki
en-aut-sei=Miyaji
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=LiShunai
en-aut-sei=Li
en-aut-mei=Shunai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TsukanoMoemi
en-aut-sei=Tsukano
en-aut-mei=Moemi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=WatanabeMasami
en-aut-sei=Watanabe
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OgawaDaisuke
en-aut-sei=Ogawa
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TakeiKohji
en-aut-sei=Takei
en-aut-mei=Kohji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=YamadaHiroshi
en-aut-sei=Yamada
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cell Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Genomics and Proteomics, Advanced Science Research Center, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Genomics and Proteomics, Advanced Science Research Center, Okayama University
kn-affil=
affil-num=8
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Central Research Laboratory, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=VGLUT3
kn-keyword=VGLUT3
en-keyword=glutamate
kn-keyword=glutamate
en-keyword=podocyte
kn-keyword=podocyte
en-keyword=glutamatergic transmission
kn-keyword=glutamatergic transmission
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=6
article-no=
start-page=2713
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250318
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Involvement of a Novel Variant of FGFR1 Detected in an Adult Patient with Kallmann Syndrome in Regulation of Gonadal Steroidogenesis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Fibroblast growth factor receptor 1 (FGFR1), also known as KAL2, is a tyrosine kinase receptor, and variants of FGFR1 have been detected in patients with Kallmann syndrome (KS), which is a congenital developmental disorder characterized by central hypogonadism and anosmia. Herein, we report an adult case of KS with a novel variant of FGFR1. A middle-aged male was referred for a compression fracture of a lumbar vertebra. It was shown that he had severe osteoporosis, anosmia, gynecomastia, and a past history of operations for cryptorchidism. Endocrine workup using pituitary and gonadal stimulation tests revealed the presence of both primary and central hypogonadism. Genetic testing revealed a novel variant of FGFR1 (c.2197_2199dup, p.Met733dup). To identify the pathogenicity of the novel variant and the clinical significance for the gonads, we investigated the effects of the FGFR1 variant on the downstream signaling of FGFR1 and gonadal steroidogenesis by using human steroidogenic granulosa cells. It was revealed that the transfection of the variant gene significantly impaired FGFR1 signaling, detected through the downregulation of SPRY2, compared with that of the case of the forced expression of wild-type FGFR1, and that the existence of the variant gene apparently altered the expression of key steroidogenic factors, including StAR and aromatase, in the gonad. The results suggested that the novel variant of FGFR1 detected in the patient with KS was linked to the impairment of FGFR1 signaling, as well as the alteration of gonadal steroidogenesis, leading to the pathogenesis of latent primary hypogonadism.
en-copyright=
kn-copyright=
en-aut-name=SoejimaYoshiaki
en-aut-sei=Soejima
en-aut-mei=Yoshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OtsukaYuki
en-aut-sei=Otsuka
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KawaguchiMarina
en-aut-sei=Kawaguchi
en-aut-mei=Marina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OguniKohei
en-aut-sei=Oguni
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamamotoKoichiro
en-aut-sei=Yamamoto
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakanoYasuhiro
en-aut-sei=Nakano
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YasudaMiho
en-aut-sei=Yasuda
en-aut-mei=Miho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TokumasuKazuki
en-aut-sei=Tokumasu
en-aut-mei=Kazuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=UedaKeigo
en-aut-sei=Ueda
en-aut-mei=Keigo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HasegawaKosei
en-aut-sei=Hasegawa
en-aut-mei=Kosei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=IwataNahoko
en-aut-sei=Iwata
en-aut-mei=Nahoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=OtsukaFumio
en-aut-sei=Otsuka
en-aut-mei=Fumio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=fibroblast growth factor receptor 1 (FGFR1)
kn-keyword=fibroblast growth factor receptor 1 (FGFR1)
en-keyword=gynecomastia
kn-keyword=gynecomastia
en-keyword=Kallmann syndrome (KS)
kn-keyword=Kallmann syndrome (KS)
en-keyword=osteoporosis and steroidogenesis
kn-keyword=osteoporosis and steroidogenesis
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=3
article-no=
start-page=e81476
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250330
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Natural Course From Primary Intraocular Lymphoma to Brain Lymphoma in Four Years According to Patient's Choice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Primary intraocular lymphoma or vitreoretinal lymphoma is a rare entity of diffuse large B-cell lymphoma that presents vitreous opacity and retinal and choroidal infiltration. Primary central nervous system lymphoma would occur previously, later, or concurrently with respect to primary intraocular lymphoma. This study reported a 72-year-old patient with a pathological diagnosis of primary intraocular lymphoma who developed central nervous system lymphoma four years later in the course of no treatment. She presented with a four-year history of blurred vision in both eyes after cataract surgeries. Three weeks previously, she underwent a vitrectomy in the left eye at a clinic, and measurements of the vitreous fluid showed a high level of interleukin-10 at 5739 pg/mL, in contrast with interleukin-6 at 142 pg/mL. Cytology of the vitreous fluid was class III on the Papanicolaou classification. Head magnetic resonance imaging detected nothing abnormal. She underwent vitrectomy in the right eye as a diagnostic procedure to show large cells in the vitreous which were positive for CD20 and Ki-67 and negative for CD3, leading to a pathological diagnosis of large B-cell lymphoma. Prophylactic chemotherapy with high-dose methotrexate was recommended as a therapeutic option, but she chose observation since she did not have any eye or systemic symptoms. In the follow-up every three months by an oncologist and an ophthalmologist, she did not have any symptoms, and serum levels of soluble interleukin-2 receptor were in the normal range at each visit. She was well for four years until the age of 76 years when she fell and hit her head, and an emergency head computed tomography scan showed a mass in the left occipital lobe. Magnetic resonance imaging demonstrated a well-defined circular mass in the left occipital lobe with a hyperintense signal in the T2-weighted fluid-attenuated inversion recovery (FLAIR) image and diffusion-weighted image. Fluorodeoxyglucose positron emission tomography showed no abnormal uptake systemically, except for the left occipital lesion. She underwent a brain biopsy by craniotomy to pathologically prove diffuse large B-cell lymphoma. She was recommended to receive first-line chemotherapy as the standard treatment but chose observation with no treatment and died of brain lymphoma nine months later. This case happened to illustrate a natural course of primary intraocular lymphoma which proceeded to central nervous system lymphoma four years later.
en-copyright=
kn-copyright=
en-aut-name=MatsuoToshihiko
en-aut-sei=Matsuo
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IshidaJoji
en-aut-sei=Ishida
en-aut-mei=Joji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KondoShotaro
en-aut-sei=Kondo
en-aut-mei=Shotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MatsuokaKen-ichi
en-aut-sei=Matsuoka
en-aut-mei=Ken-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Ophthalmology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Internal Medicine, Kurashiki Municipal Hospital
kn-affil=
affil-num=5
en-affil=Department of Hematology and Oncology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=brain biopsy
kn-keyword=brain biopsy
en-keyword=cell block pathology
kn-keyword=cell block pathology
en-keyword=diffuse large b-cell lymphoma
kn-keyword=diffuse large b-cell lymphoma
en-keyword=natural course
kn-keyword=natural course
en-keyword=primary central nervous system lymphoma
kn-keyword=primary central nervous system lymphoma
en-keyword=primary intraocular (vitreoretinal) lymphoma
kn-keyword=primary intraocular (vitreoretinal) lymphoma
en-keyword=vitrectomy
kn-keyword=vitrectomy
en-keyword=vitreous opacity
kn-keyword=vitreous opacity
END
start-ver=1.4
cd-journal=joma
no-vol=19
cd-vols=
no-issue=
article-no=
start-page=1551700
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250305
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Acetoacetate, a ketone body, attenuates neuronal bursts in acutely-induced epileptiform slices of the mouse hippocampus
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The ketogenic diet increases ketone bodies (beta-hydroxybutyrate and acetoacetate) in the brain, and ameliorates epileptic seizures in vivo. However, ketone bodies exert weak or no effects on electrical activity in rodent hippocampal slices. Especially, it remains unclear what kinds of conditions are required to strengthen the actions of ketone bodies in hippocampal slices. In the present study, we examined the effects of acetoacetate on hippocampal pyramidal cells in normal slices and epileptiform slices of mice. By using patch-clamp recordings from CA1 pyramidal cells, we first confirmed that acetoacetate did not change the membrane potentials and intrinsic properties of pyramidal cells in normal slices. However, we found that acetoacetate weakened spontaneous epileptiform bursts in pyramidal cells of epileptiform slices, which were acutely induced by applying convulsants to normal slices. Interestingly, acetoacetate did not change the frequency of the epileptiform bursts, but attenuated individual epileptiform bursts. We finally examined the effects of acetoacetate on excitatory synaptic barrages during epileptiform activity, and found that acetoacetate weakened epileptiform bursts by reducing synchronous synaptic inputs. These results show that acetoacetate attenuated neuronal bursts in epileptiform slices, but did not affect neuronal activity in normal slices, which leads to seizure-selective actions of ketone bodies.
en-copyright=
kn-copyright=
en-aut-name=WenHao
en-aut-sei=Wen
en-aut-mei=Hao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SadaNagisa
en-aut-sei=Sada
en-aut-mei=Nagisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=InoueTsuyoshi
en-aut-sei=Inoue
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Biophysical Chemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Biophysical Chemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Biophysical Chemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=epilepsy
kn-keyword=epilepsy
en-keyword=ketone body
kn-keyword=ketone body
en-keyword=ketogenic diet
kn-keyword=ketogenic diet
en-keyword=hippocampus
kn-keyword=hippocampus
en-keyword=slice physiology
kn-keyword=slice physiology
en-keyword=patch-clamp recording
kn-keyword=patch-clamp recording
END
start-ver=1.4
cd-journal=joma
no-vol=85
cd-vols=
no-issue=6
article-no=
start-page=1082
end-page=1096
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250314
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Myeloid Cells Induce Infiltration and Activation of B Cells and CD4+ T Follicular Helper Cells to Sensitize Brain Metastases to Combination Immunotherapy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Brain metastasis is a poor prognostic factor in patients with cancer. Despite showing efficacy in many extracranial tumors, immunotherapy with anti–PD-1 mAb or anti–CTLA4 mAb seems to be less effective against intracranial tumors. Promisingly, recent clinical studies have reported that combination therapy with anti–PD-1 and anti–CTLA4 mAbs has a potent antitumor effect on brain metastasis, highlighting the need to elucidate the detailed mechanisms controlling the intracranial tumor microenvironment (TME) to develop effective immunotherapeutic strategies. In this study, we analyzed the tumor-infiltrating lymphocytes in murine models of brain metastasis that responded to anti–CTLA4 and anti–PD-1 mAbs. Activated CD4+ T follicular helper (TFH) cells with high CTLA4 expression characteristically infiltrated the intracranial TME, which were activated by combination anti–CTLA4 and anti–PD-1 treatment. The loss of TFH cells suppressed the additive effect of CTLA4 blockade on anti–PD-1 mAb. B-cell–activating factor belonging to the TNF family (BAFF) and a proliferation-inducing ligand (APRIL) produced by abundant myeloid cells, particularly CD80hiCD206lo proinflammatory M1-like macrophages, in the intracranial TME induced B-cell and TFH-cell infiltration and activation. Furthermore, the intracranial TME of patients with non–small cell lung cancer featured TFH- and B-cell infiltration as tertiary lymphoid structures. Together, these findings provide insights into the immune cell cross-talk in the intracranial TME that facilitates an additive antitumor effect of CTLA4 blockade with anti–PD-1 treatment, supporting the potential of a combination immunotherapeutic strategy for brain metastases.
Significance: B-cell and CD4+ T follicular helper cell activation via BAFF/APRIL from abundant myeloid cells in the intracranial tumor microenvironment enables a combinatorial effect of CTLA4 and PD-1 blockade in brain metastases.
en-copyright=
kn-copyright=
en-aut-name=NinomiyaToshifumi
en-aut-sei=Ninomiya
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KemmotsuNaoya
en-aut-sei=Kemmotsu
en-aut-mei=Naoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MukoharaFumiaki
en-aut-sei=Mukohara
en-aut-mei=Fumiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MagariMasaki
en-aut-sei=Magari
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MiyamotoAi
en-aut-sei=Miyamoto
en-aut-mei=Ai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UedaYouki
en-aut-sei=Ueda
en-aut-mei=Youki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IshinoTakamasa
en-aut-sei=Ishino
en-aut-mei=Takamasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NagasakiJoji
en-aut-sei=Nagasaki
en-aut-mei=Joji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=FujiwaraTomohiro
en-aut-sei=Fujiwara
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YamamotoHidetaka
en-aut-sei=Yamamoto
en-aut-mei=Hidetaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HayashiHidetoshi
en-aut-sei=Hayashi
en-aut-mei=Hidetoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TachibanaKota
en-aut-sei=Tachibana
en-aut-mei=Kota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=IshidaJoji
en-aut-sei=Ishida
en-aut-mei=Joji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=OtaniYoshihiro
en-aut-sei=Otani
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=TanakaShota
en-aut-sei=Tanaka
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=OkamotoIsamu
en-aut-sei=Okamoto
en-aut-mei=Isamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=TogashiYosuke
en-aut-sei=Togashi
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
affil-num=1
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=5
en-affil=Medical Protein Engineering, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Pathology and Oncology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Medical Oncology, Kindai University Faculty of Medicine
kn-affil=
affil-num=12
en-affil=Department of Dermatology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=14
en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=15
en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=16
en-affil=Department of General Thoracic Surgery, Breast and Endocrinological Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=17
en-affil=Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University
kn-affil=
affil-num=18
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=1
article-no=
start-page=1757
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250224
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Keratinocyte-driven dermal collagen formation in the axolotl skin
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Type I collagen is a major component of the dermis and is formed by dermal fibroblasts. The development of dermal collagen structures has not been fully elucidated despite the major presence and importance of the dermis. This lack of understanding is due in part to the opacity of mammalian skin and it has been an obstacle to cosmetic and medical developments. We reveal the process of dermal collagen formation using the highly transparent skin of the axolotl and fluorescent collagen probes. We clarify that epidermal cells, not dermal fibroblasts, contribute to dermal collagen formation. Mesenchymal cells (fibroblasts) play a role in modifying the collagen fibers already built by keratinocytes. We confirm that collagen production by keratinocytes is a widely conserved mechanism in other model organisms. Our findings warrant a change in the current consensus about dermal collagen formation and could lead to innovations in cosmetology and skin medication.
en-copyright=
kn-copyright=
en-aut-name=OhashiAyaka
en-aut-sei=Ohashi
en-aut-mei=Ayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SakamotoHirotaka
en-aut-sei=Sakamoto
en-aut-mei=Hirotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KurodaJunpei
en-aut-sei=Kuroda
en-aut-mei=Junpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KondoYohei
en-aut-sei=Kondo
en-aut-mei=Yohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KameiYasuhiro
en-aut-sei=Kamei
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NonakaShigenori
en-aut-sei=Nonaka
en-aut-mei=Shigenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=FurukawaSaya
en-aut-sei=Furukawa
en-aut-mei=Saya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YamamotoSakiya
en-aut-sei=Yamamoto
en-aut-mei=Sakiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SatohAkira
en-aut-sei=Satoh
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Graduate School of Environment, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environment, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Frontier Biosciences, Osaka University
kn-affil=
affil-num=4
en-affil=Center for One Medicine Innovative Translational Research (COMIT), Nagoya University
kn-affil=
affil-num=5
en-affil=Laboratory for Biothermology, National Institute for Basic Biology
kn-affil=
affil-num=6
en-affil=The Graduate University for Advanced Studies (SOKENDAI)
kn-affil=
affil-num=7
en-affil=Graduate School of Environment, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Graduate School of Environment, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=9
en-affil=Graduate School of Environment, Life, Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=752
cd-vols=
no-issue=
article-no=
start-page=151481
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250308
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Discovery of myeloid zinc finger (MZF) 1 nuclear bodies
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Myeloid zinc finger 1 (MZF1) is a multifaceted transcription factor that can act either as a transcriptional activator or a gene repressor. We examined its production of nuclear bodies (NBs) and subcellular localization. Proteomic and protein–protein interaction analysis were used to identify its cofactors and interactions. These revealed the presence of MZF1-NBs (intranuclear oligomers containing MZF1). MZF-NBs are similar to some other nuclear bodies, notably promyelocytic leukemia (PML) -NBs in terms of size and morphology. However the two structures appear to be different. MZF-NBs and PML-NBs were found to associate in the nucleus. Both MZF1 and PML are SUMO1-SUMOylated in PC-3 cells. Sumoylated MZF1 can interact with proteins containing SUMO-interaction motifs (SIM) through SUMO-SIM interaction. Interactome analysis revealed that its NBs participate in the stress response (TPR and UBAP2L), protein folding (CALR and ANKRD40), transcription, post-translational modification (TRIM33, ACOT7, CAMK2D, and CAMK2G), and RNA binding (ALURBP and CPSF5).
en-copyright=
kn-copyright=
en-aut-name=EguchiTakanori
en-aut-sei=Eguchi
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=CalderwoodStuart K.
en-aut-sei=Calderwood
en-aut-mei=Stuart K.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Dental Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Division of Molecular and Cellular Biology, Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School
kn-affil=
en-keyword=Myeloid zinc finger 1
kn-keyword=Myeloid zinc finger 1
en-keyword=MZF1
kn-keyword=MZF1
en-keyword=Nuclear body
kn-keyword=Nuclear body
en-keyword=PML
kn-keyword=PML
en-keyword=Sumoylation
kn-keyword=Sumoylation
en-keyword=SCAN domain protein
kn-keyword=SCAN domain protein
END
start-ver=1.4
cd-journal=joma
no-vol=2
cd-vols=
no-issue=9
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2016
dt-pub=20160908
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=S-nitrosylation of laforin inhibits its phosphatase activity and is implicated in Lafora disease
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Recently, the relation between S-nitrosylation by nitric oxide (NO), which is over�produced under pathological conditions and neurodegenerative diseases, includingAlzheimer’s and Parkinson’s diseases, has become a focus of attention. Although mostcases of Parkinson’s disease are known to be caused by mutations in the Parkin gene, arecent finding has indicated that S-nitrosylation of Parkin affects its enzymatic activityand leads to the Parkinsonian phenotype. Therefore, it is important to understand thefunction of S-nitrosylated proteins in the pathogenesis of neurodegenerative diseases.Lafora disease (LD, OMIM 254780) is a neurodegenerative disease characterized by theaccumulation of insoluble glucans called Lafora bodies (LBs). LD is caused by mutationsin genes that encode the glucan phosphatase, Laforin, or the E3 ubiquitin ligase, Malin.In this study, we hypothesized that LD may be caused by S-nitrosylation of Laforin,which is similar to the finding that Parkinson’s disease is caused by S-nitrosylation ofParkin. To test this hypothesis, we first determined whether Laforin was S-nitrosylatedusing a biotin switch assay, and compared the three main functions of unmodified andS-nitrosylated Laforin, namely glucan- and Malin-binding activity and phosphataseactivity. Furthermore, we examined whether the numbers of LBs were changed byNO in the cells expressing wild-type Laforin. Here, we report for the first time thatS-nitrosylation of Laforin inhibited its phosphatase activity and that LB formation wasincreased by an NO donor. Our results suggest a possible hypothesis for LD pathogenesis; that is, the decrease in phosphatase activity of Laforin by S-nitrosylation leads toincreased LB formation. Therefore, LD may be caused not only by mutations in theLaforin or Malin genes, but also by the S-nitrosylation of Laforin.
en-copyright=
kn-copyright=
en-aut-name=ToyotaRikako
en-aut-sei=Toyota
en-aut-mei=Rikako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HonjoYasuko
en-aut-sei=Honjo
en-aut-mei=Yasuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ImajoRisa
en-aut-sei=Imajo
en-aut-mei=Risa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SatohAyano
en-aut-sei=Satoh
en-aut-mei=Ayano
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University; Research Institute for Radiation Biology and Medicine, Hiroshima University
kn-affil=
affil-num=3
en-affil=Graduate School of Natural Science and Technology, Okayama University; Research Institute for Radiation Biology and Medicine, Hiroshima University
kn-affil=
affil-num=4
en-affil=Graduate School of Natural Science and Technology, Okayama University; Research Institute for Radiation Biology and Medicine, Hiroshima University
kn-affil=
en-keyword=S-Nitrosylation Of Laforin
kn-keyword=S-Nitrosylation Of Laforin
en-keyword=Post-Translational Modification
kn-keyword=Post-Translational Modification
en-keyword=Nitrosylation
kn-keyword=Nitrosylation
en-keyword=Phosphatase
kn-keyword=Phosphatase
en-keyword=Glucan-Binding
kn-keyword=Glucan-Binding
END
start-ver=1.4
cd-journal=joma
no-vol=33
cd-vols=
no-issue=4
article-no=
start-page=252
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250305
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Characteristics of oral mucositis in patients undergoing haploidentical stem cell transplantation with posttransplant cyclophosphamide: marked difference between busulfan and melphalan regimens
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose This study was performed to examine the effects of conditioning regimens on oral mucositis in haploidentical (haplo) donor hematopoietic stem cell transplantation (HSCT) with posttransplant cyclophosphamide (PTCy).
Methods Thirty consecutive patients (male, 23; female, 7; 18–68 years, median, 59 years) undergoing haplo-HSCT with PTCy using one of three conditioning regimens—reduced intensity conditioning (RIC)-melphalan (Mel); RIC-Busulfan (Bu); and myeloablative conditioning (MAC)-Bu—were enrolled in this study. Data on the WHO grade of oral mucositis (day − 7 to + 20) were collected retrospectively. The incidences of ulcerative and severe mucositis (Grade 2–4 and Grade 3–4, respectively) were compared between the three groups.
Results Ulcerative mucositis occurred in 0% (0/10) of patients in the RIC-Mel group, 57.1% (4/7) in the RIC-Bu group, and 100% (13/13) in the MAC-Bu group. The differences between the RIC-Mel and RIC-Bu groups and between the RIC-Bu and MAC-Bu groups were significant (all P < 0.05). Severe mucositis occurred in 57.1% (4/7) of patients in the RIC-Bu group and 100% (13/13) of patients in the MAC-Bu group, and the difference was significant (P < 0.05). The rates of ulcerative mucositis (≥ grade 2) and of severe mucositis (≥ grade 3) were significantly higher in the MAC-Bu group than the RIC-Bu group on days 10, 13, 15, and 16 and on days 10, 14, 15, and 16, respectively (all P < 0.05).
Conclusion The risk of oral mucositis in patients undergoing haplo-HSCT with PTCy is highest with the MAC-Bu conditioning regimen, followed by RIC-Bu, and lowest with RIC-Mel.
en-copyright=
kn-copyright=
en-aut-name=OguraSaki
en-aut-sei=Ogura
en-aut-mei=Saki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SogaYoshihiko
en-aut-sei=Soga
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FujiwaraHideaki
en-aut-sei=Fujiwara
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MiuraRumi
en-aut-sei=Miura
en-aut-mei=Rumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MatsuokaKen-ichi
en-aut-sei=Matsuoka
en-aut-mei=Ken-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MaedaYoshinobu
en-aut-sei=Maeda
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KubokiTakuo
en-aut-sei=Kuboki
en-aut-mei=Takuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Division of Dental Hygienist, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Division of Hospital Dentistry, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Division of Dental Hygienist, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Hematology, Oncology and Respiratory Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Hematology, Oncology and Respiratory Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Division of Dental Hygienist, Okayama University Hospital
kn-affil=
en-keyword=Oral mucositis
kn-keyword=Oral mucositis
en-keyword=Hematopoietic cell transplantation
kn-keyword=Hematopoietic cell transplantation
en-keyword=Posttransplant cyclophosphamide
kn-keyword=Posttransplant cyclophosphamide
en-keyword=Busulfan
kn-keyword=Busulfan
en-keyword=Melphalan
kn-keyword=Melphalan
END
start-ver=1.4
cd-journal=joma
no-vol=34
cd-vols=
no-issue=1
article-no=
start-page=35
end-page=40
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Evaluation of CT Findings in Squamous and Non-Squamous Cell Carcinomas of the Maxillary Sinus
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The aim of the present study was to compare CT images between squamous cell carcinoma (SCC) and non-SCC found in the maxillary sinus, and to identify features that could be used to differentiate between SCC and non-SCC. Patients who visited the Faculty of Dentistry, Okayama University Hospital, between April 2007 and March 2023, underwent head and neck CT, and had tumors extending into the maxillary sinus that were diagnosed histopathologically as malignancy, were enrolled. The main seat of the mass, bony changes in the maxillary sinus wall, and extension into the surrounding area were assessed. These imaging features were evaluated according to SCC or non-SCC, and the characteristics of the two classes were assessed. Comparisons between the two groups were made using the Fisher exact probability test. There were 11 cases each of SCC and non-SCC. In 11 SCC and 7 non-SCC cases, the main seat of the mass occupied the entire maxillary sinus. The frequency of mass occupying the whole sinus was significantly higher in SCC than in non-SCC (p<0.05). Bone-thickening type disease was found only in squamous cell carcinoma 4/11 (36.4%), with there being a significant difference between SCC and non-SCC (p<0.05). Occupancy of the entire maxillary sinus by the mass and bone thickening on CT images were useful for differentiating between SCC and non-SCC arising in the maxillary sinus.
en-copyright=
kn-copyright=
en-aut-name=AsaumiYuka
en-aut-sei=Asaumi
en-aut-mei=Yuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujikuraMamiko
en-aut-sei=Fujikura
en-aut-mei=Mamiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HisatomiMiki
en-aut-sei=Hisatomi
en-aut-mei=Miki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=E. Al-HammadWlla
en-aut-sei=E. Al-Hammad
en-aut-mei=Wlla
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakeshitaYohei
en-aut-sei=Takeshita
en-aut-mei=Yohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OkadaShunsuke
en-aut-sei=Okada
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KawazuToshiyuki
en-aut-sei=Kawazu
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YanagiYoshinobu
en-aut-sei=Yanagi
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=AsaumiJunichi
en-aut-sei=Asaumi
en-aut-mei=Junichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Oral and Maxillofacial Radiology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Oral and Maxillofacial Radiology, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Oral and Maxillofacial Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Oral and Maxillofacial Radiology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Oral and Maxillofacial Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Dental Informatics, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Maxillary sinus
kn-keyword=Maxillary sinus
en-keyword=Squamous cell carcinoma
kn-keyword=Squamous cell carcinoma
en-keyword=Non-squamous cell carcinoma
kn-keyword=Non-squamous cell carcinoma
en-keyword=CT
kn-keyword=CT
END
start-ver=1.4
cd-journal=joma
no-vol=106
cd-vols=
no-issue=
article-no=
start-page=106690
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=EGF-induced P-gp expression in tumor vasculature contributes to therapeutic resistance to doxorubicin-PEG-liposomes in mice bearing doxorubicin-resistant B16-BL6 tumors
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We previously indicated that doxorubicin (DOX)-loaded polyethylene glycol (PEG)-modified liposomes (DOX-PEG-liposomes) were therapeutically effective in mice bearing DOX-resistant colon-26 (C26/DOX) tumors, and the efficacy was comparable in mice bearing DOX-sensitive C26 tumors. However, in the current study, DOX-PEG-liposomes exerted no therapeutic activity in DOX-resistant B16-BL6 melanoma (B16/DOX)-bearing mice, although they significantly suppressed DOX-sensitive B16 tumor growth in mice. Although we previously reported that the anti-tumor effects in C26/DOX-bearing mice were derived from the cytotoxic effects of DOX on vascular endothelial cells (VECs) in tumors, the B16/DOX tumor vasculature was not substantially damaged after administration of DOX-PEG-liposomes. In B16/DOX tumors, P-gp expression was significantly induced in the VECs, but not in the C26/DOX tumors, indicating that the high expression of P-gp in the tumor vasculature would be responsible for the lack of therapeutic effect of DOX-PEG-liposomes in B16/DOX-bearing mice. Epidermal growth factor (EGF), a possible induction factor for P-gp expression, was highly expressed in B16/DOX cells and tumor tissues, and significantly induced P-gp expression in human umbilical vein endothelial cells (HUVEC). The EGF receptor (EGFR) was also highly expressed in B16/DOX tumor VECs, suggesting that the activation of EGF/EGFR signaling may induce P-gp expression in VECs in B16/DOX tumors.
en-copyright=
kn-copyright=
en-aut-name=MaruyamaMasato
en-aut-sei=Maruyama
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UedaTomoki
en-aut-sei=Ueda
en-aut-mei=Tomoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IenakaYusuke
en-aut-sei=Ienaka
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TojoHaruka
en-aut-sei=Tojo
en-aut-mei=Haruka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HyodoKenji
en-aut-sei=Hyodo
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OgawaraKen-ichi
en-aut-sei=Ogawara
en-aut-mei=Ken-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HigakiKazutaka
en-aut-sei=Higaki
en-aut-mei=Kazutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Eisai Co., Ltd.
