start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250612 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Sulfur dioxide-induced guard cell death and stomatal closure are attenuated in nitrate/proton antiporter AtCLCa mutants en-subtitle= kn-subtitle= en-abstract= kn-abstract=Guard cells surrounding the stomata play a crucial role in regulating the entrance of hazardous gases such as SO2 into leaves. Stomatal closure could be a plant response to mitigate SO2 damage, although the mechanism for SO2-induced closure remains controversial. Proposed mediators for SO2-induced stomatal closure include phytohormones, reactive oxygen species, gasotransmitters, and cytosolic acidification. In this study, we investigated the mechanism of stomatal closure in Arabidopsis in response to SO2. Despite an increment in auxin and jasmonates after SO2 exposure, the addition of auxin did not cause stomatal closure and jasmonate-insensitive mutants exhibited SO2-induced stomatal closure suggesting auxin and jasmonates are not mediators leading to the closure. In addition, supplementation of scavenging reagents for reactive oxygen species and gasotransmitters did not inhibit SO2-induced closure. Instead, we found that cytosolic acidification is a credible mechanism for SO2-induced stomatal closure in Arabidopsis. CLCa mutants coding H+/nitrate antiporter, involved in cytosolic pH homeostasis, showed less sensitive stomatal phenotype against SO2. These results suggest that cytosolic pH homeostasis plays a tenable role in SO2 response in guard cells. en-copyright= kn-copyright= en-aut-name=OoiLia en-aut-sei=Ooi en-aut-mei=Lia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsuuraTakakazu en-aut-sei=Matsuura en-aut-mei=Takakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoriIzumi C. en-aut-sei=Mori en-aut-mei=Izumi C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=airborne pollutants kn-keyword=airborne pollutants en-keyword=cytosolic acidification kn-keyword=cytosolic acidification en-keyword=stomatal closure kn-keyword=stomatal closure en-keyword=sulfur dioxide kn-keyword=sulfur dioxide END start-ver=1.4 cd-journal=joma no-vol=70 cd-vols= no-issue=5 article-no= start-page=733 end-page=747 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202503 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A PRA-Rab trafficking machinery modulates NLR immune receptor plasma membrane microdomain anchoring and blast resistance in rice en-subtitle= kn-subtitle= en-abstract= kn-abstract=Nucleotide-binding leucine-rich repeat (NLR) receptors mediate pathogen effector-triggered immunity (ETI) in plants, and a subclass of NLRs are hypothesized to function at the plasma membrane (PM). However, how NLR traffic and PM delivery are regulated during immune responses remains largely unknown. The rice NLR PigmR confers broad-spectrum resistance to the blast fungus Magnaporthe oryzae. Here, we report that a PRA (Prenylated Rab acceptor) protein, PIBP4 (PigmR-INTERACTING and BLAST RESISTANCE PROTEIN 4), interacts with both PigmR and the active form of the Rab GTPase, OsRab5a, thereby loads a portion of PigmR on trafficking vesicles that target to PM microdomains. Microdomain-localized PigmR interacts with and activates the small GTPase OsRac1, which triggers reactive oxygen species signaling and hypersensitive response, leading to immune responses against blast infection. Thus, our study discovers a previously unknown mechanism that deploys a PRA-Rab protein delivering hub to ensure ETI, linking the membrane trafficking machinery with NLR function and immune activation in plants. en-copyright= kn-copyright= en-aut-name=LiangDi en-aut-sei=Liang en-aut-mei=Di kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YangDongyong en-aut-sei=Yang en-aut-mei=Dongyong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=LiTai en-aut-sei=Li en-aut-mei=Tai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ZhuZhe en-aut-sei=Zhu en-aut-mei=Zhe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YanBingxiao en-aut-sei=Yan en-aut-mei=Bingxiao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HeYang en-aut-sei=He en-aut-mei=Yang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=LiXiaoyuan en-aut-sei=Li en-aut-mei=Xiaoyuan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ZhaiKeran en-aut-sei=Zhai en-aut-mei=Keran kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=LiuJiyun en-aut-sei=Liu en-aut-mei=Jiyun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KawanoYoji en-aut-sei=Kawano en-aut-mei=Yoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=DengYiwen en-aut-sei=Deng en-aut-mei=Yiwen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=WuXu Na en-aut-sei=Wu en-aut-mei=Xu Na kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=LiuJunzhong en-aut-sei=Liu en-aut-mei=Junzhong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=HeZuhua en-aut-sei=He en-aut-mei=Zuhua kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences kn-affil= affil-num=2 en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences kn-affil= affil-num=3 en-affil=Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University kn-affil= affil-num=4 en-affil=Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University kn-affil= affil-num=5 en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences kn-affil= affil-num=6 en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences kn-affil= affil-num=7 en-affil=School of Life Science and Technology, ShanghaiTech University kn-affil= affil-num=8 en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences kn-affil= affil-num=9 en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences kn-affil= affil-num=10 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=11 en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences kn-affil= affil-num=12 en-affil=Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University kn-affil= affil-num=13 en-affil=Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University kn-affil= affil-num=14 en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences kn-affil= en-keyword=Prenylated Rab acceptor kn-keyword=Prenylated Rab acceptor en-keyword=PigmR kn-keyword=PigmR en-keyword=Trafficking vesicles kn-keyword=Trafficking vesicles en-keyword=OsRab5a kn-keyword=OsRab5a en-keyword=Blast resistance kn-keyword=Blast resistance END start-ver=1.4 cd-journal=joma no-vol=695 cd-vols= no-issue= article-no= start-page=137727 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202510 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Tunable interlayer distance in graphene oxide through alkylamine surface coverage and chain length en-subtitle= kn-subtitle= en-abstract= kn-abstract=Layered materials have unique structures that can be modified by adjusting the space between layers through pillaring or surface functionalization. Unlike typical crystalline layered materials, graphene oxide (GO) possesses reactive oxygenated functional groups, which lead to spontaneous reduction and stacking upon thermal treatment. Here, we investigated the functionalization of GO with different amounts of hexylamine to control the degree of surface coverage. Furthermore, octylamine and dodecylamine were employed to confirm the effect of the alkyl chain length on the interlayer distance of the resultant GO derivatives. Subsequent thermal treatment produced reduced GO (rGO) functionalized with alkylamines, demonstrating the retention of the interlayer distance. Additionally, amine-functionalized rGOs exhibited varying porous structures. en-copyright= kn-copyright= en-aut-name=Ortiz-AnayaIsrael en-aut-sei=Ortiz-Anaya en-aut-mei=Israel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ObataSeiji en-aut-sei=Obata en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishinaYuta en-aut-sei=Nishina en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Natural Sciences and Technology, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= en-keyword=Graphene oxide kn-keyword=Graphene oxide en-keyword=Layered material kn-keyword=Layered material en-keyword=Interlayer distance kn-keyword=Interlayer distance en-keyword=Functionalization kn-keyword=Functionalization en-keyword=Alkylamines kn-keyword=Alkylamines en-keyword=Nitrogen physisorption kn-keyword=Nitrogen physisorption END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=3 article-no= start-page=209 end-page=212 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Case of Aniline Poisoning Manifesting as Cyanosis with Unknown Cause en-subtitle= kn-subtitle= en-abstract= kn-abstract=A 38-year-old man was brought to the hospital for emergency treatment of cyanosis. The patient exhibited generalized cyanosis and impaired consciousness despite adequate oxygen therapy. Arterial blood was black, and arterial blood gas analysis revealed an abnormally high methemoglobin level of 67.8%. We later interviewed his colleagues regarding his exposure to aniline while working at the factory and diagnosed him with methemoglobinemia due to aniline poisoning. The patient was administered methylene blue (MB) after being transferred to another hospital, where this treatment was available, resulting in an improvement in symptoms. Although rare, methemoglobinemia is serious. A good understanding of the circumstances at disease onset, characteristic findings, and abnormal values of methemoglobinemia is important. In addition, MB is an important therapeutic for the treatment of methemoglobinemia; if MB is not available at a particular hospital, transfer of the patient to a hospital that stocks MB should be considered. en-copyright= kn-copyright= en-aut-name=TaguchiKenichi en-aut-sei=Taguchi en-aut-mei=Kenichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishiiKazuya en-aut-sei=Nishii en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HataSakura en-aut-sei=Hata en-aut-mei=Sakura kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KuyamaShoichi en-aut-sei=Kuyama en-aut-mei=Shoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TanakaShoichi en-aut-sei=Tanaka en-aut-mei=Shoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Gastroenterology, NHO Iwakuni Clinical Center kn-affil= affil-num=2 en-affil=Department of Respiratory Medicine, NHO Iwakuni Clinical Center kn-affil= affil-num=3 en-affil=Department of Gastroenterology, NHO Iwakuni Clinical Center kn-affil= affil-num=4 en-affil= kn-affil= affil-num=5 en-affil=Department of Gastroenterology, NHO Iwakuni Clinical Center kn-affil= en-keyword=methemoglobinemia kn-keyword=methemoglobinemia en-keyword=aniline kn-keyword=aniline en-keyword=methylene blue kn-keyword=methylene blue en-keyword=cyanosis kn-keyword=cyanosis END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=3 article-no= start-page=157 end-page=166 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Continuous Stimulation with Glycolaldehyde-derived Advanced Glycation End Product Reduces Aggrecan and COL2A1 Production via RAGE in Human OUMS-27 Chondrosarcoma Cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=Chondrocytes are responsible for the production of extracellular matrix (ECM) components such as collagen type II alpha-1 (COL2A1) and aggrecan, which are loosely distributed in articular cartilage. Chondrocyte dysfunction has been implicated in the pathogenesis of rheumatic diseases such as osteoarthritis (OA) and rheumatoid arthritis (RA). With age, advanced glycation end products (AGEs) accumulate in all tissues and body fluids, including cartilage and synovial fluid, causing and accelerating pathological changes associated with chronic diseases such as OA. Glycolaldehyde-derived AGE (AGE3), which is toxic to a variety of cell types, have a stronger effect on cartilage compared with other AGEs. To understand the long-term effects of AGE3 on cartilage, we stimulated a human chondrosarcoma cell line (OUMS-27), which exhibits a chondrocytic phenotype, with 10 μg/ml AGE3 for 4 weeks. As a result, the expressions of COL2A1 and aggrecan were significantly downregulated in the OUMS-27 cells without inducing cell death, but the expressions of proteases that play an important role in cartilage destruction were not affected. Inhibition of the receptor for advanced glycation end products (RAGE) suppressed the AGE3-induced reduction in cartilage component production, suggesting the involvement of RAGE in the action of AGE3. en-copyright= kn-copyright= en-aut-name=HatipogluOmer Faruk en-aut-sei=Hatipoglu en-aut-mei=Omer Faruk kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishinakaTakashi en-aut-sei=Nishinaka en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YaykasliKursat Oguz en-aut-sei=Yaykasli en-aut-mei=Kursat Oguz kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MoriShuji en-aut-sei=Mori en-aut-mei=Shuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WatanabeMasahiro en-aut-sei=Watanabe en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ToyomuraTakao en-aut-sei=Toyomura en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NishiboriMasahiro en-aut-sei=Nishibori en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HirohataSatoshi en-aut-sei=Hirohata en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TakahashiHideo en-aut-sei=Takahashi en-aut-mei=Hideo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=WakeHidenori en-aut-sei=Wake en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Pharmacology, Faculty of Medicine, Kindai University kn-affil= affil-num=2 en-affil=Department of Pharmacology, Faculty of Medicine, Kindai University kn-affil= affil-num=3 en-affil=Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-N?rnberg (FAU) and Universit?tsklinikum Erlangen kn-affil= affil-num=4 en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University kn-affil= affil-num=5 en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University kn-affil= affil-num=6 en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University kn-affil= affil-num=7 en-affil=Department of Translational Research & Dug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Pharmacology, Faculty of Medicine, Kindai University kn-affil= affil-num=10 en-affil=Department of Pharmacology, Faculty of Medicine, Kindai University kn-affil= en-keyword=advanced glycation end product kn-keyword=advanced glycation end product en-keyword=aging kn-keyword=aging en-keyword=cartilage kn-keyword=cartilage en-keyword=collagen kn-keyword=collagen en-keyword=aggrecan kn-keyword=aggrecan END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250316 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Novel pulmonary abdominal normothermic regional perfusion circuit for simultaneous in-donor evaluation and preservation of lungs and abdominal organs in donation after circulatory death en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objective To overcome limitations of traditional ex vivo lung perfusion (EVLP) for controlled donation after circulatory death (cDCD) lungs, this study aimed to evaluate a novel pulmonary abdominal normothermic regional perfusion (PANRP) technique, which we uniquely designed, for in situ assessment of lungs from cDCD donors.
