start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250612
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Sulfur dioxide-induced guard cell death and stomatal closure are attenuated in nitrate/proton antiporter AtCLCa mutants
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Guard cells surrounding the stomata play a crucial role in regulating the entrance of hazardous gases such as SO2 into leaves. Stomatal closure could be a plant response to mitigate SO2 damage, although the mechanism for SO2-induced closure remains controversial. Proposed mediators for SO2-induced stomatal closure include phytohormones, reactive oxygen species, gasotransmitters, and cytosolic acidification. In this study, we investigated the mechanism of stomatal closure in Arabidopsis in response to SO2. Despite an increment in auxin and jasmonates after SO2 exposure, the addition of auxin did not cause stomatal closure and jasmonate-insensitive mutants exhibited SO2-induced stomatal closure suggesting auxin and jasmonates are not mediators leading to the closure. In addition, supplementation of scavenging reagents for reactive oxygen species and gasotransmitters did not inhibit SO2-induced closure. Instead, we found that cytosolic acidification is a credible mechanism for SO2-induced stomatal closure in Arabidopsis. CLCa mutants coding H+/nitrate antiporter, involved in cytosolic pH homeostasis, showed less sensitive stomatal phenotype against SO2. These results suggest that cytosolic pH homeostasis plays a tenable role in SO2 response in guard cells.
en-copyright=
kn-copyright=
en-aut-name=OoiLia
en-aut-sei=Ooi
en-aut-mei=Lia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsuuraTakakazu
en-aut-sei=Matsuura
en-aut-mei=Takakazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MoriIzumi C.
en-aut-sei=Mori
en-aut-mei=Izumi C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
en-keyword=airborne pollutants
kn-keyword=airborne pollutants
en-keyword=cytosolic acidification
kn-keyword=cytosolic acidification
en-keyword=stomatal closure
kn-keyword=stomatal closure
en-keyword=sulfur dioxide
kn-keyword=sulfur dioxide
END
start-ver=1.4
cd-journal=joma
no-vol=70
cd-vols=
no-issue=5
article-no=
start-page=733
end-page=747
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202503
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A PRA-Rab trafficking machinery modulates NLR immune receptor plasma membrane microdomain anchoring and blast resistance in rice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Nucleotide-binding leucine-rich repeat (NLR) receptors mediate pathogen effector-triggered immunity (ETI) in plants, and a subclass of NLRs are hypothesized to function at the plasma membrane (PM). However, how NLR traffic and PM delivery are regulated during immune responses remains largely unknown. The rice NLR PigmR confers broad-spectrum resistance to the blast fungus Magnaporthe oryzae. Here, we report that a PRA (Prenylated Rab acceptor) protein, PIBP4 (PigmR-INTERACTING and BLAST RESISTANCE PROTEIN 4), interacts with both PigmR and the active form of the Rab GTPase, OsRab5a, thereby loads a portion of PigmR on trafficking vesicles that target to PM microdomains. Microdomain-localized PigmR interacts with and activates the small GTPase OsRac1, which triggers reactive oxygen species signaling and hypersensitive response, leading to immune responses against blast infection. Thus, our study discovers a previously unknown mechanism that deploys a PRA-Rab protein delivering hub to ensure ETI, linking the membrane trafficking machinery with NLR function and immune activation in plants.
en-copyright=
kn-copyright=
en-aut-name=LiangDi
en-aut-sei=Liang
en-aut-mei=Di
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YangDongyong
en-aut-sei=Yang
en-aut-mei=Dongyong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=LiTai
en-aut-sei=Li
en-aut-mei=Tai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ZhuZhe
en-aut-sei=Zhu
en-aut-mei=Zhe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YanBingxiao
en-aut-sei=Yan
en-aut-mei=Bingxiao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HeYang
en-aut-sei=He
en-aut-mei=Yang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=LiXiaoyuan
en-aut-sei=Li
en-aut-mei=Xiaoyuan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ZhaiKeran
en-aut-sei=Zhai
en-aut-mei=Keran
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=LiuJiyun
en-aut-sei=Liu
en-aut-mei=Jiyun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KawanoYoji
en-aut-sei=Kawano
en-aut-mei=Yoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=DengYiwen
en-aut-sei=Deng
en-aut-mei=Yiwen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=WuXu Na
en-aut-sei=Wu
en-aut-mei=Xu Na
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=LiuJunzhong
en-aut-sei=Liu
en-aut-mei=Junzhong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=HeZuhua
en-aut-sei=He
en-aut-mei=Zuhua
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences
kn-affil=
affil-num=2
en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences
kn-affil=
affil-num=3
en-affil=Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University
kn-affil=
affil-num=4
en-affil=Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University
kn-affil=
affil-num=5
en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences
kn-affil=
affil-num=6
en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences
kn-affil=
affil-num=7
en-affil=School of Life Science and Technology, ShanghaiTech University
kn-affil=
affil-num=8
en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences
kn-affil=
affil-num=9
en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences
kn-affil=
affil-num=10
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=11
en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences
kn-affil=
affil-num=12
en-affil=Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University
kn-affil=
affil-num=13
en-affil=Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University
kn-affil=
affil-num=14
en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences
kn-affil=
en-keyword=Prenylated Rab acceptor
kn-keyword=Prenylated Rab acceptor
en-keyword=PigmR
kn-keyword=PigmR
en-keyword=Trafficking vesicles
kn-keyword=Trafficking vesicles
en-keyword=OsRab5a
kn-keyword=OsRab5a
en-keyword=Blast resistance
kn-keyword=Blast resistance
END
start-ver=1.4
cd-journal=joma
no-vol=695
cd-vols=
no-issue=
article-no=
start-page=137727
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202510
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Tunable interlayer distance in graphene oxide through alkylamine surface coverage and chain length
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Layered materials have unique structures that can be modified by adjusting the space between layers through pillaring or surface functionalization. Unlike typical crystalline layered materials, graphene oxide (GO) possesses reactive oxygenated functional groups, which lead to spontaneous reduction and stacking upon thermal treatment. Here, we investigated the functionalization of GO with different amounts of hexylamine to control the degree of surface coverage. Furthermore, octylamine and dodecylamine were employed to confirm the effect of the alkyl chain length on the interlayer distance of the resultant GO derivatives. Subsequent thermal treatment produced reduced GO (rGO) functionalized with alkylamines, demonstrating the retention of the interlayer distance. Additionally, amine-functionalized rGOs exhibited varying porous structures.
en-copyright=
kn-copyright=
en-aut-name=Ortiz-AnayaIsrael
en-aut-sei=Ortiz-Anaya
en-aut-mei=Israel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ObataSeiji
en-aut-sei=Obata
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Graduate School of Natural Sciences and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=3
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
en-keyword=Graphene oxide
kn-keyword=Graphene oxide
en-keyword=Layered material
kn-keyword=Layered material
en-keyword=Interlayer distance
kn-keyword=Interlayer distance
en-keyword=Functionalization
kn-keyword=Functionalization
en-keyword=Alkylamines
kn-keyword=Alkylamines
en-keyword=Nitrogen physisorption
kn-keyword=Nitrogen physisorption
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=3
article-no=
start-page=209
end-page=212
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Case of Aniline Poisoning Manifesting as Cyanosis with Unknown Cause
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A 38-year-old man was brought to the hospital for emergency treatment of cyanosis. The patient exhibited generalized cyanosis and impaired consciousness despite adequate oxygen therapy. Arterial blood was black, and arterial blood gas analysis revealed an abnormally high methemoglobin level of 67.8%. We later interviewed his colleagues regarding his exposure to aniline while working at the factory and diagnosed him with methemoglobinemia due to aniline poisoning. The patient was administered methylene blue (MB) after being transferred to another hospital, where this treatment was available, resulting in an improvement in symptoms. Although rare, methemoglobinemia is serious. A good understanding of the circumstances at disease onset, characteristic findings, and abnormal values of methemoglobinemia is important. In addition, MB is an important therapeutic for the treatment of methemoglobinemia; if MB is not available at a particular hospital, transfer of the patient to a hospital that stocks MB should be considered.
en-copyright=
kn-copyright=
en-aut-name=TaguchiKenichi
en-aut-sei=Taguchi
en-aut-mei=Kenichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishiiKazuya
en-aut-sei=Nishii
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HataSakura
en-aut-sei=Hata
en-aut-mei=Sakura
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KuyamaShoichi
en-aut-sei=Kuyama
en-aut-mei=Shoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TanakaShoichi
en-aut-sei=Tanaka
en-aut-mei=Shoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Gastroenterology, NHO Iwakuni Clinical Center
kn-affil=
affil-num=2
en-affil=Department of Respiratory Medicine, NHO Iwakuni Clinical Center
kn-affil=
affil-num=3
en-affil=Department of Gastroenterology, NHO Iwakuni Clinical Center
kn-affil=
affil-num=4
en-affil=
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology, NHO Iwakuni Clinical Center
kn-affil=
en-keyword=methemoglobinemia
kn-keyword=methemoglobinemia
en-keyword=aniline
kn-keyword=aniline
en-keyword=methylene blue
kn-keyword=methylene blue
en-keyword=cyanosis
kn-keyword=cyanosis
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=3
article-no=
start-page=157
end-page=166
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Continuous Stimulation with Glycolaldehyde-derived Advanced Glycation End Product Reduces Aggrecan and COL2A1 Production via RAGE in Human OUMS-27 Chondrosarcoma Cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Chondrocytes are responsible for the production of extracellular matrix (ECM) components such as collagen type II alpha-1 (COL2A1) and aggrecan, which are loosely distributed in articular cartilage. Chondrocyte dysfunction has been implicated in the pathogenesis of rheumatic diseases such as osteoarthritis (OA) and rheumatoid arthritis (RA). With age, advanced glycation end products (AGEs) accumulate in all tissues and body fluids, including cartilage and synovial fluid, causing and accelerating pathological changes associated with chronic diseases such as OA. Glycolaldehyde-derived AGE (AGE3), which is toxic to a variety of cell types, have a stronger effect on cartilage compared with other AGEs. To understand the long-term effects of AGE3 on cartilage, we stimulated a human chondrosarcoma cell line (OUMS-27), which exhibits a chondrocytic phenotype, with 10 μg/ml AGE3 for 4 weeks. As a result, the expressions of COL2A1 and aggrecan were significantly downregulated in the OUMS-27 cells without inducing cell death, but the expressions of proteases that play an important role in cartilage destruction were not affected. Inhibition of the receptor for advanced glycation end products (RAGE) suppressed the AGE3-induced reduction in cartilage component production, suggesting the involvement of RAGE in the action of AGE3.
en-copyright=
kn-copyright=
en-aut-name=HatipogluOmer Faruk
en-aut-sei=Hatipoglu
en-aut-mei=Omer Faruk
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishinakaTakashi
en-aut-sei=Nishinaka
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YaykasliKursat Oguz
en-aut-sei=Yaykasli
en-aut-mei=Kursat Oguz
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MoriShuji
en-aut-sei=Mori
en-aut-mei=Shuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WatanabeMasahiro
en-aut-sei=Watanabe
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ToyomuraTakao
en-aut-sei=Toyomura
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NishiboriMasahiro
en-aut-sei=Nishibori
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HirohataSatoshi
en-aut-sei=Hirohata
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TakahashiHideo
en-aut-sei=Takahashi
en-aut-mei=Hideo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=WakeHidenori
en-aut-sei=Wake
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Pharmacology, Faculty of Medicine, Kindai University
kn-affil=
affil-num=2
en-affil=Department of Pharmacology, Faculty of Medicine, Kindai University
kn-affil=
affil-num=3
en-affil=Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen
kn-affil=
affil-num=4
en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University
kn-affil=
affil-num=5
en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University
kn-affil=
affil-num=6
en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University
kn-affil=
affil-num=7
en-affil=Department of Translational Research & Dug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Pharmacology, Faculty of Medicine, Kindai University
kn-affil=
affil-num=10
en-affil=Department of Pharmacology, Faculty of Medicine, Kindai University
kn-affil=
en-keyword=advanced glycation end product
kn-keyword=advanced glycation end product
en-keyword=aging
kn-keyword=aging
en-keyword=cartilage
kn-keyword=cartilage
en-keyword=collagen
kn-keyword=collagen
en-keyword=aggrecan
kn-keyword=aggrecan
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250316
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Novel pulmonary abdominal normothermic regional perfusion circuit for simultaneous in-donor evaluation and preservation of lungs and abdominal organs in donation after circulatory death
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective To overcome limitations of traditional ex vivo lung perfusion (EVLP) for controlled donation after circulatory death (cDCD) lungs, this study aimed to evaluate a novel pulmonary abdominal normothermic regional perfusion (PANRP) technique, which we uniquely designed, for in situ assessment of lungs from cDCD donors.
Methods We modified the abdominal normothermic regional perfusion circuit for simultaneous lung and abdominal organ assessment using independent extracorporeal membrane oxygenation components. Blood was oxygenated via a membrane oxygenator and returned to the body, with pulmonary flow adjusted to maintain pressure < 25 mmHg. Femoral cannulation was performed, and the lungs were ventilated with standard settings. Organ function was assessed over 2 h using PaO2/FiO2, AST, ALT, BUN, and Cr measurements to monitor perfusion and oxygen delivery.
Results PANRP maintained stable lung function, with P/F ratios above 300, and preserved abdominal organ parameters, including stable AST, ALT, BUN, and Cr levels. Adequate urine output was observed, indicating normal renal function. Pulmonary artery pressure remained < 20 mmHg, and pulmonary vascular resistance was kept at 400 dyn・s/cm5, showing no signs of lung dysfunction or injury throughout the circuit.
Conclusions PANRP offers a promising alternative to traditional EVLP for cDCD lung evaluation, allowing in situ assessment of multiple organs simultaneously. This approach may overcome logistical and economic challenges associated with ex vivo techniques, enabling a more efficient evaluation process. Further studies are warranted to confirm its clinical applicability and impact on long-term outcomes.
en-copyright=
kn-copyright=
en-aut-name=TanakaShin
en-aut-sei=Tanaka
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UmedaMasashi
en-aut-sei=Umeda
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UjikeHiroyuki
en-aut-sei=Ujike
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=RyukoTsuyoshi
en-aut-sei=Ryuko
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TomiokaYasuaki
en-aut-sei=Tomioka
en-aut-mei=Yasuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MiyoshiKentaroh
en-aut-sei=Miyoshi
en-aut-mei=Kentaroh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OkazakiMikio
en-aut-sei=Okazaki
en-aut-mei=Mikio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SugimotoSeiichiro
en-aut-sei=Sugimoto
en-aut-mei=Seiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of General Thoracic and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of General Thoracic and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=3
en-affil=Department of General Thoracic Surgery, Shimane University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of General Thoracic and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=5
en-affil=Department of General Thoracic and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of General Thoracic and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=7
en-affil=Department of General Thoracic and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=8
en-affil=Department of General Thoracic and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Department of General Thoracic and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
en-keyword=Lung preservation
kn-keyword=Lung preservation
en-keyword=Donation after circulatory death
kn-keyword=Donation after circulatory death
en-keyword=Abdominal normothermic regional perfusion
kn-keyword=Abdominal normothermic regional perfusion
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=5
article-no=
start-page=577
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250306
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Efficacy of Oral Intake of Hydrogen-Rich Jelly Intake on Gingival Inflammation: A Double-Blind, Placebo-Controlled and Exploratory Randomized Clinical Trial
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Objectives: Initiation and progression of periodontal disease include oxidative stress. Systemic application of antioxidants may provide clinical benefits against periodontal disease including gingivitis. Recently, a jelly containing a high concentration of hydrogen (40 ppm) was developed. We hypothesized that oral intake of this hydrogen-rich jelly may be safe and effective on gingivitis. This clinical trial was designed to investigate the safety and efficacy of oral intake of hydrogen-rich jelly against gingival inflammation. Methods: Participants with gingivitis were instructed to orally ingest 30 g of hydrogen-rich jelly (experimental group) or placebo jelly (control group) three times a day for 14 consecutive days. The primary outcome of this trial was the percentage of bleeding on probing (BOP) sites. Secondary outcomes were oral parameters, serum reactive oxygen metabolites, antioxidant capacity, oxidative index, concentrations of cytokine (interleukin [IL]-1β, IL-6, IL-10, IL-17, and tumor necrosis factor-alpha) in gingival crevicular fluid, and adverse events. For all parameters, Mann–Whitney U test was used for comparison between experimental and control groups. Analysis of covariance, controlling for baseline periodontal inflamed surface area, was performed to evaluate the association between the effect of the hydrogen-rich jelly and gingival inflammation. Results: In the experiment and control groups, the percentage of sites with BOP and PISA significantly decreased at the end of the experiment compared to the baseline. However, no significant differences were found between groups (p > 0.05). Conclusions: Administration of hydrogen-rich jelly for 14 days decreased gingival inflammation. However, no significant differences were identified compared to the control group.
en-copyright=
kn-copyright=
en-aut-name=MaruyamaTakayuki
en-aut-sei=Maruyama
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakayamaEiji
en-aut-sei=Takayama
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TokunoShinichi
en-aut-sei=Tokuno
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MoritaManabu
en-aut-sei=Morita
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=EkuniDaisuke
en-aut-sei=Ekuni
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Oral Biochemistry, Asahi University School of Dentistry
kn-affil=
affil-num=3
en-affil=Graduate School of Health Innovation, Kanagawa University of Human Services
kn-affil=
affil-num=4
en-affil=Department of Oral Health, Takarazuka University of Medical and Health Care
kn-affil=
affil-num=5
en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=periodontal disease
kn-keyword=periodontal disease
en-keyword=oxidative stress
kn-keyword=oxidative stress
en-keyword=hydrogen
kn-keyword=hydrogen
en-keyword=randomized controlled trial
kn-keyword=randomized controlled trial
END
start-ver=1.4
cd-journal=joma
no-vol=209
cd-vols=
no-issue=
article-no=
start-page=114663
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Repeated sequential administration of pegylated emulsion of SU5416 and liposomal paclitaxel enhances anti-tumor effect in 4T1 breast cancer-bearing mice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=To improve vascular normalization strategy for intractable triple-negative breast cancer 4T1, we examined the anti-tumor effects of repeated sequential administration of polyethylene glycol (PEG)-modified emulsion of SU5416 (PE-SU5416), a vascular endothelial growth factor (VEGF) receptor-2 kinase inhibitor, and PEG-modified liposomal paclitaxel (PL-PTX) in mice bearing 4T1 cells. Three sequential administrations (Seq×3) of PE-SU5416 and PL-PTX exhibited significantly higher anti-tumor activity than a single sequential administration (Seq×1). The tumor vasculatures were structurally normalized until after two PE-SU5416 (PE-SU5416×2) or sequential (Seq×2) administrations, while the improvement in vascular function, such as oxygen supply, blood flow, and PEG-liposomal distribution, was evident until after three administrations of PE-SU5416 (PE-SU5416×3) and Seq×3. Although some discrepancies between the structural and functional improvement in tumor vasculatures were observed after PE-SU5416×3 and Seq×3, cancer-associated fibroblasts (CAFs) and collagen levels were significantly reduced after PE-SU5416×2, PE-SU5416×3, Seq×2, and Seq×3, suggesting that a possible decrease in interstitial fluid pressure due to the reduction in CAFs and collagen would have compensated for vascular function. Furthermore, PE-SU5416×2, PE-SU5416×3, Seq×2, and Seq×3 significantly decreased tumor growth factor-β (TGF-β), an activator of CAFs, in tumor tissues, suggesting that the reduction in TGF-β levels by PE-SU5416 suppresses CAF activation.
en-copyright=
kn-copyright=
en-aut-name=MaruyamaMasato
en-aut-sei=Maruyama
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ToriiReiya
en-aut-sei=Torii
en-aut-mei=Reiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MatsuiHazuki
en-aut-sei=Matsui
en-aut-mei=Hazuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HayashiHiroki
en-aut-sei=Hayashi
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OgawaraKen-ichi
en-aut-sei=Ogawara
en-aut-mei=Ken-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HigakiKazutaka
en-aut-sei=Higaki
en-aut-mei=Kazutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Laboratory of Pharmaceutics, Kobe Pharmaceutical University
kn-affil=
affil-num=6
en-affil=Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Drug delivery
kn-keyword=Drug delivery
en-keyword=Vascular normalization
kn-keyword=Vascular normalization
en-keyword=Breast cancer
kn-keyword=Breast cancer
en-keyword=Liposome
kn-keyword=Liposome
en-keyword=Cancer-associated fibroblast
kn-keyword=Cancer-associated fibroblast
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=1
article-no=
start-page=1
end-page=7
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202502
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Endothelial Cell Polarity in Health and Disease
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Endothelial cell polarity is fundamental to the organization and function of blood vessels, influencing processes such as angiogenesis, vascular stability, and response to shear stress. This review elaborates on the molecular mechanisms that regulate endothelial cell polarity, focusing on key players like the PAR polarity complex and Rho family GTPases. These pathways coordinate the front–rear, apical–basal and planar polarity of endothelial cells, which are essential for the proper formation and maintenance of vascular structures. In health, endothelial polarity ensures not only the orderly development of blood vessels, with tip cells adopting distinct polarities during angiogenesis, but also ensures proper vascular integrity and function. In disease states, however, disruptions in polarity contribute to pathologies such as coronary artery disease, where altered planar polarity exacerbates atherosclerosis, and cancer, where disrupted polarity in tumor vasculature leads to abnormal vessel growth and function. Understanding cell polarity and its disruption is fundamental not only to comprehending how cells interact with their microenvironment and organize themselves into complex, organ-specific tissues but also to developing novel, targeted, and therapeutic strategies for a range of diseases, from cardiovascular disorders to malignancies, ultimately improving patient outcomes.
en-copyright=
kn-copyright=
en-aut-name=ThihaMoe
en-aut-sei=Thiha
en-aut-mei=Moe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HikitaTakao
en-aut-sei=Hikita
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakayamaMasanori
en-aut-sei=Nakayama
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Pathophysiology and Drug Discovery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Pathophysiology and Drug Discovery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Pathophysiology and Drug Discovery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=blood vessel
kn-keyword=blood vessel
en-keyword=endothelial cell
kn-keyword=endothelial cell
en-keyword=cell polarity
kn-keyword=cell polarity
en-keyword=atherosclerosis
kn-keyword=atherosclerosis
en-keyword=cancer
kn-keyword=cancer
END
start-ver=1.4
cd-journal=joma
no-vol=129
cd-vols=
no-issue=2
article-no=
start-page=726
end-page=735
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241231
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Hydronium Ions Are Less Excluded from Hydrophobic Polymer–Water Interfaces than Hydroxide Ions
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The cloud point temperatures of aqueous poly(N-isopropylacrylamide) (PNIPAM) and poly(ethylene) oxide (PEO) solutions were measured from pH 1.0 to pH 13.0 at a constant ionic strength of 100 mM. This ionic strength was reached by mixing the appropriate concentration of NaCl with either HCl or NaOH. The phase transition temperature of both polymers was nearly constant between pH 2.0 and 12.0. However, the introduction of 100 mM HCl (pH 1.0) led to an increase in the cloud point temperature, although this value was still lower than the cloud point temperature in the absence of salt. By contrast, the introduction of 100 mM NaOH (pH 13.0) caused a decrease in the cloud point temperature, both relative to adding 100 mM NaCl and adding no salt. Nuclear magnetic resonance (NMR) studies of these systems were performed below the cloud point temperature, and the chemical shifts closely tracked the corresponding changes in the phase transition temperature. Specifically, the introduction of 100 mM HCl caused the 1H chemical shift to move downfield for the CH resonances from both PNIPAM and PEO, while 100 mM NaOH caused the same resonances to move upfield. Virtually no change in the chemical shift was seen between pH 2.0 and 12.0. These results are consistent with the idea that a sufficient concentration of H3O+ led to polymer swelling compared to Na+, while substituting Cl– with OH– reduced swelling. Finally, classical all-atom molecular dynamics (MD) simulations were performed with a monomer and 5-mer corresponding to PNIPAM. The results correlated closely with the thermodynamic and spectroscopic data. The simulation showed that H3O+ ions more readily accumulated around the amide oxygen moiety on PNIPAM compared with Na+. On the other hand, OH– was more excluded from the polymer surface than Cl–. Taken together, the thermodynamic, spectroscopic, and MD simulation data revealed that H3O+ was less depleted from hydrophobic polymer/water interfaces than any of the monovalent Hofmeister metal cations or even Ca2+ and Mg2+. As such, it should be placed on the far-right side of the cationic Hofmeister series. On the other hand, OH– was excluded from the interface and could be positioned in the anionic Hofmeister series between H2PO4– and SO42–.
en-copyright=
kn-copyright=
en-aut-name=MyersRyan L.
en-aut-sei=Myers
en-aut-mei=Ryan L.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TairaAoi
en-aut-sei=Taira
en-aut-mei=Aoi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YanChuanyu
en-aut-sei=Yan
en-aut-mei=Chuanyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=LeeSeung-Yi
en-aut-sei=Lee
en-aut-mei=Seung-Yi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WelshLauren K.
en-aut-sei=Welsh
en-aut-mei=Lauren K.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IaniroPatrick R.
en-aut-sei=Ianiro
en-aut-mei=Patrick R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YangTinglu
en-aut-sei=Yang
en-aut-mei=Tinglu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KogaKenichiro
en-aut-sei=Koga
en-aut-mei=Kenichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=CremerPaul S.
en-aut-sei=Cremer
en-aut-mei=Paul S.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Chemistry, The Pennsylvania State University, University Park
kn-affil=
affil-num=2
en-affil=Department of Chemistry, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Chemistry, The Pennsylvania State University, University Park
kn-affil=
affil-num=4
en-affil=Department of Chemistry, The Pennsylvania State University, University Park
kn-affil=
affil-num=5
en-affil=Department of Chemistry, The Pennsylvania State University, University Park
kn-affil=
affil-num=6
en-affil=Department of Chemistry, University of Pittsburgh at Bradford
kn-affil=
affil-num=7
en-affil=Department of Chemistry, The Pennsylvania State University, University Park
kn-affil=
affil-num=8
en-affil=Department of Chemistry, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Chemistry, The Pennsylvania State University, University Park
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=21
cd-vols=
no-issue=2
article-no=
start-page=80
end-page=90
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230627
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Antioxidant action of xanthine oxidase inhibitor febuxostat protects the liver and blood vasculature in SHRSP5/Dmcr rats
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Xanthine oxidase (XO) generates reactive oxygen species during uric acid production. Therefore, XO inhibitors, which suppress oxidative stress, may effectively treat non-alcoholic steatohepatitis (NASH) and atherosclerosis via uric acid reduction. In this study, we examined the antioxidant effect of the XO inhibitor febuxostat on NASH and atherosclerosis in stroke-prone spontaneously hypertensive 5 (SHRSP5/Dmcr) rats.
Methods: SHRSP5/Dmcr rats were divided into three groups: SHRSP5/Dmcr + high-fat and high-cholesterol (HFC) diet [control group, n = 5], SHRSP5/Dmcr + HFC diet + 10% fructose (40 ml/day) [fructose group, n = 5], and SHRSP5/Dmcr + HFC diet + 10% fructose (40 ml/day) + febuxostat (1.0 mg/kg/day) [febuxostat group, n = 5]. Glucose and insulin resistance, blood biochemistry, histopathological staining, endothelial function, and oxidative stress markers were evaluated.
Results: Febuxostat reduced the plasma uric acid levels. Oxidative stress-related genes were downregulated, whereas antioxidant factor-related genes were upregulated in the febuxostat group compared with those in the fructose group. Febuxostat also ameliorated inflammation, fibrosis, and lipid accumulation in the liver. Mesenteric lipid deposition decreased in the arteries, and aortic endothelial function improved in the febuxostat group.
Conclusions: Overall, the XO inhibitor febuxostat exerted protective effects against NASH and atherosclerosis in SHRSP5/Dmcr rats.
en-copyright=
kn-copyright=
en-aut-name=KakimotoMai
en-aut-sei=Kakimoto
en-aut-mei=Mai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujiiMoe
en-aut-sei=Fujii
en-aut-mei=Moe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SatoIkumi
en-aut-sei=Sato
en-aut-mei=Ikumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HonmaKoki
en-aut-sei=Honma
en-aut-mei=Koki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakayamaHinako
en-aut-sei=Nakayama
en-aut-mei=Hinako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KiriharaSora
en-aut-sei=Kirihara
en-aut-mei=Sora
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=FukuokaTaketo
en-aut-sei=Fukuoka
en-aut-mei=Taketo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=RanShang
en-aut-sei=Ran
en-aut-mei=Shang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HirohataSatoshi
en-aut-sei=Hirohata
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KitamoriKazuya
en-aut-sei=Kitamori
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YamamotoShusei
en-aut-sei=Yamamoto
en-aut-mei=Shusei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=WatanabeShogo
en-aut-sei=Watanabe
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Okayama University, Graduate School of Health Sciences, Department of Medical Technology
kn-affil=
affil-num=2
en-affil=Okayama University, Graduate School of Health Sciences, Department of Medical Technology
kn-affil=
affil-num=3
en-affil=Okayama University, Graduate School of Health Sciences, Department of Medical Technology
kn-affil=
affil-num=4
en-affil=Okayama University, Graduate School of Health Sciences, Department of Medical Technology
kn-affil=
affil-num=5
en-affil=Okayama University, Graduate School of Health Sciences, Department of Medical Technology
kn-affil=
affil-num=6
en-affil=Okayama University, Graduate School of Health Sciences, Department of Medical Technology
kn-affil=
affil-num=7
en-affil=Okayama University, Faculty of Health Sciences, Department of Medical Technology
kn-affil=
affil-num=8
en-affil=Okayama University, Graduate School of Health Sciences, Department of Medical Technology
kn-affil=
affil-num=9
en-affil=Okayama University, Academic Field of Health Science
kn-affil=
affil-num=10
en-affil=Kinjo Gakuin University, College of Human Life and Environment
kn-affil=
affil-num=11
en-affil=Okayama University, Graduate School of Health Sciences, Department of Medical Technology
kn-affil=
affil-num=12
en-affil=Okayama University, Academic Field of Health Science
kn-affil=
en-keyword=Anti-inflammatory
kn-keyword=Anti-inflammatory
en-keyword=Atherosclerosis
kn-keyword=Atherosclerosis
en-keyword=Febuxostat
kn-keyword=Febuxostat
en-keyword=Non-alcoholic steatohepatitis (NASH)
kn-keyword=Non-alcoholic steatohepatitis (NASH)
en-keyword=Oxidative stress
kn-keyword=Oxidative stress
en-keyword=Uric acid
kn-keyword=Uric acid
END
start-ver=1.4
cd-journal=joma
no-vol=103
cd-vols=
no-issue=50
article-no=
start-page=e40849
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241213
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Relevance of oxidative stress for small intestinal injuries induced by nonsteroidal anti-inflammatory drugs: A multicenter prospective study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Several reports revealed that oxidative stress was involved in the mouse model of nonsteroidal anti-inflammatory drug (NSAIDs)-induced small intestinal mucosal injuries. Thus, we aimed to investigate in the prospective clinical study, that the relevance of oxidative stress balance in small intestinal mucosal injury in NSAIDs users. We prospectively included 60 patients who had been taking NSAIDs continuously for more than 3 months and exhibited obscure gastrointestinal bleeding (number UMIN 000011775). Small intestinal mucosal injuries were assessed by capsule endoscopy (CE), and reactive oxygen metabolites (d-ROMs) levels and oxidant capacity (OXY) adsorbent test were performed to investigate the relevance of oxidative stress balance. More than half of the patients (N = 32, 53%) had small intestinal mucosal injuries by CE, and 14 patients (24%) had ulcers. The incidence of ulcers was relatively higher in nonaspirin users. Serum OXY levels were significantly lower in the mucosal injury group (P = .02), and d-ROM levels were significantly higher in the ulcer group (P < .01). In aspirin users, d-ROM and OXY levels did not differ significantly with respect to mucosal injuries or ulcers. However, in nonaspirin users, OXY level was significantly lower in the mucosal injury group (P = .04), and d-ROM levels were significantly higher in the ulcer group (P = .02). Nonaspirin NSAIDs-induced intestinal mucosal injury is associated with antioxidant systems, resulting in increased oxidative stress.
en-copyright=
kn-copyright=
en-aut-name=BabaYuki
en-aut-sei=Baba
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawanoSeiji
en-aut-sei=Kawano
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakakiAkinobu
en-aut-sei=Takaki
en-aut-mei=Akinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KonoYoshiyasu
en-aut-sei=Kono
en-aut-mei=Yoshiyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HoriiJoichiro
en-aut-sei=Horii
en-aut-mei=Joichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TakahashiSakuma
en-aut-sei=Takahashi
en-aut-mei=Sakuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KawaiDaisuke
en-aut-sei=Kawai
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KobayashiSayo
en-aut-sei=Kobayashi
en-aut-mei=Sayo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OkadaHiroyuki
en-aut-sei=Okada
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Internal Medicine, Japanese Red Cross Himeji Hospital
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology, National Hospital Organization Fukuyama Medical Center
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology, Kagawa Prefectural Central Hospital
kn-affil=
affil-num=7
en-affil=Department of Internal Medicine, Okayama Saiseikai General Hospital
kn-affil=
affil-num=8
en-affil=Department of Internal Medicine, Fukuyama City Hospital
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=capsule endoscopy
kn-keyword=capsule endoscopy
en-keyword=NSAIDs
kn-keyword=NSAIDs
en-keyword=oxidative stress
kn-keyword=oxidative stress
en-keyword=small intestinal mucosal injury
kn-keyword=small intestinal mucosal injury
END
start-ver=1.4
cd-journal=joma
no-vol=228
cd-vols=
no-issue=
article-no=
start-page=30
end-page=36
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241015
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Exogenous expression of PGC-1α during in vitro maturation impairs the developmental competence of porcine oocytes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objectives of the current study were to examine the effects of exogenous expression of PGC-1α, which is a transcription factor responsive for controlling mitochondrial DNA (mtDNA) replication, mitochondria quantity control, mitochondrial biogenesis, and reactive oxygen species (ROS) maintenance, in porcine oocytes during in-vitro maturation (IVM) on the developmental competence, as well as mitochondrial quantity and function. Exogenous over-expression of PGC-1α by injection of the mRNA construct into oocytes 20 h after the start of IVM culture significantly increased the copy number of mtDNA in the oocytes, but reduced the incidences of oocytes matured to the metaphase-II stage after the IVM culture for totally 44 h and completely suppressed the early development in vitro to the blastocyst stage following parthenogenetic activation. The exogenous expression of PGC-1α also significantly induced spindle defects and chromosome misalignments. Furthermore, markedly higher ROS levels were observed in the PGC-1α-overexpressed mature oocytes, whereas mRNA level of SOD1, encoded for a ROS scavenging enzyme, was decreased. These results conclude that forced expression of PGC-1α successfully increase mtDNA copy number but led to increased ROS production, evidently by downregulation of SOD1 gene expression, inducement of spindle aberration/chromosomal misalignment, and consequently reduction in the meiotic and developmental competences of porcine oocytes.
en-copyright=
kn-copyright=
en-aut-name=DoSon Quang
en-aut-sei=Do
en-aut-mei=Son Quang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NguyenHai Thanh
en-aut-sei=Nguyen
en-aut-mei=Hai Thanh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WakaiTakuya
en-aut-sei=Wakai
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FunahashiHiroaki
en-aut-sei=Funahashi
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=Porcine
kn-keyword=Porcine
en-keyword=Mitochondria
kn-keyword=Mitochondria
en-keyword=Oocytes
kn-keyword=Oocytes
en-keyword=PGC-1 alpha
kn-keyword=PGC-1 alpha
en-keyword=In vitro maturation
kn-keyword=In vitro maturation
END
start-ver=1.4
cd-journal=joma
no-vol=226
cd-vols=
no-issue=
article-no=
start-page=158
end-page=166
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240915
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The impact of cumulus cell viability and pre-culture with the healthy cell mass on brilliant cresyl blue (BCB) staining assessment and meiotic competence of suboptimal porcine oocytes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objectives of the present study were to investigate the characteristics including glucose-6-phosphate dehydrogenase activity, as determined by Brilliant Cresyl Blue (BCB) staining, of suboptimal porcine oocytes and to enhance the meiotic competence of those through pre-culture with cumulus cell masses (CCMs). Percentage of oocyte-cumulus complexes (OCCs) derived from small follicles (SF; <3 mm in diameter) containing the oocytes that were assessed as BCB-negative (BCB-) was significantly higher than those derived from medium follicles (MF; 3–6 mm in diameter). Degrees of dead cumulus cells were significantly higher in OCCs containing BCB- oocytes, regardless of the origin of OCCs (MF vs. SF), than those containing BCB-positive (BCB+) ones. Exposing OCCs containing BCB+ oocytes to the apoptosis inducer, carbonyl cyanide m-chlorophenylhydrazone, for 20 h significantly induced the transition to BCB- and meiotic progression of exposed OCCs were significantly reduced in both SF and MF derived ones. Transit of BCB- oocytes to BCB+ was induced when OCCs were pre-cultured with CCMs of MF derived OCCs containing BCB+ oocytes for 20 h before IVM. This pre-culture also significantly increased the meiotic competence of BCB- oocytes, particularly in SF derived ones. However, reactive oxygen species levels were significantly higher in BCB+ oocytes as compared with BCB- ones, regardless of pre-culture with CCMs, whereas no significant differences were found in the ATP contents among the treatment groups. In conclusion, the BCB result of oocytes could be regulated by the healthy status and content of surrounding cumulus cells and the meiotic competence of suboptimal BCB- porcine oocytes is improved by pre-culture with healthy CCMs.
en-copyright=
kn-copyright=
en-aut-name=FonsekaWanniarachchige Tharindu Lakshitha
en-aut-sei=Fonseka
en-aut-mei=Wanniarachchige Tharindu Lakshitha
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=DoSon Quang
en-aut-sei=Do
en-aut-mei=Son Quang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=VanPhong Ngoc
en-aut-sei=Van
en-aut-mei=Phong Ngoc
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NguyenHai Thanh
en-aut-sei=Nguyen
en-aut-mei=Hai Thanh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WakaiTakuya
en-aut-sei=Wakai
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FunahashiHiroaki
en-aut-sei=Funahashi
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=Oocytes
kn-keyword=Oocytes
en-keyword=Meiotic competence
kn-keyword=Meiotic competence
en-keyword=Brilliant cresyl blue
kn-keyword=Brilliant cresyl blue
en-keyword=Cumulus cells
kn-keyword=Cumulus cells
END
start-ver=1.4
cd-journal=joma
no-vol=97
cd-vols=
no-issue=11
article-no=
start-page=uoae118
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241111
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Refined surface area determination of graphene oxide using methylene blue as a probe molecule: a comparative approach
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this research, we explored the effectiveness of the methylene blue adsorption method as an alternative approach for determining the specific surface area of graphene oxide. Initially, through a comparative analysis with reference activated carbon, we identified the limitations of utilizing N2 physisorption for specific surface area determination of graphene oxide. Our findings revealed that the standard pretreatment process (heating under vacuum) before N2 physisorption led to damage to the surface oxygen groups on graphene oxide, and the measured surface areas (43 m2/g) do not accurately represent the entire surface area. To optimize methylene blue coverage on graphene oxide, we conducted adsorption equilibrium experiments, focusing on controlling temperature and pH. The pH was significantly important in regulating the coverage of methylene blue. Under the optimized methylene blue adsorption conditions, the specific surface area of graphene oxide was 1,555 m2/g. Our assumptions regarding specific surface area calculations were supported by structural characterization of samples with varying methylene blue uptakes. The results confirmed a uniform coverage of methylene blue on graphene oxide by scanning electron microscopy and energy dispersive X-ray, X-ray diffraction, and atomic force microscopy.
en-copyright=
kn-copyright=
en-aut-name=Ortiz-AnayaIsrael
en-aut-sei=Ortiz-Anaya
en-aut-mei=Israel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Graduate School of Natural Sciences and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
en-keyword=graphene oxide
kn-keyword=graphene oxide
en-keyword=methylene blue
kn-keyword=methylene blue
en-keyword=specific surface area
kn-keyword=specific surface area
END
start-ver=1.4
cd-journal=joma
no-vol=9
cd-vols=
no-issue=50
article-no=
start-page=50041
end-page=50048
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241205
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Conformational Flexibility of D1-Glu189: A Crucial Determinant in Substrate Water Selection, Positioning, and Stabilization within the Oxygen-Evolving Complex of Photosystem II
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Photosynthetic water oxidation is a vital process responsible for producing dioxygen and supplying the energy necessary to sustain life on Earth. This fundamental reaction is catalyzed by the oxygen-evolving complex (OEC) of photosystem II, which houses the Mn4CaO5 cluster as its catalytic core. In this study, we specifically focus on the D1-Glu189 amino acid residue, which serves as a direct ligand to the Mn4CaO5 cluster. Our primary goal is to explore, using density functional theory (DFT), how the conformational flexibility of the D1-Glu189 side chain influences crucial catalytic processes, particularly the selection, positioning, and stabilization of a substrate water molecule within the OEC. Our investigation is based on a hypothesis put forth by Li et al. (Nature, 2024, 626, 670), which suggests that during the transition from the S2 to S3 state, a specific water molecule temporarily coordinating with the Ca ion, referred to as O6*, may exist as a hydroxide ion (OH-). Our results demonstrate a key mechanism by which the detachment of the D1-Glu189 carboxylate group from its coordination with the Ca ion allows the creation of a specialized microenvironment within the OEC that enables the selective attraction of O6* in its deprotonated form (OH-) and stabilizes it at the catalytic metal (MnD) site. Our findings indicate that D1-Glu189 is not only a structural ligand for the Ca ion but may also play an active and dynamic role in the catalytic process, positioning O6* optimally for its subsequent participation in the oxidation sequence during the water-splitting cycle.
en-copyright=
kn-copyright=
en-aut-name=IsobeHiroshi
en-aut-sei=Isobe
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SuzukiTakayoshi
en-aut-sei=Suzuki
en-aut-mei=Takayoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SugaMichihiro
en-aut-sei=Suga
en-aut-mei=Michihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ShenJian-Ren
en-aut-sei=Shen
en-aut-mei=Jian-Ren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamaguchiKizashi
en-aut-sei=Yamaguchi
en-aut-mei=Kizashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=2
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=3
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=4
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=5
en-affil=Center for Quantum Information and Quantum Biology, Osaka University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=亜鉛欠乏はCOVID-19が酸素療法を必要とする肺炎に進行する潜在的危険因子である
kn-title=Zinc deficiency is a potential risk factor for COVID-19 progression to pneumonia requiring oxygen therapy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=FUJITAKoji
en-aut-sei=FUJITA
en-aut-mei=Koji
kn-aut-name=藤田浩二
kn-aut-sei=藤田
kn-aut-mei=浩二
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=6
cd-vols=
no-issue=4
article-no=
start-page=463
end-page=469
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=2023
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effectiveness of the Original COVID-19 Vaccine against COVID-19 Exacerbations during the Omicron Wave: A Population-based Study in Okayama, Japan
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction: In Japan, approximately 97 million individuals have received their primary two doses of coronavirus disease 2019 (COVID-19) vaccine at the end of 2022. In this study, we aim to examine the effectiveness of the primary vaccines and compare its efficacy to booster vaccine shots in terms of preventing COVID-19 exacerbations during the Omicron-predominant period in Japan.
Methods: For this analysis, we have collected all the confirmed COVID-19-positive cases from different medical institutions in Okayama City and have also utilized the information from the public Vaccination Record System. Taking the number of vaccinations into consideration, we then conducted a population-based study to assess the effectiveness of the two primary vaccine doses in preventing COVID-19 exacerbations during the Omicron waves. Our primary and secondary outcomes were COVID-19 exacerbations with respiratory failure (i.e., oxygen saturation on room air ≤ 93%, requiring supplemental oxygen), intensive care unit admission and/or mechanical ventilator requirement, or death, in accordance with the Japanese COVID-19 guidelines, and pneumonia during the course of COVID-19 infection, respectively.
Results: In total, 95,329 COVID-19-positive individuals, aged 5 years and above, were included in this analysis (study period from January 1 to September 10, 2022). As per our findings, the effectiveness of the primary two doses against COVID-19 exacerbations compared with those who had never been vaccinated was 55.5% (95% confidential interval [CI]: 32.6-71.7), whereas it was higher after the third dose (76.9%; 95% CI: 66.7-84.0) and the fourth dose (75.7%; 95% CI: 58.8-85.7). Effectiveness was sustained for ≥ 5 months after the third vaccination, and preventive effectiveness was observed in individuals aged ≥ 65 years.
Conclusions: As per the results of this study, we can conclude that the efficacy of the primary two doses of SARS-CoV-2 vaccine can be further strengthened in terms of preventing COVID-19 exacerbations by administering third and fourth booster vaccine shots. The additional bivalent vaccine is anticipated to further increase its efficacy against the Omicron strain, suggesting that individuals who have not received their booster shots yet should consider getting them to prevent COVID-19 exacerbations.
en-copyright=
kn-copyright=
en-aut-name=MatsumotoNaomi
en-aut-sei=Matsumoto
en-aut-mei=Naomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MitsuhashiToshiharu
en-aut-sei=Mitsuhashi
en-aut-mei=Toshiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MatsuoRumi
en-aut-sei=Matsuo
en-aut-mei=Rumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KadowakiTomoka
en-aut-sei=Kadowaki
en-aut-mei=Tomoka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakaoSoshi
en-aut-sei=Takao
en-aut-mei=Soshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YorifujiTakashi
en-aut-sei=Yorifuji
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=COVID-19
kn-keyword=COVID-19
en-keyword=Vaccine
kn-keyword=Vaccine
en-keyword=Omicron
kn-keyword=Omicron
en-keyword=Prevention
kn-keyword=Prevention
en-keyword=Pneumonia
kn-keyword=Pneumonia
END
start-ver=1.4
cd-journal=joma
no-vol=20
cd-vols=
no-issue=3
article-no=
start-page=e20220127
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=2023
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Rapid thawing of frozen bull spermatozoa by transient exposure to 70 °C improves the viability, motility and mitochondrial health
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Up to now, the definitive conclusion of the positive effects of rapid transient thawing at higher temperatures for shorter durations has not been obtained yet and is still under discussion due to some contradictory findings and limited assessment of post-thawed parameters. The purpose of the current study was to evaluate the effectiveness of rapid thawing in water at 70 °C by using various post-thawed parameters of frozen bull spermatozoa. Experiment 1, monitoring the change of temperature inside frozen bull straw thawed in water at different temperatures. Experiment 2, evaluation of various post-thawed characteristics of frozen bull spermatozoa thawed in water at different temperatures by using a computer-assisted sperm analysis, flow cytometry and immunocytochemistry. The time it took for the temperature inside the straw to warm up to 15 °C was nearly twice as faster when the straw was thawed in 70 °C water compared with 39 °C. Although there were differences among bulls, viability, motility, and mitochondrial membrane potential of spermatozoa thawed at 70 °C for 8 seconds and stabilized at 39 °C for 52 seconds were significantly higher than those of controls (thawed at 39 °C for 60 seconds) at 0 and 3 h after thawing. Just after thawing, however, there were no differences in acrosome integrity and distribution of phospholipase C zeta1, whereas mitochondrial reactive oxygen species production was significantly lower in spermatozoa thawed at 70 °C. From these results, we conclude that rapid thawing at 70 °C and then stabilization at 39 °C significantly improves viability, motility and mitochondrial health of bull spermatozoa rather than conventional thawing at 39 °C. The beneficial effect of rapid transient thawing could be due to shorter exposure to temperatures outside the physiological range, consequently maintaining mitochondrial health.
en-copyright=
kn-copyright=
en-aut-name=NguyenHai Thanh
en-aut-sei=Nguyen
en-aut-mei=Hai Thanh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=DoSon Quang
en-aut-sei=Do
en-aut-mei=Son Quang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AthurupanaRukmali
en-aut-sei=Athurupana
en-aut-mei=Rukmali
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=WakaiTakuya
en-aut-sei=Wakai
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FunahashiHiroaki
en-aut-sei=Funahashi
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=bull semen
kn-keyword=bull semen
en-keyword=cryopreservation process
kn-keyword=cryopreservation process
en-keyword=phospholipase C zeta1 (PLCZ1)
kn-keyword=phospholipase C zeta1 (PLCZ1)
en-keyword=temperature of thawing
kn-keyword=temperature of thawing
END
start-ver=1.4
cd-journal=joma
no-vol=2024
cd-vols=
no-issue=11
article-no=
start-page=113D01
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241026
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Measurement of γ-Rays Generated by Neutron Interaction with 16O at 30 MeV and 250 MeV
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Deep understanding of γ-ray production from the fast neutron reaction in water is crucial for various physics studies at large-scale water Cherenkov detectors. We performed test experiments using quasi-mono energetic neutron beams (En = 30 and 250 MeV) at Osaka University’s Research Center for Nuclear Physics to measure γ-rays originating from the neutron–oxygen reaction with a high-purity germanium detector. Multiple γ-ray peaks which are expected to be from excited nuclei after the neutron–oxygen reaction were successfully observed. We measured the neutron beam flux using an organic liquid scintillator for the cross section measurement. With a spectral fitting analysis based on the tailored γ-ray signal and background templates, we measured cross sections for each observed γ-ray component. The results will be useful to validate neutron models employed in ongoing and future water Cherenkov experiments.
en-copyright=
kn-copyright=
en-aut-name=TanoT.
en-aut-sei=Tano
en-aut-mei=T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HoraiT.
en-aut-sei=Horai
en-aut-mei=T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AshidaY.
en-aut-sei=Ashida
en-aut-mei=Y.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HinoY.
en-aut-sei=Hino
en-aut-mei=Y.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IacobF.
en-aut-sei=Iacob
en-aut-mei=F.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MaurelA.
en-aut-sei=Maurel
en-aut-mei=A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MoriM.
en-aut-sei=Mori
en-aut-mei=M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=CollazuolG.
en-aut-sei=Collazuol
en-aut-mei=G.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KonakaA.
en-aut-sei=Konaka
en-aut-mei=A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KoshioY.
en-aut-sei=Koshio
en-aut-mei=Y.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NakayaT.
en-aut-sei=Nakaya
en-aut-mei=T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ShimaT.
en-aut-sei=Shima
en-aut-mei=T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=WendellR.
en-aut-sei=Wendell
en-aut-mei=R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Physics, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Physics, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Physics and Astronomy, University of Utah
kn-affil=
affil-num=4
en-affil=Department of Physics, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Physics and Astronomy, University of Padova
kn-affil=
affil-num=6
en-affil=Ecole Polytechnique, IN2P3-CNRS, Laboratoire Leprince-Ringuet
kn-affil=
affil-num=7
en-affil=National Astronomical Observatory of Japan
kn-affil=
affil-num=8
en-affil=Department of Physics and Astronomy, University of Padova
kn-affil=
affil-num=9
en-affil=TRIUMF
kn-affil=
affil-num=10
en-affil=Department of Physics, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Physics, Kyoto University
kn-affil=
affil-num=12
en-affil=Research Center for Nuclear Physics (RCNP)
kn-affil=
affil-num=13
en-affil=Department of Physics, Kyoto University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=2024
cd-vols=
no-issue=10
article-no=
start-page=103D01
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240904
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Study of the Neutrino–Oxygen Cross Sections of the Charged-Current Reaction 16O(ν̄e, e+)16N(0 MeV, 2–) and the Neutral-Current Reaction 16O(ν, ν′)16O(12.97/12.53 MeV, 2–), Producing High-Energy γ Rays
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In our previous work, we discussed the cross section and the detection of 4.4 MeV γ rays produced in the neutrino neutral-current (NC)reaction 16O(ν, ν′)16O(12.97 and 12.53 MeV, 2−) in a water Cherenkov detector at low energy below 100 MeV. In this report, we further investigate both the charged-current reaction 16O(ν¯e, e+)16N(0 MeV, 2−) and the NC reaction16O(ν, ν′)16O(12.97 and 12.53 MeV, 2−), producing high-energy γ rays, in which a more solid identification of the reactions can be applied via the coincidence method.
en-copyright=
kn-copyright=
en-aut-name=SakudaMakoto
en-aut-sei=Sakuda
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SuzukiToshio
en-aut-sei=Suzuki
en-aut-mei=Toshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakazatoKen'Ichiro
en-aut-sei=Nakazato
en-aut-mei=Ken'Ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SuzukiHideyuki
en-aut-sei=Suzuki
en-aut-mei=Hideyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Physics Department, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Physics, College of Humanities and Sciences, Nihon University
kn-affil=
affil-num=3
en-affil=Faculty of Arts and Science, Kyushu University
kn-affil=
affil-num=4
en-affil=Department of Physics, Faculty of Science and Technology, Tokyo University of Science
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=25
cd-vols=
no-issue=16
article-no=
start-page=9038
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240820
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Quercetin Attenuates Acetaldehyde-Induced Cytotoxicity via the Heme Oxygenase-1-Dependent Antioxidant Mechanism in Hepatocytes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=It is still unclear whether or how quercetin influences the toxic events induced by acetaldehyde in hepatocytes, though quercetin has been reported to mitigate alcohol-induced mouse liver injury. In this study, we evaluated the modulating effect of quercetin on the cytotoxicity induced by acetaldehyde in mouse hepatoma Hepa1c1c7 cells, the frequently used cellular hepatocyte model. The pretreatment with quercetin significantly inhibited the cytotoxicity induced by acetaldehyde. The treatment with quercetin itself had an ability to enhance the total ALDH activity, as well as the ALDH1A1 and ALDH3A1 gene expressions. The acetaldehyde treatment significantly enhanced the intracellular reactive oxygen species (ROS) level, whereas the quercetin pretreatment dose-dependently inhibited it. Accordingly, the treatment with quercetin itself significantly up-regulated the representative intracellular antioxidant-related gene expressions, including heme oxygenase-1 (HO-1), glutamate-cysteine ligase, catalytic subunit (GCLC), and cystine/glutamate exchanger (xCT), that coincided with the enhancement of the total intracellular glutathione (GSH) level. Tin protoporphyrin IX (SNPP), a typical HO-1 inhibitor, restored the quercetin-induced reduction in the intracellular ROS level, whereas buthionine sulphoximine, a representative GSH biosynthesis inhibitor, did not. SNPP also cancelled the quercetin-induced cytoprotection against acetaldehyde. These results suggest that the low-molecular-weight antioxidants produced by the HO-1 enzymatic reaction are mainly attributable to quercetin-induced cytoprotection.
en-copyright=
kn-copyright=
en-aut-name=LiKexin
en-aut-sei=Li
en-aut-mei=Kexin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KidawaraMinori
en-aut-sei=Kidawara
en-aut-mei=Minori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ChenQiguang
en-aut-sei=Chen
en-aut-mei=Qiguang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MunemasaShintaro
en-aut-sei=Munemasa
en-aut-mei=Shintaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MurataYoshiyuki
en-aut-sei=Murata
en-aut-mei=Yoshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakamuraToshiyuki
en-aut-sei=Nakamura
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakamuraYoshimasa
en-aut-sei=Nakamura
en-aut-mei=Yoshimasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=quercetin
kn-keyword=quercetin
en-keyword=acetaldehyde
kn-keyword=acetaldehyde
en-keyword=glutathione
kn-keyword=glutathione
en-keyword=aldehyde dehydrogenase
kn-keyword=aldehyde dehydrogenase
en-keyword=heme oxygenase-1
kn-keyword=heme oxygenase-1
END
start-ver=1.4
cd-journal=joma
no-vol=38
cd-vols=
no-issue=2
article-no=
start-page=394
end-page=408
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20200221
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The neurotoxicity of psychoactive phenethylamines “2C series” in cultured monoaminergic neuronal cell lines
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose The aim of this study was to evaluate the neurotoxicity of psychoactive abused 2,5-dimethoxy-substituted phenethylamines “2C series” in monoaminergic neurons.
Methods After the exposure to “2C series”, 2,5-dimethoxy-4-propylthiophenethylamine (2C-T-7), 2,5-dimethoxy-4-isopropylthiophenethylamine (2C-T-4), 2,5-dimethoxy-4-ethylthiophenthylamine (2C-T-2), 2,5-dimethoxy-4-iodophenethylamine (2C-I) or 2,5-dimethoxy-4-chlorophenethylamine (2C-C), we examined their neurotoxicity, morphological changes, and effects of concomitant exposure to 3,4-methylenedioxymethamphetamine (MDMA) or methamphetamine (METH), using cultured neuronal dopaminergic CATH.a cells and serotonin-containing B65 cells.
Results Single dose exposure to “2C series” for 24 h showed significant cytotoxicity as increase in lactate dehydrogenase (LDH) release from both monoaminergic neurons: 2C-T-7, 2C-C (EC50; 100 µM) > 2C-T-2 (150 µM), 2C-T-4 (200 µM) > 2C-I (250 µM) in CATH.a cells and 2C-T-7, 2C-I (150 µM) > 2C-T-2 (250 µM) > 2C-C, 2C-T-4 (300 µM) in B65 cells. The “2C series”-induced neurotoxicity in both cells was higher than that of MDMA or METH (EC50: ≥ 1–2 mM). In addition, apoptotic morphological changes were observed at relatively lower concentrations of “2C series”. The concomitant exposure to non-toxic dose of MDMA or METH synergistically enhanced 2C series drugs-induced LDH release and apoptotic changes in B65 cells, but to a lesser extent in CATH.a cells. In addition, the lower dose of 2C-T-7, 2C-T-2 or 2C-I promoted reactive oxygen species production in the mitochondria of B65 cells, even at the early stages (3 h) without apparent morphological changes.
