このエントリーをはてなブックマークに追加


ID 33628
フルテキストURL
著者
Abu, E. A. University of Jordan
Al-Ezeh, H. University of Jordan
抄録

<P>Let C(X) be the ring of all continuous real valued functions defined on a completely regular T1-space. Let CK(X) be the ideal of functions with compact support. Purity of CK(X) is studied and characterized through the subspace XL, the set of all points in X with compact neighborhoods (nbhd). It is proved that CK(X) is pure if and only if XL=∪f∈CK supp f. if CK(X) and CK(Y) are pure ideals, then CK(X) is isomorphic to CK(Y) if and only if XL is homeomorphic to YL. It is proved that CK(X) is pure and XL is basically disconnected if and only if for every f ∈CK(X), the ideal (f ) is a projective C(X)-module. Finally it is proved that if CK(X) is pure, then XL is an F'-space if and only if every principal ideal of CK(X) is a flat C(X)-module. Concrete examples exemplifying the concepts studied are given.

発行日
1999-01
出版物タイトル
Mathematical Journal of Okayama University
41巻
1号
出版者
Department of Mathematics, Faculty of Science, Okayama University
開始ページ
111
終了ページ
120
ISSN
0030-1566
NCID
AA00723502
資料タイプ
学術雑誌論文
言語
英語
論文のバージョン
publisher
査読
有り
NAID
Submission Path
mjou/vol41/iss1/8
JaLCDOI