Methods We modified the abdominal normothermic regional perfusion circuit for simultaneous lung and abdominal organ assessment using independent extracorporeal membrane oxygenation components. Blood was oxygenated via a membrane oxygenator and returned to the body, with pulmonary flow adjusted to maintain pressure? Results PANRP maintained stable lung function, with P/F ratios above 300, and preserved abdominal organ parameters, including stable AST, ALT, BUN, and Cr levels. Adequate urine output was observed, indicating normal renal function. Pulmonary artery pressure remained? Conclusions PANRP offers a promising alternative to traditional EVLP for cDCD lung evaluation, allowing in situ assessment of multiple organs simultaneously. This approach may overcome logistical and economic challenges associated with ex vivo techniques, enabling a more efficient evaluation process. Further studies are warranted to confirm its clinical applicability and impact on long-term outcomes. en-copyright= kn-copyright= en-aut-name=TanakaShin en-aut-sei=Tanaka en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UmedaMasashi en-aut-sei=Umeda en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UjikeHiroyuki en-aut-sei=Ujike en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=RyukoTsuyoshi en-aut-sei=Ryuko en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TomiokaYasuaki en-aut-sei=Tomioka en-aut-mei=Yasuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MiyoshiKentaroh en-aut-sei=Miyoshi en-aut-mei=Kentaroh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OkazakiMikio en-aut-sei=Okazaki en-aut-mei=Mikio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SugimotoSeiichiro en-aut-sei=Sugimoto en-aut-mei=Seiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of General Thoracic and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=2 en-affil=Department of General Thoracic and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=3 en-affil=Department of General Thoracic Surgery, Shimane University Graduate School of Medicine kn-affil= affil-num=4 en-affil=Department of General Thoracic and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=5 en-affil=Department of General Thoracic and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=6 en-affil=Department of General Thoracic and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=7 en-affil=Department of General Thoracic and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=8 en-affil=Department of General Thoracic and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=9 en-affil=Department of General Thoracic and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= en-keyword=Lung preservation kn-keyword=Lung preservation en-keyword=Donation after circulatory death kn-keyword=Donation after circulatory death en-keyword=Abdominal normothermic regional perfusion kn-keyword=Abdominal normothermic regional perfusion END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=5 article-no= start-page=577 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250306 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Efficacy of Oral Intake of Hydrogen-Rich Jelly Intake on Gingival Inflammation: A Double-Blind, Placebo-Controlled and Exploratory Randomized Clinical Trial en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/Objectives: Initiation and progression of periodontal disease include oxidative stress. Systemic application of antioxidants may provide clinical benefits against periodontal disease including gingivitis. Recently, a jelly containing a high concentration of hydrogen (40 ppm) was developed. We hypothesized that oral intake of this hydrogen-rich jelly may be safe and effective on gingivitis. This clinical trial was designed to investigate the safety and efficacy of oral intake of hydrogen-rich jelly against gingival inflammation. Methods: Participants with gingivitis were instructed to orally ingest 30 g of hydrogen-rich jelly (experimental group) or placebo jelly (control group) three times a day for 14 consecutive days. The primary outcome of this trial was the percentage of bleeding on probing (BOP) sites. Secondary outcomes were oral parameters, serum reactive oxygen metabolites, antioxidant capacity, oxidative index, concentrations of cytokine (interleukin [IL]-1β, IL-6, IL-10, IL-17, and tumor necrosis factor-alpha) in gingival crevicular fluid, and adverse events. For all parameters, Mann?Whitney U test was used for comparison between experimental and control groups. Analysis of covariance, controlling for baseline periodontal inflamed surface area, was performed to evaluate the association between the effect of the hydrogen-rich jelly and gingival inflammation. Results: In the experiment and control groups, the percentage of sites with BOP and PISA significantly decreased at the end of the experiment compared to the baseline. However, no significant differences were found between groups (p > 0.05). Conclusions: Administration of hydrogen-rich jelly for 14 days decreased gingival inflammation. However, no significant differences were identified compared to the control group. en-copyright= kn-copyright= en-aut-name=MaruyamaTakayuki en-aut-sei=Maruyama en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakayamaEiji en-aut-sei=Takayama en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TokunoShinichi en-aut-sei=Tokuno en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MoritaManabu en-aut-sei=Morita en-aut-mei=Manabu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=EkuniDaisuke en-aut-sei=Ekuni en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Oral Biochemistry, Asahi University School of Dentistry kn-affil= affil-num=3 en-affil=Graduate School of Health Innovation, Kanagawa University of Human Services kn-affil= affil-num=4 en-affil=Department of Oral Health, Takarazuka University of Medical and Health Care kn-affil= affil-num=5 en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=periodontal disease kn-keyword=periodontal disease en-keyword=oxidative stress kn-keyword=oxidative stress en-keyword=hydrogen kn-keyword=hydrogen en-keyword=randomized controlled trial kn-keyword=randomized controlled trial END start-ver=1.4 cd-journal=joma no-vol=209 cd-vols= no-issue= article-no= start-page=114663 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202504 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Repeated sequential administration of pegylated emulsion of SU5416 and liposomal paclitaxel enhances anti-tumor effect in 4T1 breast cancer-bearing mice en-subtitle= kn-subtitle= en-abstract= kn-abstract=To improve vascular normalization strategy for intractable triple-negative breast cancer 4T1, we examined the anti-tumor effects of repeated sequential administration of polyethylene glycol (PEG)-modified emulsion of SU5416 (PE-SU5416), a vascular endothelial growth factor (VEGF) receptor-2 kinase inhibitor, and PEG-modified liposomal paclitaxel (PL-PTX) in mice bearing 4T1 cells. Three sequential administrations (Seq×3) of PE-SU5416 and PL-PTX exhibited significantly higher anti-tumor activity than a single sequential administration (Seq×1). The tumor vasculatures were structurally normalized until after two PE-SU5416 (PE-SU5416×2) or sequential (Seq×2) administrations, while the improvement in vascular function, such as oxygen supply, blood flow, and PEG-liposomal distribution, was evident until after three administrations of PE-SU5416 (PE-SU5416×3) and Seq×3. Although some discrepancies between the structural and functional improvement in tumor vasculatures were observed after PE-SU5416×3 and Seq×3, cancer-associated fibroblasts (CAFs) and collagen levels were significantly reduced after PE-SU5416×2, PE-SU5416×3, Seq×2, and Seq×3, suggesting that a possible decrease in interstitial fluid pressure due to the reduction in CAFs and collagen would have compensated for vascular function. Furthermore, PE-SU5416×2, PE-SU5416×3, Seq×2, and Seq×3 significantly decreased tumor growth factor-β (TGF-β), an activator of CAFs, in tumor tissues, suggesting that the reduction in TGF-β levels by PE-SU5416 suppresses CAF activation. en-copyright= kn-copyright= en-aut-name=MaruyamaMasato en-aut-sei=Maruyama en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ToriiReiya en-aut-sei=Torii en-aut-mei=Reiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsuiHazuki en-aut-sei=Matsui en-aut-mei=Hazuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HayashiHiroki en-aut-sei=Hayashi en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OgawaraKen-ichi en-aut-sei=Ogawara en-aut-mei=Ken-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HigakiKazutaka en-aut-sei=Higaki en-aut-mei=Kazutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Laboratory of Pharmaceutics, Kobe Pharmaceutical University kn-affil= affil-num=6 en-affil=Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Drug