kn-affil=
affil-num=6
en-affil=Laboratory of Pharmaceutics, Kobe Pharmaceutical University
kn-affil=
affil-num=7
en-affil=Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Drug resistance
kn-keyword=Drug resistance
en-keyword=P-glycoprotein
kn-keyword=P-glycoprotein
en-keyword=Liposome
kn-keyword=Liposome
en-keyword=Tumor vascular endothelial cells
kn-keyword=Tumor vascular endothelial cells
en-keyword=Melanoma
kn-keyword=Melanoma
END
start-ver=1.4
cd-journal=joma
no-vol=209
cd-vols=
no-issue=
article-no=
start-page=114663
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Repeated sequential administration of pegylated emulsion of SU5416 and liposomal paclitaxel enhances anti-tumor effect in 4T1 breast cancer-bearing mice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=To improve vascular normalization strategy for intractable triple-negative breast cancer 4T1, we examined the anti-tumor effects of repeated sequential administration of polyethylene glycol (PEG)-modified emulsion of SU5416 (PE-SU5416), a vascular endothelial growth factor (VEGF) receptor-2 kinase inhibitor, and PEG-modified liposomal paclitaxel (PL-PTX) in mice bearing 4T1 cells. Three sequential administrations (Seq×3) of PE-SU5416 and PL-PTX exhibited significantly higher anti-tumor activity than a single sequential administration (Seq×1). The tumor vasculatures were structurally normalized until after two PE-SU5416 (PE-SU5416×2) or sequential (Seq×2) administrations, while the improvement in vascular function, such as oxygen supply, blood flow, and PEG-liposomal distribution, was evident until after three administrations of PE-SU5416 (PE-SU5416×3) and Seq×3. Although some discrepancies between the structural and functional improvement in tumor vasculatures were observed after PE-SU5416×3 and Seq×3, cancer-associated fibroblasts (CAFs) and collagen levels were significantly reduced after PE-SU5416×2, PE-SU5416×3, Seq×2, and Seq×3, suggesting that a possible decrease in interstitial fluid pressure due to the reduction in CAFs and collagen would have compensated for vascular function. Furthermore, PE-SU5416×2, PE-SU5416×3, Seq×2, and Seq×3 significantly decreased tumor growth factor-β (TGF-β), an activator of CAFs, in tumor tissues, suggesting that the reduction in TGF-β levels by PE-SU5416 suppresses CAF activation.
en-copyright=
kn-copyright=
en-aut-name=MaruyamaMasato
en-aut-sei=Maruyama
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ToriiReiya
en-aut-sei=Torii
en-aut-mei=Reiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MatsuiHazuki
en-aut-sei=Matsui
en-aut-mei=Hazuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HayashiHiroki
en-aut-sei=Hayashi
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OgawaraKen-ichi
en-aut-sei=Ogawara
en-aut-mei=Ken-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HigakiKazutaka
en-aut-sei=Higaki
en-aut-mei=Kazutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Laboratory of Pharmaceutics, Kobe Pharmaceutical University
kn-affil=
affil-num=6
en-affil=Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Drug delivery
kn-keyword=Drug delivery
en-keyword=Vascular normalization
kn-keyword=Vascular normalization
en-keyword=Breast cancer
kn-keyword=Breast cancer
en-keyword=Liposome
kn-keyword=Liposome
en-keyword=Cancer-associated fibroblast
kn-keyword=Cancer-associated fibroblast
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250224
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A randomized controlled trial of conventional GVHD prophylaxis with or without teprenone for the prevention of severe acute GVHD
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Therapies that effectively suppress graft-versus-host disease (GVHD) without compromising graft-versus-leukemia/lymphoma (GVL) effects is important in allogeneic hematopoietic stem cell transplantation (allo-HSCT) for hematopoietic malignancies. Geranylgeranylacetone (GGA) is a main component of teprenone, a gastric mucosal protectant commonly used in clinical practice. In preclinical models, GGA suppresses proinflammatory cytokines, including interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α), which are associated with GVHD as well as induces thioredoxin-1 (Trx-1), which suppresses GVHD while maintaining GVL effects. Here, we investigated whether the addition of teprenone to standard GVHD prophylaxis could reduce the cumulative incidence of severe acute GVHD (aGVHD) without attenuating GVL effects. This open-label, randomized clinical trial enrolled 40 patients (21 control and 19 teprenone group) who received allo-HSCT between May 2022 and February 2023 in our institution. Patients in the teprenone group received 50 mg of teprenone orally thrice daily for 21 days from the initiation of the conditioning regimen. The cumulative incidence of severe aGVHD by day 100 after allo-HSCT was not significantly different in the two groups (27.9 vs. 16.1%, p = 0.25). The exploratory studies revealed no obvious changes in Trx-1 levels, but the alternations from baseline in IL-1β and TNF-α levels at day 28 after allo-HSCT tended to be lower in the teprenone group. In conclusion, we could not demonstrate that teprenone significantly prevented the development of severe aGVHD. Discrepancy with preclinical model suggests that appropriate dose of teprenone may be necessary to induce the expression of antioxidant enzymes that suppress severe aGVHD. Clinical Trial Registration number:jRCTs 061210072.
en-copyright=
kn-copyright=
en-aut-name=KitamuraWataru
en-aut-sei=Kitamura
en-aut-mei=Wataru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujiiKeiko
en-aut-sei=Fujii
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TsugeMitsuru
en-aut-sei=Tsuge
en-aut-mei=Mitsuru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MitsuhashiToshiharu
en-aut-sei=Mitsuhashi
en-aut-mei=Toshiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KobayashiHiroki
en-aut-sei=Kobayashi
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KamoiChihiro
en-aut-sei=Kamoi
en-aut-mei=Chihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YamamotoAkira
en-aut-sei=Yamamoto
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KondoTakumi
en-aut-sei=Kondo
en-aut-mei=Takumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SeikeKeisuke
en-aut-sei=Seike
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=FujiwaraHideaki
en-aut-sei=Fujiwara
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=AsadaNoboru
en-aut-sei=Asada
en-aut-mei=Noboru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=EnnishiDaisuke
en-aut-sei=Ennishi
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MatsuokaKen-ichi
en-aut-sei=Matsuoka
en-aut-mei=Ken-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=FujiiNobuharu
en-aut-sei=Fujii
en-aut-mei=Nobuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=MaedaYoshinobu
en-aut-sei=Maeda
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Pediatric Acute Diseases, Okayama University Academic Field of Medicine Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=12
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=13
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=14
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=15
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
en-keyword=Allogeneic hematopoietic stem cell transplantation
kn-keyword=Allogeneic hematopoietic stem cell transplantation
en-keyword=Graft-versus-host disease
kn-keyword=Graft-versus-host disease
en-keyword=Teprenone
kn-keyword=Teprenone
en-keyword=Oxidative stress
kn-keyword=Oxidative stress
en-keyword=Interleukin-33
kn-keyword=Interleukin-33
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=2
article-no=
start-page=61
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250129
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Study of Podoplanin-Deficient Mouse Bone with Mechanical Stress
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective: We investigated morphological differences in osteocyte processes between aged mice and our original podoplanin-conditional knockout (cKO) mice in which the floxed exon 3 of podoplanin was deleted by Dmp-1-driven Cre (Dmp1-Cre;PdpnΔ/Δ). Methods: SEM observation on osteocyte cell process, histochemistry for bone remodeling with mechanostress, and RT-PCR for RANKL and M-CSF in podoplanin cKO mouse bone with mechanostress was investigated. Results: SEM observations showed fewer and thinner osteocyte processes in femurs from 23-week-old Dmp1-Cre;PdpnΔ/Δ mice than from 23-week-old wild-type mice, while the numbers of osteocyte processes in femurs and calvarias were similar in 23-week-old Dmp1-Cre;PdpnΔ/Δ mice and 48-week-old wild-type mice. Furthermore, cell process numbers in femurs and calvarias were significantly smaller in 23-week-old Dmp1-Cre;PdpnΔ/Δ mice than in 48-week-old wild-type mice. In the test for differences in alveolar bone resorption under mechanical stress between Dmp1-Cre;PdpnΔ/Δ and wild-type mice, the area of TRAP-positive resorption pits was larger in wild-type mice than in Dmp1-Cre;PdpnΔ/Δ mice. In a quantitative tissue PCR analysis, the mRNA expression levels of RANKL and M-CSF in alveolar bone under mechanical stress were significantly lower in Dmp1-Cre;PdpnΔ/Δ mice than in wild-type mice. These results suggest that a reduction in cell process formation in osteocytes with podoplanin cKO affected the absorption of alveolar bone under mechanical stress in Dmp1-Cre;PdpnΔ/Δ mice. Conclusions: In podoplanin-deficient bone, the deformation of osteocyte processes by mechanical stimuli is not recognized as a stress due to the lower number of cell processes with podoplanin deficiency; therefore, the production of osteoclast migration/differentiation factors by activated osteocytes is not fully induced and macrophage migration to alveolar bone with mechanical stress appeared to be suppressed. These results indicate that podoplanin-dependent osteocyte process formation indirectly plays a key role in sensing mechanical stress in bone.
en-copyright=
kn-copyright=
en-aut-name=KanaiTakenori
en-aut-sei=Kanai
en-aut-mei=Takenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OsawaKyoko
en-aut-sei=Osawa
en-aut-mei=Kyoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KajiwaraKoichiro
en-aut-sei=Kajiwara
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SatoYoshiaki
en-aut-sei=Sato
en-aut-mei=Yoshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SawaYoshihiko
en-aut-sei=Sawa
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Orthodontics, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University
kn-affil=
affil-num=2
en-affil=Department of Orthodontics, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University
kn-affil=
affil-num=3
en-affil=Department of Oral Growth & Development, Hokkaido University
kn-affil=
affil-num=4
en-affil=Department of Orthodontics, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University
kn-affil=
affil-num=5
en-affil=Department of Oral Function & Anatomy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=podoplanin
kn-keyword=podoplanin
en-keyword=cKO
kn-keyword=cKO
en-keyword=osteocyte
kn-keyword=osteocyte
en-keyword=bone
kn-keyword=bone
en-keyword=remodeling
kn-keyword=remodeling
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=2
article-no=
start-page=267
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250122
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Abnormal Expression of Tubular SGLT2 and GULT2 in Diabetes Model Mice with Malocclusion-Induced Hyperglycemia
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: A relationship between malocclusion and the promotion of diabetes has been suggested. In hyperglycemia, the expression of sodium-glucose cotransporter 2 (SGLT2) and the facilitative glucose transporter 2 (GLUT2) is upregulated in proximal tubular cells, leading to an increase in renal glucose reabsorption. The present study aimed to investigate whether malocclusion contributes to diabetic exacerbation. Methods: Streptozotocin (STZ)-induced diabetic mice with malocclusion due to cutting molars were investigated based on increased blood glucose levels. PCR and immunohistochemical analyses were performed on diabetic mice kidneys to investigate the expression of SGLT2 and GLUT2. Results: Animal experiments were performed using 32 mice for 21 days. The time to reach a diabetic condition in STZ-administered mice was shorter with malocclusion than without malocclusion. The increase and mean blood glucose levels in STZ-administered mice were steeper and higher with malocclusion than without malocclusion. Urea albumin, BUN, and CRE levels were higher in diabetic mice with malocclusion than in diabetic mice without. Immunoreaction with anti-SGLT2 and anti-GLUT2 in the renal tissue of STZ-administered mice was stronger with malocclusion than without malocclusion. The amounts of SGLT2 and GLUT2 mRNA in the renal tissue in STZ-administered mice were higher with malocclusion than without malocclusion. The amounts of TNF-a and IL-6 mRNA in the large intestinal tissue in STZ-administered mice were higher with malocclusion than without malocclusion. Conclusions: Our results indicate that malocclusion accelerates the tubular expression of SGLT2 and GLUT2 under hyperglycemia. Malocclusion may be a diabetes-exacerbating factor with increased poor glycemic control due to shortened occlusion time resulting from swallowing food without chewing.
en-copyright=
kn-copyright=
en-aut-name=KajiwaraKoichiro
en-aut-sei=Kajiwara
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TamaokiSachio
en-aut-sei=Tamaoki
en-aut-mei=Sachio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SawaYoshihiko
en-aut-sei=Sawa
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Oral Growth & Development, Fukuoka Dental College
kn-affil=
affil-num=2
en-affil=Department of Oral Growth & Development, Fukuoka Dental College
kn-affil=
affil-num=3
en-affil=Department of Oral Function & Anatomy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=malocclusion
kn-keyword=malocclusion
en-keyword= hyperglycemia
kn-keyword= hyperglycemia
en-keyword= SGLT2
kn-keyword= SGLT2
en-keyword= GLUT2
kn-keyword= GLUT2
END
start-ver=1.4
cd-journal=joma
no-vol=197
cd-vols=
no-issue=
article-no=
start-page=115301
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202503
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Fraglide-1 from traditional Chinese aromatic vinegar: A natural AhR antagonist for atopic dermatitis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Traditional Chinese Zhenjiang aromatic vinegar (Kozu) contains Fraglide-1 (FG1), a bioactive lactone with demonstrated peroxisome proliferator-activated receptor gamma (PPARγ) agonist and antioxidant activities. This study explored FG1's novel ability to antagonize the aryl hydrocarbon receptor (AhR) signaling pathway, which regulates artemin expression and contributes to itching and inflammation in atopic dermatitis. Through molecular docking simulations and cell-based assays in human keratinocytes, we demonstrated FG1's potent antagonistic activity against AhR signaling. FG1 effectively suppressed FICZ-induced inflammatory responses, including artemin expression, with potency (half maximal inhibitory concentration, IC50 = 5.1 μM) comparable to the synthetic antagonist StemRegenin 1 (SR1) while demonstrating a superior safety profile (median lethal concentration, LC50 > 100 μM vs. 27.5 μM for SR1). These findings expand our understanding of bioactive compounds from traditional fermented foods and their regulatory effects on AhR signaling, providing a foundation for future studies on FG1's role in modulating skin inflammation.
en-copyright=
kn-copyright=
en-aut-name=KatoKosuke
en-aut-sei=Kato
en-aut-mei=Kosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AkamatsuMiki
en-aut-sei=Akamatsu
en-aut-mei=Miki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KakimaruSaya
en-aut-sei=Kakimaru
en-aut-mei=Saya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KoreishiMayuko
en-aut-sei=Koreishi
en-aut-mei=Mayuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakagiMasahiro
en-aut-sei=Takagi
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MiyashitaMasahiro
en-aut-sei=Miyashita
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MurataYoshiyuki
en-aut-sei=Murata
en-aut-mei=Yoshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakamuraYoshimasa
en-aut-sei=Nakamura
en-aut-mei=Yoshimasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SatohAyano
en-aut-sei=Satoh
en-aut-mei=Ayano
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TsujinoYoshio
en-aut-sei=Tsujino
en-aut-mei=Yoshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=5
en-affil=School of Materials Science, Japan Advanced Institute of Science and Technology
kn-affil=
affil-num=6
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=8
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=9
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=10
en-affil=Graduate School of Science, Technology and Innovation, Kobe University
kn-affil=
en-keyword=AhR
kn-keyword=AhR
en-keyword=Xenobiotic responsive element
kn-keyword=Xenobiotic responsive element
en-keyword=StemRegenin 1
kn-keyword=StemRegenin 1
en-keyword=ARNT
kn-keyword=ARNT
en-keyword=Atopic dermatitis
kn-keyword=Atopic dermatitis
en-keyword=Artemin
kn-keyword=Artemin
END
start-ver=1.4
cd-journal=joma
no-vol=64
cd-vols=
no-issue=2
article-no=
start-page=97
end-page=106
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=2024
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Atypical lymphoplasmacytic and immunoblastic proliferation: A Systematic Review
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Atypical lymphoplasmacytic and immunoblastic proliferation (ALPIBP) was first reported in 1984 as characteristic histological findings in lymph nodes associated with autoimmune diseases, but it has not been clearly defined to date. To summarize the histological characteristics and clinical diagnoses associated with ALPIBP, we searched MEDLINE and EMBASE for all peer-reviewed articles using keywords including “atypical lymphoplasmacytic and immunoblastic lymphadenopathy” from their inception to December 27, 2023. We also summarized the courses of three cases with a pathological diagnosis of ALPIBP. Nine articles with 52 cases were included. Among the total of 55 cases, including the three from our institution, the median age of the cases was 63.5 years with a female predominance (69.5%). Lymphadenopathy was generalized in 65.6% and regional in 34.4% of cases. RA (24.4%), SLE (24.4%), and autoimmune hemolytic anemia (20.0%), were common clinical diagnoses. A combination of cytotoxic chemotherapy was used in 15.6% of cases due to the suspicion of malignancy. Nodal T-follicular helper cell lymphoma, angioimmunoblastic type, methotrexate-associated lymphoproliferative disorders, and IgG4-related diseases were listed as important diseases that need to be pathologically differentiated from ALPIBP. This review summarizes the current understanding of the characteristics of ALPIBP. Given that underrecognition of ALPIBP could lead to overdiagnosis of hematological malignancy and unnecessary treatment, increased awareness of the condition in pathologists and clinicians is crucial.
en-copyright=
kn-copyright=
en-aut-name=NishimuraMidori Filiz
en-aut-sei=Nishimura
en-aut-mei=Midori Filiz
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakahashiToshiaki
en-aut-sei=Takahashi
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakaokaKensuke
en-aut-sei=Takaoka
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MacapagalSharina
en-aut-sei=Macapagal
en-aut-mei=Sharina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WannaphutChalothorn
en-aut-sei=Wannaphut
en-aut-mei=Chalothorn
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NishikoriAsami
en-aut-sei=Nishikori
en-aut-mei=Asami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TodaHiroko
en-aut-sei=Toda
en-aut-mei=Hiroko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NishimuraYoshito
en-aut-sei=Nishimura
en-aut-mei=Yoshito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SatoYasuharu
en-aut-sei=Sato
en-aut-mei=Yasuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=2
en-affil=Department of Medicine, John A. Burns School of Medicine, University of Hawai’i
kn-affil=
affil-num=3
en-affil=Department of Medicine, John A. Burns School of Medicine, University of Hawai’i
kn-affil=
affil-num=4
en-affil=Department of Medicine, John A. Burns School of Medicine, University of Hawai’i
kn-affil=
affil-num=5
en-affil=Department of Medicine, John A. Burns School of Medicine, University of Hawai’i
kn-affil=
affil-num=6
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=7
en-affil=Department of Pathology, Chugoku Central Hospital
kn-affil=
affil-num=8
en-affil=Department of Medicine, John A. Burns School of Medicine, University of Hawai’i
kn-affil=
affil-num=9
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
en-keyword=systematic review
kn-keyword=systematic review
en-keyword=atypical lymphoplasmacytic and immunoblastic proliferation
kn-keyword=atypical lymphoplasmacytic and immunoblastic proliferation
en-keyword=IgG4-related disease
kn-keyword=IgG4-related disease
en-keyword=angioimmunoblastic T-cell lymphoma
kn-keyword=angioimmunoblastic T-cell lymphoma
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250212
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Spatiotemporal expression pattern of dyslexia susceptibility 1 candidate 1 (DYX1C1) during rat cerebral cortex development
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Developmental dyslexia (DD) is a common learning disorder with significant consequences for affected individuals. Although several candidate genes, including dyslexia susceptibility 1 candidate 1 (DYX1C1), have been implicated in dyslexia, their role in brain development remains unclear. We aimed to elucidate the spatiotemporal expression patterns of DYX1C1 during cerebral cortex development in rats.
Methods We investigated DYX1C1 expression during cerebral cortex development using rat embryos at various gestational stages (E13.5, 15.5, 17.5 and 20.5) by immunohistochemistry (n = 7 embryos/stage), quantitative real-time PCR (n = 6), and in situ hybridization (n = 11–15).
Results The DYX1C1-positive cells were predominantly located in the outermost layers of the cortical plate, particularly at E15.5. DYX1C1 mRNA expression peaked at E15.5 and subsequently declined. DYX1C1-positive cells did not co-localize with reelin-positive Cajal-Retzius cells, but co-localized with neuronal markers expressed during development, and had shorter primary cilia than DYX1C1-negative cells.
Conclusions Our findings highlight the dynamic expression of DYX1C1 in the developing cerebral cortex of rats, implicating its involvement in neurodevelopmental processes. Further investigation of the functional interactions of DYX1C1, particularly its relationship with reelin and its role in cerebrocortical and hippocampal development, may provide insights into the pathophysiology of dyslexia and neurodevelopmental disorders.
en-copyright=
kn-copyright=
en-aut-name=ZenshoKazumasa
en-aut-sei=Zensho
en-aut-mei=Kazumasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyazakiIkuko
en-aut-sei=Miyazaki
en-aut-mei=Ikuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IsseAika
en-aut-sei=Isse
en-aut-mei=Aika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MisawaIchika
en-aut-sei=Misawa
en-aut-mei=Ichika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MasaiKaori
en-aut-sei=Masai
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OkaMakio
en-aut-sei=Oka
en-aut-mei=Makio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TsukaharaHirokazu
en-aut-sei=Tsukahara
en-aut-mei=Hirokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AsanumaMasato
en-aut-sei=Asanuma
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Psychosocial Medicine, National Center for Child Health and Development
kn-affil=
affil-num=7
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=236
cd-vols=
no-issue=
article-no=
start-page=74
end-page=81
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Characteristics of porcine oocyte-cumulus complexes derived from various sizes of antral follicles and classified by brilliant cresyl blue staining, and developmental competence of the oocytes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The present study sought to determine the characteristics of porcine oocyte-cumulus complexes (OCCs) derived from very small and small antral follicles (with less than 1 mm and 1–3 mm in diameter, respectively; VSF and SF) in comparison with controls from medium ones (with 3–6 mm in diameter; MF). Additionally, the present study examined the utility of brilliant cresyl blue (BCB) staining for assessing these OCCs. The incidence of BCB- oocytes in VSF- and SF-derived OCCs was higher than that in MF-derived OCCs. Although the meiotic and developmental competences of BCB+ oocytes from MF were superior to those from VSF and SF, blastocysts were successfully obtained from BCB+ oocytes even derived from VSF. The mean numbers of both total and viable cumulus cells surrounding an oocyte were significantly affected not only by the origin of the OCCs, but also by the BCB status of the oocytes (largest in MF-derived OCCs containing BCB+ oocytes). Although the outer and inner diameters of zona pellucida were affected by the origin of OCCs and the BCB status of oocytes (largest in MF-derived oocytes), the ooplasmic diameter of BCB+ oocytes did not differ among those derived from VSF, SF, and MF. Regardless of the BCB status, the transcriptional levels of G6PD and TKT in cumulus cells decreased during follicular development from VSF to MF, whereas the RPIA mRNA level in cumulus cells of MF-derived BCB+ OCCs was lower than in the others. These results underscore the utility of BCB staining for selecting MF-, SF-, and even VSF-derived OCCs containing oocytes with relatively higher meiotic and developmental competences, as well as the importance of having a sufficient number of healthy cumulus cells expressing genes related to the pentose phosphate pathway at lower levels.
en-copyright=
kn-copyright=
en-aut-name=VanPhong Ngoc
en-aut-sei=Van
en-aut-mei=Phong Ngoc
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=DoSon Quang
en-aut-sei=Do
en-aut-mei=Son Quang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FonsekaWanniarachchige Tharindu Lakshitha
en-aut-sei=Fonseka
en-aut-mei=Wanniarachchige Tharindu Lakshitha
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=WakaiTakuya
en-aut-sei=Wakai
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FunahashiHiroaki
en-aut-sei=Funahashi
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=18
cd-vols=
no-issue=2
article-no=
start-page=376
end-page=382
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250205
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A case of pancreatic ductal adenocarcinoma growing within the pancreatic duct mimicking an intraductal tubulopapillary neoplasm
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We herein report a case of pancreatic ductal adenocarcinoma (PDAC) that developed within the pancreatic duct and was initially diagnosed as an intraductal tubulopapillary neoplasm (ITPN). A 76-year-old man presented with weight loss and main pancreatic duct dilation. The imaging studies revealed a 30-mm hypovascular tumor within the main duct of the pancreatic head. An endoscopic examination with a biopsy revealed high-grade atypical epithelial cells with immunostaining patterns suggestive of ITPN. Following robot-assisted pancreaticoduodenectomy, postoperative pathology revealed conflicting features: nodular/cribriform infiltrations typical of ITPN and non-lobular replacement with scattered infiltrations characteristic of PDAC. A comprehensive genomic profiling test detected KRAS and TP53 mutations, leading to the final diagnosis of PDAC (fT3N1aM0, stage IIB). The patient received adjuvant S-1 chemotherapy and remained recurrence-free for 15 months post-surgery. This case highlights the diagnostic challenges of differentiating intraductal pancreatic tumors and demonstrates the utility of integrating genetic testing with conventional diagnostic modalities for an accurate diagnosis and appropriate treatment selection.
en-copyright=
kn-copyright=
en-aut-name=SatoRyosuke
en-aut-sei=Sato
en-aut-mei=Ryosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsumotoKazuyuki
en-aut-sei=Matsumoto
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UkaMayu
en-aut-sei=Uka
en-aut-mei=Mayu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakagiKosei
en-aut-sei=Takagi
en-aut-mei=Kosei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NishidaKenji
en-aut-sei=Nishida
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=FujiiYuki
en-aut-sei=Fujii
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TsutsumiKoichiro
en-aut-sei=Tsutsumi
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HoriguchiShigeru
en-aut-sei=Horiguchi
en-aut-mei=Shigeru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Radiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Pathology, Dentistry and Pharmaceutical Science, Okayama University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Pathology, Dentistry and Pharmaceutical Science, Okayama University Graduate School of Medicine
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
en-keyword=Pancreatic intraductal neoplasms
kn-keyword=Pancreatic intraductal neoplasms
en-keyword=Pancreatic carcinoma
kn-keyword=Pancreatic carcinoma
en-keyword=Intraductal tubulopapillary neoplasm
kn-keyword=Intraductal tubulopapillary neoplasm
en-keyword=Genetic testing
kn-keyword=Genetic testing
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=1
article-no=
start-page=51
end-page=58
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202502
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Photoinitiators Induce Histamine Production in Human Mast Cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Photoinitiators are used in the manufacture of many daily products, and may produce harmful effects due to their cytotoxicity. They have also been detected in human serum. Here, we investigated the histamine-producing effects in HMC-1 cells and the inflammatory cytokine release effects in RAW264 cells for four photoinitiators: 1-hydroxycyclohexyl phenyl ketone; 2-isopropylthioxanthone; methyl 2-benzoylbenzoate; and 2-methyl-4´-(methylthio)-2-morpholinopropiophenone. All four promoted histamine production in HMC-1 cells; however, they did not significantly affect the release of inflammatory cytokines in RAW264 cells. These findings suggest that these four photoinitiators induce inflammatory cytokine-independent histamine production, potentially contributing to histamine-mediated chronic inflammation in vitro.
en-copyright=
kn-copyright=
en-aut-name=MiuraTaro
en-aut-sei=Miura
en-aut-mei=Taro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawasakiYoichi
en-aut-sei=Kawasaki
en-aut-mei=Yoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HamanoHirofumi
en-aut-sei=Hamano
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ZamamiYoshito
en-aut-sei=Zamami
en-aut-mei=Yoshito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SendoToshiaki
en-aut-sei=Sendo
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Laboratory of Clinical Pharmacology and Therapeutics, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University
kn-affil=
affil-num=3
en-affil=Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=photoinitiator
kn-keyword=photoinitiator
en-keyword=ink
kn-keyword=ink
en-keyword=injection
kn-keyword=injection
en-keyword=histamine
kn-keyword=histamine
en-keyword=inflammation
kn-keyword=inflammation
END
start-ver=1.4
cd-journal=joma
no-vol=74
cd-vols=
no-issue=3
article-no=
start-page=96
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250204
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Cancer-associated fibroblasts promote pro-tumor functions of neutrophils in pancreatic cancer via IL-8: potential suppression by pirfenidone
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background The mechanisms by which neutrophils acquire pro-tumor properties remain poorly understood. In pancreatic cancer, cancer-associated fibroblasts (CAFs) may interact with neutrophils, directing them to promote tumor progression.
Methods To validate the association between CAFs and neutrophils, the localization of neutrophils was examined in clinically resected pancreatic cancer specimens. CAFs were produced by culturing in cancer-conditioned media, and the effects of these CAFs on neutrophils were examined. In vitro migration and invasion assays assess the effect of CAF-activated neutrophils on cancer cells. The factors secreted by the activated neutrophils were also explored. Finally, pirfenidone (PFD) was tested to determine whether it could suppress the pro-tumor functions of activated neutrophils.
Results In pancreatic cancer specimens, neutrophils tended to co-localize with IL-6-positive CAFs. Neutrophils co-cultured with CAFs increased migratory capacity and prolonged life span. CAF-affected neutrophils enhance the migratory and invasive activities of pancreatic cancer cells. IL-8 is the most upregulated cytokine secreted by the neutrophils. PFD suppresses IL-8 secretion from CAF-stimulated neutrophils and mitigates the malignant traits of pancreatic cancer cells.