Conclusion The 2,5-dimethoxy-substitution of “2C series” induced severe neurotoxicity in both dopaminergic and serotonin-containing neurons. The non-toxic dose of MDMA or METH synergistically enhanced its neurotoxicity in serotonergic neurons.
en-copyright=
kn-copyright=
en-aut-name=AsanumaMasato
en-aut-sei=Asanuma
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyazakiIkuko
en-aut-sei=Miyazaki
en-aut-mei=Ikuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FunadaMasahiko
en-aut-sei=Funada
en-aut-mei=Masahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Division of Drug Dependence, National Institute of Mental Health, National Center of Neurology and Psychiatry
kn-affil=
en-keyword=Psychoactive drugs
kn-keyword=Psychoactive drugs
en-keyword=2,5-Dimethoxy-substituted phenethylamines
kn-keyword=2,5-Dimethoxy-substituted phenethylamines
en-keyword=Neurotoxicity
kn-keyword=Neurotoxicity
en-keyword=Serotonin-containing neurons
kn-keyword=Serotonin-containing neurons
en-keyword=Dopamine neurons
kn-keyword=Dopamine neurons
en-keyword=Reactive oxygen species
kn-keyword=Reactive oxygen species
END
start-ver=1.4
cd-journal=joma
no-vol=136
cd-vols=
no-issue=2
article-no=
start-page=63
end-page=68
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Metformin-induced mitochondrial reactive oxygen species and host defense mechanisms
kn-title=メトホルミンによるミトコンドリア活性酸素誘導と生体防御機構
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=UdonoHeiichiro
en-aut-sei=Udono
en-aut-mei=Heiichiro
kn-aut-name=鵜殿平一郎
kn-aut-sei=鵜殿
kn-aut-mei=平一郎
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Immunology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学学術研究院医歯薬学域 免疫学
en-keyword=CD8T 細胞
kn-keyword=CD8T 細胞
en-keyword=活性酸素
kn-keyword=活性酸素
en-keyword=Nrf2
kn-keyword=Nrf2
en-keyword=解糖系
kn-keyword=解糖系
en-keyword=ミトコンドリア
kn-keyword=ミトコンドリア
END
start-ver=1.4
cd-journal=joma
no-vol=378
cd-vols=
no-issue=
article-no=
start-page=113269
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202410
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Mesoporous carbon with extremely low micropore content synthesized from graphene oxide modified with alkali metal nitrates
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=High-temperature thermal exfoliation is a simple, rapid, and cost-efficient method for transforming graphene oxide (GO) materials into reduced graphene oxide (rGO) materials. In this study, GO materials were dispersed with alkali metal nitrates (MNO3), leading to the preparation of porous rGO materials characterized by high specific surface area (SSA) and pore volume via high-temperature thermal exfoliation. Experimental data indicate that the metal cations of MNO3 tend to react directly with the oxygen functional groups (OFG) of GO, modulating the OFG content. Simultaneously, nitrate anions have preferential interaction with alkali metal ions and adhere to the surface of the GO. The presence of MNO3 on the surface of GO facilitates the thermal exfoliation process and leads to the formation of structures with an extremely high proportion of mesoporous content. The isothermal gas adsorption results show that the exfoliation efficiency of the samples activated with different nitrate salts decreases in the order rGO-KNO3 > rGO-NaNO3 > rGO-LiNO3. Among these samples, rGO modified with KNO3 exhibited the greatest exfoliation efficiency, with a mesopore-to-micropore volume ratio of 22.4, more than 1.7 times that of rGO. Its SSA and pore volume were 359 m2 g−1 and 1.26 cm3 g−1, respectively. These values significantly surpass those of rGO. Our research findings demonstrate that activation with MNO3 significantly increases the SSA and pore volume of the GO material after high-temperature annealing.
en-copyright=
kn-copyright=
en-aut-name=LiZhao
en-aut-sei=Li
en-aut-mei=Zhao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ToyotaMoeto
en-aut-sei=Toyota
en-aut-mei=Moeto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OhkuboTakahiro
en-aut-sei=Ohkubo
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Mesoporous carbon
kn-keyword=Mesoporous carbon
en-keyword=Alkali metal nitrates
kn-keyword=Alkali metal nitrates
en-keyword=Oxygen functional groups
kn-keyword=Oxygen functional groups
en-keyword=Activation
kn-keyword=Activation
en-keyword=Thermal exfoliation
kn-keyword=Thermal exfoliation
END
start-ver=1.4
cd-journal=joma
no-vol=25
cd-vols=
no-issue=15
article-no=
start-page=8370
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240731
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Increased Oxidative Stress and Decreased Citrulline in Blood Associated with Severe Novel Coronavirus Pneumonia in Adult Patients
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study investigated the correlation between oxidative stress and blood amino acids associated with nitric oxide metabolism in adult patients with coronavirus disease (COVID-19) pneumonia. Clinical data and serum samples were prospectively collected from 100 adult patients hospitalized for COVID-19 between July 2020 and August 2021. Patients with COVID-19 were categorized into three groups for analysis based on lung infiltrates, oxygen inhalation upon admission, and the initiation of oxygen therapy after admission. Blood data, oxidative stress-related biomarkers, and serum amino acid levels upon admission were compared in these groups. Patients with lung infiltrations requiring oxygen therapy upon admission or starting oxygen post-admission exhibited higher serum levels of hydroperoxides and lower levels of citrulline compared to the control group. No remarkable differences were observed in nitrite/nitrate, asymmetric dimethylarginine, and arginine levels. Serum citrulline levels correlated significantly with serum lactate dehydrogenase and C-reactive protein levels. A significant negative correlation was found between serum levels of citrulline and hydroperoxides. Levels of hydroperoxides decreased, and citrulline levels increased during the recovery period compared to admission. Patients with COVID-19 with extensive pneumonia or poor oxygenation showed increased oxidative stress and reduced citrulline levels in the blood compared to those with fewer pulmonary complications. These findings suggest that combined oxidative stress and abnormal citrulline metabolism may play a role in the pathogenesis of COVID-19 pneumonia.
en-copyright=
kn-copyright=
en-aut-name=TsugeMitsuru
en-aut-sei=Tsuge
en-aut-mei=Mitsuru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IchiharaEiki
en-aut-sei=Ichihara
en-aut-mei=Eiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HasegawaKou
en-aut-sei=Hasegawa
en-aut-mei=Kou
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KudoKenichiro
en-aut-sei=Kudo
en-aut-mei=Kenichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TanimotoYasushi
en-aut-sei=Tanimoto
en-aut-mei=Yasushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NousoKazuhiro
en-aut-sei=Nouso
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OdaNaohiro
en-aut-sei=Oda
en-aut-mei=Naohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MitsumuneSho
en-aut-sei=Mitsumune
en-aut-mei=Sho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KimuraGoro
en-aut-sei=Kimura
en-aut-mei=Goro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YamadaHaruto
en-aut-sei=Yamada
en-aut-mei=Haruto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TakataIchiro
en-aut-sei=Takata
en-aut-mei=Ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MitsuhashiToshiharu
en-aut-sei=Mitsuhashi
en-aut-mei=Toshiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TaniguchiAkihiko
en-aut-sei=Taniguchi
en-aut-mei=Akihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TsukaharaKohei
en-aut-sei=Tsukahara
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=AokageToshiyuki
en-aut-sei=Aokage
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=HagiyaHideharu
en-aut-sei=Hagiya
en-aut-mei=Hideharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=TsukaharaHirokazu
en-aut-sei=Tsukahara
en-aut-mei=Hirokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=MaedaYoshinobu
en-aut-sei=Maeda
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
affil-num=1
en-affil=Department of Pediatrics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Respiratory Medicine, National Hospital Organization Minami-Okayama Medical Center
kn-affil=
affil-num=5
en-affil=Department of Allergy and Respiratory Medicine, National Hospital Organization Minami-Okayama Medical Center
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology, Okayama City Hospital
kn-affil=
affil-num=7
en-affil=Department of Internal Medicine, Fukuyama City Hospital
kn-affil=
affil-num=8
en-affil=Department of Respiratory Medicine, National Hospital Organization Minami-Okayama Medical Center
kn-affil=
affil-num=9
en-affil=Department of Allergy and Respiratory Medicine, National Hospital Organization Minami-Okayama Medical Center
kn-affil=
affil-num=10
en-affil=Department of Infectious Disease, Okayama City Hospital
kn-affil=
affil-num=11
en-affil=Department of Internal Medicine, Fukuyama City Hospital
kn-affil=
affil-num=12
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=13
en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=14
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=15
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=16
en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=17
en-affil=Department of General Thoracic Surgery and Breast and Endocrine Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=18
en-affil=Department of Pediatrics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=19
en-affil=Department of Hematology, Oncology and Respiratory Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=novel coronavirus disease 2019
kn-keyword=novel coronavirus disease 2019
en-keyword=pneumonia
kn-keyword=pneumonia
en-keyword=hydroperoxide
kn-keyword=hydroperoxide
en-keyword=nitric oxide
kn-keyword=nitric oxide
en-keyword=reactive oxygen species
kn-keyword=reactive oxygen species
en-keyword=citrulline
kn-keyword=citrulline
en-keyword=arginine
kn-keyword=arginine
en-keyword=asymmetric dimethylarginine
kn-keyword=asymmetric dimethylarginine
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240719
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Pulmonary Flow Management by Combination Therapy of Hemostatic Clipping and Balloon Angioplasty for Right Ventricular-Pulmonary Artery Shunt in Hypoplastic Left Heart Syndrome
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Controlling pulmonary blood flow in patients who have undergone Norwood palliation, especially early postoperatively, is challenging due to a change in the balance of systemic and pulmonary vascular resistance. We applied a combination therapy of clipping and balloon angioplasty for right ventricle—pulmonary artery (RV-PA) shunt to control pulmonary blood flow, but the influence of the combination therapy on the PA condition is uncertain. Retrospectively analysis was conducted of all infants with hypoplastic left heart syndrome who had undergone Norwood palliation with RV-PA shunt at Okayama University Hospital from January 2008 to September 2022. A total of 50 consecutive patients underwent Norwood palliation with RV-PA shunt in this study period. Of them, 29 patients underwent RV-PA shunt flow clipping, and the remaining 21 had unclipped RV-PA shunt. Twenty-three patients underwent balloon angioplasty for RV-PA shunt with clips. After balloon angioplasty, oxygen saturation significantly increased from 69 (59–76)% to 80 (72–86)% (p < 0.001), and the narrowest portion of the clipped conduit significantly improved from 2.8 (1.8–3.4) to 3.8 (2.9–4.6) mm (p < 0.001). In cardiac catheterizations prior to Bidirectional cavo-pulmonary shunt (BCPS), there were no significant differences in pulmonary-to-systemic flow ratio (Qp/Qs), ventricular end-diastolic pressure, Nakata index, arterial saturation, mean pulmonary artery pressure and pulmonary vascular resistance index. On the other hand, in Cardiac catheterizations prior to Fontan, Nakata index was larger in the clipped group (p = 0.02). There was no statistically significant difference in the 5-year survival between the two groups (clipped group 96%, unclipped group 74%, log-rank test: p = 0.13). At least, our combination therapy of clipping and balloon angioplasty for RV-PA shunt did not negatively impact PA growth. Although there is a trend toward better but not statistically significant difference in outcomes in the clipped group compared to the non-clipped group, this treatment strategy may play an important role in improving outcomes in hypoplastic left heart syndrome.
en-copyright=
kn-copyright=
en-aut-name=ShigemitsuYusuke
en-aut-sei=Shigemitsu
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KondoMaiko
en-aut-sei=Kondo
en-aut-mei=Maiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KuritaYoshihiko
en-aut-sei=Kurita
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FukushimaYosuke
en-aut-sei=Fukushima
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KawamotoYuya
en-aut-sei=Kawamoto
en-aut-mei=Yuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HiraiKenta
en-aut-sei=Hirai
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HaraMayuko
en-aut-sei=Hara
en-aut-mei=Mayuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KanazawaTomoyuki
en-aut-sei=Kanazawa
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IwasakiTatsuo
en-aut-sei=Iwasaki
en-aut-mei=Tatsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KasaharaShingo
en-aut-sei=Kasahara
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KataokaKoichi
en-aut-sei=Kataoka
en-aut-mei=Koichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TsukaharaHirokazu
en-aut-sei=Tsukahara
en-aut-mei=Hirokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=BabaKenji
en-aut-sei=Baba
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Pediatric Anesthesiology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Pediatric Anesthesiology, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Pediatric Anesthesiology, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Cardiovascular Surgery, Okayama University Hospital
kn-affil=
affil-num=12
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
affil-num=13
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
en-keyword=Hypoplastic left heart syndrome
kn-keyword=Hypoplastic left heart syndrome
en-keyword=Norwood palliation
kn-keyword=Norwood palliation
en-keyword=Balloon angioplasty
kn-keyword=Balloon angioplasty
en-keyword=Congenital heart disease
kn-keyword=Congenital heart disease
END
start-ver=1.4
cd-journal=joma
no-vol=78
cd-vols=
no-issue=3
article-no=
start-page=271
end-page=279
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202406
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effect of Humidified High-Flow Nasal Cannula Oxygen Therapy with a Pulmonary Infection Control Window as a Ventilation Switching Indication in Combination with Atomizing Inhalation of Terbutaline on the Lung Function of Patients with Acute Exacerbation of COPD
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We investigated how humidified high-flow nasal cannula oxygen therapy (HFNC) with a pulmonary infection control (PIC) window as a ventilation switching indication in combination with atomizing inhalation of terbutaline affects the lung function of patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD). We examined 140 hospitalized AECOPD patients randomized to control and observation groups. Conventional supportive therapy and invasive mechanical ventilation with tracheal intubation were conducted in both groups, with a PIC window as the indication for ventilation switching. Noninvasive positive pressure ventilation (NIPPV) plus atomizing inhalation of terbutaline was used in the control group. In the observation group, HFNC combined with atomizing inhalation of terbutaline was used. Compared to the control group, after 48-hr treatment and treatment completion, the observation group had significantly increased levels of lung function indicators (maximal voluntary ventilation [MVV] plus forced vital capacity [FVC], p<0.05) and oxygen metabolism indicators (arterial oxygen partial pressure [PaO2], arterial oxygen content [CaO2], and oxygenation index, p<0.05). The comparison of the groups revealed that the levels of airway remodeling indicators (matrix metalloproteinase-2 [MMP-2], tissue inhibitor of metalloproteinase 2 [TIMP-2] plus MMP-9) and inflammatory indicators (interferon gamma [IFN-γ] together with interleukin-17 [IL-17], IL-10 and IL-4) were significantly lower after 48 h of treatment as well as after treatment completion (both p<0.05). These results demonstrate that HFNC with a PIC window as the indication for ventilation switching combined with atomizing inhalation of terbutaline can relieve the disorder of oxygen metabolism and correct airway hyper-reactivity.
en-copyright=
kn-copyright=
en-aut-name=YeMengjiao
en-aut-sei=Ye
en-aut-mei=Mengjiao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ZhangRenwei
en-aut-sei=Zhang
en-aut-mei=Renwei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Respiratory and Critical Care Medicine, Tiantai Hospital of Traditional Chinese Medicine
kn-affil=
affil-num=2
en-affil=Department of Respiratory and Critical Care Medicine, Tiantai Hospital of Traditional Chinese Medicine
kn-affil=
en-keyword=chronic obstructive pulmonary disease
kn-keyword=chronic obstructive pulmonary disease
en-keyword=inhalation
kn-keyword=inhalation
en-keyword=oxygen therapy
kn-keyword=oxygen therapy
en-keyword=pulmonary function
kn-keyword=pulmonary function
en-keyword=ventilation
kn-keyword=ventilation
END
start-ver=1.4
cd-journal=joma
no-vol=78
cd-vols=
no-issue=3
article-no=
start-page=259
end-page=270
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202406
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Role of the Lipid Profile and Oxidative Stress in Fatigue, Sleep Disorders and Cognitive Impairment in Patients with Multiple Sclerosis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The aim of this study is to investigate the relationship of the lipid profile, dysfunctional high-density lipoprotein, ischaemia-modified albumin and thiol–disulfide homeostasis with cognitive impairment, fatigue and sleep disorders in patients with multiple sclerosis. The cognitive functions of patients were evaluated with the Brief International Cognitive Assessment for Multiple Sclerosis battery. Fatigue was evaluated with the Fatigue Severity Scale and the Fatigue Impact Scale. The Pittsburgh Sleep Quality Index and the Epworth Sleepiness Scale were used to assess patients’ sleep disturbance. Peripheral blood samples were collected, and lipid levels and myeloperoxidase and paraoxonase activity were measured. The myeloperoxidase/paraoxonase ratio, which indicates dysfunctional high-density lipoprotein, was calculated. Thiol–disulfide homeostasis and ischaemia-modified albumin were measured.
We did not identify any relationship between dysfunctional high-density lipoprotein and the physical disability, cognitive decline, fatigue and sleep problems of multiple sclerosis. Thiol–disulfide homeostasis was associated with cognitive scores. The shift of the balance towards disulfide was accompanied by a decrease in cognitive scores. On the other hand, we did not detect any relationship between fatigue and sleep disorders and thiol–disulfide homeostasis. Our findings revealed a possible correlation between cognitive dysfunction and thiol–disulfide homeostasis in multiple sclerosis patients.
en-copyright=
kn-copyright=
en-aut-name=VuralGonul
en-aut-sei=Vural
en-aut-mei=Gonul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=DemirEsra
en-aut-sei=Demir
en-aut-mei=Esra
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=GumusyaylaSadiye
en-aut-sei=Gumusyayla
en-aut-mei=Sadiye
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ErenFunda
en-aut-sei=Eren
en-aut-mei=Funda
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=BarakliSerdar
en-aut-sei=Barakli
en-aut-mei=Serdar
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NeseliogluSalim
en-aut-sei=Neselioglu
en-aut-mei=Salim
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ErelOzcan
en-aut-sei=Erel
en-aut-mei=Ozcan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Neurology, Faculty of Medicine, Ankara Yildirim Beyazit University
kn-affil=
affil-num=2
en-affil=Department of Neurology, Ankara City Hospital
kn-affil=
affil-num=3
en-affil=Department of Neurology, Faculty of Medicine, Ankara Yildirim Beyazit University
kn-affil=
affil-num=4
en-affil=Department of Clinical Biochemistry, Ankara City Hospital
kn-affil=
affil-num=5
en-affil=Department of Neurology, Ankara City Hospital
kn-affil=
affil-num=6
en-affil=Department of Clinical Biochemistry, Ankara City Hospital
kn-affil=
affil-num=7
en-affil=Department of Clinical Biochemistry, Ankara City Hospital
kn-affil=
en-keyword=multiple sclerosis
kn-keyword=multiple sclerosis
en-keyword=dysfunctional HDL
kn-keyword=dysfunctional HDL
en-keyword=thiol–disulfide homeostasis
kn-keyword=thiol–disulfide homeostasis
en-keyword=cognitive decline
kn-keyword=cognitive decline
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=SK-Gd実験における大気ニュートリノデータを用いたニュートリノ-酸素原子核中性カレント準弾性散乱反応断面積の測定および核子—原子核反応モデルの研究
kn-title=Measurement of the neutrino-oxygen neutral-current quasielastic cross section and study of nucleon-nucleus interaction model using atmospheric neutrino data in the SK-Gd experiment
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=SAKAISeiya
en-aut-sei=SAKAI
en-aut-mei=Seiya
kn-aut-name=酒井聖矢
kn-aut-sei=酒井
kn-aut-mei=聖矢
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=28
cd-vols=
no-issue=1
article-no=
start-page=160
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240513
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Organ donation after extracorporeal cardiopulmonary resuscitation: a nationwide retrospective cohort study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Limited data are available on organ donation practices and recipient outcomes, particularly when comparing donors who experienced cardiac arrest and received extracorporeal cardiopulmonary resuscitation (ECPR) followed by veno-arterial extracorporeal membrane oxygenation (ECMO) decannulation, versus those who experienced cardiac arrest without receiving ECPR. This study aims to explore organ donation practices and outcomes post-ECPR to enhance our understanding of the donation potential after cardiac arrest.
Methods We conducted a nationwide retrospective cohort study using data from the Japan Organ Transplant Network database, covering all deceased organ donors between July 17, 2010, and August 31, 2022. We included donors who experienced at least one episode of cardiac arrest. During the study period, patients undergoing ECMO treatment were not eligible for a legal diagnosis of brain death. We compared the timeframes associated with each donor's management and the long-term graft outcomes of recipients between ECPR and non-ECPR groups.
Results Among 370 brain death donors with an episode of cardiac arrest, 26 (7.0%) received ECPR and 344 (93.0%) did not; the majority were due to out-of-hospital cardiac arrests. The median duration of veno-arterial ECMO support after ECPR was 3 days. Patients in the ECPR group had significantly longer intervals from admission to organ procurement compared to those not receiving ECPR (13 vs. 9 days, P = 0.005). Lung graft survival rates were significantly lower in the ECPR group (log-rank test P = 0.009), with no significant differences in other organ graft survival rates. Of 160 circulatory death donors with an episode of cardiac arrest, 27 (16.9%) received ECPR and 133 (83.1%) did not. Time intervals from admission to organ procurement following circulatory death and graft survival showed no significant differences between ECPR and non-ECPR groups. The number of organs donated was similar between the ECPR and non-ECPR groups, regardless of brain or circulatory death.
Conclusions This nationwide study reveals that lung graft survival was lower in recipients from ECPR-treated donors, highlighting the need for targeted research and protocol adjustments in post-ECPR organ donation.
en-copyright=
kn-copyright=
en-aut-name=YumotoTetsuya
en-aut-sei=Yumoto
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TsukaharaKohei
en-aut-sei=Tsukahara
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ObaraTakafumi
en-aut-sei=Obara
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HongoTakashi
en-aut-sei=Hongo
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NojimaTsuyoshi
en-aut-sei=Nojima
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NaitoHiromichi
en-aut-sei=Naito
en-aut-mei=Hiromichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakaoAtsunori
en-aut-sei=Nakao
en-aut-mei=Atsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Brain death
kn-keyword=Brain death
en-keyword=Cardiopulmonary resuscitation
kn-keyword=Cardiopulmonary resuscitation
en-keyword=Extracorporeal membrane oxygenation
kn-keyword=Extracorporeal membrane oxygenation
en-keyword=Organ transplantation
kn-keyword=Organ transplantation
en-keyword=Out-of-hospital cardiac arrest
kn-keyword=Out-of-hospital cardiac arrest
en-keyword=Tissue and organ procurement
kn-keyword=Tissue and organ procurement
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=5
article-no=
start-page=1215
end-page=1224
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230726
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Oxidative stress-related markers as prognostic factors for patients with primary sclerosing cholangitis in Japan
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/purpose Primary sclerosing cholangitis (PSC) is a rare chronic liver disease. The mechanisms and prediction of PSC progression are unclear. Recent investigations have shown that general conditions, such as oxidative stress, affect the course of chronic diseases. We investigated the clinical course and oxidative stress-related condition of PSC to determine prognostic factors.
Methods We recruited 58 patients with PSC (mean age; 37.4 years, mean observation period; 1382 days) who visited our department from 2003 to 2021. Clinical characteristics were investigated to define prognostic factors. Oxidative stress status was evaluated using two types of markers: an oxidative stress marker (serum reactive oxygen metabolite; dROM) and an antioxidant marker (serum OXY adsorbent test; OXY).
Results The revised Mayo risk, Child–Pugh, model for end-stage liver disease-sodium (MELD-Na) scores or fibrosis-related FIB-4 index significantly predicted poor overall survival. High intestinal immunoglobulin A (IgA) levels predicted poor survival. Among patients with high and intermediate revised Mayo risk scores, those with physiologically high dROM levels showed better survival than those with lower dROM levels. In this population, dROM was negatively correlated with AST and IgA, which are both correlated with survival.
Conclusions High and intermediate revised Mayo risk score group predicted a poor clinical course in PSC. Additionally, the Child–Pugh score, MELD-Na score, FIB-4 index, and serum IgA were significantly correlated with survival. In patients with high and intermediate revised Mayo risk scores, physiologically high oxidative stress status correlated with low IgA levels and a good prognosis.
en-copyright=
kn-copyright=
en-aut-name=OyamaAtsushi
en-aut-sei=Oyama
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakakiAkinobu
en-aut-sei=Takaki
en-aut-mei=Akinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AdachiTakuya
en-aut-sei=Adachi
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=WadaNozomu
en-aut-sei=Wada
en-aut-mei=Nozomu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakeuchiYasuto
en-aut-sei=Takeuchi
en-aut-mei=Yasuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OnishiHideki
en-aut-sei=Onishi
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ShirahaHidenori
en-aut-sei=Shiraha
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OkadaHiroyuki
en-aut-sei=Okada
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Gastroenterology and Hepatology, Okayama University, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Okayama University, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterology and Hepatology, Okayama University, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology and Hepatology, Okayama University, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology and Hepatology, Okayama University, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology and Hepatology, Okayama University, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology and Hepatology, Okayama University, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology and Hepatology, Okayama University, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology and Hepatology, Okayama University, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=Primary sclerosing cholangitis
kn-keyword=Primary sclerosing cholangitis
en-keyword=Oxidative stress marker
kn-keyword=Oxidative stress marker
en-keyword=Prognosis
kn-keyword=Prognosis
en-keyword=Serum reactive oxygen metabolite
kn-keyword=Serum reactive oxygen metabolite
en-keyword=Total serum antioxidant capacity
kn-keyword=Total serum antioxidant capacity
en-keyword=Revised Mayo risk score
kn-keyword=Revised Mayo risk score
en-keyword=Child–Pugh score
kn-keyword=Child–Pugh score
en-keyword=MELD score
kn-keyword=MELD score
en-keyword=FIB-4 index
kn-keyword=FIB-4 index
en-keyword=Serum dROM
kn-keyword=Serum dROM
en-keyword=Serum OXY-adsorbent test
kn-keyword=Serum OXY-adsorbent test
en-keyword=Immunoglobulin A
kn-keyword=Immunoglobulin A
END
start-ver=1.4
cd-journal=joma
no-vol=626
cd-vols=
no-issue=7999
article-no=
start-page=670
end-page=677
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240131
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Oxygen-evolving photosystem II structures during S1–S2–S3 transitions
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Photosystem II (PSII) catalyses the oxidation of water through a four-step cycle of Si states (i = 0–4) at the Mn4CaO5 cluster1,2,3, during which an extra oxygen (O6) is incorporated at the S3 state to form a possible dioxygen4,5,6,7. Structural changes of the metal cluster and its environment during the S-state transitions have been studied on the microsecond timescale. Here we use pump-probe serial femtosecond crystallography to reveal the structural dynamics of PSII from nanoseconds to milliseconds after illumination with one flash (1F) or two flashes (2F). YZ, a tyrosine residue that connects the reaction centre P680 and the Mn4CaO5 cluster, showed structural changes on a nanosecond timescale, as did its surrounding amino acid residues and water molecules, reflecting the fast transfer of electrons and protons after flash illumination. Notably, one water molecule emerged in the vicinity of Glu189 of the D1 subunit of PSII (D1-E189), and was bound to the Ca2+ ion on a sub-microsecond timescale after 2F illumination. This water molecule disappeared later with the concomitant increase of O6, suggesting that it is the origin of O6. We also observed concerted movements of water molecules in the O1, O4 and Cl-1 channels and their surrounding amino acid residues to complete the sequence of electron transfer, proton release and substrate water delivery. These results provide crucial insights into the structural dynamics of PSII during S-state transitions as well as O–O bond formation.
en-copyright=
kn-copyright=
en-aut-name=LiHongjie
en-aut-sei=Li
en-aut-mei=Hongjie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakajimaYoshiki
en-aut-sei=Nakajima
en-aut-mei=Yoshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NangoEriko
en-aut-sei=Nango
en-aut-mei=Eriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OwadaShigeki
en-aut-sei=Owada
en-aut-mei=Shigeki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamadaDaichi
en-aut-sei=Yamada
en-aut-mei=Daichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HashimotoKana
en-aut-sei=Hashimoto
en-aut-mei=Kana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=LuoFangjia
en-aut-sei=Luo
en-aut-mei=Fangjia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TanakaRie
en-aut-sei=Tanaka
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=AkitaFusamichi
en-aut-sei=Akita
en-aut-mei=Fusamichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KatoKoji
en-aut-sei=Kato
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KangJungmin
en-aut-sei=Kang
en-aut-mei=Jungmin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=SaitohYasunori
en-aut-sei=Saitoh
en-aut-mei=Yasunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KishiShunpei
en-aut-sei=Kishi
en-aut-mei=Shunpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=YuHuaxin
en-aut-sei=Yu
en-aut-mei=Huaxin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=MatsubaraNaoki
en-aut-sei=Matsubara
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=FujiiHajime
en-aut-sei=Fujii
en-aut-mei=Hajime
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=SugaharaMichihiro
en-aut-sei=Sugahara
en-aut-mei=Michihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=SuzukiMamoru
en-aut-sei=Suzuki
en-aut-mei=Mamoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=MasudaTetsuya
en-aut-sei=Masuda
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=KimuraTetsunari
en-aut-sei=Kimura
en-aut-mei=Tetsunari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=ThaoTran Nguyen
en-aut-sei=Thao
en-aut-mei=Tran Nguyen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=YonekuraShinichiro
en-aut-sei=Yonekura
en-aut-mei=Shinichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=YuLong-Jiang
en-aut-sei=Yu
en-aut-mei=Long-Jiang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=ToshaTakehiko
en-aut-sei=Tosha
en-aut-mei=Takehiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=TonoKensuke
en-aut-sei=Tono
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=JotiYasumasa
en-aut-sei=Joti
en-aut-mei=Yasumasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=HatsuiTakaki
en-aut-sei=Hatsui
en-aut-mei=Takaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=YabashiMakina
en-aut-sei=Yabashi
en-aut-mei=Makina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=KuboMinoru
en-aut-sei=Kubo
en-aut-mei=Minoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=IwataSo
en-aut-sei=Iwata
en-aut-mei=So
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=IsobeHiroshi
en-aut-sei=Isobe
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=YamaguchiKizashi
en-aut-sei=Yamaguchi
en-aut-mei=Kizashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
en-aut-name=SugaMichihiro
en-aut-sei=Suga
en-aut-mei=Michihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=33
ORCID=
en-aut-name=ShenJian-Ren
en-aut-sei=Shen
en-aut-mei=Jian-Ren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=34
ORCID=
affil-num=1
en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Institute of Multidisciplinary Research for Advanced Materials, Tohoku University
kn-affil=
affil-num=4
en-affil=Japan Synchrotron Radiation Research Institute
kn-affil=
affil-num=5
en-affil=Department of Picobiology, Graduate School of Life Science, University of Hyogo
kn-affil=
affil-num=6
en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Japan Synchrotron Radiation Research Institute
kn-affil=
affil-num=8
en-affil=RIKEN SPring-8 Center
kn-affil=
affil-num=9
en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=10
en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=11
en-affil=RIKEN SPring-8 Center
kn-affil=
affil-num=12
en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=13
en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=14
en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=15
en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=16
en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=17
en-affil=Japan Synchrotron Radiation Research Institute
kn-affil=
affil-num=18
en-affil=Institute for Protein Research, Osaka University
kn-affil=
affil-num=19
en-affil=Division of Food and Nutrition, Faculty of Agriculture, Ryukoku University
kn-affil=
affil-num=20
en-affil=Department of Chemistry, Graduate School of Science, Kobe University
kn-affil=
affil-num=21
en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=22
en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=23
en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=24
en-affil=RIKEN SPring-8 Center
kn-affil=
affil-num=25
en-affil=Japan Synchrotron Radiation Research Institute
kn-affil=
affil-num=26
en-affil=Japan Synchrotron Radiation Research Institute
kn-affil=
affil-num=27
en-affil=Japan Synchrotron Radiation Research Institute
kn-affil=
affil-num=28
en-affil=Japan Synchrotron Radiation Research Institute
kn-affil=
affil-num=29
en-affil=Department of Picobiology, Graduate School of Life Science, University of Hyogo
kn-affil=
affil-num=30
en-affil=RIKEN SPring-8 Center
kn-affil=
affil-num=31
en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=32
en-affil=Center for Quantum Information and Quantum Biology, Osaka University
kn-affil=
affil-num=33
en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=34
en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=59
cd-vols=
no-issue=6
article-no=
start-page=1314
end-page=1328
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240310
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Wetting property of Fe‐S melt in solid core: Implication for the core crystallization process in planetesimals
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In differentiated planetesimals, the liquid core starts to crystallize during secular cooling, followed by the separation of liquid–solid phases in the core. The wetting property between liquid and solid iron alloys determines whether the core melts are trapped in the solid core or they can separate from the solid core during core crystallization. In this study, we performed high-pressure experiments under the conditions of the interior of small bodies (0.5–3.0 GPa) to study the wetting property (dihedral angle) between solid Fe and liquid Fe-S as a function of pressure and duration. The measured dihedral angles are approximately constant after 2 h and decrease with increasing pressure. The dihedral angles range from 30° to 48°, which are below the percolation threshold of 60° at 0.5–3.0 GPa. The oxygen content in the melt decreases with increasing pressure and there are strong positive correlations between the S + O or O content and the dihedral angle. Therefore, the change in the dihedral angle is likely controlled by the O content of the Fe-S melt, and the dihedral angle tends to decrease with decreasing O content in the Fe-S melt. Consequently, the Fe-S melt can form interconnected networks in the solid core. In the obtained range of the dihedral angle, a certain amount of the Fe-S melt can stably coexist with solid Fe, which would correspond to the “trapped melt” in iron meteorites. Excess amounts of the melt would migrate from the solid core over a long period of core crystallization in planetesimals.
en-copyright=
kn-copyright=
en-aut-name=MatsubaraShiori
en-aut-sei=Matsubara
en-aut-mei=Shiori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TerasakiHidenori
en-aut-sei=Terasaki
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshinoTakashi
en-aut-sei=Yoshino
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=UrakawaSatoru
en-aut-sei=Urakawa
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YumitoriDaisuke
en-aut-sei=Yumitori
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Earth Sciences, Graduate School of Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Earth Sciences, Graduate School of Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Earth Sciences, Graduate School of Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Earth Sciences, Graduate School of Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=299
cd-vols=
no-issue=7
article-no=
start-page=104839
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=202307
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Structural insights into the action mechanisms of artificial electron acceptors in photosystem II
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Photosystem II (PSII) utilizes light energy to split water, and the electrons extracted from water are transferred to QB, a plastoquinone molecule bound to the D1 subunit of PSII. Many artificial electron acceptors (AEAs) with molecular structures similar to that of plastoquinone can accept electrons from PSII. However, the molecular mechanism by which AEAs act on PSII is unclear. Here, we solved the crystal structure of PSII treated with three different AEAs, 2,5-dibromo-1,4-benzoquinone, 2,6dichloro-1,4-benzoquinone, and 2-phenyl-1,4-benzoquinone, at 1.95 to 2.10 angstrom resolution. Our results show that all AEAs substitute for QB and are bound to the QB-binding site (QB site) to receive electrons, but their binding strengths are different, resulting in differences in their efficiencies to accept electrons. The acceptor 2-phenyl-1,4-benzoquinone binds most weakly to the QB site and showed the highest oxygen-evolving activity, implying a reverse relationship between the binding strength and oxygen-evolving activity. In addition, a novel quinonebinding site, designated the QD site, was discovered, which is located in the vicinity of QB site and close to QC site, a binding site reported previously. This QD site is expected to play a role as a channel or a storage site for quinones to be transported to the QB site. These results provide the structural basis for elucidating the actions of AEAs and exchange mechanism of QB in PSII and also provide information for the design of more efficient electron acceptors.
en-copyright=
kn-copyright=
en-aut-name=KamadaShinji
en-aut-sei=Kamada
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakajimaYoshiki
en-aut-sei=Nakajima
en-aut-mei=Yoshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShenJian-Ren
en-aut-sei=Shen
en-aut-mei=Jian-Ren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Faculty of Science, Okayama University
kn-affil=
affil-num=2
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Photosystem II
kn-keyword=Photosystem II
en-keyword=photosynthesis
kn-keyword=photosynthesis
en-keyword=electron transfer
kn-keyword=electron transfer
en-keyword=structural biology
kn-keyword=structural biology
en-keyword=crystal structure
kn-keyword=crystal structure
en-keyword=electron acceptor
kn-keyword=electron acceptor
END
start-ver=1.4
cd-journal=joma
no-vol=115
cd-vols=
no-issue=4
article-no=
start-page=1317
end-page=1332
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240126
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Antitumor activity of α-pinene in T-cell tumors
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=T-cell acute leukemia and lymphoma have a poor prognosis. Although new therapeu-tic agents have been developed, their therapeutic effects are suboptimal. α- Pinene, a monoterpene compound, has an antitumor effect on solid tumors; however, few comprehensive investigations have been conducted on its impact on hematologic ma-lignancies. This report provides a comprehensive analysis of the potential benefits of using α- pinene as an antitumor agent for the treatment of T-cell tumors. We found that α- pinene inhibited the proliferation of hematologic malignancies, especially in T- cell tumor cell lines EL-4 and Molt-4, induced mitochondrial dysfunction and re-active oxygen species accumulation, and inhibited NF-κB p65 translocation into the nucleus, leading to robust apoptosis in EL-4 cells. Collectively, these findings suggest that α- pinene has potential as a therapeutic agent for T-cell malignancies, and further investigation is warranted.
en-copyright=
kn-copyright=
en-aut-name=AbeMasaya
en-aut-sei=Abe
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AsadaNoboru
en-aut-sei=Asada
en-aut-mei=Noboru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KimuraMaiko
en-aut-sei=Kimura
en-aut-mei=Maiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FukuiChie
en-aut-sei=Fukui
en-aut-mei=Chie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamadaDaisuke
en-aut-sei=Yamada
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=WangZiyi
en-aut-sei=Wang
en-aut-mei=Ziyi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MiyakeMasayuki
en-aut-sei=Miyake
en-aut-mei=Masayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakaradaTakeshi
en-aut-sei=Takarada
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OnoMitsuaki
en-aut-sei=Ono
en-aut-mei=Mitsuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=AoeMichinori
en-aut-sei=Aoe
en-aut-mei=Michinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KitamuraWataru
en-aut-sei=Kitamura
en-aut-mei=Wataru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MatsudaMasayuki
en-aut-sei=Matsuda
en-aut-mei=Masayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MoriyamaTakashi
en-aut-sei=Moriyama
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=MatsumuraAkifumi
en-aut-sei=Matsumura
en-aut-mei=Akifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=MaedaYoshinobu
en-aut-sei=Maeda
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Division of Hematology, Department of Medicine, Kobe University Hospital
kn-affil=
affil-num=5
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Division of Medical Support, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Division of Medical Support, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=alpha-pinene
kn-keyword=alpha-pinene
en-keyword=apoptosis
kn-keyword=apoptosis
en-keyword=hematologic malignancies
kn-keyword=hematologic malignancies
en-keyword=lymphoblastic leukemia, acute, T-cell
kn-keyword=lymphoblastic leukemia, acute, T-cell
en-keyword=T-cell lymphoma
kn-keyword=T-cell lymphoma
END
start-ver=1.4
cd-journal=joma
no-vol=53
cd-vols=
no-issue=
article-no=
start-page=104348
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202402
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Multi-isotopic analysis of domestic burials from sin Cabezas, Escuintla, Guatemala
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We present the results from the stable isotope measurements of strontium (87Sr/86Sr) and oxygen (δ 18O) in tooth enamel from 36 individuals from the site of Sin Cabezas, Escuintla, Guatemala. This is the first contribution of isotopic proveniencing from the Pacific Coast of Guatemala and offers new solid baseline reference data from a large archaeological sample. Although some outlier cases are identified, the high homogeneity is the most evident feature in the sample. Based on this homogeneity, we discuss a critical issue of baseline data between Teotihuacan and the Pacific Coast, where the material culture has indicated intimate cultural interactions. A critical overlap for both strontium and oxygen reference between the Mexican metropolis and the coastal region is pointed out. This is why detecting human movement between both regions is still elusive. A case study of a possible Mexican individual is introduced. We also assess the outlier cases in terms of proveniencing and add several osteobiographic notes for the most relevant cases whose origin could be seen among the Northern - Eastern part of the Guatemalan Highlands, the Soconusco border region, or Central Honduras.
en-copyright=
kn-copyright=
en-aut-name=SuzukiShintaro
en-aut-sei=Suzuki
en-aut-mei=Shintaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=BarrientosTomás
en-aut-sei=Barrientos
en-aut-mei=Tomás
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MejíaHéctor
en-aut-sei=Mejía
en-aut-mei=Héctor
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=PriceT. Douglas
en-aut-sei=Price
en-aut-mei=T. Douglas
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Research Institute for the Dynamics of Civilizations, Okayama University
kn-affil=
affil-num=2
en-affil=Centro de Investigaciones Arqueológicas y Antropológicas, Universidad del Valle de Guatemala
kn-affil=
affil-num=3
en-affil=Transportadora de Energía de Centroamérica, Universidad de San Carlos de Guatemala
kn-affil=
affil-num=4
en-affil=University of Wisconsin
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=10
cd-vols=
no-issue=1
article-no=
start-page=e914
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20231226
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Clinical parameter-guided initial resuscitation in adult patients with septic shock: A systematic review and network meta-analysis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Aim: To identify the most useful tissue perfusion parameter for initial resuscitation in sepsis/septic shock adults using a network meta-analysis.
Methods: We searched major databases until December 2022 for randomized trials comparing four tissue perfusion parameters or against usual care. The primary outcome was short-term mortality up to 90 days. The Confidence in Network Meta-Analysis web application was used to assess the quality of evidence.
Results: Seventeen trials were identified. Lactate-guided therapy (risk ratios, 0.59; 95% confidence intervals [0.45–0.76]; high certainty) and capillary refill time-guided therapy (risk ratios, 0.53; 95% confidence intervals [0.33–0.86]; high certainty) were significantly associated with lower short-term mortality compared with usual care, whereas central venous oxygen saturation-guided therapy (risk ratio, 1.50; 95% confidence intervals [1.16–1.94]; moderate certainty) increased the risk of short-term mortality compared with lactate-guided therapy.
Conclusions: Lactate or capillary refill time-guided initial resuscitation for sepsis/septic shock patients may decrease short-term mortality. More research is essential to personalize and optimize treatment strategies for septic shock resuscitation.
en-copyright=
kn-copyright=
en-aut-name=YumotoTetsuya
en-aut-sei=Yumoto
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KuribaraTomoki
en-aut-sei=Kuribara
en-aut-mei=Tomoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamadaKohei
en-aut-sei=Yamada
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SatoTakehito
en-aut-sei=Sato
en-aut-mei=Takehito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KobaShigeru
en-aut-sei=Koba
en-aut-mei=Shigeru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TetsuharaKenichi
en-aut-sei=Tetsuhara
en-aut-mei=Kenichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KashiuraMasahiro
en-aut-sei=Kashiura
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SakurayaMasaaki
en-aut-sei=Sakuraya
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=School of Nursing, Sapporo City University
kn-affil=
affil-num=3
en-affil=Department of Traumatology and Critical Care Medicine, National Defense Medical College Hospital
kn-affil=
affil-num=4
en-affil=Department of Anesthesiology, Nagoya University Hospital
kn-affil=
affil-num=5
en-affil=Department of Critical Care Medicine, Nerima Hikarigaoka Hospital
kn-affil=
affil-num=6
en-affil=Department of Critical Care Medicine, Fukuoka Children's Hospital
kn-affil=
affil-num=7
en-affil=Department of Emergency and Critical Care Medicine, Saitama Medical Center, Jichi Medical University
kn-affil=
affil-num=8
en-affil=Department of Emergency and Intensive Care Medicine, JA Hiroshima General Hospital
kn-affil=
en-keyword=capillary refill timecarbon dioxide gapcentral venous oxygen saturationlactatenetwork meta-analysissepsisseptic shock
kn-keyword=capillary refill timecarbon dioxide gapcentral venous oxygen saturationlactatenetwork meta-analysissepsisseptic shock
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=
article-no=
start-page=RP88822
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20231121
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Characterization of tryptophan oxidation affecting D1 degradation by FtsH in the photosystem II quality control of chloroplasts
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Photosynthesis is one of the most important reactions for sustaining our environment. Photosystem II (PSII) is the initial site of photosynthetic electron transfer by water oxidation. Light in excess, however, causes the simultaneous production of reactive oxygen species (ROS), leading to photo-oxidative damage in PSII. To maintain photosynthetic activity, the PSII reaction center protein D1, which is the primary target of unavoidable photo-oxidative damage, is efficiently degraded by FtsH protease. In PSII subunits, photo-oxidative modifications of several amino acids such as Trp have been indeed documented, whereas the linkage between such modifications and D1 degradation remains elusive. Here, we show that an oxidative post-translational modification of Trp residue at the N-terminal tail of D1 is correlated with D1 degradation by FtsH during high-light stress. We revealed that Arabidopsis mutant lacking FtsH2 had increased levels of oxidative Trp residues in D1, among which an N-terminal Trp-14 was distinctively localized in the stromal side. Further characterization of Trp-14 using chloroplast transformation in Chlamydomonas indicated that substitution of D1 Trp-14 to Phe, mimicking Trp oxidation enhanced FtsH-mediated D1 degradation under high light, although the substitution did not affect protein stability and PSII activity. Molecular dynamics simulation of PSII implies that both Trp-14 oxidation and Phe substitution cause fluctuation of D1 N-terminal tail. Furthermore, Trp-14 to Phe modification appeared to have an additive effect in the interaction between FtsH and PSII core in vivo. Together, our results suggest that the Trp oxidation at its N-terminus of D1 may be one of the key oxidations in the PSII repair, leading to processive degradation by FtsH.
en-copyright=
kn-copyright=
en-aut-name=KatoYusuke
en-aut-sei=Kato
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KurodaHiroshi
en-aut-sei=Kuroda
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OzawaShin-Ichiro
en-aut-sei=Ozawa
en-aut-mei=Shin-Ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SaitoKeisuke
en-aut-sei=Saito
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=DograVivek
en-aut-sei=Dogra
en-aut-mei=Vivek
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ScholzMartin
en-aut-sei=Scholz
en-aut-mei=Martin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ZhangGuoxian
en-aut-sei=Zhang
en-aut-mei=Guoxian
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=de VitryCatherine
en-aut-sei=de Vitry
en-aut-mei=Catherine
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IshikitaHiroshi
en-aut-sei=Ishikita
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KimChanhong
en-aut-sei=Kim
en-aut-mei=Chanhong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HipplerMichael
en-aut-sei=Hippler
en-aut-mei=Michael
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TakahashiYuichiro
en-aut-sei=Takahashi
en-aut-mei=Yuichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=SakamotoWataru
en-aut-sei=Sakamoto
en-aut-mei=Wataru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources (IPSR), Okayama University
kn-affil=
affil-num=2
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources (IPSR), Okayama University
kn-affil=
affil-num=4
en-affil=Research Center for Advanced Science and Technology, The University of Tokyo
kn-affil=
affil-num=5
en-affil=Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences
kn-affil=
affil-num=6
en-affil=Institute of Plant Biology and Biotechnology, University of Münster
kn-affil=
affil-num=7
en-affil=Institute of Plant Science and Resources (IPSR), Okayama University
kn-affil=
affil-num=8
en-affil=Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique and Sorbonne Université Pierre et Marie Curie
kn-affil=
affil-num=9
en-affil=Research Center for Advanced Science and Technology, The University of Tokyo
kn-affil=
affil-num=10
en-affil=Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences
kn-affil=
affil-num=11
en-affil=Institute of Plant Science and Resources (IPSR), Okayama University
kn-affil=
affil-num=12
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=13
en-affil=Institute of Plant Science and Resources (IPSR), Okayama University
kn-affil=
en-keyword=post-translational modification
kn-keyword=post-translational modification
en-keyword=Arabidopsis thaliana
kn-keyword=Arabidopsis thaliana
en-keyword=protein degradation
kn-keyword=protein degradation
en-keyword=photosystem II
kn-keyword=photosystem II
en-keyword=photo-oxidative damage
kn-keyword=photo-oxidative damage
en-keyword=tryptophan oxidation
kn-keyword=tryptophan oxidation
en-keyword=Chlamydomonas reinhardtii
kn-keyword=Chlamydomonas reinhardtii
END
start-ver=1.4
cd-journal=joma
no-vol=210
cd-vols=
no-issue=
article-no=
start-page=154
end-page=161
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20231015
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Negative correlations of mitochondrial DNA copy number in commercial frozen bull spermatozoa with the motility parameters after thawing
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The purpose of the current study was to investigate the relationship between mitochondrial content of commercial frozen-thawed bull spermatozoa and motility. Firstly, mitochondrial DNA copy number per spermatozoon (MDCN), mitochondrial content (MC), the percentage of spermatozoa with high mitochondrial membrane potential (HMMP), intracellular reactive oxygen species (ROS) and motility parameters of frozen-thawed spermatozoa derived from five bulls were determined by using qPCR, flow cytometry and CASA, respectively, and analyzed the relationships. Results showed that all parameters examined, including MDCN, MC, HMMP, ROS and motility indicators, significantly differed among frozen spermatozoa from different bulls. Both MDCN and MC were negatively correlated with HMMP and motility indicators, but positively with ROS, of course, whereas there was a highly positive relationship between MDCN and MC. Secondly, when MDCN and MC were examined in frozen spermatozoa prepared at different points in the lives of four bulls, those did not correlate overall throughout their lives (1.3–14.3 years old), but did correlate significantly in two sires. From these results, we conclude that MDCN and MC of frozen spermatozoa differ among sires, and are negatively correlated with HMMP and sperm motility parameters, probably due to mitochondrial oxidative stress resulted in the presence of ROS, demonstrating that these appear to be useful markers to assess sires’ spermatozoa. It should be noted that the MDCN and MC of bull spermatozoa may not vary overall with the age of the sire, whereas those changes with age in some individuals and may affect sperm motility.
en-copyright=
kn-copyright=
en-aut-name=NguyenHai Thanh
en-aut-sei=Nguyen
en-aut-mei=Hai Thanh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=DoSon Quang
en-aut-sei=Do
en-aut-mei=Son Quang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KobayashiHiroshi
en-aut-sei=Kobayashi
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=WakaiTakuya
en-aut-sei=Wakai
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FunahashiHiroaki
en-aut-sei=Funahashi
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Okayama Prefectural Center for Animal Husbandry and Research
kn-affil=
affil-num=4
en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=Spermatozoa
kn-keyword=Spermatozoa
en-keyword=Bulls
kn-keyword=Bulls
en-keyword=Mitochondrial content
kn-keyword=Mitochondrial content
en-keyword=Motility
kn-keyword=Motility
en-keyword=Frozen semen
kn-keyword=Frozen semen
END
start-ver=1.4
cd-journal=joma
no-vol=64
cd-vols=
no-issue=4
article-no=
start-page=ezad304
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20231012
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Intravenous infusion of cardiac progenitor cells in animal models of single ventricular physiology
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=OBJECTIVES: The goal of this study was to identify the practical applications of intravenous cell therapy for single-ventricle physiology (SVP) by establishing experimental SVP models.
METHODS: An SVP with a three-stage palliation was constructed in an acute swine model without cardiopulmonary bypass. A modified Blalock–Taussig (MBT) shunt was created using an aortopulmonary shunt with the superior and inferior venae cavae (SVC and IVC, respectively) connected to the left atrium (n = 10). A bidirectional cavopulmonary shunt (BCPS) was constructed using a graft between the IVC and the left atrium with an SVC cavopulmonary connection (n = 10). The SVC and the IVC were connected to the pulmonary artery to establish a total cavopulmonary connection (TCPC, n = 10). The survival times of half of the animal models were studied. The other half and the biventricular sham control (n = 5) were injected intravenously with cardiosphere-derived cells (CDCs), and the cardiac retention of CDCs was assessed after 2 h.
RESULTS: All SVP models died within 20 h. Perioperative mortality was higher in the BCPS group because of lower oxygen saturation (P < 0.001). Cardiac retention of intravenously delivered CDCs, as detected by magnetic resonance imaging and histologic analysis, was significantly higher in the modified Blalock-Taussig and BCPS groups than in the TCPC group (P < 0.01).
CONCLUSIONS: Without the total right heart exclusion, stage-specific SVP models can be functionally constructed in pigs with stable outcomes. Intravenous CDC injections may be applicable in patients with SVP before TCPC completion, given that the initial lung trafficking is efficiently bypassed and sufficient systemic blood flow is supplied from the single ventricle.
en-copyright=
kn-copyright=
en-aut-name=GotoTakuya
en-aut-sei=Goto
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OusakaDaiki
en-aut-sei=Ousaka
en-aut-mei=Daiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HiraiKenta
en-aut-sei=Hirai
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KotaniYasuhiro
en-aut-sei=Kotani
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KasaharaShingo
en-aut-sei=Kasahara
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Pediatrics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital
kn-affil=
en-keyword=animal model
kn-keyword=animal model
en-keyword=single ventricular physiology
kn-keyword=single ventricular physiology
en-keyword=cell therapy
kn-keyword=cell therapy
en-keyword=cardiosphere-derived cell
kn-keyword=cardiosphere-derived cell
en-keyword=intravenous
kn-keyword=intravenous
END
start-ver=1.4
cd-journal=joma
no-vol=77
cd-vols=
no-issue=5
article-no=
start-page=537
end-page=543
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=202310
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Relationship of Intraoperative SpO2 and ETCO2 Values with Postoperative Hypoxemia in Elderly Patients after Non-Cardiac Surgery
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Elderly patients are at higher risk of postoperative hypoxemia due to their decreased respiratory function. The aim of this study was to investigate the relationship of intraoperative oxygen saturation (SpO2) and end-expiratory carbon dioxide (ETCO2) values with postoperative hypoxemia in elderly patients. The inclusion criteria were: 1) patients aged≥75 years; 2) underwent general anesthesia in non-cardiac surgery; 3) operative time longer than two hours; and 4) admission to the intensive care unit (ICU) following surgery performed between January and December 2019. Intraoperative SpO2 and ETCO2 values were collected every minute for the first two hours during surgery. The 253 patients were divided into two groups: SpO2≥92% and SpO2<92%. The time-weighted averages of intraoperative SpO2 and ETCO2 were used to compare differences between the two groups. The incidence of postoperative hypoxemia was 22.5%. For similar ventilator settings, patients with postoperative hypoxemia had lower intraoperative SpO2 and higher ETCO2 values. Sex, ASA classification, and intraoperative SpO2 were independent risk factors for postoperative hypoxemia. In conclusion, postoperative SpO2<92% was a frequent occurrence (> 20%) in elderly patients who underwent major non-cardiac surgery. Postoperative hypoxemia was associated with low intraoperative SpO2 and relatively higher ETCO2.
en-copyright=
kn-copyright=
en-aut-name=SongQingqing
en-aut-sei=Song
en-aut-mei=Qingqing
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=PanYu
en-aut-sei=Pan
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KanazawaTomoyuki
en-aut-sei=Kanazawa
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MorimatsuHiroshi
en-aut-sei=Morimatsu
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=oxygen saturation
kn-keyword=oxygen saturation
en-keyword=end-expiratory carbon dioxide
kn-keyword=end-expiratory carbon dioxide
en-keyword=postoperative hypoxemia
kn-keyword=postoperative hypoxemia
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=6
article-no=
start-page=3300
end-page=3308
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220126
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Flame retardance-donated lignocellulose nanofibers (LCNFs) by the Mannich reaction with (amino-1,3,5-triazinyl)phosphoramidates and their properties
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Nitrogen/phosphorus-containing melamines (NPCM), a durable flame-retardant, were prepared by the successive treatment of ArOH (Ar = BrnC6H5−n, n = 0, 1, 2, and 3) with POCl3 and melamine monomer. The prepared flame-retardants were grafted through the CH2 unit to lignocellulose nanofibers (LCNFs) by the Mannich reaction. The resulting three-component products were characterized using FT-IR (ATR) and EA. The thermal behavior of the NPCM-treated LCNF fabric samples was determined using TGA and DSC analyses, and their flammability resistances were evaluated by measuring their Limited Oxygen Index (LOI) and the UL-94V test. A multitude of flame retardant elements in the fabric samples increased the LOI values as much as 45 from 20 of the untreated LCNFs. Moreover, the morphology of both the NPCM-treated LCNFs and their burnt fabrics was studied with a scanning electron microscope (SEM). The heat release lowering effect of the LCNF fabric against the water-based paint was observed with a cone calorimeter. Furthermore, the mechanical properties represented as the tensile strength of the NPCM-treated LCNF fabrics revealed that the increase of the NPCM content in the PP-composites led to an increased bending strength with enhancing the flame-retardance.
en-copyright=
kn-copyright=
en-aut-name=OnoFumiaki
en-aut-sei=Ono
en-aut-mei=Fumiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkiharaTakumi
en-aut-sei=Okihara
en-aut-mei=Takumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OsakaNoboru
en-aut-sei=Osaka
en-aut-mei=Noboru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NagaokaNoriyuki
en-aut-sei=Nagaoka
en-aut-mei=Noriyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KameokaYuji
en-aut-sei=Kameoka
en-aut-mei=Yuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IshikawaAkira
en-aut-sei=Ishikawa
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OokiHironari
en-aut-sei=Ooki
en-aut-mei=Hironari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ItoTakumi
en-aut-sei=Ito
en-aut-mei=Takumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TodomeDaisuke
en-aut-sei=Todome
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=UemotoShinya
en-aut-sei=Uemoto
en-aut-mei=Shinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=FurutaniMitsuaki
en-aut-sei=Furutani
en-aut-mei=Mitsuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=InokuchiTsutomu
en-aut-sei=Inokuchi
en-aut-mei=Tsutomu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=OkadaKenji
en-aut-sei=Okada
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Okayama Biomass Innovation Creative Center
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Science, Okayama University of Science
kn-affil=
affil-num=4
en-affil=Advanced Research Center for Oral and Craniofacial Science, Okayama University Dental School
kn-affil=
affil-num=5
en-affil=Marubishi Oil Chemical Co., Ltd
kn-affil=
affil-num=6
en-affil=Marubishi Oil Chemical Co., Ltd
kn-affil=
affil-num=7
en-affil=Gen Gen Corporation
kn-affil=
affil-num=8
en-affil=Gen Gen Corporation
kn-affil=
affil-num=9
en-affil=Faculty of Science, Okayama University of Science
kn-affil=
affil-num=10
en-affil=Okayama Biomass Innovation Creative Center
kn-affil=
affil-num=11
en-affil=Okayama Biomass Innovation Creative Center
kn-affil=
affil-num=12
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Life Science, Kurashiki University of Science & the Arts
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2005
dt-pub=20050930
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=犬実験モデルを用いた慢性の圧負荷を伴う右心不全に対するポンプを用いない膜型人工肺による体外循環(ECMO)補助の血行動態に及ぼす効果
kn-title=Hemodynamic effects of pumpless extracorporeal membrane oxygenation (ECMO) support for chronically pressure-overloaded right heart failure in a canine experimental model
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=TamesueKiyokazu
en-aut-sei=Tamesue
en-aut-mei=Kiyokazu
kn-aut-name=爲季清和
kn-aut-sei=爲季
kn-aut-mei=清和
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=岡山大学
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2005
dt-pub=20051231
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Perfluorocarbonを使用した消化管による呼吸補助 : 還流量による検討
kn-title=Transintestinal oxygenation with perfluorocarbon : investigation of perfusion rate
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KotaniKazutoshi
en-aut-sei=Kotani
en-aut-mei=Kazutoshi
kn-aut-name=小谷一敏
kn-aut-sei=小谷
kn-aut-mei=一敏
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=岡山大学
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=15
article-no=
start-page=5028
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230731
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Evidence for Hypoxia-Induced Shift in ATP Production from Glycolysis to Mitochondrial Respiration in Pulmonary Artery Smooth Muscle Cells in Pulmonary Arterial Hypertension
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: The metabolic state of pulmonary artery smooth muscle cells (PASMCs) from patients with pulmonary arterial hypertension (PAH) is not well understood. In this study, we examined the balance between glycolysis and mitochondrial respiration in non-PAH-PASMCs and PAH-PASMCs under normoxia and hypoxia. Methods: We investigated the enzymes involved in glycolysis and mitochondrial respiration, and studied the two major energy-yielding pathways (glycolysis and mitochondrial respiration) by measuring extracellular acidification rate (ECAR) and cellular oxygen consumption rate (OCR) using the Seahorse extracellular flux technology. Results: Under both normoxia and hypoxia, the mRNA and protein levels of pyruvate dehydrogenase kinase 1 and pyruvate dehydrogenase were increased in PAH-PASMCs compared with non-PAH-PASMCs. The mRNA and protein levels of lactate dehydrogenase, as well as the intracellular lactate concentration, were also increased in PAH-PASMCs compared with non-PAH-PASMCs under normoxia. However, these were not significantly increased in PAH-PASMCs compared with non-PAH-PASMCs under hypoxia. Under normoxia, ATP production was significantly lower in PAH-PASMCs (59 ± 5 pmol/min) than in non-PAH-PASMCs (70 ± 10 pmol/min). On the other hand, ATP production was significantly higher in PAH-PASMCs (31 ± 5 pmol/min) than in non-PAH-PASMCs (14 ± 3 pmol/min) under hypoxia. Conclusions: There is an underlying change in the metabolic strategy to generate ATP production under the challenge of hypoxia.
en-copyright=
kn-copyright=
en-aut-name=AkagiSatoshi
en-aut-sei=Akagi
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakamuraKazufumi
en-aut-sei=Nakamura
en-aut-mei=Kazufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KondoMegumi
en-aut-sei=Kondo
en-aut-mei=Megumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HirohataSatoshi
en-aut-sei=Hirohata
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=UdonoHeiichiro
en-aut-sei=Udono
en-aut-mei=Heiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NishidaMikako
en-aut-sei=Nishida
en-aut-mei=Mikako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SaitoYukihiro
en-aut-sei=Saito
en-aut-mei=Yukihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YoshidaMasashi
en-aut-sei=Yoshida
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MiyoshiToru
en-aut-sei=Miyoshi
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ItoHiroshi
en-aut-sei=Ito
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Immunology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Immunology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=glycolysis
kn-keyword=glycolysis
en-keyword=mitochondrial respiration
kn-keyword=mitochondrial respiration
en-keyword=pulmonary arterial hypertension
kn-keyword=pulmonary arterial hypertension
en-keyword=pulmonary artery smooth muscle cells
kn-keyword=pulmonary artery smooth muscle cells
en-keyword=Seahorse technology
kn-keyword=Seahorse technology
en-keyword=hypoxia
kn-keyword=hypoxia
en-keyword=ATP production
kn-keyword=ATP production
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=7
article-no=
start-page=1438
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230718
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Combined Effect of Salicylic Acid and Proline Mitigates Drought Stress in Rice (Oryza sativa L.) through the Modulation of Physiological Attributes and Antioxidant Enzymes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Salicylic acid (SA) and proline exhibit protective effects against a wide range of stresses. However, the combined impact of SA and proline on rice under drought stress is still unknown. Therefore, we investigated the protective roles of SA and/or proline in conferring drought tolerance in rice. There were eight treatments comprising the control (T1; 95-100% FC), 1.5 mM SA (T2), 2 mM proline (T3), 0.75 mM SA + 1 mM proline (T4), 45-50% FC (T5, drought stress), T5 + 1.5 mM SA (T6), T5 + 2 mM proline (T7), and T5 + 0.75 mM SA + 1 mM proline (T8), and two rice varieties: BRRI dhan66 and BRRI dhan75. Drought stress significantly decreased the plant growth, biomass, yield attributes, photosynthetic rate (Pn), stomatal conductance (gs), transpiration rate (Tr), photosynthetic pigments (chlorophyll and carotenoids content), relative water content (RWC), membrane stability index (MSI), soluble sugar and starch content, and uptake of N, P and K+ in roots and shoots. Drought-induced oxidative stress in the form of increased hydrogen peroxide (H2O2) production and lipid peroxidation (MDA) was observed. The combined application of SA (0.75 mM) + proline (1 mM) was found to be more effective than the single application of either for drought stress mitigation in rice. A combined dose of SA + proline alleviated oxidative stress through boosting antioxidant enzymatic activity in contrast to their separate application. The application of SA + proline also enhanced proline, soluble sugar and starch content, which resulted in the amelioration of osmotic stress. Consequently, the combined application of SA and proline significantly increased the gas exchange characteristics, photosynthetic pigments, RWC, MSI, nutrient uptake, plant growth, biomass and yield of rice. Therefore, the combined application of SA and proline alleviated the detrimental impacts of drought stress more pronouncedly than their separate application did by increasing osmoprotectants, improving nutrient transport, up-regulating antioxidant enzyme activity and inhibiting oxidative stress.
en-copyright=
kn-copyright=
en-aut-name=UrmiTahmina Akter
en-aut-sei=Urmi
en-aut-mei=Tahmina Akter
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IslamMd. Moshiul
en-aut-sei=Islam
en-aut-mei=Md. Moshiul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ZumurKamrun Naher
en-aut-sei=Zumur
en-aut-mei=Kamrun Naher
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AbedinMd. Anwarul
en-aut-sei=Abedin
en-aut-mei=Md. Anwarul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HaqueM. Moynul
en-aut-sei=Haque
en-aut-mei=M. Moynul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SiddiquiManzer H.
en-aut-sei=Siddiqui
en-aut-mei=Manzer H.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MurataYoshiyuki
en-aut-sei=Murata
en-aut-mei=Yoshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HoqueMd. Anamul
en-aut-sei=Hoque
en-aut-mei=Md. Anamul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Soil Science, Faculty of Agriculture, Bangladesh Agricultural University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Agronomy, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University
kn-affil=
affil-num=4
en-affil=Department of Soil Science, Faculty of Agriculture, Bangladesh Agricultural University
kn-affil=
affil-num=5
en-affil=Department of Agronomy, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University
kn-affil=
affil-num=6
en-affil=Department of Botany and Microbiology, College of Science, King Saud University
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Soil Science, Faculty of Agriculture, Bangladesh Agricultural University
kn-affil=
en-keyword=rice
kn-keyword=rice
en-keyword=drought stress
kn-keyword=drought stress
en-keyword=osmolytes
kn-keyword=osmolytes
en-keyword=reactive oxygen species
kn-keyword=reactive oxygen species
en-keyword=lipid peroxidation
kn-keyword=lipid peroxidation
en-keyword=antioxidant
kn-keyword=antioxidant
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=14
article-no=
start-page=2738
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230723
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Low-Oxygen Responses of Cut Carnation Flowers Associated with Modified Atmosphere Packaging
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Gaseous factors affect post-harvest physiological processes in horticultural crops, including ornamental flowers. However, the molecular responses of cut flowers to the low-oxygen conditions associated with modified atmosphere packaging (MAP) have not yet been elucidated. Here, we show that storage of cut carnation flowers in a sealed polypropylene bag decreased the oxygen concentration in the bag to 3-5% and slowed flower opening. The vase life of carnation flowers after storage for seven days under MAP conditions was comparable to that without storage and was improved by the application of a commercial-quality preservative. The adenylate energy charge (AEC) was maintained at high levels in petals from florets stored under MAP conditions. This was accompanied by the upregulation of four hypoxia-related genes, among which the HYPOXIA-RESPONSIVE ETHYLENE RESPONSE FACTOR and PHYTOGLOBIN genes (DcERF19 and DcPGB1) were newly identified. These results suggest that hypoxia-responsive genes contribute to the maintenance of the energy status in carnation flowers stored under MAP conditions, making this gas-controlling technique potentially effective for maintaining cut flower quality without cooling.
en-copyright=
kn-copyright=
en-aut-name=NakayamaMisaki
en-aut-sei=Nakayama
en-aut-mei=Misaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HaradaNao
en-aut-sei=Harada
en-aut-mei=Nao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MuraiAi
en-aut-sei=Murai
en-aut-mei=Ai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=UeyamaSayaka
en-aut-sei=Ueyama
en-aut-mei=Sayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HaradaTaro
en-aut-sei=Harada
en-aut-mei=Taro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=School of Education, Okayama University
kn-affil=
affil-num=2
en-affil=School of Education, Okayama University
kn-affil=
affil-num=3
en-affil=School of Education, Okayama University
kn-affil=
affil-num=4
en-affil=School of Education, Okayama University
kn-affil=
affil-num=5
en-affil=Faculty of Education, Okayama University
kn-affil=
en-keyword=carnation
kn-keyword=carnation
en-keyword=modified atmosphere packaging
kn-keyword=modified atmosphere packaging
en-keyword=adenylate energy charge
kn-keyword=adenylate energy charge
en-keyword=hypoxia-responsive genes
kn-keyword=hypoxia-responsive genes
en-keyword=AP2/ERF superfamily
kn-keyword=AP2/ERF superfamily
END
start-ver=1.4
cd-journal=joma
no-vol=23
cd-vols=
no-issue=1
article-no=
start-page=216
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230620
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Associations of systemic oxygen consumption with age and body temperature under general anesthesia: retrospective cohort study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Body temperature (BT) is thought to have associations with oxygen consumption (VO2). However, there have been few studies in which the association between systemic VO2 and BT in humans was investigated in a wide range of BTs. The aims of this study were 1) to determine the association between VO2 and age and 2) to determine the association between VO2 and BT.