delivery kn-keyword=Drug delivery en-keyword=Vascular normalization kn-keyword=Vascular normalization en-keyword=Breast cancer kn-keyword=Breast cancer en-keyword=Liposome kn-keyword=Liposome en-keyword=Cancer-associated fibroblast kn-keyword=Cancer-associated fibroblast END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=1 article-no= start-page=1 end-page=7 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202502 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Endothelial Cell Polarity in Health and Disease en-subtitle= kn-subtitle= en-abstract= kn-abstract=Endothelial cell polarity is fundamental to the organization and function of blood vessels, influencing processes such as angiogenesis, vascular stability, and response to shear stress. This review elaborates on the molecular mechanisms that regulate endothelial cell polarity, focusing on key players like the PAR polarity complex and Rho family GTPases. These pathways coordinate the front?rear, apical?basal and planar polarity of endothelial cells, which are essential for the proper formation and maintenance of vascular structures. In health, endothelial polarity ensures not only the orderly development of blood vessels, with tip cells adopting distinct polarities during angiogenesis, but also ensures proper vascular integrity and function. In disease states, however, disruptions in polarity contribute to pathologies such as coronary artery disease, where altered planar polarity exacerbates atherosclerosis, and cancer, where disrupted polarity in tumor vasculature leads to abnormal vessel growth and function. Understanding cell polarity and its disruption is fundamental not only to comprehending how cells interact with their microenvironment and organize themselves into complex, organ-specific tissues but also to developing novel, targeted, and therapeutic strategies for a range of diseases, from cardiovascular disorders to malignancies, ultimately improving patient outcomes. en-copyright= kn-copyright= en-aut-name=ThihaMoe en-aut-sei=Thiha en-aut-mei=Moe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HikitaTakao en-aut-sei=Hikita en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakayamaMasanori en-aut-sei=Nakayama en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Pathophysiology and Drug Discovery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Pathophysiology and Drug Discovery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Pathophysiology and Drug Discovery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=blood vessel kn-keyword=blood vessel en-keyword=endothelial cell kn-keyword=endothelial cell en-keyword=cell polarity kn-keyword=cell polarity en-keyword=atherosclerosis kn-keyword=atherosclerosis en-keyword=cancer kn-keyword=cancer END start-ver=1.4 cd-journal=joma no-vol=129 cd-vols= no-issue=2 article-no= start-page=726 end-page=735 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241231 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Hydronium Ions Are Less Excluded from Hydrophobic Polymer?Water Interfaces than Hydroxide Ions en-subtitle= kn-subtitle= en-abstract= kn-abstract=The cloud point temperatures of aqueous poly(N-isopropylacrylamide) (PNIPAM) and poly(ethylene) oxide (PEO) solutions were measured from pH 1.0 to pH 13.0 at a constant ionic strength of 100 mM. This ionic strength was reached by mixing the appropriate concentration of NaCl with either HCl or NaOH. The phase transition temperature of both polymers was nearly constant between pH 2.0 and 12.0. However, the introduction of 100 mM HCl (pH 1.0) led to an increase in the cloud point temperature, although this value was still lower than the cloud point temperature in the absence of salt. By contrast, the introduction of 100 mM NaOH (pH 13.0) caused a decrease in the cloud point temperature, both relative to adding 100 mM NaCl and adding no salt. Nuclear magnetic resonance (NMR) studies of these systems were performed below the cloud point temperature, and the chemical shifts closely tracked the corresponding changes in the phase transition temperature. Specifically, the introduction of 100 mM HCl caused the 1H chemical shift to move downfield for the CH resonances from both PNIPAM and PEO, while 100 mM NaOH caused the same resonances to move upfield. Virtually no change in the chemical shift was seen between pH 2.0 and 12.0. These results are consistent with the idea that a sufficient concentration of H3O+ led to polymer swelling compared to Na+, while substituting Cl? with OH? reduced swelling. Finally, classical all-atom molecular dynamics (MD) simulations were performed with a monomer and 5-mer corresponding to PNIPAM. The results correlated closely with the thermodynamic and spectroscopic data. The simulation showed that H3O+ ions more readily accumulated around the amide oxygen moiety on PNIPAM compared with Na+. On the other hand, OH? was more excluded from the polymer surface than Cl?. Taken together, the thermodynamic, spectroscopic, and MD simulation data revealed that H3O+ was less depleted from hydrophobic polymer/water interfaces than any of the monovalent Hofmeister metal cations or even Ca2+ and Mg2+. As such, it should be placed on the far-right side of the cationic Hofmeister series. On the other hand, OH? was excluded from the interface and could be positioned in the anionic Hofmeister series between H2PO4? and SO42?. en-copyright= kn-copyright= en-aut-name=MyersRyan L. en-aut-sei=Myers en-aut-mei=Ryan L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TairaAoi en-aut-sei=Taira en-aut-mei=Aoi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YanChuanyu en-aut-sei=Yan en-aut-mei=Chuanyu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=LeeSeung-Yi en-aut-sei=Lee en-aut-mei=Seung-Yi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WelshLauren K. en-aut-sei=Welsh en-aut-mei=Lauren K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IaniroPatrick R. en-aut-sei=Ianiro en-aut-mei=Patrick R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YangTinglu en-aut-sei=Yang en-aut-mei=Tinglu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KogaKenichiro en-aut-sei=Koga en-aut-mei=Kenichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=CremerPaul S. en-aut-sei=Cremer en-aut-mei=Paul S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Chemistry, The Pennsylvania State University, University Park kn-affil= affil-num=2 en-affil=Department of Chemistry, Okayama University kn-affil= affil-num=3 en-affil=Department of Chemistry, The Pennsylvania State University, University Park kn-affil= affil-num=4 en-affil=Department of Chemistry, The Pennsylvania State University, University Park kn-affil= affil-num=5 en-affil=Department of Chemistry, The Pennsylvania State University, University Park kn-affil= affil-num=6 en-affil=Department of Chemistry, University of Pittsburgh at Bradford kn-affil= affil-num=7 en-affil=Department of Chemistry, The Pennsylvania State University, University Park kn-affil= affil-num=8 en-affil=Department of Chemistry, Okayama University kn-affil= affil-num=9 en-affil=Department of Chemistry, The Pennsylvania State University, University Park kn-affil= END start-ver=1.4 cd-journal=joma no-vol=21 cd-vols= no-issue=2 article-no= start-page=80 end-page=90 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230627 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Antioxidant action of xanthine oxidase inhibitor febuxostat protects the liver and blood vasculature in SHRSP5/Dmcr rats en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Xanthine oxidase (XO) generates reactive oxygen species during uric acid production. Therefore, XO inhibitors, which suppress oxidative stress, may effectively treat non-alcoholic steatohepatitis (NASH) and atherosclerosis via uric acid reduction. In this study, we examined the antioxidant effect of the XO inhibitor febuxostat on NASH and atherosclerosis in stroke-prone spontaneously hypertensive 5 (SHRSP5/Dmcr) rats.
Methods: SHRSP5/Dmcr rats were divided into three groups: SHRSP5/Dmcr + high-fat and high-cholesterol (HFC) diet [control group, n = 5], SHRSP5/Dmcr + HFC diet + 10% fructose (40 ml/day) [fructose group, n = 5], and SHRSP5/Dmcr + HFC diet + 10% fructose (40 ml/day) + febuxostat (1.0 mg/kg/day) [febuxostat group, n = 5]. Glucose and insulin resistance, blood biochemistry, histopathological staining, endothelial function, and oxidative stress markers were evaluated.
Results: Febuxostat reduced the plasma uric acid levels. Oxidative stress-related genes were downregulated, whereas antioxidant factor-related genes were upregulated in the febuxostat group compared with those in the fructose group. Febuxostat also ameliorated inflammation, fibrosis, and lipid accumulation in the liver. Mesenteric lipid deposition decreased in the arteries, and aortic endothelial function improved in the febuxostat group.