Conclusion CAFs activate neutrophils and enhance the malignant phenotype of pancreatic cancer. The interactions between cancer cells, CAFs, and neutrophils can be disrupted by PFD, highlighting a potential therapeutic approach.
en-copyright=
kn-copyright=
en-aut-name=YagiTomohiko
en-aut-sei=Yagi
en-aut-mei=Tomohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KagawaShunsuke
en-aut-sei=Kagawa
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NogiShohei
en-aut-sei=Nogi
en-aut-mei=Shohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TaniguchiAtsuki
en-aut-sei=Taniguchi
en-aut-mei=Atsuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YoshimotoMasashi
en-aut-sei=Yoshimoto
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SuemoriKanto
en-aut-sei=Suemori
en-aut-mei=Kanto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NagaiYasuo
en-aut-sei=Nagai
en-aut-mei=Yasuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=FujitaShuto
en-aut-sei=Fujita
en-aut-mei=Shuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KurodaShinji
en-aut-sei=Kuroda
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KikuchiSatoru
en-aut-sei=Kikuchi
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KakiuchiYoshihiko
en-aut-sei=Kakiuchi
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TeraishiFuminori
en-aut-sei=Teraishi
en-aut-mei=Fuminori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TakagiKosei
en-aut-sei=Takagi
en-aut-mei=Kosei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=OharaToshiaki
en-aut-sei=Ohara
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=TazawaHiroshi
en-aut-sei=Tazawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Departments of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Cancer-associated fibroblasts
kn-keyword=Cancer-associated fibroblasts
en-keyword=Neutrophil
kn-keyword=Neutrophil
en-keyword=Anti-fibrotic agent
kn-keyword=Anti-fibrotic agent
en-keyword=Pirfenidone
kn-keyword=Pirfenidone
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=1
article-no=
start-page=1
end-page=7
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202502
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Endothelial Cell Polarity in Health and Disease
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Endothelial cell polarity is fundamental to the organization and function of blood vessels, influencing processes such as angiogenesis, vascular stability, and response to shear stress. This review elaborates on the molecular mechanisms that regulate endothelial cell polarity, focusing on key players like the PAR polarity complex and Rho family GTPases. These pathways coordinate the front–rear, apical–basal and planar polarity of endothelial cells, which are essential for the proper formation and maintenance of vascular structures. In health, endothelial polarity ensures not only the orderly development of blood vessels, with tip cells adopting distinct polarities during angiogenesis, but also ensures proper vascular integrity and function. In disease states, however, disruptions in polarity contribute to pathologies such as coronary artery disease, where altered planar polarity exacerbates atherosclerosis, and cancer, where disrupted polarity in tumor vasculature leads to abnormal vessel growth and function. Understanding cell polarity and its disruption is fundamental not only to comprehending how cells interact with their microenvironment and organize themselves into complex, organ-specific tissues but also to developing novel, targeted, and therapeutic strategies for a range of diseases, from cardiovascular disorders to malignancies, ultimately improving patient outcomes.
en-copyright=
kn-copyright=
en-aut-name=ThihaMoe
en-aut-sei=Thiha
en-aut-mei=Moe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HikitaTakao
en-aut-sei=Hikita
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakayamaMasanori
en-aut-sei=Nakayama
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Pathophysiology and Drug Discovery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Pathophysiology and Drug Discovery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Pathophysiology and Drug Discovery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=blood vessel
kn-keyword=blood vessel
en-keyword=endothelial cell
kn-keyword=endothelial cell
en-keyword=cell polarity
kn-keyword=cell polarity
en-keyword=atherosclerosis
kn-keyword=atherosclerosis
en-keyword=cancer
kn-keyword=cancer
END
start-ver=1.4
cd-journal=joma
no-vol=121
cd-vols=
no-issue=35
article-no=
start-page=e2320189121
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240821
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Somatic mutations in tumor-infiltrating lymphocytes impact on antitumor immunity
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Immune checkpoint inhibitors (ICIs) exert clinical efficacy against various types of cancers by reinvigorating exhausted CD8+ T cells that can expand and directly attack cancer cells (cancer-specific T cells) among tumor-infiltrating lymphocytes (TILs). Although some reports have identified somatic mutations in TILs, their effect on antitumor immunity remains unclear. In this study, we successfully established 18 cancer-specific T cell clones, which have an exhaustion phenotype, from the TILs of four patients with melanoma. We conducted whole-genome sequencing for these T cell clones and identified various somatic mutations in them with high clonality. Among the somatic mutations, an SH2D2A loss-of-function frameshift mutation and TNFAIP3 deletion could activate T cell effector functions in vitro. Furthermore, we generated CD8+ T cell–specific Tnfaip3 knockout mice and showed that Tnfaip3 function loss in CD8+ T cell increased antitumor immunity, leading to remarkable response to PD-1 blockade in vivo. In addition, we analyzed bulk CD3+ T cells from TILs in additional 12 patients and identified an SH2D2A mutation in one patient through amplicon sequencing. These findings suggest that somatic mutations in TILs can affect antitumor immunity and suggest unique biomarkers and therapeutic targets.
en-copyright=
kn-copyright=
en-aut-name=MukoharaFumiaki
en-aut-sei=Mukohara
en-aut-mei=Fumiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IwataKazuma
en-aut-sei=Iwata
en-aut-mei=Kazuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IshinoTakamasa
en-aut-sei=Ishino
en-aut-mei=Takamasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=InozumeTakashi
en-aut-sei=Inozume
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NagasakiJoji
en-aut-sei=Nagasaki
en-aut-mei=Joji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UedaYouki
en-aut-sei=Ueda
en-aut-mei=Youki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SuzawaKen
en-aut-sei=Suzawa
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=UenoToshihide
en-aut-sei=Ueno
en-aut-mei=Toshihide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IkedaHideki
en-aut-sei=Ikeda
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KawaseKatsushige
en-aut-sei=Kawase
en-aut-mei=Katsushige
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=SaekiYuka
en-aut-sei=Saeki
en-aut-mei=Yuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KawashimaShusuke
en-aut-sei=Kawashima
en-aut-mei=Shusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=YamashitaKazuo
en-aut-sei=Yamashita
en-aut-mei=Kazuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KawaharaYu
en-aut-sei=Kawahara
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=NakamuraYasuhiro
en-aut-sei=Nakamura
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=Honobe-TabuchiAkiko
en-aut-sei=Honobe-Tabuchi
en-aut-mei=Akiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=WatanabeHiroko
en-aut-sei=Watanabe
en-aut-mei=Hiroko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=DansakoHiromichi
en-aut-sei=Dansako
en-aut-mei=Hiromichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=KawamuraTatsuyoshi
en-aut-sei=Kawamura
en-aut-mei=Tatsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=SuzukiYutaka
en-aut-sei=Suzuki
en-aut-mei=Yutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=HondaHiroaki
en-aut-sei=Honda
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=ManoHiroyuki
en-aut-sei=Mano
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=KawazuMasahito
en-aut-sei=Kawazu
en-aut-mei=Masahito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=TogashiYosuke
en-aut-sei=Togashi
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
affil-num=1
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Dermatology, Chiba University Graduate School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama University
kn-affil=
affil-num=8
en-affil=Division of Cellular Signaling, National Cancer Center Research Institute
kn-affil=
affil-num=9
en-affil=Division of Cell Therapy, Chiba Cancer Research Institute
kn-affil=
affil-num=10
en-affil=Division of Cell Therapy, Chiba Cancer Research Institute
kn-affil=
affil-num=11
en-affil=Department of Dermatology, Chiba University Graduate School of Medicine
kn-affil=
affil-num=12
en-affil=Department of Dermatology, Chiba University Graduate School of Medicine
kn-affil=
affil-num=13
en-affil=KOTAI Biotechnologies, Inc.
kn-affil=
affil-num=14
en-affil=Department of Dermatology, Chiba University Graduate School of Medicine
kn-affil=
affil-num=15
en-affil=Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center
kn-affil=
affil-num=16
en-affil=Department of Dermatology, University of Yamanashi
kn-affil=
affil-num=17
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=18
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=19
en-affil=Department of Dermatology, University of Yamanashi
kn-affil=
affil-num=20
en-affil=Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa
kn-affil=
affil-num=21
en-affil=Department of Pathology, Tokyo Women's Medical University
kn-affil=
affil-num=22
en-affil=Division of Cellular Signaling, National Cancer Center Research Institute
kn-affil=
affil-num=23
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama University
kn-affil=
affil-num=24
en-affil=Division of Cell Therapy, Chiba Cancer Research Institute
kn-affil=
affil-num=25
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=cancer immunology
kn-keyword=cancer immunology
en-keyword=somatic mutation
kn-keyword=somatic mutation
en-keyword=T cell
kn-keyword=T cell
en-keyword=tumor-infiltrating lymphocytes
kn-keyword=tumor-infiltrating lymphocytes
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=1
article-no=
start-page=38
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250124
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Exacerbation of diabetes due to F. Nucleatum LPS-induced SGLT2 overexpression in the renal proximal tubular epithelial cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Diabetes treatments by the control of sodium-glucose cotransporter 2 (SGLT2) is commonly conducted while there are still uncertainties about the mechanisms for the SGLT2 overexpression in kidneys with diabetes. Previously, we have reported that glomeruli and proximal tubules with diabetic nephropathy express toll-like receptor TLR2/4, and that the TLR ligand lipopolysaccharide (LPS) of periodontal pathogens have caused nephropathy in diabetic model mice. Recently, many researchers suggested that the periodontal pathogenic bacteria Fusobacterium (F.) nucleatum has the TLR4-associated strong activator of the colorectal inflammation and cancer. The present study aimed to investigate the possibility of F. nucleatum as an exacerbation factor of diabetes through the renal SGLT2 induction.
Methods The induction of the SGLT2 by F. nucleatum LPS (Fn-LPS) were investigated in the streptozotocin-induced diabetic mouse renal tissue and cultured renal proximal epithelial cells. The changes of blood glucose levels and survival curves in diabetic mice with Fn-LPS were analyzed. The Fn-LPS-induced SGLT2 production in the diabetic mouse renal tissue and in the cultured proximal epithelial cells was examined by ELISA, quantitative RT-PCR, and immunohistochemical analysis.
Results The SGLT2 expression in the cultured mouse tubular epithelial cells was significantly increased by TNF- or co-culture with Fn-LPS-supplemented J774.1 cells. The period to reach diabetic condition was significantly shorter in Fn-LPS-administered diabetic mice than in diabetic mice. All Fn-LPS-administered-diabetic mice reached humane endpoints during the healthy period of all of the mice administered Fn-LPS only. The promotion of the SGLT2 expression at the inner lumen of proximal tubules were stronger in the Fn-LPS-administered-diabetic mice than in diabetic mice. The renal tissue SGLT2 mRNA amounts and the number of renal proximal tubules with overexpressed SGLT2 in the lumen were more in the Fn-LPS-administered-diabetic mice than in diabetic mice.
Conclusions This study suggests that F. nucleatum causes the promotion of diabetes through the overexpression of SGLT2 in proximal tubules under the diabetic condition. Periodontitis with F. nucleatum may be a diabetic exacerbating factor.
en-copyright=
kn-copyright=
en-aut-name=SekiAiko
en-aut-sei=Seki
en-aut-mei=Aiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KajiwaraKoichiro
en-aut-sei=Kajiwara
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TeramachiJumpei
en-aut-sei=Teramachi
en-aut-mei=Jumpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=EgusaMasahiko
en-aut-sei=Egusa
en-aut-mei=Masahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MiyawakiTakuya
en-aut-sei=Miyawaki
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SawaYoshihiko
en-aut-sei=Sawa
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Oral Growth & Development, Fukuoka Dental College
kn-affil=
affil-num=3
en-affil=Department of Oral Function & Anatomy, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Dental Anesthesiology & Special Care Dentistry, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Dental Anesthesiology & Special Care Dentistry, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Oral Function & Anatomy, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
en-keyword=F. Nucleatum
kn-keyword=F. Nucleatum
en-keyword=Diabetic exacerbation
kn-keyword=Diabetic exacerbation
en-keyword=Diabetic nephropathy
kn-keyword=Diabetic nephropathy
en-keyword=SGLT2
kn-keyword=SGLT2
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=3267
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250125
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Novel treatment strategy targeting interleukin-6 induced by cancer associated fibroblasts for peritoneal metastasis of gastric cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Cancer-associated fibroblasts (CAFs) are a crucial component in the tumor microenvironment (TME) of peritoneal metastasis (PM), where they contribute to tumor progression and metastasis via secretion of interleukin-6 (IL-6). Here, we investigated the role of IL-6 in PM of gastric cancer (GC) and assessed whether anti-IL-6 receptor antibody (anti-IL-6R Ab) could inhibit PM of GC. We conducted immunohistochemical analysis of IL-6 and alpha-smooth muscle (alpha-SMA) expressions in clinical samples of GC and PM, and investigated the interactions between CAFs and GC cells in vitro. Anti-tumor effects of anti-IL-6R Ab on PM of GC were investigated in an orthotopic murine PM model. IL-6 expression was significantly correlated with alpha-SMA expression in clinical samples of GC, and higher IL-6 expression in the primary tumor was associated with poor prognosis of GC. Higher IL-6 and alpha-SMA expressions were also observed in PM of GC. In vitro, differentiation of fibroblasts into CAFs and chemoresistance were observed in GC cells cocultured with fibroblasts. Anti-IL-6R Ab inhibited the progression of PM in GC cells cocultured with fibroblasts in the orthotopic mouse model but could not inhibit the progression of PM consisting of GC cells alone. IL-6 expression in the TME was associated with poor prognosis of GC, and CAFs were associated with establishment and progression of PM via IL-6. Anti-IL-6R Ab could inhibit PM of GC by the blockade of IL-6 secreted by CAFs, which suggests its therapeutic potential for PM of GC.
en-copyright=
kn-copyright=
en-aut-name=MitsuiEma
en-aut-sei=Mitsui
en-aut-mei=Ema
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KikuchiSatoru
en-aut-sei=Kikuchi
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OkuraTomohiro
en-aut-sei=Okura
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TazawaHiroshi
en-aut-sei=Tazawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=UneYuta
en-aut-sei=Une
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NishiwakiNoriyuki
en-aut-sei=Nishiwaki
en-aut-mei=Noriyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KurodaShinji
en-aut-sei=Kuroda
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NomaKazuhiro
en-aut-sei=Noma
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KagawaShunsuke
en-aut-sei=Kagawa
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OharaToshiaki
en-aut-sei=Ohara
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OhtsukaJunko
en-aut-sei=Ohtsuka
en-aut-mei=Junko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=OhkiRieko
en-aut-sei=Ohki
en-aut-mei=Rieko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Laboratory of Fundamental Oncology, National Cancer Center Research Institute
kn-affil=
affil-num=12
en-affil=Laboratory of Fundamental Oncology, National Cancer Center Research Institute
kn-affil=
affil-num=13
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Peritoneal metastasis
kn-keyword=Peritoneal metastasis
en-keyword=Gastric cancer
kn-keyword=Gastric cancer
en-keyword=Interleukin-6
kn-keyword=Interleukin-6
en-keyword=Cancer-associated fibroblasts
kn-keyword=Cancer-associated fibroblasts
en-keyword=Interleukin-6 receptor antibody
kn-keyword=Interleukin-6 receptor antibody
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=4055-24
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Dyspnea with Hemidiaphragm Elevation in a Patient with Giant Cell Arteritis: A Case Report
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We herein report the first case of dyspnea with hemidiaphragm elevation in a 68-year-old woman with active giant cell arteritis (GCA), including successful treatment. Contrast-enhanced computed tomography showed a reduced density of the left ophthalmic artery and the left superficial temporal artery with increased soft tissue compared to the other side, indicating that the GCA had flared up and suggesting that the hemidiaphragm elevation might be caused by vasculitis-associated ischemia of the right phrenic nerve. Hemidiaphragm paralysis due to vasculitis-associated ischemia in patients with GCA needs to be distinguished from local infection, tumors, and hepatomegaly, which are the major causes of hemidiaphragm elevation.
en-copyright=
kn-copyright=
en-aut-name=AsanoYosuke
en-aut-sei=Asano
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsumotoYoshinori
en-aut-sei=Matsumoto
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KubotaNatsuki
en-aut-sei=Kubota
en-aut-mei=Natsuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TerajimaYuya
en-aut-sei=Terajima
en-aut-mei=Yuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MatsumotoKazuya
en-aut-sei=Matsumoto
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShidaharaKenta
en-aut-sei=Shidahara
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HiroseKei
en-aut-sei=Hirose
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakadoiTakato
en-aut-sei=Nakadoi
en-aut-mei=Takato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NawachiShoichi
en-aut-sei=Nawachi
en-aut-mei=Shoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KatayamaYu
en-aut-sei=Katayama
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MiyawakiYoshia
en-aut-sei=Miyawaki
en-aut-mei=Yoshia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KatsuyamaEri
en-aut-sei=Katsuyama
en-aut-mei=Eri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KatsuyamaTakayuki
en-aut-sei=Katsuyama
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=Takano-NarazakiMariko
en-aut-sei=Takano-Narazaki
en-aut-mei=Mariko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=SadaKen-Ei
en-aut-sei=Sada
en-aut-mei=Ken-Ei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=giant cell arteritis
kn-keyword=giant cell arteritis
en-keyword=dyspnea
kn-keyword=dyspnea
en-keyword=hemidiaphragm elevation
kn-keyword=hemidiaphragm elevation
en-keyword=phrenic nerve paralysis
kn-keyword=phrenic nerve paralysis
en-keyword=FDG-PET
kn-keyword=FDG-PET
en-keyword=case report
kn-keyword=case report
END
start-ver=1.4
cd-journal=joma
no-vol=361
cd-vols=
no-issue=
article-no=
start-page=114657
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Crosstalk between prolactin, insulin-like growth factors, and thyroid hormones in feather growth regulation in neonatal chick wings
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The elongation of primary feathers in neonatal chicks is delayed by the late-feathering K gene located on the Z chromosome. We recently found that the K gene slows feather growth by reducing the number of functional prolactin (PRL) receptor (PRLR) dimers. In this study, we investigated the molecular mechanisms by which PRL promotes feather elongation. RT-qPCR and immunohistochemistry analyses revealed that PRLRs are predominantly localized in the pulp rather than in the epidermal layer of the feather follicle. Treatment of primary cultured feather pulp cells with PRL increased the expression of mRNAs for insulin-like growth factors (IGFs; IGF-1 and IGF-2) and type 2 deiodinase (DIO2). Furthermore, treatments with IGF-1 and triiodothyronine (T3) reciprocally enhanced the expression of mRNAs for DIO2 and IGFs. Additionally, BrdU staining in neonatal chicks showed that T3 promoted cell proliferation in both the epidermal layer and pulp cells, while this effect was suppressed by an IGF-1 receptor (IGF1R) inhibitor. These findings suggest a novel model in which PRL upregulates IGFs and DIO2 in feather pulp cells, creating a positive feedback loop between IGFs and T3, ultimately leading to the promotion of cell proliferation in both the epidermal layer and the pulp cells by IGFs. This is the first report proposing crosstalk between PRL, thyroid hormone (TH), and IGFs in feather follicles.
en-copyright=
kn-copyright=
en-aut-name=NozawaYuri
en-aut-sei=Nozawa
en-aut-mei=Yuri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkamuraAyako
en-aut-sei=Okamura
en-aut-mei=Ayako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FukuchiHibiki
en-aut-sei=Fukuchi
en-aut-mei=Hibiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ShinoharaMasamichi
en-aut-sei=Shinohara
en-aut-mei=Masamichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AizawaSayaka
en-aut-sei=Aizawa
en-aut-mei=Sayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TakeuchiSakae
en-aut-sei=Takeuchi
en-aut-mei=Sakae
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Prolactin
kn-keyword=Prolactin
en-keyword=Thyroid hormone
kn-keyword=Thyroid hormone
en-keyword=IGF
kn-keyword=IGF
en-keyword=Iodothyronine deiodinase
kn-keyword=Iodothyronine deiodinase
en-keyword=Feather growth
kn-keyword=Feather growth
END
start-ver=1.4
cd-journal=joma
no-vol=941
cd-vols=
no-issue=
article-no=
start-page=149244
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250315
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Identification of pennaceous barbule cell factor (PBCF), a novel gene with spatiotemporal expression in barbule cells during feather development
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Bird contour feathers exhibit a complex hierarchical structure composed of a rachis, barbs, and barbules, with barbules playing a crucial role in maintaining feather structure and function. Understanding the molecular mechanisms underlying barbule formation is essential for advancing our knowledge of avian biology and evolution. In this study, we identified a novel gene, pennaceous barbule cell factor (PBCF), using microarray analysis, RT-PCR, and in situ hybridization. PBCF is expressed in barbule cells adjacent to the ramus during pennaceous barbule formation, where these cells fuse with the ramus to establish the feather’s branching structure. PBCF expression occurs transiently after melanin pigmentation of the barbule plates but before the expression of barbule-specific keratin 1 (BlSK1). Orthologues of PBCF, predicted to be secreted proteins, are conserved across avian species, with potential homologues detected in reptiles, suggesting an evolutionary lineage-specific adaptation. Additionally, PBCF is expressed in non-vacuolated notochord cells and the extra-embryonic ectoderm of the yolk sac, hinting at its broader developmental significance. The PBCF gene produces two mRNA isoforms via alternative splicing, encoding a secreted protein and a glycophosphatidylinositol (GPI)-anchored membrane-bound protein, indicating functional versatility. These findings suggest that PBCF may be involved as an avian-specific extracellular matrix component in cell adhesion and/or communication, potentially contributing to both feather development and embryogenesis. Further investigation of PBCF’s role in feather evolution and its potential functions in other vertebrates could provide new insights into the interplay between development and evolution.
en-copyright=
kn-copyright=
en-aut-name=NakaokaMinori
en-aut-sei=Nakaoka
en-aut-mei=Minori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FukuchiHibiki
en-aut-sei=Fukuchi
en-aut-mei=Hibiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OgoshiMaho
en-aut-sei=Ogoshi
en-aut-mei=Maho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AizawaSayaka
en-aut-sei=Aizawa
en-aut-mei=Sayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakeuchiSakae
en-aut-sei=Takeuchi
en-aut-mei=Sakae
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Feather
kn-keyword=Feather
en-keyword=Barbule
kn-keyword=Barbule
en-keyword=Branching
kn-keyword=Branching
en-keyword=Chicken
kn-keyword=Chicken
en-keyword=Yolk sac membrane
kn-keyword=Yolk sac membrane
en-keyword=Notochord
kn-keyword=Notochord
END
start-ver=1.4
cd-journal=joma
no-vol=145
cd-vols=
no-issue=1
article-no=
start-page=7
end-page=14
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Precision Medicine for Patients with Renal Cell Carcinoma Based on Drug-metabolizing Enzyme Expression Levels
kn-title=薬物代謝酵素の発現情報を活用した腎がん治療の個別適正化
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Notable advances have recently been achieved in drug therapies for renal cell carcinoma (RCC). Several tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors (ICIs) have been approved for metastatic RCC (mRCC). The current first-line treatment for mRCC involves combination therapies using TKIs and ICIs. However, there is no consensus on which TKI+ICI therapy is best or how to select the appropriate therapy for individual patients with RCC. The kidney expresses various metabolic enzymes, including CYP and uridine diphosphate glucose (UDP)-glucuronosyltransferase (UGT). Although information on CYP and UGT expression in the kidney is limited compared to our understanding of liver expression, the main CYP and UGT subtypes expressed at high levels in the kidney are estimated to be CYP2B6, CYP3A5, CYP4A11, CYP4F2, UGT1A6, UGT1A9, and UGT2B7. In RCC, the expression profiles and levels of these enzymes are somewhat altered compared with normal kidney. The main known subtypes of CYP and UGT in RCC are CYP1B1, CYP3A5, CYP4A11, UGT1A6, UGT1A9, UGT1A10, and UGT2B7. High CYP expression has been reported in several cancers, possibly conferring resistance to anti-cancer drugs including TKIs, due to extensive drug metabolism. Additionally, CYP and UGT expression levels may possibly affect cancer prognosis by metabolizing endogenous substrates, regardless of their role in anti-cancer drug metabolism. In this review, I discuss CYP and UGT expression level profiles in RCC based on previously published papers, including ours, and examine possible relationships between these enzyme expression profiles and treatment outcomes for patients with RCC.
en-copyright=
kn-copyright=
en-aut-name=MatsumotoJun
en-aut-sei=Matsumoto
en-aut-mei=Jun
kn-aut-name=松本准
kn-aut-sei=松本
kn-aut-mei=准
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Personalized Medicine and Preventive Healthcare Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学学術研究院医歯薬学域(薬学系)疾患薬理制御科学分野
en-keyword=renal cell carcinoma (RCC)
kn-keyword=renal cell carcinoma (RCC)
en-keyword=kidney
kn-keyword=kidney
en-keyword=CYP
kn-keyword=CYP
en-keyword=uridine diphosphate glucose (UDP)-glucuronosyltransferase
kn-keyword=uridine diphosphate glucose (UDP)-glucuronosyltransferase
en-keyword=metabolism
kn-keyword=metabolism
END
start-ver=1.4
cd-journal=joma
no-vol=43
cd-vols=
no-issue=1
article-no=
start-page=4
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250114
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Differentially Expressed Nedd4-binding Protein Ndfip1 Protects Neurons Against Methamphetamine-induced Neurotoxicity
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=To identify factors involved in methamphetamine (METH) neurotoxicity, we comprehensively searched for genes which were differentially expressed in mouse striatum after METH administration using differential display (DD) reverse transcription-PCR method and sequent single-strand conformation polymorphism analysis, and found two DD cDNA fragments later identified as mRNA of Nedd4 (neural precursor cell expressed developmentally downregulated 4) WW domain-binding protein 5 (N4WBP5), later named Nedd4 family-interacting protein 1 (Ndfip1). It is an adaptor protein for the binding between Nedd4 of ubiquitin ligase (E3) and target substrate protein for ubiquitination. Northern blot analysis confirmed drastic increases in Ndfip1 mRNA in the striatum after METH injections, and in situ hybridization histochemistry showed that the mRNA expression was increased in the hippocampus and cerebellum at 2 h-2 days, in the cerebral cortex and striatum at 18 h-2 days after single METH administration. The knockdown of Ndfip1 expression with Ndfip1 siRNA significantly aggravated METH-induced neurotoxicity in the cultured monoaminergic neuronal cells. These results suggest that drastic increases in Ndfip1 mRNA is compensatory reaction to protect neurons against METH-induced neurotoxicity.
en-copyright=
kn-copyright=
en-aut-name=AsanumaMasato
en-aut-sei=Asanuma
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyazakiIkuko
en-aut-sei=Miyazaki
en-aut-mei=Ikuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=CadetJean Lud
en-aut-sei=Cadet
en-aut-mei=Jean Lud
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Molecular Neuropsychiatry Section, Intramural Research Program, NIH/ NIDA
kn-affil=
en-keyword=Methamphetamine
kn-keyword=Methamphetamine
en-keyword=Neurotoxicity
kn-keyword=Neurotoxicity
en-keyword=Nedd4
kn-keyword=Nedd4
en-keyword=Ndfip1
kn-keyword=Ndfip1
en-keyword=Differential display
kn-keyword=Differential display
END
start-ver=1.4
cd-journal=joma
no-vol=741
cd-vols=
no-issue=
article-no=
start-page=151006
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241231
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=S-adenosylmethionine and S-adenosyl-L-homocysteine metabolism is involved in the sperm motility and in vitro fertility rate in mouse
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Increased fragmentation of sperm DNA has been implicated in male infertility. Folate deficiency results in impaired methionine synthesis, depletion of S-adenosylmethionine (SAM) levels, an increase in S-adenosyl-l-homocysteine (SAH) levels, and increased DNA fragmentation. Disruption of the dynamic balance between SAM and SAH may also contribute, although the details of this process are not yet fully understood. We investigated the localization of SAM, SAH, and S-adenosylhomocysteine hydrolase (SAHH), and whether SAM/SAH metabolism contributes to sperm motility and fertilization rate. SAM, SAH, and SAHH levels were assessed in the acrosome, midpiece, and tail of spermatozoa. Chemical inhibition of SAM/SAH metabolism and extracellular SAH significantly decreased the straight-line velocity (VSL), curvilinear velocity (VCL), and amplitude lateral head displacement (ALH) of sperm cells, which were thus unable to swim forward and perform oscillatory movements in place. This significantly reduced the fertilization rate. Therefore, the disruption of the SAM/SAH balance may contribute to male infertility.