Methods This study was a retrospective study of patients who underwent surgery under general anesthesia at a tertiary teaching hospital. VO2 was measured by the Dräger Perseus A500 anesthesia workstation (Dräger Medical, Lubeck, Germany). The associations of VO2 with age and BT were examined using spline regression and multivariable regression analysis with a random effect.
Results A total of 7,567 cases were included in this study. A linear spline with one knot shows that VO2 was reduced by 2.1 ml/kg/min with one year of age (p < 0.001) among patients less than 18 years of age and that there was no significant change in VO2 among patients 18 years of age or older (estimate: 0.014 ml/kg/min, p = 0.08). VO2 in all bands of BT < 36.0 °C was not significantly different from VO2 in BT > = 36 °C and < 36.5 °C. Multivariable linear regression analysis showed that compared with VO2 in BT > = 36 °C and < 36.5 °C as a reference, VO2 levels were significantly higher by 0.57 ml/kg/min in BT > = 36.5 °C and < 37 °C (p < 0.001), by 1.8 ml/kg/min in BT > = 37 °C and < 37.5 °C (p < 0.001), by 3.6 ml/kg/min in BT > = 37.5 °C and < 38 °C (p < 0.001), by 4.9 ml/kg/min in BT > = 38 °C and < 38.5 °C (p < 0.001), and by 5.7 ml/kg/min in BT > = 38.5 °C (p < 0.001). The associations between VO2 and BT were significantly different among categorized age groups (p = 0.03).
Conclusions VO2 increases in parallel with increase in body temperature in a hyperthermic state but remains constant in a hypothermic state. Neonates and infants, who have high VO2, may have a large systemic organ response in VO2 to change in BT.
en-copyright=
kn-copyright=
en-aut-name=KimuraSatoshi
en-aut-sei=Kimura
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShimizuKazuyoshi
en-aut-sei=Shimizu
en-aut-mei=Kazuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MorimatsuHiroshi
en-aut-sei=Morimatsu
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital
kn-affil=
en-keyword=Oxygen Consumption
kn-keyword=Oxygen Consumption
en-keyword=Body Temperature
kn-keyword=Body Temperature
en-keyword=General Anesthesia
kn-keyword=General Anesthesia
END
start-ver=1.4
cd-journal=joma
no-vol=4
cd-vols=
no-issue=
article-no=
start-page=918273
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220718
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Sea Surface Temperature and Salinity in Lombok Strait Reconstructed From Coral Sr/Ca and δ18O, 1962–2012
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Coral geochemical tracers have been used in studies of the paleoclimatology and paleoceanography of the tropics and subtropics. We measured Sr/Ca and oxygen isotope ratios (δ18O) in a coral sample collected from the southern part of Lombok Strait, a significant outlet of the Indonesian Throughflow (ITF) to the Indian Ocean, to reconstruct the historical record of sea surface temperature (SST) and seawater δ18O. Seawater δ18O can be used to approximate sea surface salinity (SSS) because it reflects the balance of evaporation and precipitation. The resulting time series reconstructed SST and SSS, covering the period 1962–2012, shows no clear trend of global warming, although the record includes a large cooling event (~4°C) during 1996–1997. Although neither SST nor SSS shows a systematic relationship with El Niño–Southern Oscillation and Indian Ocean Dipole (IOD), weak but significant correlations are found partly. In addition, the coral data show signals of major IOD and El Niño events in 1994 and 1997, respectively, although climatic trends recorded in the coral are not consistent with those found along the Java-Sumatra coast. To evaluate other influences on the ITF in Lombok Strait, we compared our coral record with coral records from sites in the Java Sea, the southern part of Makassar Strait, and Ombai Strait. During the northwest monsoon (December–January–February), variations in SST and SSS at Lombok Strait site are similar to those at the Java Sea and southern Makassar sites for the period 1962–1995, which suggests that low-salinity water from the Java Sea is carried at least to the southern part of Makassar Strait where it suppresses the ITF upstream from Lombok Strait. However, the SST and SSS records differ at the three sites during the southeast monsoon (June–July–August), indicating that surface conditions in Lombok Strait vary separately from those in the Java Sea. In the longer term, although global warming has been widely identified in the Indonesian Seas, the coral record shows no clear warming trend in the southern part of Lombok Strait, where fluctuations in the ITF may be modulating the distribution of heat in the surface waters of the western Pacific and eastern Indian Ocean.
en-copyright=
kn-copyright=
en-aut-name=GendaAi
en-aut-sei=Genda
en-aut-mei=Ai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IkeharaMinoru
en-aut-sei=Ikehara
en-aut-mei=Minoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SuzukiAtsushi
en-aut-sei=Suzuki
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ArmanAli
en-aut-sei=Arman
en-aut-mei=Ali
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=InoueMayuri
en-aut-sei=Inoue
en-aut-mei=Mayuri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Center for Advanced Marine Core Research, Kochi University
kn-affil=
affil-num=3
en-affil=Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST)
kn-affil=
affil-num=4
en-affil=Research and Technology Center for Application of Isotope and Radiation, National Research and Innovation Agency
kn-affil=
affil-num=5
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=coral
kn-keyword=coral
en-keyword=geochemical tracers
kn-keyword=geochemical tracers
en-keyword=Sr/Ca
kn-keyword=Sr/Ca
en-keyword=δ 18O
kn-keyword=δ 18O
en-keyword=sea surface temperature
kn-keyword=sea surface temperature
en-keyword=salinity
kn-keyword=salinity
en-keyword=Lombok Strait
kn-keyword=Lombok Strait
END
start-ver=1.4
cd-journal=joma
no-vol=174
cd-vols=
no-issue=2
article-no=
start-page=343
end-page=349
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=202308
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Hydrogen inhalation attenuates lung contusion after blunt chest trauma in mice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Lung contusion caused by blunt chest trauma evokes a severe inflammatory reaction in the pulmonary parenchyma that may be associated with acute respiratory distress syndrome. Although hydrogen gas has antioxidant and anti-inflammatory effects and is protective against multiple types of lung injury at safe concentrations, the effects of inhaled hydrogen gas on blunt lung injury have not been previously investigated. Therefore, using a mouse model, we tested the hypothesis that hydrogen inhalation after chest trauma would reduce pulmonary inflammation and acute lung injury associated with lung contusion.
Methods: Inbred male C57BL/6 mice were randomly divided into 3 groups: sham with air inhalation, lung contusion with air inhalation, and lung contusion with 1.3% hydrogen inhalation. Experimental lung contusion was induced using a highly reproducible and standardized apparatus. Immediately after induction of lung contusion, mice were placed in a chamber exposed to 1.3% hydrogen gas in the air. Histopathological analysis and real-time polymerase chain reaction in lung tissue and blood gas analysis were performed 6 hours after contusion.
Results: Histopathological examination of the lung tissue after contusion revealed perivascular/intra-alveolar hemorrhage, perivascular/interstitial leukocyte infiltration, and interstitial/intra-alveolar edema. These histological changes and the extent of lung contusion, as determined by computed tomography, were significantly mitigated by hydrogen inhalation. Hydrogen inhalation also significantly reduced inflammatory cytokine and chemokine mRNA levels and improved oxygenation.
Conclusion: Hydrogen inhalation therapy significantly mitigated inflammatory responses associated with lung contusion in mice. Hydrogen inhalation therapy may be a supplemental therapeutic strategy for treating lung contusion.
en-copyright=
kn-copyright=
en-aut-name=AgetaKohei
en-aut-sei=Ageta
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HirayamaTakahiro
en-aut-sei=Hirayama
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AokageToshiyuki
en-aut-sei=Aokage
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SeyaMizuki
en-aut-sei=Seya
en-aut-mei=Mizuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MengYing
en-aut-sei=Meng
en-aut-mei=Ying
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NojimaTsuyoshi
en-aut-sei=Nojima
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YamamotoHirotsugu
en-aut-sei=Yamamoto
en-aut-mei=Hirotsugu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ObaraTakafumi
en-aut-sei=Obara
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NakaoAtsunori
en-aut-sei=Nakao
en-aut-mei=Atsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YumotoTetsuya
en-aut-sei=Yumoto
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TsukaharaKohei
en-aut-sei=Tsukahara
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NaitoHiromichi
en-aut-sei=Naito
en-aut-mei=Hiromichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=592
cd-vols=
no-issue=
article-no=
start-page=121751
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220915
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effect of bond valence sum on the structural modeling of lead borate glass
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The structural model of 66.7PbO-33.3B2O3 glass was constructed using a reverse Monte Carlo (RMC) method, in which bond valence sum (BVS) was added as a constraint condition to suppress formation of unrealistic local structures. Based on the crystal structures, the optimal BVS calculating conditions were determined. As a result, BVS distributions with small deviation were successfully achieved without lowering the reproducibility of other experimental constraints. The geometric asymmetry of PbOn polyhedra was evaluated from the eccentric distance between Pb and gravity center of oxygen atoms. The average eccentric distance was shorter than that in the lead borate crystals, indicating less asymmetry of PbOn units in the RMC glass model. The connectivity between BOn and PbOn units was investigated. It was consequently concluded that the glass had a different network structure from the crystal with the same composition, which might be due to the different chemical bonding character between the lead borate glasses and crystals.
en-copyright=
kn-copyright=
en-aut-name=NagaoMasaaki
en-aut-sei=Nagao
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SakidaShinichi
en-aut-sei=Sakida
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=BeninoYasuhiko
en-aut-sei=Benino
en-aut-mei=Yasuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NanbaTokuro
en-aut-sei=Nanba
en-aut-mei=Tokuro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MukunokiAtsushi
en-aut-sei=Mukunoki
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ChibaTamotsu
en-aut-sei=Chiba
en-aut-mei=Tamotsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KikuchiTakahiro
en-aut-sei=Kikuchi
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SakuragiTomofumi
en-aut-sei=Sakuragi
en-aut-mei=Tomofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OwadaHitoshi
en-aut-sei=Owada
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Environmental Management Center, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=5
en-affil=JGC Japan Corporation
kn-affil=
affil-num=6
en-affil=JGC Japan Corporation
kn-affil=
affil-num=7
en-affil=JGC Japan Corporation
kn-affil=
affil-num=8
en-affil=Radioactive Waste Management Funding and Research Center
kn-affil=
affil-num=9
en-affil=Radioactive Waste Management Funding and Research Center
kn-affil=
en-keyword=Lead borate glass
kn-keyword=Lead borate glass
en-keyword=Reverse Monte Carlo modeling
kn-keyword=Reverse Monte Carlo modeling
en-keyword=Bond valence sum
kn-keyword=Bond valence sum
en-keyword=Coordination polyhedron
kn-keyword=Coordination polyhedron
END
start-ver=1.4
cd-journal=joma
no-vol=134
cd-vols=
no-issue=2
article-no=
start-page=73
end-page=75
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=The 2021 Incentive Award of the Okayama Medical Association in Cancer Research (2021 Hayashibara Prize and Yamada Prize)
kn-title=令和3年度岡山医学会賞 がん研究奨励賞(林原賞・山田賞)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=NishidaMikako
en-aut-sei=Nishida
en-aut-mei=Mikako
kn-aut-name=西田充香子
kn-aut-sei=西田
kn-aut-mei=充香子
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=岡山大学大学院医歯薬学総合研究科 免疫学
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=
article-no=
start-page=1105460
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230316
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Mutagenic analysis of actin reveals the mechanism of His161 flipping that triggers ATP hydrolysis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The dynamic assembly of actin is controlled by the hydrolysis of ATP, bound to the center of the molecule. Upon polymerization, actin undergoes a conformational change from the monomeric G-form to the fibrous F-form, which is associated with the flipping of the side chain of His161 toward ATP. His161 flipping from the gauche-minus to gauche-plus conformation leads to a rearrangement of the active site water molecules, including ATP attacking water (W1), into an orientation capable of hydrolysis. We previously showed that by using a human cardiac muscle a-actin expression system, mutations in the Pro-rich loop residues (A108G and P109A) and in a residue that was hydrogen-bonded to W1 (Q137A) affect the rate of polymerization and ATP hydrolysis. Here, we report the crystal structures of the three mutant actins bound to AMPPNP or ADP-P-i determined at a resolution of 1.35-1.55( )angstrom, which are stabilized in the F-form conformation with the aid of the fragmin F1 domain. In A108G, His161 remained non-flipped despite the global actin conformation adopting the F-form, demonstrating that the side chain of His161 is flipped to avoid a steric clash with the methyl group of A108. Because of the non-flipped His161, W1 was located away from ATP, similar to G-actin, which was accompanied by incomplete hydrolysis. In P109A, the absence of the bulky proline ring allowed His161 to be positioned near the Pro-rich loop, with a minor influence on ATPase activity. In Q137A, two water molecules replaced the side-chain oxygen and nitrogen of Gln137 almost exactly at their positions; consequently, the active site structure, including the W1 position, is essentially conserved. This seemingly contradictory observation to the reported low ATPase activity of the Q137A filament could be attributed to a high fluctuation of the active site water. Together, our results suggest that the elaborate structural design of the active site residues ensures the precise control of the ATPase activity of actin.
en-copyright=
kn-copyright=
en-aut-name=IwasaMitsusada
en-aut-sei=Iwasa
en-aut-mei=Mitsusada
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakedaShuichi
en-aut-sei=Takeda
en-aut-mei=Shuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NaritaAkihiro
en-aut-sei=Narita
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MaedaYuichiro
en-aut-sei=Maeda
en-aut-mei=Yuichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OdaToshiro
en-aut-sei=Oda
en-aut-mei=Toshiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate School of Informatics, Nagoya University
kn-affil=
affil-num=2
en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University
kn-affil=
affil-num=3
en-affil=Structural Biology Research Center, Graduate School of Science, Nagoya University
kn-affil=
affil-num=4
en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University
kn-affil=
affil-num=5
en-affil=Faculty of Health and Welfare, Tokai Gakuin University
kn-affil=
en-keyword=MD simulation
kn-keyword=MD simulation
en-keyword=actin
kn-keyword=actin
en-keyword=water dynamics
kn-keyword=water dynamics
en-keyword=ATP hydrolysis
kn-keyword=ATP hydrolysis
en-keyword=X-ray structure
kn-keyword=X-ray structure
en-keyword=baculovirus expression
kn-keyword=baculovirus expression
END
start-ver=1.4
cd-journal=joma
no-vol=77
cd-vols=
no-issue=1
article-no=
start-page=117
end-page=120
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=202302
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Organ Donation after Extracorporeal Cardiopulmonary Resuscitation and Brain Death
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A 38-year-old primipara Japanese woman suffered cardiac arrest due to a pulmonary thromboembolism 1 day after undergoing a cesarean section. Extracorporeal cardiopulmonary resuscitation was initiated and extracorporeal membrane oxygenation support was needed for 24 h. Despite intensive care, the patient was diagnosed with brain death on day 6. With the family’s consent, comprehensive end-of-life care including organ donation was discussed based on our hospital’s policy. The family decided to donate her organs. Specific training and education are required for emergency physicians to optimize the process of incorporating organ donation into end-of-life care while respecting the patient’s and family’s wishes.
en-copyright=
kn-copyright=
en-aut-name=ObaraTakafumi
en-aut-sei=Obara
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YumotoTetsuya
en-aut-sei=Yumoto
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AoshimaKenji
en-aut-sei=Aoshima
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TsukaharaKohei
en-aut-sei=Tsukahara
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NaitoHiromichi
en-aut-sei=Naito
en-aut-mei=Hiromichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakaoAtsunori
en-aut-sei=Nakao
en-aut-mei=Atsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=brain death
kn-keyword=brain death
en-keyword=end-of-life
kn-keyword=end-of-life
en-keyword=extracorporeal cardiopulmonary resuscitation
kn-keyword=extracorporeal cardiopulmonary resuscitation
en-keyword=organ donation
kn-keyword=organ donation
en-keyword=potential organ donor
kn-keyword=potential organ donor
END
start-ver=1.4
cd-journal=joma
no-vol=298
cd-vols=
no-issue=12
article-no=
start-page=102668
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202212
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Crystal structures of photosystem II from a cyanobacterium expressing psbA2 in comparison to psbA3 reveal differences in the D1 subunit
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Three psbA genes (psbA1, psbA2, and psbA3) encoding the D1 subunit of photosystem II (PSII) are present in the ther-mophilic cyanobacterium Thermosynechococcus elongatus and are expressed differently in response to changes in the growth environment. To clarify the functional differences of the D1 protein expressed from these psbA genes, PSII dimers from two strains, each expressing only one psbA gene (psbA2 or psbA3), were crystallized, and we analyzed their structures at resolu-tions comparable to previously studied PsbA1-PSII. Our results showed that the hydrogen bond between pheophytin/D1 (PheoD1) and D1-130 became stronger in PsbA2-and PsbA3-PSII due to change of Gln to Glu, which partially explains the increase in the redox potential of PheoD1 observed in PsbA3. In PsbA2, one hydrogen bond was lost in PheoD1 due to the change of D1-Y147F, which may explain the decrease in stability of PheoD1 in PsbA2. Two water molecules in the Cl-1 channel were lost in PsbA2 due to the change of D1-P173M, leading to the narrowing of the channel, which may explain the lower efficiency of the S-state transition beyond S2 in PsbA2-PSII. In PsbA3-PSII, a hydrogen bond between D1-Ser270 and a sulfoquinovosyl-diacylglycerol molecule near QB dis-appeared due to the change of D1-Ser270 in PsbA1 and PsbA2 to D1-Ala270. This may result in an easier exchange of bound QB with free plastoquinone, hence an enhancement of oxygen evolution in PsbA3-PSII due to its high QB exchange efficiency. These results provide a structural basis for further functional examination of the three PsbA variants.
en-copyright=
kn-copyright=
en-aut-name=NakajimaYoshiki
en-aut-sei=Nakajima
en-aut-mei=Yoshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=Ugai-AmoNatsumi
en-aut-sei=Ugai-Amo
en-aut-mei=Natsumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ToneNaoki
en-aut-sei=Tone
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakagawaAkiko
en-aut-sei=Nakagawa
en-aut-mei=Akiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IwaiMasako
en-aut-sei=Iwai
en-aut-mei=Masako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IkeuchiMasahiko
en-aut-sei=Ikeuchi
en-aut-mei=Masahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SugiuraMiwa
en-aut-sei=Sugiura
en-aut-mei=Miwa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SugaMichihiro
en-aut-sei=Suga
en-aut-mei=Michihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=Jian-RenShen
en-aut-sei=Jian-Ren
en-aut-mei=Shen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Proteo-Science Research Center, Ehime University
kn-affil=
affil-num=5
en-affil=Graduate School and College of Arts and Sciences, The University of Tokyo
kn-affil=
affil-num=6
en-affil=Graduate School and College of Arts and Sciences, The University of Tokyo
kn-affil=
affil-num=7
en-affil=Proteo-Science Research Center, Ehime University
kn-affil=
affil-num=8
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=9
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=2
cd-vols=
no-issue=
article-no=
start-page=18
end-page=31
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=The beginning date of wet rice cultivation at the of Okayama University site: Tree ring oxygen isotope dating and radiocarbon 14 age of weirs from the mid-I stage of the Yayoi period
kn-title=岡山大学構内遺跡における水田稲作の開始年代 ―Ⅰ期中段階の堰の酸素同位体比年輪年代と炭素14年代―
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This article clarifies the date when paddy field rice cultivation began at the archaeological site located within the Okayama University campus. The analysis used tree ring oxygen isotope dating and radiocarbon dating. When the oxygen isotope ratios of wood used in paddy weirs detected in the 23rd excavation season were examined, peaks could be seen in two places: in the 10th century BC and the 6th century BC. Since the weir was accompanied by mid-I stage Yayoi pottery, which was dated to the 6th century BC using radiocarbon dating, tree ring dating determined that the weir was made from wood cut down soon after 540 BC. Therefore, it was reaffirmed that one of the points of the mid-I stage can be dated to the middle of the 6th century BC.
Next is the age of the early-I stage, when paddy field rice cultivation began on the Okayama Plain. In the Tsuruba area of the Nishikawazu archaeological site in Shimane Prefecture, where paddy field rice cultivation is thought to have begun at the same time as on the Okayama Plain, tree ring oxygen isotope dating of wood accompanied by early-I stage pottery has been reported. The date of 649 BC date means that one of the earliest stages of the early-I period dates to the middle of the 7th century BC. Therefore, we reaffirmed the view that paddy rice cultivation in the Chugoku region, such as Okayama and Shimane, began in the 7th century BC.
It also became clear that the beginning of paddy field rice cultivation in the Chugoku region occurred at a time when the climate that had been the base of cold in the 10th century BC gradually warmed and the relatively humid climate began to turn to arid.
en-copyright=
kn-copyright=
en-aut-name=FUJIOShinichiro
en-aut-sei=FUJIO
en-aut-mei=Shinichiro
kn-aut-name=藤尾慎一郎
kn-aut-sei=藤尾
kn-aut-mei=慎一郎
aut-affil-num=1
ORCID=
en-aut-name=SAKAMOTOMinoru
en-aut-sei=SAKAMOTO
en-aut-mei=Minoru
kn-aut-name=坂本稔
kn-aut-sei=坂本
kn-aut-mei=稔
aut-affil-num=2
ORCID=
en-aut-name=SANOMasaki
en-aut-sei=SANO
en-aut-mei=Masaki
kn-aut-name=佐野雅規
kn-aut-sei=佐野
kn-aut-mei=雅規
aut-affil-num=3
ORCID=
affil-num=1
en-affil=The National Museum of Japanese History, School of Cultural and Social Studies, The Graduate University for Advanced Studies
kn-affil=
affil-num=2
en-affil=The National Museum of Japanese History, School of Cultural and Social Studies, The Graduate University for Advanced Studies
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental Studies, Nagoya University
kn-affil=
en-keyword=土器付着炭化物:carbides adhering to pottery
kn-keyword=土器付着炭化物:carbides adhering to pottery
en-keyword=酸素同位体比年輪年代法:tree ring oxygen isotope dating
kn-keyword=酸素同位体比年輪年代法:tree ring oxygen isotope dating
en-keyword=炭素14年代法:radiocarbon dating
kn-keyword=炭素14年代法:radiocarbon dating
en-keyword=岡山大学構内遺跡:the Okayama University site
kn-keyword=岡山大学構内遺跡:the Okayama University site
en-keyword=弥生前期:the early Yayoi period
kn-keyword=弥生前期:the early Yayoi period
en-keyword=水田稲作:wet rice cultivation
kn-keyword=水田稲作:wet rice cultivation
en-keyword=堰:weirs
kn-keyword=堰:weirs
END
start-ver=1.4
cd-journal=joma
no-vol=471
cd-vols=
no-issue=
article-no=
start-page=214742
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202211
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Geometric, electronic and spin structures of the CaMn4O5 catalyst for water oxidation in oxygen-evolving photosystem II. Interplay between experiments and theoretical computations
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The aim of this review is to elucidate geometric structures of the catalytic CaMn4Ox (x = 5, 6) cluster in the Kok cycle for water oxidation in the oxygen evolving complex (OEC) of photosystem II (PSII) based on the high-resolution (HR) X-ray diffraction (XRD) and serial femtosecond crystallography (SFX) experiments using the X-ray free-electron laser (XFEL). Quantum mechanics (QM) and QM/molecular mechanics (MM) computations are performed to elucidate the electronic and spin structures of the CaMn4Ox (x = 5, 6) cluster in five states S-i (i = 0 similar to 4) on the basis of the X-ray spectroscopy, electron paramagnetic resonance (EPR) and related experiments. Interplay between the experiments and theoretical computations has been effective to elucidate the coordination structures of the CaMn4Ox (x = 5, 6) cluster ligated by amino acid residues of the protein matrix of PSII, valence states of the four Mn ions and total spin states by their exchange-couplings, and proton-shifted isomers of the CaMn4Ox (x = 5, 6) cluster. The HR XRD and SFX XFEL experiments have also elucidated the biomolecular systems structure of OEC of PSII and the hydrogen bonding networks consisting of water molecules, chloride anions, etc., for water inlet and proton release pathways in PSII. Large-scale QM/MM computations have been performed for elucidation of the hydrogen bonding distances and angles by adding invisible hydrogen atoms to the HR XRD structure. Full geometry optimizations by the QM and QM/MM methods have been effective for elucidation of the molecular systems structure around the CaMn4Ox (x = 5, 6) cluster in OEC. DLPNO-CCSD(T-0) method has been applied to elucidate relative energies of possible intermediates in each state of the Kok cycle for water oxidation. Implications of these results are discussed in relation to the blueprint for developments of artificial catalysts for water oxidation.
en-copyright=
kn-copyright=
en-aut-name=YamaguchiKizashi
en-aut-sei=Yamaguchi
en-aut-mei=Kizashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShojiMitsuo
en-aut-sei=Shoji
en-aut-mei=Mitsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IsobeHiroshi
en-aut-sei=Isobe
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KawakamiTakashi
en-aut-sei=Kawakami
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MiyagawaKoichi
en-aut-sei=Miyagawa
en-aut-mei=Koichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SugaMichihiro
en-aut-sei=Suga
en-aut-mei=Michihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=AkitaFusamichi
en-aut-sei=Akita
en-aut-mei=Fusamichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ShenJian-Ren
en-aut-sei=Shen
en-aut-mei=Jian-Ren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Center for Quantum Information and Quantum Biology, Osaka University
kn-affil=
affil-num=2
en-affil=Center of Computational Sciences, Tsukuba University
kn-affil=
affil-num=3
en-affil=Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=RIKEN Center for Computational Science
kn-affil=
affil-num=5
en-affil=Center of Computational Sciences, Tsukuba University
kn-affil=
affil-num=6
en-affil=Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Water oxidation
kn-keyword=Water oxidation
en-keyword=Oxygen evolution
kn-keyword=Oxygen evolution
en-keyword=Photosystem II
kn-keyword=Photosystem II
en-keyword=HR XRD
kn-keyword=HR XRD
en-keyword=SFX XFEL
kn-keyword=SFX XFEL
en-keyword=QM/MM calculation
kn-keyword=QM/MM calculation
en-keyword=DLPNO CCSD(T-0) computations, Oxyl radical character
kn-keyword=DLPNO CCSD(T-0) computations, Oxyl radical character
END
start-ver=1.4
cd-journal=joma
no-vol=9
cd-vols=
no-issue=11
article-no=
start-page=673
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20221110
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Functional Blockage of S100A8/A9 Ameliorates Ischemia-Reperfusion Injury in the Lung
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=(1) Background: Lung ischemia-reperfusion (IR) injury increases the mortality and morbidity of patients undergoing lung transplantation. The objective of this study was to identify the key initiator of lung IR injury and to evaluate pharmacological therapeutic approaches using a functional inhibitor against the identified molecule. (2) Methods: Using a mouse hilar clamp model, the combination of RNA sequencing and histological investigations revealed that neutrophil-derived S100A8/A9 plays a central role in inflammatory reactions during lung IR injury. Mice were assigned to sham and IR groups with or without the injection of anti-S100A8/A9 neutralizing monoclonal antibody (mAb). (3) Results: Anti-S100A8/A9 mAb treatment significantly attenuated plasma S100A8/A9 levels compared with control IgG. As evaluated by oxygenation capacity and neutrophil infiltration, the antibody treatment dramatically ameliorated the IR injury. The gene expression levels of cytokines and chemokines induced by IR injury were significantly reduced by the neutralizing antibody. Furthermore, the antibody treatment significantly reduced TUNEL-positive cells, indicating the presence of apoptotic cells. (4) Conclusions: We identified S100A8/A9 as a novel therapeutic target against lung IR injury.
en-copyright=
kn-copyright=
en-aut-name=NakataKentaro
en-aut-sei=Nakata
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkazakiMikio
en-aut-sei=Okazaki
en-aut-mei=Mikio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SakaueTomohisa
en-aut-sei=Sakaue
en-aut-mei=Tomohisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KinoshitaRie
en-aut-sei=Kinoshita
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KomodaYuhei
en-aut-sei=Komoda
en-aut-mei=Yuhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShimizuDai
en-aut-sei=Shimizu
en-aut-mei=Dai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YamamotoHaruchika
en-aut-sei=Yamamoto
en-aut-mei=Haruchika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TanakaShin
en-aut-sei=Tanaka
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SuzawaKen
en-aut-sei=Suzawa
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ShienKazuhiko
en-aut-sei=Shien
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MiyoshiKentaroh
en-aut-sei=Miyoshi
en-aut-mei=Kentaroh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=YamamotoHiromasa
en-aut-sei=Yamamoto
en-aut-mei=Hiromasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=OharaToshiaki
en-aut-sei=Ohara
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=SugimotoSeiichiro
en-aut-sei=Sugimoto
en-aut-mei=Seiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=YamaneMasaomi
en-aut-sei=Yamane
en-aut-mei=Masaomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=MatsukawaAkihiro
en-aut-sei=Matsukawa
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
affil-num=1
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network
kn-affil=
affil-num=8
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil= Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=17
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=18
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=ischemia reperfusion injury
kn-keyword=ischemia reperfusion injury
en-keyword= S100A8/A9
kn-keyword= S100A8/A9
en-keyword=lung transplantation
kn-keyword=lung transplantation
en-keyword=damage-associated molecule patterns
kn-keyword=damage-associated molecule patterns
END
start-ver=1.4
cd-journal=joma
no-vol=126
cd-vols=
no-issue=38
article-no=
start-page=7212
end-page=7228
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220915
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Roles of the Flexible Primary Coordination Sphere of the Mn4CaOx Cluster: What Are the Immediate Decay Products of the S-3 State?
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The primary coordination sphere of the multinuclear cofactor (Mn4CaOx) in the oxygen-evolving complex (OEC) of photosystem II is absolutely conserved to maintain its structure and function. Recent time-resolved serial femtosecond crystallography identified large reorganization of the primary coordination sphere in the S-2 to S-3 transition, which elicits a cascade of events involving Mn oxidation and water molecule binding to a putative catalytic Mn site. We examined how the crystallographic fields, created by transient conformational states of the OEC at various time points, affect the thermodynamics of various isomers of the Mn cluster using DFT calculations, with an aim of comprehending the functional roles of the flexible primary coordination sphere in the S-2 to S-3 transition and in the recovery of the S-2 state. The results show that the relative movements of surrounding residues change the size and shape of the cavity of the cluster and thereby affect the thermodynamics of various catalytic intermediates as well as the ability to capture a new water molecule at a coordinatively unsaturated site. The implication of these findings is that the protein dynamics may serve to gate the catalytic reaction efficiently by controlling the sequence of Mn oxidation/reduction and water binding/release. This interpretation is consistent with EPR experiments; g similar to 5 and g similar to 3 signals obtained after near-infrared (NIR) excitation of the S-3 state at 4 K and a g similar to 5 only signal produced after prolonged incubation of the S-3 state at 77 K can be best explained as originating from water-bound S-2 clusters (S-total = 7/2) under a S-3 ligand field, i.e., the immediate one-electron reduction products of the oxyl-oxo (S-total = 6) and hydroxo-oxo (S-total = 3) species in the S-3 state.
en-copyright=
kn-copyright=
en-aut-name=IsobeHiroshi
en-aut-sei=Isobe
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShojiMitsuo
en-aut-sei=Shoji
en-aut-mei=Mitsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SuzukiTakayoshi
en-aut-sei=Suzuki
en-aut-mei=Takayoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ShenJian-Ren
en-aut-sei=Shen
en-aut-mei=Jian-Ren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamaguchiKizashi
en-aut-sei=Yamaguchi
en-aut-mei=Kizashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=2
en-affil=Center for Computational Science, University of Tsukuba,
kn-affil=
affil-num=3
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=4
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=5
en-affil=Institute for NanoScience Design, Osaka University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=76
cd-vols=
no-issue=6
article-no=
start-page=723
end-page=730
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202212
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Serum miR-377 Can Be Used as a Diagnostic Marker for Acute Coronary Syndrome and Can Regulate Proinflammatory Factors and Endothelial Injury Markers
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The diagnostic value of microRNA-377 (miR-377) in patients with acute coronary syndrome (ACS) and explored miR-377’s potential mechanisms. We performed an qRT-PCR to assess serum miR-377 levels in ACS patients and coronary artery ligation rat models. The diagnostic value of miR-377 was evaluated by determining the ROC curve. An ELISA assay was conducted to detect the model rat endothelial damage markers von Willebrand factor (vWF) and heart-type fatty acid binding protein (H-FABP), and proinflammatory cytokines TNF-α, IL-6, and IL-1β. The serum miR-377 level was elevated in the ACS patients and significantly increased in the ACS rats. MiR-377 has a high diagnostic value in ACS patients, with a 0.844 ROC, 76.47% specificity, and 87.10% sensitivity. MiR-377 was positively correlated with the expressions of vWF, H-FABP, cTnI, TNF-α, IL-6, and IL-1β. In ACS rats, reducing the expression of miR-377 significantly inhibited the increases in vWF, H-FABP, TNF-α, IL-6, and IL-1β. An elevated miR-377 level can be used as a diagnostic marker in patients with ACS. A reduction of miR-377 may alleviate ACS by improving myocardial damage such as endothelial injury and the inflammatory response.
en-copyright=
kn-copyright=
en-aut-name=ZhangQuan
en-aut-sei=Zhang
en-aut-mei=Quan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YangLixia
en-aut-sei=Yang
en-aut-mei=Lixia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WanGuozhen
en-aut-sei=Wan
en-aut-mei=Guozhen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ZhangXiaoqiang
en-aut-sei=Zhang
en-aut-mei=Xiaoqiang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WangYing
en-aut-sei=Wang
en-aut-mei=Ying
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ZhaoGuannan
en-aut-sei=Zhao
en-aut-mei=Guannan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Medicine, Affiliated Hospital of Gansu Medical College
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Medicine, Affiliated Hospital of Gansu Medical College
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Medicine, Affiliated Hospital of Gansu Medical College
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Medicine, Affiliated Hospital of Gansu Medical College
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Medicine, Affiliated Hospital of Gansu Medical College
kn-affil=
affil-num=6
en-affil=Department of Dermatological, Pingliang Traditional Chinese Medicine Hospital
kn-affil=
en-keyword=microRNA-377
kn-keyword=microRNA-377
en-keyword=acute coronary syndrome
kn-keyword=acute coronary syndrome
en-keyword=diagnosis
kn-keyword=diagnosis
en-keyword=endothelial injury
kn-keyword=endothelial injury
en-keyword=inflammatory
kn-keyword=inflammatory
END
start-ver=1.4
cd-journal=joma
no-vol=76
cd-vols=
no-issue=6
article-no=
start-page=651
end-page=660
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202212
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Intraoperative Hypothermia Is Not Associated with Surgical Site Infections after Total Hip or Knee Arthroplasty
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Maintaining perioperative normothermia decreases the post-surgery surgical site infection (SSI) rate. We investigated whether SSI is associated with intraoperative hypothermia in total hip (THA) and total knee (TKA) arthroplasties by retrospectively analyzing 297 THA and TKA cases. The patients’ intraoperative core body temperature (BT) was measured by bladder catheter or forehead sensor. We evaluated the associations between SSI and intraoperative BT and other variables and patient characteristics. Fifty-six patients (18.8%) had hypothermia (BT <36°C); 43 developed SSI (14.5%); only five had hypothermia (11.6%). Intraoperative hypothermia and SSI were not significantly associated. The SSI group had more men (34.9% vs. 18.1%) and THA patients (77.4%), a longer mean surgical duration (174.3 vs. 143.5 mins), and a higher average BT (36.4°C vs. 36.2°C) than the no-SSI group. The SSI patients had a higher intraoperative BT. A multivariable analysis revealed that SSI was associated with male sex (OR 2.3, 95%CI: 1.031-4.921, p=0.042), longer surgery (OR, 1.01, 95%CI: 1.003-1.017, p=0.004), THA (OR 3.6, 95%CI: 1.258-10.085, p=0.017), and intraoperative BT >36.0°C (OR 3.6, 95%CI: 1.367-9.475, p=0.009). Intraoperative hypothermia was not associated with SSI in adults who underwent THA or TKA. These results suggest that hypothermia might not be the problem for SSI.
en-copyright=
kn-copyright=
en-aut-name=Bright Osman Abugri
en-aut-sei=Bright Osman Abugri
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsusakiTakashi
en-aut-sei=Matsusaki
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=RenWanxu
en-aut-sei=Ren
en-aut-mei=Wanxu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MorimatsuHiroshi
en-aut-sei=Morimatsu
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Anesthesiology and Resuscitology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Anesthesiology and Resuscitology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Anesthesiology and Resuscitology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Anesthesiology and Resuscitology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=hypothermia
kn-keyword=hypothermia
en-keyword=surgical site infection
kn-keyword=surgical site infection
en-keyword=total hip arthroplasty (THA)
kn-keyword=total hip arthroplasty (THA)
en-keyword=knee arthroplasty (TKA)
kn-keyword=knee arthroplasty (TKA)
END
start-ver=1.4
cd-journal=joma
no-vol=76
cd-vols=
no-issue=6
article-no=
start-page=635
end-page=643
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202212
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=MiR-338-3p Is a Biomarker in Neonatal Acute Respiratory Distress Syndrome (ARDS) and Has Roles in the Inflammatory Response of ARDS Cell Models
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=To investigate the association between serum miR-338-3p levels and neonatal acute respiratory distress syndrome (ARDS) and its mechanism. The relative miR-338-3p expression in serum was detected by quantitative real-time RT-PCR. Interleukin-1beta (IL-1β), IL-6, and tumor necrosis factor-alpha (TNF-α) levels were detected by ELISAs. A receiver operating characteristic (ROC) curve analysis of serum miR-338-3p evaluated the diagnosis of miR-338-3p in neonatal ARDS. Pearson’s correlation analysis evaluated the correlation between serum miR-338-3p and neonatal ARDS clinical factors. Flow cytometry evaluated apoptosis, and a CCK-8 assay assessed cell viability. A luciferase assay evaluated the miR-338-3p/AKT3 relationship. The miR- 338-3p expression was decreased in neonatal ARDS patients and in lipopolysaccharide (LPS)-treated cells. The ROC curve showed the accuracy of miR-338-3p for evaluating neonatal ARDS patients. The correlation analysis demonstrated that miR-338-3p was related to PRISM-III, PaO2/FiO2, oxygenation index, IL-1β, IL-6, and TNF-α in neonatal ARDS patients. MiR-338-3p overexpression inhibited the secretion of inflammatory components, stifled cell apoptosis, and LPS-induced advanced cell viability. The double-luciferase reporter gene experiment confirmed that miR-338-3p negatively regulates AKT3 mRNA expression. Serum miR-338-3p levels were related to the diagnosis and severity of neonatal ARDS, which may be attributed to its regulatory effect on inflammatory response in ARDS.
en-copyright=
kn-copyright=
en-aut-name=ZhangCuicui
en-aut-sei=Zhang
en-aut-mei=Cuicui
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=JiYanan
en-aut-sei=Ji
en-aut-mei=Yanan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WangQin
en-aut-sei=Wang
en-aut-mei=Qin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=RuanLianying
en-aut-sei=Ruan
en-aut-mei=Lianying
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Pediatric Intensive Care Unit, Xingtai People’s Hospital
kn-affil=
affil-num=2
en-affil=Pediatric Intensive Care Unit, Xingtai People’s Hospital
kn-affil=
affil-num=3
en-affil=Pediatric Intensive Care Unit, Xingtai People’s Hospital
kn-affil=
affil-num=4
en-affil=Pediatric Intensive Care Unit, Xingtai People’s Hospital
kn-affil=
en-keyword=miR-338-3p
kn-keyword=miR-338-3p
en-keyword=AKT3
kn-keyword=AKT3
en-keyword=neonatal ARDS
kn-keyword=neonatal ARDS
en-keyword=inflammation
kn-keyword=inflammation
en-keyword=diagnosis
kn-keyword=diagnosis
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220922
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=小児心臓外科における心肺バイパスにおける平均動脈圧と局所脳酸素飽和度との相関
kn-title=Correlation between Mean Arterial Pressure and Regional Cerebral Oxygen Saturation on Cardiopulmonary Bypass in Pediatric Cardiac Surgery
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=PANYU
en-aut-sei=PAN
en-aut-mei=YU
kn-aut-name=潘禹
kn-aut-sei=潘
kn-aut-mei=禹
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=76
cd-vols=
no-issue=5
article-no=
start-page=609
end-page=615
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202210
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Idiopathic Pneumonia Syndrome Refractory to Ruxolitinib after Post-Transplant Cyclophosphamide-based Haploidentical Hematopoietic Stem Cell Transplantation: Lung Pathological Findings from an Autopsy Case
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A 69-year-old Japanese man with acute leukemia received post-transplant cyclophosphamide-based haploidentical stem cell transplantation (PTCY-haplo-SCT) but was readmitted with dyspnea and ground-glass-opacities of the lungs. Bronchoscopy showed inflammatory changes with no signs of infection. He received steroids but required intubation as his condition deteriorated. In addition to antithymocyte globulin and cyclophosphamide, we administered ruxolitinib but failed to save him. Autopsy findings revealed fibrotic nonspecific interstitial pneumonia (NSIP) without evidence of organizing pneumonia or infection. Thus, we diagnosed idiopathic pneumonia syndrome (IPS). As far as our knowledge, this is the first case of IPS with NSIP histology after PTCY-haplo-SCT.
en-copyright=
kn-copyright=
en-aut-name=MatsumotoKen
en-aut-sei=Matsumoto
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujishitaKeigo
en-aut-sei=Fujishita
en-aut-mei=Keigo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MatsudaMasayuki
en-aut-sei=Matsuda
en-aut-mei=Masayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OkaSatoshi
en-aut-sei=Oka
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FujisawaYuka
en-aut-sei=Fujisawa
en-aut-mei=Yuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ImaiToshi
en-aut-sei=Imai
en-aut-mei=Toshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MachidaTakuya
en-aut-sei=Machida
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Hematology and Blood Transfusion, Kochi Health Sciences Center
kn-affil=
affil-num=2
en-affil=Department of Hematology and Blood Transfusion, Kochi Health Sciences Center
kn-affil=
affil-num=3
en-affil=Department of Hematology and Blood Transfusion, Kochi Health Sciences Center
kn-affil=
affil-num=4
en-affil=Department of Hematology and Blood Transfusion, Kochi Health Sciences Center
kn-affil=
affil-num=5
en-affil=Department of Hematology and Blood Transfusion, Kochi Health Sciences Center
kn-affil=
affil-num=6
en-affil=Department of Hematology and Blood Transfusion, Kochi Health Sciences Center
kn-affil=
affil-num=7
en-affil=Department of Hematology and Blood Transfusion, Kochi Health Sciences Center
kn-affil=
en-keyword=idiopathic pneumonia syndrome
kn-keyword=idiopathic pneumonia syndrome
en-keyword=ruxolitinib
kn-keyword=ruxolitinib
en-keyword=post-transplant cyclophosphamide-based haploidentical stem cell transplantation
kn-keyword=post-transplant cyclophosphamide-based haploidentical stem cell transplantation
en-keyword=nonspecific interstitial pneumonia
kn-keyword=nonspecific interstitial pneumonia
END
start-ver=1.4
cd-journal=joma
no-vol=76
cd-vols=
no-issue=5
article-no=
start-page=557
end-page=564
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202210
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Correlation between Mean Arterial Pressure and Regional Cerebral Oxygen Saturation on Cardiopulmonary Bypass in Pediatric Cardiac Surgery
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Some pediatric cardiac patients might experience low regional cerebral oxygen saturation (rSO2) during surgery. We investigated whether a pediatric patient’s mean arterial pressure (MAP) can affect the rSO2 value during cardiopulmonary bypass (CPB). We retrospectively analyzed the cases of the pediatric patients who underwentcardiac surgery at our hospital (Jan. –Dec. 2019; n=141). At each MAP stage, we constructed line charts through the mean of the rSO2 values corresponding to each MAP and then calculated the correlation coefficients. We next divided the patients into age subgroups (neonates, infants, children) and into cyanotic congenital heart disease (CHD) and acyanotic CHD groups and analyzed these groups in the same way. The analyses of all 141 patients revealed that during CPB the rSO2 value increased with an increase in MAP (r=0.1626). There was a correlation between rSO2 and MAP in the children (r=0.2720) but not in the neonates (r=0.06626) or infants (r=0.05260). Cyanotic CHD or acyanotic CHD did not have a significant effect on the rSO2/MAP correlation. Our analysis demonstrated different patterns of a correlation between MAP and rSO2 in pediatric cardiac surgery patients, depending on age. MAP was positively correlated with rSO2 typically in children but not in neonate or infant patients.
en-copyright=
kn-copyright=
en-aut-name=PanYu
en-aut-sei=Pan
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SongQingqing
en-aut-sei=Song
en-aut-mei=Qingqing
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KanazawaTomoyuki
en-aut-sei=Kanazawa
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MorimatsuHiroshi
en-aut-sei=Morimatsu
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=mean arterial pressure
kn-keyword=mean arterial pressure
en-keyword=cerebral oxygen saturation
kn-keyword=cerebral oxygen saturation
END
start-ver=1.4
cd-journal=joma
no-vol=76
cd-vols=
no-issue=5
article-no=
start-page=535
end-page=540
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202210
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Psychological Stress Induced by Prone Positioning among Adults with Severe Cerebral Palsy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The purpose of this study was to investigate the psychological impact of various positionings in subjects with cerebral palsy (CP). The participants were 17 individuals with severe motor and intellectual disability due to CP. They began in a sitting position in their wheelchair, and were placed consecutively in prone or supine positions, with no intervals between placements. Physiological observations were made in each position, and included salivary α-amylase activity, pulse, percutaneous oxygen saturation, respiratory rate, learance or not of airway secretions, and occurrence or not of adverse events. Salivary α-amylase activity values were higher in the prone position than in the baseline and supine positions (p<0.05). Clearance of airway secretions was significantly more prevalent in the prone position than in the baseline and supine positions (p <0.05). The participants’ pulse was significantly lower in the supine and prone positions than in the baseline position (p<0.05). Greater prevalence of airway secretion clearance and significantly higher stress levels as indicated by saliva amylase were observed in the prone position than in the other two positions. Therefore, when such patients are placed in a prone position, close attention to airway management and the potential for psychological stress may be necessary.
en-copyright=
kn-copyright=
en-aut-name=MatsudaTadashi
en-aut-sei=Matsuda
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AkezakiYoshiteru
en-aut-sei=Akezaki
en-aut-mei=Yoshiteru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TsujiYoko
en-aut-sei=Tsuji
en-aut-mei=Yoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HamadaKazunori
en-aut-sei=Hamada
en-aut-mei=Kazunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OokuraMitsuhiro
en-aut-sei=Ookura
en-aut-mei=Mitsuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Rehabilitation, Suita Municipal Disability Support Center I-Hope Suita
kn-affil=
affil-num=2
en-affil=Division of Physical Therapy, Kochi Professional University of Rehabilitation
kn-affil=
affil-num=3
en-affil=Division of Occupational Therapy, Department of Rehabilitation Sciences, Faculty of Allied Health Sciences, Kansai University of Welfare Sciences
kn-affil=
affil-num=4
en-affil=Division of Physical Therapy, Kochi Professional University of Rehabilitation
kn-affil=
affil-num=5
en-affil=Division of Physical Therapy, Kochi Professional University of Rehabilitation
kn-affil=
en-keyword=alpha-amylase
kn-keyword=alpha-amylase
en-keyword=stress
kn-keyword=stress
en-keyword=positioning
kn-keyword=positioning
en-keyword= cerebral palsy
kn-keyword= cerebral palsy
en-keyword=severe motor and intellectual disability
kn-keyword=severe motor and intellectual disability
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=
article-no=
start-page=1004184
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220915
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Time-series transcriptome of Brachypodium distachyon during bacterial flagellin-induced pattern-triggered immunity
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Plants protect themselves from microorganisms by inducing pattern-triggered immunity (PTI) via recognizing microbe-associated molecular patterns (MAMPs), conserved across many microbes. Although the MAMP perception mechanism and initial events during PTI have been well-characterized, knowledge of the transcriptomic changes in plants, especially monocots, is limited during the intermediate and terminal stages of PTI. Here, we report a time-series high-resolution RNA-sequencing (RNA-seq) analysis during PTI in the leaf disks of Brachypodium distachyon. We identified 6,039 differentially expressed genes (DEGs) in leaves sampled at 0, 0.5, 1, 3, 6, and 12 hours after treatment (hat) with the bacterial flagellin peptide flg22. The k-means clustering method classified these DEGs into 10 clusters (6 upregulated and 4 downregulated). Based on the results, we selected 10 PTI marker genes in B. distachyon. Gene ontology (GO) analysis suggested a tradeoff between defense responses and photosynthesis during PTI. The data indicated the recovery of photosynthesis started at least at 12 hat. Over-representation analysis of transcription factor genes and cis-regulatory elements in DEG promoters implied the contribution of 12 WRKY transcription factors in plant defense at the early stage of PTI induction.
en-copyright=
kn-copyright=
en-aut-name=OgasaharaTsubasa
en-aut-sei=Ogasahara
en-aut-mei=Tsubasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KouzaiYusuke
en-aut-sei=Kouzai
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WatanabeMegumi
en-aut-sei=Watanabe
en-aut-mei=Megumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakahashiAkihiro
en-aut-sei=Takahashi
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakahagiKotaro
en-aut-sei=Takahagi
en-aut-mei=Kotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KimJune-Sik
en-aut-sei=Kim
en-aut-mei=June-Sik
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsuiHidenori
en-aut-sei=Matsui
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YamamotoMikihiro
en-aut-sei=Yamamoto
en-aut-mei=Mikihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ToyodaKazuhiro
en-aut-sei=Toyoda
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=IchinoseYuki
en-aut-sei=Ichinose
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MochidaKeiichi
en-aut-sei=Mochida
en-aut-mei=Keiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NoutoshiYoshiteru
en-aut-sei=Noutoshi
en-aut-mei=Yoshiteru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=5
en-affil=Kihara Institute for Biological Research, Yokohama City University
kn-affil=
affil-num=6
en-affil=Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=8
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=9
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=10
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=11
en-affil=Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science
kn-affil=
affil-num=12
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=Brachypodium distachyon
kn-keyword=Brachypodium distachyon
en-keyword=monocotyledonous plant
kn-keyword=monocotyledonous plant
en-keyword=microbe-associated molecular pattern
kn-keyword=microbe-associated molecular pattern
en-keyword=time-series transcriptome analysis
kn-keyword=time-series transcriptome analysis
en-keyword=reactive oxygen species
kn-keyword=reactive oxygen species
en-keyword=pattern-triggered immunity
kn-keyword=pattern-triggered immunity
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=9
article-no=
start-page=1805
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202209
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Rice Nudix Hydrolase OsNUDX2 Sanitizes Oxidized Nucleotides
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Nudix hydrolase (NUDX) hydrolyzes 8-oxo-(d)GTP to reduce the levels of oxidized nucleotides in the cells. 8-oxo-(d)GTP produced by reactive oxygen species (ROS) is incorporated into DNA/RNA and mispaired with adenine, causing replicational and transcriptional errors. Here, we identified a rice OsNUDX2 gene, whose expression level was increased 15-fold under UV-C irradiation. The open reading frame of the OsNUDX2 gene, which encodes 776 amino acid residues, was cloned into Escherichia coli cells to produce the protein of 100 kDa. The recombinant protein hydrolyzed 8-oxo-dGTP, in addition to dimethylallyl diphosphate (DMAPP) and isopentenyl diphosphate (IPP), as did Arabidopsis AtNUDX1; whereas the amino acid sequence of OsNUDX2 had 18% identity with AtNUDX1. OsNUDX2 had 14% identity with barley HvNUDX12, which hydrolyzes 8-oxo-dGTP and diadenosine tetraphosphates. Suppression of the lacZ amber mutation caused by the incorporation of 8-oxo-GTP into mRNA was prevented to a significant degree when the OsNUDX2 gene was expressed in mutT-deficient E. coli cells. These results suggest that the different substrate specificity and identity among plant 8-oxo-dGTP-hydrolyzing NUDXs and OsNUDX2 reduces UV stress by sanitizing the oxidized nucleotides.
en-copyright=
kn-copyright=
en-aut-name=KondoYuki
en-aut-sei=Kondo
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=RikiishiKazuhide
en-aut-sei=Rikiishi
en-aut-mei=Kazuhide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SugimotoManabu
en-aut-sei=Sugimoto
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
en-keyword=8-oxo-dGTP
kn-keyword=8-oxo-dGTP
en-keyword=nudix hydrolase
kn-keyword=nudix hydrolase
en-keyword=Oryza sativa
kn-keyword=Oryza sativa
en-keyword=transcriptional error
kn-keyword=transcriptional error
en-keyword=UV-C
kn-keyword=UV-C
END
start-ver=1.4
cd-journal=joma
no-vol=76
cd-vols=
no-issue=4
article-no=
start-page=415
end-page=421
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202208
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=5-Nitro-2-(3-phenylpropylamino) Benzoic Acid Inhibits the Proliferation and Migration of Lens Epithelial Cells by Blocking CaMKII Signaling
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Posterior capsule opacification (PCO) is a post-surgery complication of cataract surgery, and lens epithelial cells (LECs) are involved in its development. A suppressive effect on LECs is exerted by the non specific chloride channel inhibitor 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) exerts. Herein, the growth and migration inhibitory effects of NPPB on LECs were assessed, and the mechanism underlying the effects were investigated by focusing on Ca2+/CaMKII signaling. LECs were treated with different concentrations of NPPB, and the changes in cell viability, cell-cycle distribution, anchorage-dependent growth, migration, Ca2+ level, and CaMKII expression were evaluated. NPPB inhibited LECs’ proliferation and induced G1 cell-cycle arrest in the cells. Regarding LECs’ mobility, NPPB suppressed the cells’ anchorage-dependent growth ability and inhibited their migration. Changes in cell phenotypes were associated with an increased intracellular Ca2+ level and down-regulation of CaMKII. Together these results confirmed the inhibitory effect of NPPB on the proliferation and migration of LECs, and the effect was shown to be associated with the induced level of Ca2+ and the inhibition of CaMKII signaling transduction.
en-copyright=
kn-copyright=
en-aut-name=KangHaijun
en-aut-sei=Kang
en-aut-mei=Haijun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HuangDongmei
en-aut-sei=Huang
en-aut-mei=Dongmei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KangGangjin
en-aut-sei=Kang
en-aut-mei=Gangjin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YangXu
en-aut-sei=Yang
en-aut-mei=Xu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=LiHeng
en-aut-sei=Li
en-aut-mei=Heng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=LiuSiyuan
en-aut-sei=Liu
en-aut-mei=Siyuan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=GouWenjun
en-aut-sei=Gou
en-aut-mei=Wenjun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=LiuLinglin
en-aut-sei=Liu
en-aut-mei=Linglin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=QiuYuyan
en-aut-sei=Qiu
en-aut-mei=Yuyan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Ophthalmology, Suining Central Hospital
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular, Suining Central Hospital
kn-affil=
affil-num=3
en-affil=Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University
kn-affil=
affil-num=4
en-affil=Department of Ophthalmology, Suining Central Hospital
kn-affil=
affil-num=5
en-affil=Department of Ophthalmology, Suining Central Hospital
kn-affil=
affil-num=6
en-affil=Department of Ophthalmology, Suining Central Hospital
kn-affil=
affil-num=7
en-affil=Department of Ophthalmology, Suining Central Hospital
kn-affil=
affil-num=8
en-affil=Department of Ophthalmology, Suining Central Hospital
kn-affil=
affil-num=9
en-affil=Department of Ophthalmology, Suining Central Hospital
kn-affil=
en-keyword=5-nitro-2-(3-phenylpropylamino) benzoic acid
kn-keyword=5-nitro-2-(3-phenylpropylamino) benzoic acid
en-keyword=CaMKII
kn-keyword=CaMKII
en-keyword=lens epithelial cell
kn-keyword=lens epithelial cell
en-keyword=migration
kn-keyword=migration
en-keyword=proliferation
kn-keyword=proliferation
END
start-ver=1.4
cd-journal=joma
no-vol=9
cd-vols=
no-issue=
article-no=
start-page=904215
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220630
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Pemafibrate Prevents Rupture of Angiotensin II-Induced Abdominal Aortic Aneurysms
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Abdominal aortic aneurysm (AAA) is a life-threatening disease that lacks effective preventive therapies. This study aimed to evaluate the effect of pemafibrate, a selective peroxisome proliferator-activated receptor alpha (PPAR alpha) agonist, on AAA formation and rupture.