Conclusions: Overall, the XO inhibitor febuxostat exerted protective effects against NASH and atherosclerosis in SHRSP5/Dmcr rats. en-copyright= kn-copyright= en-aut-name=KakimotoMai en-aut-sei=Kakimoto en-aut-mei=Mai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujiiMoe en-aut-sei=Fujii en-aut-mei=Moe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SatoIkumi en-aut-sei=Sato en-aut-mei=Ikumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HonmaKoki en-aut-sei=Honma en-aut-mei=Koki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakayamaHinako en-aut-sei=Nakayama en-aut-mei=Hinako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KiriharaSora en-aut-sei=Kirihara en-aut-mei=Sora kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=FukuokaTaketo en-aut-sei=Fukuoka en-aut-mei=Taketo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=RanShang en-aut-sei=Ran en-aut-mei=Shang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HirohataSatoshi en-aut-sei=Hirohata en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KitamoriKazuya en-aut-sei=Kitamori en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YamamotoShusei en-aut-sei=Yamamoto en-aut-mei=Shusei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=WatanabeShogo en-aut-sei=Watanabe en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Okayama University, Graduate School of Health Sciences, Department of Medical Technology kn-affil= affil-num=2 en-affil=Okayama University, Graduate School of Health Sciences, Department of Medical Technology kn-affil= affil-num=3 en-affil=Okayama University, Graduate School of Health Sciences, Department of Medical Technology kn-affil= affil-num=4 en-affil=Okayama University, Graduate School of Health Sciences, Department of Medical Technology kn-affil= affil-num=5 en-affil=Okayama University, Graduate School of Health Sciences, Department of Medical Technology kn-affil= affil-num=6 en-affil=Okayama University, Graduate School of Health Sciences, Department of Medical Technology kn-affil= affil-num=7 en-affil=Okayama University, Faculty of Health Sciences, Department of Medical Technology kn-affil= affil-num=8 en-affil=Okayama University, Graduate School of Health Sciences, Department of Medical Technology kn-affil= affil-num=9 en-affil=Okayama University, Academic Field of Health Science kn-affil= affil-num=10 en-affil=Kinjo Gakuin University, College of Human Life and Environment kn-affil= affil-num=11 en-affil=Okayama University, Graduate School of Health Sciences, Department of Medical Technology kn-affil= affil-num=12 en-affil=Okayama University, Academic Field of Health Science kn-affil= en-keyword=Anti-inflammatory kn-keyword=Anti-inflammatory en-keyword=Atherosclerosis kn-keyword=Atherosclerosis en-keyword=Febuxostat kn-keyword=Febuxostat en-keyword=Non-alcoholic steatohepatitis (NASH) kn-keyword=Non-alcoholic steatohepatitis (NASH) en-keyword=Oxidative stress kn-keyword=Oxidative stress en-keyword=Uric acid kn-keyword=Uric acid END start-ver=1.4 cd-journal=joma no-vol=103 cd-vols= no-issue=50 article-no= start-page=e40849 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241213 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Relevance of oxidative stress for small intestinal injuries induced by nonsteroidal anti-inflammatory drugs: A multicenter prospective study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Several reports revealed that oxidative stress was involved in the mouse model of nonsteroidal anti-inflammatory drug (NSAIDs)-induced small intestinal mucosal injuries. Thus, we aimed to investigate in the prospective clinical study, that the relevance of oxidative stress balance in small intestinal mucosal injury in NSAIDs users. We prospectively included 60 patients who had been taking NSAIDs continuously for more than 3 months and exhibited obscure gastrointestinal bleeding (number UMIN 000011775). Small intestinal mucosal injuries were assessed by capsule endoscopy (CE), and reactive oxygen metabolites (d-ROMs) levels and oxidant capacity (OXY) adsorbent test were performed to investigate the relevance of oxidative stress balance. More than half of the patients (N = 32, 53%) had small intestinal mucosal injuries by CE, and 14 patients (24%) had ulcers. The incidence of ulcers was relatively higher in nonaspirin users. Serum OXY levels were significantly lower in the mucosal injury group (P = .02), and d-ROM levels were significantly higher in the ulcer group (P < .01). In aspirin users, d-ROM and OXY levels did not differ significantly with respect to mucosal injuries or ulcers. However, in nonaspirin users, OXY level was significantly lower in the mucosal injury group (P = .04), and d-ROM levels were significantly higher in the ulcer group (P = .02). Nonaspirin NSAIDs-induced intestinal mucosal injury is associated with antioxidant systems, resulting in increased oxidative stress. en-copyright= kn-copyright= en-aut-name=BabaYuki en-aut-sei=Baba en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawanoSeiji en-aut-sei=Kawano en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakakiAkinobu en-aut-sei=Takaki en-aut-mei=Akinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KonoYoshiyasu en-aut-sei=Kono en-aut-mei=Yoshiyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HoriiJoichiro en-aut-sei=Horii en-aut-mei=Joichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakahashiSakuma en-aut-sei=Takahashi en-aut-mei=Sakuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KawaiDaisuke en-aut-sei=Kawai en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KobayashiSayo en-aut-sei=Kobayashi en-aut-mei=Sayo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OkadaHiroyuki en-aut-sei=Okada en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Internal Medicine, Japanese Red Cross Himeji Hospital kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterology, National Hospital Organization Fukuyama Medical Center kn-affil= affil-num=6 en-affil=Department of Gastroenterology, Kagawa Prefectural Central Hospital kn-affil= affil-num=7 en-affil=Department of Internal Medicine, Okayama Saiseikai General Hospital kn-affil= affil-num=8 en-affil=Department of Internal Medicine, Fukuyama City Hospital kn-affil= affil-num=9 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=capsule endoscopy kn-keyword=capsule endoscopy en-keyword=NSAIDs kn-keyword=NSAIDs en-keyword=oxidative stress kn-keyword=oxidative stress en-keyword=small intestinal mucosal injury kn-keyword=small intestinal mucosal injury END start-ver=1.4 cd-journal=joma no-vol=228 cd-vols= no-issue= article-no= start-page=30 end-page=36 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241015 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Exogenous expression of PGC-1α during in vitro maturation impairs the developmental competence of porcine oocytes en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objectives of the current study were to examine the effects of exogenous expression of PGC-1α, which is a transcription factor responsive for controlling mitochondrial DNA (mtDNA) replication, mitochondria quantity control, mitochondrial biogenesis, and reactive oxygen species (ROS) maintenance, in porcine oocytes during in-vitro maturation (IVM) on the developmental competence, as well as mitochondrial quantity and function. Exogenous over-expression of PGC-1α by injection of the mRNA construct into oocytes 20 h after the start of IVM culture significantly increased the copy number of mtDNA in the oocytes, but reduced the incidences of oocytes matured to the metaphase-II stage after the IVM culture for totally 44 h and completely suppressed the early development in vitro to the blastocyst stage following parthenogenetic activation. The exogenous expression of PGC-1α also significantly induced spindle defects and chromosome misalignments. Furthermore, markedly higher ROS levels were observed in the PGC-1α-overexpressed mature oocytes, whereas mRNA level of SOD1, encoded for a ROS scavenging enzyme, was decreased. These results conclude that forced expression of PGC-1α successfully increase mtDNA copy number but led to increased ROS production, evidently by downregulation of SOD1 gene expression, inducement of spindle aberration/chromosomal misalignment, and consequently reduction in the meiotic and developmental competences of porcine oocytes. en-copyright= kn-copyright= en-aut-name=DoSon Quang en-aut-sei=Do en-aut-mei=Son Quang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NguyenHai Thanh en-aut-sei=Nguyen en-aut-mei=Hai Thanh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WakaiTakuya en-aut-sei=Wakai en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FunahashiHiroaki en-aut-sei=Funahashi en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=Porcine kn-keyword=Porcine en-keyword=Mitochondria kn-keyword=Mitochondria en-keyword=Oocytes kn-keyword=Oocytes en-keyword=PGC-1 alpha kn-keyword=PGC-1 alpha en-keyword=In vitro maturation kn-keyword=In vitro maturation END start-ver=1.4 cd-journal=joma no-vol=226 cd-vols= no-issue= article-no= start-page=158 end-page=166 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240915 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The impact of cumulus cell viability and pre-culture with the healthy cell mass on brilliant cresyl blue (BCB) staining assessment and meiotic competence of suboptimal porcine oocytes en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objectives of the present study were to investigate the characteristics including glucose-6-phosphate dehydrogenase activity, as determined by Brilliant Cresyl Blue (BCB) staining, of suboptimal porcine oocytes and to enhance the meiotic competence of those through pre-culture with cumulus cell masses (CCMs). Percentage of oocyte-cumulus complexes (OCCs) derived from small follicles (SF; <3 mm in diameter) containing the oocytes that were assessed as BCB-negative (BCB-) was significantly higher than those derived from medium follicles (MF; 3?6 mm in diameter). Degrees of dead cumulus cells were significantly higher in OCCs containing BCB- oocytes, regardless of the origin of OCCs (MF vs. SF), than those containing BCB-positive (BCB+) ones. Exposing OCCs containing BCB+ oocytes to the apoptosis inducer, carbonyl cyanide m-chlorophenylhydrazone, for 20 h significantly induced the transition to BCB- and meiotic progression of exposed OCCs were significantly reduced in both SF and MF derived ones. Transit of BCB- oocytes to BCB+ was induced when OCCs were pre-cultured with CCMs of MF derived OCCs containing BCB+ oocytes for 20 h before IVM. This pre-culture also significantly increased the meiotic competence of BCB- oocytes, particularly in SF derived ones. However, reactive oxygen species levels were significantly higher in BCB+ oocytes as compared with BCB- ones, regardless of pre-culture with CCMs, whereas no significant differences were found in the ATP contents among the treatment groups. In conclusion, the BCB result of oocytes could be regulated by the healthy status and content of surrounding cumulus cells and the meiotic competence of suboptimal BCB- porcine oocytes is improved by pre-culture with healthy CCMs. en-copyright= kn-copyright= en-aut-name=FonsekaWanniarachchige Tharindu Lakshitha en-aut-sei=Fonseka en-aut-mei=Wanniarachchige