
| ID | 62802 |
| フルテキストURL | |
| 著者 |
Puthenpurakal, Tony J.
|
| 抄録 | Let K be a field and consider the standard grading on A = K[X1, ... ,Xd]. Let I, J be monomial ideals in A. Let In(J) = (In : J∞) be the nth symbolic power of I with respect to J. It is easy to see that the function fI J (n) = e0(In(J)/In) is of quasi-polynomial type, say of period g and degree c. For n ≫ 0 say
fIJ (n) = ac(n)nc + ac−1(n)nc−1 + lower terms, where for i = 0, ... , c, ai : N → Q are periodic functions of period g and ac ≠0. In [4, 2.4] we (together with Herzog and Verma) proved that dim In(J)/In is constant for n ≫ 0 and ac(−) is a constant. In this paper we prove that if I is generated by some elements of the same degree and height I ≥ 2 then ac−1(−) is also a constant. |
| キーワード | quasi-polynomials
monomial ideals
symbolic powers
|
| 備考 | Mathematics Subject Classification. Primary 13D40; Secondary 13H15.
|
| 発行日 | 2022-01
|
| 出版物タイトル |
Mathematical Journal of Okayama University
|
| 巻 | 64巻
|
| 号 | 1号
|
| 出版者 | Department of Mathematics, Faculty of Science, Okayama University
|
| 開始ページ | 187
|
| 終了ページ | 190
|
| ISSN | 0030-1566
|
| NCID | AA00723502
|
| 資料タイプ |
学術雑誌論文
|
| 言語 |
英語
|
| 著作権者 | Copyright ©2022 by the Editorial Board of Mathematical Journal of Okayama University
|
| 論文のバージョン | publisher
|
| 査読 |
有り
|
| Submission Path | mjou/vol64/iss1/11
|