Methods: Experimental AAA was induced by subcutaneous angiotensin II (AngII) infusion in ApoE(-)(/)(-) mice for 4 weeks. Pemafibrate (0.1 mg/kg/day) was administered orally. Dihydroethidium staining was used to evaluate the reactive oxygen species (ROS).
Results: The size of the AngII-induced AAA did not differ between pemafibrate- and vehicle-treated groups. However, a decreased mortality rate due to AAA rupture was observed in pemafibrate-treated mice. Pemafibrate ameliorated AngII-induced ROS and reduced the mRNA expression of interleukin-6 and tumor necrosis factor-alpha in the aortic wall. Gelatin zymography analysis demonstrated significant inhibition of matrix metalloproteinase-2 activity by pemafibrate. AngII-induced ROS production in human vascular smooth muscle cells was inhibited by pre-treatment with pemafibrate and was accompanied by an increase in catalase activity. Small interfering RNA-mediated knockdown of catalase or PPAR alpha significantly attenuated the anti-oxidative effect of pemafibrate.
Conclusion: Pemafibrate prevented AAA rupture in a murine model, concomitant with reduced ROS, inflammation, and extracellular matrix degradation in the aortic wall. The protective effect against AAA rupture was partly mediated by the anti-oxidative effect of catalase induced by pemafibrate in the smooth muscle cells.
en-copyright=
kn-copyright=
en-aut-name=AmiokaNaofumi
en-aut-sei=Amioka
en-aut-mei=Naofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyoshiToru
en-aut-sei=Miyoshi
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YonezawaTomoko
en-aut-sei=Yonezawa
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KondoMegumi
en-aut-sei=Kondo
en-aut-mei=Megumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AkagiSatoshi
en-aut-sei=Akagi
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YoshidaMasashi
en-aut-sei=Yoshida
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SaitoYukihiro
en-aut-sei=Saito
en-aut-mei=Yukihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakamuraKazufumi
en-aut-sei=Nakamura
en-aut-mei=Kazufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ItoHiroshi
en-aut-sei=Ito
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Molecular Biology and Biochemistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=pemafibrate
kn-keyword=pemafibrate
en-keyword=angiotensin II
kn-keyword=angiotensin II
en-keyword=abdominal aortic aneurysm
kn-keyword=abdominal aortic aneurysm
en-keyword=oxidative stress
kn-keyword=oxidative stress
en-keyword=catalase
kn-keyword=catalase
END
start-ver=1.4
cd-journal=joma
no-vol=8
cd-vols=
no-issue=1
article-no=
start-page=48
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220705
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Temporary hypotension and ventilation difficulty during endoscopic injection sclerotherapy for esophageal varices in a child with Fontan circulation: a case report
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background : Endoscopic procedures are rarely performed in children with congenital heart disease (CHD); therefore, the associated complications are unknown. We report an abrupt change in circulatory and respiratory condition during endoscopic injection sclerotherapy for esophageal varices.
Case presentation : A 9-year-old boy with a history of total anomalous pulmonary venous connection (TAPVC) repair and Fontan procedure for asplenia and a single ventricle with TAPVC underwent endoscopic injection sclerotherapy under general anesthesia for esophageal varices. Systolic blood pressure decreased from 70 to 50 mmHg following a sclerosant injection; a second injection reduced his peripheral oxygen saturation from 93 to 79% secondary to ventilation difficulty. Although we suspected anaphylaxis intraoperatively, postoperative imaging suggested that balloon dilation performed to prevent sclerosing agent leakage caused compression of the pulmonary venous chamber and trachea owing to the anomalous intrathoracic organ anatomy.
Conclusion : Thorough understanding of the complex anatomy is important before performing endoscopic procedures in children with CHD to preoperatively anticipate possible intraoperative complications and select the optimal therapeutic approach and anesthesia management.
en-copyright=
kn-copyright=
en-aut-name=YasutomiNanako
en-aut-sei=Yasutomi
en-aut-mei=Nanako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShimizuTatsuhiko
en-aut-sei=Shimizu
en-aut-mei=Tatsuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KanazawaTomoyuki
en-aut-sei=Kanazawa
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ShimizuKazuyoshi
en-aut-sei=Shimizu
en-aut-mei=Kazuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IwasakiTatsuo
en-aut-sei=Iwasaki
en-aut-mei=Tatsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MorimatsuHiroshi
en-aut-sei=Morimatsu
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Anesthesiology, Japanese Red Cross Kobe Hospital
kn-affil=
affil-num=2
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital
kn-affil=
en-keyword=Congenital heart disease
kn-keyword=Congenital heart disease
en-keyword=Fontan circulation
kn-keyword=Fontan circulation
en-keyword=Esophageal varices
kn-keyword=Esophageal varices
en-keyword=Endoscopic injection sclerotherapy
kn-keyword=Endoscopic injection sclerotherapy
END
start-ver=1.4
cd-journal=joma
no-vol=1866
cd-vols=
no-issue=8
article-no=
start-page=130171
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202208
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Metformin-ROS-Nrf2 connection in the host defense mechanism against oxidative stress, apoptosis, cancers, and ageing
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Reactive oxygen species (ROS) acts as a second messenger to trigger biological responses in low concentrations, while it is implicated to be toxic to biomolecules in high concentrations. Mild inhibition of respiratory chain Complex I by metformin at physiologically relevant concentrations stimulates production of low-level mitochondrial ROS. The ROS seems to induce anti-oxidative stress response via activation of nuclear factor erythroid 2-related factor 2 (Nrf2) and glutathione peroxidase (GPx), which results in not only elimination of ROS but also activation of cellular responses including resistance to apoptosis, metabolic changes, cell proliferation, senescence prevention, lifespan extension, and immune T cell activation against cancers, regardless of its effect controlling blood glucose level and T2DM. Although metformin's effect against T2DM, cancers, and ageing, are believed mostly attributed to the activation of AMP-activated protein kinase (AMPK), the cellular responses involving metformin-ROS-Nrf2 axis might be another natural asset to improve healthspan and lifespan.
en-copyright=
kn-copyright=
en-aut-name=UdonoHeiichiro
en-aut-sei=Udono
en-aut-mei=Heiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishidaMikako
en-aut-sei=Nishida
en-aut-mei=Mikako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Immunology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Immunology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=Mitochondrial ROS
kn-keyword=Mitochondrial ROS
en-keyword=Oxidative stress
kn-keyword=Oxidative stress
en-keyword=Apoptosis
kn-keyword=Apoptosis
en-keyword=Ageing
kn-keyword=Ageing
en-keyword=Nrf2
kn-keyword=Nrf2
END
start-ver=1.4
cd-journal=joma
no-vol=126
cd-vols=
no-issue=22
article-no=
start-page=9257
end-page=9263
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220525
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Role of Oxygen Vacancy in the Photocarrier Dynamics of WO3 Photocatalysts: The Case of Recombination Centers
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Defects in powder photocatalysts determine the photocatalytic activity. The addition of defects sometimes enhances the activity, but sometimes decreases it. However, the factors determining the difference between these cases have not been fully elucidated yet. Herein, we investigated the effects of oxygen vacancies on photocarrier dynamics in WO3 powder using broadband transient absorption spectroscopy. It was found that the decay of deeply trapped electrons was accelerated when the number of oxygen vacancies was increased by H-2 reduction. This result suggests that oxygen vacancies in WO3 mainly act as recombination centers. This is in contrast to many other photocatalysts such as TiO2 and SrTiO3, where the carrier lifetime increases with increasing oxygen vacancy concentration. These differences can be attributed to the difference in the distance between oxygen vacancies. When defects are dispersed, trapped electrons need to travel over long distances by repeatedly hopping and tunneling between defects to combine with holes, resulting in decelerated recombination. In contrast, when the defects are connected or located close together, the trapped electrons can readily migrate among defects, leading to enhanced recombination. Control of the distance between defects is thus important for enhancing photocatalytic activity.
en-copyright=
kn-copyright=
en-aut-name=KatoKosaku
en-aut-sei=Kato
en-aut-mei=Kosaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UemuraYohei
en-aut-sei=Uemura
en-aut-mei=Yohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AsakuraKiyotaka
en-aut-sei=Asakura
en-aut-mei=Kiyotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamakataAkira
en-aut-sei=Yamakata
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Institute for Molecular Science
kn-affil=
affil-num=3
en-affil=Institute for Catalysis, Hokkaido University
kn-affil=
affil-num=4
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=酸素吸入はバルーン肺動脈拡張術前の慢性血栓塞栓性肺高血圧症患者の肺動脈を選択的に拡張する
kn-title=Oxygen inhalation can selectively dilate pulmonary arteries in patients with chronic thromboembolic pulmonary hypertension before balloon angioplasty
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=ShigetoshiMasataka
en-aut-sei=Shigetoshi
en-aut-mei=Masataka
kn-aut-name=重歳正尚
kn-aut-sei=重歳
kn-aut-mei=正尚
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=1
article-no=
start-page=4930
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220323
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=LCZ696 ameliorates doxorubicin-induced cardiomyocyte toxicity in rats
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Doxorubicin (DOX)-based chemotherapy induces cardiotoxicity, which is considered the main bottleneck for its clinical application. In this study, we investigated the potential benefit of LCZ696, an angiotensin receptor-neprilysin inhibitor against DOX-induced cardiotoxicity in rats and H9c2 cells and determined whether the mechanism underlying any such effects involves its antioxidant activity. Male Sprague-Dawley rats were randomly separated into four groups, each consisting of 15 rats (DOX (1.5 mg/kg/day intraperitoneally for 10 days followed by non-treatment for 8 days); DOX + valsartan (31 mg/kg/day by gavage from day 1 to day 18); DOX + LCZ696 (68 mg/kg/day by gavage from day 1 to day 18); and control (saline intraperitoneally for 10 days). DOX-induced elevation of cardiac troponin T levels on day 18 was significantly reduced by LCZ696, but not valsartan. The DOX-induced increase in myocardial reactive oxygen species (ROS) levels determined using dihydroethidium was significantly ameliorated by LCZ696, but not valsartan, and was accompanied by the suppression of DOX-induced increase in p47phox. LCZ696 recovered the DOX-induced decrease in phosphorylation of adenosine monophosphate-activated protein kinase and increased the ratio of Bax and Bcl-2. In H9c2 cardiomyocytes, LCZ696 reduced DOX-induced mitochondrial ROS generation and improved cell viability more than valsartan. Our findings indicated that LCZ696 ameliorated DOX-induced cardiotoxicity in rat hearts in vivo and in vitro, possibly by mediating a decrease in oxidative stress.
en-copyright=
kn-copyright=
en-aut-name=MiyoshiToru
en-aut-sei=Miyoshi
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakamuraKazufumi
en-aut-sei=Nakamura
en-aut-mei=Kazufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AmiokaNaofumi
en-aut-sei=Amioka
en-aut-mei=Naofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HatipogluOmer F.
en-aut-sei=Hatipoglu
en-aut-mei=Omer F.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YonezawaTomoko
en-aut-sei=Yonezawa
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SaitoYukihiro
en-aut-sei=Saito
en-aut-mei=Yukihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YoshidaMasashi
en-aut-sei=Yoshida
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AkagiSatoshi
en-aut-sei=Akagi
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ItoHiroshi
en-aut-sei=Ito
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Pharmacology, Kindai University
kn-affil=
affil-num=5
en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science
kn-affil=
affil-num=6
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=70
cd-vols=
no-issue=2
article-no=
start-page=87
end-page=92
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=2022
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Confirmation of efficacy, elucidation of mechanism, and new search for indications of radon therapy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Indications of radon therapy include various diseases related to respiratory, painful, digestive, chronic degenerative, senile, etc. derived from reactive oxygen species, but most are based on empirical prescriptions. For this reason, we have evaluated the relation between the biological response caused by radon and the tissue/organ absorbed dose more quantitatively, and have promoted the elucidation of mechanisms related to the indication and searching newly. As a result, as a mechanism, a series of moderate physiological stimulative effects accompanying a small amount of oxidative stress by radon inhalation are being elucidated. That is, hyperfunction of anti-oxidation/immune regulation/damage repair, promotion of anti-inflammation/circulating metabolism/hormone secretion, induction of apoptosis/heat shock protein, etc. Also, new indications include inflammatory/neuropathic pain, hepatic/renal injury, colitis, type 1 diabetes, complication kidney injury, hyperuricemia, transient cerebral ischemia, and inflammatory edema. Furthermore, we examined the combined antioxidant effect of radon inhalation and antioxidants or therapeutic agents. As a result, it was clear that any combination treatment could enhance the suppression effect of disease. It can be expected that radon therapy can be used effectively by applying it in addition to usual treatment, since reduction in its dosage can also be expected by concomitant use for drugs with strong side effects.
en-copyright=
kn-copyright=
en-aut-name=YamaokaKiyonori
en-aut-sei=Yamaoka
en-aut-mei=Kiyonori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KataokaTakahiro
en-aut-sei=Kataoka
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Health Sciences, Institute of Academic and Research, Okayama University
kn-affil=
affil-num=2
en-affil=Health Sciences, Institute of Academic and Research, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=5
article-no=
start-page=1309
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220227
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Serial Changes of Long COVID Symptoms and Clinical Utility of Serum Antibody Titers for Evaluation of Long COVID
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Various symptoms persist even after the acute symptoms in about one third of patients with COVID-19. In February 2021, we established an outpatient clinic in a university hospital for patients with long COVID and started medical treatment for sequelae that persisted one month or more after infection. Methods: To determine the key factors that affect the onset and clinical course of sequelae, a retrospective analysis was performed at Okayama University Hospital (Japan) between February and July 2021. We focused on changes in the numbers of symptoms and the background of the patients during a three-month period from the first outpatient visit. We also examined the relationship with SARS-CoV-2 antibody titers. Results: Information was obtained from medical records for 65 patients. The symptoms of sequelae were diverse, with more than 20 types. The most frequent symptoms were general malaise, dysosmia, dysgeusia, sleeplessness, and headache. These symptoms improved in about 60% of the patients after 3 months. Patients who required hospitalization and had a poor condition in the acute phase and patients who received oxygen/dexamethasone therapy had higher antibody titers at the time of consultation. Patients with antibody titers >= 200 U/mL showed significantly fewer improvements in long COVID symptoms in 1 month, but they showed improvements at 3 months after the first visit. Conclusion: Long COVID symptoms were improved at 3 months after the initial visit in more than half of the patients. Serum antibody titers were higher in patients who experienced a severe acute phase, but the serum antibody titers did not seem to be directly related to the long-term persistence of long COVID symptoms.
en-copyright=
kn-copyright=
en-aut-name=SakuradaYasue
en-aut-sei=Sakurada
en-aut-mei=Yasue
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SunadaNaruhiko
en-aut-sei=Sunada
en-aut-mei=Naruhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HondaHiroyuki
en-aut-sei=Honda
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TokumasuKazuki
en-aut-sei=Tokumasu
en-aut-mei=Kazuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OtsukaYuki
en-aut-sei=Otsuka
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakanoYasuhiro
en-aut-sei=Nakano
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HanayamaYoshihisa
en-aut-sei=Hanayama
en-aut-mei=Yoshihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=FurukawaMasanori
en-aut-sei=Furukawa
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HagiyaHideharu
en-aut-sei=Hagiya
en-aut-mei=Hideharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OtsukaFumio
en-aut-sei=Otsuka
en-aut-mei=Fumio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Laboratory Medicine, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Laboratory Medicine, Okayama University Hospital
kn-affil=
en-keyword=Anti-SARS-CoV2 antibody
kn-keyword=Anti-SARS-CoV2 antibody
en-keyword=dysgeusia
kn-keyword=dysgeusia
en-keyword=dysosmia
kn-keyword=dysosmia
en-keyword=general fatigue
kn-keyword=general fatigue
en-keyword=long COVID
kn-keyword=long COVID
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=3
article-no=
start-page=30
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220207
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Mitigation of groundwater iron-induced clogging by low-cost bioadsorbent in open loop geothermal heat pump systems
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Green energy production from natural resources can reduce emissions of greenhouse gases and pollutants from burning of fossil fuels in power plants. Recently, groundwater geothermal energy (GGE) is harnessed by deploying closed- and open-loop heat systems. In open-loop geothermal heat pump systems (OLGHPS), groundwater is reinjected into aquifer after harnessing GGE. Nevertheless, OLGHPS face noxious clogging issue because of elusive chemistry (corrosion or precipitation) of chemical species, principally of iron (Fe), in pipes and aquifers during reinjection process via oxidation reactions. Plethora of filtering materials are available for removal of ions, but these are quite expensive and environmentally unsafe. More recently, low-cost, eco-friendly, green filtering materials gain much interest. These materials can remove ions from groundwater that can minimize clogging in heat exchange systems, injection wells, and aquifer. In the present study, three filtering materials, i.e., wooden charcoal (biomaterial), yamazuna fine sand, and volcanic ash, were tested to estimate their Fe removal capacity. In upward flow mode with minimum oxygen-water contact, serial column (each with 6 ports) experiments were conducted under constant pressure head and constant velocity conditions. Columns were connected to well water having dissolved Fe concentration of 10.85 mg L-1. Sampling was done at the well, column inlets, column's six sampling ports and column outlets, and samples were analyzed for Fe by atomic absorption spectroscopy. Related tested parameters include pH, EC, temperature, turbidity, porosity, particle diameter, and dissolved oxygen. Volcanic ash showed less Fe removal, while sand filter showed substantial reduction in velocity. Biomaterial (wooden charcoal) displayed higher Fe adsorption capacity compared to other materials that can be ascribed to its surface chemistry and functional groups. Under different flow rates, maximum Fe content of 3.5 g Fe kg(-1) dry charcoal was obtained. By considering a safety factor and influence of groundwater composition, it is possible to design a biomaterial-based iron filter system to minimize Fe-induced chemical clogging in OLGHPS which is an eco-friendly, green energy source.
en-copyright=
kn-copyright=
en-aut-name=FujitaClaudia
en-aut-sei=Fujita
en-aut-mei=Claudia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AkhtarM. Shahbaz
en-aut-sei=Akhtar
en-aut-mei=M. Shahbaz
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HidakaRay
en-aut-sei=Hidaka
en-aut-mei=Ray
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NishigakiMakoto
en-aut-sei=Nishigaki
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Geo‑Environmental Evaluation Laboratory, Department of Environmental Design and Civil Engineering, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Geo‑Environmental Evaluation Laboratory, Department of Environmental Design and Civil Engineering, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Geo‑Environmental Evaluation Laboratory, Department of Environmental Design and Civil Engineering, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=4
en-affil=Geo‑Environmental Evaluation Laboratory, Department of Environmental Design and Civil Engineering, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=Dissolved iron removal
kn-keyword=Dissolved iron removal
en-keyword=Chemical clogging
kn-keyword=Chemical clogging
en-keyword=Open-loop geothermal systems
kn-keyword=Open-loop geothermal systems
en-keyword=Retention potential
kn-keyword=Retention potential
en-keyword=Wooden charcoal
kn-keyword=Wooden charcoal
END
start-ver=1.4
cd-journal=joma
no-vol=89
cd-vols=
no-issue=
article-no=
start-page=373
end-page=378
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=2021
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Performance of Oyster Shell Powder Size on Methane Gas Generation in Two-Stage Anaerobic Digestion System
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=An anaerobic digester system is a sequence of process to digest biodegradable waste into biogas in the absence of oxygen. In two-stage anaerobic digestion system acid-forming steps or hydrolysis stage are separated from the methane forming steps. Although hydrolysis stage tends to get too acidic, addition of alkali substance can prevent pH from dropping too low so as to maintain good decomposition condition for microorganism. Oyster shell powder is a useful pH control additive containing CaCO3 at high percentage that can neutralize acid. In this study, the performances between industry-made fine oyster shell (IOS) powder (size 10.5 μm) and manually ground oyster shell (OS) powder (size < 1 mm) in methane generation yield were compared. NaOH, which is an alkali reagent for controlling pH, also used in comparison. The result showed that at the end of the hydrolysis stage, IOS powder increased pH up to 6.63, NaOH did almost the same (6.72), and OS powder was the lowest (6.1). In liquid residue, ratio of inorganic ash content with IOS treatment was the highest (2.1 %), but OS was the lowest (1.4 %). In the methanogenesis stage, CH4 concentration with NaOH treatment was the highest (80 %) compared to oyster shell powders: 74.33 % in IOS and 74.24 % in OS. Average methane yield over observation period of IOS treatment was the highest (533.9 mL/gVS), followed by alkali (487.3 mL/gVS) and OS (413.7 mL/gVS). Total CH4 from IOS treatment was 37 % and 8 % higher than OS and alkali treatment. Powder size of oyster shell greatly affected pH control, methane yield, and solid-liquid separation, but not methane concentration. Using IOS powder as pH control in hydrolysis of two-stage anaerobic system resulted in 78 % less cost than using NaOH.
en-copyright=
kn-copyright=
en-aut-name=Peni Astrini Notodarmojo
en-aut-sei=Peni Astrini Notodarmojo
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujiwaraTakeshi
en-aut-sei=Fujiwara
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=Habuer
en-aut-sei=Habuer
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=Mochammad Chaerul
en-aut-sei=Mochammad Chaerul
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Okayama University
kn-affil=
affil-num=2
en-affil=Okayama University
kn-affil=
affil-num=3
en-affil=Okayama University
kn-affil=
affil-num=4
en-affil=Bandung Institute of Technology
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=573
cd-vols=
no-issue=30
article-no=
start-page=151483
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Uniform coating of magnesium oxide crystal with reduced graphene oxide achieves moisture barrier performance
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Magnesium oxide (MgO) has high thermal conductivity while keeping insulation; thus, MgO is attractive material as a filler for thermosetting or thermoplastic resins. However, MgO readily hydrates with water or moisture. Thus, the surface of MgO is coated with organic or inorganic substances.
We focused on graphene oxide (GO) as a surface coating agent. It has a 2-dimensional thin sheet structure, oxygen functional groups on the surface, and negative zeta-potential. Typically, GO has been used as a support material for metal nanoparticles. In this research, GO was coated on MgO micro-crystal surface to improve the surface character of MgO. The negatively charged GO and the positively charged MgO were combined with strong interaction. 0.5wt% GO coated MgO showed excellent moisture resistance compared to organic substances coating. Coating of MgO with GO or rGO is effective to overcome the weaknesses of MgO. Due to the hydrophilicity and high thermal conductivity of rGO, MgO/rGO composite can be a filler for high moisture resistance and thermal conductivity.
en-copyright=
kn-copyright=
en-aut-name=SaitoAkinori
en-aut-sei=Saito
en-aut-mei=Akinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ObataSeiji
en-aut-sei=Obata
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Tateho chemical industries co. ltd
kn-affil=
affil-num=2
en-affil=Research Core for Interdisciplinary Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Research Core for Interdisciplinary Sciences, Okayama University
kn-affil=
en-keyword=magnesium oxide
kn-keyword=magnesium oxide
en-keyword=graphene oxide
kn-keyword=graphene oxide
en-keyword=surface coating
kn-keyword=surface coating
en-keyword=moisture resistance
kn-keyword=moisture resistance
END
start-ver=1.4
cd-journal=joma
no-vol=10
cd-vols=
no-issue=10
article-no=
start-page=1537
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210928
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Reactive Oxygen Species and Antioxidative Defense in Chronic Obstructive Pulmonary Disease
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The respiratory system is continuously exposed to endogenous and exogenous oxidants. Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation of the airways, leading to the destruction of lung parenchyma (emphysema) and declining pulmonary function. It is increasingly obvious that reactive oxygen species (ROS) and reactive nitrogen species (RNS) contribute to the progression and amplification of the inflammatory responses related to this disease. First, we described the association between cigarette smoking, the most representative exogenous oxidant, and COPD and then presented the multiple pathophysiological aspects of ROS and antioxidative defense systems in the development and progression of COPD. Second, the relationship between nitric oxide system (endothelial) dysfunction and oxidative stress has been discussed. Third, we have provided data on the use of these biomarkers in the pathogenetic mechanisms involved in COPD and its progression and presented an overview of oxidative stress biomarkers having clinical applications in respiratory medicine, including those in exhaled breath, as per recent observations. Finally, we explained the findings of recent clinical and experimental studies evaluating the efficacy of antioxidative interventions for COPD. Future breakthroughs in antioxidative therapy may provide a promising therapeutic strategy for the prevention and treatment of COPD.
en-copyright=
kn-copyright=
en-aut-name=TaniguchiAkihiko
en-aut-sei=Taniguchi
en-aut-mei=Akihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TsugeMitsuru
en-aut-sei=Tsuge
en-aut-mei=Mitsuru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MiyaharaNobuaki
en-aut-sei=Miyahara
en-aut-mei=Nobuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TsukaharaHirokazu
en-aut-sei=Tsukahara
en-aut-mei=Hirokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Hematology, Oncology, Allergy and Respiratory Medicine, Okayama University Academic Field of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Pediatrics, Okayama University Academic Field of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Medical Technology, Okayama University Academic Field of Health Sciences
kn-affil=
affil-num=4
en-affil=Department of Pediatrics, Okayama University Academic Field of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=reactive oxygen species
kn-keyword=reactive oxygen species
en-keyword=nitric oxide
kn-keyword=nitric oxide
en-keyword=oxidant
kn-keyword=oxidant
en-keyword=antioxidant
kn-keyword=antioxidant
en-keyword=oxidative stress
kn-keyword=oxidative stress
en-keyword=chronic obstructive pulmonary disease
kn-keyword=chronic obstructive pulmonary disease
en-keyword=cigarette smoke
kn-keyword=cigarette smoke
en-keyword=asymmetric dimethylarginine
kn-keyword=asymmetric dimethylarginine
en-keyword=arginine
kn-keyword=arginine
en-keyword=biomarker
kn-keyword=biomarker
END
start-ver=1.4
cd-journal=joma
no-vol=7
cd-vols=
no-issue=1
article-no=
start-page=81
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20211103
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Intact survival from severe cardiogenic shock caused by the first attack of atrial tachycardia treated with extracorporeal membrane oxygenation and surgical left atrium appendage resection: a case report
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Atrial tachycardia (AT) is rare in children and can usually be reversed to sinus rhythm with pharmacotherapy and cardioversion. We report a rare case of severe left-sided heart failure due to refractory AT. Case presentation A 12-year-old boy had AT with a heart rate of 180 beats/minute, which was refractory to any medication and defibrillation despite the first attack. Due to rapid cardiorespiratory collapse shortly after arriving at our hospital, central extracorporeal membrane oxygenation (ECMO) with left arterial venting was started immediately. Although AT persisted after that, it stopped on the 3rd day after admission following surgical resection of the left atrial appendage thought to be the source of AT. He was weaned off ECMO on the 7th day and ventilator on the 14th day. Conclusions The appropriate timing of central ECMO and surgical ablation were effective in saving this child from a life-threatening situation caused by refractory AT.
en-copyright=
kn-copyright=
en-aut-name=ShimizuTatsuhiko
en-aut-sei=Shimizu
en-aut-mei=Tatsuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KanazawaTomoyuki
en-aut-sei=Kanazawa
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SakuraTakanobu
en-aut-sei=Sakura
en-aut-mei=Takanobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ShimizuKazuyoshi
en-aut-sei=Shimizu
en-aut-mei=Kazuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IwasakiTatsuo
en-aut-sei=Iwasaki
en-aut-mei=Tatsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Focal atrial tachycardia
kn-keyword=Focal atrial tachycardia
en-keyword=Central extracorporeal membrane oxygenation
kn-keyword=Central extracorporeal membrane oxygenation
en-keyword=Surgical ablation
kn-keyword=Surgical ablation
END
start-ver=1.4
cd-journal=joma
no-vol=88
cd-vols=
no-issue=
article-no=
start-page=106474
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202111
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The diagnosis of delayed expanding traumatic pseudoaneurysm of thoracic aorta caused by self-inflicted penetrating injury with crossbow bolt: A case report
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction and importance: Penetrating chest trauma caused by a crossbow bolt is very rare. Herein, we report a successfully treated patient who attempted suicide by directing a crossbow to the chest cavity and developed an expanding pseudoaneurysm of the thoracic aorta during eight-day follow up.
Case presentation: A 51-year-old male was admitted to the emergency department after firing a crossbow bolt twice into his left chest. At admission, the patient was hemodynamically stable and maintaining oxygenation. The bolt had already been removed from the body. Contrast-enhanced computed tomography (CT) revealed a cavity pseudoaneurysm 2.5 mm in size in the aortic arch. Three-dimensional reconstruction of the CT demonstrated wound tracts showing probable damage by the bolt. The patient was admitted to the emergency department for careful observation and transferred to the psychiatric ward on day two. Follow-up contrast-enhanced CT on day eight demonstrated rapid expansion of the pseudoaneurysm from 2.5 mm to 4.0 mm in size. We performed thoracic endovascular aortic repair (TEVAR) on day 13. The patient was uneventfully discharged on the 20th hospital day.
Clinical discussion: Emergency physicians should be aware that damage to the surrounding tissue may be accompanied by delayed expansion of an aortic pseudoaneurysm, even if the bolts do not cause direct aortic wall injury.
Conclusion: This case suggests that understanding the injury mechanism, confirming the tract of the bolts, and carefully exploring traumatic pseudoaneurysm can lead to a less invasive operation due to early detection.
en-copyright=
kn-copyright=
en-aut-name=NakamuraShunsuke
en-aut-sei=Nakamura
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamadaTaihei
en-aut-sei=Yamada
en-aut-mei=Taihei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NaitoHiromichi
en-aut-sei=Naito
en-aut-mei=Hiromichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SakodaNaoya
en-aut-sei=Sakoda
en-aut-mei=Naoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakaoAtsunori
en-aut-sei=Nakao
en-aut-mei=Atsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Traumatology and Emergency Intensive Care Medicine, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Case report
kn-keyword=Case report
en-keyword=Traumatic pseudoaneurysm
kn-keyword=Traumatic pseudoaneurysm
en-keyword=Thoracic aortic injury
kn-keyword=Thoracic aortic injury
en-keyword=Crossbow bolt
kn-keyword=Crossbow bolt
en-keyword=Three-dimensional reconstruction
kn-keyword=Three-dimensional reconstruction
en-keyword=Computed tomography
kn-keyword=Computed tomography
END
start-ver=1.4
cd-journal=joma
no-vol=7
cd-vols=
no-issue=1
article-no=
start-page=77
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20211016
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Veno-venous extracorporeal membrane oxygenation in the management of refractory bilateral bronchial dehiscence after lung transplant: a case report
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background
Bronchial dehiscence is a life-threatening complication after lung transplant. If it is not treated by placement of stent or reanastomosis, the chance of survival will depend on the availability of a new graft. However, retransplant is not a practical management option in Japan, where waiting time for lung transplant is extensive. We described a case of refractory bilateral bronchial dehiscence managed by veno-venous extracorporeal oxygenation membrane (VV ECMO) while allowing the dehiscence to heal.
Case presentation
A 25-year-old man with idiopathic pulmonary arterial hypertension underwent a bilateral lung transplant. The patient developed bilateral bronchial dehiscence. Open reanastomosis was not successful, and air leakage recurred under low positive pressure ventilation. VV ECMO was established to maintain oxygenation with spontaneous breathing until both dehiscence were closed by adhesions.
Conclusion
In a patient with refractory bilateral bronchial dehiscence, VV ECMO may provide bronchial rest and serve as a bridge therapy to recovery.
en-copyright=
kn-copyright=
en-aut-name=TaniMakiko
en-aut-sei=Tani
en-aut-mei=Makiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Anesthesiology and Resuscitology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Bronchial dehiscence
kn-keyword=Bronchial dehiscence
en-keyword=Extracorporeal membrane oxygenation
kn-keyword=Extracorporeal membrane oxygenation
en-keyword=Lung transplant
kn-keyword=Lung transplant
END
start-ver=1.4
cd-journal=joma
no-vol=75
cd-vols=
no-issue=6
article-no=
start-page=677
end-page=684
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202112
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=EG-VEGF Induces Invasion of a Human Trophoblast Cell Line via PROKR2
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Extravillous trophoblast (EVT) invasion is important for embryo implantation, placental development, and successful remodeling of the uterine spiral artery. Endocrine gland derived-vascular endothelial growth factor (EG-VEGF) and matrix metalloproteinases (MMPs) are implicated in EVT invasion; however, the high con-centrations found in pregnancy pathologies have not been investigated in non-tumor trophoblasts. The roles of EG-VEGF, prokineticin receptors (PROKR1/2), MMP-2, and MMP-9 in EVT invasion during spiral artery remodeling were evaluated using human EVT from HTR-8/SVneo cell lines. The expression of MMP-2, MMP-9, and mitogen-activated protein kinase (MAPK), and Akt pathways in HTR-8/SVneo cells treated with recom-binant EG-VEGF alongside anti-PROKR1 and/or anti-PROKR2 antibodies was evaluated using quantitative reverse transcription-PCR and western blotting. Wound-healing and cell invasion assays were performed to assess the migration and invasion of these treated cells. Interestingly, 20 nM EG-VEGF activated ERK1/2 sig-naling and upregulated MMP-2 and MMP-9. This effect was suppressed by anti-PROKR2 antibody via ERK1/2 downregulation. Anti-PROKR2 antibody inhibited the migration and invasion of EG-VEGF-stimulated HTR-8/SVneo cells. Elevated concentrations of EG-VEGF enhance EVT invasion in a human trophoblast cell line by upregulating MMP-2 and MMP-9 via PROKR2. These new insights into the regulation of epithelial cell invasion may help in developing therapeutic interventions for placental-related diseases during pregnancy.
en-copyright=
kn-copyright=
en-aut-name=
en-aut-sei=
en-aut-mei=
kn-aut-name=TaniKazumasa
kn-aut-sei=Tani
kn-aut-mei=Kazumasa
aut-affil-num=1
ORCID=
en-aut-name=MitsuiTakashi
en-aut-sei=Mitsui
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MishimaSakurako
en-aut-sei=Mishima
en-aut-mei=Sakurako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OhiraAkiko
en-aut-sei=Ohira
en-aut-mei=Akiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MakiJota
en-aut-sei=Maki
en-aut-mei=Jota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=EtoEriko
en-aut-sei=Eto
en-aut-mei=Eriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HayataKei
en-aut-sei=Hayata
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakamuraKeiichiro
en-aut-sei=Nakamura
en-aut-mei=Keiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MasuyamaHisashi
en-aut-sei=Masuyama
en-aut-mei=Hisashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=endocrine gland-derived vascular endothelial growth factor
kn-keyword=endocrine gland-derived vascular endothelial growth factor
en-keyword=prokineticin
kn-keyword=prokineticin
en-keyword=extravillous trophoblast
kn-keyword=extravillous trophoblast
en-keyword=matrix metalloproteinase
kn-keyword=matrix metalloproteinase
en-keyword=obstetric diseases
kn-keyword=obstetric diseases
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=9
article-no=
start-page=1842
end-page=1850
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20219
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Comparison of Oxygen Saturation Between Nasal High-Flow Oxygen and Conventional Nasal Cannula in Obese Patients Undergoing Dental Procedures With Deep Sedation: A Randomized Crossover Trial
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose:
In anesthetic management, it is widely accepted that obese patients are more likely to suffer airway obstructions and reductions in arterial oxygen saturation (SpO2). Therefore, it is important to take special measures to prevent oxygen desaturation during the deep sedation of obese patients. This clinical study examined whether the use of nasal high-flow systems (NHFS) keep higher SpO2 and reduced hypoxemia than conventional nasal cannula during the deep sedation of obese patients with intellectual disabilities for dental treatment.
Materials and Methods:
Eighteen obese patients (body mass index: >25) with intellectual disabilities who underwent dental sedation were enrolled. In each case, sedation was induced using propofol and
maintained at a bispectral index of 50–70. The subjects were randomly assigned to the control oxygen administration (5 L/min via a nasal cannula) or NHFS (40% O2, 40 L/min, 37°C) arm in alternate shifts as a crossover trial. The primary endpoint was the minimum SpO2 value, and the incidence of hypoxemia during dental treatment was also evaluated.
Results:
The mean minimum SpO2 value was significantly higher in the NHFS arm than in the
4
control arm (95.8 ± 2.1 % vs. 93.6 ± 4.1 %, p=0.0052, 95% confidence interval: 0.608–3.947). Hypoxemic episodes (SpO2: ≤94%) occurred 3 cases (16.7%) in the NHFS arm and 11 case (61.1%) in the control arm (P=0.0076, odds ratio: 0.127, 95% confidence interval 0.0324 to 0.630).
Conclusion:
NHFS resulted in higher minimum SpO2 and reduced hypoxemia than nasal cannula in obese patients during deep sedation for dental treatment
en-copyright=
kn-copyright=
en-aut-name=HiguchiHitoshi
en-aut-sei=Higuchi
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=Takaya-IshidaKumiko
en-aut-sei=Takaya-Ishida
en-aut-mei=Kumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MiyakeSaki
en-aut-sei=Miyake
en-aut-mei=Saki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FujimotoMaki
en-aut-sei=Fujimoto
en-aut-mei=Maki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NishiokaYukiko
en-aut-sei=Nishioka
en-aut-mei=Yukiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MaedaShigeru
en-aut-sei=Maeda
en-aut-mei=Shigeru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MiyawakiTakuya
en-aut-sei=Miyawaki
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Dental Anesthesiology, Okayama University Hospita
kn-affil=
affil-num=2
en-affil=Department of Dental Anesthesiology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Dental Anesthesiology, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Dental Anesthesiology and Special Care Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Dental Anesthesiology, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Dental Anesthesiology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Dental Anesthesiology and Special Care Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=75
cd-vols=
no-issue=4
article-no=
start-page=533
end-page=538
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202108
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Tumor Lysis Syndrome due to Eribulin Administration for Metastatic Undifferentiated Pleomorphic Sarcoma of the Buttock
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Tumor lysis syndrome (TLS) is a complication of cancer treatment that requires urgent intervention. It is extremely rare in the treatment of soft tissue sarcoma (STS) of the limbs or trunk, and there are currently no reports of TLS occurrence from eribulin therapy. We report the case of a 78-year-old woman with an undiffer-entiated pleomorphic sarcoma on the right buttock. We initiated chemotherapy with intravenous eribulin mesylate. Deterioration of renal function, mild hyperkalemia, hyperuricemia, hypocalcemia, and hyperphos-phatemia were confirmed on examination, suggesting the presence of TLS. We present an extremely rare case of TLS from eribulin for STS.
en-copyright=
kn-copyright=
en-aut-name=TsuchieHiroyuki
en-aut-sei=Tsuchie
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyakoshiNaohisa
en-aut-sei=Miyakoshi
en-aut-mei=Naohisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NagasawaHiroyuki
en-aut-sei=Nagasawa
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ShimadaYoichi
en-aut-sei=Shimada
en-aut-mei=Yoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Orthopedic Surgery, Akita University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Orthopedic Surgery, Akita University Graduate School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Orthopedic Surgery, Akita University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Orthopedic Surgery, Akita University Graduate School of Medicine
kn-affil=
en-keyword=tumor lysis syndrome
kn-keyword=tumor lysis syndrome
en-keyword=eribulin
kn-keyword=eribulin
en-keyword=soft tissue sarcoma
kn-keyword=soft tissue sarcoma
en-keyword=cancer chemotherapy
kn-keyword=cancer chemotherapy
en-keyword=metastasis
kn-keyword=metastasis
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210807
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Single domain growth and charge ordering of epitaxial YbFe2O4 films
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=YbFe2O4 is a charge-ordered ferroelectric that exhibits coupling between magnetization and electric polarization near room temperature and crystallizes in a rhombohedral structure (R3¯m). This study presents an attempt to fabricate stoichiometric and epitaxial YbFe2O4-δ films with a nearly single-domain structure using an RF magnetron sputtering method. The (0001)-oriented epitaxial films of YbFe2O4-δ on YSZ (111) substrates via reactive sputtering method exhibited clear three-fold symmetry normal to the substrate without the formation of twin domains rotated by 60°. The oxygen stoichiometry of the epitaxial YbFe2O4-δ was improved by controlling an oxygen partial pressure (PO2) during the deposition. The films showed a sharp ferrimagnetic transition, and the transition temperature (TN) increased linearly to approximately 245 K with decreasing PO2. The magnitude of magnetization of the obtained films was comparable to that of bulk single crystals. Further, the electron diffraction pattern of the stoichiometric films confirmed the presence of three-dimensional charge order, which is
consistent with the behavior of the bulk crystals as well.
en-copyright=
kn-copyright=
en-aut-name=SakagamiTakumi
en-aut-sei=Sakagami
en-aut-mei=Takumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OtaReika
en-aut-sei=Ota
en-aut-mei=Reika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KanoJun
en-aut-sei=Kano
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IkedaNaoshi
en-aut-sei=Ikeda
en-aut-mei=Naoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FujiiTatsuo
en-aut-sei=Fujii
en-aut-mei=Tatsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Applied Chemistry, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Applied Chemistry, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Applied Chemistry, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Physics, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Applied Chemistry, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=8
cd-vols=
no-issue=1
article-no=
start-page=e690
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210816
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Prevalence and predictors of direct discharge home following hospitalization of patients with serious adverse events managed by the rapid response system in Japan: a multicenter, retrospective, observational study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Aim: The rapid response system (RRS) is an in-hospital medical safety system. To date, not much is known about patient disposition after RRS activation, especially discharge home. This study aimed to investigate the prevalence, characteristics, and outcomes of patients with adverse events who required RRS activation.
Methods: Retrospective data from the In-Hospital Emergency Registry in Japan collected from April 2016 to November 2020 were eligible for our analysis. We divided patients into Home Discharge, Transfer, and Death groups. The primary outcome was the prevalence of direct discharge home, and independently associated factors were determined using multivariable logistic regression.
Results: We enrolled 2,043 patients who met the inclusion criteria. The prevalence of discharge home was 45.7%; 934 patients were included in the Home Discharge group. Age (adjusted odds ratio [AOR] 0.96; 95% confidence interval [CI], 0.95-0.97), malignancy (AOR 0.69; 95% CI, 0.48-0.99), oxygen administration before RRS (AOR 0.49; 95% CI, 0.36-0.66), cerebral performance category score on admission (AOR 0.38; 95% CI, 0.26-0.56), do not attempt resuscitation order before RRS (AOR 0.17; 95% CI, 0.10-0.29), RRS call for respiratory failure (AOR 0.50; 95% CI, 0.34-0.72), RRS call for stroke (AOR 0.12; 95% CI, 0.03-0.37), and intubation (AOR 0.20; 95% CI, 0.12-0.34) were independently negative, and RRS call for anaphylaxis (AOR 15.3; 95% CI, 2.72-86.3) was positively associated with discharge home.
Conclusion: Less than half of the in-hospital patients under RRS activation could discharge home. Patients' conditions before RRS activation, disorders requiring RRS activation, and intubation were factors that affected direct discharge home.
en-copyright=
kn-copyright=
en-aut-name=HongoTakashi
en-aut-sei=Hongo
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NaitoHiromichi
en-aut-sei=Naito
en-aut-mei=Hiromichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FujiwaraToshifumi
en-aut-sei=Fujiwara
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NaitoTakaki
en-aut-sei=Naito
en-aut-mei=Takaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HommaYosuke
en-aut-sei=Homma
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FujimotoYoshihisa
en-aut-sei=Fujimoto
en-aut-mei=Yoshihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakayaMorooka
en-aut-sei=Takaya
en-aut-mei=Morooka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YamamoriYuji
en-aut-sei=Yamamori
en-aut-mei=Yuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NakadaTaka-Aki
en-aut-sei=Nakada
en-aut-mei=Taka-Aki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NojimaTsuyoshi
en-aut-sei=Nojima
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NakaoAtsunori
en-aut-sei=Nakao
en-aut-mei=Atsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=FujitaniShigeki
en-aut-sei=Fujitani
en-aut-mei=Shigeki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=In-Hospital Emergency Study Group
en-aut-sei=In-Hospital Emergency Study Group
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Emergency Department, Okayama Saiseikai General Hospital
kn-affil=
affil-num=4
en-affil=Department of Emergency and Critical Care Medicine, St. Marianna University School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Emergency and Critical Care Medicine, Tokyo Bay Urayasu Ichikawa Medical Center
kn-affil=
affil-num=6
en-affil=Department of Emergency and Critical Care Medicine, Tokyo Bay Urayasu Ichikawa Medical Center
kn-affil=
affil-num=7
en-affil=Emergency and Critical Care Medical Center, Osaka City General Hospital
kn-affil=
affil-num=8
en-affil=Department of Emergency and Critical Care Medicine, Shimane Prefectural Central Hospital
kn-affil=
affil-num=9
en-affil=Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Emergency and Critical Care Medicine, St. Marianna University School of Medicine
kn-affil=
affil-num=13
en-affil=
kn-affil=
en-keyword=discharge to home
kn-keyword=discharge to home
en-keyword=DNAR
kn-keyword=DNAR
en-keyword=RRS
kn-keyword=RRS
en-keyword=serious adverse event
kn-keyword=serious adverse event
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=7
article-no=
start-page=e16738
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210729
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Right Hemiplegia Following Acute Carbon Monoxide Poisoning
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Acute carbon monoxide (CO) poisoning remains a common cause of poison-related death and influences neurological function. An 83-year-old female was transferred to our emergency unit due to hypertension with dizziness, headache, and right hemiplegia. There was no radiographic evidence of ischemic stroke. The family members reported that the patient may have been exposed to CO by briquettes burned inside a closed room. High flow oxygen therapy was given for suspected CO intoxication and her symptoms quickly improved. Although we do not have clear evidence, we presume that hemiplegia in our patient was caused by CO intoxication, based on rapid recovery with oxygen therapy, carboxyhemoglobin (COHb) level elevation (3.0%), polycythemia, and neuroimaging. Despite the hematogenous effects of CO, paralysis appeared to be more severe on her right side than on her left side. MRI and blood tests helped to support CO as the suspected cause of her hemiplegia. This case reconfirms the importance of medical interviewing by medical practitioners, even in an emergency setting.
en-copyright=
kn-copyright=
en-aut-name=AoshimaKenji
en-aut-sei=Aoshima
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamaokaHidenaru
en-aut-sei=Yamaoka
en-aut-mei=Hidenaru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakamuraShunsuke
en-aut-sei=Nakamura
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NojimaTsuyoshi
en-aut-sei=Nojima
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NaitoHiromichi
en-aut-sei=Naito
en-aut-mei=Hiromichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakaoAtsunori
en-aut-sei=Nakao
en-aut-mei=Atsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Center for Graduate Medical Education, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Cardiology, Okayama Rōsai Hospital
kn-affil=
affil-num=3
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=carbon monoxide
kn-keyword=carbon monoxide
en-keyword=carbon monoxide poisoning
kn-keyword=carbon monoxide poisoning
en-keyword=hemiplegia
kn-keyword=hemiplegia
en-keyword=stroke
kn-keyword=stroke
en-keyword=tia
kn-keyword=tia
en-keyword=globus pallidus lesions
kn-keyword=globus pallidus lesions
en-keyword=neurologic manifestation
kn-keyword=neurologic manifestation
END
start-ver=1.4
cd-journal=joma
no-vol=22
cd-vols=
no-issue=13
article-no=
start-page=7235
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210705
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Citric Acid-Mediated Abiotic Stress Tolerance in Plants
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Several recent studies have shown that citric acid/citrate (CA) can confer abiotic stress tolerance to plants. Exogenous CA application leads to improved growth and yield in crop plants under various abiotic stress conditions. Improved physiological outcomes are associated with higher photosynthetic rates, reduced reactive oxygen species, and better osmoregulation. Application of CA also induces antioxidant defense systems, promotes increased chlorophyll content, and affects secondary metabolism to limit plant growth restrictions under stress. In particular, CA has a major impact on relieving heavy metal stress by promoting precipitation, chelation, and sequestration of metal ions. This review summarizes the mechanisms that mediate CA-regulated changes in plants, primarily CA's involvement in the control of physiological and molecular processes in plants under abiotic stress conditions. We also review genetic engineering strategies for CA-mediated abiotic stress tolerance. Finally, we propose a model to explain how CA's position in complex metabolic networks involving the biosynthesis of phytohormones, amino acids, signaling molecules, and other secondary metabolites could explain some of its abiotic stress-ameliorating properties. This review summarizes our current understanding of CA-mediated abiotic stress tolerance and highlights areas where additional research is needed.
en-copyright=
kn-copyright=
en-aut-name=Tahjib-Ul-ArifMd.
en-aut-sei=Tahjib-Ul-Arif
en-aut-mei=Md.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ZahanMst, Ishrat
en-aut-sei=Zahan
en-aut-mei=Mst, Ishrat
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KarimMd. Masudul
en-aut-sei=Karim
en-aut-mei=Md. Masudul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ImranShahin
en-aut-sei=Imran
en-aut-mei=Shahin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HunterCharles T.
en-aut-sei=Hunter
en-aut-mei=Charles T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IslamMd. Saiful
en-aut-sei=Islam
en-aut-mei=Md. Saiful
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MiaMd. Ashik
en-aut-sei=Mia
en-aut-mei=Md. Ashik
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HannanMd. Abdul
en-aut-sei=Hannan
en-aut-mei=Md. Abdul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=RhamanMohammad Saidur
en-aut-sei=Rhaman
en-aut-mei=Mohammad Saidur
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HossainMd. Afzal
en-aut-sei=Hossain
en-aut-mei=Md. Afzal
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=BresticMarian
en-aut-sei=Brestic
en-aut-mei=Marian
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=SkalickyMilan
en-aut-sei=Skalicky
en-aut-mei=Milan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MurataYoshiyuki
en-aut-sei=Murata
en-aut-mei=Yoshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Plant Breeding Division, Bangladesh Rice Research Institute
kn-affil=
affil-num=3
en-affil=Department of Crop Botany, Bangladesh Agricultural University
kn-affil=
affil-num=4
en-affil=Department of Agronomy, Khulna Agricultural University
kn-affil=
affil-num=5
en-affil=Chemistry Research Unit, United States Department of Agriculture—Agricultural Research Service
kn-affil=
affil-num=6
en-affil=Department of Fisheries, Bangamata Sheikh Fojilatunnesa Mujib Science and Technology University
kn-affil=
affil-num=7
en-affil=Department of Crop Botany, Bangladesh Agricultural University
kn-affil=
affil-num=8
en-affil=Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University
kn-affil=
affil-num=9
en-affil=Department of Seed Science and Technology, Bangladesh Agricultural University
kn-affil=
affil-num=10
en-affil=Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University
kn-affil=
affil-num=11
en-affil=Department of Plant Physiology, Slovak University of Agriculture
kn-affil=
affil-num=12
en-affil=Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague
kn-affil=
affil-num=13
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=citrate
kn-keyword=citrate
en-keyword=heavy metal stress
kn-keyword=heavy metal stress
en-keyword=drought stress
kn-keyword=drought stress
en-keyword=antioxidant
kn-keyword=antioxidant
en-keyword=reactive oxygen species
kn-keyword=reactive oxygen species
en-keyword=salinity
kn-keyword=salinity
en-keyword=aluminum toxicity
kn-keyword=aluminum toxicity
END
start-ver=1.4
cd-journal=joma
no-vol=566
cd-vols=
no-issue=
article-no=
start-page=190
end-page=196
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=2021820
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Role of the TRPM4 channel in mitochondrial function, calcium release, and ROS generation in oxidative stress
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Ischemic heart disease is one of the most common causes of death worldwide. Mitochondrial
dysfunction, excessive reactive oxygen species (ROS) generation, and calcium (Ca2þ) overload are three key factors leading to myocardial death during ischemia-reperfusion (I/R) injury. Inhibition of TRPM4, a Ca2þ-activated nonselective cation channel, protects the rat heart from I/R injury, but the specific mechanism underlying this effect is unclear. In this study, we investigated the mechanism of cardioprotection against I/R injury via TRPM4 using hydrogen peroxide (H2O2), a major contributor to oxidative stress, as an I/R injury model. We knocked out the TRPM4 gene in the rat cardiomyocyte cell line H9c2 using CRISPR/Cas9. Upon H2O2 treatment, intracellular Ca2þ level and ROS production increased in wild type (WT) cells but not in TRPM4 knockout (TRPM4KO) cells. With this treatment, two indicators of mitochondrial function, mitochondrial membrane potential (DJm) and intracellular ATP levels, decreased inWT but not in TRPM4KO cells. Taken together, these findings suggest that blockade of the TRPM4 channel might protect the myocardium from oxidative stress by maintaining the mitochondrial membrane potential and intracellular ATP levels, possibly through preventing aberrant increases in intracellular Ca2þ and ROS.
en-copyright=
kn-copyright=
en-aut-name=WangChen
en-aut-sei=Wang
en-aut-mei=Chen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ChenJian
en-aut-sei=Chen
en-aut-mei=Jian
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WangMengxue
en-aut-sei=Wang
en-aut-mei=Mengxue
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NaruseKeiji
en-aut-sei=Naruse
en-aut-mei=Keiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakahashiKen
en-aut-sei=Takahashi
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=6
article-no=
start-page=591
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=2021621
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Photoelectric Dye, NK-5962, as a Potential Drug for Preventing Retinal Neurons from Apoptosis: Pharmacokinetic Studies Based on Review of the Evidence
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=NK-5962 is a key component of photoelectric dye-based retinal prosthesis (OUReP). In testing the safety and efficacy, NK-5962 was safe in all tests for the biological evaluation of medical devices (ISO 10993) and effective in preventing retinal cells from death even under dark conditions. The long-term implantation of the photoelectric dye-coupled polyethylene film in the subretinal space of hereditary retinal dystrophic (RCS) rats prevented neurons from apoptosis in the adjacent retinal tissue. The intravitreous injection of NK-5962 in the eyes of RCS rats, indeed, reduced the number of apoptotic cells in the retinal outer nuclear layer irrespective of light or dark conditions. In this study, we reviewed the in vitro and in vivo evidence of neuroprotective effect of NK-5962 and designed pharmacokinetic experiments. The in vitro IC50 of 1.7 μM, based on the protective effect on retinal cells in culture, could explain the in vivo EC50 of 3 μM that is calculated from concentrations of intravitreous injection to prevent retinal neurons from apoptosis. Pharmacokinetics of NK-5962 showed that intravenous administration, but not oral administration, led to the effective concentration in the eye of rats. NK-5962 would be a candidate drug for delaying the deterioration of retinal dystrophy, such as retinitis pigmentosa.
en-copyright=
kn-copyright=
en-aut-name=MatsuoToshihiko
en-aut-sei=Matsuo
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=LiuShihui
en-aut-sei=Liu
en-aut-mei=Shihui
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UchidaTetsuya
en-aut-sei=Uchida
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OnoueSatomi
en-aut-sei=Onoue
en-aut-mei=Satomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakagawaShinsaku
en-aut-sei=Nakagawa
en-aut-mei=Shinsaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IshiiMayumi
en-aut-sei=Ishii
en-aut-mei=Mayumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KanamitsuKayoko
en-aut-sei=Kanamitsu
en-aut-mei=Kayoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Ophthalmology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Okayama University Graduate School of Interdisciplinary Science and Engineering in Health Systems
kn-affil=
affil-num=3
en-affil=Polymer Materials Science, Okayama University Graduate School of Natural Science and Technology
kn-affil=
affil-num=4
en-affil=Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka
kn-affil=
affil-num=5
en-affil=Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University
kn-affil=
affil-num=6
en-affil=Drug Discovery Initiative, The University of Tokyo
kn-affil=
affil-num=7
en-affil=Drug Discovery Initiative, The University of Tokyo
kn-affil=
en-keyword=NK-5962
kn-keyword=NK-5962
en-keyword=photoelectric dye
kn-keyword=photoelectric dye
en-keyword=apoptosis
kn-keyword=apoptosis
en-keyword=retinal neuron
kn-keyword=retinal neuron
en-keyword=neuroprotection
kn-keyword=neuroprotection
en-keyword=pharmacokinetics
kn-keyword=pharmacokinetics
en-keyword=ADME
kn-keyword=ADME
en-keyword=phototoxic/photosensitive assay
kn-keyword=phototoxic/photosensitive assay
en-keyword=reactive oxygen species assay
kn-keyword=reactive oxygen species assay
en-keyword=photosafety
kn-keyword=photosafety
END
start-ver=1.4
cd-journal=joma
no-vol=75
cd-vols=
no-issue=3
article-no=
start-page=289
end-page=297
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202106
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Efficacy and Safety of Early Intravenous Landiolol on Myocardial Salvage in Patients with ST-segment Elevation Myocardial Infarction before Primary Percutaneous Coronary Intervention: A Randomized Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Early treatment with an oral β-blocker is recommended in patients with a ST-segment–elevation myocardial infarction (STEMI). In this multicenter study, we evaluated the effects of a continuous administration of landiolol, an ultrashort-acting β-blocker, before primary percutaneous coronary intervention (PCI) on myocardial salvage and its safety in STEMI patients. A total of 47 Japanese patients with anterior or lateral STEMI undergoing a primary PCI within 12 h of symptom onset were randomized to receive intravenous landiolol (started at 3 μg/min/kg dose and continued to a total of 50 mg; n=23) or not (control; n=24). Patients with Killip class III or more were excluded. The primary outcome was the myocardial salvage index on cardiac magnetic resonance imaging (MRI) performed 5-7 days after the PCI. Cardiac MRI was performed in 35 patients (74%). The myocardial salvage index in the landiolol group was significantly greater than that in the control group (44.4±14.6% vs. 31.7±18.9%, respectively; p=0.04). There were no significant differences in adverse events at 24 h between the landiolol and control groups. A continuous administration of landiolol before a primary PCI may increase the degree of myocardial salvage without additional hemodynamic adverse effects within the first 24 h after STEMI.
en-copyright=
kn-copyright=
en-aut-name=MiyamotoMasakazu
en-aut-sei=Miyamoto
en-aut-mei=Masakazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OsawaKazuhiro
en-aut-sei=Osawa
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MiyoshiToru
en-aut-sei=Miyoshi
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MoriAtsushi
en-aut-sei=Mori
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YoshikawaMasaki
en-aut-sei=Yoshikawa
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OkaTakefumi
en-aut-sei=Oka
en-aut-mei=Takefumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IchikawaKeishi
en-aut-sei=Ichikawa
en-aut-mei=Keishi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakamuraKazufumi
en-aut-sei=Nakamura
en-aut-mei=Kazufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ItoHiroshi
en-aut-sei=Ito
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Cardiology, Tsuyama Central Hospital
kn-affil=
affil-num=5
en-affil=Department of Cardiology, Fukuyama City Hospital
kn-affil=
affil-num=6
en-affil=Department of Cardiology, Tsuyama Central Hospital
kn-affil=
affil-num=7
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=myocardial infarction
kn-keyword=myocardial infarction
en-keyword=landiolol
kn-keyword=landiolol
en-keyword= magnetic resonance imaging
kn-keyword= magnetic resonance imaging
en-keyword=STEMI
kn-keyword=STEMI
en-keyword=PCI
kn-keyword=PCI
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=腎組織灌流,酸素化,腎機能におけるノルエピネフリンに対するバソプレシンの有用性~羊敗血症性腎障害モデルを用いて~
kn-title=Beneficial Effects of Vasopressin Compared With Norepinephrine on Renal Perfusion, Oxygenation, and Function in Experimental Septic Acute Kidney Injury
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=OkazakiNobuki
en-aut-sei=Okazaki
en-aut-mei=Nobuki
kn-aut-name=岡﨑信樹
kn-aut-sei=岡﨑
kn-aut-mei=信樹
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=21
cd-vols=
no-issue=1
article-no=
start-page=123
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210421
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Integrated pulmonary index can predict respiratory compromise in high-risk patients in the post-anesthesia care unit: a prospective, observational study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Respiratory compromise (RC) including hypoxia and hypoventilation is likely to be missed in the postoperative period. Integrated pulmonary index (IPI) is a comprehensive respiratory parameter evaluating ventilation and oxygenation. It is calculated from four parameters: end-tidal carbon dioxide, respiratory rate, oxygen saturation measured by pulse oximetry (SpO(2)), and pulse rate. We hypothesized that IPI monitoring can help predict the occurrence of RC in patients at high-risk of hypoventilation in post-anesthesia care units (PACUs).