en-copyright=
kn-copyright=
en-aut-name=KawaiTomoko
en-aut-sei=Kawai
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujimuraAtsushi
en-aut-sei=Fujimura
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=SAM/SAH metabolism
kn-keyword=SAM/SAH metabolism
en-keyword=Sperm motility
kn-keyword=Sperm motility
en-keyword=Fertilization rate
kn-keyword=Fertilization rate
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=2577
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250120
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Plasma S100A8/A9 level predicts response to immune checkpoint inhibitors in patients with advanced non-small cell lung cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Blood-based predictive markers for the efficacy of immune checkpoint inhibitors (ICIs) have not yet been established. We investigated the association of the plasma level of S100A8/A9 with the efficacy of immunotherapy. We evaluated patients with unresectable stage III/IV or recurrent non-small cell lung cancer (NSCLC) who were treated with ICIs at Okayama University Hospital. The pre-treatment plasma levels of S100A8/A9 were analyzed. Eighty-one eligible patients were included (median age, 69 years). Sixty-two patients were men, 54 had adenocarcinoma, 74 had performance status (PS) 0–1, and 47 received ICIs as first-line treatment. The median time to treatment failure (TTF) for ICIs was 5.7 months, and the median overall survival (OS) was 19.6 months. The TTF and OS were worse in patients with high plasma S100A8/A9 levels (≥ 2.475 µg/mL) (median TTF: 4.3 vs. 8.5 months, p = 0.009; median OS: 15.4 vs. 38.0 months, p = 0.001). Multivariate analysis revealed that PS ≥ 2, liver metastasis, and high plasma S100A8/A9 levels were significantly associated with short TTF and OS. In conclusion, plasma S100A8/A9 level may have a limited effect on ICI therapy for NSCLC.
en-copyright=
kn-copyright=
en-aut-name=KuribayashiTadahiro
en-aut-sei=Kuribayashi
en-aut-mei=Tadahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KinoshitaRie
en-aut-sei=Kinoshita
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NinomiyaKiichiro
en-aut-sei=Ninomiya
en-aut-mei=Kiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MakimotoGo
en-aut-sei=Makimoto
en-aut-mei=Go
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KuboToshio
en-aut-sei=Kubo
en-aut-mei=Toshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=RaiKammei
en-aut-sei=Rai
en-aut-mei=Kammei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IchiharaEiki
en-aut-sei=Ichihara
en-aut-mei=Eiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HottaKatsuyuki
en-aut-sei=Hotta
en-aut-mei=Katsuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TabataMasahiro
en-aut-sei=Tabata
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MaedaYoshinobu
en-aut-sei=Maeda
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KiuraKatsuyuki
en-aut-sei=Kiura
en-aut-mei=Katsuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=OhashiKadoaki
en-aut-sei=Ohashi
en-aut-mei=Kadoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Center for Clinical Oncology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=12
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital
kn-affil=
en-keyword=S100A8/A9
kn-keyword=S100A8/A9
en-keyword=Lung cancer
kn-keyword=Lung cancer
en-keyword=Immune checkpoint inhibitors
kn-keyword=Immune checkpoint inhibitors
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=1
article-no=
start-page=60
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250106
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Novel Drug Delivery Particles Can Provide Dual Effects on Cancer "Theranostics" in Boron Neutron Capture Therapy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Boron (B) neutron capture therapy (BNCT) is a novel non-invasive targeted cancer therapy based on the nuclear capture reaction 10B (n, alpha) 7Li that enables the death of cancer cells without damaging neighboring normal cells. However, the development of clinically approved boron drugs remains challenging. We have previously reported on self-forming nanoparticles for drug delivery consisting of a biodegradable polymer, namely, “AB-type” Lactosome® nanoparticles (AB-Lac particles)- highly loaded with hydrophobic B compounds, namely o-Carborane (Carb) or 1,2-dihexyl-o-Carborane (diC6-Carb), and the latter (diC6-Carb) especially showed the “molecular glue” effect. Here we present in vivo and ex vivo studies with human pancreatic cancer (AsPC-1) cells to find therapeutically optimal formulas and the appropriate treatment conditions for these particles. The biodistribution of the particles was assessed by the tumor/normal tissue ratio (T/N) in terms of tumor/muscle (T/M) and tumor/blood (T/B) ratios using near-infrared fluorescence (NIRF) imaging with indocyanine green (ICG). The in vivo and ex vivo accumulation of B delivered by the injected AB-Lac particles in tumor lesions reached a maximum by 12 h post-injection. Irradiation studies conducted both in vitro and in vivo showed that AB-Lac particles-loaded with either 10B-Carb or 10B-diC6-Carb significantly inhibited the growth of AsPC-1 cancer cells or strongly inhibited their growth, with the latter method being significantly more effective. Surprisingly, a similar in vitro and in vivo irradiation study showed that ICG-labeled AB-Lac particles alone, i.e., without any 10B compounds, also revealed a significant inhibition. Therefore, we expect that our ICG-labeled AB-Lac particles-loaded with 10B compound(s) may be a novel and promising candidate for providing not only NIRF imaging for a practical diagnosis but also the dual therapeutic effects of induced cancer cell death, i.e., “theranostics”.
en-copyright=
kn-copyright=
en-aut-name=FithroniAbdul Basith
en-aut-sei=Fithroni
en-aut-mei=Abdul Basith
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=InoueHaruki
en-aut-sei=Inoue
en-aut-mei=Haruki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ZhouShengli
en-aut-sei=Zhou
en-aut-mei=Shengli
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HakimTaufik Fatwa Nur
en-aut-sei=Hakim
en-aut-mei=Taufik Fatwa Nur
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TadaTakashi
en-aut-sei=Tada
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SuzukiMinoru
en-aut-sei=Suzuki
en-aut-mei=Minoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SakuraiYoshinori
en-aut-sei=Sakurai
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IshimotoManabu
en-aut-sei=Ishimoto
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YamadaNaoyuki
en-aut-sei=Yamada
en-aut-mei=Naoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SauriasariRani
en-aut-sei=Sauriasari
en-aut-mei=Rani
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=SauerweinWolfgang A. G.
en-aut-sei=Sauerwein
en-aut-mei=Wolfgang A. G.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=WatanabeKazunori
en-aut-sei=Watanabe
en-aut-mei=Kazunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=OhtsukiTakashi
en-aut-sei=Ohtsuki
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=MatsuuraEiji
en-aut-sei=Matsuura
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=6
en-affil=Institute for Integrated Radiation and Nuclear Science, Kyoto University
kn-affil=
affil-num=7
en-affil=Institute for Integrated Radiation and Nuclear Science, Kyoto University
kn-affil=
affil-num=8
en-affil=J-BEAM, Inc.
kn-affil=
affil-num=9
en-affil=Nihon Fukushi Fuiin Holding, Co., Ltd.
kn-affil=
affil-num=10
en-affil=Faculty of Pharmacy, Universitas Indonesia
kn-affil=
affil-num=11
en-affil=Deutsche Gesellschaft für Bor-Neutroneneinfangtherapie DGBNCT e.V., University Hospital Essen, Klinik für Strahlentherapie
kn-affil=
affil-num=12
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=13
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=14
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=boron neutron capture therapy (BNCT)
kn-keyword=boron neutron capture therapy (BNCT)
en-keyword=dual therapeutic effects
kn-keyword=dual therapeutic effects
en-keyword=Lactosome ®
kn-keyword=Lactosome ®
en-keyword=hydrophobic boron compound
kn-keyword=hydrophobic boron compound
en-keyword=neutron irradiation
kn-keyword=neutron irradiation
en-keyword=theranostics
kn-keyword=theranostics
END
start-ver=1.4
cd-journal=joma
no-vol=18
cd-vols=
no-issue=52
article-no=
start-page=35202
end-page=35213
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241216
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Bright Quantum-Grade Fluorescent Nanodiamonds
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Optically accessible spin-active nanomaterials are promising as quantum nanosensors for probing biological samples. However, achieving bioimaging-level brightness and high-quality spin properties for these materials is challenging and hinders their application in quantum biosensing. Here, we demonstrate bright fluorescent nanodiamonds (NDs) containing 0.6–1.3-ppm negatively charged nitrogen-vacancy (NV) centers by spin-environment engineering via enriching spin-less 12C-carbon isotopes and reducing substitutional nitrogen spin impurities. The NDs, readily introduced into cultured cells, exhibited improved optically detected magnetic resonance (ODMR) spectra; peak splitting (E) was reduced by 2–3 MHz, and microwave excitation power required was 20 times lower to achieve a 3% ODMR contrast, comparable to that of conventional type-Ib NDs. They show average spin-relaxation times of T1 = 0.68 ms and T2 = 3.2 μs (1.6 ms and 5.4 μs maximum) that were 5- and 11-fold longer than those of type-Ib, respectively. Additionally, the extended T2 relaxation times of these NDs enable shot-noise-limited temperature measurements with a sensitivity of approximately 0.28K/√Hz. The combination of bulk-like NV spin properties and enhanced fluorescence significantly improves the sensitivity of ND-based quantum sensors for biological applications.
en-copyright=
kn-copyright=
en-aut-name=OshimiKeisuke
en-aut-sei=Oshimi
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IshiwataHitoshi
en-aut-sei=Ishiwata
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakashimaHiromu
en-aut-sei=Nakashima
en-aut-mei=Hiromu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MandićSara
en-aut-sei=Mandić
en-aut-mei=Sara
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KobayashiHina
en-aut-sei=Kobayashi
en-aut-mei=Hina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TeramotoMinori
en-aut-sei=Teramoto
en-aut-mei=Minori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TsujiHirokazu
en-aut-sei=Tsuji
en-aut-mei=Hirokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NishibayashiYoshiki
en-aut-sei=Nishibayashi
en-aut-mei=Yoshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ShikanoYutaka
en-aut-sei=Shikano
en-aut-mei=Yutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=AnToshu
en-aut-sei=An
en-aut-mei=Toshu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=FujiwaraMasazumi
en-aut-sei=Fujiwara
en-aut-mei=Masazumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Chemistry, Graduate School of Life, Environmental, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=The National Institutes for Quantum Science and Technology (QST), Institute for Quantum Life Science (iQLS)
kn-affil=
affil-num=3
en-affil=Department of Chemistry, Graduate School of Life, Environmental, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Chemistry, Graduate School of Life, Environmental, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Chemistry, Graduate School of Life, Environmental, Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Advanced Materials Laboratory, Sumitomo Electric Industries, Ltd.
kn-affil=
affil-num=7
en-affil=Advanced Materials Laboratory, Sumitomo Electric Industries, Ltd.
kn-affil=
affil-num=8
en-affil=Advanced Materials Laboratory, Sumitomo Electric Industries, Ltd.
kn-affil=
affil-num=9
en-affil=Institute of Systems and Information Engineering, University of Tsukuba
kn-affil=
affil-num=10
en-affil=School of Materials Science, Japan Advanced Institute of Science and Technology
kn-affil=
affil-num=11
en-affil=Department of Chemistry, Graduate School of Life, Environmental, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=nanodiamonds
kn-keyword=nanodiamonds
en-keyword=nitrogen-vacancy centers
kn-keyword=nitrogen-vacancy centers
en-keyword=spins
kn-keyword=spins
en-keyword=spin-relaxation times
kn-keyword=spin-relaxation times
en-keyword=quantum biosensor
kn-keyword=quantum biosensor
en-keyword=cellular probes
kn-keyword=cellular probes
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=
article-no=
start-page=1439705
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241211
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=HOMA-beta independently predicts survival in patients with advanced cancer on treatment with immune checkpoint inhibitors
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Although immune checkpoint inhibitors (ICIs) are effective cancer drugs, ICI-induced diabetes is a rare but a life-threatening adverse event for patients. The deleterious action of ICI on pancreatic beta-cell function is a concern. However, the influence of ICI on insulin synthesis and secretion in patients with cancer without diabetes remains unknown.
Methods: This study included 87 patients diagnosed with advanced cancer. Glucose metabolism markers (HbA1c, HOMA-IR) and indicators of insulin secretory capacity (HOMA-beta, C-peptide) were prospectively evaluated in patients with ICI-treated cancers to determine their association with cancer prognosis.
Results: Patients with overall survival (OS) >= 7 months had substantially higher HOMA-beta levels at baseline (p=0.008) and 1 month after ICI administration (p=0.006) compared to those with OS <7 months. The median OS was significantly longer in patients with HOMA-beta >= 64.24 (13 months, 95%CI: 5.849-20.151, 37 events) than in those with HOMA-beta < 64.24 (5 months, 95%CI: 3.280-6.720, 50 events) (p=0.013). Further, the median progression-free survival (PFS) was significantly longer in patients with HOMA-beta >= 66.43 (4 months, 95%CI: 3.073-4.927, 33 events) than in those with HOMA-beta < 66.43 (2 months, 95%CI: 1.410-2.590, 54 events) (p=0.025). Additionally, multivariable logistic regression analysis revealed that a HOMA-beta value >= 64.24 independently predicted longer OS in ICI-treated patients.
Conclusions: Pre-ICI HOMA-beta level is linked to longer OS in ICI-treated patients. This connection is significant and shows that insulin secretory capacity may predict ICI efficacy.
en-copyright=
kn-copyright=
en-aut-name=WatanabeMayu
en-aut-sei=Watanabe
en-aut-mei=Mayu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=EguchiJun
en-aut-sei=Eguchi
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakamotoAtsushi
en-aut-sei=Takamoto
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KanzakiHiromitsu
en-aut-sei=Kanzaki
en-aut-mei=Hiromitsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NodaYohei
en-aut-sei=Noda
en-aut-mei=Yohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KagawaSyunsuke
en-aut-sei=Kagawa
en-aut-mei=Syunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Urology, Fukuyama City Hospital
kn-affil=
affil-num=4
en-affil=Department of Internal Medicine, Tsuyama Chuo Hospital
kn-affil=
affil-num=5
en-affil=Department of Urology, Fukuyama City Hospital
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=anti-PD1 immune checkpoint inhibitors
kn-keyword=anti-PD1 immune checkpoint inhibitors
en-keyword= insulin secretory capacity
kn-keyword= insulin secretory capacity
en-keyword= cancer prognosis
kn-keyword= cancer prognosis
en-keyword= insulin secretion
kn-keyword= insulin secretion
en-keyword= glucose metabolism markers
kn-keyword= glucose metabolism markers
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=24
article-no=
start-page=2045
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241211
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=iPSC-Derived Biological Pacemaker-From Bench to Bedside
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Induced pluripotent stem cell (iPSC)-derived biological pacemakers have emerged as an alternative to traditional electronic pacemakers for managing cardiac arrhythmias. While effective, electronic pacemakers face challenges such as device failure, lead complications, and surgical risks, particularly in children. iPSC-derived pacemakers offer a promising solution by mimicking the sinoatrial node's natural pacemaking function, providing a more physiological approach to rhythm control. These cells can differentiate into cardiomyocytes capable of autonomous electrical activity, integrating into heart tissue. However, challenges such as achieving cellular maturity, long-term functionality, and immune response remain significant barriers to clinical translation. Future research should focus on refining gene-editing techniques, optimizing differentiation, and developing scalable production processes to enhance the safety and effectiveness of these biological pacemakers. With further advancements, iPSC-derived pacemakers could offer a patient-specific, durable alternative for cardiac rhythm management. This review discusses key advancements in differentiation protocols and preclinical studies, demonstrating their potential in treating dysrhythmias.
en-copyright=
kn-copyright=
en-aut-name=VoQuan Duy
en-aut-sei=Vo
en-aut-mei=Quan Duy
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakamuraKazufumi
en-aut-sei=Nakamura
en-aut-mei=Kazufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SaitoYukihiro
en-aut-sei=Saito
en-aut-mei=Yukihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IidaToshihiro
en-aut-sei=Iida
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YoshidaMasashi
en-aut-sei=Yoshida
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AmiokaNaofumi
en-aut-sei=Amioka
en-aut-mei=Naofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=AkagiSatoshi
en-aut-sei=Akagi
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MiyoshiToru
en-aut-sei=Miyoshi
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YuasaShinsuke
en-aut-sei=Yuasa
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Medicine, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Cardiovascular Medicine, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=sinoatrial node
kn-keyword=sinoatrial node
en-keyword=HCN channels
kn-keyword=HCN channels
en-keyword=induced pluripotent stem cell
kn-keyword=induced pluripotent stem cell
END
start-ver=1.4
cd-journal=joma
no-vol=169
cd-vols=
no-issue=1
article-no=
start-page=e16291
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241222
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Exploring the Role of Ccn3 in Type III Cell of Mice Taste Buds
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Different taste cells express unique cell-type markers, enabling researchers to distinguish them and study their functional differentiation. Using single-cell RNA-Seq of taste cells in mouse fungiform papillae, we found that Cellular Communication Network Factor 3 (Ccn3) was highly expressed in Type III taste cells but not in Type II taste cells. Ccn3 is a protein-coding gene involved in various biological processes, such as cell proliferation, angiogenesis, tumorigenesis, and wound healing. Therefore, in this study, we aimed to explore the expression and function of Ccn3 in mouse taste bud cells. Using reverse transcription polymerase chain reaction (RT-PCR), in situ hybridization, and immunohistochemistry (IHC), we confirmed that Ccn3 was predominantly expressed in Type III taste cells. Through IHC, quantitative real-time RT-PCR, gustatory nerve recordings, and short-term lick tests, we observed that Ccn3 knockout (Ccn3-KO) mice did not exhibit any significant differences in the expression of taste cell markers and taste responses compared to wild-type controls. To explore the function of Ccn3 in taste cells, bioinformatics analyses were conducted and predicted possible roles of Ccn3 in tissue regeneration, perception of pain, protein secretion, and immune response. Among them, an immune function is the most plausible based on our experimental results. In summary, our study indicates that although Ccn3 is strongly expressed in Type III taste cells, its knockout did not influence the basic taste response, but bioinformatics provided valuable insights into the possible role of Ccn3 in taste buds and shed light on future research directions.
en-copyright=
kn-copyright=
en-aut-name=WangKuanyu
en-aut-sei=Wang
en-aut-mei=Kuanyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MitohYoshihiro
en-aut-sei=Mitoh
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HorieKengo
en-aut-sei=Horie
en-aut-mei=Kengo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YoshidaRyusuke
en-aut-sei=Yoshida
en-aut-mei=Ryusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Oral Physiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Oral Physiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral Physiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Oral Physiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=bioinformatics
kn-keyword=bioinformatics
en-keyword=Ccn3
kn-keyword=Ccn3
en-keyword=Type III taste cell
kn-keyword=Type III taste cell
END
start-ver=1.4
cd-journal=joma
no-vol=145
cd-vols=
no-issue=8
article-no=
start-page=881
end-page=896
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250220
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Oral Inflammation and Microbiome Dysbiosis Exacerbate Chronic Graft-versus-host Disease
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The oral microbiota, second in abundance to the gut, is implicated in chronic systemic diseases, but its specific role in graft-versus-host disease (GVHD) pathogenesis has been unclear. Our study finds that mucositis-induced oral dysbiosis in patients after hematopoietic cell transplantation (HCT) associated with increased chronic GVHD (cGVHD), even in patients receiving posttransplant cyclophosphamide. In murine HCT models, oral dysbiosis caused by bilateral molar ligatures exacerbated cGVHD and increased bacterial load in the oral cavity and gut, with Enterococcaceae significantly increasing in both organs. In this model, the migration of Enterococcaceae to cervical lymph nodes both before and after transplantation activated antigen-presenting cells, thereby promoting the expansion of donor-derived inflammatory T cells. Based on these results, we hypothesize that pathogenic bacteria increase in the oral cavity might not only exacerbate local inflammation but also enhance systemic inflammation throughout the HCT course. Additionally, these bacteria translocated to the gut and formed ectopic colonies, further amplifying systemic inflammation. Furthermore, interventions targeting the oral microbiome mitigated murine cGVHD. Collectively, our findings highlight the importance of oral dysbiosis in cGVHD and suggest that modulation of the oral microbiome during transplantation may be an effective approach for preventing or treating cGVHD.
en-copyright=
kn-copyright=
en-aut-name=KambaraYui
en-aut-sei=Kambara
en-aut-mei=Yui
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujiwaraHideaki
en-aut-sei=Fujiwara
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamamotoAkira
en-aut-sei=Yamamoto
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=GotohKazuyoshi
en-aut-sei=Gotoh
en-aut-mei=Kazuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TsujiShuma
en-aut-sei=Tsuji
en-aut-mei=Shuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KunihiroMari
en-aut-sei=Kunihiro
en-aut-mei=Mari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OyamaTadashi
en-aut-sei=Oyama
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TeraoToshiki
en-aut-sei=Terao
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SatoAyame
en-aut-sei=Sato
en-aut-mei=Ayame
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=PeltierDaniel
en-aut-sei=Peltier
en-aut-mei=Daniel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=SeikeKeisuke
en-aut-sei=Seike
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=NishimoriHisakazu
en-aut-sei=Nishimori
en-aut-mei=Hisakazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=AsadaNoboru
en-aut-sei=Asada
en-aut-mei=Noboru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=EnnishiDaisuke
en-aut-sei=Ennishi
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=FujiiKeiko
en-aut-sei=Fujii
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=FujiiNobuharu
en-aut-sei=Fujii
en-aut-mei=Nobuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=MatsuokaKen-ichi
en-aut-sei=Matsuoka
en-aut-mei=Ken-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=SogaYoshihiko
en-aut-sei=Soga
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=ReddyPavan
en-aut-sei=Reddy
en-aut-mei=Pavan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=YoshinobuMaeda
en-aut-sei=Yoshinobu
en-aut-mei=Maeda
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
affil-num=1
en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Medical School
kn-affil=
affil-num=2
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Medical Laboratory Science, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=5
en-affil=Department of Microbiology and Genetics, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=6
en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Division of Hospital Dentistry, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Pathology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Division of Pediatric Hematology, Oncology, and Stem Cell Transplantation, Department of Pediatrics, Herman B Wells Center for Pediatric Research, Simon Cancer Center, Indiana University School of Medicine
kn-affil=
affil-num=12
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=13
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=14
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=15
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=16
en-affil=Department of Clinical Laboratory, Okayama University Hospital
kn-affil=
affil-num=17
en-affil=Division of Blood Transfusion, Okayama University Hospital
kn-affil=
affil-num=18
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=19
en-affil=Division of Hospital Dentistry, Okayama University Hospital
kn-affil=
affil-num=20
en-affil=Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine
kn-affil=
affil-num=21
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=44
cd-vols=
no-issue=2
article-no=
start-page=249
end-page=260
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241005
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Loss of Nr4a1 ameliorates endothelial cell injury and vascular leakage in lung transplantation from circulatory-death donor
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Ischemia-reperfusion injury (IRI) stands as a major trigger for primary graft dysfunction (PGD) in lung transplantation (LTx). Especially in LTx from donation after cardiac death (DCD), effective control of IRI following warm ischemia (WIRI) is crucial to prevent PGD. This study aimed to identify the key factors affecting WIRI in LTx from DCD.
Methods: Previously reported RNA-sequencing dataset of lung WIRI was reanalyzed to identify nuclear receptor subfamily 4 group A member 1 (NR4A1) as the immediate early gene for WIRI. Dynamics of NR4A1 expression were verified using a mouse hilar clamp model. To investigate the role of NR4A1 in WIRI, a mouse model of LTx from DCD was established using Nr4a1 knockout (Nr4a1−/−) mice.
Results: NR4A1 was located around vascular cells, and its protein levels in the lungs increased rapidly and transiently during WIRI. LTx from Nr4a1−/− donors significantly improved pulmonary graft function compared to wild-type donors. Histological analysis showed decreased microvascular endothelial cell death, neutrophil infiltration, and albumin leakage. Evans blue permeability assay demonstrated maintained pulmonary microvascular barrier integrity in grafts from Nr4a1−/− donors, correlating with diminished pulmonary edema. However, NR4A1 did not significantly affect the inflammatory response during WIRI, and IRI was not suppressed when a wild-type donor lung was transplanted into the Nr4a1−/− recipient.
Conclusions: Donor NR4A1 plays a specialized role in the positive regulation of endothelial cell injury and microvascular hyperpermeability. These findings demonstrate the potential of targeting NR4A1 interventions to alleviate PGD and improve outcomes in LTx from DCD.
en-copyright=
kn-copyright=
en-aut-name=KawanaShinichi
en-aut-sei=Kawana
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkazakiMikio
en-aut-sei=Okazaki
en-aut-mei=Mikio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SakaueTomohisa
en-aut-sei=Sakaue
en-aut-mei=Tomohisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HashimotoKohei
en-aut-sei=Hashimoto
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakataKentaro
en-aut-sei=Nakata
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ChoshiHaruki
en-aut-sei=Choshi
en-aut-mei=Haruki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TanakaShin
en-aut-sei=Tanaka
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MiyoshiKentaroh
en-aut-sei=Miyoshi
en-aut-mei=Kentaroh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OhtaniShinji
en-aut-sei=Ohtani
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OharaToshiaki
en-aut-sei=Ohara
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=SugimotoSeiichiro
en-aut-sei=Sugimoto
en-aut-mei=Seiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MatsukawaAkihiro
en-aut-sei=Matsukawa
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Surgery, Division of Cardiovascular and Thoracic Surgery, Duke University School of Medicine
kn-affil=
affil-num=6
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Cell Growth and Tumor Regulation, Proteo-Science Center (PROS), Ehime University
kn-affil=
affil-num=10
en-affil=Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=lung transplantation
kn-keyword=lung transplantation
en-keyword=ischemia-reperfusion injury
kn-keyword=ischemia-reperfusion injury
en-keyword=donation after circulatory death
kn-keyword=donation after circulatory death
en-keyword=nuclear receptor subfamily 4 group A member 1
kn-keyword=nuclear receptor subfamily 4 group A member 1
en-keyword=endothelial cell
kn-keyword=endothelial cell
END
start-ver=1.4
cd-journal=joma
no-vol=226
cd-vols=
no-issue=
article-no=
start-page=158
end-page=166
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240915
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The impact of cumulus cell viability and pre-culture with the healthy cell mass on brilliant cresyl blue (BCB) staining assessment and meiotic competence of suboptimal porcine oocytes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objectives of the present study were to investigate the characteristics including glucose-6-phosphate dehydrogenase activity, as determined by Brilliant Cresyl Blue (BCB) staining, of suboptimal porcine oocytes and to enhance the meiotic competence of those through pre-culture with cumulus cell masses (CCMs). Percentage of oocyte-cumulus complexes (OCCs) derived from small follicles (SF; <3 mm in diameter) containing the oocytes that were assessed as BCB-negative (BCB-) was significantly higher than those derived from medium follicles (MF; 3–6 mm in diameter). Degrees of dead cumulus cells were significantly higher in OCCs containing BCB- oocytes, regardless of the origin of OCCs (MF vs. SF), than those containing BCB-positive (BCB+) ones. Exposing OCCs containing BCB+ oocytes to the apoptosis inducer, carbonyl cyanide m-chlorophenylhydrazone, for 20 h significantly induced the transition to BCB- and meiotic progression of exposed OCCs were significantly reduced in both SF and MF derived ones. Transit of BCB- oocytes to BCB+ was induced when OCCs were pre-cultured with CCMs of MF derived OCCs containing BCB+ oocytes for 20 h before IVM. This pre-culture also significantly increased the meiotic competence of BCB- oocytes, particularly in SF derived ones. However, reactive oxygen species levels were significantly higher in BCB+ oocytes as compared with BCB- ones, regardless of pre-culture with CCMs, whereas no significant differences were found in the ATP contents among the treatment groups. In conclusion, the BCB result of oocytes could be regulated by the healthy status and content of surrounding cumulus cells and the meiotic competence of suboptimal BCB- porcine oocytes is improved by pre-culture with healthy CCMs.
en-copyright=
kn-copyright=
en-aut-name=FonsekaWanniarachchige Tharindu Lakshitha
en-aut-sei=Fonseka
en-aut-mei=Wanniarachchige Tharindu Lakshitha
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=DoSon Quang
en-aut-sei=Do
en-aut-mei=Son Quang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=VanPhong Ngoc
en-aut-sei=Van
en-aut-mei=Phong Ngoc
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NguyenHai Thanh
en-aut-sei=Nguyen
en-aut-mei=Hai Thanh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WakaiTakuya
en-aut-sei=Wakai
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FunahashiHiroaki
en-aut-sei=Funahashi
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=Oocytes
kn-keyword=Oocytes
en-keyword=Meiotic competence
kn-keyword=Meiotic competence
en-keyword=Brilliant cresyl blue
kn-keyword=Brilliant cresyl blue
en-keyword=Cumulus cells
kn-keyword=Cumulus cells
END
start-ver=1.4
cd-journal=joma
no-vol=31
cd-vols=
no-issue=1
article-no=
start-page=102494
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Cryptococcal prostatitis in an immunocompromised patient with tocilizumab and glucocorticoid therapy: A case report
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Cryptococcus prostatitis is an uncommon manifestation of cryptococcal infection that occurs mostly in immunocompromised patients. Tocilizumab, an anti-interleukin-6 receptor monoclonal antibody, has been associated with an increased risk of cryptococcal infections. However, there have been no documented cases of cryptococcal prostatitis in patients receiving tocilizumab therapy. We report a case of cryptococcal prostatitis in a 72-year-old man treated with glucocorticoids and tocilizumab for giant cell arteritis and granulomatosis with polyangiitis. The patient presented dysuria and his serum level of prostate-specific antigen was elevated. Magnetic resonance imaging revealed a prostate mass, and a prostate biopsy was performed, leading to a pathologic diagnosis of cryptococcal prostatitis. Fungal cultures for blood and urine were negative, while the cryptococcal antigen for both serum and urine showed positive results. There were no particular findings in the pulmonary and central nervous systems. The patient was successfully treated with oral fluconazole (400 mg/day) and was discharged. Although cryptococcal prostatitis is a rare entity, clinicians should note that an immunosuppressed patient may develop such a difficult-to-diagnose disease.
en-copyright=
kn-copyright=
en-aut-name=OguniKohei
en-aut-sei=Oguni
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FukushimaShinnosuke
en-aut-sei=Fukushima
en-aut-mei=Shinnosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HagiyaHideharu
en-aut-sei=Hagiya
en-aut-mei=Hideharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KatoAtsushi
en-aut-sei=Kato
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SuyamaAtsuhito
en-aut-sei=Suyama
en-aut-mei=Atsuhito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IwataTakehiro
en-aut-sei=Iwata
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MiyawakiYoshia
en-aut-sei=Miyawaki
en-aut-mei=Yoshia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OnoSawako
en-aut-sei=Ono
en-aut-mei=Sawako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IioKoji
en-aut-sei=Iio
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OtsukaFumio
en-aut-sei=Otsuka
en-aut-mei=Fumio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Infectious Diseases, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Pathology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Microbiology Division, Clinical Laboratory, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Cryptococcosis
kn-keyword=Cryptococcosis
en-keyword=Fluconazole
kn-keyword=Fluconazole
en-keyword=Glucocorticoids
kn-keyword=Glucocorticoids
en-keyword=Prostatitis
kn-keyword=Prostatitis
en-keyword=Tocilizumab
kn-keyword=Tocilizumab
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=1
article-no=
start-page=e70097
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250107
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Eyelid Spindle Cell Lipoma: Case Report and Review of Three Patients in Literature
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A 39-year-old woman presented a saucer-shaped mass in the left upper eyelid and underwent the extirpation at local anesthesia. Pathologically, collagen fibers, capillaries, small vessels, and CD34-positive spindle cells were dispersed among mature adipose tissues, indicative of spindle cell lipoma. Long-lasting cyst-like eyelid masses would be usually dermoid cysts, and spindle cell lipoma would be listed as a rare pathological diagnosis in differential diagnoses of cyst-like lesions in the upper and lower eyelid.
en-copyright=
kn-copyright=
en-aut-name=MatsuoToshihiko
en-aut-sei=Matsuo
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamadaKiyoshi
en-aut-sei=Yamada
en-aut-mei=Kiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MonobeYasumasa
en-aut-sei=Monobe
en-aut-mei=Yasumasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Plastic and Reconstructive Surgery, Kousei Hospital
kn-affil=
affil-num=3
en-affil=Department of Pathology, General Medical Center, Kawasaki Medical School
kn-affil=
affil-num=4
en-affil=Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=CD34
kn-keyword=CD34
en-keyword=eyelid
kn-keyword=eyelid
en-keyword=orbital bony edge
kn-keyword=orbital bony edge
en-keyword=pathology
kn-keyword=pathology
en-keyword=spindle cell lipoma
kn-keyword=spindle cell lipoma
END
start-ver=1.4
cd-journal=joma
no-vol=45
cd-vols=
no-issue=1
article-no=
start-page=11
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230323
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Mutation and apoptosis are well-coordinated for protecting against DNA damage-inducing toxicity in Drosophila
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Apoptotic cell death is an important survival system for multicellular organisms because it removes damaged cells. Mutation is also a survival method for dealing with damaged cells in multicellular and also unicellular organisms, when DNA lesions are not removed. However, to the best of our knowledge, no reports have comprehensively explored the direct relationship between apoptosis and somatic cell mutations induced by various mutagenic factors.
