このエントリーをはてなブックマークに追加


ID 11561
JaLCDOI
Sort Key
6
フルテキストURL
著者
崔 承培 岡山大学
田中 豊 岡山大学
抄録
Spatial data is analyzed in three stages of 1) estimating the variograms, 2) fitting a model for the estimated variograms and 3) predicting the value at unknown location based on the information at known locations (kriging). Recently, it has become a subject of interest to detect influential observations in these stages. Choi and Tanaka(1999) have derived influence functions in the above three stages and have proposed sensitivity analysis procedure. So far influence functions have only been derived for variograms by Gunst and Hartfield(1996). The present article makes a comparison of the performances between those influence functions for variograms derived by Choi and Tanaka(1999) and by Gunst and Hartfield(1996). A real numerical example is given to discuss the validity or usefulness of those influence functions.
キーワード
Stationary spatal data
Influence function
Sample variogram
Median-polish residual
出版物タイトル
岡山大学環境理工学部研究報告
発行日
2000-02-29
5巻
1号
出版者
岡山大学環境理工学部
出版者(別表記)
Faculty of Environmental Science and Technology, Okayama University
開始ページ
35
終了ページ
46
ISSN
1341-9099
NCID
AN10529213
資料タイプ
紀要論文
OAI-PMH Set
岡山大学
言語
英語
論文のバージョン
publisher
NAID
Eprints Journal Name
fest