Tharindu Lakshitha kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=DoSon Quang en-aut-sei=Do en-aut-mei=Son Quang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=VanPhong Ngoc en-aut-sei=Van en-aut-mei=Phong Ngoc kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NguyenHai Thanh en-aut-sei=Nguyen en-aut-mei=Hai Thanh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WakaiTakuya en-aut-sei=Wakai en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FunahashiHiroaki en-aut-sei=Funahashi en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=6 en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=Oocytes kn-keyword=Oocytes en-keyword=Meiotic competence kn-keyword=Meiotic competence en-keyword=Brilliant cresyl blue kn-keyword=Brilliant cresyl blue en-keyword=Cumulus cells kn-keyword=Cumulus cells END start-ver=1.4 cd-journal=joma no-vol=97 cd-vols= no-issue=11 article-no= start-page=uoae118 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241111 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Refined surface area determination of graphene oxide using methylene blue as a probe molecule: a comparative approach en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this research, we explored the effectiveness of the methylene blue adsorption method as an alternative approach for determining the specific surface area of graphene oxide. Initially, through a comparative analysis with reference activated carbon, we identified the limitations of utilizing N2 physisorption for specific surface area determination of graphene oxide. Our findings revealed that the standard pretreatment process (heating under vacuum) before N2 physisorption led to damage to the surface oxygen groups on graphene oxide, and the measured surface areas (43?m2/g) do not accurately represent the entire surface area. To optimize methylene blue coverage on graphene oxide, we conducted adsorption equilibrium experiments, focusing on controlling temperature and pH. The pH was significantly important in regulating the coverage of methylene blue. Under the optimized methylene blue adsorption conditions, the specific surface area of graphene oxide was 1,555?m2/g. Our assumptions regarding specific surface area calculations were supported by structural characterization of samples with varying methylene blue uptakes. The results confirmed a uniform coverage of methylene blue on graphene oxide by scanning electron microscopy and energy dispersive X-ray, X-ray diffraction, and atomic force microscopy. en-copyright= kn-copyright= en-aut-name=Ortiz-AnayaIsrael en-aut-sei=Ortiz-Anaya en-aut-mei=Israel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishinaYuta en-aut-sei=Nishina en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Natural Sciences and Technology, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= en-keyword=graphene oxide kn-keyword=graphene oxide en-keyword=methylene blue kn-keyword=methylene blue en-keyword=specific surface area kn-keyword=specific surface area END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=50 article-no= start-page=50041 end-page=50048 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241205 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Conformational Flexibility of D1-Glu189: A Crucial Determinant in Substrate Water Selection, Positioning, and Stabilization within the Oxygen-Evolving Complex of Photosystem II en-subtitle= kn-subtitle= en-abstract= kn-abstract=Photosynthetic water oxidation is a vital process responsible for producing dioxygen and supplying the energy necessary to sustain life on Earth. This fundamental reaction is catalyzed by the oxygen-evolving complex (OEC) of photosystem II, which houses the Mn4CaO5 cluster as its catalytic core. In this study, we specifically focus on the D1-Glu189 amino acid residue, which serves as a direct ligand to the Mn4CaO5 cluster. Our primary goal is to explore, using density functional theory (DFT), how the conformational flexibility of the D1-Glu189 side chain influences crucial catalytic processes, particularly the selection, positioning, and stabilization of a substrate water molecule within the OEC. Our investigation is based on a hypothesis put forth by Li et al. (Nature, 2024, 626, 670), which suggests that during the transition from the S2 to S3 state, a specific water molecule temporarily coordinating with the Ca ion, referred to as O6*, may exist as a hydroxide ion (OH-). Our results demonstrate a key mechanism by which the detachment of the D1-Glu189 carboxylate group from its coordination with the Ca ion allows the creation of a specialized microenvironment within the OEC that enables the selective attraction of O6* in its deprotonated form (OH-) and stabilizes it at the catalytic metal (MnD) site. Our findings indicate that D1-Glu189 is not only a structural ligand for the Ca ion but may also play an active and dynamic role in the catalytic process, positioning O6* optimally for its subsequent participation in the oxidation sequence during the water-splitting cycle. en-copyright= kn-copyright= en-aut-name=IsobeHiroshi en-aut-sei=Isobe en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SuzukiTakayoshi en-aut-sei=Suzuki en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SugaMichihiro en-aut-sei=Suga en-aut-mei=Michihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamaguchiKizashi en-aut-sei=Yamaguchi en-aut-mei=Kizashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=5 en-affil=Center for Quantum Information and Quantum Biology, Osaka University kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=亜鉛欠乏はCOVID-19が酸素療法を必要とする肺炎に進行する潜在的危険因子である kn-title=Zinc deficiency is a potential risk factor for COVID-19 progression to pneumonia requiring oxygen therapy en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=FUJITAKoji en-aut-sei=FUJITA en-aut-mei=Koji kn-aut-name=藤田浩二 kn-aut-sei=藤田 kn-aut-mei=浩二 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学大学院医歯薬学総合研究科 END start-ver=1.4 cd-journal=joma no-vol=6 cd-vols= no-issue=4 article-no= start-page=463 end-page=469 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=2023 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effectiveness of the Original COVID-19 Vaccine against COVID-19 Exacerbations during the Omicron Wave: A Population-based Study in Okayama, Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction: In Japan, approximately 97 million individuals have received their primary two doses of coronavirus disease 2019 (COVID-19) vaccine at the end of 2022. In this study, we aim to examine the effectiveness of the primary vaccines and compare its efficacy to booster vaccine shots in terms of preventing COVID-19 exacerbations during the Omicron-predominant period in Japan.
Methods: For this analysis, we have collected all the confirmed COVID-19-positive cases from different medical institutions in Okayama City and have also utilized the information from the public Vaccination Record System. Taking the number of vaccinations into consideration, we then conducted a population-based study to assess the effectiveness of the two primary vaccine doses in preventing COVID-19 exacerbations during the Omicron waves. Our primary and secondary outcomes were COVID-19 exacerbations with respiratory failure (i.e., oxygen saturation on room air ? 93%, requiring supplemental oxygen), intensive care unit admission and/or mechanical ventilator requirement, or death, in accordance with the Japanese COVID-19 guidelines, and pneumonia during the course of COVID-19 infection, respectively.
Results: In total, 95,329 COVID-19-positive individuals, aged 5 years and above, were included in this analysis (study period from January 1 to September 10, 2022). As per our findings, the effectiveness of the primary two doses against COVID-19 exacerbations compared with those who had never been vaccinated was 55.5% (95% confidential interval [CI]: 32.6-71.7), whereas it was higher after the third dose (76.9%; 95% CI: 66.7-84.0) and the fourth dose (75.7%; 95% CI: 58.8-85.7). Effectiveness was sustained for ? 5 months after the third vaccination, and preventive effectiveness was observed in individuals aged ? 65 years.
Conclusions: As per the results of this study, we can conclude that the efficacy of the primary two doses of SARS-CoV-2 vaccine can be further strengthened in terms of preventing COVID-19 exacerbations by administering third and fourth booster vaccine shots. The additional bivalent vaccine is anticipated to further increase its efficacy against the Omicron strain, suggesting that individuals who have not received their booster shots yet should consider getting them to prevent COVID-19 exacerbations. en-copyright= kn-copyright= en-aut-name=MatsumotoNaomi en-aut-sei=Matsumoto en-aut-mei=Naomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MitsuhashiToshiharu en-aut-sei=Mitsuhashi en-aut-mei=Toshiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsuoRumi en-aut-sei=Matsuo en-aut-mei=Rumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KadowakiTomoka en-aut-sei=Kadowaki en-aut-mei=Tomoka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakaoSoshi en-aut-sei=Takao en-aut-mei=Soshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YorifujiTakashi en-aut-sei=Yorifuji en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=COVID-19 kn-keyword=COVID-19 en-keyword=Vaccine kn-keyword=Vaccine en-keyword=Omicron kn-keyword=Omicron en-keyword=Prevention kn-keyword=Prevention en-keyword=Pneumonia kn-keyword=Pneumonia END start-ver=1.4 cd-journal=joma no-vol=20 cd-vols= no-issue=3 article-no= start-page=e20220127 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=2023 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Rapid thawing of frozen bull spermatozoa by transient exposure to 70 °C improves the viability, motility and mitochondrial health en-subtitle= kn-subtitle= en-abstract= kn-abstract=Up to now, the definitive conclusion of the positive effects of rapid transient thawing at higher temperatures for shorter durations has not been obtained yet and is still under discussion due to some contradictory findings and limited assessment of post-thawed parameters. The purpose of the current study was to evaluate the effectiveness of rapid thawing in water at 70 °C by using various post-thawed parameters of frozen bull spermatozoa. Experiment 1, monitoring the change of temperature inside frozen bull straw thawed in water at different temperatures. Experiment 2, evaluation of various post-thawed characteristics of frozen bull spermatozoa thawed in water at different temperatures by using a computer-assisted sperm analysis, flow cytometry and immunocytochemistry. The time it took for the temperature inside the straw to warm up to 15 °C was nearly twice as faster when the straw was thawed in 70 °C water compared with 39 °C. Although there were differences among bulls, viability, motility, and mitochondrial membrane potential of spermatozoa thawed at 70 °C for 8 seconds and stabilized at 39 °C for 52 seconds were significantly higher than those of controls (thawed at 39 °C for 60 seconds) at 0 and 3 h after thawing. Just after thawing, however, there were no differences in acrosome integrity and distribution of phospholipase C zeta1, whereas mitochondrial reactive oxygen species production was significantly lower