Results Mutation was examined by the wing-spot test, which is used to detect somatic cell mutations, including chromosomal recombination. Apoptosis was observed in the wing discs by acridine orange staining in situ. After treatment with chemical mutagens, ultraviolet light (UV), and X-ray, both the apoptotic frequency and mutagenic activity increased in a dose-dependent manner at non-toxic doses. When we used DNA repair-deficient Drosophila strains, the correlation coefficient of the relationship between apoptosis and mutagenicity, differed from that of the wild-type. To explore how apoptosis affects the behavior of mutated cells, we determined the spot size, i.e., the number of mutated cells in a spot. In parallel with an increase in apoptosis, the spot size increased with MNU or X-ray treatment dose-dependently; however, this increase was not seen with UV irradiation. In addition, BrdU incorporation, an indicator of cell proliferation, in the wing discs was suppressed at 6 h, with peak at 12 h post-treatment with X-ray, and that it started to increase again at 24 h; however, this was not seen with UV irradiation.
Conclusion Damage-induced apoptosis and mutation might be coordinated with each other, and the frequency of apoptosis and mutagenicity are balanced depending on the type of DNA damage. From the data of the spot size and BrdU incorporation, it is possible that mutated cells replace apoptotic cells due to their high frequency of cell division, resulting in enlargement of the spot size after MNU or X-ray treatment. We consider that the induction of mutation, apoptosis, and/or cell growth varies in multi-cellular organisms depending on the type of the mutagens, and that their balance and coordination have an important function to counter DNA damage for the survival of the organism.
en-copyright=
kn-copyright=
en-aut-name=Toyoshima-SasataniMegumi
en-aut-sei=Toyoshima-Sasatani
en-aut-mei=Megumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ImuraFumika
en-aut-sei=Imura
en-aut-mei=Fumika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HamatakeYuko
en-aut-sei=Hamatake
en-aut-mei=Yuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FukunagaAkihiro
en-aut-sei=Fukunaga
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NegishiTomoe
en-aut-sei=Negishi
en-aut-mei=Tomoe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=School of Nursing, Osaka City University
kn-affil=
affil-num=5
en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Drosophila
kn-keyword=Drosophila
en-keyword=Apoptosis
kn-keyword=Apoptosis
en-keyword=Mutation
kn-keyword=Mutation
en-keyword=Larval wing disc
kn-keyword=Larval wing disc
en-keyword=X-ray
kn-keyword=X-ray
en-keyword=Ultraviolet
kn-keyword=Ultraviolet
en-keyword=Alkylating agents
kn-keyword=Alkylating agents
en-keyword=Tobacco smoke
kn-keyword=Tobacco smoke
en-keyword=Acridine orange
kn-keyword=Acridine orange
en-keyword=BrdU
kn-keyword=BrdU
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=04
article-no=
start-page=E351
end-page=E357
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230213
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Degree of pharyngeal deformation caused by pharyngeal endoscopic submucosal dissection is associated with the incidence of aspiration pneumonia
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background and study aims Endoscopic submucosal dissection (ESD) is one of the most minimally invasive treatments for superficial squamous cell cancer of the pharynx. However, aspiration pneumonia (AsP) associated with postoperative deformity of the pharynx may occur. The purpose of this study was to investigate the frequency of AsP and the degree of pharyngeal deformity after pharyngeal ESD.
Patients and methods This was a retrospective observational study of patients who underwent pharyngeal ESD at Okayama University Hospital between 2006 and 2017. The degree of pharyngeal deformation was assessed using the pharyngeal deformation grade (PDG). The primary endpoint was the frequency of AsP as a long-term adverse event.
Results Among the 52 patients enrolled, nine developed aspiration pneumonia, with a 3-year cumulative incidence of 9.0 % (95 % confidence interval [CI], 3.3 %–22.0 %). There were 16, 18, 16, and two patients that had PDG 0, 1, 2, and 3, respectively. Patients with a history of radiotherapy, as a treatment of head and neck cancer (44.4 % vs. 11.6 %; P = 0.02) and the high PDG group (PDG 2 and 3) (77.8 % vs. 25.6 %; P = 0.005) had a significantly higher incidence of AsP. The 3-year cumulative incidence rate of AsP after ESD in the high PDG group was significantly higher than that in the low PDG group (PDG 0 and 1) (23.9 % [95 %CI, 9.2.–49.5%] vs. 0 %; P = 0.03).
Conclusions The incidence of aspiration pneumonia in the long-term course after pharyngeal ESD was revealed. The incidence of aspiration pneumonia may be associated with pharyngeal deformity, but further studies are needed.
en-copyright=
kn-copyright=
en-aut-name=AbeMakoto
en-aut-sei=Abe
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawaharaYoshiro
en-aut-sei=Kawahara
en-aut-mei=Yoshiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ObayashiYuka
en-aut-sei=Obayashi
en-aut-mei=Yuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=BabaYuki
en-aut-sei=Baba
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HamadaKenta
en-aut-sei=Hamada
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SakaeHiroyuki
en-aut-sei=Sakae
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KonoYoshiyasu
en-aut-sei=Kono
en-aut-mei=Yoshiyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KanzakiHiromitu
en-aut-sei=Kanzaki
en-aut-mei=Hiromitu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IwamuroMasaya
en-aut-sei=Iwamuro
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KawanoSeiji
en-aut-sei=Kawano
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MakinoTakuma
en-aut-sei=Makino
en-aut-mei=Takuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NodaYohei
en-aut-sei=Noda
en-aut-mei=Yohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MarunakaHidenori
en-aut-sei=Marunaka
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=OkadaHiroyuki
en-aut-sei=Okada
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Otolaryngology-Head & Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Otolaryngology-Head & Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Otolaryngology-Head & Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=33
cd-vols=
no-issue=4
article-no=
start-page=213
end-page=218
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=2024
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=β-catenin Binds to Gsk-3β in Liquid-Liquid Phase Separation Compartment in HEK293 Cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Liquid-liquid phase separation (LLPS) has emerged as a significant mechanism for cellular organization, impacting various biological processes, including Wnt/β-catenin signaling. This study investigates the role of LLPS in the regulation of β-catenin in HEK293 cells, particularly in response to Wnt3a signaling. Our findings demonstrate that β-catenin is regulated by LLPS, forming spherical droplets indicative of this phenomenon. Fluorescence recovery after photobleaching (FRAP) assays revealed that these droplets exhibit reversible dynamics, further confirming their phase-separated nature. Importantly, treatment with Wnt3a led to an increase in β-catenin levels, while simultaneously reducing the recovery of fluorescence intensity in FRAP experiments, suggesting that enhanced Wnt signaling may stimulate the release of β-catenin from LLPS. Immunoprecipitation studies indicated that β-catenin binds to glycogen synthase kinase 3β (Gsk-3β) within the LLPS state, highlighting a potential regulatory mechanism whereby LLPS facilitates the phosphorylation and subsequent degradation of β-catenin. The addition of 1,6-hexanediol disrupted the β-catenin/Gsk-3β interaction, reinforcing the idea that LLPS plays a critical role in modulating these biochemical interactions. The findings presented in this study suggest that LLPS is not only crucial for the spatial organization of β-catenin but also serves as a regulatory mechanism for its signaling functions in the Wnt pathway. Given the association of aberrant Wnt signaling with various diseases, including cancer and neurodegenerative disorders, understanding the role of LLPS in this context may provide new insights into therapeutic strategies targeting these pathological conditions.
en-copyright=
kn-copyright=
en-aut-name=KatoMari
en-aut-sei=Kato
en-aut-mei=Mari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanaiAiri
en-aut-sei=Tanai
en-aut-mei=Airi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FukuharaYoko
en-aut-sei=Fukuhara
en-aut-mei=Yoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ZhengXinyu
en-aut-sei=Zheng
en-aut-mei=Xinyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SitosariHeriati
en-aut-sei=Sitosari
en-aut-mei=Heriati
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamamotoTadashi
en-aut-sei=Yamamoto
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IkegameMika
en-aut-sei=Ikegame
en-aut-mei=Mika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OkamuraHirohiko
en-aut-sei=Okamura
en-aut-mei=Hirohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=The Center for Graduate Medical Education (Dental Division), Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=β-catenin
kn-keyword=β-catenin
en-keyword=Gsk-3β
kn-keyword=Gsk-3β
en-keyword=LLPS
kn-keyword=LLPS
en-keyword=Wnt
kn-keyword=Wnt
END
start-ver=1.4
cd-journal=joma
no-vol=136
cd-vols=
no-issue=3
article-no=
start-page=97
end-page=99
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241202
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=The 2023 Incentive Award of the Okayama Medical Association in Cardiovascular and Pulmonary Research (2023 Sunada Prize)
kn-title=令和5年度岡山医学会賞 胸部・循環研究奨励賞(砂田賞)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=TaniguchiAkihiko
en-aut-sei=Taniguchi
en-aut-mei=Akihiko
kn-aut-name=谷口暁彦
kn-aut-sei=谷口
kn-aut-mei=暁彦
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Hematology, Oncology, Allergy and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=岡山大学大学院医歯薬学総合研究科 血液・腫瘍・呼吸器内科学
END
start-ver=1.4
cd-journal=joma
no-vol=126
cd-vols=
no-issue=
article-no=
start-page=110572
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Laparoscopic resection for oesophageal duplication cyst: A case report
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction: Oesophageal duplication cyst is a congenital malformation and rare tumour, clinically manifesting as dysphagia, epigastric pain, or respiratory distress. Duplicate cysts associated with abscess formation or mediastinal penetration and malignancies have been reported, necessitating surgical resection.
Presentation of case: A 55-year-old woman had chest discomfort for 1 year. Preoperative imaging, including computed tomography (CT), upper gastrointestinal endoscopy, and endoscopic ultrasound, revealed a tumour extending from the anterior wall to the lesser curvature of the near the oesophagogastric junction (OGJ) and a suspected mural nodule within the tumour. Contrast-enhanced CT revealed a cystic nodule on the wall of the lesser curvature of the OGJ, with an unclear boundary between the cystic nodule and the oesophageal wall. Magnetic resonance imaging showed an isointense signal on T1-weighted imaging and hyperintensity on T2weighted imaging. Laparoscopic lower oesophagectomy and proximal gastrectomy with lymph node dissection were performed to the confirm mucinous cyst. Pathological findings revealed a cystic lesion in the muscularis propria of the OGJ filled with mucinous components and lined with multilayered columnar epithelial cells. The cyst was diagnosed as a duplicate without malignancy.
Discussion: Since the border between the cyst and the oesophageal walls was unclear, and the cyst potentially contained a malignant component, instead of cystectomy, lower oesophagectomy and proximal gastrectomy with lymph node dissection were performed with oesophagogastric anastomosis using the double-flap technique, tailored specifically for OGJ cancer.
Conclusions: Oesophageal duplication cysts are rare. Lower oesophagectomy and proximal gastrectomy are selective surgical approaches for cyst duplication at the OGJ.
en-copyright=
kn-copyright=
en-aut-name=HamazakiTomohiro
en-aut-sei=Hamazaki
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NomaKazuhiro
en-aut-sei=Noma
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KawasakiKento
en-aut-sei=Kawasaki
en-aut-mei=Kento
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HashimotoMasashi
en-aut-sei=Hashimoto
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TanabeShunsuke
en-aut-sei=Tanabe
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Oesophageal duplication cyst
kn-keyword=Oesophageal duplication cyst
en-keyword=Laparoscopic surgery
kn-keyword=Laparoscopic surgery
en-keyword=Lower oesophagectomy
kn-keyword=Lower oesophagectomy
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=1
article-no=
start-page=28
end-page=36
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Local Control of Conjunctival Malignant Melanoma by Proton Beam Therapy in a Patient With No Metastasis in Six Years From in Situ to Nodular Lesions
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Conjunctival malignant melanoma is extremely rare, with no standard of care established at moment. Here we report a 65-year-old woman, as a hepatitis B virus (HBV) carrier, who presented concurrently a liver mass and lower bulbar conjunctival pigmented lesions in the right eye. Needle liver biopsy and excisional conjunctival biopsy showed hepatocellular carcinoma and conjunctival malignant melanoma in situ, respectively. The priority was given to segmental liver resection for hepatocellular carcinoma after transcatheter arterial chemoembolization. In 1 year, she underwent second and third resection of bulbar conjunctival pigmented lesions, and the pathological examinations constantly showed melanoma in situ. In the course, she showed gradual widening of pigmented lesions to upper bulbar conjunctiva and lower palpebral conjunctiva and lower eyelid. About 2.5 years from the initial visit, the lower eyelid lesion was resected for a genomic DNA-based test of BRAF mutations which turned out to be absent, and then, she began to have intravenous anti-programmed cell death-1 (PD-1), nivolumab every 3 or 4 weeks. She developed iritis in the right eye with conjunctival melanoma as an immune-related adverse event, 3 months after the beginning of nivolumab, and so she used daily topical 0.1% betamethasone eye drops to control the intraocular inflammation. She showed no metastasis in 6 years of follow-up, but later in the course, 5 years from the initial visit, she developed abruptly a non-pigmented nodular lesion on the temporal side of the bulbar conjunctiva along the corneal limbus, accompanied by two pigmented nodular lesions in the upper and lower eyelids in a few months. She thus, underwent proton beam therapy toward the conjunctival melanoma and achieved the successful local control. Proton beam therapy is a treatment option in place of orbital exenteration, and multidisciplinary team collaboration is desirable to achieve better cosmetic and functional outcomes in conjunctival malignant melanoma.
en-copyright=
kn-copyright=
en-aut-name=MatsuoToshihiko
en-aut-sei=Matsuo
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OgataTakeshi
en-aut-sei=Ogata
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WakiTakahiro
en-aut-sei=Waki
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TachibanaKota
en-aut-sei=Tachibana
en-aut-mei=Kota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FujiTomokazu
en-aut-sei=Fuji
en-aut-mei=Tomokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=AdachiTakuya
en-aut-sei=Adachi
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YamasakiOsamu
en-aut-sei=Yamasaki
en-aut-mei=Osamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Regenerative and Reconstructive Medicine (Ophthalmology), Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Radiology, Proton Beam Center, Tsuyama Chuo Hospital
kn-affil=
affil-num=3
en-affil=Department of Radiology, Proton Beam Center, Tsuyama Chuo Hospital
kn-affil=
affil-num=4
en-affil=Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Dermatology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Dermatology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Ocular surface
kn-keyword=Ocular surface
en-keyword=Conjunctiva
kn-keyword=Conjunctiva
en-keyword=Malignant melanoma
kn-keyword=Malignant melanoma
en-keyword=Proton beam therapy
kn-keyword=Proton beam therapy
en-keyword=Nivolumab
kn-keyword=Nivolumab
en-keyword=PD-1 inhibitor
kn-keyword=PD-1 inhibitor
en-keyword=Immune checkpoint inhibitor
kn-keyword=Immune checkpoint inhibitor
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=23
article-no=
start-page=4089
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241206
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Frequency and Significance of Body Weight Loss During Immunochemotherapy in Patients with Advanced Non-Small Cell Lung Cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Limited data are available on the frequency and significance of body weight loss during cancer therapy. This study investigated the frequency of patients who experienced body weight loss during immune checkpoint inhibitor (ICI) plus chemotherapy for advanced non-small cell lung cancer (NSCLC) and the impact of weight loss on treatment outcomes. Methods: Using the clinical data of 370 patients with NSCLC who received a combination of ICI and chemotherapy at 13 institutions, this study investigated the frequency of body weight loss > 5% during treatment and determined the impact of body weight loss on patient outcomes. Results: Of the 370 included patients, 141 (38.1%) lost more than 5% of their body weight during ICI plus chemotherapy (WL group). The 2-month landmark analysis showed that patients who experienced body weight loss of >5% during treatment had worse overall survival (OS) and progression-free survival (PFS) than those who did not (OS 14.0 and 31.1 months in the WL non-WL groups, respectively, p < 0.001; PFS 6.8 and 10.9 months in the WL non-WL groups, respectively, p = 0.002). Furthermore, a negative impact of body weight loss on survival was observed even in those who had obesity (body mass index [BMI] >= 25.0) at the start of therapy (OS 12.8 and 25.4 months in the WL non-WL groups, respectively, p < 0.001; PFS 5.7 and 10.7 months in the WL non-WL groups, respectively, p = 0.038). Conclusions: In conclusion, weight loss of >5% during ICI plus chemotherapy negatively influenced patient outcomes. Further and broader studies should investigate the role of nutritional status, specifically weight change and nutritional support, in responsiveness to ICI plus chemotherapy.
en-copyright=
kn-copyright=
en-aut-name=TaokaMasataka
en-aut-sei=Taoka
en-aut-mei=Masataka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IchiharaEiki
en-aut-sei=Ichihara
en-aut-mei=Eiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YokoyamaToshihide
en-aut-sei=Yokoyama
en-aut-mei=Toshihide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=InoueKoji
en-aut-sei=Inoue
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TamuraTomoki
en-aut-sei=Tamura
en-aut-mei=Tomoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SatoAkiko
en-aut-sei=Sato
en-aut-mei=Akiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OdaNaohiro
en-aut-sei=Oda
en-aut-mei=Naohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KanoHirohisa
en-aut-sei=Kano
en-aut-mei=Hirohisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NakamuraKayo
en-aut-sei=Nakamura
en-aut-mei=Kayo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KawaiHaruyuki
en-aut-sei=Kawai
en-aut-mei=Haruyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=InoueMasaaki
en-aut-sei=Inoue
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=OchiNobuaki
en-aut-sei=Ochi
en-aut-mei=Nobuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=FujimotoNobukazu
en-aut-sei=Fujimoto
en-aut-mei=Nobukazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=IchikawaHirohisa
en-aut-sei=Ichikawa
en-aut-mei=Hirohisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=AndoChihiro
en-aut-sei=Ando
en-aut-mei=Chihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=OzeIsao
en-aut-sei=Oze
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=KiuraKatsuyuki
en-aut-sei=Kiura
en-aut-mei=Katsuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=MaedaYoshinobu
en-aut-sei=Maeda
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=HottaKatsuyuki
en-aut-sei=Hotta
en-aut-mei=Katsuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
affil-num=1
en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Center for Clinical Oncology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Respiratory Medicine, Ohara Healthcare Foundation, Kurashiki Central Hospital
kn-affil=
affil-num=4
en-affil=Department of Respiratory Medicine, Ehime Prefectural Central Hospital
kn-affil=
affil-num=5
en-affil=Department of Respiratory Medicine, NHO Iwakuni Clinical Center
kn-affil=
affil-num=6
en-affil=Department of Internal Medicine, National Hospital Organization Okayama Medical Center
kn-affil=
affil-num=7
en-affil=Department of Respiratory Medicine, Fukuyama City Hospital
kn-affil=
affil-num=8
en-affil=Department of Respiratory Medicine, Japanese Red Cross Okayama Hospital
kn-affil=
affil-num=9
en-affil=Department of Respiratory Medicine, Japanese Red Cross Himeji Hospital
kn-affil=
affil-num=10
en-affil=Department of Internal Medicine, Okayama Saiseikai General Hospital
kn-affil=
affil-num=11
en-affil=Department of Chest Surgery, Shimonoseki City Hospital
kn-affil=
affil-num=12
en-affil=Department of General Internal Medicine 4 , Kawasaki Medical School
kn-affil=
affil-num=13
en-affil=Department of Respiratory Medicine, Okayama Rosai Hospital
kn-affil=
affil-num=14
en-affil=Department of Respiratory Medicine, KKR Takamatsu Hospital
kn-affil=
affil-num=15
en-affil=Department of Respiratory Medicine, Japanese Red Cross Okayama Hospital
kn-affil=
affil-num=16
en-affil=Division of Cancer Information and Control, Aichi Cancer Center Research Institute
kn-affil=
affil-num=17
en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=18
en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=19
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
en-keyword=non-small cell lung cancer
kn-keyword=non-small cell lung cancer
en-keyword=body weight loss
kn-keyword=body weight loss
en-keyword=immune checkpoint inhibitors
kn-keyword=immune checkpoint inhibitors
en-keyword=chemotherapy
kn-keyword=chemotherapy
END
start-ver=1.4
cd-journal=joma
no-vol=20
cd-vols=
no-issue=
article-no=
start-page=3215
end-page=3220
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241209
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Ceratinadin G, a new psammaplysin derivative possessing a cyano group from a sponge of the genus Pseudoceratina
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A new psammaplysin derivative, ceratinadin G (1), was obtained from the Okinawan marine sponge Pseudoceratina sp., and the gross structure was clarified through spectroscopic and spectrometric analyses. The absolute configuration of compound 1 was established by comparing its NMR and ECD data with those of the known psammaplysin derivative, psammaplysin F (2). Ceratinadin G (1) is a rare nitrile containing a cyano group as aminoacetonitrile, and is the first psammaplysin derivative possessing a cyano group. In vitro assays indicated that compound 1 displayed moderate cytotoxicity against L1210 murine leukemia cells and KB epidermoid carcinoma cells.
en-copyright=
kn-copyright=
en-aut-name=KurimotoShin-Ichiro
en-aut-sei=Kurimoto
en-aut-mei=Shin-Ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=InoueKouta
en-aut-sei=Inoue
en-aut-mei=Kouta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OhnoTaito
en-aut-sei=Ohno
en-aut-mei=Taito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KubotaTakaaki
en-aut-sei=Kubota
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Showa Pharmaceutical University
kn-affil=
affil-num=3
en-affil=Showa Pharmaceutical University
kn-affil=
affil-num=4
en-affil=Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=ceratinadin
kn-keyword=ceratinadin
en-keyword=cytotoxicity
kn-keyword=cytotoxicity
en-keyword=marine sponge
kn-keyword=marine sponge
en-keyword=psammaplysin
kn-keyword=psammaplysin
en-keyword=Pseudoceratina sp
kn-keyword=Pseudoceratina sp
END
start-ver=1.4
cd-journal=joma
no-vol=78
cd-vols=
no-issue=6
article-no=
start-page=469
end-page=474
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202412
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Treatment of Tenosynovial Giant Cell Tumor of the Cervical Spine with Postoperative Anti-RANKL Antibody (Denosumab) Administration
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Tenosynovial giant cell tumor (TGCT) is a fibrous histiocytic tumor originating in the synovial membrane. While cervical TGCT may not be considered a common diagnosis preoperatively because it is relatively rare, it has a high recurrence rate and should be considered. Total resection is preferable, but it can be challenging due to the risk of damaging the vertebral artery. Denosumab has shown effectiveness as a postoperative treatment for osteolytic bone lesion. Denosumab administration coupled with close follow-up might offer an effective postoperative treatment option for unresectable TGCT with bone invasion.
en-copyright=
kn-copyright=
en-aut-name=HirataYuichi
en-aut-sei=Hirata
en-aut-mei=Yuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NagaseTakayuki
en-aut-sei=Nagase
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SasadaSusumu
en-aut-sei=Sasada
en-aut-mei=Susumu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AyadaYoshiyuki
en-aut-sei=Ayada
en-aut-mei=Yoshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MiyakeHayato
en-aut-sei=Miyake
en-aut-mei=Hayato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SugaharaChiaki
en-aut-sei=Sugahara
en-aut-mei=Chiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YamamotoHidetaka
en-aut-sei=Yamamoto
en-aut-mei=Hidetaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OdaYoshinao
en-aut-sei=Oda
en-aut-mei=Yoshinao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YasuharaTakao
en-aut-sei=Yasuhara
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TanakaShota
en-aut-sei=Tanaka
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Pathology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Pathology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University
kn-affil=
affil-num=9
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=tenosynovial giant cell tumor
kn-keyword=tenosynovial giant cell tumor
en-keyword=bone tumor
kn-keyword=bone tumor
en-keyword=spine
kn-keyword=spine
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=1
article-no=
start-page=29419
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241127
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=ADAR1 could be a potential diagnostic target for intrauterine infection patients
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Intrauterine infection (IUI) is mainly an ascending infection in which vaginal and cervical pathogens ascend to the uterus and can affect the fetus. Until now, there is still no effective diagnostic biomarker for IUI, such as chorioamnionitis (CAM) and funisitis (FUN). Deoxyribonucleic acid (DNA)/Ribonucleic acid (RNA) editing molecules such as apolipoprotein-B mRNA-editing complex (APOBEC) 3 families and Adenosine deaminase family acting on RNA (ADAR)1 were examined in chorioamniotic membranes and umbilical cord of 83 patient samples. Furthermore, Ureaplasma parvum induced ADAR1 was investigated in human HTR-8/SVneo EVT cell line. ADAR1 had a significantly higher area under the curve (AUC) (0.721 and 0.745) than other APOBEC3s or cytokines in CAM and FUN patients. In vitro, ureaplasma parvum was demonstrated to activate ADAR1 (p = 0.025) and reduce RIG-I, IRF3, IFN-α, and IFN-β expression in EVT cell line (p = 0.005, p = 0.010, p < 0.001, and p = 0.018, respectively). High expression of ADAR1 was strongly associated with CAM and FUN patients (multivariate analyses; p = 0.035 and p = 0.002). ADAR1 could be a potential diagnostic target for IUI, such as CAM and FUN patients.
