このエントリーをはてなブックマークに追加


ID 33997
フルテキストURL
著者
Tanaka, Naoki Okayama University
抄録

thispaper is devoted to the well-posedness of abstract cauchy problems for quasi-linear evolution equations. the notion of hadamard well-posedness is considered, and a new type of stability condition is introduced from the viewpoint of the theory of finite difference approximations. the result obtained here generalizes not only some results on abstract cauchy problems closely related with the theory of integrated semigroups or regularized semigroups but also the kato theorem on quasi-linear evolution equations. an application to some quasi-linear partial differential equation of weakly hyperbolic type is also given.

キーワード
abstract cauchy problem in the sense of hadamard
regularized semigroup
abstract quasi-linear evolution equation
stability condition
finite difference approximation.
備考
Digital Object Identifier:10.1112/S0024611503014643
Published with permission from the copyright holder. This is the institute's copy, as published in Proceedings of the London Mathematical Society, July 2004, Volume 89, Issue 1, Pages 123-160.
Publisher URL:http://dx.doi.org/10.1112/S0024611503014643
Copyright © 2004 London Mathematical Society. All rights reserved.
発行日
2004-7
出版物タイトル
Proceedings of the London Mathematical Society
89巻
1号
開始ページ
123
終了ページ
160
資料タイプ
学術雑誌論文
言語
英語
査読
有り
DOI
Submission Path
mathematics_general/4