このエントリーをはてなブックマークに追加


ID 60873
フルテキストURL
著者
Chinen, Koji Department of Mathematics, School of Science and Engineering, Kindai University
抄録
In this note, we establish an analog of the Mallows-Sloane bound for Type III formal weight enumerators. This completes the bounds for all types (Types I through IV) in synthesis of our previous results. Next we show by using the binomial moments that there exists a family of polynomials divisible by three, which are not related to linear codes but are invariant under the MacWilliams transform for the value 3/2. We also discuss some properties of the zeta functions for such polynomials.
キーワード
Binomial moment
Divisible code
Invariant polynomial ring
Zeta function for codes
Riemann hypothesis
備考
Mathematics Subject Classification. Primary 11T71; Secondary 13A50, 12D10.
発行日
2021-01
出版物タイトル
Mathematical Journal of Okayama University
63巻
1号
出版者
Department of Mathematics, Faculty of Science, Okayama University
開始ページ
175
終了ページ
182
ISSN
0030-1566
NCID
AA00723502
資料タイプ
学術雑誌論文
言語
英語
著作権者
Copyright©2021 by the Editorial Board of Mathematical Journal of Okayama University
論文のバージョン
publisher
査読
有り
Submission Path
mjou/vol63/iss1/11