en-copyright=
kn-copyright=
en-aut-name=NakamuraKeiichiro
en-aut-sei=Nakamura
en-aut-mei=Keiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShigeyasuKunitoshi
en-aut-sei=Shigeyasu
en-aut-mei=Kunitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=VuThuy Ha
en-aut-sei=Vu
en-aut-mei=Thuy Ha
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MakiJota
en-aut-sei=Maki
en-aut-mei=Jota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OkamotoKazuhiro
en-aut-sei=Okamoto
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MasuyamaHisashi
en-aut-sei=Masuyama
en-aut-mei=Hisashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
en-keyword=ADAR1
kn-keyword=ADAR1
en-keyword=Chorioamnionitis
kn-keyword=Chorioamnionitis
en-keyword=Funisitis
kn-keyword=Funisitis
en-keyword=Intrauterine infection
kn-keyword=Intrauterine infection
en-keyword=Diagnostic biomarker
kn-keyword=Diagnostic biomarker
END
start-ver=1.4
cd-journal=joma
no-vol=78
cd-vols=
no-issue=6
article-no=
start-page=465
end-page=468
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202412
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Secondary Polymyalgia Rheumatica Following SARS-CoV-2 Infection
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=An 81-year-old Japanese man with a medical history of diabetes mellitus and hypertension was diagnosed with the novel coronavirus disease 2019 (COVID-19). The patient developed pain in the bilateral shoulders and hips 3 days after the disease onset and presented to our outpatient clinic after 1 month. Referring to diagnostic criteria, we diagnosed him with polymyalgia rheumatica (PMR). We initiated prednisolone at 15 mg per day and his symptoms improved immediately. The clinical course of the patient indicated that the SARS-CoV-2 infection triggered the onset of autoimmune disease, PMR in this case.
en-copyright=
kn-copyright=
en-aut-name=OchoKazuki
en-aut-sei=Ocho
en-aut-mei=Kazuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HagiyaHideharu
en-aut-sei=Hagiya
en-aut-mei=Hideharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IshikawaHisashi
en-aut-sei=Ishikawa
en-aut-mei=Hisashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OtsukaFumio
en-aut-sei=Otsuka
en-aut-mei=Fumio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Internal Medicine, Ishikawa Hospital
kn-affil=
affil-num=2
en-affil=Department of Infectious Diseases, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Internal Medicine, Ishikawa Hospital
kn-affil=
affil-num=4
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=COVID-19
kn-keyword=COVID-19
en-keyword=SARS-CoV-2
kn-keyword=SARS-CoV-2
en-keyword=polymyalgia rheumatica
kn-keyword=polymyalgia rheumatica
en-keyword=autoimmune diseases
kn-keyword=autoimmune diseases
en-keyword=human leukocyte antigen
kn-keyword=human leukocyte antigen
END
start-ver=1.4
cd-journal=joma
no-vol=78
cd-vols=
no-issue=6
article-no=
start-page=439
end-page=447
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202412
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Risk Factors for Gangrenous Cholecystitis and the Outcomes of Early Cholecystectomy: A Retrospective Study of a Single-Center City General Hospital
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Gangrenous cholecystitis (GC) is classified as moderate acute cholecystitis according to the Tokyo Guidelines from 2018 (TG18). We evaluated the risk factors for GC and the outcomes of early cholecystectomy. A total of 136 patients who underwent emergency cholecystectomy for acute cholecystitis were retrospectively analyzed; 58 of these patients (42.6%) were diagnosed with GC (GC group) based on our retrospective pathologic diagnosis. We comparatively evaluated the patient backgrounds and surgical outcomes between the GC group and non-GC group. The GC group was significantly older and included more hypertensive patients than the non-GC group. The GC group was prescribed more antibiotics as initial treatment than the non-GC group, and they had more days between onset and surgery. The preoperative white blood cell count and C-reactive protein values were significantly higher in the GC group than in the non-GC group, and these values were predictive factors for GC. Cholecystectomy required a longer operation time and caused greater blood loss in the GC group. The GC group also had longer hospitalization times than the non-GC group; however, no significant differences were observed in terms of postoperative complications. In conclusion, gangrenous changes should be assessed when diagnosing cholecystitis, and appropriate treatment, such as surgery or drainage, should be undertaken.
en-copyright=
kn-copyright=
en-aut-name=YamashitaMampei
en-aut-sei=Yamashita
en-aut-mei=Mampei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaTakayuki
en-aut-sei=Tanaka
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SumidaYorihisa
en-aut-sei=Sumida
en-aut-mei=Yorihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamazakiShoto
en-aut-sei=Yamazaki
en-aut-mei=Shoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HaraYuki
en-aut-sei=Hara
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FukudaAkiko
en-aut-sei=Fukuda
en-aut-mei=Akiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HisanagaMakoto
en-aut-sei=Hisanaga
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=WakataKoki
en-aut-sei=Wakata
en-aut-mei=Koki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ArakiMasato
en-aut-sei=Araki
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=EguchiSusumu
en-aut-sei=Eguchi
en-aut-mei=Susumu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Surgery, Sasebo City General Hospital
kn-affil=
affil-num=2
en-affil=Department of Surgery, Sasebo City General Hospital
kn-affil=
affil-num=3
en-affil=Department of Surgery, Sasebo City General Hospital
kn-affil=
affil-num=4
en-affil=Department of Surgery, Sasebo City General Hospital
kn-affil=
affil-num=5
en-affil=Department of Surgery, Sasebo City General Hospital
kn-affil=
affil-num=6
en-affil=Department of Surgery, Sasebo City General Hospital
kn-affil=
affil-num=7
en-affil=Department of Surgery, Sasebo City General Hospital
kn-affil=
affil-num=8
en-affil=Department of Surgery, Sasebo City General Hospital
kn-affil=
affil-num=9
en-affil=Department of Surgery, Sasebo City General Hospital
kn-affil=
affil-num=10
en-affil=Department of Surgery, Nagasaki University Graduate School of Biomedical Science
kn-affil=
en-keyword=gangrenous
kn-keyword=gangrenous
en-keyword=cholecystitis
kn-keyword=cholecystitis
en-keyword=acute cholecystitis
kn-keyword=acute cholecystitis
en-keyword=laparoscopic cholecystectomy
kn-keyword=laparoscopic cholecystectomy
END
start-ver=1.4
cd-journal=joma
no-vol=78
cd-vols=
no-issue=6
article-no=
start-page=429
end-page=437
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202412
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Partial versus Radical Nephrectomy for Small Renal Cancer: Comparative Propensity Score-Matching Analysis of Cardiovascular Event Risk
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Although partial nephrectomy (PN) is preferred over radical nephrectomy (RN) for preserving renal function in patients with cT1 renal cancer, its impact on cardiovascular events (CVe) remains controversial. This study aimed to compare PN and RN in regard to the occurrence of CVe, including cerebrovascular events and exacerbation of hypertension (HT). We retrospectively analyzed 418 consecutive patients who underwent PN or RN for cT1 renal cancer. Propensity score-matching analysis was used to adjust for imbalances between patients who underwent PN and RN, leaving 102 patients in each group. The 5-year probability of cumulative CVe incidence was 6% in the PN group and 12% in the RN group (p=0.03), with a median follow-up of 73.5 months. The statistical significance was retained after propensity score matching for patients without preoperative proteinuria (p=0.03). For all CVe including cerebrovascular events and exacerbation of HT analyzed, PN provided a lower probability of occurrence than RN in patients with small renal cancers.
en-copyright=
kn-copyright=
en-aut-name=KubotaRisa
en-aut-sei=Kubota
en-aut-mei=Risa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=BekkuKensuke
en-aut-sei=Bekku
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KatayamaSatoshi
en-aut-sei=Katayama
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IwataTakehiro
en-aut-sei=Iwata
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NishimuraShingo
en-aut-sei=Nishimura
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=EdamuraKohei
en-aut-sei=Edamura
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KobayashiTomoko
en-aut-sei=Kobayashi
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KobayashiYasuyuki
en-aut-sei=Kobayashi
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=chronic kidney disease
kn-keyword=chronic kidney disease
en-keyword=hypertension
kn-keyword=hypertension
en-keyword=nephrectomy
kn-keyword=nephrectomy
en-keyword=proteinuria
kn-keyword=proteinuria
END
start-ver=1.4
cd-journal=joma
no-vol=32
cd-vols=
no-issue=2
article-no=
start-page=292
end-page=305
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241128
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The role of C1orf50 in breast cancer progression and prognosis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Although the prognosis of breast cancer has significantly improved compared to other types of cancer, there are still some patients who expire due to recurrence or metastasis. Therefore, it is necessary to develop a method to identify patients with poor prognosis at the early stages of cancer. In the process of discovering new prognostic markers from genes of unknown function, we found that the expression of C1orf50 determines the prognosis of breast cancer patients, especially for those with Luminal A breast cancer. This study aims to elucidate the molecular role of C1orf50 in breast cancer progression. Bioinformatic analyses of the breast cancer dataset of TCGA, and in vitro analyses, reveal the molecular pathways influenced by C1orf50 expression. C1orf50 knockdown suppressed the cell cycle of breast cancer cells and weakened their ability to maintain the undifferentiated state and self-renewal capacity. Interestingly, upregulation of C1orf50 increased sensitivity to CDK4/6 inhibition. In addition, C1orf50 was found to be more abundant in breast cancer cells than in normal breast epithelium, suggesting C1orf50’s involvement in breast cancer pathogenesis. Furthermore, the mRNA expression level of C1orf50 was positively correlated with the expression of PD-L1 and its related factors. These results suggest that C1orf50 promotes breast cancer progression through cell cycle upregulation, maintenance of cancer stemness, and immune evasion mechanisms. Our study uncovers the biological functions of C1orf50 in Luminal breast cancer progression, a finding not previously reported in any type of cancer.
en-copyright=
kn-copyright=
en-aut-name=OtaniYusuke
en-aut-sei=Otani
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaAtsushi
en-aut-sei=Tanaka
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MaekawaMasaki
en-aut-sei=Maekawa
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=PeñaTirso
en-aut-sei=Peña
en-aut-mei=Tirso
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=RogachevskayaAnna
en-aut-sei=Rogachevskaya
en-aut-mei=Anna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AndoTeruhiko
en-aut-sei=Ando
en-aut-mei=Teruhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ItanoTakuto
en-aut-sei=Itano
en-aut-mei=Takuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KatayamaHaruyoshi
en-aut-sei=Katayama
en-aut-mei=Haruyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=DoiharaHiroyoshi
en-aut-sei=Doihara
en-aut-mei=Hiroyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=RoehrlMichael H.
en-aut-sei=Roehrl
en-aut-mei=Michael H.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=FujimuraAtsushi
en-aut-sei=Fujimura
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA Harvard Medical School
kn-affil=
affil-num=2
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA Harvard Medical School
kn-affil=
affil-num=3
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA Harvard Medical School
kn-affil=
affil-num=4
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA Harvard Medical School
kn-affil=
affil-num=5
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA Harvard Medical School
kn-affil=
affil-num=6
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of General Surgery, Kawasaki Medical School General Medical Center
kn-affil=
affil-num=13
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA Harvard Medical School
kn-affil=
affil-num=14
en-affil=Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=C1orf50
kn-keyword=C1orf50
en-keyword=Luminal A breast cancer
kn-keyword=Luminal A breast cancer
en-keyword=Cell cycle
kn-keyword=Cell cycle
en-keyword=Immune evasion
kn-keyword=Immune evasion
en-keyword=YAP/TAZ
kn-keyword=YAP/TAZ
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=1
article-no=
start-page=60
end-page=63
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241129
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Successful immunotherapy with ipilimumab and nivolumab in a patient with pulmonary sclerosing pneumocytoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Pulmonary sclerosing pneumocytoma (PSP) is a rare form of lung cancer that occasionally presents with lymph node and extrapulmonary metastases, and multiple lesions. The treatment of metastatic PSP remains undefined. This study reports the case of a 48-year-old female patient diagnosed with PSP following surgical intervention for a solitary nodule in the left lower lobe. Four years later, recurrence occurred in the left hilar and mediastinal lymph nodes, necessitating an additional resection. Concurrently, sacral metastases developed and required palliative radiotherapy. Genetic analysis identified an AKT1 E17K mutation, characteristic of PSP, and absence of programmed cell death ligand 1 (PD-L1) expression in the tumor. Two years post-recurrence, the tumor recurred in the left mammary gland and mediastinal lymph nodes. Combination immunotherapy with ipilimumab and nivolumab yielded a significantly positive response in this metastatic PSP case. This is the first reported case of successful treatment of multiple distant metastatic PSP with ipilimumab and nivolumab, following the failure of various local treatments. Further case series are warranted to validate the efficacy of immunotherapy in metastatic PSP.
en-copyright=
kn-copyright=
en-aut-name=Inukai-MotokuraYumi
en-aut-sei=Inukai-Motokura
en-aut-mei=Yumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NinomiyaKiichiro
en-aut-sei=Ninomiya
en-aut-mei=Kiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=BabaTakahiro
en-aut-sei=Baba
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OmoriHiroki
en-aut-sei=Omori
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakeguchiTetsuya
en-aut-sei=Takeguchi
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UnoMari
en-aut-sei=Uno
en-aut-mei=Mari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=AyadaYoshiyuki
en-aut-sei=Ayada
en-aut-mei=Yoshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MaedaYoshinobu
en-aut-sei=Maeda
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OhashiKadoaki
en-aut-sei=Ohashi
en-aut-mei=Kadoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Pathology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Pathology and Oncology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital
kn-affil=
en-keyword=Pulmonary sclerosing pneumocytoma
kn-keyword=Pulmonary sclerosing pneumocytoma
en-keyword=Ipilimumab
kn-keyword=Ipilimumab
en-keyword=Nivolumab
kn-keyword=Nivolumab
en-keyword=Programmed cell death ligand 1
kn-keyword=Programmed cell death ligand 1
en-keyword=Case report
kn-keyword=Case report
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=20
article-no=
start-page=e70288
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241023
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=New Anti-Angiogenic Therapy for Glioblastoma With the Anti-Depressant Sertraline
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background and Aims: Anti-angiogenic therapies prolong patient survival in some malignancies but not glioblastoma. We focused on the relationship between the differentiation of glioma stem like cells (GSCs) into tumor derived endothelial cells (TDECs) and, anti-angiogenic therapy resistance. Especially we aimed to elucidate the mechanisms of drug resistance of TDECs to anti-angiogenic inhibitors and identify novel anti-angiogenic drugs with clinical applications.
Results: The mouse GSCs, 005, were differentiated into TDECs under hypoxic conditions, and TDECs had endothelial cell characteristics independent of the vascular endothelial growth factor (VEGF) pathway. In vivo, inhibition of the VEGF pathway had no anti-tumor effect and increased the percentage of TDECs in the 005 mouse model. Novel anti-angiogenic drugs for glioblastoma were evaluated using a tube formation assay and a drug repositioning strategy with existing blood-brain barrier permeable drugs. Drug screening revealed that the antidepressant sertraline inhibited tube formation of TDECs. Sertraline was administered to differentiated TDECs in vitro and 005 mouse models in vivo to evaluate genetic changes by RNA-Seq and tumor regression effects by immunohistochemistry and MRI. Sertraline reduced Lama4 and Ang2 expressions of TDEC, which play an important role in non-VEGF-mediated angiogenesis in tumors. The combination of a VEGF receptor inhibitor axitinib, and sertraline improved survival and reduced tumor growth in the 005 mouse model.
Conclusion: Collectively, our findings showed the diversity of tumor vascular endothelial cells across VEGF and non-VEGF pathways led to anti-angiogenic resistance. The combination of axitinib and sertraline can represent an effective anti-angiogenic therapy for glioblastoma with safe, low cost, and fast availability.
en-copyright=
kn-copyright=
en-aut-name=TsuboiNobushige
en-aut-sei=Tsuboi
en-aut-mei=Nobushige
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OtaniYoshihiro
en-aut-sei=Otani
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UnedaAtsuhito
en-aut-sei=Uneda
en-aut-mei=Atsuhito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IshidaJoji
en-aut-sei=Ishida
en-aut-mei=Joji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SurugaYasuki
en-aut-sei=Suruga
en-aut-mei=Yasuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MatsumotoYuji
en-aut-sei=Matsumoto
en-aut-mei=Yuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=FujimuraAtsushi
en-aut-sei=Fujimura
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=FujiiKentaro
en-aut-sei=Fujii
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MatsuiHideki
en-aut-sei=Matsui
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KurozumiKazuhiko
en-aut-sei=Kurozumi
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=DateIsao
en-aut-sei=Date
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MichiueHiroyuki
en-aut-sei=Michiue
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Neutron Therapy Research Center, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Neutron Therapy Research Center, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Neurosurgery, Hamamatsu University School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Neutron Therapy Research Center, Okayama University
kn-affil=
en-keyword=anti-angiogenic therapy
kn-keyword=anti-angiogenic therapy
en-keyword=antidepressant sertraline
kn-keyword=antidepressant sertraline
en-keyword=drug repositioning
kn-keyword=drug repositioning
en-keyword=glioblastoma
kn-keyword=glioblastoma
en-keyword=tumor derived endothelial cells
kn-keyword=tumor derived endothelial cells
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=線維化を伴う膵がん微小環境の立体培養法による新規in vitroモデルの構築と解析
kn-title=Establishment and Analysis of Novel In Vitro 3D Cell Culture Models of the Fibrotic Tumor Microenvironment in Pancreatic Cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=TANAKAHiroyoshi
en-aut-sei=TANAKA
en-aut-mei=Hiroyoshi
kn-aut-name=田中啓祥
kn-aut-sei=田中
kn-aut-mei=啓祥
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Okayama University
kn-affil=岡山大学大学院
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=がん細胞へのsiRNA送達のためのペプチドナノミセルの開発
kn-title=Development of Peptide Nanomicelle for siRNA Delivery into Cancer Cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=TAUFIK FATWA NUR HAKIM
en-aut-sei=TAUFIK FATWA NUR HAKIM
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=岡山大学大学院ヘルスシステム統合科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=腫瘍ホーミングペプチド修飾磁性ナノ粒子の磁気温熱療法および腫瘍検出への応用
kn-title=Application of novel tumor-homing peptide-modified magnetic nanoparticles for magnetic hyperthermia and tumor cell detection
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=ZHOUSHENGLI
en-aut-sei=ZHOU
en-aut-mei=SHENGLI
kn-aut-name=周聖力
kn-aut-sei=周
kn-aut-mei=聖力
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=岡山大学大学院ヘルスシステム統合科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=卵丘細胞の生存率と前培養が低品質ブタ卵母細胞におけるグルコース-6-リン酸デヒドロゲナーゼ (G6PDH) 活性、減数分裂の進行および発生能力に及ぼす影響
kn-title=The impact of cumulus cell viability and pre-culture on glucose-6-phosphate dehydrogenase (G6PDH) activity, meiotic progression, and developmental competence in suboptimal porcine oocytes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=WANNIARACHCHIGE THARINDU LAKSHITHA FONSEKA
en-aut-sei=WANNIARACHCHIGE THARINDU LAKSHITHA FONSEKA
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=植物細胞における亜硫酸の毒性機構に関する研究-亜硫酸毒性への細胞質酸性化と細胞酸化の関与の評価
kn-title=A study on toxic mechanisms of SO2 in plant cells - Evaluation of the involvement of cytosolic acidification and cellular oxidation in SO2 toxicity
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=MAHDI MOZHGANI
en-aut-sei=MAHDI MOZHGANI
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=高悪性度口腔扁平上皮癌において、CX3CL1はリンパ管新生を増強しリンパ節転移に寄与する
kn-title=Double-faced CX3CL1 enhances lymphangiogenesis-dependent metastasis in an aggressive subclone of oral squamous cell carcinoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=Htoo Shwe Eain
en-aut-sei=Htoo Shwe Eain
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=一細胞解析を応用した軟骨細胞分化を制御する転写因子の遡及的な再発見法
kn-title=Retrospective re-discovery of the transcription factor that controls chondrocyte differentiation by single cell RNA-sequencing
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=DO Thuy Hang
en-aut-sei=DO Thuy Hang
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=悪性末梢神経鞘腫瘍のがん幹細胞性維持に対するカテコラミン合成酵素の役割
kn-title=Role of catecholamine synthases in the maintenance of cancer stem-like cells in malignant peripheral nerve sheath tumors
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KATAYAMAHaruyoshi
en-aut-sei=KATAYAMA
en-aut-mei=Haruyoshi
kn-aut-name=片山晴喜
kn-aut-sei=片山
kn-aut-mei=晴喜
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=PAI-1は非小細胞肺がんにおけるMET標的治療の獲得耐性に関与する
kn-title=PAI-1 mediates acquired resistance to MET-targeted therapy in non-small cell lung cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=YIN MIN THU
en-aut-sei=YIN MIN THU
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=角化の調節因子の探索: 口腔粘膜におけるBMP-2の役割
kn-title=Exploring the Regulators of Keratinization: Role of BMP-2 in Oral Mucosa
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=MUXINDI
en-aut-sei=MU
en-aut-mei=XINDI
kn-aut-name=穆欣迪
kn-aut-sei=穆
kn-aut-mei=欣迪
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Lysyl oxidase-like 4は、細胞表面にAnnexin A2/S100A11複合体形成を促進することで、トリプルネガティブ乳がん細胞の浸潤能を促進する
kn-title=Lysyl oxidase-like 4 promotes the invasiveness of triple-negative breast cancer cells by orchestrating the invasive machinery formed by annexin A2 and S100A11 on the cell surface
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=TAKAHASHITetta
en-aut-sei=TAKAHASHI
en-aut-mei=Tetta
kn-aut-name=髙橋徹多
kn-aut-sei=髙橋
kn-aut-mei=徹多
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=非小細胞肺癌における腫瘍免疫状態の指標としての好中球リンパ球比の有用性
kn-title=Utility of neutrophil-to-lymphocyte ratio as an indicator of tumor immune status in non-small cell lung cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=IWATAKazuma
en-aut-sei=IWATA
en-aut-mei=Kazuma
kn-aut-name=岩田一馬
kn-aut-sei=岩田
kn-aut-mei=一馬
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=SPRED2は、肝細胞癌細胞および正常肝細胞におけるオートファジーの新しい調節因子です
kn-title=SPRED2 Is a Novel Regulator of Autophagy in Hepatocellular Carcinoma Cells and Normal Hepatocytes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=WANGTIANYI
en-aut-sei=WANG
en-aut-mei=TIANYI
kn-aut-name=王天禕
kn-aut-sei=王
kn-aut-mei=天禕
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=LOXL4によるトリプルネガティブ乳がん細胞浸潤亢進のシグナル伝達機構の解明
kn-title=Dissection of the signal transduction machinery responsible for the lysyl oxidase-like 4-mediated increase in invasive motility in triple-negative breast cancer cells: mechanistic insight into the integrin-β1-NF-κB-MMP9 axis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=JIANGFAN
en-aut-sei=JIANG
en-aut-mei=FAN
kn-aut-name=江帆
kn-aut-sei=江
kn-aut-mei=帆
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=T細胞腫瘍におけるα-ピネンの抗腫瘍活性
kn-title=Antitumor activity of α-pinene in T-cell tumors
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=ABEMasaya
en-aut-sei=ABE
en-aut-mei=Masaya
kn-aut-name=阿部将也
kn-aut-sei=阿部
kn-aut-mei=将也
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=老化線維芽細胞はIL-8のクロストークを介し、びまん性胃癌細胞の腹膜転移を促進する
kn-title=Senescent Fibroblasts Potentiate Peritoneal Metastasis of Diffuse-type Gastric Cancer Cells via IL-8–mediated Crosstalk
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=LIYUNCHENG
en-aut-sei=LI
en-aut-mei=YUNCHENG
kn-aut-name=李云成
kn-aut-sei=李
kn-aut-mei=云成
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=4D-CT Angiographyによる腎細胞癌の栄養動脈の描出率
kn-title=Depiction rate of feeding arteries of renal cell carcinoma on four‑dimensional computed tomography angiography
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=MUNETOMOKazuaki
en-aut-sei=MUNETOMO
en-aut-mei=Kazuaki
kn-aut-name=宗友一晃
kn-aut-sei=宗友
kn-aut-mei=一晃
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=血中循環遊離DNAのメチル化パターンは、原発巣遺伝子変異プロファイルによらず、大腸癌の治療効果モニタリングを可能とする非侵襲的なバイオマーカーである
kn-title=Circulating cell‑free DNA methylation patterns as non‑invasive biomarkers to monitor colorectal cancer treatment efficacy without referencing primary site mutation profiles
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=YASUIKazuya
en-aut-sei=YASUI
en-aut-mei=Kazuya
kn-aut-name=安井和也
kn-aut-sei=安井
kn-aut-mei=和也
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=25
cd-vols=
no-issue=22
article-no=
start-page=11942
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241106
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Distribution and Incorporation of Extracellular Vesicles into Chondrocytes and Synoviocytes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Osteoarthritis (OA) is a chronic disease affecting over 500 million people worldwide. As the population ages and obesity rates rise, the societal burden of OA is increasing. Pro-inflammatory cytokines, particularly interleukin-1β, are implicated in the pathogenesis of OA. Recent studies suggest that crosstalk between cartilage and synovium contributes to OA development, but the mechanisms remain unclear. Extracellular vesicles (EVs) were purified from cell culture-conditioned medium via ultracentrifugation and confirmed using transmission electron microscopy, nanoparticle tracking analysis, and western blotting. We demonstrated that EVs were taken up by human synoviocytes and chondrocytes in vitro, while in vivo experiments revealed that fluorescent-labelled EVs injected into mouse joints were incorporated into chondrocytes and synoviocytes. EV uptake was significantly inhibited by dynamin-mediated endocytosis inhibitors, indicating that endocytosis plays a major role in this process. Additionally, co-culture experiments with HEK-293 cells expressing red fluorescent protein (RFP)-tagged CD9 and the chondrocytic cell line OUMS-27 confirmed the transfer of RFP-positive EVs across a 600-nm but not a 30-nm filter. These findings suggest that EVs from chondrocytes are released into joint fluid and taken up by cells within the cartilage, potentially facilitating communication between cartilage and synovium. The results underscore the importance of EVs in OA pathophysiology.
en-copyright=
kn-copyright=
en-aut-name=OhtsukiTakashi
en-aut-sei=Ohtsuki
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SatoIkumi
en-aut-sei=Sato
en-aut-mei=Ikumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakashitaRen
en-aut-sei=Takashita
en-aut-mei=Ren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KodamaShintaro
en-aut-sei=Kodama
en-aut-mei=Shintaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IkemuraKentaro
en-aut-sei=Ikemura
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OpokuGabriel
en-aut-sei=Opoku
en-aut-mei=Gabriel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=WatanabeShogo
en-aut-sei=Watanabe
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=FurumatsuTakayuki
en-aut-sei=Furumatsu
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YamadaHiroshi
en-aut-sei=Yamada
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=AndoMitsuru
en-aut-sei=Ando
en-aut-mei=Mitsuru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=AkiyoshiKazunari
en-aut-sei=Akiyoshi
en-aut-mei=Kazunari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NishidaKeiichiro
en-aut-sei=Nishida
en-aut-mei=Keiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=HirohataSatoshi
en-aut-sei=Hirohata
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Orthopedic Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Neuroscience, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=10
en-affil=Laboratory of Biomaterials, Institute for Life and Medical Sciences, Kyoto University
kn-affil=
affil-num=11
en-affil=Department of Immunology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=12
en-affil=Department of Orthopedic Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=13
en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
en-keyword=extracellular vesicles (EVs)
kn-keyword=extracellular vesicles (EVs)
en-keyword=chondrocytes
kn-keyword=chondrocytes
en-keyword=synoviocytes
kn-keyword=synoviocytes
en-keyword=osteoarthritis (OA)
kn-keyword=osteoarthritis (OA)
END
start-ver=1.4
cd-journal=joma
no-vol=25
cd-vols=
no-issue=22
article-no=
start-page=12063
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241110
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Efficient Production of Chondrocyte Particles from Human iPSC-Derived Chondroprogenitors Using a Plate-Based Cell Self-Aggregation Technique
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The limited capacity of articular cartilage for self-repair is a critical challenge in orthopedic medicine. Here, we aimed to develop a simplified method of generating chondrocyte particles from human-induced pluripotent stem cell-derived expandable limb-bud mesenchymal cells (ExpLBM) using a cell self-aggregation technique (CAT). ExpLBM cells were induced to form chondrocyte particles through a stepwise differentiation protocol performed on a CAT plate (prevelex-CAT (R)), which enables efficient and consistent production of an arbitrary number of uniformly sized particles. Histological and immunohistochemical analyses confirmed that the generated chondrocyte particles expressed key cartilage markers, such as type II collagen and aggrecan, but not hypertrophic markers, such as type X collagen. Additionally, when these particles were transplanted into osteochondral defects in rats with X-linked severe combined immunodeficiency, they demonstrated successful engraftment and extracellular matrix production, as evidenced by Safranin O and Toluidine Blue staining. These data suggest that the plate-based CAT system offers a robust and scalable approach to produce a large number of chondrocyte particles in a simplified and efficient manner, with potential application to cartilage regeneration. Future studies will focus on refining the system and exploring its clinical applications to the treatment of cartilage defects.