Methods: This prospective observational study was conducted in two centers and included older adults (>= 75-year-old) or obese (body mass index >= 28) patients who were at high-risk of hypoventilation. Monitoring was started on admission to the PACU after elective surgery under general anesthesia. We investigated the onset of RC defined as respiratory events with prolonged stay in the PACU or transfer to the intensive care units; airway narrowing, hypoxemia, hypercapnia, wheezing, apnea, and any other events that were judged to require interventions. We evaluated the relationship between several initial parameters in the PACU and the occurrence of RC. Additionally, we analyzed the relationship between IPI fluctuation during PACU stay and the occurrences of RC using individual standard deviations of the IPI every five minutes (IPI-SDs).
Results: In total, 288 patients were included (199 elderly, 66 obese, and 23 elderly and obese). Among them, 18 patients (6.3 %) developed RC. The initial IPI and SpO(2) values in the PACU in the RC group were significantly lower than those in the non-RC group (6.7 +/- 2.5 vs. 9.0 +/- 1.3, p < 0.001 and 95.9 +/- 4.2 % vs. 98.3 +/- 1.9 %, p = 0.040, respectively). We used the area under the receiver operating characteristic curves (AUC) to evaluate their ability to predict RC. The AUCs of the IPI and SpO(2) were 0.80 (0.69-0.91) and 0.64 (0.48-0.80), respectively. The IPI-SD, evaluating fluctuation, was significantly greater in the RC group than in the non-RC group (1.47 +/- 0.74 vs. 0.93 +/- 0.74, p = 0.002).
Conclusions: Our study showed that low value of the initial IPI and the fluctuating IPI after admission to the PACU predict the occurrence of RC. The IPI might be useful for respiratory monitoring in PACUs and ICUs after general anesthesia.
en-copyright=
kn-copyright=
en-aut-name=KuroeYasutoshi
en-aut-sei=Kuroe
en-aut-mei=Yasutoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiharaYuko
en-aut-sei=Mihara
en-aut-mei=Yuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OkaharaShuji
en-aut-sei=Okahara
en-aut-mei=Shuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IshiiKenzo
en-aut-sei=Ishii
en-aut-mei=Kenzo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KanazawaTomoyuki
en-aut-sei=Kanazawa
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MorimatsuHiroshi
en-aut-sei=Morimatsu
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Anesthesiology and Resuscitology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Anesthesiology and Resuscitology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Anesthesiology and Resuscitology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Anesthesiology and Oncological Pain Medicine, Fukuyama City Hospital
kn-affil=
affil-num=5
en-affil=Department of Pediatric Anesthesiology, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Anesthesiology and Resuscitology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Integrated pulmonary index
kn-keyword=Integrated pulmonary index
en-keyword=Respiratory compromise
kn-keyword=Respiratory compromise
en-keyword=Post‐anesthesia care unit
kn-keyword=Post‐anesthesia care unit
END
start-ver=1.4
cd-journal=joma
no-vol=8
cd-vols=
no-issue=
article-no=
start-page=431
end-page=443
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202105
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Capturing structural changes of the S-1 to S-2 transition of photosystem II using time-resolved serial femtosecond crystallography
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Photosystem II (PSII) catalyzes light-induced water oxidation through an S-i-state cycle, leading to the generation of di-oxygen, protons and electrons. Pumpprobe time-resolved serial femtosecond crystallography (TR-SFX) has been used to capture structural dynamics of light-sensitive proteins. In this approach, it is crucial to avoid light contamination in the samples when analyzing a particular reaction intermediate. Here, a method for determining a condition that avoids light contamination of the PSII microcrystals while minimizing sample consumption in TR-SFX is described. By swapping the pump and probe pulses with a very short delay between them, the structural changes that occur during the S-1-to-S-2 transition were examined and a boundary of the excitation region was accurately determined. With the sample flow rate and concomitant illumination conditions determined, the S-2-state structure of PSII could be analyzed at room temperature, revealing the structural changes that occur during the S-1-to-S-2 transition at ambient temperature. Though the structure of the manganese cluster was similar to previous studies, the behaviors of the water molecules in the two channels (O1 and O4 channels) were found to be different. By comparing with the previous studies performed at low temperature or with a different delay time, the possible channels for water inlet and structural changes important for the water-splitting reaction were revealed.
en-copyright=
kn-copyright=
en-aut-name=LiHongjie
en-aut-sei=Li
en-aut-mei=Hongjie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakajimaYoshiki
en-aut-sei=Nakajima
en-aut-mei=Yoshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NomuraTakashi
en-aut-sei=Nomura
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SugaharaMichihiro
en-aut-sei=Sugahara
en-aut-mei=Michihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YonekuraShinichiro
en-aut-sei=Yonekura
en-aut-mei=Shinichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ChanSiu Kit
en-aut-sei=Chan
en-aut-mei=Siu Kit
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakaneTakanori
en-aut-sei=Nakane
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YamaneTakahiro
en-aut-sei=Yamane
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=UmenaYasufumi
en-aut-sei=Umena
en-aut-mei=Yasufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SuzukiMamoru
en-aut-sei=Suzuki
en-aut-mei=Mamoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MasudaTetsuya
en-aut-sei=Masuda
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MotomuraTaiki
en-aut-sei=Motomura
en-aut-mei=Taiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=NaitowHisashi
en-aut-sei=Naitow
en-aut-mei=Hisashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=MatsuuraYoshinori
en-aut-sei=Matsuura
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KimuraTetsunari
en-aut-sei=Kimura
en-aut-mei=Tetsunari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=TonoKensuke
en-aut-sei=Tono
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=OwadaShigeki
en-aut-sei=Owada
en-aut-mei=Shigeki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=JotiYasumasa
en-aut-sei=Joti
en-aut-mei=Yasumasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=TanakaRie
en-aut-sei=Tanaka
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=NangoEriko
en-aut-sei=Nango
en-aut-mei=Eriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=AkitaFusamichi
en-aut-sei=Akita
en-aut-mei=Fusamichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=KuboMinoru
en-aut-sei=Kubo
en-aut-mei=Minoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=IwataSo
en-aut-sei=Iwata
en-aut-mei=So
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=ShenJian-Ren
en-aut-sei=Shen
en-aut-mei=Jian-Ren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=SugaMichihiro
en-aut-sei=Suga
en-aut-mei=Michihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
affil-num=1
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Life Science, University of Hyogo
kn-affil=
affil-num=4
en-affil=RIKEN SPring-8 Center
kn-affil=
affil-num=5
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Biological Science, Graduate School of Science, The University of Tokyo
kn-affil=
affil-num=8
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=9
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=10
en-affil=Institute for Protein Research, Osaka University
kn-affil=
affil-num=11
en-affil=Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=12
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=13
en-affil=RIKEN SPring-8 Center
kn-affil=
affil-num=14
en-affil=RIKEN SPring-8 Center
kn-affil=
affil-num=15
en-affil=Department of Chemistry, Graduate School of Science, Kobe University
kn-affil=
affil-num=16
en-affil=RIKEN SPring-8 Center
kn-affil=
affil-num=17
en-affil=RIKEN SPring-8 Center
kn-affil=
affil-num=18
en-affil=RIKEN SPring-8 Center
kn-affil=
affil-num=19
en-affil=RIKEN SPring-8 Center
kn-affil=
affil-num=20
en-affil=RIKEN SPring-8 Center
kn-affil=
affil-num=21
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=22
en-affil=Graduate School of Life Science, University of Hyogo
kn-affil=
affil-num=23
en-affil=RIKEN SPring-8 Center
kn-affil=
affil-num=24
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=25
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=time-resolved serial crystallography
kn-keyword=time-resolved serial crystallography
en-keyword=X-ray free-electron lasers
kn-keyword=X-ray free-electron lasers
en-keyword=membrane proteins
kn-keyword=membrane proteins
en-keyword=photosystem II
kn-keyword=photosystem II
en-keyword=serial crystallography
kn-keyword=serial crystallography
en-keyword=molecular movies
kn-keyword=molecular movies
en-keyword=protein structures
kn-keyword=protein structures
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210505
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Carbon monoxide poisoning during pregnancy treated with hyperbaric oxygen
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Acute carbon monoxide (CO) intoxication during pregnancy causes fetal death and teratogenic effects. Hyperbaric oxygen (HBO2) therapy has the potential to improve them. HBO2 therapy should be considered to treat CO intoxication during pregnancy.
en-copyright=
kn-copyright=
en-aut-name=KosakiYoshinori
en-aut-sei=Kosaki
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MaeyamaHiroki
en-aut-sei=Maeyama
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NojimaTsuyoshi
en-aut-sei=Nojima
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ObaraTakafumi
en-aut-sei=Obara
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakaoAtsunori
en-aut-sei=Nakao
en-aut-mei=Atsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NaitoHiromichi
en-aut-sei=Naito
en-aut-mei=Hiromichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=carbon monoxide
kn-keyword=carbon monoxide
en-keyword=case reports
kn-keyword=case reports
en-keyword=hyperbaric oxygen therapy
kn-keyword=hyperbaric oxygen therapy
en-keyword=pregnancy
kn-keyword=pregnancy
END
start-ver=1.4
cd-journal=joma
no-vol=8
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210413
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Systematic Understanding of Pathophysiological Mechanisms of Oxidative Stress-Related Conditions-Diabetes Mellitus, Cardiovascular Diseases, and Ischemia-Reperfusion Injury
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Reactive oxygen species (ROS) plays a role in intracellular signal transduction under physiological conditions while also playing an essential role in diseases such as hypertension, ischemic heart disease, and diabetes, as well as in the process of aging. The influence of ROS has some influence on the frequent occurrence of cardiovascular diseases (CVD) in diabetic patients. In this review, we considered the pathophysiological relationship between diabetes and CVD from the perspective of ROS. In addition, considering organ damage due to ROS elevation during ischemia-reperfusion, we discussed heart and lung injuries. Furthermore, we have focused on the transient receptor potential (TRP) channels and L-type calcium channels as molecular targets for ROS in ROS-induced tissue damages and have discussed about the pathophysiological mechanism of the injury.
en-copyright=
kn-copyright=
en-aut-name=WangMengxue
en-aut-sei=Wang
en-aut-mei=Mengxue
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=LiuYun
en-aut-sei=Liu
en-aut-mei=Yun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=LiangYin
en-aut-sei=Liang
en-aut-mei=Yin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NaruseKeiji
en-aut-sei=Naruse
en-aut-mei=Keiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakahashiKen
en-aut-sei=Takahashi
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=oxidative stress
kn-keyword=oxidative stress
en-keyword=reactive oxygen species
kn-keyword=reactive oxygen species
en-keyword=inflammation
kn-keyword=inflammation
en-keyword=diabetes mellitus
kn-keyword=diabetes mellitus
en-keyword=ischemia-reperfusion injury
kn-keyword=ischemia-reperfusion injury
en-keyword=mitochondria
kn-keyword=mitochondria
en-keyword=transient receptor potential channels
kn-keyword=transient receptor potential channels
END
start-ver=1.4
cd-journal=joma
no-vol=75
cd-vols=
no-issue=2
article-no=
start-page=169
end-page=175
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202104
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Effects of Low-Dose-Rate γ-irradiation on Forced Swim Test-Induced Immobility and Oxidative Stress in Mice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The forced swim test (FST) induces immobility in mice. Low-dose (high-dose-rate) X-irradiation inhibits FSTinduced immobility in mice due to its antioxidative function. We evaluated the effects of low-dose γ-irradiation at a low-dose-rate on the FST-induced depletion of antioxidants in mouse organs. Mice received whole-body low-dose-rate (0.6 or 3.0 mGy/h) of low-dose γ-irradiation for 1 week, followed by daily FSTs (5 days). The immobility rate on day 2 compared to day 1 was significantly lower in the 3.0 mGy/h irradiated mice than in sham irradiated mice. The FST significantly decreased the catalase (CAT) activity and total glutathione (t-GSH) content in the brain and kidney, respectively. The superoxide dismutase (SOD) activity and t-GSH content in the liver of the 3.0 mGy/h irradiated mice were significantly lower than those of the non-FST-treated mice. The CAT activity in the lungs of mice exposed to 3.0 mGy/h γ-irradiation was higher than that of non-FST treated mice and mice treated with FST. However, no significant differences were observed in the levels of these antioxidant markers between the sham and irradiated groups except for the CAT activity in lungs. These findings suggest that the effects of low-dose-rate and low-dose γ-irradiation on FST are highly organ-dependent.
en-copyright=
kn-copyright=
en-aut-name=NakadaTetsuya
en-aut-sei=Nakada
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KataokaTakahiro
en-aut-sei=Kataoka
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NomuraTakaharu
en-aut-sei=Nomura
en-aut-mei=Takaharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ShutoHina
en-aut-sei=Shuto
en-aut-mei=Hina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YanoJunki
en-aut-sei=Yano
en-aut-mei=Junki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NaoeShota
en-aut-sei=Naoe
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HanamotoKatsumi
en-aut-sei=Hanamoto
en-aut-mei=Katsumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YamaokaKiyonori
en-aut-sei=Yamaoka
en-aut-mei=Kiyonori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Central Research Institute of Electric Power Industry
kn-affil=
affil-num=4
en-affil=Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Graduate School of Health Sciences, Okayama University
kn-affil=
en-keyword=low-dose-rate γ-irradiation
kn-keyword=low-dose-rate γ-irradiation
en-keyword=forced swim test
kn-keyword=forced swim test
en-keyword=antioxidant
kn-keyword=antioxidant
en-keyword=oxidative stress
kn-keyword=oxidative stress
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210403
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Cooperation between NRF2-mediated transcription and MDIG-dependent epigenetic modifications in arsenic-induced carcinogenesis and cancer stem cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= Environmental exposure to arsenic, a well-established carcinogen linked to a number of human cancers, is a public health concern in many areas of the world. Despite extensive studies on the molecular mechanisms of arsenic-induced carcinogenesis, how initial cellular responses, such as activation of stress kinases and the generation of reactive oxygen species, converge to affect the transcriptional and/or epigenetic reprogramming required for the malignant transformation of normal cells or normal stem cells remains to be elucidated. In this review, we discuss some recent discoveries showing how the transcription factor NRF2 and an epigenetic regulator, MDIG, contribute to the arsenic-induced generation of cancer stem-like cells (CSCs) as determined by applying CRISPR-Cas9 gene editing and chromosome immunoprecipitation followed by DNA sequencing (ChIP-seq).
en-copyright=
kn-copyright=
en-aut-name=BiZhuoyue
en-aut-sei=Bi
en-aut-mei=Zhuoyue
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ZhangQian
en-aut-sei=Zhang
en-aut-mei=Qian
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FuYao
en-aut-sei=Fu
en-aut-mei=Yao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SenoAkimasa
en-aut-sei=Seno
en-aut-mei=Akimasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WadgaonkarPriya
en-aut-sei=Wadgaonkar
en-aut-mei=Priya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=QiuYiran
en-aut-sei=Qiu
en-aut-mei=Yiran
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=AlmutairyBandar
en-aut-sei=Almutairy
en-aut-mei=Bandar
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=XuLiping
en-aut-sei=Xu
en-aut-mei=Liping
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ZhangWenxuan
en-aut-sei=Zhang
en-aut-mei=Wenxuan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ThakurChitra
en-aut-sei=Thakur
en-aut-mei=Chitra
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=ChenFei
en-aut-sei=Chen
en-aut-mei=Fei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University
kn-affil=
affil-num=2
en-affil=Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University
kn-affil=
affil-num=3
en-affil=Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University
kn-affil=
affil-num=4
en-affil=Faculty of Engineering, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University
kn-affil=
affil-num=6
en-affil=Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University
kn-affil=
affil-num=7
en-affil=Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University
kn-affil=
affil-num=8
en-affil=Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University
kn-affil=
affil-num=9
en-affil=Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University
kn-affil=
affil-num=10
en-affil=Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University
kn-affil=
affil-num=11
en-affil=Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University
kn-affil=
en-keyword=Arsenic
kn-keyword=Arsenic
en-keyword=NRF2
kn-keyword=NRF2
en-keyword=MDIG
kn-keyword=MDIG
en-keyword=Cancer stem cells
kn-keyword=Cancer stem cells
en-keyword=Carcinogenesis
kn-keyword=Carcinogenesis
END
start-ver=1.4
cd-journal=joma
no-vol=4
cd-vols=
no-issue=1
article-no=
start-page=382
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210322
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=High-resolution cryo-EM structure of photosystem II reveals damage from high-dose electron beams
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Photosystem II (PSII) plays a key role in water-splitting and oxygen evolution. X-ray crystallography has revealed its atomic structure and some intermediate structures. However, these structures are in the crystalline state and its final state structure has not been solved. Here we analyzed the structure of PSII in solution at 1.95 Å resolution by single-particle cryo-electron microscopy (cryo-EM). The structure obtained is similar to the crystal structure, but a PsbY subunit was visible in the cryo-EM structure, indicating that it represents its physiological state more closely. Electron beam damage was observed at a high-dose in the regions that were easily affected by redox states, and reducing the beam dosage by reducing frames from 50 to 2 yielded a similar resolution but reduced the damage remarkably. This study will serve as a good indicator for determining damage-free cryo-EM structures of not only PSII but also all biological samples, especially redox-active metalloproteins.
en-copyright=
kn-copyright=
en-aut-name=KatoKoji
en-aut-sei=Kato
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyazakiNaoyuki
en-aut-sei=Miyazaki
en-aut-mei=Naoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HamaguchiTasuku
en-aut-sei=Hamaguchi
en-aut-mei=Tasuku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakajimaYoshiki
en-aut-sei=Nakajima
en-aut-mei=Yoshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AkitaFusamichi
en-aut-sei=Akita
en-aut-mei=Fusamichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YonekuraKoji
en-aut-sei=Yonekura
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ShenJian-Ren
en-aut-sei=Shen
en-aut-mei=Jian-Ren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba
kn-affil=
affil-num=3
en-affil=Biostructural Mechanism Laboratory, RIKEN Spring-8 Center
kn-affil=
affil-num=4
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Institute of Multidisciplinary Research for Advanced Materials, Tohoku University
kn-affil=
affil-num=7
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=9
cd-vols=
no-issue=1
article-no=
start-page=2045894019831217
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=20190215
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Improvement of lung function and pulmonary hypertension after pulmonary aneurysm repair: case series
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Pulmonary artery aneurysms (PAA) can be complicated with pulmonary arterial hypertension (PAH), causing sudden death due to PA rupture and dissection. Because treatment with PAH-targeted drugs does not always prevent PAA progression, prophylactic surgical repair of the PAA seems a promising alternative. However, although it avoids rupture and dissection of the PAs, additional benefits have not been forthcoming. We therefore present two patients with co-existing PAH and a PAA who underwent surgical repair of the aneurysm. Following the surgery, their lung function and pulmonary hypertension improved. Optimal treatment of PAA remains uncertain, however, with no clear guidelines regarding the best therapeutic approach. This case series provides physicians with reasons to repair PAA surgically in patients with PAH.
en-copyright=
kn-copyright=
en-aut-name=AkagiSatoshi
en-aut-sei=Akagi
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=EjiriKentaro
en-aut-sei=Ejiri
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KasaharaShingo
en-aut-sei=Kasahara
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakamuraKazufumi
en-aut-sei=Nakamura
en-aut-mei=Kazufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ItoHiroshi
en-aut-sei=Ito
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Surgery, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science
kn-affil=
en-keyword=vital capacity
kn-keyword=vital capacity
en-keyword=pulmonary artery pressure
kn-keyword=pulmonary artery pressure
en-keyword=lung perfusion and oxygenation
kn-keyword=lung perfusion and oxygenation
END
start-ver=1.4
cd-journal=joma
no-vol=22
cd-vols=
no-issue=4
article-no=
start-page=1729
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210209
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Treatment of Oxidative Stress with Exosomes in Myocardial Ischemia
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A thrombus in a coronary artery causes ischemia, which eventually leads to myocardial infarction (MI) if not removed. However, removal generates reactive oxygen species (ROS), which causes ischemia-reperfusion (I/R) injury that damages the tissue and exacerbates the resulting MI. The mechanism of I/R injury is currently extensively understood. However, supplementation of exogenous antioxidants is ineffective against oxidative stress (OS). Enhancing the ability of endogenous antioxidants may be a more effective way to treat OS, and exosomes may play a role as targeted carriers. Exosomes are nanosized vesicles wrapped in biofilms which contain various complex RNAs and proteins. They are important intermediate carriers of intercellular communication and material exchange. In recent years, diagnosis and treatment with exosomes in cardiovascular diseases have gained considerable attention. Herein, we review the new findings of exosomes in the regulation of OS in coronary heart disease, discuss the possibility of exosomes as carriers for the targeted regulation of endogenous ROS generation, and compare the advantages of exosome therapy with those of stem-cell therapy. Finally, we explore several miRNAs found in exosomes against OS.
en-copyright=
kn-copyright=
en-aut-name=LiuYun
en-aut-sei=Liu
en-aut-mei=Yun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WangMengxue
en-aut-sei=Wang
en-aut-mei=Mengxue
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=LiangYin
en-aut-sei=Liang
en-aut-mei=Yin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=WangChen
en-aut-sei=Wang
en-aut-mei=Chen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NaruseKeiji
en-aut-sei=Naruse
en-aut-mei=Keiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TakahashiKen
en-aut-sei=Takahashi
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=exosome
kn-keyword=exosome
en-keyword=oxidative stress
kn-keyword=oxidative stress
en-keyword=exosome therapy
kn-keyword=exosome therapy
en-keyword=myocardial infarction
kn-keyword=myocardial infarction
en-keyword=coronary heart disease
kn-keyword=coronary heart disease
en-keyword=reactive oxygen radicals
kn-keyword=reactive oxygen radicals
END
start-ver=1.4
cd-journal=joma
no-vol=1
cd-vols=
no-issue=3
article-no=
start-page=80
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20201217
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=On the Occurrence of Clathrate Hydrates in Extreme Conditions: Dissociation Pressures and Occupancies at Cryogenic Temperatures with Application to Planetary Systems
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We investigate the thermodynamic stability of clathrate hydrates at cryogenic temperatures from the 0 K limit to 200 K in a wide range of pressures, covering the thermodynamic conditions of interstellar space and the surface of the hydrosphere in satellites. Our evaluation of the phase behaviors is performed by setting up quantum partition functions with variable pressures on the basis of a rigorous statistical mechanics theory that requires only the intermolecular interactions as input. Noble gases, hydrocarbons, nitrogen, and oxygen are chosen as the guest species, which are key components of the volatiles in such satellites. We explore the hydrate/water two-phase boundary of those clathrate hydrates in water-rich conditions and the hydrate/guest two-phase boundary in guest-rich conditions, either of which occurs on the surface or subsurface of icy satellites. The obtained phase diagrams indicate that clathrate hydrates can be in equilibrium with either water or the guest species over a wide range far distant from the three-phase coexistence condition and that the stable pressure zone of each clathrate hydrate expands significantly on intense cooling. The implication of our findings for the stable form of water in Titan is that water on the surface exists only as clathrate hydrate with the atmosphere down to a shallow region of the crust, but clathrate hydrate in the remaining part of the crust can coexist with water ice. This is in sharp contrast to the surfaces of Europa and Ganymede, where the thin oxygen air coexists exclusively with pure ice.
en-copyright=
kn-copyright=
en-aut-name=TanakaHideki
en-aut-sei=Tanaka
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YagasakiTakuma
en-aut-sei=Yagasaki
en-aut-mei=Takuma
kn-aut-name=琢
kn-aut-sei=
kn-aut-mei=琢
aut-affil-num=2
ORCID=
en-aut-name=MatsumotoMasakazu
en-aut-sei=Matsumoto
en-aut-mei=Masakazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=2
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=3
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=232
cd-vols=
no-issue=1
article-no=
start-page=17
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210106
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Enhancement of Zinc Ion Removal from Water by Physically Mixed Particles of Iron/Iron Sulfide
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Zinc (Zn) removal by physically mixed particles of zero-valent iron (Fe) and iron sulfide (FeS) was investigated as one technology for Zn removal from waste groundwater. The effects of the Fe/FeS mass ratio, including a single Fe and FeS particles, and pH on changes in the concentrations of Zn, Fe, and S were examined by a batch test and column tests, and the mechanism of Zn elimination was discussed. Among all the mixing fractions of Fe and FeS, Zn was eliminated most effectively by 3Fe/7FeS (mass ratio of Fe/FeS = 3/7). The Zn removal rate decreased in the order of 3Fe/7FeS, FeS, and Fe, whereas the Fe concentration decreased in the order of Fe, FeS, and 3Fe/7FeS. The S concentration of FeS was larger than that of 3Fe/7FeS. The Zn removal rate by physically mixed 3Fe/7FeS particles was enhanced by a local cell reaction between the Fe and FeS particles. The electrons caused by Fe corrosion moved to the FeS surface and reduced the dissolved oxygen in the solution. Zn2+, Fe2+, and OH− ions in the solution were then coprecipitated on the particles as ZnFe2(OH)6 and oxidized to ZnFe2O4. Moreover, Zn2+ was sulfurized as ZnS by both the Fe/FeS mixture and the simple FeS particles. The Zn removal rate increased with increasing pH in the range from pH 3 to 7. From a kinetic analysis of Zn removal, the rate constant of anode (Fe)/cathode (FeS) reaction was almost the same as that of ZnS formation and slightly larger than that of Fe alone.
en-copyright=
kn-copyright=
en-aut-name=KambaYuya
en-aut-sei=Kamba
en-aut-mei=Yuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UetaMiharu
en-aut-sei=Ueta
en-aut-mei=Miharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UddinMd. Azhar
en-aut-sei=Uddin
en-aut-mei=Md. Azhar
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KatoYoshiei
en-aut-sei=Kato
en-aut-mei=Yoshiei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Material and Energy Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Material and Energy Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Material and Energy Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Material and Energy Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=Zero-valent iron
kn-keyword=Zero-valent iron
en-keyword=Iron sulfide
kn-keyword=Iron sulfide
en-keyword=Zinc ion
kn-keyword=Zinc ion
en-keyword=Zinc removal
kn-keyword=Zinc removal
en-keyword=Groundwater treatment
kn-keyword=Groundwater treatment
END
start-ver=1.4
cd-journal=joma
no-vol=7
cd-vols=
no-issue=1
article-no=
start-page=e618
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20201220
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Incidence and related factors of hypoxia associated with elderly femoral neck fractures in the emergency department setting
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Aim
Femoral neck fractures in elderly patients needing oxygen therapy are often encountered in the emergency department. This single‐center, retrospective, observational study aimed to examine the frequency, cause, and factors related to hypoxia in elderly patients with femoral neck fractures.
Methods
We analyzed data from 241 patients admitted to Okayama Saiseikai General Hospital (Okayama, Japan) from April 2016 to March 2019. Hypoxia was defined as PaO2 / FiO2 ratio under 300. The independent factors for hypoxia were determined by multiple logistic regression analysis.
Results
There were 194 patients who met the study inclusion criteria, 148 in the non‐hypoxia group and 46 in the hypoxia group. The hypoxia group included patients with pneumonia (n = 3), chronic obstructive pulmonary disease (n = 2), pulmonary edema (n = 1), and pulmonary embolization (n = 1). The cause of hypoxia was undetermined in 39 cases. However, occult fat embolism syndrome was suspected in 29 of these 39 cases based on Gurd and Wilson criteria after considering clinical examination results. Barthel indexes were significantly lower in the hypoxia group on discharge. Age (adjusted odds ratio [OR] 1.07; 95% confidence interval [CI], 1.00–1.14; P = 0.038), D‐dimer (adjusted OR 1.02; 95% CI, 1.00–1.03; P = 0.005), and transtricuspid pressure gradient (adjusted OR 1.03; 95% CI, 1.00–1.07; P = 0.015) were independently associated with the hypoxia.
Conclusion
We found that hypoxia, including undetermined hypoxia, was commonly encountered in the emergency department. Hypoxia in elderly patients with femoral neck fractures was associated with age, D‐dimer, and transtricuspid pressure gradient and needs further investigation.
en-copyright=
kn-copyright=
en-aut-name=HongoTakashi
en-aut-sei=Hongo
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NaitoHiromichi
en-aut-sei=Naito
en-aut-mei=Hiromichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FujiwaraToshifumi
en-aut-sei=Fujiwara
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=InabaMototaka
en-aut-sei=Inaba
en-aut-mei=Mototaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FujisakiNoritomo
en-aut-sei=Fujisaki
en-aut-mei=Noritomo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakaoAtsunori
en-aut-sei=Nakao
en-aut-mei=Atsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Emergency Department, Okayama Saiseikai General Hospital
kn-affil=
affil-num=2
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=3
en-affil=Emergency Department, Okayama Saiseikai General Hospital
kn-affil=
affil-num=4
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
en-keyword=D-dimer
kn-keyword=D-dimer
en-keyword=geriatric
kn-keyword=geriatric
en-keyword=hypoxia
kn-keyword=hypoxia
en-keyword=injury
kn-keyword=injury
en-keyword=TRPG
kn-keyword=TRPG
END
start-ver=1.4
cd-journal=joma
no-vol=2
cd-vols=
no-issue=10
article-no=
start-page=4417
end-page=4420
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20200824
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Bottom-up synthesis of nitrogen-doped nanocarbons by a combination of metal catalysis and a solution plasma process
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We aimed to develop the bottom-up synthesis of nanocarbons with specific functions from molecules without any leaving group, halogen atom and boronic acid, by employing a metal catalyst under solution plasma irradiation. Pyridine was used as a source of carbon. In the presence of a Pd catalyst, the plasma treatment enabled the synthesis of N-doped carbons with a pyridinic configuration, which worked as an active catalytic site for the oxygen reduction reaction.
en-copyright=
kn-copyright=
en-aut-name=ZhouYang
en-aut-sei=Zhou
en-aut-mei=Yang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Research Core for Interdisciplinary Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=6
cd-vols=
no-issue=Suppl. 7
article-no=
start-page=248
end-page=254
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20201204
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Self-assembly of Ni–Fe layered double hydroxide at room temperature for oxygen evolution reaction
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Active and stable electrocatalysts are the key to water electrolysis for hydrogen production. This paper reports a facile direct growth method to synthesize NiFe-layered double hydroxides (LDHs) on nickel foil as an electrocatalyst for the oxygen evolution reaction. The NiFe-LDH is synthesized by a galvanic process at room temperature without any additional energy for synthesis. The synthesized NiFe-LDH is a karst landform with abundant active sites and efficient mass diffusion. The NiFe-LDH with an oxygen defect show excellent electrocatalytic performance for the OER, with a low overpotential (272 mV at 10 mA/cm2), a small Tafel slope (43 mV/dec), and superior durability. Direct growth synthesis provide excellent electrical conductivity as well as strong bonding between the catalyst layer and the substrate. In addition, this synthesis process is simple to apply in the fabrication of a large size electrode and is believed to be applicable to commercialized alkaline water electrolysis.
en-copyright=
kn-copyright=
en-aut-name=KimSeong Hyun
en-aut-sei=Kim
en-aut-mei=Seong Hyun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ParkYoo Sei
en-aut-sei=Park
en-aut-mei=Yoo Sei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KimChiho
en-aut-sei=Kim
en-aut-mei=Chiho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KwonIl Yeong
en-aut-sei=Kwon
en-aut-mei=Il Yeong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=LeeJooyoung
en-aut-sei=Lee
en-aut-mei=Jooyoung
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=JinHyunsoo
en-aut-sei=Jin
en-aut-mei=Hyunsoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=LeeYoon-Seok
en-aut-sei=Lee
en-aut-mei=Yoon-Seok
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ChoiSung Mook
en-aut-sei=Choi
en-aut-mei=Sung Mook
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KimYangdo
en-aut-sei=Kim
en-aut-mei=Yangdo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Materials Science and Engineering, Pusan National University
kn-affil=
affil-num=2
en-affil=Department of Materials Science and Engineering, Pusan National University
kn-affil=
affil-num=3
en-affil=Department of Materials Science and Engineering, Pusan National University
kn-affil=
affil-num=4
en-affil=Department of Materials Science and Engineering, Pusan National University
kn-affil=
affil-num=5
en-affil=Materials Center for Energy Department, Surface Technology Division, Korea Institute of Materials Science,
kn-affil=
affil-num=6
en-affil=Department of Mechanical Engineering, Worcester Polytechnic Institute
kn-affil=
affil-num=7
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Materials Center for Energy Department, Surface Technology Division, Korea Institute of Materials Science
kn-affil=
affil-num=9
en-affil=Department of Materials Science and Engineering, Pusan National University
kn-affil=
en-keyword=Water electrolysis
kn-keyword=Water electrolysis
en-keyword=Oxygen evolution reaction
kn-keyword=Oxygen evolution reaction
en-keyword=NiFe layered double hydroxide
kn-keyword=NiFe layered double hydroxide
en-keyword=Room temperature synthesis
kn-keyword=Room temperature synthesis
en-keyword=Electrocatalyst
kn-keyword=Electrocatalyst
END
start-ver=1.4
cd-journal=joma
no-vol=31
cd-vols=
no-issue=
article-no=
start-page=101224
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=202012
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Extracorporeal membrane oxygenation in Stenotrophomonas maltophilia pneumonia during acute myeloid leukemia: A case report
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Stenotrophomonas maltophilia (S. maltophilia) is a Gram-negative, multidrug-resistant organism that both opportunistically infects the bloodstream and leads to pneumonia in immunosuppressed patients, including those with hematologic malignancies. In patients with severe respiratory failure, venovenous extracorporeal membrane oxygenation (VV ECMO) can stabilize the respiratory status. However, whether ECMO in patients with hematologic malignancies improves the clinical outcomes is still controversial because ECMO increases the risk of the exacerbation of sepsis and bleeding. We report a case of a 46-year-old man with Stenotrophomonas maltophilia hemorrhagic pneumonia acquired during consolidation chemotherapy for acute myeloid leukemia in whom VV ECMO lead to a good clinical outcome. The stabilization of his respiratory status achieved with VV ECMO allowed time for trimethoprim-sulfamethoxazole antibiotic therapy to improve the pneumonia. We suggest the background of patients, including comorbidities and general conditions, should be taken into account when considering the clinical indications of ECMO.
en-copyright=
kn-copyright=
en-aut-name=SaitoKenki
en-aut-sei=Saito
en-aut-mei=Kenki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AokageToshiyuki
en-aut-sei=Aokage
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SatoTakayuki
en-aut-sei=Sato
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TsukaharaKohei
en-aut-sei=Tsukahara
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TokiokaFumiaki
en-aut-sei=Tokioka
en-aut-mei=Fumiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OtakeTakanao
en-aut-sei=Otake
en-aut-mei=Takanao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IrieHiromasa
en-aut-sei=Irie
en-aut-mei=Hiromasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=UedaYasunori
en-aut-sei=Ueda
en-aut-mei=Yasunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Hematology/Oncology, Kurashiki Central Hospital
kn-affil=
affil-num=2
en-affil=Department of Geriatric Emergency Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Hematology/Oncology, Kurashiki Central Hospital
kn-affil=
affil-num=4
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Respiratory Medicine, Kurashiki Central Hospital
kn-affil=
affil-num=6
en-affil=Department of Anesthesiology, Kurashiki Central Hospital
kn-affil=
affil-num=7
en-affil=Department of Anesthesiology, Kurashiki Central Hospital
kn-affil=
affil-num=8
en-affil=Department of Hematology/Oncology, Kurashiki Central Hospital
kn-affil=
en-keyword=Stenotrophomonas maltophilia
kn-keyword=Stenotrophomonas maltophilia
en-keyword=Severe pneumonia
kn-keyword=Severe pneumonia
en-keyword=Acute panmyelosis with myelofibrosis
kn-keyword=Acute panmyelosis with myelofibrosis
en-keyword=Acute myeloid leukemia
kn-keyword=Acute myeloid leukemia
en-keyword=Extracorporeal membrane oxygenation
kn-keyword=Extracorporeal membrane oxygenation
END
start-ver=1.4
cd-journal=joma
no-vol=363
cd-vols=
no-issue=
article-no=
start-page=137257
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20201210
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Sophisticated rGO synthesis and pre-lithiation unlocking full-cell lithium-ion battery high-rate performances
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=For the application to portable devices and storage of renewable energies, high-performance lithium-ion batteries are in great demand. To this end, the development of high-performance electrode materials has been actively investigated. However, even if new materials exhibit high performance in a simple evaluation, namely half-cell tests, it is often impossible to obtain satisfactory performance with an actual battery (full cell). In this study, the structure of graphene analogs is modified in various ways to change crystallinity, disorder, oxygen content, electrical conductivity, and specific surface area. These graphene analogs are evaluated as negative electrodes for lithium-ion batteries, and we found reduced graphene oxide prepared by combination of chemical reduction and thermal treatment was the optimum. In addition, a full cell is fabricated by combining it with LiCoO2 modified with BaTiO3, which is applicable to high-speed charge–discharge cathode material developed in our previous research. In general, pre-lithiation is performed for the anode when assembling full cells. In this study, we optimized a "direct pre-lithiation" method in which the electrode and lithium foil were in direct contact before assembling a full cell, and created a lithium-ion battery with an output of 293 Wh kg−1 at 8,658 W kg−1.
en-copyright=
kn-copyright=
en-aut-name=CampéonBenoît Denis Louis
en-aut-sei=Campéon
en-aut-mei=Benoît Denis Louis
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YoshikawaYumi
en-aut-sei=Yoshikawa
en-aut-mei=Yumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TeranishiTakashi
en-aut-sei=Teranishi
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Graphene
kn-keyword=Graphene
en-keyword=Lithium-ion battery
kn-keyword=Lithium-ion battery
en-keyword=Full-cell
kn-keyword=Full-cell
en-keyword=LiCoO2
kn-keyword=LiCoO2
en-keyword=High-rate
kn-keyword=High-rate
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=
article-no=
start-page=101228
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=202012
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Isotopic proveniencing at Classic Copan and in the southern periphery of the Maya Area: A new perspective on multi-ethnic society
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Strontium, oxygen, and carbon isotopes were measured in human tooth enamel from 66 burials in 9L-22 and 9L-23 residential groups at the Classic Maya site of Copan in western Honduras. These results are discussed in relation to earlier studies at Copan and baseline measurements from the surrounding region and the Maya area in general. Nearly 50% of the individuals are identified as non-local based on combinations of strontium, oxygen, and carbon isotope ratios. They came from a variety of places in the Maya area. This migratory pattern at the 9L-22 & 9L-23 residential complex from the Early to Late Classic (ca. 400–800 CE) is compared with 10J-45 sector from the mainly Early Classic occupation (ca. 400–650 CE) and an interesting change is noted. The social privileges observed among the Early Classic immigrants from the north Maya Lowlands were apparently revoked in the Late Classic. New immigrants, probably from the “non-Maya” regions of Western/Central Honduras, appear to have gained those social privileges. High-status Honduran individuals in the urban core suggests a strategy by the Copan dynasty in the Late Classic that incorporated the emerging “non-Maya” elites from Western/Central Honduras.
en-copyright=
kn-copyright=
en-aut-name=SuzukiShintaro
en-aut-sei=Suzuki
en-aut-mei=Shintaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakamuraSeiichi
en-aut-sei=Nakamura
en-aut-mei=Seiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=PriceT. Douglas
en-aut-sei=Price
en-aut-mei=T. Douglas
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Graduate School of Humanities and Social Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Center for Cultural Resource Studies, Institute of Human and Social Sciences, Kanazawa University
kn-affil=
affil-num=3
en-affil=Laboratory for Archaeological Chemistry, University of Wisconsin
kn-affil=
en-keyword=Prehispanic mesoamerica
kn-keyword=Prehispanic mesoamerica
en-keyword=Maya
kn-keyword=Maya
en-keyword=Non-Maya
kn-keyword=Non-Maya
en-keyword=Borderland
kn-keyword=Borderland
en-keyword=Mobility
kn-keyword=Mobility
en-keyword=Strontium
kn-keyword=Strontium
en-keyword=Oxygen
kn-keyword=Oxygen
en-keyword=Carbon
kn-keyword=Carbon
END
start-ver=1.4
cd-journal=joma
no-vol=7
cd-vols=
no-issue=1
article-no=
start-page=e501
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20200413
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Therapeutic strategies for ischemia reperfusion injury in emergency medicine
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Ischemia reperfusion (IR) injury occurs when blood supply, perfusion, and concomitant reoxygenation is restored to an organ or area following an initial poor blood supply after a critical time period. Ischemia reperfusion injury contributes to mortality and morbidity in many pathological conditions in emergency medicine clinical practice, including trauma, ischemic stroke, myocardial infarction, and post-cardiac arrest syndrome. The process of IR is multifactorial, and its pathogenesis involves several mechanisms. Reactive oxygen species are considered key molecules in reperfusion injury due to their potent oxidizing and reducing effects that directly damage cellular membranes by lipid peroxidation. In general, IR injury to an individual organ causes various pro-inflammatory mediators to be released, which could then induce inflammation in remote organs, thereby possibly advancing the dysfunction of multiple organs. In this review, we summarize IR injury in emergency medicine. Potential therapies include pharmacological treatment, ischemic preconditioning, and the use of medical gases or vitamin therapy, which could significantly help experts develop strategies to inhibit IR injury.
en-copyright=
kn-copyright=
en-aut-name=NaitouHiromichi
en-aut-sei=Naitou
en-aut-mei=Hiromichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NojimaTsuyoshi
en-aut-sei=Nojima
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FujisakiNoritomo
en-aut-sei=Fujisaki
en-aut-mei=Noritomo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TsukaharaKohei
en-aut-sei=Tsukahara
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamamotoHirotsugu
en-aut-sei=Yamamoto
en-aut-mei=Hirotsugu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamadaTaihei
en-aut-sei=Yamada
en-aut-mei=Taihei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=AokageToshiyuki
en-aut-sei=Aokage
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YumotoTetsuya
en-aut-sei=Yumoto
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OsakoTakaaki
en-aut-sei=Osako
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NakaoAtsunori
en-aut-sei=Nakao
en-aut-mei=Atsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Emergency medicine
kn-keyword=Emergency medicine
en-keyword=inflammation
kn-keyword=inflammation
en-keyword=ischemia reperfusion
kn-keyword=ischemia reperfusion
en-keyword=remote ischemic preconditioning
kn-keyword=remote ischemic preconditioning
en-keyword=shock
kn-keyword=shock
en-keyword=therapeutic hypothermia
kn-keyword=therapeutic hypothermia
END
start-ver=1.4
cd-journal=joma
no-vol=405
cd-vols=
no-issue=
article-no=
start-page=112905
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210115
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Exploring reaction pathways for the structural rearrangements of the Mn cluster induced by water binding in the S3 state of the oxygen evolving complex of photosystem II
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Photosynthetic oxidation of water to dioxygen is catalyzed by the Mn4CaO5 cluster in the protein-cofactor complex photosystem II. The light-driven catalytic cycle consists of four observable intermediates (S0, S1, S2, and S3) and one transient S4 state. Recently, using X-ray free-electron laser crystallography, two experimental groups independently observed incorporation of one additional oxygen into the cluster during the S2 to S3 transition, which is likely to represent a substrate. The present study implicates two competing reaction routes encountered during the structural rearrangement of the catalyst induced by the water binding and immediately preceding the formation of final stable forms in the S3 state. This mutually exclusive competition involves concerted versus stepwise conformational changes between two isomers, called open and closed cubane structures, which have different consequences on the immediate product in the S3 state. The concerted pathway involves a one-step conversion between two isomeric hydroxo forms without changes to the metal oxidation and total spin (Stotal = 3) states. Alternatively, in the stepwise process, the bound waters are oxidized and transformed into an oxyl–oxo form in a higher spin (Stotal = 6) state. Here, density functional calculations are used to characterize all relevant intermediates and transition structures and demonstrate that the stepwise pathway to the substrate activation is substantially favored over the concerted one, as evidenced by comparison of the activation barriers (11.1 and 20.9 kcal mol−1, respectively). Only after formation of the oxyl–oxo precursor can the hydroxo species be generated; this occurs with a slow kinetics and an activation barrier of 17.8 kcal mol−1. The overall thermodynamic driving force is likely to be controlled by the movements of two glutamate ligands, D1-Glu189 and CP43-Glu354, in the active site and ranges from very weak (+0.4 kcal mol−1) to very strong (–23.5 kcal mol−1).
en-copyright=
kn-copyright=
en-aut-name=IsobeHiroshi
en-aut-sei=Isobe
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShojiMitsuo
en-aut-sei=Shoji
en-aut-mei=Mitsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SuzukiTakayoshi
en-aut-sei=Suzuki
en-aut-mei=Takayoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ShenJian-Ren
en-aut-sei=Shen
en-aut-mei=Jian-Ren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamaguchiKizashi
en-aut-sei=Yamaguchi
en-aut-mei=Kizashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=2
en-affil=Center for Computational Science, University of Tsukuba
kn-affil=
affil-num=3
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=4
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=5
en-affil=Institute for NanoScience Design, Osaka University
kn-affil=
en-keyword=Photosynthesis
kn-keyword=Photosynthesis
en-keyword=Water oxidation
kn-keyword=Water oxidation
en-keyword=Photosystem II
kn-keyword=Photosystem II
en-keyword=Oxygen evolving complex
kn-keyword=Oxygen evolving complex
en-keyword=Mn4CaO6 cluster
kn-keyword=Mn4CaO6 cluster
en-keyword=Ligand environment
kn-keyword=Ligand environment
END
start-ver=1.4
cd-journal=joma
no-vol=132
cd-vols=
no-issue=2
article-no=
start-page=102
end-page=107
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20200803
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Drug interaction (48. Interaction of drug with extracorporeal membrane oxygenation (ECMO))
kn-title=薬物相互作用(48―体外式膜型人工肺(ECMO)と 薬物の相互作用)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=OkawaYasumasa
en-aut-sei=Okawa
en-aut-mei=Yasumasa
kn-aut-name=大川恭昌
kn-aut-sei=大川
kn-aut-mei=恭昌
aut-affil-num=1
ORCID=
en-aut-name=EsumiSatoru
en-aut-sei=Esumi
en-aut-mei=Satoru
kn-aut-name=江角悟
kn-aut-sei=江角
kn-aut-mei=悟
aut-affil-num=2
ORCID=
en-aut-name=SendoToshiaki
en-aut-sei=Sendo
en-aut-mei=Toshiaki
kn-aut-name=千堂年昭
kn-aut-sei=千堂
kn-aut-mei=年昭
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=岡山大学病院 薬剤部
affil-num=2
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=岡山大学病院 薬剤部
affil-num=3
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=岡山大学病院 薬剤部
END
start-ver=1.4
cd-journal=joma
no-vol=128
cd-vols=
no-issue=10
article-no=
start-page=843
end-page=846
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=2020101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Crystal structure of Ca(Fe0.4Si0.6)O2.8 oxygen-deficient perovskite
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The crystal structure of Ca(Fe3+0.4Si0.6)O2.8 oxygen-deficient perovskite phase synthesized at 12 GPa and 1400 °C was studied using synchrotron powder X-ray diffraction. The phase is isostructural to low-pressure phase of Ca(Al0.4Si0.6)O2.8. The structure was refined by the Rietveld method and is consists of a perovskite-like triple-layer of corner-shared (Fe3+,Si)O6 octahedra and a double-layer of SiO4 tetrahedra those are stacked alternatively in the [111] direction of ideal cubic perovskite. Small degree of Fe3+/Si disorder was detected between two octahedral sites. The structure is compared with other oxygen-deficient perovskites.
en-copyright=
kn-copyright=
en-aut-name=KanzakiMasami
en-aut-sei=Kanzaki
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Institute for Planetary Materials, Okayama University
kn-affil=
en-keyword=Crystal structure
kn-keyword=Crystal structure
en-keyword=Rietveld refinement
kn-keyword=Rietveld refinement
en-keyword=Oxygen-deficient perovskite
kn-keyword=Oxygen-deficient perovskite
en-keyword=High-pressure silicate
kn-keyword=High-pressure silicate
END
start-ver=1.4
cd-journal=joma
no-vol=8
cd-vols=
no-issue=1
article-no=
start-page=79
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20201014
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Oxygen administration for postoperative surgical patients: a narrative review
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Most postoperative surgical patients routinely receive supplemental oxygen therapy to prevent the potential development of hypoxemia due to incomplete lung re-expansion, reduced chest wall, and diaphragmatic activity caused by surgical site pain, consequences of hemodynamic impairment, and residual effects of anesthetic drugs (most notably residual neuromuscular blockade), which may result in atelectasis, ventilation-perfusion mismatch, alveolar hypoventilation, and impaired upper airway patency. Additionally, the World Health Organization guidelines for reducing surgical site infection have recommended the perioperative administration of high-dose oxygen, including during the immediate postoperative period. However, supplemental oxygen and hyperoxemia also have harmful effects on the respiratory and cardiovascular systems, with several clinical studies having reported an association between high perioperative oxygen administration and worse clinical outcomes. Recently, the increased availability of new and short-acting anesthetic drugs, comprehensive pharmacological knowledge, postoperative multimodal analgesia, and new minimally invasive surgery options could result in lower incidences of postoperative hypoxemia. Moreover, recommendations promoting high oxygen administration to prevent surgical site infections have been challenged, considering the lack of scientific investigations, and have not been widely accepted. Given the potential harmful effects of hyperoxemia, routine postoperative oxygen administration might not be recommended. Recent clinical studies have indicated that a conservative approach to oxygen therapy, where oxygen administration is titrated to achieve slightly lower oxygen levels than usual, could be safely implemented and decrease acutely ill patients' susceptibility to hyperoxemia. Based on current evidence, appropriate monitoring, including peripheral oxygen saturation, and oxygen titration should be required during postoperative oxygen administration to avoid both hypoxemia and hyperoxemia. Future trials should therefore focus on determining the optimal oxygen target during postoperative care.
en-copyright=
kn-copyright=
en-aut-name=SuzukiSatoshi
en-aut-sei=Suzuki
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Intensive Care, Okayama University Hospital
kn-affil=
en-keyword=Oxygen therapy
kn-keyword=Oxygen therapy
en-keyword=Hyperoxemia
kn-keyword=Hyperoxemia
en-keyword=Hypoxemia
kn-keyword=Hypoxemia
en-keyword=Postoperative care
kn-keyword=Postoperative care
en-keyword=Surgical site infection
kn-keyword=Surgical site infection
END
start-ver=1.4
cd-journal=joma
no-vol=74
cd-vols=
no-issue=5
article-no=
start-page=407
end-page=413
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=202010
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Comprehensive Prospective Analysis of the Factors Contributing to Aspiration Pneumonia Following Endoscopic Submucosal Dissection in Patients with Early Gastric Neoplasms
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Endoscopic submucosal dissection (ESD) has become the first-line treatment for early gastric neoplasms; however, a subset of patients treated by this method develop aspiration pneumonia. We conducted a comprehensive prospective analysis of the factors contributing to post-ESD aspiration pneumonia in early gastric neoplasms in this study, with special focus on whether pre-treatment oral care can prevent aspiration pneumonia. Sixty-one patients who underwent ESD for gastric neoplasms were randomly assigned to the oral care or control groups. ESD was performed under deep sedation. Of 60 patients whose data were available for analysis, 5 (8.3%) experienced pneumonia confirmed either by chest radiography or computed tomography. Although no difference in the rate of pneumonia was found between the control and oral care groups, the post-oral care bacteria count was significantly higher in the saliva of patients who developed pneumonia compared to those without pneumonia. In addition, the presence of vascular brain diseases and the dose of meperidine were also significantly associated with the occurrence of pneumonia. These results suggest that the number of oral bacteria as well as pre-existing vascular brain diseases and high-dose narcotics can affect the incidence of post-ESD pneumonia.