in spermatozoa thawed at 70 °C. From these results, we conclude that rapid thawing at 70 °C and then stabilization at 39 °C significantly improves viability, motility and mitochondrial health of bull spermatozoa rather than conventional thawing at 39 °C. The beneficial effect of rapid transient thawing could be due to shorter exposure to temperatures outside the physiological range, consequently maintaining mitochondrial health. en-copyright= kn-copyright= en-aut-name=NguyenHai Thanh en-aut-sei=Nguyen en-aut-mei=Hai Thanh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=DoSon Quang en-aut-sei=Do en-aut-mei=Son Quang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AthurupanaRukmali en-aut-sei=Athurupana en-aut-mei=Rukmali kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WakaiTakuya en-aut-sei=Wakai en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FunahashiHiroaki en-aut-sei=Funahashi en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=bull semen kn-keyword=bull semen en-keyword=cryopreservation process kn-keyword=cryopreservation process en-keyword=phospholipase C zeta1 (PLCZ1) kn-keyword=phospholipase C zeta1 (PLCZ1) en-keyword=temperature of thawing kn-keyword=temperature of thawing END start-ver=1.4 cd-journal=joma no-vol=2024 cd-vols= no-issue=11 article-no= start-page=113D01 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241026 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Measurement of γ-Rays Generated by Neutron Interaction with 16O at 30 MeV and 250 MeV en-subtitle= kn-subtitle= en-abstract= kn-abstract=Deep understanding of γ-ray production from the fast neutron reaction in water is crucial for various physics studies at large-scale water Cherenkov detectors. We performed test experiments using quasi-mono energetic neutron beams (?En = 30 and 250 MeV) at Osaka University’s Research Center for Nuclear Physics to measure γ-rays originating from the neutron?oxygen reaction with a high-purity germanium detector. Multiple γ-ray peaks which are expected to be from excited nuclei after the neutron?oxygen reaction were successfully observed. We measured the neutron beam flux using an organic liquid scintillator for the cross section measurement. With a spectral fitting analysis based on the tailored γ-ray signal and background templates, we measured cross sections for each observed γ-ray component. The results will be useful to validate neutron models employed in ongoing and future water Cherenkov experiments. en-copyright= kn-copyright= en-aut-name=TanoT. en-aut-sei=Tano en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HoraiT. en-aut-sei=Horai en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AshidaY. en-aut-sei=Ashida en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HinoY. en-aut-sei=Hino en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IacobF. en-aut-sei=Iacob en-aut-mei=F. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MaurelA. en-aut-sei=Maurel en-aut-mei=A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MoriM. en-aut-sei=Mori en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=CollazuolG. en-aut-sei=Collazuol en-aut-mei=G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KonakaA. en-aut-sei=Konaka en-aut-mei=A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KoshioY. en-aut-sei=Koshio en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NakayaT. en-aut-sei=Nakaya en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=ShimaT. en-aut-sei=Shima en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=WendellR. en-aut-sei=Wendell en-aut-mei=R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Physics, Okayama University kn-affil= affil-num=2 en-affil=Department of Physics, Okayama University kn-affil= affil-num=3 en-affil=Department of Physics and Astronomy, University of Utah kn-affil= affil-num=4 en-affil=Department of Physics, Okayama University kn-affil= affil-num=5 en-affil=Department of Physics and Astronomy, University of Padova kn-affil= affil-num=6 en-affil=Ecole Polytechnique, IN2P3-CNRS, Laboratoire Leprince-Ringuet kn-affil= affil-num=7 en-affil=National Astronomical Observatory of Japan kn-affil= affil-num=8 en-affil=Department of Physics and Astronomy, University of Padova kn-affil= affil-num=9 en-affil=TRIUMF kn-affil= affil-num=10 en-affil=Department of Physics, Okayama University kn-affil= affil-num=11 en-affil=Department of Physics, Kyoto University kn-affil= affil-num=12 en-affil=Research Center for Nuclear Physics (RCNP) kn-affil= affil-num=13 en-affil=Department of Physics, Kyoto University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=2024 cd-vols= no-issue=10 article-no= start-page=103D01 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240904 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Study of the Neutrino?Oxygen Cross Sections of the Charged-Current Reaction 16O(ν?e, e+)16N(0 MeV, 2?) and the Neutral-Current Reaction 16O(ν, ν′)16O(12.97/12.53 MeV, 2?), Producing High-Energy γ Rays en-subtitle= kn-subtitle= en-abstract= kn-abstract=In our previous work, we discussed the cross section and the detection of 4.4 MeV γ rays produced in the neutrino neutral-current (NC)reaction 16O(ν, ν′)16O(12.97 and 12.53 MeV, 2?) in a water Cherenkov detector at low energy below 100 MeV. In this report, we further investigate both the charged-current reaction 16O(ν?e, e+)16N(0 MeV, 2?) and the NC reaction16O(ν, ν′)16O(12.97 and 12.53 MeV, 2?), producing high-energy γ rays, in which a more solid identification of the reactions can be applied via the coincidence method. en-copyright= kn-copyright= en-aut-name=SakudaMakoto en-aut-sei=Sakuda en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SuzukiToshio en-aut-sei=Suzuki en-aut-mei=Toshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakazatoKen'Ichiro en-aut-sei=Nakazato en-aut-mei=Ken'Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SuzukiHideyuki en-aut-sei=Suzuki en-aut-mei=Hideyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Physics Department, Okayama University kn-affil= affil-num=2 en-affil=Department of Physics, College of Humanities and Sciences, Nihon University kn-affil= affil-num=3 en-affil=Faculty of Arts and Science, Kyushu University kn-affil= affil-num=4 en-affil=Department of Physics, Faculty of Science and Technology, Tokyo University of Science kn-affil= END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=16 article-no= start-page=9038 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240820 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Quercetin Attenuates Acetaldehyde-Induced Cytotoxicity via the Heme Oxygenase-1-Dependent Antioxidant Mechanism in Hepatocytes en-subtitle= kn-subtitle= en-abstract= kn-abstract=It is still unclear whether or how quercetin influences the toxic events induced by acetaldehyde in hepatocytes, though quercetin has been reported to mitigate alcohol-induced mouse liver injury. In this study, we evaluated the modulating effect of quercetin on the cytotoxicity induced by acetaldehyde in mouse hepatoma Hepa1c1c7 cells, the frequently used cellular hepatocyte model. The pretreatment with quercetin significantly inhibited the cytotoxicity induced by acetaldehyde. The treatment with quercetin itself had an ability to enhance the total ALDH activity, as well as the ALDH1A1 and ALDH3A1 gene expressions. The acetaldehyde treatment significantly enhanced the intracellular reactive oxygen species (ROS) level, whereas the quercetin pretreatment dose-dependently inhibited it. Accordingly, the treatment with quercetin itself significantly up-regulated the representative intracellular antioxidant-related gene expressions, including heme oxygenase-1 (HO-1), glutamate-cysteine ligase, catalytic subunit (GCLC), and cystine/glutamate exchanger (xCT), that coincided with the enhancement of the total intracellular glutathione (GSH) level. Tin protoporphyrin IX (SNPP), a typical HO-1 inhibitor, restored the quercetin-induced reduction in the intracellular ROS level, whereas buthionine sulphoximine, a representative GSH biosynthesis inhibitor, did not. SNPP also cancelled the quercetin-induced cytoprotection against acetaldehyde. These results suggest that the low-molecular-weight antioxidants produced by the HO-1 enzymatic reaction are mainly attributable to quercetin-induced cytoprotection. en-copyright= kn-copyright= en-aut-name=LiKexin en-aut-sei=Li en-aut-mei=Kexin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KidawaraMinori en-aut-sei=Kidawara en-aut-mei=Minori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ChenQiguang en-aut-sei=Chen en-aut-mei=Qiguang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MunemasaShintaro en-aut-sei=Munemasa en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MurataYoshiyuki en-aut-sei=Murata en-aut-mei=Yoshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakamuraToshiyuki en-aut-sei=Nakamura en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakamuraYoshimasa en-aut-sei=Nakamura en-aut-mei=Yoshimasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=quercetin kn-keyword=quercetin en-keyword=acetaldehyde kn-keyword=acetaldehyde en-keyword=glutathione kn-keyword=glutathione en-keyword=aldehyde dehydrogenase kn-keyword=aldehyde dehydrogenase en-keyword=heme oxygenase-1 kn-keyword=heme oxygenase-1 END start-ver=1.4 cd-journal=joma no-vol=38 cd-vols= no-issue=2 article-no= start-page=394 end-page=408 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200221 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The neurotoxicity of psychoactive phenethylamines “2C series” in cultured monoaminergic neuronal cell lines en-subtitle= kn-subtitle= en-abstract= kn-abstract=Purpose The aim of this study was to evaluate the neurotoxicity of psychoactive abused 2,5-dimethoxy-substituted phenethylamines “2C series” in monoaminergic neurons.
Methods After the exposure to “2C series”, 2,5-dimethoxy-4-propylthiophenethylamine (2C-T-7), 2,5-dimethoxy-4-isopropylthiophenethylamine (2C-T-4), 2,5-dimethoxy-4-ethylthiophenthylamine (2C-T-2), 2,5-dimethoxy-4-iodophenethylamine (2C-I) or 2,5-dimethoxy-4-chlorophenethylamine (2C-C), we examined their neurotoxicity, morphological changes, and effects of concomitant exposure to 3,4-methylenedioxymethamphetamine (MDMA) or methamphetamine (METH), using cultured neuronal dopaminergic CATH.a cells and serotonin-containing B65 cells.
Results Single dose exposure to “2C series” for 24 h showed significant cytotoxicity as increase in lactate dehydrogenase (LDH) release from both monoaminergic neurons: 2C-T-7, 2C-C (EC50; 100 ?M)?>?2C-T-2 (150 ?M), 2C-T-4 (200 ?M)?>?2C-I (250 ?M) in CATH.a cells and 2C-T-7, 2C-I (150 ?M)?>?2C-T-2 (250 ?M)?>?2C-C, 2C-T-4 (300 ?M) in B65 cells. The “2C series”-induced neurotoxicity in both cells was higher than that of MDMA or METH (EC50:???1?2 mM). In addition, apoptotic morphological changes were observed at relatively lower concentrations of “2C series”. The concomitant exposure to non-toxic dose of MDMA or METH synergistically enhanced 2C series drugs-induced LDH release and apoptotic changes in B65 cells, but to a lesser extent in CATH.a cells. In addition, the lower dose of 2C-T-7, 2C-T-2 or 2C-I promoted reactive oxygen species production in the mitochondria of B65 cells, even at the early stages (3 h) without apparent morphological changes.