en-copyright=
kn-copyright=
en-aut-name=HanakiShojiro
en-aut-sei=Hanaki
en-aut-mei=Shojiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamadaDaisuke
en-aut-sei=Yamada
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakaoTomoka
en-aut-sei=Takao
en-aut-mei=Tomoka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IwaiRyosuke
en-aut-sei=Iwai
en-aut-mei=Ryosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakaradaTakeshi
en-aut-sei=Takarada
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Regenerative Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Regenerative Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Regenerative Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Institute of Frontier Science and Technology, Okayama University of Science
kn-affil=
affil-num=5
en-affil=Department of Regenerative Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
en-keyword=tissue engineering
kn-keyword=tissue engineering
en-keyword=chondrocyte particles
kn-keyword=chondrocyte particles
en-keyword=cartilaginous particles
kn-keyword=cartilaginous particles
en-keyword=ExpLBM
kn-keyword=ExpLBM
en-keyword=hiPSC
kn-keyword=hiPSC
en-keyword=chondrocyte
kn-keyword=chondrocyte
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=2
article-no=
start-page=35
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230511
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Development of the Follow-Up Human 3D Oral Cancer Model in Cancer Treatment
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=As function preservation cancer therapy, targeted radiation therapies have been developed for the quality of life of cancer patients. However, preclinical animal studies evaluating the safety and efficacy of targeted radiation therapy is challenging from the viewpoints of animal welfare and animal protection, as well as the management of animal in radiation-controlled areas under the regulations. We fabricated the human 3D oral cancer model that considers the time axis of the follow up in cancer treatment. Therefore, in this study, the 3D model with human oral cancer cells and normal oral fibroblasts was treated based on clinical protocol. After cancer treatment, the histological findings of the 3D oral cancer model indicated the clinical correlation between tumor response and surrounding normal tissue. This 3D model has potential as a tool for preclinical studies alternative to animal studies.
en-copyright=
kn-copyright=
en-aut-name=IgawaKazuyo
en-aut-sei=Igawa
en-aut-mei=Kazuyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IzumiKenji
en-aut-sei=Izumi
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SakuraiYoshinori
en-aut-sei=Sakurai
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Neutron Therapy Research Center, Okayama University
kn-affil=
affil-num=2
en-affil=Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=3
en-affil=Institute for Integrated Radiation and Nuclear Science, Kyoto University
kn-affil=
en-keyword=3D cancer model
kn-keyword=3D cancer model
en-keyword=preclinical study
kn-keyword=preclinical study
en-keyword=cancer treatment
kn-keyword=cancer treatment
en-keyword=quality of life
kn-keyword=quality of life
en-keyword=multidisciplinary treatment
kn-keyword=multidisciplinary treatment
END
start-ver=1.4
cd-journal=joma
no-vol=193
cd-vols=
no-issue=3
article-no=
start-page=2122
end-page=2140
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230720
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Calredoxin regulates the chloroplast NADPH-dependent thioredoxin reductase in Chlamydomonas reinhardtii
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Calredoxin (CRX) is a calcium (Ca2+)-dependent thioredoxin (TRX) in the chloroplast of Chlamydomonas (Chlamydomonas reinhardtii) with a largely unclear physiological role. We elucidated the CRX functionality by performing in-depth quantitative proteomics of wild-type cells compared with a crx insertional mutant (IMcrx), two CRISPR/Cas9 KO mutants, and CRX rescues. These analyses revealed that the chloroplast NADPH-dependent TRX reductase (NTRC) is co-regulated with CRX. Electron transfer measurements revealed that CRX inhibits NADPH-dependent reduction of oxidized chloroplast 2-Cys peroxiredoxin (PRX1) via NTRC and that the function of the NADPH-NTRC complex is under strict control of CRX. Via non-reducing SDS-PAGE assays and mass spectrometry, our data also demonstrated that PRX1 is more oxidized under high light (HL) conditions in the absence of CRX. The redox tuning of PRX1 and control of the NADPH-NTRC complex via CRX interconnect redox control with active photosynthetic electron transport and metabolism, as well as Ca2+ signaling. In this way, an economic use of NADPH for PRX1 reduction is ensured. The finding that the absence of CRX under HL conditions severely inhibited light-driven CO2 fixation underpins the importance of CRX for redox tuning, as well as for efficient photosynthesis.
en-copyright=
kn-copyright=
en-aut-name=ZinziusKaren
en-aut-sei=Zinzius
en-aut-mei=Karen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MarchettiGiulia Maria
en-aut-sei=Marchetti
en-aut-mei=Giulia Maria
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FischerRonja
en-aut-sei=Fischer
en-aut-mei=Ronja
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MilradYuval
en-aut-sei=Milrad
en-aut-mei=Yuval
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OltmannsAnne
en-aut-sei=Oltmanns
en-aut-mei=Anne
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KelterbornSimon
en-aut-sei=Kelterborn
en-aut-mei=Simon
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YacobyIftach
en-aut-sei=Yacoby
en-aut-mei=Iftach
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HegemannPeter
en-aut-sei=Hegemann
en-aut-mei=Peter
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ScholzMartin
en-aut-sei=Scholz
en-aut-mei=Martin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HipplerMichael
en-aut-sei=Hippler
en-aut-mei=Michael
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Institute of Plant Biology and Biotechnology, University of Münster
kn-affil=
affil-num=2
en-affil=Institute of Plant Biology and Biotechnology, University of Münster
kn-affil=
affil-num=3
en-affil=Institute of Plant Biology and Biotechnology, University of Münster
kn-affil=
affil-num=4
en-affil=School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University
kn-affil=
affil-num=5
en-affil=Institute of Plant Biology and Biotechnology, University of Münster
kn-affil=
affil-num=6
en-affil=Institute of Biology, Experimental Biophysics, Humboldt University of Berlin
kn-affil=
affil-num=7
en-affil=School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University
kn-affil=
affil-num=8
en-affil=Institute of Biology, Experimental Biophysics, Humboldt University of Berlin
kn-affil=
affil-num=9
en-affil=Institute of Plant Biology and Biotechnology, University of Münster
kn-affil=
affil-num=10
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=22
article-no=
start-page=e038137
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241119
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Eight-Year Outcomes of Cardiosphere-Derived Cells in Single Ventricle Congenital Heart Disease
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Cardiosphere‐derived cell (CDC) infusion was associated with better clinical outcomes at 2 years in patients with single ventricle heart disease. The current study investigates time‐to‐event outcomes at 8 years.
Methods and Results: This cohort enrolled patients with single ventricles who underwent stage 2 or stage 3 palliation from January 2011 to January 2015 at 8 centers in Japan. The primary outcomes were time‐dependent CDC treatment effects on death and late complications during 8 years of follow‐up, assessed by restricted mean survival time. Among 93 patients enrolled (mean age, 2.3±1.3 years; 56% men), 40 received CDC infusion. Overall survival for CDC‐treated versus control patients did not differ at 8 years (hazard ratio [HR], 0.60 [95% CI, 0.21–1.77]; P=0.35). Treatment effect had nonproportional hazards for death favoring CDCs at 4 years (restricted mean survival time difference +0.33 years [95% CI, 0.01–0.66]; P=0.043). In patients with heart failure with reduced ejection fraction, CDC treatment effect on survival was greater over 8 years (restricted mean survival time difference +1.58 years [95% CI, 0.05–3.12]; P=0.043). Compared with control participants, CDC‐treated patients showed lower incidences of late failure (HR, 0.45 [95% CI, 0.21–0.93]; P=0.027) and adverse events (subdistribution HR, 0.50 [95% CI, 0.27–0.94]; P=0.036) at 8 years.
Conclusions: By 8 years, CDC infusion was associated with lower hazards of late failure and adverse events in single ventricle heart disease. CDC treatment effect on survival was notable by 4 years and showed a durable clinical benefit in patients with heart failure with reduced ejection fraction over 8 years.
Registration: URL: https://www.clinicaltrials.gov; Unique identifiers: NCT01273857 and NCT01829750.
en-copyright=
kn-copyright=
en-aut-name=HiraiKenta
en-aut-sei=Hirai
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SawadaRyusuke
en-aut-sei=Sawada
en-aut-mei=Ryusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HayashiTomohiro
en-aut-sei=Hayashi
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ArakiToru
en-aut-sei=Araki
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakagawaNaomi
en-aut-sei=Nakagawa
en-aut-mei=Naomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KondoMaiko
en-aut-sei=Kondo
en-aut-mei=Maiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YasudaKenji
en-aut-sei=Yasuda
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HirataTakuya
en-aut-sei=Hirata
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SatoTomoyuki
en-aut-sei=Sato
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NakatsukaYuki
en-aut-sei=Nakatsuka
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YoshidaMichihiro
en-aut-sei=Yoshida
en-aut-mei=Michihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KasaharaShingo
en-aut-sei=Kasahara
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=BabaKenji
en-aut-sei=Baba
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=OhHidemasa
en-aut-sei=Oh
en-aut-mei=Hidemasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=the TICAP/PERSEUS Study Group
en-aut-sei=the TICAP/PERSEUS Study Group
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Department of Pediatrics Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Pharmacology Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Pediatrics Kurashiki Central Hospital
kn-affil=
affil-num=4
en-affil=Department of Pediatrics National Hospital Organization Fukuyama Medical Center
kn-affil=
affil-num=5
en-affil=Department of Pediatric Cardiology Hiroshima City Hiroshima Citizens Hospital
kn-affil=
affil-num=6
en-affil=Department of Pediatrics Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Pediatrics Shimane University Faculty of Medicine
kn-affil=
affil-num=8
en-affil=Department of Pediatrics Kyoto University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Pediatrics Jichi Medical University
kn-affil=
affil-num=10
en-affil=Department of Data Science, Center for Innovative Clinical Medicine Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Data Science, Center for Innovative Clinical Medicine Okayama University Hospital
kn-affil=
affil-num=12
en-affil=Department of Cardiovascular Surgery Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Pediatrics Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Regenerative Medicine, Center for Innovative Clinical Medicine Okayama University Hospital
kn-affil=
affil-num=15
en-affil=
kn-affil=
en-keyword=cardiosphere
kn-keyword=cardiosphere
en-keyword=heart failure
kn-keyword=heart failure
en-keyword=restricted mean survival time
kn-keyword=restricted mean survival time
en-keyword=single ventricle
kn-keyword=single ventricle
en-keyword=survival
kn-keyword=survival
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=1
article-no=
start-page=198
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241112
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Clinical practice pattern of Pneumocystis pneumonia prophylaxis in systemic lupus erythematosus: a cross-sectional study from lupus registry of nationwide institutions (LUNA)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Pneumocystis jirovecii pneumonia (PCP) is an opportunistic infection in patients undergoing immunosuppressive therapy, such as glucocorticoid (GC) medication, for systemic autoimmune diseases like systemic lupus erythematosus (SLE). Despite the confirmed effectiveness of PCP prophylaxis, its clinical administration, especially in conjunction with GC dosage, remains unclear. We aimed to describe the clinical practice of PCP prophylaxis in association with SLE in Japan, evaluate the relationship between GC dosage and PCP prophylaxis, and explore the practice patterns associated with PCP prophylaxis.
Methods This cross-sectional study used data from the Lupus Registry of Nationwide Institutions in Japan from 2016 to 2021 and included patients diagnosed with SLE. Using descriptive statistics, multivariate analysis, and decision tree analysis, we examined the prevalence of PCP prophylaxis and its association with the GC dosage.
Results Out of 1,460 patients, 21% underwent PCP prophylaxis. The frequency of prophylaxis decreased with a decrease in GC dosage. After adjusting for confounders, logistic regression revealed the odds ratio of PCP prophylaxis increased with higher prednisolone (PSL) doses: 3.7 for 5 <= PSL < 7.5 mg, 5.2 for 7.5 <= PSL < 10 mg, 9.0 for 10 <= PSL < 20 mg, and 43.1 for PSL >= 20 mg, using PSL < 5 mg as the reference. Decision tree analysis indicated that a PSL dosage of < 11 mg/day and immunosuppressant use were key determinants of PCP prophylaxis.
Conclusion This study provides valuable insights into PCP prophylaxis practices in patients with SLE in Japan, underscoring the importance of GC dosage and concomitant immunosuppressant use.
en-copyright=
kn-copyright=
en-aut-name=OnishiTakahisa
en-aut-sei=Onishi
en-aut-mei=Takahisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SadaKen-Ei
en-aut-sei=Sada
en-aut-mei=Ken-Ei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HayashiKeigo
en-aut-sei=Hayashi
en-aut-mei=Keigo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MiyawakiYoshia
en-aut-sei=Miyawaki
en-aut-mei=Yoshia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YoshimiRyusuke
en-aut-sei=Yoshimi
en-aut-mei=Ryusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShimojimaYasuhiro
en-aut-sei=Shimojima
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OhnoShigeru
en-aut-sei=Ohno
en-aut-mei=Shigeru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KajiyamaHiroshi
en-aut-sei=Kajiyama
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IchinoseKunihiro
en-aut-sei=Ichinose
en-aut-mei=Kunihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SatoShuzo
en-aut-sei=Sato
en-aut-mei=Shuzo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=FujiwaraMichio
en-aut-sei=Fujiwara
en-aut-mei=Michio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=YajimaNobuyuki
en-aut-sei=Yajima
en-aut-mei=Nobuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KidaTakashi
en-aut-sei=Kida
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=MatsuoYusuke
en-aut-sei=Matsuo
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=NishimuraKeisuke
en-aut-sei=Nishimura
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=YamaneTakashi
en-aut-sei=Yamane
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
affil-num=1
en-affil=Department of Rheumatology, Kakogawa Central City Hospital
kn-affil=
affil-num=2
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine
kn-affil=
affil-num=7
en-affil=Center for Rheumatic Diseases, Yokohama City University Medical Center
kn-affil=
affil-num=8
en-affil=Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University
kn-affil=
affil-num=9
en-affil=Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences
kn-affil=
affil-num=10
en-affil=Department of Rheumatology, Fukushima Medical University School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Rheumatology, Yokohama Rosai Hospital
kn-affil=
affil-num=12
en-affil=Division of Rheumatology, Department of Medicine, Showa University School of Medicine
kn-affil=
affil-num=13
en-affil=Infammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
kn-affil=
affil-num=14
en-affil=Department of Rheumatology, Tokyo Kyosai Hospital
kn-affil=
affil-num=15
en-affil=Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine
kn-affil=
affil-num=16
en-affil=Department of Rheumatology, Kakogawa Central City Hospital
kn-affil=
en-keyword=Systemic lupus erythematosus
kn-keyword=Systemic lupus erythematosus
en-keyword=Pneumocystis jirovecii pneumonia
kn-keyword=Pneumocystis jirovecii pneumonia
en-keyword=Glucocorticoid
kn-keyword=Glucocorticoid
en-keyword=Immunosuppressant
kn-keyword=Immunosuppressant
en-keyword=Practice pattern
kn-keyword=Practice pattern
END
start-ver=1.4
cd-journal=joma
no-vol=25
cd-vols=
no-issue=21
article-no=
start-page=11592
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241029
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Epigenetic Regulation of CXC Chemokine Expression by Environmental Electrophiles Through DNA Methyltransferase Inhibition
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Ubiquitously distributed environmental electrophiles covalently modify DNA and proteins, potentially leading to adverse health effects. However, the impacts of specific electrophiles on target proteins and their physiological roles remain largely unknown. In the present study, we focused on DNA methylation, which regulates gene expression and physiological responses. A total of 45 environmental electrophiles were screened for inhibitory effects on the activity of DNA methyltransferase 3B (DNMT3B), a key enzyme in DNA methylation, and four compounds were identified. We focused on 1,2-naphthoquinone (1,2-NQ), an air pollutant whose toxicity has been reported previously. Interestingly, we found that 1,2-NQ modified multiple lysine and histidine residues in DNMT3B, one of which was near the active site in DNMT3B. It was found that 1,2-NQ altered gene expression and evoked inflammatory responses in lung adenocarcinoma cell lines. Furthermore, we found that 1,2-NQ upregulated CXCL8 expression through DNA demethylation of the distal enhancer and promoted cancer cell growth. Our study reveals novel mechanisms of epigenetic regulation by environmental electrophiles through the inhibition of DNMT3B activity and suggests their physiological impact.
en-copyright=
kn-copyright=
en-aut-name=TsuchidaTomoki
en-aut-sei=Tsuchida
en-aut-mei=Tomoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KubotaSho
en-aut-sei=Kubota
en-aut-mei=Sho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KamiuezonoShizuki
en-aut-sei=Kamiuezono
en-aut-mei=Shizuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakasugiNobumasa
en-aut-sei=Takasugi
en-aut-mei=Nobumasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ItoAkihiro
en-aut-sei=Ito
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KumagaiYoshito
en-aut-sei=Kumagai
en-aut-mei=Yoshito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=UeharaTakashi
en-aut-sei=Uehara
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Medicinal Pharmacology, Faculty of Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=School of Life Sciences, Tokyo University of Pharmacy and Life Sciences
kn-affil=
affil-num=6
en-affil=Graduate School of Pharmaceutical Sciences, Kyushu University
kn-affil=
affil-num=7
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=DNA methylation
kn-keyword=DNA methylation
en-keyword=DNA methyltransferase
kn-keyword=DNA methyltransferase
en-keyword=chemical modification
kn-keyword=chemical modification
en-keyword=chemokine
kn-keyword=chemokine
en-keyword=cell proliferation
kn-keyword=cell proliferation
en-keyword=toxicology
kn-keyword=toxicology
en-keyword=exposome
kn-keyword=exposome
en-keyword=environmental electrophiles
kn-keyword=environmental electrophiles
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=1
article-no=
start-page=195
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241111
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Association between discontinuity of care and patient trust in the usual rheumatologist among patients with systemic lupus erythematosus: a cross-sectional study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Patient trust plays a central role in the patient-physician relationship. This study aimed to determine whether the number of outpatient visits with a covering rheumatologist is associated with patient trust in their usual rheumatologist.
Methods Japanese adults with systemic lupus erythematosus (SLE) who met the 1997 revised classification criteria of the American College of Rheumatology and had outpatient visits with a covering rheumatologist in the past year were included.
We used the 11-item Japanese version of the modified Trust in Physician Scale (range 0–100) to assess patient trust. A general linear model with cluster-robust variance estimation was used to evaluate the association between the number of outpatient visits with covering rheumatologists and the patient’s trust in their usual rheumatologist.
Results Of the 515 enrolled participants, 421 patients with SLE were included in our analyses. Patients were divided into groups according to the number of outpatient visits with a covering rheumatologist in the past year as follows: no visits (59.9%; reference group), one to three visits (24.2%; low-frequency group), and four or more visits (15.9%; high-frequency group). The median Trust in Physician Scale score was 81.8 (interquartile range: 72.7–93.2). Both the low-frequency group (mean difference: -3.03; 95% confidence interval [CI] -5.93 to -0.80) and high-frequency group (mean difference: -4.17; 95% CI -7.77 to -0.58) exhibited lower trust in their usual rheumatologist.
Conclusion This study revealed that the number of outpatient visits with a covering rheumatologist was associated with lower trust in a patient’s usual rheumatologist.
en-copyright=
kn-copyright=
en-aut-name=KatayamaYu
en-aut-sei=Katayama
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyawakiYoshia
en-aut-sei=Miyawaki
en-aut-mei=Yoshia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShidaharaKenta
en-aut-sei=Shidahara
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NawachiShoichi
en-aut-sei=Nawachi
en-aut-mei=Shoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AsanoYosuke
en-aut-sei=Asano
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KatsuyamaEri
en-aut-sei=Katsuyama
en-aut-mei=Eri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KatsuyamaTakayuki
en-aut-sei=Katsuyama
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=Takano-NarazakiMariko
en-aut-sei=Takano-Narazaki
en-aut-mei=Mariko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MatsumotoYoshinori
en-aut-sei=Matsumoto
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OguroNao
en-aut-sei=Oguro
en-aut-mei=Nao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YajimaNobuyuki
en-aut-sei=Yajima
en-aut-mei=Nobuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=IshikawaYuichi
en-aut-sei=Ishikawa
en-aut-mei=Yuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=SakuraiNatsuki
en-aut-sei=Sakurai
en-aut-mei=Natsuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=HidekawaChiharu
en-aut-sei=Hidekawa
en-aut-mei=Chiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=YoshimiRyusuke
en-aut-sei=Yoshimi
en-aut-mei=Ryusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=OhnoShigeru
en-aut-sei=Ohno
en-aut-mei=Shigeru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=IchikawaTakanori
en-aut-sei=Ichikawa
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=KishidaDai
en-aut-sei=Kishida
en-aut-mei=Dai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=ShimojimaYasuhiro
en-aut-sei=Shimojima
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=SadaKen-Ei
en-aut-sei=Sada
en-aut-mei=Ken-Ei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=ThomDavid H.
en-aut-sei=Thom
en-aut-mei=David H.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=KuritaNoriaki
en-aut-sei=Kurita
en-aut-mei=Noriaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Division of Rheumatology, Department of Medicine, Showa University School of Medicine
kn-affil=
affil-num=11
en-affil=Division of Rheumatology, Department of Medicine, Showa University School of Medicine
kn-affil=
affil-num=12
en-affil=The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health
kn-affil=
affil-num=13
en-affil=Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine
kn-affil=
affil-num=14
en-affil=Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine
kn-affil=
affil-num=15
en-affil=Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine
kn-affil=
affil-num=16
en-affil=Centre for Rheumatic Disease, Yokohama City University Medical Centre
kn-affil=
affil-num=17
en-affil=Department of Clinical Epidemiology, Graduate School of Medicine, Fukushima Medical University
kn-affil=
affil-num=18
en-affil=Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine
kn-affil=
affil-num=19
en-affil=Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine
kn-affil=
affil-num=20
en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=21
en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=22
en-affil=Department of Medicine, Stanford University School of Medicine
kn-affil=
affil-num=23
en-affil=Division of Rheumatology, Department of Medicine, Showa University School of Medicine
kn-affil=
en-keyword=Systemic lupus erythematosus
kn-keyword=Systemic lupus erythematosus
en-keyword=Patient-physician relationship
kn-keyword=Patient-physician relationship
en-keyword=Outpatient visits
kn-keyword=Outpatient visits
en-keyword=Patient trust
kn-keyword=Patient trust
en-keyword=Discontinuity of care
kn-keyword=Discontinuity of care
END
start-ver=1.4
cd-journal=joma
no-vol=74
cd-vols=
no-issue=1
article-no=
start-page=12
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241105
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Dendritic cell maturation is induced by p53-armed oncolytic adenovirus via tumor-derived exosomes enhancing systemic antitumor immunity
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Dendritic cells (DCs) are crucial in cancer immunity, because they activate cytotoxic T cells by presenting tumor antigens. Recently, oncolytic virus therapy has been recognized as a systemic immune stimulator. We previously developed a telomerase-specific oncolytic adenovirus (OBP-301) and a p53-armed OBP-301 (OBP-702), demonstrating that these viruses strongly activate systemic antitumor immunity. However, their effects on DCs remained unclear. In the present study, the aim was to elucidate the mechanisms of DC activation by OBP-702, focusing particularly on tumor-derived exosomes. Exosomes (Exo53, Exo301, or Exo702) were isolated from conditioned media of human or murine pancreatic cancer cell lines (Panc-1, MiaPaCa-2, and PAN02) after treatment with Ad-p53, OBP-301, or OBP-702. Exo702 derived from Panc-1 and MiaPaCa-2 cells significantly upregulated CD86, CD80, CD83 (markers of DC maturation), and IFN-γ in DCs in vitro. Similarly, Exo702 derived from PAN02 cells upregulated CD86 and IFN-γ in bone marrow-derived DCs in a bilateral PAN02 subcutaneous tumor model. This DC maturation was inhibited by GW4869, an inhibitor of exosome release, and anti-CD63, an antibody targeting the exosome marker. Intratumoral injection of OBP-702 into PAN02 subcutaneous tumors significantly increased the presence of mature DCs and CD8-positive T cells in draining lymph nodes, leading to long-lasting antitumor effects through the durable activation of systemic antitumor immunity. In conclusion, tumor-derived exosomes play a significant role in DC maturation following OBP-702 treatment and are critical for the systemic activation of antitumor immunity, leading to the abscopal effect.
en-copyright=
kn-copyright=
en-aut-name=OhtaniTomoko
en-aut-sei=Ohtani
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KurodaShinji
en-aut-sei=Kuroda
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KanayaNobuhiko
en-aut-sei=Kanaya
en-aut-mei=Nobuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KakiuchiYoshihiko
en-aut-sei=Kakiuchi
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KumonKento
en-aut-sei=Kumon
en-aut-mei=Kento
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HashimotoMasashi
en-aut-sei=Hashimoto
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YagiChiaki
en-aut-sei=Yagi
en-aut-mei=Chiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SugimotoRyoma
en-aut-sei=Sugimoto
en-aut-mei=Ryoma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KikuchiSatoru
en-aut-sei=Kikuchi
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KagawaShunsuke
en-aut-sei=Kagawa
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TazawaHiroshi
en-aut-sei=Tazawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=UrataYasuo
en-aut-sei=Urata
en-aut-mei=Yasuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Oncolys BioPharma, Inc
kn-affil=
affil-num=13
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Oncolytic adenovirus
kn-keyword=Oncolytic adenovirus
en-keyword=p53
kn-keyword=p53
en-keyword=Dendritic cells
kn-keyword=Dendritic cells
en-keyword=Anti-tumor immunity
kn-keyword=Anti-tumor immunity
en-keyword=Exosome
kn-keyword=Exosome
END
start-ver=1.4
cd-journal=joma
no-vol=24
cd-vols=
no-issue=
article-no=
start-page=foae032
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241018
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Improving the Z3EV promoter system to create the strongest yeast promoter
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Promoters for artificial control of gene expression are central tools in genetic engineering. In the budding yeast Saccharomyces cerevisiae, a variety of constitutive and controllable promoters with different strengths have been constructed using endogenous gene promoters, synthetic transcription factors and their binding sequences, and artificial sequences. However, there have been no attempts to construct the highest strength promoter in yeast cells. In this study, by incrementally increasing the binding sequences of the synthetic transcription factor Z3EV, we were able to construct a promoter (P36) with ~1.4 times the strength of the TDH3 promoter. This is stronger than any previously reported promoter. Although the P36 promoter exhibits some leakage in the absence of induction, the expression induction by estradiol is maintained. When combined with a multicopy plasmid, it can express up to ~50% of total protein as a heterologous protein. This promoter system can be used to gain knowledge about the cell physiology resulting from the ultimate overexpression of excess proteins and is expected to be a useful tool for heterologous protein expression in yeast.
en-copyright=
kn-copyright=
en-aut-name=HiguchiRina
en-aut-sei=Higuchi
en-aut-mei=Rina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujitaYuri
en-aut-sei=Fujita
en-aut-mei=Yuri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NambaShotaro
en-aut-sei=Namba
en-aut-mei=Shotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MoriyaHisao
en-aut-sei=Moriya
en-aut-mei=Hisao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=yeast
kn-keyword=yeast
en-keyword=overexpression
kn-keyword=overexpression
en-keyword=promoter
kn-keyword=promoter
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=11
article-no=
start-page=e73775
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241115
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Axillary Reactive Lymphoid Hyperplasia, Likely Due to Unicentric Castleman Disease, and the Concurrent Presence of Orbital Mucosa-Associated Lymphoid Tissue (MALT) Lymphoma: A Six-Year Follow-Up Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Castleman disease is a lymphadenopathy of unknown cause at a single site, which is designated as unicentric Castleman disease, or at multiple sites designated as multicentric Castleman disease. We present a patient who showed axillary reactive lymphoid hyperplasia, likely due to unicentric Castleman disease, and orbital extranodal marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue (MALT) lymphoma in a six-year follow-up. A 76-year-old man had a painless left axillary mass for an unknown period and also left complete blepharoptosis with no other systemic symptoms. Suspected of lymphoma, iliac bone marrow biopsy showed no anomalous cells, and positron emission tomography demonstrated abnormal uptake at the left axilla and in the left superior anterior orbit. Incisional biopsy of the left axillary mass demonstrated hyperplastic lymphoid follicles with an atrophic germinal center and prominent small vessels in the follicular center, indicative of unicentric Castleman disease. One year later, annual follow-up positron emission tomography disclosed a high uptake site, next to the previously-identified cyst, in the pancreatic body. Trans-gastric fine needle pancreatic biopsy proved adenocarcinoma and he underwent subtotal stomach-preserving pancreaticoduodenectomy with jejunal anastomosis. He was well for six months after the surgery and thus, underwent resection of the left orbital lesion at 78 years old. The pathology of the orbital lesion showed ambiguous nodular structure with massive infiltration with CD20-positive medium-sized lymphoid cells which were κ monotype in immunoglobulin light chain restriction, indicative of MALT lymphoma. In the four-year period of the COVID-19 pandemic, he was healthy and followed with no treatment until the age of 82 years when he underwent radiation (46 Gy) to the left axillary lesion which did not regress. He then underwent eyelid levator muscle plication for left blepharoptosis since the left orbital lesion remained unpalpable. The six-year follow-up showed that concurrent and independent orbital MALT lymphoma and axillary reactive lymphoid hyperplasia, likely due to unicentric Castleman disease, were both stable. The present case illustrates how important it is to make pathological diagnoses in different anatomical lesions after the initial diagnosis of Castleman disease.