en-copyright=
kn-copyright=
en-aut-name=TogoMasaaki
en-aut-sei=Togo
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AkazawaYuko
en-aut-sei=Akazawa
en-aut-mei=Yuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AkashiTaro
en-aut-sei=Akashi
en-aut-mei=Taro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamashitaRika
en-aut-sei=Yamashita
en-aut-mei=Rika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YoshitomiIzumi
en-aut-sei=Yoshitomi
en-aut-mei=Izumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OhbaKazuo
en-aut-sei=Ohba
en-aut-mei=Kazuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HashimotoSatsuki
en-aut-sei=Hashimoto
en-aut-mei=Satsuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IwashitaHiroko
en-aut-sei=Iwashita
en-aut-mei=Hiroko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KurogiTadafumi
en-aut-sei=Kurogi
en-aut-mei=Tadafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OsadaYukiko
en-aut-sei=Osada
en-aut-mei=Yukiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=WadaNoriko
en-aut-sei=Wada
en-aut-mei=Noriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ImamuraYoshifumi
en-aut-sei=Imamura
en-aut-mei=Yoshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=HashiguchiKeiichi
en-aut-sei=Hashiguchi
en-aut-mei=Keiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=YamaguchiNaoyuki
en-aut-sei=Yamaguchi
en-aut-mei=Naoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KondoHisayoshi
en-aut-sei=Kondo
en-aut-mei=Hisayoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=NakaoKazuhiko
en-aut-sei=Nakao
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
affil-num=1
en-affil=Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences
kn-affil=
affil-num=4
en-affil=Oral Care Center, Nagasaki University Hospital
kn-affil=
affil-num=5
en-affil=JCHO Isahaya General Hospital
kn-affil=
affil-num=6
en-affil=JCHO Isahaya General Hospital
kn-affil=
affil-num=7
en-affil=JCHO Isahaya General Hospital
kn-affil=
affil-num=8
en-affil=JCHO Isahaya General Hospital
kn-affil=
affil-num=9
en-affil=Oral Care Center, Nagasaki University Hospital
kn-affil=
affil-num=10
en-affil=Dental Hygienist's Office, Department of Medical Technology, Nagasaki University Hospital
kn-affil=
affil-num=11
en-affil=Dental Hygienist's Office, Department of Medical Technology, Nagasaki University Hospital
kn-affil=
affil-num=12
en-affil=Department of Respiratory Medicine, Nagasaki University Hospital
kn-affil=
affil-num=13
en-affil=Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences
kn-affil=
affil-num=14
en-affil=Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences
kn-affil=
affil-num=15
en-affil=Biostatistics Section, Division of Scientific Data Registry, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Medicine
kn-affil=
affil-num=16
en-affil=Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences
kn-affil=
en-keyword=endoscopy
kn-keyword=endoscopy
en-keyword=oral bacteria
kn-keyword=oral bacteria
en-keyword=respiratory disease
kn-keyword=respiratory disease
en-keyword=pneumonia
kn-keyword=pneumonia
en-keyword=sedation
kn-keyword=sedation
END
start-ver=1.4
cd-journal=joma
no-vol=153
cd-vols=
no-issue=11
article-no=
start-page=114501
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20200916
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Structure and phase behavior of high-density ice from molecular-dynamics simulations with the ReaxFF potential
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We report a molecular dynamics simulation study of dense ice modeled by the reactive force field (ReaxFF) potential, focusing on the possibility of phase changes between crystalline and plastic phases as observed in earlier simulation studies with rigid water models. It is demonstrated that the present model system exhibits phase transitions, or crossovers, among ice VII and two plastic ices with face-centered cubic (fcc) and body-centered cubic (bcc) lattice structures. The phase diagram derived from the ReaxFF potential is different from those of the rigid water models in that the bcc plastic phase lies on the high-pressure side of ice VII and does the fcc plastic phase on the low-pressure side of ice VII. The phase boundary between the fcc and bcc plastic phases on the pressure, temperature plane extends to the high-temperature region from the triple point of ice VII, fcc plastic, and bcc plastic phases. Proton hopping, i.e., delocalization of a proton, along between two neighboring oxygen atoms in dense ice is observed for the ReaxFF potential but only at pressures and temperatures both much higher than those at which ice VII–plastic ice transitions are observed.
en-copyright=
kn-copyright=
en-aut-name=AdachiYuji
en-aut-sei=Adachi
en-aut-mei=Yuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KogaKenichiro
en-aut-sei=Koga
en-aut-mei=Kenichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Graduate School of Natural Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=2Department of Chemistry, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=85
cd-vols=
no-issue=9
article-no=
start-page=2737
end-page=2744
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20200825
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A comparative study of the antioxidant profiles of olive fruit and leaf extracts against five reactive oxygen species as measured with a multiple free‐radical scavenging method
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Olive fruits and leaves are recognized to have great potential as natural sources of antioxidants. The major phenolic antioxidant component in these plant tissues is oleuropein. The antioxidant activity of olive fruits and leaves was evaluated in this study using multiple free‐radical scavenging (MULTIS) methods, wherein we determined the scavenging abilities of different extracts against five reactive oxygen species (ROS; HO·, O2−·, RO·, t‐BuOO·, and 1O2). Raw olive fruits taste bitter and are inedible without undergoing a debittering treatment. Following the NaOH‐debittering process, the radical scavenging activity of olives decreased by 90%. The MULTIS measurements indicated that oleuropein and hydroxytyrosol are responsible for the radical scavenging activity of olive fruits. Furthermore, we evaluated the radical scavenging profiles of olive leaf extracts against five ROS and found significant seasonal variations in their antioxidant activities. Leaves picked in August possessed greater radical scavenging abilities (180% to 410% for different ROS) than those picked in the cold season (December and February). In roasted olive leaves, we found marked increases (230% to 300% and 180% to 220%) in the antioxidant activities of Maillard reaction products against RO· and t‐BuOO·, respectively. This study presented a useful comparative analysis of the antioxidant capacities of food against various types of ROS.
en-copyright=
kn-copyright=
en-aut-name=SueishiYoshimi
en-aut-sei=Sueishi
en-aut-mei=Yoshimi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NiiRisako
en-aut-sei=Nii
en-aut-mei=Risako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Chemistry, Faculty of Science, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Chemistry, Faculty of Science, Okayama University
kn-affil=
en-keyword=antioxidant capacity
kn-keyword=antioxidant capacity
en-keyword=fruit extract
kn-keyword=fruit extract
en-keyword=leaf extract
kn-keyword=leaf extract
en-keyword=MULTIS
kn-keyword=MULTIS
en-keyword=olive
kn-keyword=olive
END
start-ver=1.4
cd-journal=joma
no-vol=1135
cd-vols=
no-issue=
article-no=
start-page=99
end-page=106
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20200827
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=On-site analysis of paraquat using a completely portable photometric detector operated with small, rechargeable batteries
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This work describes a methodology that can be used to achieve on-site analysis of paraquat in water samples by using a miniaturized portable photometer consisting of a couple of light-emitting diodes (LEDs). Paraquat produces a colored radical via a redox reaction with sodium dithionite, which is unstable against oxygen in solution. The steps taken to stabilize the reagent solution included control of the pH and the addition of organic solvents, but the most effective was the formation of an oil layer. Together, these steps stabilized the reagent solution for two days. An increase in the duration of reagent stability, however, is necessary in order to transport the reagent for on-site applications in remote locales. For the time being, an excess amount of solid sodium dithionite can be added directly to sample solutions because the unreacted dithionite shows no influence on absorbance of the paraquat radical. Orange LEDs with a maximum emission wavelength of 609 nm were employed in the portable photometer to measure the absorbance of paraquat radical produced by a redox reaction that has an absorption maximum of 603 nm. The developed photometer showed excellent performance with a linear range of from 2.0 mg L−1 to 40.0 mg L−1 and a linear regression (r2 = 1). The limits of detection and quantification were 0.5 mg L−1 and 1.5 mg L−1, respectively, intra-day precision (n = 3) and inter-day precision (n = 5) were both less than 5%, and accuracy based on the percentage of sample recovery ranged from 89 ± 0 to 105 ± 0% (n = 3). The proposed method was applied to the analysis of paraquat in water samples taken from rice fields. The results showed no paraquat in all thirteen samples, which could have been due to strong adsorption of paraquat by soil particles and/or to complications with the sampling conditions. To confirm the adsorption onto soil of paraquat contained in water, we constructed an artificial rice field where water containing paraquat was impounded above the soil layer. The results showed that paraquat in water gradually decreased within three days and could be measured in the soil on the fourth day. These results were confirmed by HPLC analysis, which underscores the utility of this portable photometer for the on-site monitoring of paraquat in water samples.
en-copyright=
kn-copyright=
en-aut-name=SeetasangSasikarn
en-aut-sei=Seetasang
en-aut-mei=Sasikarn
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KanetaTakashi
en-aut-sei=Kaneta
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Light-emitting diode
kn-keyword=Light-emitting diode
en-keyword=Paraquat
kn-keyword=Paraquat
en-keyword=Portable photometric detector
kn-keyword=Portable photometric detector
en-keyword=Rice field
kn-keyword=Rice field
en-keyword=Sodium dithionite
kn-keyword=Sodium dithionite
en-keyword=Thailand
kn-keyword=Thailand
END
start-ver=1.4
cd-journal=joma
no-vol=74
cd-vols=
no-issue=4
article-no=
start-page=319
end-page=325
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=202008
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Relationship Between Partial Carbon Dioxide Pressure and Strong Ions in Humans: A Retrospective Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Little is known about the role of a strong ions in humans with respiratory abnormalities. In this study, we investigated the associations between partial carbon dioxide pressure (pCO2) and each of sodium ion (Na+) concentrations, chloride ion (Cl−) concentrations and their difference (SIDNa-Cl). Blood gas data were obtained from patients in a teaching hospital intensive care unit between August 2013 and January 2017. The association between pCO2 and SIDNa-Cl was defined as the primary outcome. The associations between pCO2 and [Cl−], [Na+] and other strong ions were secondary outcomes. pCO2 was stratified into 10 mmHg-wide bands and treated as a categorical variable for comparison. As a result, we reviewed 115,936 blood gas data points from 3,840 different ICU stays. There were significant differences in SIDNa-Cl, [Cl−], and [Na+] among all categorized pCO2 bands. The respective pCO2 SIDNa-Cl, [Cl−], and [Na+] correlation coefficients were 0.48, −0.31, and 0.08. SIDNa-Cl increased and [Cl−] decreased with pCO2, with little relationship between pCO2 and [Na+] across subsets. In conclusion, we found relatively strong correlations between pCO2 and SIDNa-Cl in the multiple blood gas datasets examined. Correlations between pCO2 and chloride concentrations, but not sodium concentrations, were further found to be moderate in these ICU data.
en-copyright=
kn-copyright=
en-aut-name=IsoyamaSatoshi
en-aut-sei=Isoyama
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KimuraSatoshi
en-aut-sei=Kimura
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MorimatsuHiroshi
en-aut-sei=Morimatsu
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Anesthesiology and Resuscitation, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Anesthesiology and Resuscitation, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Anesthesiology and Resuscitation, Okayama University Hospital
kn-affil=
en-keyword=acid-base phenomena
kn-keyword=acid-base phenomena
en-keyword=Stewart approach
kn-keyword=Stewart approach
en-keyword=strong ion difference
kn-keyword=strong ion difference
en-keyword=chlorine ion
kn-keyword=chlorine ion
en-keyword=partial carbon dioxide pressure
kn-keyword=partial carbon dioxide pressure
END
start-ver=1.4
cd-journal=joma
no-vol=74
cd-vols=
no-issue=4
article-no=
start-page=275
end-page=283
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=202008
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Decreased Serum Antioxidant Marker is Predictive of Early Recurrence in the Same Segment after Radical Ablation for Hepatocellular Carcinoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Radiofrequency ablation (RFA) for hepatocellular carcinoma (HCC) is a promising method for controlling tumors, although it does not entirely eliminate recurrence. Oxidative stress is associated with the progression of hepatocarcinogenesis, while also acting as an anticancer response. The objective of the present study was to investigate the factors influencing post-RFA outcomes. We recruited 235 newly diagnosed HCC patients who received RFA for single tumors. The patients with recurrence were sub-grouped into early and segmental recurrence groups. The characteristics of the sub-grouped patients were evaluated, including by measuring oxidative stress marker reactive oxygen metabolites and antioxidant marker OXY-adsorbent tests. The factors associated with poor survival were a high Child-Pugh score and early recurrence within 2 years in the same segment. The patients who experienced recurrence within 2 years in the same segment showed a larger tumor diameter than did others. According to a multivariate analysis, the OXY values were also significantly low in these patients. In conclusion, maintaining the antioxidant reservoir function with a high OXY value might be necessary to prevent early recurrence within the RFA-treated segment.
en-copyright=
kn-copyright=
en-aut-name=MuroTaiko
en-aut-sei=Muro
en-aut-mei=Taiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakamuraShinichiro
en-aut-sei=Nakamura
en-aut-mei=Shinichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakakiAkinobu
en-aut-sei=Takaki
en-aut-mei=Akinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OnishiHideki
en-aut-sei=Onishi
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WadaNozomu
en-aut-sei=Wada
en-aut-mei=Nozomu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YasunakaTetsuya
en-aut-sei=Yasunaka
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=UchidaDaisuke
en-aut-sei=Uchida
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OyamaAtsushi
en-aut-sei=Oyama
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=AdachiTakuya
en-aut-sei=Adachi
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ShirahaHidenori
en-aut-sei=Shiraha
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OkadaHiroyuki
en-aut-sei=Okada
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=oxidative stress
kn-keyword=oxidative stress
en-keyword=hepatocellular carcinoma
kn-keyword=hepatocellular carcinoma
en-keyword=recurrence,
kn-keyword=recurrence,
en-keyword=radiofrequency ablation
kn-keyword=radiofrequency ablation
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=159
article-no=
start-page=e61104
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20200505
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Model of Ischemic Heart Disease and Video-Based Comparison of Cardiomyocyte Contraction Using hiPSC-Derived Cardiomyocytes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Ischemic heart disease is a significant cause of death worldwide. It has therefore been the subject of a tremendous amount of research, often with small-animal models such as rodents. However, the physiology of the human heart differs significantly from that of the rodent heart, underscoring the need for clinically relevant models to study heart disease. Here, we present a protocol to model ischemic heart disease using cardiomyocytes differentiated from human induced pluripotent stem cells (hiPS-CMs) and to quantify the damage and functional impairment of the ischemic cardiomyocytes. Exposure to 2% oxygen without glucose and serum increases the percentage of injured cells, which is indicated by staining of the nucleus with propidium iodide, and decreases cellular viability. These conditions also decrease the contractility of hiPS-CMs as confirmed by displacement vector field analysis of microscopic video images. This protocol may furthermore provide a convenient method for personalized drug screening by facilitating the use of hiPS cells from individual patients. Therefore, this model of ischemic heart disease, based on iPS-CMs of human origin, can provide a useful platform for drug screening and further research on ischemic heart disease.
en-copyright=
kn-copyright=
en-aut-name=LiuYun
en-aut-sei=Liu
en-aut-mei=Yun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=LiangYin
en-aut-sei=Liang
en-aut-mei=Yin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WangMengxue
en-aut-sei=Wang
en-aut-mei=Mengxue
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=WangChen
en-aut-sei=Wang
en-aut-mei=Chen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=Wei Heng
en-aut-sei=Wei
en-aut-mei= Heng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NaruseKeiji
en-aut-sei=Naruse
en-aut-mei=Keiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakahashiKen
en-aut-sei=Takahashi
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=6
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Medicine
kn-keyword=Medicine
en-keyword=Issue 159
kn-keyword=Issue 159
en-keyword=Ischemic heart disease
kn-keyword=Ischemic heart disease
en-keyword= hypoxia, Myocardial infarction
kn-keyword= hypoxia, Myocardial infarction
en-keyword=Human induced pluripotent stem cells
kn-keyword=Human induced pluripotent stem cells
en-keyword=cellular differentiation
kn-keyword=cellular differentiation
en-keyword=Cardiomyocytes
kn-keyword=Cardiomyocytes
END
start-ver=1.4
cd-journal=joma
no-vol=21
cd-vols=
no-issue=11
article-no=
start-page=4137
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20200610
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Cerebellar Blood Flow and Gene Expression in Crossed Cerebellar Diaschisis after Transient Middle Cerebral Artery Occlusion in Rats
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Crossed cerebellar diaschisis (CCD) is a state of hypoperfusion and hypometabolism in the contralesional cerebellar hemisphere caused by a supratentorial lesion, but its pathophysiology is not fully understood. We evaluated chronological changes in cerebellar blood flow (CbBF) and gene expressions in the cerebellum using a rat model of transient middle cerebral artery occlusion (MCAO). CbBF was analyzed at two and seven days after MCAO using single photon emission computed tomography (SPECT). DNA microarray analysis and western blotting of the cerebellar cortex were performed and apoptotic cells in the cerebellar cortex were stained. CbBF in the contralesional hemisphere was significantly decreased and this lateral imbalance recovered over one week. Gene set enrichment analysis revealed that a gene set for "oxidative phosphorylation" was significantly upregulated while fourteen other gene sets including "apoptosis", "hypoxia" and "reactive oxygen species" showed a tendency toward upregulation in the contralesional cerebellum. MCAO upregulated the expressions of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) in the contralesional cerebellar cortex. The number of apoptotic cells increased in the molecular layer of the contralesional cerebellum. Focal cerebral ischemia in our rat MCAO model caused CCD along with enhanced expression of genes related to oxidative stress and apoptosis.
en-copyright=
kn-copyright=
en-aut-name=KidaniNaoya
en-aut-sei=Kidani
en-aut-mei=Naoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HishikawaTomohito
en-aut-sei=Hishikawa
en-aut-mei=Tomohito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HiramatsuMasafumi
en-aut-sei=Hiramatsu
en-aut-mei=Masafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NishihiroShingo
en-aut-sei=Nishihiro
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KinKyohei
en-aut-sei=Kin
en-aut-mei=Kyohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TakahashiYu
en-aut-sei=Takahashi
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MuraiSatoshi
en-aut-sei=Murai
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SugiuKenji
en-aut-sei=Sugiu
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YasuharaTakao
en-aut-sei=Yasuhara
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MiyazakiIkuko
en-aut-sei=Miyazaki
en-aut-mei=Ikuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=AsanumaMasato
en-aut-sei=Asanuma
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=DateIsao
en-aut-sei=Date
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=apoptosis
kn-keyword=apoptosis
en-keyword=cerebral blood flow
kn-keyword=cerebral blood flow
en-keyword=crossed cerebellar diaschisis
kn-keyword=crossed cerebellar diaschisis
en-keyword=ischemic stroke
kn-keyword=ischemic stroke
en-keyword=oxidative stress
kn-keyword=oxidative stress
END
start-ver=1.4
cd-journal=joma
no-vol=20
cd-vols=
no-issue=1
article-no=
start-page=156
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20200603
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Recovery from hypoxemia and Hypercapnia following noninvasive pressure support ventilation in a patient with statin-associated necrotizing myopathy: a case report
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Statin-associated necrotizing myopathy (SANM) is a rare autoimmune disorder caused by administration of statins. SANM is characterized by weakness due to necrosis and regeneration of myofibers. Here we report the first case of SANM with acute respiratory failure treated with noninvasive pressure support ventilation in addition to immunosuppressants.
Case presentation: A 59-year-old woman who had been treated with 2.5 mg/day of rosuvastatin calcium for 5 years stopped taking the drug 4 months before admission to our hospital due to elevation of creatine kinase (CK). Withdrawal of rosuvastatin for 1 month did not decrease the level of CK, and she was admitted to our hospital due to the development of muscle weakness of her neck and bilateral upper extremities. Anti-3-hydroxy-3-methylglutaryl coenzyme A reductase antibodies were positive. Magnetic resonance imaging showed myositis, and muscle biopsy from the right biceps brachii muscle showed muscle fiber necrosis and regeneration without inflammatory cell infiltration, suggesting SANM. After the diagnosis, she received methylprednisolone pulse therapy (mPSL, 1 g/day × 3 days, twice) and subsequent oral prednisolone therapy (PSL, 30 mg/day for 1 month, 25 mg/day for 1 month and 22.5 mg/day for 1 month), leading to improvement of her muscle weakness. One month after the PSL tapering to 20 mg/day, her muscle weakness deteriorated with oxygen desaturation (SpO2: 93% at room air) due to hypoventilation caused by weakness of respiratory muscles. BIPAP was used for the management of acute respiratory failure in combination with IVIG (20 g/day × 5 days) followed by mPSL pulse therapy (1 g/day × 3 days), oral PSL (30 mg/day × 3 weeks, then tapered to 25 mg/day) and tacrolimus (3 mg/day). Twenty-seven days after the start of BIPAP, she was weaned from BIPAP with improvement of muscle weakness, hypoxemia and hypercapnia. After she achieved remission with improvement of muscle weakness and reduction of serum CK level to a normal level, the dose of oral prednisolone was gradually tapered to 12.5 mg/day without relapse for 3 months.
Conclusions: Our report provides new insights into the role of immunosuppressants and biphasic positive airway pressure for induction of remission in patients with SANM.
en-copyright=
kn-copyright=
en-aut-name=YamamuraYuriko
en-aut-sei=Yamamura
en-aut-mei=Yuriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsumotoYoshinori
en-aut-sei=Matsumoto
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TadokoroKoh
en-aut-sei=Tadokoro
en-aut-mei=Koh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OhtaYasuyuki
en-aut-sei=Ohta
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SatoKota
en-aut-sei=Sato
en-aut-mei=Kota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamashitaToru
en-aut-sei=Yamashita
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YamamuraMasahiro
en-aut-sei=Yamamura
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SadaKen-Ei
en-aut-sei=Sada
en-aut-mei=Ken-Ei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=AbeKoji
en-aut-sei=Abe
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Center for Rheumatology, Okayama Saiseikai General Hospital
kn-affil=
affil-num=8
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Noninvasive pressure support ventilation
kn-keyword=Noninvasive pressure support ventilation
en-keyword=Statin-associated necrotizing myopathy
kn-keyword=Statin-associated necrotizing myopathy
en-keyword=BIPAP
kn-keyword=BIPAP
END
start-ver=1.4
cd-journal=joma
no-vol=2020
cd-vols=
no-issue=
article-no=
start-page=9509105
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20200428
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Impact of Right Ventricular Dilatation in Patients with Atrial Septal Defect
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective. The aim of this study was to examine the relationship between right ventricular (RV) volume and exercise capacity in adult patients with atrial septal defect (ASD) and to determine the degree of RV dilatation for transcatheter ASD closure. Background. RV dilatation is an indication of transcatheter ASD closure; however, few studies have reported the clinical significance of RV dilatation. Methods. We enrolled 82 consecutive patients (mean age, 49 +/- 18 years; female, 68%) who underwent cardiac magnetic resonance imaging and symptom-limited cardiopulmonary exercise test before ASD closure. The relationship between RV volume and peak oxygen uptake (VO2) was evaluated. Results. The mean RV end-diastolic volume index was 108 +/- 27 ml/m(2) (range, 46 to 180 ml/m(2)). The mean peak VO2 was 24 +/- 7 ml/min/kg (range, 14 to 48 ml/min/kg), and the mean predicted peak VO2 was 90 +/- 23%. There were significant negative relationships of RV end-diastolic volume index with peak VO2 (r = -0.28, p<0.01) and predicted peak VO2 (r = -0.29, p<0.01). The cutoff value of RV end-diastolic volume index <80% of predicted peak VO2 was 120 ml/m(2), with the sensitivity of 49% and the specificity of 89%. Conclusions. There was a relationship between RV dilatation and exercise capacity in adult patients with ASD. RV end-diastolic volume index >= 120 ml/m(2) was related to the reduction in peak VO2. This criterion of RV dilatation may be valuable for the indication of transcatheter ASD closure.
en-copyright=
kn-copyright=
en-aut-name=NakayamaRie
en-aut-sei=Nakayama
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakayaYoichi
en-aut-sei=Takaya
en-aut-mei=Yoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AkagiTeiji
en-aut-sei=Akagi
en-aut-mei=Teiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakagawaKoji
en-aut-sei=Nakagawa
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WatanabeNobuhisa
en-aut-sei=Watanabe
en-aut-mei=Nobuhisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NobusadaSaori
en-aut-sei=Nobusada
en-aut-mei=Saori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsushitaToshi
en-aut-sei=Matsushita
en-aut-mei=Toshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TohNorihisa
en-aut-sei=Toh
en-aut-mei=Norihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KanazawaSusumu
en-aut-sei=Kanazawa
en-aut-mei=Susumu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ItoHiroshi
en-aut-sei=Ito
en-aut-mei=Hiroshi
kn-aut-name=伊藤浩
kn-aut-sei=伊藤
kn-aut-mei=浩
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine,Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine,Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine,Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine,Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Division of Medical Support, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Division of Medical Support, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Division of Medical Support, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine,Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine,Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine,Dentistry and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=52
cd-vols=
no-issue=2
article-no=
start-page=630
end-page=633
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20200331
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Pediatric Living Donor Liver Transplantation for Congenital Absence of the Portal Vein With Pulmonary Hypertension: A Case Report
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Few reports of liver transplantation exist in patients with congenital absence of the portal vein and pulmonary hypertension. Living donor liver transplantation is usually performed before exacerbation of pulmonary hypertension. A 7-year-old girl (height: 131.5 cm; weight: 27.4 kg) with congenital absence of the portal vein was diagnosed with pulmonary hypertension (mean pulmonary artery pressure 35 mm Hg), and liver transplantation was planned before exacerbation of pulmonary hypertension. We successfully managed her hemodynamic parameters using low-dose dopamine and noradrenaline under monitoring of arterial blood pressure, central venous pressure, cardiac output, and stroke volume variation. Anesthesia was maintained using air-oxygen-sevoflurane and remifentanil 0.1 to 0.6 μg∙kg-1∙min-1. It is necessary to understand the potential perioperative complications in such cases and to adopt a multidisciplinary team approach in terms of the timing of transplantation and readiness to deal with exacerbation of pulmonary hypertension.
en-copyright=
kn-copyright=
en-aut-name=MatsumotoNaohisa
en-aut-sei=Matsumoto
en-aut-mei=Naohisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsusakiTakashi
en-aut-sei=Matsusaki
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HiroiKazumasa
en-aut-sei=Hiroi
en-aut-mei=Kazumasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KakuRyuji
en-aut-sei=Kaku
en-aut-mei=Ryuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YoshidaRyuichi
en-aut-sei=Yoshida
en-aut-mei=Ryuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UmedaYuzo
en-aut-sei=Umeda
en-aut-mei=Yuzo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YagiTakahito
en-aut-sei=Yagi
en-aut-mei=Takahito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MorimatsuHiroshi
en-aut-sei=Morimatsu
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil= Department of Anesthesiology and Resuscitology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil= Department of Anesthesiology and Resuscitology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil= Department of Anesthesiology and Resuscitology, Okayama University Hospital
kn-affil=
affil-num=4
en-affil= Department of Anesthesiology and Resuscitology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=
kn-affil=
affil-num=8
en-affil= Department of Anesthesiology and Resuscitology, Okayama University Hospital
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=138
cd-vols=
no-issue=
article-no=
start-page=105654
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20200531
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Enhanced expression of nicotinamide nucleotide transhydrogenase (NNT) and its role in a human T cell line continuously exposed to asbestos
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The effects of asbestos fibers on human immune cells have not been well documented. We have developed a continuously exposed cell line model using the human T-lymphotropic virus 1 (HTLV-1)-immortalized human T cell line MT-2. Sublines continuously exposed to chrysotile (CH) or crocidolite (CR) showed acquired resistance to asbestos-induced apoptosis following transient and high-dose re-exposure with fibers. These sublines in addition to other immune cells such as natural killer cells or cytotoxic T lymphocytes exposed to asbestos showed a reduction in anti-tumor immunity. In this study, the expression of genes and molecules related to antioxidative stress was examined. Furthermore, complexes related to oxidative phosphorylation were investigated since the production of reactive oxygen species (ROS) is important when considering the effects of asbestos in carcinogenesis and the mechanisms involved in resistance to asbestos-induced apoptosis. In sublines continuously exposed to CH or CR, the expression of thioredoxin decreased. Interestingly, nicotinamide nucleotide transhydrogenase (NNT) expression was markedly enhanced. Thus, knockdown of NNT was then performed. Although the knockdown clones did not show any changes in proliferation or occurrence of apoptosis, these clones showed recovery of ROS production with returning NADPH/NADP+ ratio that increased with decreased production of ROS in continuously exposed sublines. These results indicated that NNT is a key factor in preventing ROS-induced cytotoxicity in T cells continuously exposed to asbestos. Considering that these sublines showed a reduction in anti-tumor immunity, modification of NNT may contribute to recovery of the anti-tumor effects in asbestos-exposed T cells.
en-copyright=
kn-copyright=
en-aut-name=YamamotoShoko
en-aut-sei=Yamamoto
en-aut-mei=Shoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=LeeSuni
en-aut-sei=Lee
en-aut-mei=Suni
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MatsuzakiHidenori
en-aut-sei=Matsuzaki
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=Kumagai-TakeiNaoko
en-aut-sei=Kumagai-Takei
en-aut-mei=Naoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YoshitomeKei
en-aut-sei=Yoshitome
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SadaNagisa
en-aut-sei=Sada
en-aut-mei=Nagisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ShimizuYurika
en-aut-sei=Shimizu
en-aut-mei=Yurika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ItoTastsuo
en-aut-sei=Ito
en-aut-mei=Tastsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NishimuraYasumitsu
en-aut-sei=Nishimura
en-aut-mei=Yasumitsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OtsukiTakemi
en-aut-sei=Otsuki
en-aut-mei=Takemi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Hygiene, Kawasaki Medical School
kn-affil=
affil-num=2
en-affil=Department of Hygiene, Kawasaki Medical School
kn-affil=
affil-num=3
en-affil=Department of Life Science, Faculty of Life and Environmental Science, Prefectural University of Hiroshima
kn-affil=
affil-num=4
en-affil=Department of Hygiene, Kawasaki Medical School
kn-affil=
affil-num=5
en-affil=Department of Hygiene, Kawasaki Medical School
kn-affil=
affil-num=6
en-affil=Department of Biophysical Chemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Hygiene, Kawasaki Medical School
kn-affil=
affil-num=9
en-affil=Department of Hygiene, Kawasaki Medical School
kn-affil=
affil-num=10
en-affil=Department of Hygiene, Kawasaki Medical School
kn-affil=
en-keyword=Asbestos
kn-keyword=Asbestos
en-keyword=Continuous exposure
kn-keyword=Continuous exposure
en-keyword=Oxidative phosphorylation
kn-keyword=Oxidative phosphorylation
en-keyword=T cell
kn-keyword=T cell
en-keyword=nicotinamide nucleotide transhydrogenase (NNT)
kn-keyword=nicotinamide nucleotide transhydrogenase (NNT)
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=14
article-no=
start-page=2460
end-page=2473
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20200424
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Lennard-Jones Parameters Determined to Reproduce the Solubility of NaCl and KCl in SPC/E, TIP3P, and TIP4P/2005 Water
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Most classical nonpolarizable ion potential models underestimate the solubility values of NaCl and KCl in water significantly. We determine Lennard-Jones parameters of Na+, K+, and Cl– that reproduce the solubility as well as the hydration free energy in dilute aqueous solutions for three water potential models, SPC/E, TIP3P, and TIP4P/2005. The ion–oxygen distance in the solution and the cation–anion distance in salt are also considered in the parametrization. In addition to the target properties, the hydration enthalpy, hydration entropy, self-diffusion coefficient, coordination number, lattice energy, enthalpy of solution, density, viscosity, and number of contact ion pairs are calculated for comparison with 17 frequently used or recently developed ion potential models. The overall performance of each ion model is represented by a global score using a scheme that was originally developed for comparison of water potential models. The global score is better for our models than for the other 17 models not only because of the quite good prediction for the solubility but also because of the relatively small deviation from the experimental value for many of the other properties.
en-copyright=
kn-copyright=
en-aut-name=YagasakiTakuma
en-aut-sei=Yagasaki
en-aut-mei=Takuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsumotoMasakazu
en-aut-sei=Matsumoto
en-aut-mei=Masakazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TanakaHideki
en-aut-sei=Tanaka
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=2
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=3
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=141
cd-vols=
no-issue=25
article-no=
start-page=9832
end-page=9836
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=2019611
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Deoxygenative Insertion of Carbonyl Carbon into a C(sp3)–H Bond: Synthesis of Indolines and Indoles
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A simple deoxygenation reagent prepared in situ from commercially available Mo(CO)6 and ortho-quinone has been developed for the synthesis of indoline and indole derivatives. The Mo/quinone complex efficiently deoxygenates carbonyl compounds bearing a neighboring dialkylamino group and effects intramolecular cyclizations with the insertion of a deoxygenated carbonyl carbon into a C(sp3)–H bond, in which a carbonyl group acts as a carbene equivalent. The reaction also proceeds with a catalytic amount of Mo/quinone in the presence of disilane as an oxygen atom acceptor.
en-copyright=
kn-copyright=
en-aut-name=AsakoSobi
en-aut-sei=Asako
en-aut-mei=Sobi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IshiharaSeina
en-aut-sei=Ishihara
en-aut-mei=Seina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HirataKeiya
en-aut-sei=Hirata
en-aut-mei=Keiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakaiKazuhiko
en-aut-sei=Takai
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=C-H activation
kn-keyword=C-H activation
en-keyword=Oxidative addition
kn-keyword=Oxidative addition
en-keyword=Structural-characterization
kn-keyword=Structural-characterization
en-keyword=Ditungsten hexaalkoxides
kn-keyword=Ditungsten hexaalkoxides
en-keyword=Direct functionalization
kn-keyword=Direct functionalization
en-keyword=Organic-synthesis
kn-keyword=Organic-synthesis
en-keyword=Tertiary-amines
kn-keyword=Tertiary-amines
en-keyword=Oxo-alkylidene
kn-keyword=Oxo-alkylidene
en-keyword=Ketones
kn-keyword=Ketones
en-keyword=Chemistry
kn-keyword=Chemistry
END
start-ver=1.4
cd-journal=joma
no-vol=25
cd-vols=
no-issue=66
article-no=
start-page=15189
end-page=15197
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=20190918
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Mechanistic Insights into Rhenium-Catalyzed Regioselective C-Alkenylation of Phenols with Internal Alkynes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= A (μ-aryloxo)rhenium complex was isolated and confirmed as a key precatalyst for rhenium-catalyzed ortho-alkenylation (C-alkenylation) of unprotected phenols with alkynes. The reaction exclusively provided ortho-alkenylphenols; the formation of para or multiply alkenylated phenols and hydrophenoxylation (O-alkenylation) products was not observed. Several mechanistic experiments excluded a classical Friedel-Crafts-type mechanism, leading to the proposed phenolic hydroxyl group assisted electrophilic alkenylation as the most plausible reaction mechanism. For this purpose, the use of rhenium, a metal between the early and late transition metals in the periodic table, was key for the activation of both the soft carbon-carbon triple bond of the alkyne and the hard oxygen atom of the phenol, at the same time. ortho-Selective alkenylation with allenes also provided the corresponding adducts with a substitution pattern different from that obtained by the addition reaction with alkynes.
en-copyright=
kn-copyright=
en-aut-name=MuraiMasahito
en-aut-sei=Murai
en-aut-mei=Masahito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamamotoMasaki
en-aut-sei=Yamamoto
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakaiKazuhiko
en-aut-sei=Takai
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=alkenylation
kn-keyword=alkenylation
en-keyword=homogeneous catalysis
kn-keyword=homogeneous catalysis
en-keyword=reaction mechanisms
kn-keyword=reaction mechanisms
en-keyword=regioselectivity
kn-keyword=regioselectivity
en-keyword=rhenium
kn-keyword=rhenium
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=2
article-no=
start-page=335
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20200202
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Sensitive Photodynamic Detection of Adult T-cell Leukemia/Lymphoma and Specific Leukemic Cell Death Induced by Photodynamic Therapy: Current Status in Hematopoietic Malignancies
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Adult T-cell leukemia/lymphoma (ATL), an aggressive type of T-cell malignancy, is caused by the human T-cell leukemia virus type I (HTLV-1) infections. The outcomes, following therapeutic interventions for ATL, have not been satisfactory. Photodynamic therapy (PDT) exerts selective cytotoxic activity against malignant cells, as it is considered a minimally invasive therapeutic procedure. In PDT, photosensitizing agent administration is followed by irradiation at an absorbance wavelength of the sensitizer in the presence of oxygen, with ultimate direct tumor cell death, microvasculature injury, and induced local inflammatory reaction. This review provides an overview of the present status and state-of-the-art ATL treatments. It also focuses on the photodynamic detection (PDD) of hematopoietic malignancies and the recent progress of 5-Aminolevulinic acid (ALA)-PDT/PDD, which can efficiently induce ATL leukemic cell-specific death with minor influence on normal lymphocytes. Further consideration of the ALA-PDT/PDD system along with the circulatory system regarding the clinical application in ATL and others will be discussed. ALA-PDT/PDD can be promising as a novel treatment modality that overcomes unmet medical needs with the optimization of PDT parameters to increase the effectiveness of the tumor-killing activity and enhance the innate and adaptive anti-tumor immune responses by the optimized immunogenic cell death.
en-copyright=
kn-copyright=
en-aut-name=OkaTakashi
en-aut-sei=Oka
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsuokaKen-Ichi
en-aut-sei=Matsuoka
en-aut-mei=Ken-Ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UtsunomiyaAtae
en-aut-sei=Utsunomiya
en-aut-mei=Atae
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Hematology, Oncology & Respiratory Med., Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Hematology, Oncology & Respiratory Med., Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Hematology, Imamura General Hospital
kn-affil=
en-keyword=ATL
kn-keyword=ATL
en-keyword=HTLV-1
kn-keyword=HTLV-1
en-keyword=PDT
kn-keyword=PDT
en-keyword=PDD
kn-keyword=PDD
en-keyword=chemotherapy
kn-keyword=chemotherapy
en-keyword=allogeneic hematopoietic cell transplantation
kn-keyword=allogeneic hematopoietic cell transplantation
en-keyword=immunotherapy
kn-keyword=immunotherapy
en-keyword=GVHD
kn-keyword=GVHD
en-keyword=ALA-PDT/PDD
kn-keyword=ALA-PDT/PDD
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=1
article-no=
start-page=238
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20200113
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Structural basis for the adaptation and function of chlorophyll f in photosystem I
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Chlorophylls (Chl) play pivotal roles in energy capture, transfer and charge separation in photosynthesis. Among Chls functioning in oxygenic photosynthesis, Chl f is the most red-shifted type first found in a cyanobacterium Halomicronema hongdechloris. The location and function of Chl f in photosystems are not clear. Here we analyzed the high-resolution structures of photosystem I (PSI) core from H. hongdechloris grown under white or far-red light by cryo-electron microscopy. The structure showed that, far-red PSI binds 83 Chl a and 7 Chl f, and Chl f are associated at the periphery of PSI but not in the electron transfer chain. The appearance of Chl f is well correlated with the expression of PSI genes induced under far-red light. These results indicate that Chl f functions to harvest the far-red light and enhance uphill energy transfer, and changes in the gene sequences are essential for the binding of Chl f.
en-copyright=
kn-copyright=
en-aut-name=KatoKoji
en-aut-sei=Kato
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShinodaToshiyuki
en-aut-sei=Shinoda
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NagaoRyo
en-aut-sei=Nagao
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AkimotoSeiji
en-aut-sei=Akimoto
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SuzukiTakehiro
en-aut-sei=Suzuki
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=DohmaeNaoshi
en-aut-sei=Dohmae
en-aut-mei=Naoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ChenMin
en-aut-sei=Chen
en-aut-mei=Min
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AllakhverdievSuleyman I.
en-aut-sei=Allakhverdiev
en-aut-mei=Suleyman I.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ShenJian-Ren
en-aut-sei=Shen
en-aut-mei=Jian-Ren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=AkitaFusamichi
en-aut-sei=Akita
en-aut-mei=Fusamichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MiyazakiNaoyuki
en-aut-sei=Miyazaki
en-aut-mei=Naoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TomoTatsuya
en-aut-sei=Tomo
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Faculty of Science, Tokyo University of Science
kn-affil=
affil-num=3
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Science, Kobe University
kn-affil=
affil-num=5
en-affil=Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science
kn-affil=
affil-num=6
en-affil=Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science
kn-affil=
affil-num=7
en-affil=School of Life and Environmental Sciences, University of Sydney
kn-affil=
affil-num=8
en-affil=K.A. Timiryazev Institute of Plant Physiology RAS
kn-affil=
affil-num=9
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=10
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=11
en-affil=Institute for Protein Research, Laboratory of Protein Synthesis and Expression, Osaka University
kn-affil=
affil-num=12
en-affil=Faculty of Science, Tokyo University of Science
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=20
cd-vols=
no-issue=1
article-no=
start-page=46
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20200219
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Right single lung transplantation using an inverted left donor lung: interposition of pericardial conduit for pulmonary venous anastomosis-a case report
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=BACKGROUND:
Lung transplantation (LTx) is still limited by the shortage of suitable donor lungs. Developing flexible surgical procedures can help to increase the chances of LTx by unfolding recipient-to-donor matching options based on the pre-existing organ allocation concept. We report a case in which a successful left-to-right inverted LTx was completed using the interposition of a pericardial conduit for pulmonary venous anastomosis.
CASE PRESENTATION:
A left lung graft was offered to a 59-year-old male who had idiopathic pulmonary fibrosis with predominant damage in the right lung. He had been prescribed bed rest with constant oxygen inhalation through an oxymizer pendant and had been on the waiting list for 20 months. Considering the condition of the patient (LAS 34.3) and the scarcity of domestic organ offers, the patient was highly likely to be incapable of tolerating any additional waiting time for another donor organ if he was unable to accept the presently reported offer of a left lung. Eventually, we decided to transplant the left donor lung into the right thorax of the recipient. Because of the anterior-posterior position gap of the hilar structures, the cuff lengths of the pulmonary veins had to be adjusted. The patient did not develop any anastomotic complications after the transplantation.
CONCLUSIONS:
A left-to-right inverted LTx is technically feasible using an autologous pericardial conduit for pulmonary venous anastomosis in selected cases. This technique provides the potential benefit of resolving challenging situations in which surgeons must deal with a patient's urgency and the logistical limitations of organ allocation.
en-copyright=
kn-copyright=
en-aut-name=YamamotoHaruchika
en-aut-sei=Yamamoto
en-aut-mei=Haruchika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyoshiKentaroh
en-aut-sei=Miyoshi
en-aut-mei=Kentaroh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OtaniShinji
en-aut-sei=Otani
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KurosakiTakeshi
en-aut-sei=Kurosaki
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SugimotoSeiichiro
en-aut-sei=Sugimoto
en-aut-mei=Seiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamaneMasaomi
en-aut-sei=Yamane
en-aut-mei=Masaomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KobayashiMotomu
en-aut-sei=Kobayashi
en-aut-mei=Motomu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OtoTakahiro
en-aut-sei=Oto
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Anesthesiology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Organ Transplant Center, Okayama University Hospital
kn-affil=
en-keyword=Inverted lung transplantation
kn-keyword=Inverted lung transplantation
en-keyword=Pericardial conduit
kn-keyword=Pericardial conduit
en-keyword=Pulmonary venous anastomosis
kn-keyword=Pulmonary venous anastomosis
en-keyword=Vessel formation
kn-keyword=Vessel formation
END
start-ver=1.4
cd-journal=joma
no-vol=9
cd-vols=
no-issue=10
article-no=
start-page=223
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=20191013
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Differential Response of Sugar Beet to Long-Term Mild to Severe Salinity in a Soil-Pot Culture
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Attempts to cultivate sugar beet (Beta vulgaris spp. vulgaris) in the sub-tropical saline soils are ongoing because of its excellent tolerance to salinity. However, the intrinsic adaptive physiology has not been discovered yet in the sub-tropical climatic conditions. In this study, we investigated morpho-physiological attributes, biochemical responses, and yield of sugar beet under a gradient of salinity in the soil-pot culture system to evaluate its adaptive mechanisms. Results exhibited that low and high salinity displayed a differential impact on growth, photosynthesis, and yield. Low to moderate salt stress (75 and 100 mM NaCl) showed no inhibition on growth and photosynthetic attributes. Accordingly, low salinity displayed simulative effect on chlorophyll and antioxidant enzymes activity which contributed to maintaining a balanced H2O2 accumulation and lipid peroxidation. Furthermore, relative water and proline content showed no alteration in low salinity. These factors contributed to improving the yield (tuber weight). On the contrary, 250 mM salinity showed a mostly inhibitory role on growth, photosynthesis, and yield. Collectively, our findings provide insights into the mild-moderate salt adaptation strategy in the soil culture test attributed to increased water content, elevation of photosynthetic pigment, better photosynthesis, and better management of oxidative stress. Therefore, cultivation of sugar beet in moderately saline-affected soils will ensure efficient utilization of lands.
en-copyright=
kn-copyright=
en-aut-name=Tahjib-UI-ArifMd.
en-aut-sei=Tahjib-UI-Arif
en-aut-mei=Md.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SohagAbdullah Al Mamun
en-aut-sei=Sohag
en-aut-mei=Abdullah Al Mamun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AfrinSonya
en-aut-sei=Afrin
en-aut-mei=Sonya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=BasharKazi Khayrul
en-aut-sei=Bashar
en-aut-mei=Kazi Khayrul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AfrinTania
en-aut-sei=Afrin
en-aut-mei=Tania
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MahamudA. G. M. Sofi Uddin
en-aut-sei=Mahamud
en-aut-mei=A. G. M. Sofi Uddin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=PolashMohammed Arif Sadik
en-aut-sei=Polash
en-aut-mei=Mohammed Arif Sadik
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HossainMd. Tahmeed
en-aut-sei=Hossain
en-aut-mei=Md. Tahmeed
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SohelMd. Abu Taher
en-aut-sei=Sohel
en-aut-mei=Md. Abu Taher
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=BresticMarian
en-aut-sei=Brestic
en-aut-mei=Marian
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MurataYoshiyuki
en-aut-sei=Murata
en-aut-mei=Yoshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Biochemistry and Molecular Biology, Faculty of Agriculture, Bangladesh Agricultural University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=4
en-affil=Bangladesh Jute Research Institute
kn-affil=
affil-num=5
en-affil=Graduate Training Institute, Bangladesh Agricultural University
kn-affil=
affil-num=6
en-affil=Food Biochemistry Laboratory, Department of Biochemistry and Molecular Biology, Faculty of Agriculture, Bangladesh Agricultural University
kn-affil=
affil-num=7
en-affil=Department of Crop Botany, Faculty of Agriculture, Bangladesh Agricultural University
kn-affil=
affil-num=8
en-affil=Department of Biochemistry and Molecular Biology, Faculty of Agriculture, Bangladesh Agricultural University
kn-affil=
affil-num=9
en-affil=Agronomy and Farming System Division, Bangladesh Sugar Crop Research Institute
kn-affil=
affil-num=10
en-affil=Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture
kn-affil=
affil-num=11
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=antioxidant enzymes
kn-keyword=antioxidant enzymes
en-keyword=photosynthesis
kn-keyword=photosynthesis
en-keyword=reactive oxygen species
kn-keyword=reactive oxygen species
en-keyword=salinity
kn-keyword=salinity
en-keyword=sugar beet
kn-keyword=sugar beet
en-keyword=yield
kn-keyword=yield
END
start-ver=1.4
cd-journal=joma
no-vol=20
cd-vols=
no-issue=23
article-no=
start-page=5992
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=20191128
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Comprehensive Identification of PTI Suppressors in Type III Effector Repertoire Reveals that Ralstonia solanacearum Activates Jasmonate Signaling at Two Different Steps
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Ralstonia solanacearum is the causative agent of bacterial wilt in many plants. To identify R. solanacearum effectors that suppress pattern-triggered immunity (PTI) in plants, we transiently expressed R. solanacearum RS1000 effectors in Nicotiana benthamiana leaves and evaluated their ability to suppress the production of reactive oxygen species (ROS) triggered by flg22. Out of the 61 effectors tested, 11 strongly and five moderately suppressed the flg22-triggered ROS burst. Among them, RipE1 shared homology with the Pseudomonas syringae cysteine protease effector HopX1. By yeast two-hybrid screening, we identified jasmonate-ZIM-domain (JAZ) proteins, which are transcriptional repressors of the jasmonic acid (JA) signaling pathway in plants, as RipE1 interactors. RipE1 promoted the degradation of JAZ repressors and induced the expressions of JA-responsive genes in a cysteine-protease-activity-dependent manner. Simultaneously, RipE1, similarly to the previously identified JA-producing effector RipAL, decreased the expression level of the salicylic acid synthesis gene that is required for the defense responses against R. solanacearum. The undecuple mutant that lacks 11 effectors with a strong PTI suppression activity showed reduced growth of R. solanacearum in Nicotiana plants. These results indicate that R. solanacearum subverts plant PTI responses using multiple effectors and manipulates JA signaling at two different steps to promote infection.
en-copyright=
kn-copyright=
en-aut-name=NakanoMasahito
en-aut-sei=Nakano
en-aut-mei=Masahito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MukaiharaTakafumi
en-aut-sei=Mukaihara
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Research Institute for Biological Sciences, Okayama (RIBS)
kn-affil=
en-keyword=Ralstonia solanacearum
kn-keyword=Ralstonia solanacearum
en-keyword=type III effector
kn-keyword=type III effector
en-keyword=jasmonic acid
kn-keyword=jasmonic acid
en-keyword=salicylic acid
kn-keyword=salicylic acid
en-keyword=Nicotiana plants
kn-keyword=Nicotiana plants
END
start-ver=1.4
cd-journal=joma
no-vol=9
cd-vols=
no-issue=4
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=20191218
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Liver transplantation in a patient with hereditary haemorrhagic telangiectasia and pulmonary hypertension
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= Hereditary haemorrhagic telangiectasia or Rendu-Osler-Weber syndrome is a systemic vascular disease with autosomal dominant inheritance, mucocutaneous telangiectasia, and repeated nasal bleeding due to vascular abnormalities. Hereditary haemorrhagic telangiectasia may occasionally lead to complications, including arteriovenous malformations and pulmonary hypertension. We present a case of a 52-year-old female patient with hereditary haemorrhagic telangiectasia who was referred to our hospital for treatment of pulmonary hypertension. She had been diagnosed with hereditary haemorrhagic telangiectasia during adolescence and was being followed up. Six months prior to presentation, she had undergone coil embolization for pulmonary haemorrhage due to pulmonary arteriovenous malformations. She was in World Health Organization functional class IV, with a mean of pulmonary arterial pressure of 38 mmHg, a pulmonary capillary wedge pressure of 10 mmHg, and a right atrial pressure of 22 mmHg. A contrast-enhanced computed tomography angiography showed large arteriovenous malformations in the liver. Right heart catheterization revealed an increase in oxygen saturation in the inferior vena cava between the supra- and infra-hepatic veins, low pulmonary vascular resistance, and high right atrial pressure. Hence, she was diagnosed with hereditary haemorrhagic telangiectasia with pulmonary hypertension due to major arteriovenous shunt resulting from arteriovenous malformations in the liver. Therefore, we considered liver transplantation as an essential treatment option. She underwent cadaveric liver transplantation after a year resulting in dramatic haemodynamic improvement to World Health Organization functional class I. Liver transplantation is a promising treatment in patients with hereditary haemorrhagic telangiectasia and pulmonary hypertension resulting from arteriovenous shunt caused by arteriovenous malformations in the liver.
en-copyright=
kn-copyright=
en-aut-name=
en-aut-sei=
en-aut-mei=
kn-aut-name=EjiriKentaro
kn-aut-sei=Ejiri
kn-aut-mei=Kentaro
aut-affil-num=1
ORCID=
en-aut-name=AkagiSatoshi
en-aut-sei=Akagi
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakamuraKazufumi
en-aut-sei=Nakamura
en-aut-mei=Kazufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AmiokaNaofumi
en-aut-sei=Amioka
en-aut-mei=Naofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IchikawaKeishi
en-aut-sei=Ichikawa
en-aut-mei=Keishi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YagiTakahito
en-aut-sei=Yagi
en-aut-mei=Takahito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ItoHiroshi
en-aut-sei=Ito
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Hepato-Biliary-Pancreatic Surgery, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Rendu-Osler-Weber syndrome
kn-keyword=Rendu-Osler-Weber syndrome
en-keyword=arteriovenous malformation
kn-keyword=arteriovenous malformation
en-keyword=pulmonary haemorrhage
kn-keyword=pulmonary haemorrhage
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=20191227
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=高エネルギー外傷患者の入院後投与酸素濃度と背側無気肺形成の関連
kn-title=Relationship between a High-inspired Oxygen Concentration and Dorsal Atelectasis in High-energy Trauma Patients
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=IshiiKenzo
en-aut-sei=Ishii
en-aut-mei=Kenzo
kn-aut-name=石井賢造
kn-aut-sei=石井
kn-aut-mei=賢造
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=74
cd-vols=
no-issue=1
article-no=
start-page=17
end-page=26
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=202002
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Relationship between a High-inspired Oxygen Concentration and Dorsal Atelectasis in High-energy Trauma Patients
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= We performed a retrospective cohort study of 911 high-energy trauma patients who underwent chest CT scans at least twice after admission. We hypothesized that in high-energy trauma patients, a high-inspired oxygen concentration delivered after admission results in dorsal atelectasis. The study’s primary outcome was dorsal atelectasis formation diagnosed based on CT images. We defined dorsal atelectasis as the presence of atelectasis at ≥ 10 mm thick on CT images. We defined high-inspired oxygen concentration as >60% oxygen delivered between two CT scans. Four hundred sixty-five patients (51.0%) developed atelectasis according to the second CT scan, and 338 (37.1%) received a high-inspired oxygen concentration. A univariate analysis showed that the rate of the high-inspired oxygen concentration in the atelectasis group was significantly higher than that in the non-atelectasis group (43.4% vs. 30.1%, p<0.001). However, a logistic regression analysis showed that there was no significant relationship between the oxygen concentration and the formation of dorsal atelectasis (OR: 1.197, 95%CI: 0.852-1.683, p=0.30). Age, the Injury Severity Score, BMI, and smoking were found to be risk factors of dorsal atelectasis formation in high-energy trauma patients. There was no relationship between the oxygen concentration and atelectasis formation in our series of high-energy trauma patients.
en-copyright=
kn-copyright=
en-aut-name=IshiiKenzo
en-aut-sei=Ishii
en-aut-mei=Kenzo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MorimatsuHiroshi
en-aut-sei=Morimatsu
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OnoKazumi
en-aut-sei=Ono
en-aut-mei=Kazumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MiyashoKoji
en-aut-sei=Miyasho
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Anesthesiology and Oncological Pain Medicine, Fukuyama City Hospital
kn-affil=
affil-num=2
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Anesthesiology and Oncological Pain Medicine, Fukuyama City Hospital
kn-affil=
affil-num=4
en-affil= Department of Critical Care and Emergency Medicine, Fukuyama City Hospital
kn-affil=
en-keyword=trauma patient
kn-keyword=trauma patient
en-keyword=dorsal atelectasis
kn-keyword=dorsal atelectasis
en-keyword=oxygen concentration
kn-keyword=oxygen concentration
END
start-ver=1.4
cd-journal=joma
no-vol=74
cd-vols=
no-issue=1
article-no=
start-page=1
end-page=6
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=202002
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Promising New Anti-Cancer Strategy: Iron Chelators Targeting CSCs
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= Iron is a trace but vital element in the human body and is necessary for a multitude of crucial processes in life. However, iron overload is known to induce carcinogenesis via oxidative stress. Cancer cells require large amounts of iron for their rapid division and cell growth. Iron was recently found to play a role in cancer stem cells (CSCs); it maintains stemness during development. Iron also plays an important role in stemness by moderating reactive oxygen species. Thus, iron metabolism in CSCs is a promising therapeutic target. In this review, we summarize the roles of iron in cancer cells and CSCs. We also summarize anti-cancer therapeutic studies with iron chelators and describe our expectation of a new therapeutic strategy for CSCs on the basis of our findings.
en-copyright=
kn-copyright=
en-aut-name=ChenYuehua
en-aut-sei=Chen
en-aut-mei=Yuehua
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OharaToshiaki
en-aut-sei=Ohara
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=XingBoyi
en-aut-sei=Xing
en-aut-mei=Boyi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=QiJiping
en-aut-sei=Qi
en-aut-mei=Jiping
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NomaKazuhiro
en-aut-sei=Noma
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MatsukawaAkihiro
en-aut-sei=Matsukawa
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Pathology, the First Affiliated Hospital of Harbin Medical University
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=cancer stem cell
kn-keyword=cancer stem cell
en-keyword=stemness
kn-keyword=stemness
en-keyword=iron
kn-keyword=iron
en-keyword=chelation
kn-keyword=chelation
en-keyword=chemotherapy
kn-keyword=chemotherapy
END
start-ver=1.4
cd-journal=joma
no-vol=64
cd-vols=
no-issue=2
article-no=
start-page=143
end-page=147
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=20190301
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Heat Treatments of Ginger Root Modify but Not Diminish Its Antioxidant Activity as Measured With Multiple Free Radical Scavenging (MULTIS) Method
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= Ginger (Zingiber officinale Rosc.) root (or rhizome) has been reported to have antioxidant properties such as reactive oxygen species scavenging activities. Using multiple free-radical scavenging method, we have newly determined the scavenging abilities of ginger roots against five reactive oxygen species, i.e., HO•, O2 -•, RO•, tert-BuOO•, and 1O2. After heating grated ginger roots at 80°C for 2 h, nearly 50% decrease in scavenging ability was recorded against 1O2 and tert-BuOO•. Conversely, the O2 -• scavenging ability increased by about 56% after heat treatment. Based on the antioxidant activity measurement of the ginger's components, i.e., 6-gingerol, 6-shogaol, and zingerone, active species acting as antioxidant capacity of ginger was shown. Additionally, ginger's antioxidant capacity was quantitatively compared with that of rosemary extract, indicating that rosemary is peroxyl specific scavenger while ginger has higher scavenging ability against HO• and 1O2.
en-copyright=
kn-copyright=
en-aut-name=SueishiYoshimi
en-aut-sei=Sueishi
en-aut-mei=Yoshimi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MasamotoHiroaki
en-aut-sei=Masamoto
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KotakeYashige
en-aut-sei=Kotake
en-aut-mei=Yashige
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Chemistry, Faculty of Science, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Chemistry, Faculty of Science, Okayama University
kn-affil=
affil-num=3
en-affil=RRINC-USA
kn-affil=
en-keyword=ESR spin trapping
kn-keyword=ESR spin trapping
en-keyword=MULTIS
kn-keyword=MULTIS
en-keyword=antioxidant capacity
kn-keyword=antioxidant capacity
en-keyword=ginger
kn-keyword=ginger
en-keyword=multiple free-radical scavenging method.
kn-keyword=multiple free-radical scavenging method.
