このエントリーをはてなブックマークに追加


ID 33679
フルテキストURL
著者
Yi, Okyeon Korea University
抄録

First, injective modules are one of the most popular objects in homological algebra. In most cases, base rings are commutative and Noetherian so that the testing the injectivity of a given module is an important topic. Bear's criterion for injective modules over any ring gives a big tool to classify injective modules. Every morphism from an ideal I of R should be extended to the whole ring R to be an injective module R-module. In this paper, we can show that the Baer's test can be reduced from all ideals of R to all prime ideals of R to test the injectivity of a given R-module M if the base ring R is commutative and Noetherian. Second, the Enochs' Theorem can be extended to an arbitrary sequence {ƒi} of endomomorphisms of an injective left Noetherian and if a diagram of the minimal injective resolution of RM is commutative, then the locally nilpotence of ƒ implies the locally nilpotence of other maps in the diagram.

キーワード
Locally Nilpotent Endomorphism
Injective Modules
Injective Envelope
発行日
1998-01
出版物タイトル
Mathematical Journal of Okayama University
40巻
1号
出版者
Department of Mathematics, Faculty of Science, Okayama University
開始ページ
7
終了ページ
13
ISSN
0030-1566
NCID
AA00723502
資料タイプ
学術雑誌論文
言語
英語
論文のバージョン
publisher
査読
有り
NAID
Submission Path
mjou/vol40/iss1/2
JaLCDOI