Conclusion The 2,5-dimethoxy-substitution of “2C series” induced severe neurotoxicity in both dopaminergic and serotonin-containing neurons. The non-toxic dose of MDMA or METH synergistically enhanced its neurotoxicity in serotonergic neurons. en-copyright= kn-copyright= en-aut-name=AsanumaMasato en-aut-sei=Asanuma en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyazakiIkuko en-aut-sei=Miyazaki en-aut-mei=Ikuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FunadaMasahiko en-aut-sei=Funada en-aut-mei=Masahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Division of Drug Dependence, National Institute of Mental Health, National Center of Neurology and Psychiatry kn-affil= en-keyword=Psychoactive drugs kn-keyword=Psychoactive drugs en-keyword=2,5-Dimethoxy-substituted phenethylamines kn-keyword=2,5-Dimethoxy-substituted phenethylamines en-keyword=Neurotoxicity kn-keyword=Neurotoxicity en-keyword=Serotonin-containing neurons kn-keyword=Serotonin-containing neurons en-keyword=Dopamine neurons kn-keyword=Dopamine neurons en-keyword=Reactive oxygen species kn-keyword=Reactive oxygen species END start-ver=1.4 cd-journal=joma no-vol=136 cd-vols= no-issue=2 article-no= start-page=63 end-page=68 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Metformin-induced mitochondrial reactive oxygen species and host defense mechanisms kn-title=メトホルミンによるミトコンドリア活性酸素誘導と生体防御機構 en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=UdonoHeiichiro en-aut-sei=Udono en-aut-mei=Heiichiro kn-aut-name=鵜殿平一郎 kn-aut-sei=鵜殿 kn-aut-mei=平一郎 aut-affil-num=1 ORCID= affil-num=1 en-affil=Department of Immunology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学学術研究院医歯薬学域 免疫学 en-keyword=CD8T 細胞 kn-keyword=CD8T 細胞 en-keyword=活性酸素 kn-keyword=活性酸素 en-keyword=Nrf2 kn-keyword=Nrf2 en-keyword=解糖系 kn-keyword=解糖系 en-keyword=ミトコンドリア kn-keyword=ミトコンドリア END start-ver=1.4 cd-journal=joma no-vol=378 cd-vols= no-issue= article-no= start-page=113269 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202410 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Mesoporous carbon with extremely low micropore content synthesized from graphene oxide modified with alkali metal nitrates en-subtitle= kn-subtitle= en-abstract= kn-abstract=High-temperature thermal exfoliation is a simple, rapid, and cost-efficient method for transforming graphene oxide (GO) materials into reduced graphene oxide (rGO) materials. In this study, GO materials were dispersed with alkali metal nitrates (MNO3), leading to the preparation of porous rGO materials characterized by high specific surface area (SSA) and pore volume via high-temperature thermal exfoliation. Experimental data indicate that the metal cations of MNO3 tend to react directly with the oxygen functional groups (OFG) of GO, modulating the OFG content. Simultaneously, nitrate anions have preferential interaction with alkali metal ions and adhere to the surface of the GO. The presence of MNO3 on the surface of GO facilitates the thermal exfoliation process and leads to the formation of structures with an extremely high proportion of mesoporous content. The isothermal gas adsorption results show that the exfoliation efficiency of the samples activated with different nitrate salts decreases in the order rGO-KNO3 > rGO-NaNO3 > rGO-LiNO3. Among these samples, rGO modified with KNO3 exhibited the greatest exfoliation efficiency, with a mesopore-to-micropore volume ratio of 22.4, more than 1.7 times that of rGO. Its SSA and pore volume were 359 m2 g?1 and 1.26 cm3 g?1, respectively. These values significantly surpass those of rGO. Our research findings demonstrate that activation with MNO3 significantly increases the SSA and pore volume of the GO material after high-temperature annealing. en-copyright= kn-copyright= en-aut-name=LiZhao en-aut-sei=Li en-aut-mei=Zhao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ToyotaMoeto en-aut-sei=Toyota en-aut-mei=Moeto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OhkuboTakahiro en-aut-sei=Ohkubo en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Mesoporous carbon kn-keyword=Mesoporous carbon en-keyword=Alkali metal nitrates kn-keyword=Alkali metal nitrates en-keyword=Oxygen functional groups kn-keyword=Oxygen functional groups en-keyword=Activation kn-keyword=Activation en-keyword=Thermal exfoliation kn-keyword=Thermal exfoliation END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=15 article-no= start-page=8370 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240731 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Increased Oxidative Stress and Decreased Citrulline in Blood Associated with Severe Novel Coronavirus Pneumonia in Adult Patients en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study investigated the correlation between oxidative stress and blood amino acids associated with nitric oxide metabolism in adult patients with coronavirus disease (COVID-19) pneumonia. Clinical data and serum samples were prospectively collected from 100 adult patients hospitalized for COVID-19 between July 2020 and August 2021. Patients with COVID-19 were categorized into three groups for analysis based on lung infiltrates, oxygen inhalation upon admission, and the initiation of oxygen therapy after admission. Blood data, oxidative stress-related biomarkers, and serum amino acid levels upon admission were compared in these groups. Patients with lung infiltrations requiring oxygen therapy upon admission or starting oxygen post-admission exhibited higher serum levels of hydroperoxides and lower levels of citrulline compared to the control group. No remarkable differences were observed in nitrite/nitrate, asymmetric dimethylarginine, and arginine levels. Serum citrulline levels correlated significantly with serum lactate dehydrogenase and C-reactive protein levels. A significant negative correlation was found between serum levels of citrulline and hydroperoxides. Levels of hydroperoxides decreased, and citrulline levels increased during the recovery period compared to admission. Patients with COVID-19 with extensive pneumonia or poor oxygenation showed increased oxidative stress and reduced citrulline levels in the blood compared to those with fewer pulmonary complications. These findings suggest that combined oxidative stress and abnormal citrulline metabolism may play a role in the pathogenesis of COVID-19 pneumonia. en-copyright= kn-copyright= en-aut-name=TsugeMitsuru en-aut-sei=Tsuge en-aut-mei=Mitsuru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IchiharaEiki en-aut-sei=Ichihara en-aut-mei=Eiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HasegawaKou en-aut-sei=Hasegawa en-aut-mei=Kou kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KudoKenichiro en-aut-sei=Kudo en-aut-mei=Kenichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TanimotoYasushi en-aut-sei=Tanimoto en-aut-mei=Yasushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NousoKazuhiro en-aut-sei=Nouso en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OdaNaohiro en-aut-sei=Oda en-aut-mei=Naohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MitsumuneSho en-aut-sei=Mitsumune en-aut-mei=Sho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KimuraGoro en-aut-sei=Kimura en-aut-mei=Goro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YamadaHaruto en-aut-sei=Yamada en-aut-mei=Haruto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TakataIchiro en-aut-sei=Takata en-aut-mei=Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MitsuhashiToshiharu en-aut-sei=Mitsuhashi en-aut-mei=Toshiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TaniguchiAkihiko en-aut-sei=Taniguchi en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=TsukaharaKohei en-aut-sei=Tsukahara en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=AokageToshiyuki en-aut-sei=Aokage en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=HagiyaHideharu en-aut-sei=Hagiya en-aut-mei=Hideharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=TsukaharaHirokazu en-aut-sei=Tsukahara en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= affil-num=1 en-affil=Department of Pediatrics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Respiratory Medicine, National Hospital Organization Minami-Okayama Medical Center kn-affil= affil-num=5 en-affil=Department of Allergy and Respiratory Medicine, National Hospital Organization Minami-Okayama Medical Center kn-affil= affil-num=6 en-affil=Department of Gastroenterology, Okayama City Hospital kn-affil= affil-num=7 en-affil=Department of Internal Medicine, Fukuyama City Hospital kn-affil= affil-num=8 en-affil=Department of Respiratory Medicine, National Hospital Organization Minami-Okayama Medical Center kn-affil= affil-num=9 en-affil=Department of Allergy and Respiratory Medicine, National Hospital Organization Minami-Okayama Medical Center kn-affil= affil-num=10 en-affil=Department of Infectious Disease, Okayama City Hospital kn-affil= affil-num=11 en-affil=Department of Internal Medicine, Fukuyama City Hospital kn-affil= affil-num=12 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=13 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=14 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=15 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=16 en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=17 en-affil=Department of General Thoracic Surgery and Breast and Endocrine Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=18 en-affil=Department of Pediatrics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=19 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=novel coronavirus disease 2019 kn-keyword=novel coronavirus disease 2019 en-keyword=pneumonia kn-keyword=pneumonia en-keyword=hydroperoxide kn-keyword=hydroperoxide en-keyword=nitric oxide kn-keyword=nitric oxide en-keyword=reactive oxygen species kn-keyword=reactive oxygen species en-keyword=citrulline kn-keyword=citrulline en-keyword=arginine kn-keyword=arginine en-keyword=asymmetric dimethylarginine kn-keyword=asymmetric dimethylarginine END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240719 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Pulmonary Flow Management by Combination Therapy of Hemostatic Clipping and Balloon Angioplasty for Right Ventricular-Pulmonary Artery Shunt in Hypoplastic Left Heart Syndrome en-subtitle= kn-subtitle= en-abstract= kn-abstract=Controlling pulmonary blood flow in patients who have undergone Norwood palliation, especially early postoperatively, is challenging due to a change in the balance of systemic and pulmonary vascular resistance. We applied a combination therapy of clipping and balloon angioplasty for right ventricle?pulmonary artery (RV-PA) shunt to control pulmonary blood flow, but the influence of the combination therapy on the PA condition is uncertain. Retrospectively analysis was conducted of all infants with hypoplastic left heart syndrome who had undergone Norwood palliation with RV-PA shunt at Okayama University Hospital from January 2008 to September 2022. A total of 50 consecutive patients underwent Norwood palliation with RV-PA shunt in this study period. Of them, 29 patients underwent RV-PA shunt flow clipping, and the remaining 21 had unclipped RV-PA shunt. Twenty-three patients underwent balloon angioplasty for RV-PA shunt with clips. After balloon angioplasty, oxygen saturation significantly increased from 69 (59?76)% to 80 (72?86)% (p? We did not identify any relationship between dysfunctional high-density lipoprotein and the physical disability, cognitive decline, fatigue and sleep problems of multiple sclerosis. Thiol?disulfide homeostasis was associated with cognitive scores. The shift of the balance towards disulfide was accompanied by a decrease in cognitive scores. On the other hand, we did not detect any relationship between fatigue and sleep disorders and thiol?disulfide homeostasis. Our findings revealed a possible correlation between cognitive dysfunction and thiol?disulfide homeostasis in multiple sclerosis patients. en-copyright= kn-copyright= en-aut-name=VuralGonul en-aut-sei=Vural en-aut-mei=Gonul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=DemirEsra en-aut-sei=Demir en-aut-mei=Esra kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=GumusyaylaSadiye en-aut-sei=Gumusyayla en-aut-mei=Sadiye kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ErenFunda en-aut-sei=Eren en-aut-mei=Funda kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=BarakliSerdar en-aut-sei=Barakli en-aut-mei=Serdar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NeseliogluSalim en-aut-sei=Neselioglu en-aut-mei=Salim kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ErelOzcan en-aut-sei=Erel en-aut-mei=Ozcan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Neurology, Faculty of Medicine, Ankara Yildirim Beyazit University kn-affil= affil-num=2 en-affil=Department of Neurology, Ankara City Hospital kn-affil= affil-num=3 en-affil=Department of Neurology, Faculty of Medicine, Ankara Yildirim Beyazit University kn-affil= affil-num=4 en-affil=Department of Clinical Biochemistry, Ankara City Hospital kn-affil= affil-num=5 en-affil=Department of Neurology, Ankara City Hospital kn-affil= affil-num=6 en-affil=Department of Clinical Biochemistry, Ankara City Hospital kn-affil= affil-num=7 en-affil=Department of Clinical Biochemistry, Ankara City Hospital kn-affil= en-keyword=multiple sclerosis kn-keyword=multiple sclerosis en-keyword=dysfunctional HDL kn-keyword=dysfunctional HDL en-keyword=thiol?disulfide homeostasis kn-keyword=thiol?disulfide homeostasis en-keyword=cognitive decline kn-keyword=cognitive decline END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=SK-Gd実験における大気ニュートリノデータを用いたニュートリノ-酸素原子核中性カレント準弾性散乱反応断面積の測定および核子?原子核反応モデルの研究 kn-title=Measurement of the neutrino-oxygen neutral-current quasielastic cross section and study of nucleon-nucleus interaction model using atmospheric neutrino data in the SK-Gd experiment en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=SAKAISeiya en-aut-sei=SAKAI en-aut-mei=Seiya kn-aut-name=酒井聖矢 kn-aut-sei=酒井 kn-aut-mei=聖矢 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=岡山大学大学院自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol=28 cd-vols= no-issue=1 article-no= start-page=160 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240513 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Organ donation after extracorporeal cardiopulmonary resuscitation: a nationwide retrospective cohort study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Limited data are available on organ donation practices and recipient outcomes, particularly when comparing donors who experienced cardiac arrest and received extracorporeal cardiopulmonary resuscitation (ECPR) followed by veno-arterial extracorporeal membrane oxygenation (ECMO) decannulation, versus those who experienced cardiac arrest without receiving ECPR. This study aims to explore organ donation practices and outcomes post-ECPR to enhance our understanding of the donation potential after cardiac arrest.