END
start-ver=1.4
cd-journal=joma
no-vol=520
cd-vols=
no-issue=3
article-no=
start-page=600
end-page=605
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=20191210
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Development of a model of ischemic heart disease using cardiomyocytes differentiated from human induced pluripotent stem cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Ischemic heart disease remains the largest cause of death worldwide. Accordingly, many researchers have sought curative options, often using laboratory animal models such as rodents. However, the physiology of the human heart differs significantly from that of the rodent heart. In this study, we developed a model of ischemic heart disease using cardiomyocytes differentiated from human induced pluripotent stem cells (hiPS-CMs). After optimizing the conditions of ischemia, including the concentration of oxygen and duration of application, we evaluated the consequent damage to hiPS-CMs. Notably, exposure to 2% oxygen, 0 mg/ml glucose, and 0% fetal bovine serum increased the percentage of nuclei stained with propidium iodide, an indicator of membrane damage, and decreased cellular viability. These conditions also decreased the contractility of hiPS-CMs. Furthermore, ischemic conditioning increased the mRNA expression of IL-8, consistent with observed conditions in the in vivo heart. Taken together, these findings suggest that our hiPS-CM-based model can provide a useful platform for human ischemic heart disease research.
en-copyright=
kn-copyright=
en-aut-name=WeiHeng
en-aut-sei=Wei
en-aut-mei=Heng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WangChen
en-aut-sei=Wang
en-aut-mei=Chen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=GuoRui
en-aut-sei=Guo
en-aut-mei=Rui
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakahashiKen
en-aut-sei=Takahashi
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NaruseKeiji
en-aut-sei=Naruse
en-aut-mei=Keiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Cardiomyocytes
kn-keyword=Cardiomyocytes
en-keyword=Human induced pluripotent stem cells
kn-keyword=Human induced pluripotent stem cells
en-keyword=Ischemic heart disease
kn-keyword=Ischemic heart disease
en-keyword=Myocardial infarction
kn-keyword=Myocardial infarction
END
start-ver=1.4
cd-journal=joma
no-vol=366
cd-vols=
no-issue=6463
article-no=
start-page=334
end-page=338
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=20191018
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=An oxyl/oxo mechanism for dioxygen bond formation in PSII revealed by X-ray free electron lasers
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= Photosynthetic water oxidation is catalyzed by the Mn4CaO5 cluster of photosystem II (PSII) with linear progression through five S-state intermediates (S0 to S4). To reveal the mechanism of water oxidation, we analyzed structures of PSII in the S1, S2, and S3 states by x-ray free-electron laser serial crystallography. No insertion of water was found in S2, but flipping of D1 Glu189 upon transition to S3 leads to the opening of a water channel and provides a space for incorporation of an additional oxygen ligand, resulting in an open cubane Mn4CaO6 cluster with an oxyl/oxo bridge. Structural changes of PSII between the different S states reveal cooperative action of substrate water access, proton release, and dioxygen formation in photosynthetic water oxidation.
en-copyright=
kn-copyright=
en-aut-name=SugaMichihiro
en-aut-sei=Suga
en-aut-mei=Michihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AkitaFusamichi
en-aut-sei=Akita
en-aut-mei=Fusamichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamashitaKeitaro
en-aut-sei=Yamashita
en-aut-mei=Keitaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakajimaYoshiki
en-aut-sei=Nakajima
en-aut-mei=Yoshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=UenoGo
en-aut-sei=Ueno
en-aut-mei=Go
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=LiHongjie
en-aut-sei=Li
en-aut-mei=Hongjie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YamaneTakahiro
en-aut-sei=Yamane
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HirataKunio
en-aut-sei=Hirata
en-aut-mei=Kunio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=UmenaYasufumi
en-aut-sei=Umena
en-aut-mei=Yasufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YonekuraShinichiro
en-aut-sei=Yonekura
en-aut-mei=Shinichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YuLong-Jiang
en-aut-sei=Yu
en-aut-mei=Long-Jiang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MurakamiHironori
en-aut-sei=Murakami
en-aut-mei=Hironori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=NomuraTakashi
en-aut-sei=Nomura
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KimuraTetsunari
en-aut-sei=Kimura
en-aut-mei=Tetsunari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KuboMinoru
en-aut-sei=Kubo
en-aut-mei=Minoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=BabaSeiki
en-aut-sei=Baba
en-aut-mei=Seiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=KumasakaTakashi
en-aut-sei=Kumasaka
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=TonoKensuke
en-aut-sei=Tono
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=YabashiMakina
en-aut-sei=Yabashi
en-aut-mei=Makina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=IsobeHiroshi
en-aut-sei=Isobe
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=YamaguchiKizashi
en-aut-sei=Yamaguchi
en-aut-mei=Kizashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=YamamotoMasaki
en-aut-sei=Yamamoto
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=AgoHideo
en-aut-sei=Ago
en-aut-mei=Hideo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=ShenJian-Ren
en-aut-sei=Shen
en-aut-mei=Jian-Ren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
affil-num=1
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=RIKEN SPring-8 Center
kn-affil=
affil-num=4
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=RIKEN SPring-8 Center
kn-affil=
affil-num=6
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=RIKEN SPring-8 Center
kn-affil=
affil-num=9
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=10
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=11
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=12
en-affil=Japan Synchrotron Radiation Research Institute
kn-affil=
affil-num=13
en-affil=RIKEN SPring-8 Center
kn-affil=
affil-num=14
en-affil=Department of Chemistry, Graduate School of Science, Kobe University
kn-affil=
affil-num=15
en-affil=RIKEN SPring-8 Center
kn-affil=
affil-num=16
en-affil=Japan Synchrotron Radiation Research Institute
kn-affil=
affil-num=17
en-affil=Japan Synchrotron Radiation Research Institute
kn-affil=
affil-num=18
en-affil=RIKEN SPring-8 Center
kn-affil=
affil-num=19
en-affil=RIKEN SPring-8 Center
kn-affil=
affil-num=20
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=21
en-affil=The Institute for Scientific and Industrial Research, Osaka University
kn-affil=
affil-num=22
en-affil=RIKEN SPring-8 Center
kn-affil=
affil-num=23
en-affil=RIKEN SPring-8 Center
kn-affil=
affil-num=24
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=5
cd-vols=
no-issue=51
article-no=
start-page=53
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=20190817
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Early detection of cerebral ischemia due to pericardium traction using cerebral oximetry in pediatric minimally invasive cardiac surgery: a case report
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background
Minimally invasive cardiac surgery (MICS) for simple congenital heart defects has become popular, and monitoring of regional cerebral oxygen saturation (rSO2) is crucial for preventing cerebral ischemia during pediatric MICS. We describe a pediatric case with a sudden decrease in rSO2 during MICS.
Case presentation
An 8-month-old male underwent minimally invasive ventricular septal defect closure. He developed a sudden decrease in rSO2 and right radial artery blood pressure (RRBP) without changes in other parameters following pericardium traction. The rSO2 and RRBP immediately recovered after removal of pericardium fixation. Obstruction of the right innominate artery secondary to the pericardium traction would have been responsible for it.
Conclusions
Pericardium traction, one of the common procedures during MICS, triggered rSO2 depression alerting us to the risk of cerebral ischemia. We should be aware that pericardium traction during MICS can lead to cerebral ischemia, which is preventable by cautious observation of the patient.
en-copyright=
kn-copyright=
en-aut-name=HayashiFumiaki
en-aut-sei=Hayashi
en-aut-mei=Fumiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishimotoRei
en-aut-sei=Nishimoto
en-aut-mei=Rei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShimizuKazuyoshi
en-aut-sei=Shimizu
en-aut-mei=Kazuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KanazawaTomoyuki
en-aut-sei=Kanazawa
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IwasakiTatsuo
en-aut-sei=Iwasaki
en-aut-mei=Tatsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MorimatsuHiroshi
en-aut-sei=Morimatsu
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital,
kn-affil=
affil-num=2
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital,
kn-affil=
affil-num=3
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital,
kn-affil=
affil-num=4
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital,
kn-affil=
affil-num=5
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital,
kn-affil=
affil-num=6
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital,
kn-affil=
en-keyword=Cerebral ischemia
kn-keyword=Cerebral ischemia
en-keyword=Near-infrared spectroscopy
kn-keyword=Near-infrared spectroscopy
en-keyword=Pediatric
kn-keyword=Pediatric
en-keyword=Minimally invasive cardiac surgery
kn-keyword=Minimally invasive cardiac surgery
en-keyword=Pericardium traction
kn-keyword=Pericardium traction
END
start-ver=1.4
cd-journal=joma
no-vol=252
cd-vols=
no-issue=
article-no=
start-page=107
end-page=125
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=20190501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Lithium- and oxygen-isotope compositions of chondrule constituents in the Allende meteorite
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= We report in situ ion-microprobe analyses of Li- and O-isotope compositions for olivine, low-Ca pyroxene, high-Ca pyroxene, and chondrule mesostasis/plagioclase in nine chondrules from the Allende CV3 chondrite. Based on their mineralogy and O-isotope compositions, we infer that the chondrule mesostasis/plagioclase and ferroan olivine rims were extensively modified or formed during metasomatic alteration and metamorphism on the Allende parent asteroid. We excluded these minerals in order to determine the correlations between Li and both O and the chemical compositions of olivines and low-Ca pyroxenes in the chondrules and their igneous rims. Based on the O-isotope composition of the olivines, nine chondrules were divided into three groups. Average Δ17O of olivines (Fo>65) in group 1 and 2 chondrules are −5.3 ± 0.4 and −6.2 ± 0.4‰, respectively. Group 3 chondrules are characterized by the presence of 16O-rich relict grains and the Δ17O of their olivines range from −23.7 to −6.2‰. In group 1 olivines, as Fa content increases, variation of δ7Li becomes smaller and δ7Li approaches the whole-rock value (2.4‰; Seitz et al., 2012), suggesting nearly complete Li-isotope equilibration. In group 2 and 3 olivines, variation of δ7Li is limited even with a significant range of Fa content. We conclude that Li-isotope compositions of olivine in group 1 chondrules were modified not by an asteroidal process but by an igneous-rim formation process, thus chondrule olivines retained Li-isotope compositions acquired in the protosolar nebula. In olivines of the group 3 chondrule PO-8, we observed a correlation between O and Li isotopes: In relict 16O-rich olivine grains with Δ17O of ∼−25 to −20‰, δ7Li ranges from −23 to −3‰; in olivine grains with Δ17O > −20‰, δ7Li is nearly constant (−8 ± 4‰). Based on the Li-isotope composition of low-Ca pyroxenes, which formed from melt during the crystallization of host chondrules and igneous rims, the existence of a gaseous reservoir with a δ7Li ∼ −11‰ is inferred.
en-copyright=
kn-copyright=
en-aut-name=KunihiroTakuya
en-aut-sei=Kunihiro
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OtaTsutomu
en-aut-sei=Ota
en-aut-mei=Tsutomu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakamuraEizo
en-aut-sei=Nakamura
en-aut-mei=Eizo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=The Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=2
en-affil=The Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=3
en-affil=The Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University
kn-affil=
en-keyword=Lithium
kn-keyword=Lithium
en-keyword=Oxygen
kn-keyword=Oxygen
en-keyword=Chondrule
kn-keyword=Chondrule
en-keyword=Chondrite
kn-keyword=Chondrite
en-keyword=Asteroid
kn-keyword=Asteroid
en-keyword=Allende
kn-keyword=Allende
en-keyword=Igneous rim
kn-keyword=Igneous rim
en-keyword=SIMS
kn-keyword=SIMS
END
start-ver=1.4
cd-journal=joma
no-vol=85
cd-vols=
no-issue=6
article-no=
start-page=405
end-page=412
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=20190607
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A class III peroxidase PRX34 is a component of disease resistance in Arabidopsis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= PRX34 mediates the oxidative burst in Arabidopsis. Here we characterized two additional Arabidopsis prx34 null mutants (prx34-2, prx34-3), besides the well-studied prx34-1. Due to a decrease in corresponding peroxidase, the activity that generates reactive oxygen species (ROS) was significantly lower in cell wall extracts of prx34-2 and prx34-3 plants. Consistently, the prx34-2 and prx34-3 exhibited reduced accumulation both of ROS and callose in Flg22-elicitor-treated leaves, leading to enhanced susceptibility to bacterial and fungal pathogens. In contrast, ectopic expression of PRX34 in the wild type caused enhanced resistance. PRX34 is thus a component for disease resistance in Arabidopsis.
en-copyright=
kn-copyright=
en-aut-name=ZhaoLei
en-aut-sei=Zhao
en-aut-mei=Lei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=Le Thi Phuong
en-aut-sei=Le Thi Phuong
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=Mai Thanh Luan
en-aut-sei=Mai Thanh Luan
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=Aprilia Nur Fitrianti
en-aut-sei=Aprilia Nur Fitrianti
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MatsuiHidenori
en-aut-sei=Matsui
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakagamiHirofumi
en-aut-sei=Nakagami
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NoutoshiYoshiteru
en-aut-sei=Noutoshi
en-aut-mei=Yoshiteru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YamamotoMikihiro
en-aut-sei=Yamamoto
en-aut-mei=Mikihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IchinoseYuki
en-aut-sei=Ichinose
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ShiraishiTomonori
en-aut-sei=Shiraishi
en-aut-mei=Tomonori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=ToyodaKazuhiro
en-aut-sei=Toyoda
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Environmental and Life ScienceOkayama University
kn-affil=
affil-num=2
en-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Environmental and Life ScienceOkayama University
kn-affil=
affil-num=3
en-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Environmental and Life ScienceOkayama University
kn-affil=
affil-num=4
en-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Environmental and Life ScienceOkayama University
kn-affil=
affil-num=5
en-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Environmental and Life ScienceOkayama University
kn-affil=
affil-num=6
en-affil=RIKEN Center for Sustainable Resource Science
kn-affil=
affil-num=7
en-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Environmental and Life ScienceOkayama University
kn-affil=
affil-num=8
en-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Environmental and Life ScienceOkayama University
kn-affil=
affil-num=9
en-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Environmental and Life ScienceOkayama University
kn-affil=
affil-num=10
en-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Environmental and Life ScienceOkayama University
kn-affil=
affil-num=11
en-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Environmental and Life ScienceOkayama University
kn-affil=
en-keyword=Apoplastic oxidative burst
kn-keyword=Apoplastic oxidative burst
en-keyword=Arabidopsis
kn-keyword=Arabidopsis
en-keyword=Cell wall
kn-keyword=Cell wall
en-keyword=Class III peroxidase
kn-keyword=Class III peroxidase
en-keyword=PRX34
kn-keyword=PRX34
en-keyword=Reactive oxygen species (ROS)
kn-keyword=Reactive oxygen species (ROS)
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=165461
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2014
dt-pub=20140818
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Radiolabeled probes targeting hypoxia-inducible factor-1-active tumor microenvironments
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= Because tumor cells grow rapidly and randomly, hypoxic regions arise from the lack of oxygen supply in solid tumors. Hypoxic regions in tumors are known to be resistant to chemotherapy and radiotherapy. Hypoxia-inducible factor-1 (HIF-1) expressed in hypoxic regions regulates the expression of genes related to tumor growth, angiogenesis, metastasis, and therapy resistance. Thus, imaging of HIF-1-active regions in tumors is of great interest. HIF-1 activity is regulated by the expression and degradation of its α subunit (HIF-1α), which is degraded in the proteasome under normoxic conditions, but escapes degradation under hypoxic conditions, allowing it to activate transcription of HIF-1-target genes. Therefore, to image HIF-1-active regions, HIF-1-dependent reporter systems and injectable probes that are degraded in a manner similar to HIF-1α have been recently developed and used in preclinical studies. However, no probe currently used in clinical practice directly assesses HIF-1 activity. Whether the accumulation of (18)F-FDG or (18)F-FMISO can be utilized as an index of HIF-1 activity has been investigated in clinical studies. In this review, the current status of HIF-1 imaging in preclinical and clinical studies is discussed.
en-copyright=
kn-copyright=
en-aut-name=UedaMasashi
en-aut-sei=Ueda
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SajiHideo
en-aut-sei=Saji
en-aut-mei=Hideo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Pharmaceutical Analytical Chemistry, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=19
cd-vols=
no-issue=11
article-no=
start-page=2821
end-page=2824
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2017
dt-pub=20170518
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Synthesis of 3-Benzo[b]thienyl 3-Thienyl Ether via an Addition-Elimination Reaction and Its Transformation to an Oxygen-Fused Dithiophene Skeleton: Synthesis and Properties of Benzodithienofuran and Its π-Extended Derivatives
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= The synthesis of 3-benzo[b]thienyl 3-thienyl ether and its dehydrogenative cyclization leading to benzodithienofuran (BDTF; [1]benzothieno[3,2-b]thieno[2,3-d]furan) are described for the first time. Further transformation of BDTF to more π-extended BDTF derivatives and their fundamental physical properties are also studied.
en-copyright=
kn-copyright=
en-aut-name=MitsudoKoichi
en-aut-sei=Mitsudo
en-aut-mei=Koichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KurimotoYuji
en-aut-sei=Kurimoto
en-aut-mei=Yuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MandaiHiroki
en-aut-sei=Mandai
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SugaSeiji
en-aut-sei=Suga
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=73
cd-vols=
no-issue=5
article-no=
start-page=433
end-page=440
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=201910
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Relationship between Intracellular Signaling of the (Pro)renin Receptor and the Pathogenesis of Preeclampsia
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= An association between preeclampsia and (pro)renin was recently reported. Intracellular signaling of the (pro) renin receptor [(P)RR] increases the expressions of TGF-β and PAI-1. In this study we sought to clarify the involvement of (pro)renin in the pathogenesis of preeclampsia via the intracellular signaling of (P)RR on preeclampsia placentas. Activated (pro)renin plasma concentrations were compared between pregnant women with (n=15) and without (n=28) preeclampsia. The placentas were immunohistochemically evaluated with anti-HIF-1α and anti-(P)RR antibodies. HTR-8/SVneo cells were cultured under hypoxic conditions and treated with human recombinant (pro)renin. The mRNA expressions of HIF-1α, (P)RR, PAI-1, TGF-β, and ET-1 were also examined by real-time RCR. The activated (pro)renin plasma concentration was significantly higher in the third vs. the second trimester in the preeclampsia patients. HIF-1α and (P)RR expressions were significantly increased in the preeclampsia placentas. The mRNA expressions of PAI-1, TGF-β, and ET-1 were significantly increased in the experiments using recombinant (pro)renin vs. hypoxic conditions. (P)RR expression in preeclampsia placentas is increased by persistent hypoxia through the second and third trimesters, and PAI-1, TGF-β, and ET-1 production is increased via (P)RR. Our results suggest that ET-1 production via the intracellular signaling of (P)RR is important in the pathogenesis of preeclampsia.
en-copyright=
kn-copyright=
en-aut-name=TamadaShoko
en-aut-sei=Tamada
en-aut-mei=Shoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MitsuiTakashi
en-aut-sei=Mitsui
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OhiraAkiko
en-aut-sei=Ohira
en-aut-mei=Akiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TaniKazumasa
en-aut-sei=Tani
en-aut-mei=Kazumasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MakiJota
en-aut-sei=Maki
en-aut-mei=Jota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=EguchiTakeshi
en-aut-sei=Eguchi
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=EtoEriko
en-aut-sei=Eto
en-aut-mei=Eriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HayataKei
en-aut-sei=Hayata
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MasuyamaHisashi
en-aut-sei=Masuyama
en-aut-mei=Hisashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=preeclampsia
kn-keyword=preeclampsia
en-keyword=(pro)renin
kn-keyword=(pro)renin
en-keyword=(pro)renin receptor
kn-keyword=(pro)renin receptor
en-keyword=endothelin-1
kn-keyword=endothelin-1
en-keyword=HTR-8/SVneo
kn-keyword=HTR-8/SVneo
END
start-ver=1.4
cd-journal=joma
no-vol=98
cd-vols=
no-issue=
article-no=
start-page=38
end-page=46
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=20190228
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Hyperoxia reduces salivary secretion by inducing oxidative stress in mice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=OBJECTIVE:
The aim of this study was to determine the effects of prolonged hyperoxia on salivary glands and salivary secretion in mice.
DESIGN:
Male C57BL/6 J mice were kept in a 75% oxygen chamber (hyperoxia group) or a 21% oxygen chamber for 5 days. We measured the secretion volume, protein concentration, and amylase activity of saliva after the injection of pilocarpine. In addition, we evaluated the histological changes induced in the submandibular glands using hematoxylin and eosin and Alcian blue staining and assessed apoptotic changes using the TdT-mediated dUTP nick end labeling (TUNEL) assay. We also compared the submandibular gland expression levels of heme oxygenase-1 (HO-1), superoxide dismutase (SOD)-1, and SOD-2 using the real-time polymerase chain reaction.
RESULTS:
In the hyperoxia group, salivary secretion was significantly inhibited at 5 and 10 min after the injection of pilocarpine, and the total salivary secretion volume was significantly decreased. The salivary protein concentration and amylase activity were also significantly higher in the hyperoxia group. In the histological examinations, enlargement of the mucous acini and the accumulation of mucins were observed in the submandibular region in the hyperoxia group, and the number of TUNEL-positive cells was also significantly increased in the hyperoxia group. Moreover, the expression levels of HO-1, SOD-1, and SOD-2 were significantly higher in the hyperoxia group.
CONCLUSION:
Our results suggest that hyperoxia reduces salivary secretion, and oxidative stress reactions might be involved in this.
en-copyright=
kn-copyright=
en-aut-name=TajiriAyako
en-aut-sei=Tajiri
en-aut-mei=Ayako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HiguchiHitoshi
en-aut-sei=Higuchi
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MiyawakiTakuya
en-aut-sei=Miyawaki
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Dental Anesthesiology and Special Care Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Dental Anesthesiology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Dental Anesthesiology and Special Care Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Hyperoxia
kn-keyword=Hyperoxia
en-keyword=Hyposalivation
kn-keyword=Hyposalivation
en-keyword=Oxidative stress
kn-keyword=Oxidative stress
en-keyword=Saliva
kn-keyword=Saliva
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=
article-no=
start-page=87
end-page=90
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=20191204
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Heat-not-burn cigarettes induce fulminant acute eosinophilic pneumonia requiring extracorporeal membrane oxygenation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background
Although the cause of acute eosinophilic pneumonia (AEP) has not yet been fully clarified, cigarette smoking is reported to be a risk factor for developing AEP. The heat-not-burn cigarette (HNBC) was developed to reduce the adverse effects of smoke on the user's surroundings. However, the health risks associated with HNBCs have not yet been clarified. We report a successfully treated case of fatal AEP presumably induced by HNBC use.
Presentation of case
A 16-year-old man commenced HNBC smoking two weeks before admission and subsequently suffered from shortness of breath that gradually worsened. The patient was transferred to emergency department and immediately intubated because of respiratory failure. Computed tomography showed mosaic ground-glass shadows on the distal side of both lungs with a PaO2/FIO2 ratio of 76. The patient required veno-venous extracorporeal membrane oxygenation (ECMO) for severe respiratory failure. He was diagnosed with AEP by clinical course and detection of eosinophils in sputum; thus, methylprednisolone was administrated. The patient was weaned off ECMO four days after initiation and extubated the day after. He fully recovered without sequelae.
Conclusion
As far as we know, our patient is the first case of AEP induced by HNBC use successfully treated with ECMO. Emergency physicians must be aware that HNBCs can induce fatal AEP.
en-copyright=
kn-copyright=
en-aut-name=AokageToshiyuki
en-aut-sei=Aokage
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TsukaharaKohei
en-aut-sei=Tsukahara
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FukudaYasushi
en-aut-sei=Fukuda
en-aut-mei=Yasushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TokiokaFumiaki
en-aut-sei=Tokioka
en-aut-mei=Fumiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TaniguchiAkihiko
en-aut-sei=Taniguchi
en-aut-mei=Akihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NaitoHiromichi
en-aut-sei=Naito
en-aut-mei=Hiromichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakaoAtsunori
en-aut-sei=Nakao
en-aut-mei=Atsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Geriatric Emergency Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Respiratory Medicine, Kurashiki Central Hospital
kn-affil=
affil-num=4
en-affil=Department of Respiratory Medicine, Kurashiki Central Hospital
kn-affil=
affil-num=5
en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Tobacco
kn-keyword=Tobacco
en-keyword=Cigarettes
kn-keyword=Cigarettes
en-keyword=Heat-not-burn cigarettes
kn-keyword=Heat-not-burn cigarettes
en-keyword=Acute eosinophilic pneumonia
kn-keyword=Acute eosinophilic pneumonia
en-keyword=Extracorporeal membrane oxygenation
kn-keyword=Extracorporeal membrane oxygenation
en-keyword=ECMO
kn-keyword=ECMO
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=20190325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=酸素発生光化学系IIの構造・機能解析
kn-title=Structural and functional studies of oxygen-evolving photosystem II
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=NakajimaYoshiki
en-aut-sei=Nakajima
en-aut-mei=Yoshiki
kn-aut-name=中島芳樹
kn-aut-sei=中島
kn-aut-mei=芳樹
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=20190325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=水チェレンコフ検出器によるニュートリノ-酸素中性カレント準弾性散乱反応の測定
kn-title=Neutrino-Oxygen Neutral Current Quasi-Elastic scattering measurement in the water Cherenkov detector
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=FukudaDaisuke
en-aut-sei=Fukuda
en-aut-mei=Daisuke
kn-aut-name=福田大輔
kn-aut-sei=福田
kn-aut-mei=大輔
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=20190325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=体外式膜型人工肺回路へのミダゾラム吸収に影響を及ぼす因子について
kn-title=Factors Affecting the Absorption of Midazolam to the Extracorporeal Membrane Oxygenation Circuit
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=IidaAtsuyoshi
en-aut-sei=Iida
en-aut-mei=Atsuyoshi
kn-aut-name=飯田淳義
kn-aut-sei=飯田
kn-aut-mei=淳義
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=20190325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=ドナー由来遊離DNAは生体肺移植後の急性拒絶反応とグラフと機能不全における低酸素化と関連している
kn-title=Donor-derived cell-free DNA is associated with acute rejection and decreased oxygenation in primary graft dysfunction after living donor-lobar lung transplantation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=TanakaShin
en-aut-sei=Tanaka
en-aut-mei=Shin
kn-aut-name=田中真
kn-aut-sei=田中
kn-aut-mei=真
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=20
cd-vols=
no-issue=3
article-no=
start-page=199
end-page=203
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2015
dt-pub=2015
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Presence of Nitric Oxide-Sensing Systems in the Human Pathogen Vibrio vulnificus
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= Vibrio vulnificus is a halophilic estuarine bacterium, but this species causes fatal septicemia in humans. V. vulnificus may encounter many kinds of stresses either in the natural environment or in the human body. One of the striking stresses is the exposure to the reactive oxygen species including nitric oxide (NO). The present study revealed that NO could participate in the regulation of the V. vulnificus community behavior. When the bacterium was cultivated in the presence of sub-lethal doses of an NO donor, the expression of the genes encoding NO-detoxifying enzymes was significantly increased. The NO donor was also found to cause significant increase in production of a metalloprotease, a putative virulence factor, by the bacterium.
en-copyright=
kn-copyright=
en-aut-name=ElgamlAbdelaziz
en-aut-sei=Elgaml
en-aut-mei=Abdelaziz
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyoshiShin-ichi
en-aut-sei=Miyoshi
en-aut-mei=Shin-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Vibrio vulnificus
kn-keyword=Vibrio vulnificus
en-keyword=Nitric oxide
kn-keyword=Nitric oxide
en-keyword=Oxidative stress
kn-keyword=Oxidative stress
en-keyword=Detoxification
kn-keyword=Detoxification
END
start-ver=1.4
cd-journal=joma
no-vol=1
cd-vols=
no-issue=
article-no=
start-page=0137
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2017
dt-pub=20170526
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Silicate–SiO reaction in a protoplanetary disk recorded by oxygen isotopes in chondrules
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= The formation of planetesimals and planetary embryos during the earliest stages of the solar protoplanetary disk largely determined the composition and structure of the terrestrial planets. Within a few million years of the birth of the Solar System, chondrule formation and the accretion of the parent bodies of differentiated achondrites and the terrestrial planets took place in the inner protoplanetary disk 1,2 . Here we show that, for chondrules in unequilibrated enstatite chondrites, high-precision Δ17O values (where Δ17O is the deviation of the δ17O value from a terrestrial silicate fractionation line) vary significantly (ranging from −0.49 to +0.84‰) and fall on an array with a steep slope of 1.27 on a three-oxygen-isotope plot. This array can be explained by the reaction between an olivine-rich chondrule melt and an SiO-rich gas derived from vaporized dust and nebular gas. Our study suggests that a large proportion of the building blocks of planetary embryos formed by successive silicate–gas interaction processes: silicate–H2O followed by silicate–SiO interactions under more oxidized and reduced conditions, respectively, within a few million years of the formation of the Solar System.
en-copyright=
kn-copyright=
en-aut-name=TanakaRyoji
en-aut-sei=Tanaka
en-aut-mei=Ryoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakamuraEizo
en-aut-sei=Nakamura
en-aut-mei=Eizo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=2
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=73
cd-vols=
no-issue=2
article-no=
start-page=101
end-page=107
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=201904
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Factors Affecting the Absorption of Midazolam to the Extracorporeal Membrane Oxygenation Circuit
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= Sedatives are administered during extracorporeal membrane oxygenation (ECMO) therapy to ensure patient safety, reduce the metabolic rate and correct the oxygen supply-demand balance. However, the concentrations of sedatives can be decreased due to absorption into the circuit. This study examined factors affecting the absorption of a commonly used sedative, midazolam (MDZ). Using multiple ex vivo simulation models, three factors that may influence MDZ levels in the ECMO circuit were examined: polyvinyl chloride (PVC) tubing in the circuit, use of a membrane oxygenator in the circuit, and heparin coating of the circuit. We also assessed changes in drug concentration when MDZ was re-injected in a circuit. The MDZ level decreased to approximately 60% of the initial concentration in simulated circuits within the first 30 minutes. The strongest factor in this phenomenon was contact with the PVC tubing. Membrane oxygenator use tended to increase MDZ loss, whereas heparin circuit coating had no influence on MDZ absorption. Similar results were obtained when a second dose of MDZ was injected to the second-use circuits.
en-copyright=
kn-copyright=
en-aut-name=IidaAtsuyoshi
en-aut-sei=Iida
en-aut-mei=Atsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NaitoHiromichi
en-aut-sei=Naito
en-aut-mei=Hiromichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YorifujiTakashi
en-aut-sei=Yorifuji
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ZamamiYoshito
en-aut-sei=Zamami
en-aut-mei=Yoshito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamadaAkane
en-aut-sei=Yamada
en-aut-mei=Akane
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KogaTadashi
en-aut-sei=Koga
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ImaiToru
en-aut-sei=Imai
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SendoToshiaki
en-aut-sei=Sendo
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NakaoAtsunori
en-aut-sei=Nakao
en-aut-mei=Atsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=IchibaShingo
en-aut-sei=Ichiba
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Emergency and Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Emergency and Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Human Ecology, Okayama University Graduate School of Environmental and Life Science
kn-affil=
affil-num=4
en-affil=Department of Clinical Pharmacy, Institute of Biomedical Sciences, Tokushima University Graduate School
kn-affil=
affil-num=5
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Drug Safety Research Laboratories, Shin Nippon Biomedical Laboratories, Ltd.
kn-affil=
affil-num=7
en-affil=Department of Pharmacy, Nihon University Itabashi Hospital
kn-affil=
affil-num=8
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Emergency and Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Surgical Intensive Care Medicine, Nippon Medical School Hospital
kn-affil=
en-keyword=sedatives
kn-keyword=sedatives
en-keyword=ECMO
kn-keyword=ECMO
en-keyword=polyvinyl chloride
kn-keyword=polyvinyl chloride
en-keyword=pharmacokinetics
kn-keyword=pharmacokinetics
en-keyword=pharmacodynamics
kn-keyword=pharmacodynamics
END
start-ver=1.4
cd-journal=joma
no-vol=73
cd-vols=
no-issue=1
article-no=
start-page=15
end-page=20
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=201902
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=High-flow Nasal Cannula Versus Noninvasive ventilation for Postextubation Acute Respiratory Failure after Pediatric Cardiac Surgery
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= We compared the reintubation rate in children who received high-flow nasal cannula (HFNC) therapy to the rate in children who received noninvasive ventilation (NIV) therapy for acute respiratory failure (ARF) after cardiac surgery. This was a retrospective analysis of 35 children who received HFNC therapy for ARF after cardiac surgery in 2014-2015 (the HFNC group). We selected 35 children who had received NIV therapy for ARF after cardiac surgery in 2009-2012 as a control group. The matching parameters were body weight and risk adjustment for congenital heart surgery category 1. The reintubation rate within 48 h in the HFNC group tended to be lower than that in the NIV group (3% vs. 17%, p=0.06). The reintubation rate within 28 days was significantly lower in the HFNC group compared to the NIV group (3% vs. 26%, p=0.04). The HFNC group’s ICU stays were significantly shorter than those of the NIV group: 10 (IQR: 7-17) days vs. 17 (11-32) days, p=0.009. HFNC therapy might be associated with a reduced reintubation rate in children with ARF after cardiac surgery.
en-copyright=
kn-copyright=
en-aut-name=ShiojiNaohiro
en-aut-sei=Shioji
en-aut-mei=Naohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KanazawaTomoyuki
en-aut-sei=Kanazawa
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IwasakiTatsuo
en-aut-sei=Iwasaki
en-aut-mei=Tatsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ShimizuKazuyoshi
en-aut-sei=Shimizu
en-aut-mei=Kazuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SuemoriTomohiko
en-aut-sei=Suemori
en-aut-mei=Tomohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KuroeYasutoshi
en-aut-sei=Kuroe
en-aut-mei=Yasutoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MorimatsuHiroshi
en-aut-sei=Morimatsu
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital
kn-affil=
en-keyword=high-flow nasal cannula
kn-keyword=high-flow nasal cannula
en-keyword=noninvasive ventilation
kn-keyword=noninvasive ventilation
en-keyword=reintubation
kn-keyword=reintubation
en-keyword=congenital heart disease
kn-keyword=congenital heart disease
en-keyword=acute respiratory failure
kn-keyword=acute respiratory failure
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2018
dt-pub=20180927
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=活性酸素種やアセトアルデヒドに対する潜在的保護剤としてのフェノール酸類
kn-title=Phenolic acids as potential protective agents against reactive oxygen species and acetaldehyde
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=XuWenSi
en-aut-sei=Xu
en-aut-mei=WenSi
kn-aut-name=徐文思
kn-aut-sei=徐
kn-aut-mei=文思
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=72
cd-vols=
no-issue=2
article-no=
start-page=193
end-page=196
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2018
dt-pub=201804
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Incidence of Pulmonary Complications with the Prophylactic Use of High-flow Nasal Cannula after Pediatric Cardiac Surgery: Prophylactic HFNC Study Protocol
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= We will investigate the incidence of postoperative pulmonary complications (PPCs) with the prophylactic use of a high-flow nasal cannula (HFNC) after pediatric cardiac surgery. Children < 48 months old with congenital heart disease for whom cardiac surgery is planned will be included. The HFNC procedure will be commenced just after extubation, at a flow rate of 2 L/kg/min with adequate oxygen concentration to achieve target oxygen saturation ≥ 94%. This study will reveal the prevalence of PPCs after pediatric cardiac surgery with the prophylactic use of HFNC.
en-copyright=
kn-copyright=
en-aut-name=ShiojiNaohiro
en-aut-sei=Shioji
en-aut-mei=Naohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KanazawaTomoyuki
en-aut-sei=Kanazawa
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IwasakiTatsuo
en-aut-sei=Iwasaki
en-aut-mei=Tatsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ShimizuKazuyoshi
en-aut-sei=Shimizu
en-aut-mei=Kazuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SuemoriTomohiko
en-aut-sei=Suemori
en-aut-mei=Tomohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KawaseHirokazu
en-aut-sei=Kawase
en-aut-mei=Hirokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KimuraSatoshi
en-aut-sei=Kimura
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KuroeYasutoshi
en-aut-sei=Kuroe
en-aut-mei=Yasutoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MorimatsuHiroshi
en-aut-sei=Morimatsu
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital
kn-affil=
en-keyword=high-flow nasal cannula
kn-keyword=high-flow nasal cannula
en-keyword=postoperative pulmonary complications
kn-keyword=postoperative pulmonary complications
en-keyword=pediatric cardiac surgery
kn-keyword=pediatric cardiac surgery
en-keyword=congenital heart disease
kn-keyword=congenital heart disease
END
start-ver=1.4
cd-journal=joma
no-vol=72
cd-vols=
no-issue=2
article-no=
start-page=181
end-page=183
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2018
dt-pub=201804
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Portal Venous Gas Following Ingestion of Hydrogen Peroxide Successfully Treated with Hyperbaric Oxygen Therapy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= The primary toxicity of hydrogen peroxide results from its interaction with catalase, which liberates water and oxygen. We report the case of a 14-year-old Japanese girl with portal venous gas that was caused by oxygen liberated from intentionally ingested hydrogen peroxide. Although she had a past history of atrial septal defect, recovery without cardiac or neurological sequelae was achieved using hyperbaric oxygen therapy. Emergency physicians must be aware of the danger of liberated oxygen due to hydrogen peroxide ingestion.
en-copyright=
kn-copyright=
en-aut-name=TsuboiChika
en-aut-sei=Tsuboi
en-aut-mei=Chika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NaitoHiromichi
en-aut-sei=Naito
en-aut-mei=Hiromichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HagiokaShingo
en-aut-sei=Hagioka
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HanafusaHiroaki
en-aut-sei=Hanafusa
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HirayamaTakahiro
en-aut-sei=Hirayama
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KosakiYoshinori
en-aut-sei=Kosaki
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IidaAtsuyoshi
en-aut-sei=Iida
en-aut-mei=Atsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YumotoTetsuya
en-aut-sei=Yumoto
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TsukaharaKohei
en-aut-sei=Tsukahara
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MorimotoNaoki
en-aut-sei=Morimoto
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NakaoAtsunori
en-aut-sei=Nakao
en-aut-mei=Atsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Emergency Center and Critical Care Unit, Tsuyama Chuo Hospital
kn-affil=
affil-num=2
en-affil=Department of Emergency and Critical Care Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Emergency Center and Critical Care Unit, Tsuyama Chuo Hospital
kn-affil=
affil-num=4
en-affil=Emergency Center and Critical Care Unit, Tsuyama Chuo Hospital
kn-affil=
affil-num=5
en-affil=Department of Emergency and Critical Care Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Emergency and Critical Care Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Emergency and Critical Care Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Emergency and Critical Care Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Emergency and Critical Care Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Emergency Center and Critical Care Unit, Tsuyama Chuo Hospital
kn-affil=
affil-num=11
en-affil=Department of Emergency and Critical Care Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=air embolism
kn-keyword=air embolism
en-keyword=ASD
kn-keyword=ASD
en-keyword=breaching agent
kn-keyword=breaching agent
en-keyword=HBO
kn-keyword=HBO
en-keyword=intoxication
kn-keyword=intoxication
END
start-ver=1.4
cd-journal=joma
no-vol=71
cd-vols=
no-issue=6
article-no=
start-page=543
end-page=546
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2017
dt-pub=201712
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Severe Acute Respiratory Distress Syndrome Using Electrical Activity of the Diaphragm on Weaning from Extracorporeal Membrane Oxygenation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= The electrical activity of the diaphragm (EAdi) shows global diaphragmatic activation and power output from the central nervous system. We measured the EAdi as an indicator of breathing workload in a 40-year-old man suffering from severe acute respiratory distress syndrome (ARDS) secondary to influenza pneumonia in the process of weaning from extracorporeal membrane oxygenation (ECMO). Turning off the sweep gas flow immediately led to EAdi elevation, followed by hypoxia. The patient was successfully weaned from ECMO by reference to EAdi. This is the first case report to suggest that EAdi monitoring might be useful for ARDS patients during ECMO weaning.
en-copyright=
kn-copyright=
en-aut-name=OkaharaShuji
en-aut-sei=Okahara
en-aut-mei=Shuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShimizuKazuyoshi
en-aut-sei=Shimizu
en-aut-mei=Kazuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MorimatsuHiroshi
en-aut-sei=Morimatsu
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital
kn-affil=
en-keyword=electrical activity of the diaphragm
kn-keyword=electrical activity of the diaphragm
en-keyword=breathing workload
kn-keyword=breathing workload
en-keyword=respiratory extracorporeal membrane oxygenation
kn-keyword=respiratory extracorporeal membrane oxygenation
en-keyword=acute respiratory distress syndrome
kn-keyword=acute respiratory distress syndrome
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2017
dt-pub=20170929
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=ウシ顆粒膜細胞の黄体化における低酸素および低酸素誘導因子1αの役割
kn-title=Roles of low oxygen condition and hypoxia-inducible factor 1α during luteinization of bovine granulosa cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=Fadhillah
en-aut-sei=Fadhillah
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=122
cd-vols=
no-issue=1
article-no=
start-page=158
end-page=171
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2017
dt-pub=20170114
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Pressure dependence of electrical conductivity in forsterite
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= Electrical conductivity of dry forsterite has been measured in muli-anvil apparatus to investigate the pressure dependence of ionic conduction in forsterite. The starting materials for the conductivity experiments were a synthetic forsterite single crystal and a sintered forsterite aggregate synthesized from oxide mixture. Electrical conductivities were measured at 3.5, 6.7, 9.6, 12.1, and 14.9 GPa between 1300 and 2100 K. In the measured temperature range, the conductivity of single crystal forsterite decreases in the order of [001], [010], and [100]. In all cases, the conductivity decreases with increasing pressure and then becomes nearly constant for [100] and [001] and slightly increases above 7 GPa for [010] orientations and a polycrystalline forsterite sample. Pressure dependence of forsterite conductivity was considered as a change of the dominant conduction mechanism composed of migration of both magnesium and oxygen vacancies in forsterite. The activation energy (ΔE) and activation volume (ΔV) for ionic conduction due to migration of Mg vacancy were 1.8–2.7 eV and 5–19 cm3/mol, respectively, and for that due to O vacancy were 2.2–3.1 eV and −1.1 to 0.3 cm3/mol, respectively. The olivine conductivity model combined with small polaron conduction suggests that the most part of the upper mantle is controlled by ionic conduction rather than small polaron conduction. The previously observed negative pressure dependence of the conductivity of olivine with low iron content (Fo90) can be explained by ionic conduction due to migration of Mg vacancies, which has a large positive activation volume.
en-copyright=
kn-copyright=
en-aut-name=YoshinoTakashi
en-aut-sei=Yoshino
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ZhangBaohua
en-aut-sei=Zhang
en-aut-mei=Baohua
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=RhymerBrandon
en-aut-sei=Rhymer
en-aut-mei=Brandon
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ZhaoChengcheng
en-aut-sei=Zhao
en-aut-mei=Chengcheng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FeiHongzhan
en-aut-sei=Fei
en-aut-mei=Hongzhan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=2
en-affil=Key Laboratory for High-Temperature and High-Pressure Study of the Earth’s Interior, Institute of Geochemistry, Chinese Academy of Sciences
kn-affil=
affil-num=3
en-affil=Department of Geosciences, State University of New York at Stony Brook
kn-affil=
affil-num=4
en-affil=Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=5
en-affil=Bayerisches Geoinstitut, University of Bayreuth
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=28
cd-vols=
no-issue=10
article-no=
start-page=1479
end-page=1486
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2015
dt-pub=201505
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Multiple roles of hypoxia in ovarian function: roles of hypoxia-inducible factor-related and -unrelated signals during the luteal phase
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= There is increasing interest in the role of oxygen conditions in the microenvironment of organs because of the discovery of a hypoxia-specific transcription factor, namely hypoxia-inducible factor (HIF) 1. Ovarian function has several phases that change day by day, including ovulation, follicular growth and corpus luteum formation and regression. These phases are regulated by many factors, including pituitary hormones and local hormones, such as steroids, peptides and cytokines, as well as oxygen conditions. Hypoxia strongly induces angiogenesis because transcription of the potent angiogenic factor vascular endothelial growth factor (VEGF) is regulated by HIF1. Follicular development and luteal formation are accompanied by a marked increase in angiogenesis assisted by HIF1-VEGF signalling. Hypoxia is also one of the factors that induces luteolysis by suppressing progesterone synthesis and by promoting apoptosis of luteal cells. The present review focuses on recent studies of hypoxic conditions, as well as HIF1-regulated genes and proteins, in the regulation of ovarian function.
en-copyright=
kn-copyright=
en-aut-name=NishimuraRyo
en-aut-sei=Nishimura
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkudaKiyoshi
en-aut-sei=Okuda
en-aut-mei=Kiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Laboratory of Reproductive Endocrinology, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Laboratory of Reproductive Endocrinology, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=angiogenesis
kn-keyword=angiogenesis
en-keyword=apoptosis
kn-keyword=apoptosis
en-keyword=corpus luteum
kn-keyword=corpus luteum
en-keyword=follicular development
kn-keyword=follicular development
en-keyword=luteal formation
kn-keyword=luteal formation
en-keyword=luteal regression
kn-keyword=luteal regression
en-keyword=steroidogenesis
kn-keyword=steroidogenesis
END
start-ver=1.4
cd-journal=joma
no-vol=57
cd-vols=
no-issue=6
article-no=
start-page=1115
end-page=1122
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2016
dt-pub=20160601
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Close Relationships Between the PSII Repair Cycle and Thylakoid Membrane Dynamics
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= In chloroplasts, a three-dimensional network of thylakoid membranes is formed by stacked grana and interconnecting stroma thylakoids. The grana are crowded with photosynthetic proteins, where PSII-light harvesting complex II (LHCII) supercomplexes often show semi-crystalline arrays for efficient energy trapping, transfer and use. Although light is essential for photosynthesis, PSII is damaged by reactive oxygen species that are generated from primary photochemical reactions when plants are exposed to excess light. Because PSII complexes are embedded in the lipid bilayers of thylakoid membranes, their functions are affected by the conditions of the lipids. Electron paramagnetic resonance (EPR) spin trapping measurements showed that singlet oxygen was formed through peroxidation of thylakoid lipids, suggesting that lipid peroxidation can damage proteins, including the D1 protein. After photodamage, PSII is restored by a specific repair system in thylakoid membranes. In the PSII repair cycle, phosphorylation and dephosphorylation of the PSII proteins control the timing of PSII disassembly and subsequent degradation of the D1 protein. Under light stress, stacked grana turn into unstacked thylakoids with bent grana margins. These structural changes may be closely linked to the mechanisms of the PSII repair cycle because PSII can move more easily from the grana core to the stroma thylakoids through an expanded stromal gap between each thylakoid. Thus, plants modulate the structure of thylakoid membranes under high light to carry out efficient PSII repair. This review focuses on the behavior of the PSII complex and the active role of structural changes to thylakoid membranes under light stress.
en-copyright=
kn-copyright=
en-aut-name=Yoshioka-NishimuraMiho
en-aut-sei=Yoshioka-Nishimura
en-aut-mei=Miho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil= Graduate School of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=FtsH protease
kn-keyword=FtsH protease
en-keyword=Light stress
kn-keyword=Light stress
en-keyword=PSII
kn-keyword=PSII
en-keyword=PSII repair cycle
kn-keyword=PSII repair cycle
en-keyword=Photoinhibition
kn-keyword=Photoinhibition
en-keyword=Thylakoid membrane
kn-keyword=Thylakoid membrane
END
start-ver=1.4
cd-journal=joma
no-vol=27
cd-vols=
no-issue=3
article-no=
start-page=225
end-page=229
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2012
dt-pub=201205
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Extracorporeal membrane oxygenation following pediatric cardiac surgery: development and outcomes from a single-center experience
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= Extracorporeal membrane oxygenation (ECMO) has emerged as an effective mechanical support following cardiac surgery with respiratory and cardiac failure. However, there are no clear indications for ECMO use after pediatric cardiac surgery. We retrospectively reviewed medical records of 76 pediatric patients [mean age, 10.8 months (0-86); mean weight, 5.16 kg (1.16-16.5)] with congenital heart disease who received ECMO following cardiac surgery between January 1997 and October 2010. Forty-five patients were treated with an aggressive ECMO approach (aggressive ECMO group, April 2005-October 2010) and 31 with a delayed ECMO approach (delayed ECMO group, January 1997-March 2005). Demographics, diagnosis, operative variables, ECMO indication, and duration of survivors and non-survivors were compared. Thirty-four patients (75.5%) were successfully weaned from ECMO in the aggressive ECMO group and 26 (57.7%) were discharged. Conversely, eight patients (25.8%) were successfully weaned from ECMO in the delayed ECMO group and two (6.5%) were discharged. Forty-five patients with shunted single ventricle physiology (aggressive: 29 patients, delayed: 16 patients) received ECMO, but only 15 (33.3%) survived and were discharged. The survival rate of the aggressive ECMO group was significantly better when compared with the delayed ECMO group (p<0.01). Also, ECMO duration was significantly shorter among the aggressive ECMO group survivors (96.5 ± 62.9 h, p<0.01). Thus, the aggressive ECMO approach is a superior strategy compared to the delayed ECMO approach in pediatric cardiac patients. The aggressive ECMO approach improved our outcomes of neonatal and pediatric ECMO.
en-copyright=
kn-copyright=
en-aut-name=ItohHideshi
en-aut-sei=Itoh
en-aut-mei=Hideshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IchibaShingo
en-aut-sei=Ichiba
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UjikeYoshihito
en-aut-sei=Ujike
en-aut-mei=Yoshihito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KasaharaShingo
en-aut-sei=Kasahara
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AraiSadahiko
en-aut-sei=Arai
en-aut-mei=Sadahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SanoShuji
en-aut-sei=Sano
en-aut-mei=Shuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Surgery, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Surgery, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Surgery, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Surgery, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Surgery, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Cardiovascular Surgery, Okayama University Hospital
kn-affil=
en-keyword=Extracorporeal membrane oxygenation
kn-keyword=Extracorporeal membrane oxygenation
en-keyword=congenital heart disease
kn-keyword=congenital heart disease
en-keyword=cardiac surgery
kn-keyword=cardiac surgery
en-keyword=pediatric
kn-keyword=pediatric
en-keyword=hypoplastic left heart syndrome
kn-keyword=hypoplastic left heart syndrome
END
start-ver=1.4
cd-journal=joma
no-vol=543
cd-vols=
no-issue=7643
article-no=
start-page=131
end-page=135
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2017
dt-pub=201703
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= Photosystem II (PSII) is a huge membrane-protein complex consisting of 20 different subunits with a total molecular mass of 350 kDa for a monomer. It catalyses light-driven water oxidation at its catalytic centre, the oxygen-evolving complex (OEC). The structure of PSII has been analysed at 1.9 Å resolution by synchrotron radiation X-rays, which revealed that the OEC is a Mn4CaO5 cluster organized in an asymmetric, 'distorted-chair' form. This structure was further analysed with femtosecond X-ray free electron lasers (XFEL), providing the 'radiation damage-free' structure. The mechanism of O=O bond formation, however, remains obscure owing to the lack of intermediate-state structures. Here we describe the structural changes in PSII induced by two-flash illumination at room temperature at a resolution of 2.35 Å using time-resolved serial femtosecond crystallography with an XFEL provided by the SPring-8 ångström compact free-electron laser. An isomorphous difference Fourier map between the two-flash and dark-adapted states revealed two areas of apparent changes: around the QB/non-haem iron and the Mn4CaO5 cluster. The changes around the QB/non-haem iron region reflected the electron and proton transfers induced by the two-flash illumination. In the region around the OEC, a water molecule located 3.5 Å from the Mn4CaO5 cluster disappeared from the map upon two-flash illumination. This reduced the distance between another water molecule and the oxygen atom O4, suggesting that proton transfer also occurred. Importantly, the two-flash-minus-dark isomorphous difference Fourier map showed an apparent positive peak around O5, a unique μ4-oxo-bridge located in the quasi-centre of Mn1 and Mn4 (refs 4,5). This suggests the insertion of a new oxygen atom (O6) close to O5, providing an O=O distance of 1.5 Å between these two oxygen atoms. This provides a mechanism for the O=O bond formation consistent with that proposed previously
en-copyright=
kn-copyright=
en-aut-name=SugaMichihiro
en-aut-sei=Suga
en-aut-mei=Michihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AkitaFusamichi
en-aut-sei=Akita
en-aut-mei=Fusamichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SugaharaMichihiro
en-aut-sei=Sugahara
en-aut-mei=Michihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KuboMinoru
en-aut-sei=Kubo
en-aut-mei=Minoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakajimaYoshiki
en-aut-sei=Nakajima
en-aut-mei=Yoshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakaneTakanori
en-aut-sei=Nakane
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YamashitaKeitaro
en-aut-sei=Yamashita
en-aut-mei=Keitaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=UmenaYasufumi
en-aut-sei=Umena
en-aut-mei=Yasufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NakabayashiMakoto
en-aut-sei=Nakabayashi
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YamaneTakahiro
en-aut-sei=Yamane
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NakanoTakamitsu
en-aut-sei=Nakano
en-aut-mei=Takamitsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=SuzukiMamoru
en-aut-sei=Suzuki
en-aut-mei=Mamoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MasudaTetsuya
en-aut-sei=Masuda
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=InoueShigeyuki
en-aut-sei=Inoue
en-aut-mei=Shigeyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KimuraTetsunari
en-aut-sei=Kimura
en-aut-mei=Tetsunari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=NomuraTakashi
en-aut-sei=Nomura
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=YonekuraShinichiro
en-aut-sei=Yonekura
en-aut-mei=Shinichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=YuLong-Jiang
en-aut-sei=Yu
en-aut-mei=Long-Jiang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=SakamotoTomohiro
en-aut-sei=Sakamoto
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=MotomuraTaiki
en-aut-sei=Motomura
en-aut-mei=Taiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=ChenJing-Hua
en-aut-sei=Chen
en-aut-mei=Jing-Hua
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=KatoYuki
en-aut-sei=Kato
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=NoguchiTakumi
en-aut-sei=Noguchi
en-aut-mei=Takumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=TonoKensuke
en-aut-sei=Tono
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=JotiYasumasa
en-aut-sei=Joti
en-aut-mei=Yasumasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=KameshimaTakashi
en-aut-sei=Kameshima
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=HatsuiTakaki
en-aut-sei=Hatsui
en-aut-mei=Takaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=NangoEriko
en-aut-sei=Nango
en-aut-mei=Eriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=TanakaRie
en-aut-sei=Tanaka
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=NaitowHisashi
en-aut-sei=Naitow
en-aut-mei=Hisashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=MatsuuraYoshinori
en-aut-sei=Matsuura
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=YamashitaAyumi
en-aut-sei=Yamashita
en-aut-mei=Ayumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
en-aut-name=YamamotoMasaki
en-aut-sei=Yamamoto
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=33
ORCID=
en-aut-name=NurekiOsamu
en-aut-sei=Nureki
en-aut-mei=Osamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=34
ORCID=
en-aut-name=YabashiMakina
en-aut-sei=Yabashi
en-aut-mei=Makina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=35
ORCID=
en-aut-name=IshikawaTetsuya
en-aut-sei=Ishikawa
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=36
ORCID=
en-aut-name=IwataSo
en-aut-sei=Iwata
en-aut-mei=So
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=37
ORCID=
en-aut-name=ShenJian-Ren
en-aut-sei=Shen
en-aut-mei=Jian-Ren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=38
ORCID=
affil-num=1
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=RIKEN SPring-8 Center
kn-affil=
affil-num=4
en-affil=Japan Science and Technology Agency, PRESTO
kn-affil=
affil-num=5
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Biological Sciences, Graduate School of Science, The University of Tokyo
kn-affil=
affil-num=7
en-affil=RIKEN SPring-8 Center
kn-affil=
affil-num=8
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=9
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=10
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=11
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=12
en-affil=Institute for Protein Research, Osaka University
kn-affil=
affil-num=13
en-affil=Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=14
en-affil=Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=15
en-affil=Department of Chemistry, Graduate School of Science, Kobe University
kn-affil=
affil-num=16
en-affil=RIKEN SPring-8 Center
kn-affil=
affil-num=17
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=18
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=19
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=20
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=21
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=22
en-affil=Division of Material Science, Graduate School of Science, Nagoya University
kn-affil=
affil-num=23
en-affil=Division of Material Science, Graduate School of Science, Nagoya University
kn-affil=
affil-num=24
en-affil=Japan Synchrotron Radiation Research Institute
kn-affil=
affil-num=25
en-affil=Japan Synchrotron Radiation Research Institute
kn-affil=
affil-num=26
en-affil=Japan Synchrotron Radiation Research Institute46
kn-affil=
affil-num=27
en-affil=RIKEN SPring-8 Center
kn-affil=
affil-num=28
en-affil=RIKEN SPring-8 Center
kn-affil=
affil-num=29
en-affil=RIKEN SPring-8 Center
kn-affil=
affil-num=30
en-affil=RIKEN SPring-8 Center
kn-affil=
affil-num=31
en-affil=RIKEN SPring-8 Center
kn-affil=
affil-num=32
en-affil=RIKEN SPring-8 Center
kn-affil=
affil-num=33
en-affil=RIKEN SPring-8 Center
kn-affil=
affil-num=34
en-affil=Department of Biological Sciences, Graduate School of Science, The University of Tokyo
kn-affil=
affil-num=35
en-affil=RIKEN SPring-8 Center
kn-affil=
affil-num=36
en-affil=RIKEN SPring-8 Center
kn-affil=
affil-num=37
en-affil=RIKEN SPring-8 Center
kn-affil=
affil-num=38
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=313
cd-vols=
no-issue=1
article-no=
start-page=169
end-page=174
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2017
dt-pub=201707
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=In vitro analysis of radioprotective effect of monoterpenes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= Monoterpenes are naturally occurring hydrocarbons composed of two units of isoprenes. They exhibit antioxidant activity to scavenge reactive oxygen species, such as hydroxyl radicals. We investigated the potential of monoterpenes such as thymol, linalool, and menthol to act as radioprotectants. The proliferation of EL4 cells, a mouse lymphoma cell line, treated with linalool at a concentration of 500 μM or more was not affected by X-ray irradiation. Plasmid-nicking assay performed using formamidopyrimidine-DNA glycosylase showed that linalool prevented single strand breaks and oxidized purines on pUC19 plasmid DNA. These findings indicate that linalool has the ability to scavenge reactive oxygen species and is a potential radioprotector.
en-copyright=
kn-copyright=
en-aut-name=KudoKen-ichi
en-aut-sei=Kudo
en-aut-mei=Ken-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HanafusaTadashi
en-aut-sei=Hanafusa
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OnoToshiro
en-aut-sei=Ono
en-aut-mei=Toshiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=
kn-affil=
affil-num=2
en-affil=Department of Radiation Research, Advanced Science Research CenterOkayama University
kn-affil=
affil-num=3
en-affil=Department of Radiation Research, Advanced Science Research CenterOkayama University
kn-affil=
en-keyword=Monoterpenes
kn-keyword=Monoterpenes
en-keyword= Linalool
kn-keyword= Linalool
en-keyword=X-ray irradiation
kn-keyword=X-ray irradiation
en-keyword= Reactive oxygen species
kn-keyword= Reactive oxygen species
en-keyword= SSB
kn-keyword= SSB
END
start-ver=1.4
cd-journal=joma
no-vol=129
cd-vols=
no-issue=1
article-no=
start-page=9
end-page=15
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2017
dt-pub=20170403
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Does hydrogen-rich water really work?
kn-title=水素水は怪しい水でしょうか?