en-copyright=
kn-copyright=
en-aut-name=MatsuoToshihiko
en-aut-sei=Matsuo
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FujiTomokazu
en-aut-sei=Fuji
en-aut-mei=Tomokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=EnnishiDaisuke
en-aut-sei=Ennishi
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Ophthalmology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Hematology and Oncology, Center for Comprehensive Genomic Medicine, Okayama University Hospital
kn-affil=
en-keyword=blepharoptosis
kn-keyword=blepharoptosis
en-keyword=castleman disease
kn-keyword=castleman disease
en-keyword=extranodal marginal zone b-cell lymphoma of mucosa-associated lymphoid tissue (malt) lymphoma
kn-keyword=extranodal marginal zone b-cell lymphoma of mucosa-associated lymphoid tissue (malt) lymphoma
en-keyword=pancreatic cancer
kn-keyword=pancreatic cancer
en-keyword=radiation
kn-keyword=radiation
en-keyword=reactive lymphoid hyperplasia
kn-keyword=reactive lymphoid hyperplasia
END
start-ver=1.4
cd-journal=joma
no-vol=300
cd-vols=
no-issue=3
article-no=
start-page=105679
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202403
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Methyl vinyl ketone and its analogs covalently modify PI3K and alter physiological functions by inhibiting PI3K signaling
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Reactive carbonyl species (RCS), which are abundant in the environment and are produced in vivo under stress, covalently bind to nucleophilic residues such as Cys in proteins. Disruption of protein function by RCS exposure is predicted to play a role in the development of various diseases such as cancer and metabolic disorders, but most studies on RCS have been limited to simple cytotoxicity validation, leaving their target proteins and resulting physiological changes unknown. In this study, we focused on methyl vinyl ketone (MVK), which is one of the main RCS found in cigarette smoke and exhaust gas. We found that MVK suppressed PI3K-Akt signaling, which regulates processes involved in cellular homeostasis, including cell proliferation, autophagy, and glucose metabolism. Interestingly, MVK inhibits the interaction between the epidermal growth factor receptor and PI3K. Cys656 in the SH2 domain of the PI3K p85 subunit, which is the covalently binding site of MVK, is important for this interaction. Suppression of PI3K- Akt signaling by MVK reversed epidermal growth factor- induced negative regulation of autophagy and attenuated glucose uptake. Furthermore, we analyzed the effects of the 23 RCS compounds with structures similar to MVK and showed that their analogs also suppressed PI3K-Akt signaling in a manner that correlated with their similarities to MVK. Our study demonstrates the mechanism of MVK and its analogs in suppressing PI3K-Akt signaling and modulating physiological functions, providing a model for future studies analyzing environmental reactive species.
en-copyright=
kn-copyright=
en-aut-name=MorimotoAtsushi
en-aut-sei=Morimoto
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakasugiNobumasa
en-aut-sei=Takasugi
en-aut-mei=Nobumasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=PanYuexuan
en-aut-sei=Pan
en-aut-mei=Yuexuan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KubotaSho
en-aut-sei=Kubota
en-aut-mei=Sho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=DohmaeNaoshi
en-aut-sei=Dohmae
en-aut-mei=Naoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AbikoYumi
en-aut-sei=Abiko
en-aut-mei=Yumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=UchidaKoji
en-aut-sei=Uchida
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KumagaiYoshito
en-aut-sei=Kumagai
en-aut-mei=Yoshito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=UeharaTakashi
en-aut-sei=Uehara
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science
kn-affil=
affil-num=6
en-affil=Graduate School of Biomedical Science, Nagasaki University
kn-affil=
affil-num=7
en-affil=Laboratory of Food Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo
kn-affil=
affil-num=8
en-affil=Graduate School of Pharmaceutical Sciences, Kyushu University
kn-affil=
affil-num=9
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=phosphatidylinositol 3-kinase (PI 3-kinase)
kn-keyword=phosphatidylinositol 3-kinase (PI 3-kinase)
en-keyword=cell signaling
kn-keyword=cell signaling
en-keyword=chemical modification
kn-keyword=chemical modification
en-keyword=autophagy
kn-keyword=autophagy
en-keyword=glucose uptake
kn-keyword=glucose uptake
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=1
article-no=
start-page=24968
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241023
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Apolipoprotein-B mRNA-editing complex 3B could be a new potential therapeutic target in endometriosis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study investigated the correlation of Apolipoprotein-B mRNA-editing complex 3B (APOBEC3B) expression with hypoxia inducible factor 1α (HIF-1α), Kirsten rat sarcoma virus (KRAS) and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) in endometriosis patients, and the inhibitory effects of APOBEC3B knockdown in a human endometriotic cell line. Here, APOBEC3B, HIF-1α, KRAS, and PIK3CA were examined in patients with and without endometriosis using reverse transcription polymerase chain reaction (RT-PCR). The apoptosis, cell proliferation, invasion, migration, and biological function of APOBEC3B knockdown were explored in 12Z immortalized human endometriotic cell line. We observed APOBEC3B, HIF-1α, KRAS and PIK3CA expressions were significantly higher in endometriosis patients (p < 0.001, p < 0.001, p = 0.029, p = 0.001). Knockdown of APOBEC3B increased apoptosis, which was 28.03% and 22.27% higher than in mock and control siRNA samples, respectively. APOBEC3B knockdown also decreased PIK3CA expression and increased Caspase 8 expression, suggesting a potential role in the regulation of apoptosis. Furthermore, knockdown of APOBEC3B significantly inhibited cell proliferation, invasion, and migration compared to mock and control siRNA. (Cell proliferation: mock: p < 0.001 and control siRNA: p = 0.049. Cell invasion: mock: p < 0.001 and control siRNA: p = 0.029. Cell migration: mock: p = 0.004, and control siRNA: p = 0.014). In conclusion, this study suggests that APOBEC3B may be a new potential therapeutic target for endometriosis.
en-copyright=
kn-copyright=
en-aut-name=VuThuy Ha
en-aut-sei=Vu
en-aut-mei=Thuy Ha
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakamuraKeiichiro
en-aut-sei=Nakamura
en-aut-mei=Keiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShigeyasuKunitoshi
en-aut-sei=Shigeyasu
en-aut-mei=Kunitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KashinoChiaki
en-aut-sei=Kashino
en-aut-mei=Chiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OkamotoKazuhiro
en-aut-sei=Okamoto
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KuboKotaro
en-aut-sei=Kubo
en-aut-mei=Kotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KamadaYasuhiko
en-aut-sei=Kamada
en-aut-mei=Yasuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MasuyamaHisashi
en-aut-sei=Masuyama
en-aut-mei=Hisashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=7
en-affil=Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
en-keyword=Apolipoprotein-B mRNA-editing complex 3B
kn-keyword=Apolipoprotein-B mRNA-editing complex 3B
en-keyword=Endometriosis
kn-keyword=Endometriosis
en-keyword=Apoptosis
kn-keyword=Apoptosis
en-keyword=Potential therapeutic target
kn-keyword=Potential therapeutic target
END
start-ver=1.4
cd-journal=joma
no-vol=99
cd-vols=
no-issue=2
article-no=
start-page=563
end-page=574
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241027
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Therapeutic potential of 4-phenylbutyric acid against methylmercury-induced neuronal cell death in mice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Methylmercury (MeHg) is an environmental neurotoxin that induces damage to the central nervous system and is the causative agent in Minamata disease. The mechanisms underlying MeHg neurotoxicity remain largely unknown, and there is a need for effective therapeutic agents, such as those that target MeHg-induced endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), which is activated as a defense mechanism. We investigated whether intraperitoneal administration of the chemical chaperone, 4-phenylbutyric acid (4-PBA), at 120 mg/kg/day can alleviate neurotoxicity in the brains of mice administered 50 ppm MeHg in drinking water for 5 weeks. 4-PBA significantly reduced MeHg-induced ER stress, neuronal apoptosis, and neurological symptoms. Furthermore, 4-PBA was effective even when administered 2 weeks after the initiation of exposure to 30 ppm MeHg in drinking water. Our results strongly indicate that ER stress and the UPR are key processes involved in MeHg toxicity, and that 4-PBA is a novel therapeutic candidate for MeHg-induced neurotoxicity.
en-copyright=
kn-copyright=
en-aut-name=MikiRyohei
en-aut-sei=Miki
en-aut-mei=Ryohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NomuraRyosuke
en-aut-sei=Nomura
en-aut-mei=Ryosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IijimaYuta
en-aut-sei=Iijima
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KubotaSho
en-aut-sei=Kubota
en-aut-mei=Sho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakasugiNobumasa
en-aut-sei=Takasugi
en-aut-mei=Nobumasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IwawakiTakao
en-aut-sei=Iwawaki
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=FujimuraMasatake
en-aut-sei=Fujimura
en-aut-mei=Masatake
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=UeharaTakashi
en-aut-sei=Uehara
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University
kn-affil=
affil-num=7
en-affil=Department of International Affairs and Research, National Institute for Minamata Disease
kn-affil=
affil-num=8
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Methylmercury
kn-keyword=Methylmercury
en-keyword=Neuronal cell death
kn-keyword=Neuronal cell death
en-keyword=Endoplasmic reticulum stress
kn-keyword=Endoplasmic reticulum stress
en-keyword=Unfolded protein response
kn-keyword=Unfolded protein response
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=4
article-no=
start-page=557
end-page=564
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241019
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Clinical Significance of Prior Ramucirumab Use on the Effectiveness of Nivolumab as the Third-Line Regimen in Gastric Cancer: A Multicenter Retrospective Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background and Objective Because vascular endothelial growth factor inhibition has been suggested to improve immune cell function in the cancer microenvironment, we examined whether using ramucirumab (RAM) before nivolumab usage is more effective in advanced gastric cancer.
Methods This was a multicenter retrospective observational study. We analyzed patients who received nivolumab monotherapy as the third-line regimen for unresectable advanced or recurrent gastric cancer between October 2017 and December 2022. They were divided into the RAM (RAM-treated) group and the non-RAM (non-treated) group according to the RAM usage in the second-line regimen. The primary outcome was to compare the overall survival after nivolumab administration in the third-line regimen between the RAM and non-RAM groups.
Results Fifty-two patients were included in the present study: 42 patients in the RAM group and ten patients in the non-RAM group. The median overall survival was significantly longer in the RAM group than in the non-RAM group (8.5 months vs 6.9 months, p < 0.05). In the RAM group, patients without peritoneal metastasis had significantly better median overall survival than those with peritoneal metastasis (23.8 months vs 7.7 months, p = 0.0033). Multivariate Cox-proportional hazards analyses showed that the presence of peritoneal metastasis (hazard ratio, 2.4; 95% confidence interval 1.0-5.7) alone was significantly associated with overall survival in the RAM group.
Conclusions The use of RAM prior to nivolumab monotherapy may contribute to prolonged survival in patients with gastric cancer, especially those without peritoneal metastasis.
en-copyright=
kn-copyright=
en-aut-name=ObayashiYuka
en-aut-sei=Obayashi
en-aut-mei=Yuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HirataShoichiro
en-aut-sei=Hirata
en-aut-mei=Shoichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KonoYoshiyasu
en-aut-sei=Kono
en-aut-mei=Yoshiyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AbeMakoto
en-aut-sei=Abe
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MiyaharaKoji
en-aut-sei=Miyahara
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakagawaMasahiro
en-aut-sei=Nakagawa
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IshidaMichihiro
en-aut-sei=Ishida
en-aut-mei=Michihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ChodaYasuhiro
en-aut-sei=Choda
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HamadaKenta
en-aut-sei=Hamada
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=IwamuroMasaya
en-aut-sei=Iwamuro
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KawanoSeiji
en-aut-sei=Kawano
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KawaharaYoshiro
en-aut-sei=Kawahara
en-aut-mei=Yoshiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Internal Medicine, Hiroshima City Hiroshima Citizens Hospital
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Internal Medicine, Hiroshima City Hiroshima Citizens Hospital
kn-affil=
affil-num=5
en-affil=Department of Internal Medicine, Hiroshima City Hiroshima Citizens Hospital
kn-affil=
affil-num=6
en-affil=Department of Endoscopy, Hiroshima City Hiroshima Citizens Hospital
kn-affil=
affil-num=7
en-affil=Department of Surgery, Hiroshima City Hiroshima Citizens Hospital
kn-affil=
affil-num=8
en-affil=Department of Surgery, Hiroshima City Hiroshima Citizens Hospital
kn-affil=
affil-num=9
en-affil=Department of Practical Gastrointestinal Endoscopy, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
affil-num=12
en-affil=Department of Practical Gastrointestinal Endoscopy, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=78
cd-vols=
no-issue=5
article-no=
start-page=423
end-page=428
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202410
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Occult Nesidioblastosis Detected by 111In-Pentetreotide Single-Photon Emission Computed Tomography
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Nesidioblastosis, also known as persistent hyperinsulinemic hypoglycemia, is usually observed in children and infants, although more recently adult-onset nesidioblastosis has also been described. We present a case of nesidioblastosis in a 78-year-old man that was detected by 111In-pentetreotide single photon emission computed tomography (SPECT/CT). The patient was transferred to our hospital’s emergency department in a hypoglycemic coma. Dynamic enhanced CT could detect no lesion in the pancreas, but an 111In-pentetreotide SPECT/CT scan performed after a similar episode four weeks later showed increased focal uptake at the head of the pancreas. The results of a selective arterial calcium injection test were negative. After careful consideration and discussion among colleagues, surgical intervention was selected, and a pancreaticoduodenectomy was performed. On histology, there were elevated numbers of Langerhans islets in the pancreatic head, and the islets themselves appeared enlarged. Hypertrophic β-cells comprised the majority, but α-cells, δ-cells and pancreatic polypeptide were also detected in the islets. Based on the histopathological results and repeated hyperinsulinemic hypoglycemic crises, the patient was finally diagnosed with adult-onset nesidioblastosis. He had no hypoglycemic symptoms during outpatient follow-up examination. Since 111In-pentetreotide SPECT/CT may be able to detect nesidioblastosis, clinicians should consider this relatively new-modality examination when encountering such cases.
en-copyright=
kn-copyright=
en-aut-name=SakamotoShinya
en-aut-sei=Sakamoto
en-aut-mei=Shinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TabuchiMotoyasu
en-aut-sei=Tabuchi
en-aut-mei=Motoyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshimatsuRika
en-aut-sei=Yoshimatsu
en-aut-mei=Rika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HishidaAi
en-aut-sei=Hishida
en-aut-mei=Ai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MatsumotoManabu
en-aut-sei=Matsumoto
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IwataJun
en-aut-sei=Iwata
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OkabayashiTakehiro
en-aut-sei=Okabayashi
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Gastroenteorlogical Surgery, Kochi Health Sciences Center
kn-affil=
affil-num=2
en-affil=Department of Gastroenteorlogical Surgery, Kochi Health Sciences Center
kn-affil=
affil-num=3
en-affil=Department of Radiology, Kochi Health Sciences Center
kn-affil=
affil-num=4
en-affil=Department of Endocrinology and Metabolism, Kochi Health Sciences Center
kn-affil=
affil-num=5
en-affil=Department of Diagnostic Pathology, Kochi Health Sciences Center
kn-affil=
affil-num=6
en-affil=Department of Diagnostic Pathology, Kochi Health Sciences Center
kn-affil=
affil-num=7
en-affil=Department of Gastroenteorlogical Surgery, Kochi Health Sciences Center
kn-affil=
en-keyword=111In-pentetreotide
kn-keyword=111In-pentetreotide
en-keyword=nesidioblastosis
kn-keyword=nesidioblastosis
en-keyword=single-photon emission computed tomography
kn-keyword=single-photon emission computed tomography
en-keyword=hyperinsulinemic hypoglycemia
kn-keyword=hyperinsulinemic hypoglycemia
END
start-ver=1.4
cd-journal=joma
no-vol=78
cd-vols=
no-issue=5
article-no=
start-page=407
end-page=412
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202410
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The First Report of Bickerstaff Brainstem Encephalitis Induced by Atezolizumab for Metastatic Breast Cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment, but they have been known to cause immune-related adverse events (irAEs) by promoting T-cell activation. Neurological irAEs are rare (1%) but have a high fatality rate (11.5%). Here we report the first case of Bickerstaff brainstem encephalitis (BBE) induced by an ICI. A woman in her 60s with metastatic breast cancer was treated with atezolizumab plus nab-paclitaxel once intravenously. Eighteen days later, she lost consciousness with ophthalmoplegia and was diagnosed with a neurological irAE. She recovered consciousness immediately with the administration of intravenous immunoglobulin (IVIG) but suffered severe permanent peripheral neuropathy. Although it is just one case, this experience shows that BBE occurring as a neurological irAE of ICI cancer treatment may be associated with more severe outcomes than conventional BBE in metastatic cancer. Creating a system for multidisciplinary treatment is essential for ICI therapy.
en-copyright=
kn-copyright=
en-aut-name=ShimoyamaKyoko
en-aut-sei=Shimoyama
en-aut-mei=Kyoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakajimaAtsushi
en-aut-sei=Nakajima
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MinariYoshimitsu
en-aut-sei=Minari
en-aut-mei=Yoshimitsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Breast Surgery, Takatsuki General Hospital
kn-affil=
affil-num=2
en-affil=Department of Rehabilitation, Aijinkai Rehabilitation Hospital
kn-affil=
affil-num=3
en-affil=Department of Breast Surgery, Takatsuki General Hospital
kn-affil=
en-keyword=Bickerstaff brainstem encephalitis
kn-keyword=Bickerstaff brainstem encephalitis
en-keyword=immune checkpoint inhibitor
kn-keyword=immune checkpoint inhibitor
en-keyword=atezolizumab
kn-keyword=atezolizumab
en-keyword=neurological immune-related adverse event
kn-keyword=neurological immune-related adverse event
en-keyword=breast cancer
kn-keyword=breast cancer
END
start-ver=1.4
cd-journal=joma
no-vol=78
cd-vols=
no-issue=5
article-no=
start-page=387
end-page=399
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202410
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effect of Radon Inhalation on Murine Brain Proteins: Investigation Using Proteomic and Multivariate Analyses
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Radon is a known risk factor for lung cancer; however, it can be used beneficially, such as in radon therapy. We have previously reported the enhancement of antioxidant effects associated with trace amounts of oxidative stress as one of the positive biological effects of radon inhalation. However, the biological effects of radon inhalation are incompletely understood, and more detailed and comprehensive studies are required. Although several studies have used proteomics to investigate the effects of radon inhalation on body proteins, none has focused on brain proteins. In this study, we evaluated the expression status of proteins in murine brains using proteomic and multivariate analyses to identify those whose expressions changed following two days of radon inhalation at a concentration of 1,500 Bq/m3. We found associations of radon inhalation with the expressions of seven proteins related to neurotransmission and heat shock. These proteins may be proposed as biomarkers indicative of radon inhalation. Although further studies are required to obtain the detailed biological significance of these protein alterations, this study contributes to the elucidation of the biological effects of radon
inhalation as a low-dose radiation.
en-copyright=
kn-copyright=
en-aut-name=NaoeShota
en-aut-sei=Naoe
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaAyumi
en-aut-sei=Tanaka
en-aut-mei=Ayumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KanzakiNorie
en-aut-sei=Kanzaki
en-aut-mei=Norie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakenakaReiju
en-aut-sei=Takenaka
en-aut-mei=Reiju
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SakodaAkihiro
en-aut-sei=Sakoda
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MiyajiTakaaki
en-aut-sei=Miyaji
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YamaokaKiyonori
en-aut-sei=Yamaoka
en-aut-mei=Kiyonori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KataokaTakahiro
en-aut-sei=Kataoka
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency
kn-affil=
affil-num=4
en-affil=Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency
kn-affil=
affil-num=6
en-affil=Advanced Science Research Center, Okayama University
kn-affil=
affil-num=7
en-affil=Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Faculty of Health Sciences, Okayama University
kn-affil=
en-keyword=radon inhalation
kn-keyword=radon inhalation
en-keyword=proteomics
kn-keyword=proteomics
en-keyword=multivariate analysis
kn-keyword=multivariate analysis
en-keyword=brain
kn-keyword=brain
en-keyword=oxidative stress
kn-keyword=oxidative stress
END
start-ver=1.4
cd-journal=joma
no-vol=33
cd-vols=
no-issue=4
article-no=
start-page=294
end-page=301
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=202307
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Role of lymphadenectomy during primary surgery for kidney cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose of review
Lymph node dissection (LND) during radical nephrectomy (RN) for renal cell carcinoma (RCC) is not considered as a standard. The emergence of robot-assisted surgery and effective immune checkpoint inhibitors (ICI) in recent years may change this and lymph node (LN) staging has become easier and has a clinical impact. In this review, we aimed to reconsider the role of LND today.
Recent findings
Although the extent of LND has still not been well established, removal of more LN seems to provide better oncologic outcomes for a select group of patients with high-risk factors such as clinical T3-4. Adjuvant therapy using pembrolizumab has been shown to improve disease free survival if complete resection of metastatic lesions as well as the primary site is obtained in combination. Robot assisted RN for localized RCC has been widespread and the studies regarding LND for RCC has been recently appeared.
Summary
The staging and surgical benefits and its extent of LND during RN for RCC remains unclear, but it is becoming increasingly important. Technologies that allow an easier LND and adjuvant ICI that improve survival in LN-positive patients are engaging the role of LND, a procedure that was needed, but almost never done, is now indicated sometimes. Now, the goal is to identify the clinical and molecular imaging tools that can help identify with sufficient accuracy who needs a LND and which LNs to remove in a targeted personalized approach.
en-copyright=
kn-copyright=
en-aut-name=BekkuKensuke
en-aut-sei=Bekku
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawadaTatsushi
en-aut-sei=Kawada
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YanagisawaTakafumi
en-aut-sei=Yanagisawa
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KarakiewiczPierre I.
en-aut-sei=Karakiewicz
en-aut-mei=Pierre I.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShariatShahrokh F.
en-aut-sei=Shariat
en-aut-mei=Shahrokh F.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=4
en-affil=Cancer Prognostic and Health Outcomes Unit, Division of Urology, University of Montreal Health Center
kn-affil=
affil-num=5
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
en-keyword=lymph node dissection
kn-keyword=lymph node dissection
en-keyword=lymph node metastasis
kn-keyword=lymph node metastasis
en-keyword=lymphadenectomy
kn-keyword=lymphadenectomy
en-keyword=lymphadenopathy
kn-keyword=lymphadenopathy
en-keyword=Renal cell carcinoma
kn-keyword=Renal cell carcinoma
END
start-ver=1.4
cd-journal=joma
no-vol=10
cd-vols=
no-issue=1
article-no=
start-page=229
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241004
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Primary ileal myeloid sarcoma presenting with bowel obstruction: a case report
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Myeloid sarcoma (MS) is an extramedullary tumor constituted by myeloid blasts or immature myeloid cells. It frequently occurs in conjunction with acute myeloid leukemia (AML); however, it can exceptionally manifest in patients without leukemia. Here, we present a rare case of primary MS originating in the small bowel without evidence of bone marrow involvement.
Case representation A 33 year-old female with no relevant medical history was admitted to our hospital with recurrent abdominal pain. Computed tomography (CT) revealed bowel obstruction due to thickening of the ileum wall, which was suspected to be an ileal tumor. Initially, ectopic endometriosis was suspected because of abdominal pain associated with the menstrual cycle and changes observed on a follow-up CT scan. The lesion could not be detected by double-balloon endoscopy. Despite conservative treatment, the obstruction persisted, and laparoscopic partial ileal resection was performed, which revealed extensive involvement of the ileum and mesentery. Additionally, the mesentery of the resected ileum was extremely thickened. Histopathological and immunohistochemical examinations of the surgical specimen indicated ileal MS. Bone marrow aspiration after discharge was negative for cytological findings of leukemia, leading to a final diagnosis of primary ileal MS. Her postoperative course was uneventful, and she is currently undergoing systemic chemotherapy tailored to AML at another hospital.
Conclusions Even though MS of the small bowel is rare and may not be considered preoperatively, similar surgical treatment to that of other small bowel malignancies can ensure proper postoperative diagnosis and appropriate chemotherapy. Given the potential need for chemotherapy, ensuring surgical safety that allows for its rapid initiation is critical.
en-copyright=
kn-copyright=
en-aut-name=MinagiHitoshi
en-aut-sei=Minagi
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KanayaNobuhiko
en-aut-sei=Kanaya
en-aut-mei=Nobuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KondoYoshitaka
en-aut-sei=Kondo
en-aut-mei=Yoshitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KakiuchiYoshihiko
en-aut-sei=Kakiuchi
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KurodaShinji
en-aut-sei=Kuroda
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShojiRyohei
en-aut-sei=Shoji
en-aut-mei=Ryohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KashimaHajime
en-aut-sei=Kashima
en-aut-mei=Hajime
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MatsumiYuki
en-aut-sei=Matsumi
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KikuchiSatoru
en-aut-sei=Kikuchi
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ShigeyasuKunitoshi
en-aut-sei=Shigeyasu
en-aut-mei=Kunitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TeraishiFuminori
en-aut-sei=Teraishi
en-aut-mei=Fuminori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KagawaShunsuke
en-aut-sei=Kagawa
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Gastroenterological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Gastroenterological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Gastroenterological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Gastroenterological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=12
en-affil=Department of Gastroenterological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=13
en-affil=Department of Gastroenterological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
en-keyword=Myeloid sarcoma
kn-keyword=Myeloid sarcoma
en-keyword=Chloroma
kn-keyword=Chloroma
en-keyword=Granulocytic sarcoma
kn-keyword=Granulocytic sarcoma
en-keyword=Bowel obstruction
kn-keyword=Bowel obstruction
en-keyword=Abdominal pain
kn-keyword=Abdominal pain
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=9
article-no=
start-page=1781
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240828
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Novel C-Terminal Truncated Bacteriocin Found by Comparison between Leuconostoc mesenteroides 406 and 213M0 Isolated from Mongolian Traditional Fermented Milk, Airag
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Bacteriocins produced by lactic acid bacteria are known to be useful tools for food biopreservation and fermentation control. Leuconostoc mesenteroides subsp. mesenteroides 406 and 213M0 isolated from different samples of Mongolian traditional fermented milk, airag, had been reported to produce listericidal bacteriocin-like inhibitory substances with similar but slightly different properties. In this study, the antibacterial properties and the related gene sequences of both strains were compared, and then their bacteriocins were purified and identified. Strain 406 was superior to strain 213M0 in cell growth and antibacterial activity against many strains. However, the activity of 213M0 was stronger than that of 406 against a few strains. DNA sequencing revealed two and three plasmids in 406 and 213M0, respectively, and each one of them harbored an almost identical mesentericin Y105-B105 gene cluster. Removal of these plasmids resulted in a complete loss of activity, indicating that the antibacterial activity of both strains was generated by bacteriocins encoded on the plasmids. Mesentericins Y105 and B105 were purified from both cultures, and another novel bacteriocin, named mesentericin M, was identified from the 213M0 culture only. Its structural gene was coded on a 213M0 plasmid and, surprisingly, its C-terminal three amino acid residues were post-translationally cleaved. To our knowledge, this is the first report of a C-terminal truncated bacteriocin. In conclusion, the novel bacteriocin should be mainly responsible for the difference in antibacterial properties between the two strains.
en-copyright=
kn-copyright=
en-aut-name=HasiqimugeChihiro
en-aut-sei=Hasiqimuge
en-aut-mei=Chihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HanoChihiro
en-aut-sei=Hano
en-aut-mei=Chihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ArakawaKensuke
en-aut-sei=Arakawa
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YoshidaSaki
en-aut-sei=Yoshida
en-aut-mei=Saki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ZhaoJunliang
en-aut-sei=Zhao
en-aut-mei=Junliang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TohHidehiro
en-aut-sei=Toh
en-aut-mei=Hidehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MoritaHidetoshi
en-aut-sei=Morita
en-aut-mei=Hidetoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MiyamotoTaku
en-aut-sei=Miyamoto
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=6
en-affil=Advanced Genomics Center, National Institute of Genetics
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=8
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=Leuconostoc mesenteroides
kn-keyword=Leuconostoc mesenteroides
en-keyword=antimicrobial peptide
kn-keyword=antimicrobial peptide
en-keyword=bacteriocin
kn-keyword=bacteriocin
en-keyword=Listeria monocytogenes
kn-keyword=Listeria monocytogenes
en-keyword=fermented milk
kn-keyword=fermented milk
en-keyword=biopreservation
kn-keyword=biopreservation
en-keyword=fermentation control
kn-keyword=fermentation control
en-keyword=post-translational modification
kn-keyword=post-translational modification
en-keyword=C-terminal cleavage
kn-keyword=C-terminal cleavage
END