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=NakaoAtsunori
en-aut-sei=Nakao
en-aut-mei=Atsunori
kn-aut-name=中尾篤典
kn-aut-sei=中尾
kn-aut-mei=篤典
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Emergency and Critical Care Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=岡山大学大学院医歯薬学総合研究科 救急医学
en-keyword=水素水
kn-keyword=水素水
en-keyword=抗酸化作用
kn-keyword=抗酸化作用
en-keyword=抗炎症作用
kn-keyword=抗炎症作用
en-keyword=臨床応用
kn-keyword=臨床応用
en-keyword=疑似科学
kn-keyword=疑似科学
END
start-ver=1.4
cd-journal=joma
no-vol=39
cd-vols=
no-issue=
article-no=
start-page=46
end-page=53
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2016
dt-pub=201608
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Structure and energy transfer pathways of the plant photosystem I-LHCI supercomplex
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Photosystem I (PSI) is one of the two photosystems in oxygenic photosynthesis, and absorbs light energy to generate reducing power for the reduction of NADP+ to NADPH with a quantum efficiency close to 100%. The plant PSI core forms a supercomplex with light-harvesting complex I (LHCI) with a total molecular weight of over 600 kDa. Recent X-ray structure analysis of the PSI-LHCI membrane-protein supercomplex has revealed detailed arrangement of the light-harvesting pigments and other cofactors especially within LHCI. Here we introduce the overall structure of the PSI-LHCI supercomplex, and then focus on the excited energy transfer (EET) pathways from LHCI to the PSI core and photoprotection mechanisms based on the structure obtained.
en-copyright=
kn-copyright=
en-aut-name=SugaMichihiro
en-aut-sei=Suga
en-aut-mei=Michihiro
kn-aut-name=菅倫寛
kn-aut-sei=菅
kn-aut-mei=倫寛
aut-affil-num=1
ORCID=
en-aut-name=QinXiaochun
en-aut-sei=Qin
en-aut-mei=Xiaochun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KuangTingyun
en-aut-sei=Kuang
en-aut-mei=Tingyun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ShenJian-Ren
en-aut-sei=Shen
en-aut-mei=Jian-Ren
kn-aut-name=沈建仁
kn-aut-sei=沈
kn-aut-mei=建仁
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University
kn-affil=岡山大学異分野基礎科学研究所
affil-num=2
en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University
kn-affil=岡山大学異分野基礎科学研究所
affil-num=3
en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences
kn-affil=
affil-num=4
en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University
kn-affil=岡山大学異分野基礎科学研究所
END
start-ver=1.4
cd-journal=joma
no-vol=128
cd-vols=
no-issue=2
article-no=
start-page=103
end-page=109
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2016
dt-pub=20160801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Identification of the adipokine ‘vaspin’ and its significance in metabolic syndrome
kn-title=アディポカイン「バスピン」の同定とメタボリックシンドロームにおける意義
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=和田淳
kn-aut-sei=和田
kn-aut-mei=淳
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=岡山大学大学院医歯薬学総合研究科 腎・免疫・内分泌代謝内科学
en-keyword=metabolic syndrome
kn-keyword=metabolic syndrome
en-keyword=adipokine
kn-keyword=adipokine
en-keyword=atherosclerosis
kn-keyword=atherosclerosis
en-keyword=endothelial cells
kn-keyword=endothelial cells
en-keyword=apoptosis
kn-keyword=apoptosis
END
start-ver=1.4
cd-journal=joma
no-vol=70
cd-vols=
no-issue=3
article-no=
start-page=151
end-page=158
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2016
dt-pub=201606
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Mitochondrial Dynamics and Mitochondrial Dysfunction in Diabetes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The mitochondria are involved in active and dynamic processes, such as mitochondrial biogenesis, fission, fusion and mitophagy to maintain mitochondrial and cellular functions. In obesity and type 2 diabetes, impaired oxidation, reduced mitochondrial contents, lowered rates of oxidative phosphorylation and excessive reactive oxygen species (ROS) production have been reported. Mitochondrial biogenesis is regulated by various transcription factors such as peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), peroxisome proliferator-activated receptors (PPARs), estrogen-related receptors (ERRs), and nuclear respiratory factors (NRFs). Mitochondrial fusion is promoted by mitofusin 1 (MFN1), mitofusin 2 (MFN2) and optic atrophy 1 (OPA1), while fission is governed by the recruitment of dynamin-related protein 1 (DRP1) by adaptor proteins such as mitochondrial fission factor (MFF), mitochondrial dynamics proteins of 49 and 51 kDa (MiD49 and MiD51), and fission 1 (FIS1). Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) and PARKIN promote DRP1-dependent mitochondrial fission, and the outer mitochondrial adaptor MiD51 is required in DRP1 recruitment and PARKIN-dependent mitophagy. This review describes the molecular mechanism of mitochondrial dynamics, its abnormality in diabetes and obesity, and pharmaceuticals targeting mitochondrial biogenesis, fission, fusion and mitophagy.
en-copyright=
kn-copyright=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakatsukaAtsuko
en-aut-sei=Nakatsuka
en-aut-mei=Atsuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=fusion
kn-keyword=fusion
en-keyword=fission
kn-keyword=fission
en-keyword=oxidative stress
kn-keyword=oxidative stress
en-keyword=mitochondria
kn-keyword=mitochondria
en-keyword=diabetes
kn-keyword=diabetes
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2016
dt-pub=20160325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=急性心不全モデル仔豚による拍動流ECMOの血行動態エネルギーと全身微小循環に及ぼす影響
kn-title=Effect of the Pulsatile Extracorporeal Membrane Oxygenation on Hemodynamic Energy and Systemic Microcirculation in a Piglet Model of Acute Cardiac Failure
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=ItoHideshi
en-aut-sei=Ito
en-aut-mei=Hideshi
kn-aut-name=伊藤英史
kn-aut-sei=伊藤
kn-aut-mei=英史
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=岡山大学
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2016
dt-pub=20160325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=肝移植術中の酸素消費量の測定意義
kn-title=Intraoperative Oxygen Consumption During Liver Transplantation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=ShibataMari
en-aut-sei=Shibata
en-aut-mei=Mari
kn-aut-name=柴田麻理
kn-aut-sei=柴田
kn-aut-mei=麻理
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=岡山大学
END
start-ver=1.4
cd-journal=joma
no-vol=6
cd-vols=
no-issue=
article-no=
start-page=19742
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2016
dt-pub=20160128
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Molecular evolution of gas cavity in [NiFeSe] hydrogenases resurrected in silico
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Oxygen tolerance of selenium-containing [NiFeSe] hydrogenases (Hases) is attributable to the high reducing power of the selenocysteine residue, which sustains the bimetallic Ni–Fe catalytic center in the large subunit. Genes encoding [NiFeSe] Hases are inherited by few sulphate-reducing δ-proteobacteria globally distributed under various anoxic conditions. Ancestral sequences of [NiFeSe] Hases were elucidated and their three-dimensional structures were recreated in silico using homology modelling and molecular dynamic simulation, which suggested that deep gas channels gradually developed in [NiFeSe] Hases under absolute anaerobic conditions, whereas the enzyme remained as a sealed edifice under environmental conditions of a higher oxygen exposure risk. The development of a gas cavity appears to be driven by non-synonymous mutations, which cause subtle conformational changes locally and distantly, even including highly conserved sequence regions.
en-copyright=
kn-copyright=
en-aut-name=TamuraTakashi
en-aut-sei=Tamura
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TsunekawaNaoki
en-aut-sei=Tsunekawa
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NemotoMichiko
en-aut-sei=Nemoto
en-aut-mei=Michiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=InagakiKenji
en-aut-sei=Inagaki
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HiranoToshiyuki
en-aut-sei=Hirano
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SatoFumitoshi
en-aut-sei=Sato
en-aut-mei=Fumitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=
kn-affil=Graduate School of Environmental and Life Science, Okayama University
affil-num=2
en-affil=
kn-affil=Institute of Industrial Science, the University of Tokyo
affil-num=3
en-affil=
kn-affil=Graduate School of Environmental and Life Science, Okayama University
affil-num=4
en-affil=
kn-affil=Graduate School of Environmental and Life Science, Okayama University
affil-num=5
en-affil=
kn-affil=Institute of Industrial Science, the University of Tokyo
affil-num=6
en-affil=
kn-affil=Institute of Industrial Science, the University of Tokyo
END
start-ver=1.4
cd-journal=joma
no-vol=517
cd-vols=
no-issue=
article-no=
start-page=99
end-page=103
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2015
dt-pub=20150101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Photosynthesis converts light energy into biologically useful chemical energy vital to life on Earth. The initial reaction of photosynthesis takes place in photosystem II (PSII), a 700-kilodalton homodimeric membrane protein complex which catalyses photo-oxidation of water into dioxygen through an S-state cycle of the oxygen evolving complex (OEC). The structure of PSII has been solved by X-ray diffraction (XRD) at 1.9-ångström (Å) resolution, which revealed that the OEC is a Mn4CaO5-cluster coordinated by a well-defined protein environment1. However, extended X-ray absorption fine structure (EXAFS) studies showed that the manganese cations in the OEC are easily reduced by X-ray irradiation2, and slight differences were found in the Mn–Mn distances between the results of XRD1, EXAFS3–7 and theoretical studies8–14. Here we report a ‘radiation-damage-free’ structure of PSII from Thermosynechococcus vulcanus in the S1 state at a resolution of 1.95 Å using femtosecond X-ray pulses of the SPring-8 ångström compact free-electron laser (SACLA) and a huge number of large, highly isomorphous PSII crystals. Compared with the structure from XRD, the OEC in the X-ray free electron laser structure has Mn–Mn distances that are shorter by 0.1–0.2 Å. The valences of each manganese atom were tentatively assigned as Mn1D(III), Mn2C(IV), Mn3B(IV) and Mn4A(III), based on the average Mn–ligand distances and analysis of the Jahn–Teller axis on Mn(III). One of the oxo-bridged oxygens, O5, has significantly longer Mn–O distances in contrast to the other oxo-oxygen atoms, suggesting that it is a hydroxide ion instead of a normal oxygen dianion and therefore may serve as one of the substrate oxygen atoms. These findings provide a structural basis for the mechanism of oxygen evolution, and we expect that this structure will provide a blueprint for design of artificial catalysts for water oxidation.
en-copyright=
kn-copyright=
en-aut-name=SugaMichihiro
en-aut-sei=Suga
en-aut-mei=Michihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AkitaFusamichi
en-aut-sei=Akita
en-aut-mei=Fusamichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HirataKunio
en-aut-sei=Hirata
en-aut-mei=Kunio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=UenoGo
en-aut-sei=Ueno
en-aut-mei=Go
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MurakamiHironori
en-aut-sei=Murakami
en-aut-mei=Hironori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakajimaYoshiki
en-aut-sei=Nakajima
en-aut-mei=Yoshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ShimizuTetsuya
en-aut-sei=Shimizu
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YamashitaKeitaro
en-aut-sei=Yamashita
en-aut-mei=Keitaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YamamotoMasaki
en-aut-sei=Yamamoto
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=AgoHideo
en-aut-sei=Ago
en-aut-mei=Hideo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=ShenJian-Ren
en-aut-sei=Shen
en-aut-mei=Jian-Ren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=
kn-affil=Photosynthesis Research Center, Graduate School of Natural Science and Technology, Okayama University
affil-num=2
en-affil=
kn-affil=Photosynthesis Research Center, Graduate School of Natural Science and Technology, Okayama University
affil-num=3
en-affil=
kn-affil=RIKEN SPring-8 Center
affil-num=4
en-affil=
kn-affil=RIKEN SPring-8 Center
affil-num=5
en-affil=
kn-affil=RIKEN SPring-8 Center
affil-num=6
en-affil=
kn-affil=Photosynthesis Research Center, Graduate School of Natural Science and Technology, Okayama University
affil-num=7
en-affil=
kn-affil=Photosynthesis Research Center, Graduate School of Natural Science and Technology, Okayama University
affil-num=8
en-affil=
kn-affil=RIKEN SPring-8 Center
affil-num=9
en-affil=
kn-affil=RIKEN SPring-8 Center
affil-num=10
en-affil=
kn-affil=RIKEN SPring-8 Center
affil-num=11
en-affil=
kn-affil=Photosynthesis Research Center, Graduate School of Natural Science and Technology, Okayama University
END
start-ver=1.4
cd-journal=joma
no-vol=69
cd-vols=
no-issue=3
article-no=
start-page=145
end-page=153
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2015
dt-pub=201506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Eosinophil Cationic Protein Shows Survival Effect on H9c2 Cardiac Myoblast Cells with Enhanced Phosphorylation of ERK and Akt/GSK-3β under Oxidative Stress
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Eosinophil cationic protein (ECP) is well known as a cationic protein contained in the basic granules of activated eosinophils. Recent studies have reported that ECP exhibits novel activities on various types of cells, including rat neonatal cardiomyocytes. Here we evaluated the effects of ECP on rat cardiac myoblast H9c2 cells. Our results showed that ECP enhanced the survival of the cells, in part by promoting the ERK and Akt/GSK-3β signaling pathways. ECP attenuated the cytotoxic effects of H2O2 on H9c2 cells as well as the production of reactive oxygen species, the number of apoptotic cells and caspase 3/7 activity in the cells. In conclusion, ECP activated the ERK and Akt/GSK-3β pathways, resulting in anti-oxidative effects on H9c2 cells that attenuated apoptosis.
en-copyright=
kn-copyright=
en-aut-name=IshiiHiroko
en-aut-sei=Ishii
en-aut-mei=Hiroko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KamikawaShigeshi
en-aut-sei=Kamikawa
en-aut-mei=Shigeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HirohataSatoshi
en-aut-sei=Hirohata
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MizutaniAkifumi
en-aut-sei=Mizutani
en-aut-mei=Akifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AbeKoji
en-aut-sei=Abe
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SenoMasaharu
en-aut-sei=Seno
en-aut-mei=Masaharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OohashiToshitaka
en-aut-sei=Oohashi
en-aut-mei=Toshitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NinomiyaYoshifumi
en-aut-sei=Ninomiya
en-aut-mei=Yoshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=
kn-affil=Departments of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine
affil-num=2
en-affil=
kn-affil=Departments of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine
affil-num=3
en-affil=
kn-affil=Departments of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine
affil-num=4
en-affil=
kn-affil=Department of Chemistry and Biotechnology, Graduate School of Natural Science and Technology, Okayama University
affil-num=5
en-affil=
kn-affil=Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences,
affil-num=6
en-affil=
kn-affil=Department of Chemistry and Biotechnology, Graduate School of Natural Science and Technology, Okayama University
affil-num=7
en-affil=
kn-affil=Departments of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine
affil-num=8
en-affil=
kn-affil=Departments of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine
en-keyword=ECP
kn-keyword=ECP
en-keyword=reactive oxygen species
kn-keyword=reactive oxygen species
en-keyword=Akt
kn-keyword=Akt
en-keyword=ERK
kn-keyword=ERK
END
start-ver=1.4
cd-journal=joma
no-vol=104
cd-vols=
no-issue=
article-no=
start-page=1
end-page=4
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2015
dt-pub=20150201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Improvement of dye-mediated dehydrogenase activity of pyranose oxidase by site-directed mutagenesis
kn-title=部位特異的変異によるピラノース酸化酵素の色素依存性脱水素酵素活性の向上
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= Pyranose oxidase (EC 1.1.3.10 ; PROD) catalyzes the oxidation of aldopyranoses at the position C‒2
to yield the corresponding 2‒keto-aldoses and H2O2 , using oxygen as an electron acceptor. The enzyme shows broad substrate specificity as well as reactivity for 1,5‒anhydro‒d‒glucitol (1,5‒AG), which is known as a clinical glycemic marker. It is considered that the reactivity of PROD for 1,5‒AG is useful in the development of an amperometric-type biosensor, which is a convenient diagnostic device for selfmonitoring
blood glucose (SMBG). However, the levels of dissolved oxygen in blood affect biosensor
systems that are equipped with an artificial electron mediator. In the present study, we attempted to develop an O2‒insensitive oxidase that would improve the dye-mediated dehydrogenase activity. We performed site-directed mutagenesis on PROD isolated from basidiomycetous fungus No. 52, which generated 11 mutants. The amino acid substitution Q421A exhibited a significant decrease (8.8% of wild type) in its oxidase activity, whereas it maintained its dehydrogenase activity (67% of wild type). In this study, we characterized PROD mutants from basidiomycetous fungus No. 52, which showed improved dye-mediated dehydrogenase activity.
en-copyright=
kn-copyright=
en-aut-name=ArakiToshio
en-aut-sei=Araki
en-aut-mei=Toshio
kn-aut-name=荒木俊雄
kn-aut-sei=荒木
kn-aut-mei=俊雄
aut-affil-num=1
ORCID=
en-aut-name=NakatsukaTomoko
en-aut-sei=Nakatsuka
en-aut-mei=Tomoko
kn-aut-name=中柄朋子
kn-aut-sei=中柄
kn-aut-mei=朋子
aut-affil-num=2
ORCID=
en-aut-name=TamuraTakashi
en-aut-sei=Tamura
en-aut-mei=Takashi
kn-aut-name=田村隆
kn-aut-sei=田村
kn-aut-mei=隆
aut-affil-num=3
ORCID=
en-aut-name=InagakiKenji
en-aut-sei=Inagaki
en-aut-mei=Kenji
kn-aut-name=稲垣賢二
kn-aut-sei=稲垣
kn-aut-mei=賢二
aut-affil-num=4
ORCID=
affil-num=1
en-affil=
kn-affil=池田食研株式会社
affil-num=2
en-affil=
kn-affil=池田食研株式会社
affil-num=3
en-affil=
kn-affil=岡山大学農学部
affil-num=4
en-affil=
kn-affil=岡山大学農学部
en-keyword=pyranose oxidase
kn-keyword=pyranose oxidase
en-keyword=1,5-anhydro-d-glucitol
kn-keyword=1,5-anhydro-d-glucitol
en-keyword=biosensor
kn-keyword=biosensor
en-keyword=site-directed mutagenesis
kn-keyword=site-directed mutagenesis
en-keyword=SMBG
kn-keyword=SMBG
END
start-ver=1.4
cd-journal=joma
no-vol=68
cd-vols=
no-issue=6
article-no=
start-page=369
end-page=374
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2014
dt-pub=201412
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Ultrastructural Analysis of an Enterolith Composed of Deoxycholic Acid
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A 67-year-old Japanese man underwent enterotomy because of enterolith ileus. Component analysis by infrared spectroscopy revealed that the enterolith was composed of a high concentration of deoxycholic acid. We further analyzed and compared the ultrastructure of the enterolith and a commercially available powdered form of deoxycholic acid by means of scanning electron microscopy and energy dispersive X-ray spectroscopy. Energy dispersive X-ray spectroscopy analysis revealed that the ratios of carbon and oxygen in the enterolith were equal to those in the deoxycholic acid powder. Scanning electron microscopy analysis showed rectangular prism-shaped particles on the surface of the enterolith. This structure was similar to that of the deoxycholic acid powder. The surgically removed enterolith had a twisted and coiled appearance. Possible mechanisms underlying the formation of this unique form are discussed.
en-copyright=
kn-copyright=
en-aut-name=IwamuroMasaya
en-aut-sei=Iwamuro
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyashimaYuichi
en-aut-sei=Miyashima
en-aut-mei=Yuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshiokaTakahiro
en-aut-sei=Yoshioka
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MurataToshihiro
en-aut-sei=Murata
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MiyabeYoshio
en-aut-sei=Miyabe
en-aut-mei=Yoshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KawaiYoshinari
en-aut-sei=Kawai
en-aut-mei=Yoshinari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=UrataHaruo
en-aut-sei=Urata
en-aut-mei=Haruo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ShirahaHidenori
en-aut-sei=Shiraha
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OkadaHiroyuki
en-aut-sei=Okada
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YamamotoKazuhide
en-aut-sei=Yamamoto
en-aut-mei=Kazuhide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Gastroenterology, Onomichi Municipal Hospital
affil-num=2
en-affil=
kn-affil=Department of Surgery, Onomichi Municipal Hospital
affil-num=3
en-affil=
kn-affil=Department of Surgery, Onomichi Municipal Hospital
affil-num=4
en-affil=
kn-affil=Department of Surgery, Onomichi Municipal Hospital
affil-num=5
en-affil=
kn-affil=Department of Gastroenterology, Onomichi Municipal Hospital
affil-num=6
en-affil=
kn-affil=Department of Gastroenterology, Onomichi Municipal Hospital
affil-num=7
en-affil=
kn-affil=Central Research Laboratory, Okayama University Medical School
affil-num=8
en-affil=
kn-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=9
en-affil=
kn-affil=Department of Endoscopy, Okayama University Hospital
affil-num=10
en-affil=
kn-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
en-keyword=enterolith
kn-keyword=enterolith
en-keyword=deoxycholic acid
kn-keyword=deoxycholic acid
en-keyword=scanning electron microscopy
kn-keyword=scanning electron microscopy
en-keyword=infrared spectroscopy
kn-keyword=infrared spectroscopy
en-keyword=energy dispersive X-ray spectroscopy
kn-keyword=energy dispersive X-ray spectroscopy
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2014
dt-pub=20140930
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=ウシ黄体退行機構に関する研究: プロスタグランデインF2αおよび活性酸素種による抗酸化酵素の調節
kn-title=Study on luteolytic mechanisms in cattle: Regulation of antioxidant enzymes by prostaglandin F2α and reactive oxygen species
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=Vu Van Hai
en-aut-sei=Vu Van Hai
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=岡山大学
END
start-ver=1.4
cd-journal=joma
no-vol=146
cd-vols=
no-issue=6
article-no=
start-page=1534
end-page=1537
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2013
dt-pub=201312
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Unilateral lung transplantation using right and left upper lobes: An experimental study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective: The shortage of organ donors is a serious problem in Japan. The right and left upper lobes of rejected extended-criteria lungs have the potential to be used for downsized lung transplantation; however, the 2 upper lobes are too small for a size-matched recipient. The present study investigated the feasibility of unilateral transplantation using the right and left upper lobes.
Methods: After harvesting the heart-lung block from donor swine, a left lung graft was created using the right and left upper lobes and transplanted into the left thoracic space of the recipient swine (group A, n = 5). We then evaluated graft function for 6 hours and compared these results with those of a control group (group B, n = 5), in which orthotopic left lung transplantation had been performed.
Results: The mean partial pressure of oxygen in the arterial blood gas after reperfusion was 507 mm Hg in group A and 463 mm Hg in group B (P = .2). The mean pulmonary arterial pressure was 30.3 mm Hg in group A and 27.5 mm Hg in group B (P = .4). The mean airway pressure was 6.4 mm Hg in group A and 6.2 mm Hg in group B (P = .7).
Conclusions: Our results suggest that unilateral left lung transplantation using the right and left upper lobes is technically and functionally feasible for size-matched recipients. In addition, this technique enables the use of rejected lungs if the upper lobes are still intact.
en-copyright=
kn-copyright=
en-aut-name=NishikawaHitoshi
en-aut-sei=Nishikawa
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OtoTakahiro
en-aut-sei=Oto
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OtaniShinji
en-aut-sei=Otani
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HaradaMasaaki
en-aut-sei=Harada
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IgaNorichika
en-aut-sei=Iga
en-aut-mei=Norichika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MiyoshiKentaroh
en-aut-sei=Miyoshi
en-aut-mei=Kentaroh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MiyoshiShinichiro
en-aut-sei=Miyoshi
en-aut-mei=Shinichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=
kn-affil=Okayama Univ, Grad Sch Med, Dept Gen Thorac Surg
affil-num=2
en-affil=
kn-affil=Okayama Univ, Grad Sch Med, Dept Gen Thorac Surg
affil-num=3
en-affil=
kn-affil=Okayama Univ, Grad Sch Med, Dept Gen Thorac Surg
affil-num=4
en-affil=
kn-affil=Okayama Univ, Grad Sch Med, Dept Gen Thorac Surg
affil-num=5
en-affil=
kn-affil=Okayama Univ, Grad Sch Med, Dept Gen Thorac Surg
affil-num=6
en-affil=
kn-affil=Okayama Univ, Grad Sch Med, Dept Gen Thorac Surg
affil-num=7
en-affil=
kn-affil=Okayama Univ, Grad Sch Med, Dept Gen Thorac Surg
END
start-ver=1.4
cd-journal=joma
no-vol=126
cd-vols=
no-issue=2
article-no=
start-page=117
end-page=126
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2014
dt-pub=20140801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=The origin of infra-slow oscillations of oxygenated hemoglobin observed in functional near-infrared spectroscopy
kn-title=光トポグラフィーでみられる酸素化ヘモグロビン量の低周波変動の発生源に関する研究
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=There is increasing interest in the intrinsic activity of the resting brain, especially the activity slower than 0.1Hz (i.e., low-frequency oscillations, or LFOs). To investigate the origin of LFOs observed in functional near-infrared spectroscopy (fNIRS), we recorded multichannel fNIRS and electroencephalography (EEG) from the frontal cortex of 11 healthy young volunteers in the resting state. Electrocardiography (ECG), electro-oculography and respiration were also measured. Synchronous oscillations of oxy-hemoglobin (oxy-Hb) around 1.0Hz were detected in all fNIRS channels, and their frequency was consistent with a peak frequency of ECG, suggesting the changes of cerebral blood flow due to heart beats. In addition, oxy-Hb oscillations around 0.1Hz (i.e., LFOs) appeared in the fNIRS. The channels where LFOs appeared differed among the subjects, and the LFOs appeared or disappeared even in the same fNIRS channels. The appearance of LFOs in fNIRS channels was significantly higher when the LFOs appeared on the EEG in the adjacent EEG electrodes compared to when LFOs did not appear on EEG. The amplitude and coherence (synchronicity) of the LFOs were increased by changing the subjects' position from dorsal to the sitting position in both fNIRS and EEG, and the coherence in particular was increased in the homologous fNIRS channels on the bilateral hemispheres. These results suggest that LFOs of oxy-Hb couple with resting-state EEG activity.
en-copyright=
kn-copyright=
en-aut-name=ShoshiChikafumi
en-aut-sei=Shoshi
en-aut-mei=Chikafumi
kn-aut-name=所司睦文
kn-aut-sei=所司
kn-aut-mei=睦文
aut-affil-num=1
ORCID=
en-aut-name=UenoHiroshi
en-aut-sei=Ueno
en-aut-mei=Hiroshi
kn-aut-name=上野浩司
kn-aut-sei=上野
kn-aut-mei=浩司
aut-affil-num=2
ORCID=
en-aut-name=KuboMasako
en-aut-sei=Kubo
en-aut-mei=Masako
kn-aut-name=久保正子
kn-aut-sei=久保
kn-aut-mei=正子
aut-affil-num=3
ORCID=
en-aut-name=OdaMasuko
en-aut-sei=Oda
en-aut-mei=Masuko
kn-aut-name=小田真珠子
kn-aut-sei=小田
kn-aut-mei=真珠子
aut-affil-num=4
ORCID=
en-aut-name=HirataNaoya
en-aut-sei=Hirata
en-aut-mei=Naoya
kn-aut-name=平田直也
kn-aut-sei=平田
kn-aut-mei=直也
aut-affil-num=5
ORCID=
en-aut-name=TakemotoRika
en-aut-sei=Takemoto
en-aut-mei=Rika
kn-aut-name=武本梨佳
kn-aut-sei=武本
kn-aut-mei=梨佳
aut-affil-num=6
ORCID=
en-aut-name=KinugasaKazushi
en-aut-sei=Kinugasa
en-aut-mei=Kazushi
kn-aut-name=衣笠和孜
kn-aut-sei=衣笠
kn-aut-mei=和孜
aut-affil-num=7
ORCID=
en-aut-name=OkamotoMotoi
en-aut-sei=Okamoto
en-aut-mei=Motoi
kn-aut-name=岡本基
kn-aut-sei=岡本
kn-aut-mei=基
aut-affil-num=8
ORCID=
affil-num=1
en-affil=
kn-affil=川崎医療短期大学 臨床検査科
affil-num=2
en-affil=
kn-affil=近畿大学医学部 薬理学講座
affil-num=3
en-affil=
kn-affil=東京工科大学医療保健学部 看護学科
affil-num=4
en-affil=
kn-affil=倉敷成人病健診センター
affil-num=5
en-affil=
kn-affil=福山市民病院
affil-num=6
en-affil=
kn-affil=岡山大学病院 医療技術部
affil-num=7
en-affil=
kn-affil=岡山療護センター
affil-num=8
en-affil=
kn-affil=岡山大学大学院保健学研究科 検査技術科学
en-keyword=fNIRS
kn-keyword=fNIRS
en-keyword=EEG
kn-keyword=EEG
en-keyword=LFOs
kn-keyword=LFOs
en-keyword=コヒーレンス解析(Coherence analysis)
kn-keyword=コヒーレンス解析(Coherence analysis)
en-keyword=連続ウェーブレット解析(continuous wavelet transforms)
kn-keyword=連続ウェーブレット解析(continuous wavelet transforms)
END
start-ver=1.4
cd-journal=joma
no-vol=30
cd-vols=
no-issue=
article-no=
start-page=8
end-page=10
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2014
dt-pub=201404
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Assessment of acetate on anti-obesity effect with experimental animal
kn-title=実験動物を用いた酢酸の肥満抑制効果の評価
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Acetate is an endogenous metabolite of fatty acid β-oxidation in the liver mitochondria under
starved condition. Orally administered acetate is readily absorbed in the blood stream and then taken
up by tissues and activates AMP-activated protein kinase (AMPK) by increasing the AMP/ATP ratio.
Administered acetate shows a marked reduction in lipid accumulation in the adipose tissue, protection
against accumulation of fat in the liver, and improves glucose tolerance. It decreases the transcripts of
the lipogenic genes in the liver, indicating an inhibition of lipogenesis in that organ. Furthermore,
acetate treatment shows a higher rate of oxygen consumption and a smaller size of lipid droplets in white
and brown adipose tissues. It is indicated that acetate taken up has a potential to prevent obesity and
obesity-linked type 2 diabetes.
en-copyright=
kn-copyright=
en-aut-name=YamashitaHiromi
en-aut-sei=Yamashita
en-aut-mei=Hiromi
kn-aut-name=山下広美
kn-aut-sei=山下
kn-aut-mei=広美
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=岡山県立大学 保健福祉学部 栄養学科
END
start-ver=1.4
cd-journal=joma
no-vol=2012
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2012
dt-pub=2012
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Inhibitory Effects of Pretreatment with Radon on Acute Alcohol-Induced Hepatopathy in Mice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We previously reported that radon inhalation activates antioxidative functions in the liver and inhibits carbon tetrachloride-induced hepatopathy in mice. In addition, it has been reported that reactive oxygen species contribute to alcohol-induced hepatopathy. In this study, we examined the inhibitory effects of radon inhalation on acute alcohol- induced hepatopathy in mice. C57BL/6J mice were subjected to intraperitoneal injection of 50% alcohol (5 g/kg bodyweight) after inhaling approximately 4000 Bq/m(3) radon for 24 h. Alcohol administration significantly increased the activities of glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT) in serum, and the levels of triglyceride and lipid peroxide in the liver, suggesting acute alcohol- induced hepatopathy. Radon inhalation activated antioxidative functions in the liver. Furthermore, pretreatment with radon inhibited the depression of hepatic functions and antioxidative functions. These findings suggested that radon inhalation activated antioxidative functions in the liver and inhibited acute alcohol- induced hepatopathy in mice.
en-copyright=
kn-copyright=
en-aut-name=ToyotaTeruaki
en-aut-sei=Toyota
en-aut-mei=Teruaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KataokaTakahiro
en-aut-sei=Kataoka
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishiyamaYuichi
en-aut-sei=Nishiyama
en-aut-mei=Yuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TaguchiTakehito
en-aut-sei=Taguchi
en-aut-mei=Takehito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamaokaKiyonori
en-aut-sei=Yamaoka
en-aut-mei=Kiyonori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=
kn-affil=Okayama Univ, Grad Sch Hlth Sci
affil-num=2
en-affil=
kn-affil=Okayama Univ, Grad Sch Hlth Sci
affil-num=3
en-affil=
kn-affil=Okayama Univ, Grad Sch Hlth Sci
affil-num=4
en-affil=
kn-affil=Okayama Univ, Grad Sch Hlth Sci
affil-num=5
en-affil=
kn-affil=Okayama Univ, Grad Sch Hlth Sci
END
start-ver=1.4
cd-journal=joma
no-vol=125
cd-vols=
no-issue=3
article-no=
start-page=201
end-page=204
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2013
dt-pub=20131202
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Hydrogen as a treatment candidate for non-alcoholic steatohepatitis
kn-title=NASHに対する水素分子の有用性
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KawaiDaisuke
en-aut-sei=Kawai
en-aut-mei=Daisuke
kn-aut-name=河合大介
kn-aut-sei=河合
kn-aut-mei=大介
aut-affil-num=1
ORCID=
en-aut-name=TakakiAkinobu
en-aut-sei=Takaki
en-aut-mei=Akinobu
kn-aut-name=高木章乃夫
kn-aut-sei=高木
kn-aut-mei=章乃夫
aut-affil-num=2
ORCID=
en-aut-name=YamamotoKazuhide
en-aut-sei=Yamamoto
en-aut-mei=Kazuhide
kn-aut-name=山本和秀
kn-aut-sei=山本
kn-aut-mei=和秀
aut-affil-num=3
ORCID=
affil-num=1
en-affil=
kn-affil=岡山大学大学院医歯薬学総合研究科 消化器・肝臓内科学
affil-num=2
en-affil=
kn-affil=岡山大学大学院医歯薬学総合研究科 消化器・肝臓内科学
affil-num=3
en-affil=
kn-affil=岡山大学大学院医歯薬学総合研究科 消化器・肝臓内科学
en-keyword=酸化ストレス
kn-keyword=酸化ストレス
en-keyword=水素水
kn-keyword=水素水
en-keyword=NASH
kn-keyword=NASH
en-keyword=肝腫瘍
kn-keyword=肝腫瘍
END
start-ver=1.4
cd-journal=joma
no-vol=43
cd-vols=
no-issue=10
article-no=
start-page=1078
end-page=1092
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2013
dt-pub=20130130
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Serum oxidative-anti-oxidative stress balance is dysregulated in patients with hepatitis C virus-related hepatocellular carcinoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Aim
Oxidative stress is associated with progression of chronic liver disease (CLD). This association is best established in chronic hepatitis C. However, the anti-oxidative state is not well characterized. The objective of the present study was to investigate the balance of oxidative and anti-oxidative stress in CLD patients.
Methods
We recruited a study population of 208 patients, including healthy volunteers (HV; n = 15), patients with hepatitis B virus (HBV)-related CLD without or with hepatocellular carcinoma (HBV-non-HCC, n = 25, and HBV-HCC, n = 50, respectively), and patients with hepatitis C virus (HCV)-related CLD without or with HCC (HCV-non-HCC, n = 49, and HCV-HCC, n = 69, respectively). Serum levels of reactive oxygen metabolites (ROM) and anti-oxidative markers (OXY-adsorbent test; OXY) were determined, and the balance of these values was used as the oxidative index. Correlations among ROM, OXY, oxidative index and clinical characteristics were investigated.
Results
Patients with CLD exhibited elevated ROM and oxidative index compared to HV. Among patients with CLD, HCV positive status correlated with increased ROM. In CLD, HCV-HCC patients exhibited the highest ROM levels. Among HCV-related CLD patients, lower OXY correlated with HCC positive status, but was recovered by eradication of HCC. In HCV-HCC, lower OXY correlated with high PT-INR.
Conclusion
HCV positive CLD patients displayed higher oxidative stress and HCV-HCC patients displayed lower anti-oxidative state. Anti-oxidative state depression was associated with liver reservoir-related data in HCV-HCC and could be reversed with HCC eradication.
en-copyright=
kn-copyright=
en-aut-name=NishimuraMamoru
en-aut-sei=Nishimura
en-aut-mei=Mamoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakakiAkinobu
en-aut-sei=Takaki
en-aut-mei=Akinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TamakiNaofumi
en-aut-sei=Tamaki
en-aut-mei=Naofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MaruyamaTakayuki
en-aut-sei=Maruyama
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OnishiHideki
en-aut-sei=Onishi
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KobayashiSayo
en-aut-sei=Kobayashi
en-aut-mei=Sayo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NousoKazuhiro
en-aut-sei=Nouso
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YasunakaTetsuya
en-aut-sei=Yasunaka
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KoikeKazuko
en-aut-sei=Koike
en-aut-mei=Kazuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HagiharaHiroaki
en-aut-sei=Hagihara
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KuwakiKenji
en-aut-sei=Kuwaki
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NakamuraShinichiro
en-aut-sei=Nakamura
en-aut-mei=Shinichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=IkedaFusao
en-aut-sei=Ikeda
en-aut-mei=Fusao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=IwasakiYoshiaki
en-aut-sei=Iwasaki
en-aut-mei=Yoshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=TomofujiTakaaki
en-aut-sei=Tomofuji
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=MoritaManabu
en-aut-sei=Morita
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=YamamotoKazuhide
en-aut-sei=Yamamoto
en-aut-mei=Kazuhide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=2
en-affil=
kn-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=3
en-affil=
kn-affil=Department of Preventive Dentistry, Institute of Health Biosciences, The University of Tokushima Graduate School
affil-num=4
en-affil=
kn-affil=Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=5
en-affil=
kn-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=6
en-affil=
kn-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=7
en-affil=
kn-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=8
en-affil=
kn-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=9
en-affil=
kn-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=10
en-affil=
kn-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=11
en-affil=
kn-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=12
en-affil=
kn-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=13
en-affil=
kn-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=14
en-affil=
kn-affil=Health Service Center, Okayama University
affil-num=15
en-affil=
kn-affil=Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=16
en-affil=
kn-affil=Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=17
en-affil=
kn-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
en-keyword=anti-oxidant
kn-keyword=anti-oxidant
en-keyword=chronic hepatitis C
kn-keyword=chronic hepatitis C
en-keyword=hepatocellular carcinoma
kn-keyword=hepatocellular carcinoma
en-keyword=oxidative stress
kn-keyword=oxidative stress
END
start-ver=1.4
cd-journal=joma
no-vol=55
cd-vols=
no-issue=1
article-no=
start-page=31
end-page=40
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=1973
dt-pub=197303
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=The carbohydrate contents and oxygen consumption in the hybernating larvae of the Rice Stem-Borer, Chilo suppressalis WALKER
kn-title=ニカメイガ越冬幼虫の炭水化物含量と酸素吸収量について
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=TsumukiH.
en-aut-sei=Tsumuki
en-aut-mei=H.
kn-aut-name=積木久明
kn-aut-sei=積木
kn-aut-mei=久明
aut-affil-num=1
ORCID=
en-aut-name=KanehisaK.
en-aut-sei=Kanehisa
en-aut-mei=K.
kn-aut-name=兼久勝夫
kn-aut-sei=兼久
kn-aut-mei=勝夫
aut-affil-num=2
ORCID=
affil-num=1
en-affil=
kn-affil=
affil-num=2
en-affil=
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=3
article-no=
start-page=95
end-page=109
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=1978
dt-pub=1978
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=CARBOHYDRATE CONTENT AND OXYGEN UPTAKE IN LARVAE OF RICE STEM BORER, CHILO SUPPRESSALIS WALKER
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=TsumukiHisaaki
en-aut-sei=Tsumuki
en-aut-mei=Hisaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KanehisaKatsuo
en-aut-sei=Kanehisa
en-aut-mei=Katsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=
kn-affil=
affil-num=2
en-affil=
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=221
cd-vols=
no-issue=
article-no=
start-page=47
end-page=55
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2012
dt-pub=20120927
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Strong neuroprotection with a novel platinum nanoparticle against ischemic stroke- andtissue plasminogen activator-related brain damages in mice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Reactive oxygen species (ROS) are major exacerbation factor in acute ischemic stroke, and thrombolytic agent tissue plasminogen activator (tPA) may worsen motor function and cerebral infarcts. The platinum nanoparticle (nPt) is a novel ROS scavenger, and thus we examined the clinical and neuroprotective effects of nPt in ischemic mouse brains. Mice were subjected to transient middle cerebral artery occlusion (tMCAO) for 60 min and divided into the following four groups by intravenous administration upon reperfusion, vehicle, tPA, tPA + nPt, and nPt. At 48 h after tMCAO, motor function, infarct volume, immunohistochemical analyses of neurovascular unit (NVU), in vivo imaging of matrix metalloproteinase (MMP), and zymography for MMP-9 activity were examined. Superoxide anion generation at 2 h after tMCAO was also examined with hydroethidine (HEt). As a result, administration of tPA deteriorated the motor function and infarct volume as compared to vehicle. In vivo optical imaging of MMP showed strong fluorescent signals in affected regions of tMCAO groups. Immunohistochemical analyses revealed that tMCAO resulted in a minimal decrease of NAGO and occludin, but a great decrease of collagen IV and a remarkable increase of MMP-9. HEt stain showed increased ROS generation by tMCAO. All these results became pronounced with tPA administration, and were greatly reduced by nPt. The present study demonstrates that nPt treatment ameliorates neurological function and brain damage in acute cerebral infarction with neuroprotective effect on NVU and inactivation of MMP-9. The strong reduction of ROS production by nPt could account for these remarkable neurological and neuroprotective effects against ischemic stroke.
en-copyright=
kn-copyright=
en-aut-name=TakamiyaM.
en-aut-sei=Takamiya
en-aut-mei=M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyamotoY.
en-aut-sei=Miyamoto
en-aut-mei=Y.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamashitaT.
en-aut-sei=Yamashita
en-aut-mei=T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=DeguchiK.
en-aut-sei=Deguchi
en-aut-mei=K.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OhtaY.
en-aut-sei=Ohta
en-aut-mei=Y.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AbeK.
en-aut-sei=Abe
en-aut-mei=K.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=
kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Neurol
affil-num=2
en-affil=
kn-affil=Univ Tokyo, Grad Sch Frontier Sci, Dept Integrated Biosci
affil-num=3
en-affil=
kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Neurol
affil-num=4
en-affil=
kn-affil=
affil-num=5
en-affil=
kn-affil=
affil-num=6
en-affil=
kn-affil=
en-keyword=platinum nanoparticle
kn-keyword=platinum nanoparticle
en-keyword=cerebral ischemia
kn-keyword=cerebral ischemia
en-keyword=free radical scavenger
kn-keyword=free radical scavenger
en-keyword=neuroprotection
kn-keyword=neuroprotection
en-keyword=matrix metalloproteinase-9
kn-keyword=matrix metalloproteinase-9
en-keyword=tissue plasminogen activator
kn-keyword=tissue plasminogen activator
END
start-ver=1.4
cd-journal=joma
no-vol=7
cd-vols=
no-issue=6
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2012
dt-pub=20120615
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The hTERT Promoter Enhances the Antitumor Activity of an Oncolytic Adenovirus under a Hypoxic Microenvironment
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Hypoxia is a microenvironmental factor that contributes to the invasion, progression and metastasis of tumor cells. Hypoxic tumor cells often show more resistance to conventional chemoradiotherapy than normoxic tumor cells, suggesting the requirement of novel antitumor therapies to efficiently eliminate the hypoxic tumor cells. We previously generated a tumor-specific replication-competent oncolytic adenovirus (OBP-301: Telomelysin), in which the human telomerase reverse transcriptase (hTERT) promoter drives viral E1 expression. Since the promoter activity of the hTERT gene has been shown to be upregulated by hypoxia, we hypothesized that, under hypoxic conditions, the antitumor effect of OBP-301 with the hTERT promoter would be more efficient than that of the wild-type adenovirus 5 (Ad5). In this study, we investigated the antitumor effects of OBP-301 and Ad5 against human cancer cells under a normoxic (20% oxygen) or a hypoxic (1% oxygen) condition. Hypoxic condition induced nuclear accumulation of the hypoxia-inducible factor-1 alpha and upregulation of hTERT promoter activity in human cancer cells. The cytopathic activity of OBP-301 was significantly higher than that of Ad5 under hypoxic condition. Consistent with their cytopathic activity, the replication of OBP-301 was significantly higher than that of Ad5 under the hypoxic condition. OBP-301-mediated E1A was expressed within hypoxic areas of human xenograft tumors in mice. These results suggest that the cytopathic activity of OBP-301 against hypoxic tumor cells is mediated through hypoxia-mediated activation of the hTERT promoter. Regulation of oncolytic adenoviruses by the hTERT promoter is a promising antitumor strategy, not only for induction of tumor-specific oncolysis, but also for efficient elimination of hypoxic tumor cells.
en-copyright=
kn-copyright=
en-aut-name=HashimotoYuuri
en-aut-sei=Hashimoto
en-aut-mei=Yuuri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TazawaHiroshi
en-aut-sei=Tazawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TeraishiFuminori
en-aut-sei=Teraishi
en-aut-mei=Fuminori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KojimaToru
en-aut-sei=Kojima
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WatanabeYuichi
en-aut-sei=Watanabe
en-aut-mei=Yuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UnoFutoshi
en-aut-sei=Uno
en-aut-mei=Futoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YanoShuya
en-aut-sei=Yano
en-aut-mei=Shuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=UrataYasuo
en-aut-sei=Urata
en-aut-mei=Yasuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KagawaShunsuke
en-aut-sei=Kagawa
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=
kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Surg Gastroenterol
affil-num=2
en-affil=
kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Surg Gastroenterol
affil-num=3
en-affil=
kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Surg Gastroenterol
affil-num=4
en-affil=
kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Surg Gastroenterol
affil-num=5
en-affil=
kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Surg Gastroenterol
affil-num=6
en-affil=
kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Surg Gastroenterol
affil-num=7
en-affil=
kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Surg Gastroenterol
affil-num=8
en-affil=
kn-affil=Oncolys BioPharma Inc
affil-num=9
en-affil=
kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Surg Gastroenterol
affil-num=10
en-affil=
kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Surg Gastroenterol
END
start-ver=1.4
cd-journal=joma
no-vol=125
cd-vols=
no-issue=1
article-no=
start-page=19
end-page=28
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2013
dt-pub=20130401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Immunity/inflammation-mediated pathophysiological mechanisms of atherosclerosis and clinical applications of antibody technology
kn-title=免疫・炎症が関与する動脈硬化の病態生理学的機序と抗体工学の臨床応用
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=MatsuuraEiji
en-aut-sei=Matsuura
en-aut-mei=Eiji
kn-aut-name=松浦栄次
kn-aut-sei=松浦
kn-aut-mei=栄次
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=岡山大学大学院医歯薬学総合研究科 産学官連携センター
en-keyword=動脈硬化
kn-keyword=動脈硬化
en-keyword=自己免疫
kn-keyword=自己免疫
en-keyword=感染免疫
kn-keyword=感染免疫
en-keyword=インフラマソーム
kn-keyword=インフラマソーム
en-keyword=PET イメージング
kn-keyword=PET イメージング
END
start-ver=1.4
cd-journal=joma
no-vol=66
cd-vols=
no-issue=6
article-no=
start-page=435
end-page=442
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2012
dt-pub=201212
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effects of Propofol on Left Ventricular Mechanoenergetics in the Excised Cross-circulated Canine Heart
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Although propofol is commonly used for general anesthesia, its direct effects on left ventricular (LV) contractility and energetics remain unknown. Accordingly, we studied the effects of intracoronary propofol on excised cross-circulated canine hearts using the framework of the Emax (a contractility index)-PVA (systolic pressure-volume area, a measure of total mechanical energy)-Vo2 (myocardial oxygen consumption per beat) relationship. We obtained 1) the Vo2-PVA relationship of isovolumic contractions with varied LV volumes at a constant Emax, 2) the Vo2-PVA relationship with varied LV volumes at a constant intracoronary concentration of propofol, and 3) the Vo2-PVA relationship under increased intracoronary concentrations of either propofol or CaCl2 at a constant LV volume to assess the cardiac mechanoenergetic effects of propofol. We found that propofol decreased Emax dose-dependently. The slope of the linear Vo2-PVA relationship (oxygen cost of PVA) remained unchanged by propofol. The PVA-independent Vo2-Emax relationship (oxygen cost of Emax) was the same for propofol and Ca2+. In conclusion, propofol showed a direct negative inotropic effect on LV. At its clinical concentrations, decreases in contractility by propofol were relatively small. Propofol shows mechanoenergetic effects on the LV that are similar to those of Ca2+ blockers or ß-antagonists—i.e., it exerts negative inotropic effects without changing the oxygen costs of Emax and PVA.
en-copyright=
kn-copyright=
en-aut-name=FujinakaWaso
en-aut-sei=Fujinaka
en-aut-mei=Waso
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShimizuJuichiro
en-aut-sei=Shimizu
en-aut-mei=Juichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IribeGentaro
en-aut-sei=Iribe
en-aut-mei=Gentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ImaokaTakeshi
en-aut-sei=Imaoka
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OshimaYu
en-aut-sei=Oshima
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KiyookaTakahiko
en-aut-sei=Kiyooka
en-aut-mei=Takahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MoritaKiyoshi
en-aut-sei=Morita
en-aut-mei=Kiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MohriaSatoshi
en-aut-sei=Mohria
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Cardiovascular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=2
en-affil=
kn-affil=Department of Cardiovascular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=3
en-affil=
kn-affil=Department of Cardiovascular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=4
en-affil=
kn-affil=Department of Cardiovascular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=5
en-affil=
kn-affil=Department of Cardiovascular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=6
en-affil=
kn-affil=Department of Cardiovascular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=7
en-affil=
kn-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=8
en-affil=
kn-affil=Department of Cardiovascular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
en-keyword=anesthesia
kn-keyword=anesthesia
en-keyword=heart
kn-keyword=heart
en-keyword=contractility
kn-keyword=contractility
en-keyword=myocardial oxygen consumption
kn-keyword=myocardial oxygen consumption
END
start-ver=1.4
cd-journal=joma
no-vol=49
cd-vols=
no-issue=4
article-no=
start-page=1118
end-page=1125
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2011
dt-pub=201104
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Exfoliated graphene sheets decorated with metal / metal oxide nanoparticles: simple preparation from cation exchanged graphite oxide
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We produced carbon hybrid materials of graphene sheets decorated with metal or metal oxide nanoparticles of gold, silver, copper, cobalt, or nickel from cation exchanged graphite oxide. Measurements using powder X-ray diffraction, transmission electron microscopy, and X-ray absorption spectra revealed that the Au and Ag in the materials (Au-Gr and Ag-Gr) existed on graphene sheets as metal nanoparticles, whereas Cu and Co in the materials (Cu-Gr and Co-Gr) existed as a metal oxide. Most Ni particles in Ni-Gr were metal, but the surfaces of large particles were partly oxidized, producing a core-shell structure. The Ag-Gr sample showed a catalytic activity for the oxygen reduction reaction in 1.0 M KOH aq. under an oxygen atmosphere. Ag-Gr is superior as a cathode in alkaline fuel cells, which should not be disturbed by the methanol cross-over problem from the anode. We established an effective approach to prepare a series of graphene-nanoparticle composite materials using heat treatment.
en-copyright=
kn-copyright=
en-aut-name=GotohKazuma
en-aut-sei=Gotoh
en-aut-mei=Kazuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KinumotoTaro
en-aut-sei=Kinumoto
en-aut-mei=Taro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FujiiEiji
en-aut-sei=Fujii
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamamotoAki
en-aut-sei=Yamamoto
en-aut-mei=Aki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HashimotoHideki
en-aut-sei=Hashimoto
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OhkuboTakahiro
en-aut-sei=Ohkubo
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ItadaniAtsushi
en-aut-sei=Itadani
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KurodaYasushige
en-aut-sei=Kuroda
en-aut-mei=Yasushige
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IshidaHiroyuki
en-aut-sei=Ishida
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=
kn-affil=Okayama Univ
affil-num=2
en-affil=
kn-affil=Oita Univ
affil-num=3
en-affil=
kn-affil=Ind Technol Ctr
affil-num=4
en-affil=
kn-affil=Okayama Univ
affil-num=5
en-affil=
kn-affil=Okayama Univ
affil-num=6
en-affil=
kn-affil=Okayama Univ
affil-num=7
en-affil=
kn-affil=Okayama Univ
affil-num=8
en-affil=
kn-affil=Okayama Univ
affil-num=9
en-affil=
kn-affil=Okayama Univ
END
start-ver=1.4
cd-journal=joma
no-vol=57
cd-vols=
no-issue=4
article-no=
start-page=241
end-page=251
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2008
dt-pub=20080425
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Basic Study on Activation of Antioxidation Function in Some Organs of Mice by Radon Inhalation Using New Radon Exposure Device
kn-title=ラドン吸入試作装置によるマウス諸臓器中の抗酸化機能の亢進に関する研究
en-subtitle=
kn-subtitle=
en-abstract=There are a lot of life style diseases that are related to reactive oxygen species in indications of the radon therapy, and, the further clarification of mechanism is expected. Therefore, in this study, we investigated the activation of antioxidation function in some organs of mice by radon inhalation using the new radon exposure device. It was enable that this device was the adjustments of radon concentration by changing the air flow rate to the specially processed radon source and so on. The mice were made to inhale the radon of 400Bq/m3 or 4000Bq/m3 with this device. Results show that in brain, lungs, liver, and kidney, both the activities of superoxide dismutase(SOD) and catalase increased, and lipid peroxide levels decreased. This suggests that radon inhalation enhanced the antioxidation function. These findings are important in understanding the mechanism of diseases in which radon therapy is used as treatment, and most of which are called activated oxygen-related diseases.
kn-abstract=ラドン療法の適応症には活性酸素に由来する生活習慣病が多く,その機構の更なる解明が期待されている。また,汎用性があり医学的効果が再現できるラドン吸入装置の構築は意義が大きい。このため,著者らは共同で開発したラドン吸入試作装置を用い,マウス諸臓器中の抗酸化機能の変化特性を検討した。ラドン吸入試作装置は,特殊加工したラドン線源を収納したユニットの数量,それへの送風量及び湿度などを調節することによりラドン濃度を自在に調整可能にするものである。この装置によりマウスに400Bq/m3あるいは4000Bq/m3のラドンを吸入させた。その結果,脳・肺・肝臓・腎臓において,抗酸化系酵素であるSODとカタラーゼの両活性が増加し,過酸化脂質量が減少した。この抗酸化機能の亢進により,本実験条件でのラドン吸入は活性酸素障害の抑制,すなわち,生活習慣病の予防や症状緩和に効果のある可能性が改めて示唆できた。
en-copyright=
kn-copyright=
en-aut-name=NakagawaShinya
en-aut-sei=Nakagawa
en-aut-mei=Shinya
kn-aut-name=中川慎也
kn-aut-sei=中川
kn-aut-mei=慎也
aut-affil-num=1
ORCID=
en-aut-name=KataokaTakahiro
en-aut-sei=Kataoka
en-aut-mei=Takahiro
kn-aut-name=片岡隆浩
kn-aut-sei=片岡
kn-aut-mei=隆浩
aut-affil-num=2
ORCID=
en-aut-name=SakodaAkihiro
en-aut-sei=Sakoda
en-aut-mei=Akihiro
kn-aut-name=迫田晃弘
kn-aut-sei=迫田
kn-aut-mei=晃弘
aut-affil-num=3
ORCID=
en-aut-name=IshimoriYuu
en-aut-sei=Ishimori
en-aut-mei=Yuu
kn-aut-name=石森有
kn-aut-sei=石森
kn-aut-mei=有
aut-affil-num=4
ORCID=
en-aut-name=HanamotoKatsumi
en-aut-sei=Hanamoto
en-aut-mei=Katsumi
kn-aut-name=花元克巳
kn-aut-sei=花元
kn-aut-mei=克巳
aut-affil-num=5
ORCID=
en-aut-name=YamaokaKiyonori
en-aut-sei=Yamaoka
en-aut-mei=Kiyonori
kn-aut-name=山岡聖典
kn-aut-sei=山岡
kn-aut-mei=聖典
aut-affil-num=6
ORCID=
affil-num=1
en-affil=
kn-affil=岡山大学大学院保健学研究科
affil-num=2
en-affil=
kn-affil=岡山大学大学院保健学研究科
affil-num=3
en-affil=
kn-affil=岡山大学大学院保健学研究科
affil-num=4
en-affil=
kn-affil=独立行政法人 日本原子力研究開発機構人形峠環境技術センター
affil-num=5
en-affil=
kn-affil=岡山大学大学院保健学研究科
affil-num=6
en-affil=
kn-affil=岡山大学大学院保健学研究科
en-keyword=new radon exposure device
kn-keyword=new radon exposure device
en-keyword=radon inhalation
kn-keyword=radon inhalation
en-keyword=antioxidative function
kn-keyword=antioxidative function
en-keyword=superoxide dismutase
kn-keyword=superoxide dismutase
en-keyword=catalase
kn-keyword=catalase
en-keyword=lipid peroxide
kn-keyword=lipid peroxide
en-keyword=active oxygen
kn-keyword=active oxygen
en-keyword=mouse
kn-keyword=mouse
en-keyword=radon-222
kn-keyword=radon-222
END
start-ver=1.4
cd-journal=joma
no-vol=2012
cd-vols=
no-issue=
article-no=
start-page=11
end-page=11
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2012
dt-pub=20120209
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Activation of Biodefense System by Low-Dose Irradiation or Radon Inhalation and Its Applicable Possibility for Treatment of Diabetes and Hepatopathy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Adequate oxygen stress induced by low-dose irradiation activates biodefense system, such as induction of the synthesis of superoxide dismutase (SOD) and glutathione peroxidase. We studied the possibility for alleviation of oxidative damage, such as diabetes and nonalcoholic liver disease. Results show that low-dose γ-irradiation increases SOD activity and protects against alloxan diabetes. Prior or post-low-dose X- or γ-irradiation increases antioxidative functions in livers and inhibits ferric nitrilotriacetate and carbon tetrachloride-induced (CCl4) hepatopathy. Moreover, radon inhalation also inhibits CCl4-induced hepatopathy. It is highly possible that low-dose irradiation including radon inhalation activates the biodefence systems and, therefore, contributes to preventing or reducing reactive oxygen species-related diabetes and nonalcoholic liver disease, which are thought to involve peroxidation.
en-copyright=
kn-copyright=
en-aut-name=KataokaTakahiro
en-aut-sei=Kataoka
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamaokaKiyonori
en-aut-sei=Yamaoka
en-aut-mei=Kiyonori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=
kn-affil=Graduate School of Health Sciences, Okayama University
affil-num=2
en-affil=
kn-affil=Graduate School of Health Sciences, Okayama University
END
start-ver=1.4
cd-journal=joma
no-vol=48
cd-vols=
no-issue=6
article-no=
start-page=505
end-page=513
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2007
dt-pub=20071121
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Inhibitory Effects of Prior Low-dose X-irradiation on Ischemia-reperfusion Injury in Mouse Paw
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We have reported that low-dose, unlike high-dose, irradiation enhanced antioxidation function and reduced oxidative damage. On the other hand, ischemia-reperfusion injury is induced by reactive oxygen species. In this study, we examined the inhibitory effects of prior low-dose X-irradiation on ischemia-reperfusion injury in mouse paw. BALB/c mice were irradiated by sham or 0.5 Gy of X-ray. At 4 hrs after irradiation, the left hind leg was bound 10 times with a rubber ring for 0.5, 1, or 2 hrs and the paw thickness was measured. Results show that the paw swelling thickness by ischemia for 0.5 hr was lower than that for 2 hrs. At 1 hr after reperfusion from ischemia for 1 hr, superoxide dismutase activity in serum was increased in those mice which received 0.5 Gy irradiation and in the case of the ischemia for 0.5 or 1 hr, the paw swelling thicknesses were inhibited by 0.5 Gy irradiation. In addition, interstitial edema in those mice which received 0.5 Gy irradiation was less than that in the mice which underwent by sham irradiation. These findings suggest that the ischemia-reperfusion injury is inhibited by the enhancement of antioxidation function by 0.5 Gy irradiation.
en-copyright=
kn-copyright=
en-aut-name=KataokaTakahiro
en-aut-sei=Kataoka
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MizuguchiYuko
en-aut-sei=Mizuguchi
en-aut-mei=Yuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshimotoMasaaki
en-aut-sei=Yoshimoto
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TaguchiTakehito
en-aut-sei=Taguchi
en-aut-mei=Takehito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamaokaKiyonori
en-aut-sei=Yamaoka
en-aut-mei=Kiyonori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=
kn-affil=Graduate School of Health Sciences, Okayama University
affil-num=2
en-affil=
kn-affil=Graduate School of Health Sciences, Okayama University
affil-num=3
en-affil=
kn-affil=Graduate School of Health Sciences, Okayama University
affil-num=4
en-affil=
kn-affil=Graduate School of Health Sciences, Okayama University
affil-num=5
en-affil=
kn-affil=Graduate School of Health Sciences, Okayama University
en-keyword=Edema
kn-keyword=Edema
en-keyword=Ischemia-reperfusion injury
kn-keyword=Ischemia-reperfusion injury
en-keyword=Low-dose irradiation
kn-keyword=Low-dose irradiation
en-keyword=Reactive oxygen species
kn-keyword=Reactive oxygen species
en-keyword=Antioxidation function
kn-keyword=Antioxidation function
END