Methods We conducted a nationwide retrospective cohort study using data from the Japan Organ Transplant Network database, covering all deceased organ donors between July 17, 2010, and August 31, 2022. We included donors who experienced at least one episode of cardiac arrest. During the study period, patients undergoing ECMO treatment were not eligible for a legal diagnosis of brain death. We compared the timeframes associated with each donor's management and the long-term graft outcomes of recipients between ECPR and non-ECPR groups.
Results Among 370 brain death donors with an episode of cardiac arrest, 26 (7.0%) received ECPR and 344 (93.0%) did not; the majority were due to out-of-hospital cardiac arrests. The median duration of veno-arterial ECMO support after ECPR was 3 days. Patients in the ECPR group had significantly longer intervals from admission to organ procurement compared to those not receiving ECPR (13 vs. 9 days, P = 0.005). Lung graft survival rates were significantly lower in the ECPR group (log-rank test P = 0.009), with no significant differences in other organ graft survival rates. Of 160 circulatory death donors with an episode of cardiac arrest, 27 (16.9%) received ECPR and 133 (83.1%) did not. Time intervals from admission to organ procurement following circulatory death and graft survival showed no significant differences between ECPR and non-ECPR groups. The number of organs donated was similar between the ECPR and non-ECPR groups, regardless of brain or circulatory death.
Conclusions This nationwide study reveals that lung graft survival was lower in recipients from ECPR-treated donors, highlighting the need for targeted research and protocol adjustments in post-ECPR organ donation. en-copyright= kn-copyright= en-aut-name=YumotoTetsuya en-aut-sei=Yumoto en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TsukaharaKohei en-aut-sei=Tsukahara en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ObaraTakafumi en-aut-sei=Obara en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HongoTakashi en-aut-sei=Hongo en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NojimaTsuyoshi en-aut-sei=Nojima en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NaitoHiromichi en-aut-sei=Naito en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakaoAtsunori en-aut-sei=Nakao en-aut-mei=Atsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Brain death kn-keyword=Brain death en-keyword=Cardiopulmonary resuscitation kn-keyword=Cardiopulmonary resuscitation en-keyword=Extracorporeal membrane oxygenation kn-keyword=Extracorporeal membrane oxygenation en-keyword=Organ transplantation kn-keyword=Organ transplantation en-keyword=Out-of-hospital cardiac arrest kn-keyword=Out-of-hospital cardiac arrest en-keyword=Tissue and organ procurement kn-keyword=Tissue and organ procurement END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=5 article-no= start-page=1215 end-page=1224 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230726 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Oxidative stress-related markers as prognostic factors for patients with primary sclerosing cholangitis in Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/purpose Primary sclerosing cholangitis (PSC) is a rare chronic liver disease. The mechanisms and prediction of PSC progression are unclear. Recent investigations have shown that general conditions, such as oxidative stress, affect the course of chronic diseases. We investigated the clinical course and oxidative stress-related condition of PSC to determine prognostic factors.
Methods We recruited 58 patients with PSC (mean age; 37.4 years, mean observation period; 1382 days) who visited our department from 2003 to 2021. Clinical characteristics were investigated to define prognostic factors. Oxidative stress status was evaluated using two types of markers: an oxidative stress marker (serum reactive oxygen metabolite; dROM) and an antioxidant marker (serum OXY adsorbent test; OXY).
Results The revised Mayo risk, Child?Pugh, model for end-stage liver disease-sodium (MELD-Na) scores or fibrosis-related FIB-4 index significantly predicted poor overall survival. High intestinal immunoglobulin A (IgA) levels predicted poor survival. Among patients with high and intermediate revised Mayo risk scores, those with physiologically high dROM levels showed better survival than those with lower dROM levels. In this population, dROM was negatively correlated with AST and IgA, which are both correlated with survival.
Conclusions High and intermediate revised Mayo risk score group predicted a poor clinical course in PSC. Additionally, the Child?Pugh score, MELD-Na score, FIB-4 index, and serum IgA were significantly correlated with survival. In patients with high and intermediate revised Mayo risk scores, physiologically high oxidative stress status correlated with low IgA levels and a good prognosis.
en-copyright= kn-copyright= en-aut-name=OyamaAtsushi en-aut-sei=Oyama en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakakiAkinobu en-aut-sei=Takaki en-aut-mei=Akinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AdachiTakuya en-aut-sei=Adachi en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WadaNozomu en-aut-sei=Wada en-aut-mei=Nozomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakeuchiYasuto en-aut-sei=Takeuchi en-aut-mei=Yasuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OnishiHideki en-aut-sei=Onishi en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ShirahaHidenori en-aut-sei=Shiraha en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OkadaHiroyuki en-aut-sei=Okada en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OtsukaMotoyuki en-aut-sei=Otsuka en-aut-mei=Motoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Okayama University, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology, Okayama University, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterology and Hepatology, Okayama University, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterology and Hepatology, Okayama University, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterology and Hepatology, Okayama University, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterology and Hepatology, Okayama University, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterology and Hepatology, Okayama University, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Gastroenterology and Hepatology, Okayama University, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Gastroenterology and Hepatology, Okayama University, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=Primary sclerosing cholangitis kn-keyword=Primary sclerosing cholangitis en-keyword=Oxidative stress marker kn-keyword=Oxidative stress marker en-keyword=Prognosis kn-keyword=Prognosis en-keyword=Serum reactive oxygen metabolite kn-keyword=Serum reactive oxygen metabolite en-keyword=Total serum antioxidant capacity kn-keyword=Total serum antioxidant capacity en-keyword=Revised Mayo risk score kn-keyword=Revised Mayo risk score en-keyword=Child?Pugh score kn-keyword=Child?Pugh score en-keyword=MELD score kn-keyword=MELD score en-keyword=FIB-4 index kn-keyword=FIB-4 index en-keyword=Serum dROM kn-keyword=Serum dROM en-keyword=Serum OXY-adsorbent test kn-keyword=Serum OXY-adsorbent test en-keyword=Immunoglobulin A kn-keyword=Immunoglobulin A END start-ver=1.4 cd-journal=joma no-vol=626 cd-vols= no-issue=7999 article-no= start-page=670 end-page=677 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240131 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Oxygen-evolving photosystem II structures during S1?S2?S3 transitions en-subtitle= kn-subtitle= en-abstract= kn-abstract=Photosystem II (PSII) catalyses the oxidation of water through a four-step cycle of Si states (i?=?0?4) at the Mn4CaO5 cluster1,2,3, during which an extra oxygen (O6) is incorporated at the S3 state to form a possible dioxygen4,5,6,7. Structural changes of the metal cluster and its environment during the S-state transitions have been studied on the microsecond timescale. Here we use pump-probe serial femtosecond crystallography to reveal the structural dynamics of PSII from nanoseconds to milliseconds after illumination with one flash (1F) or two flashes (2F). YZ, a tyrosine residue that connects the reaction centre P680 and the Mn4CaO5 cluster, showed structural changes on a nanosecond timescale, as did its surrounding amino acid residues and water molecules, reflecting the fast transfer of electrons and protons after flash illumination. Notably, one water molecule emerged in the vicinity of Glu189 of the D1 subunit of PSII (D1-E189), and was bound to the Ca2+ ion on a sub-microsecond timescale after 2F illumination. This water molecule disappeared later with the concomitant increase of O6, suggesting that it is the origin of O6. We also observed concerted movements of water molecules in the O1, O4 and Cl-1 channels and their surrounding amino acid residues to complete the sequence of electron transfer, proton release and substrate water delivery. These results provide crucial insights into the structural dynamics of PSII during S-state transitions as well as O?O bond formation. en-copyright= kn-copyright= en-aut-name=LiHongjie en-aut-sei=Li en-aut-mei=Hongjie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakajimaYoshiki en-aut-sei=Nakajima en-aut-mei=Yoshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NangoEriko en-aut-sei=Nango en-aut-mei=Eriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OwadaShigeki en-aut-sei=Owada en-aut-mei=Shigeki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamadaDaichi en-aut-sei=Yamada en-aut-mei=Daichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HashimotoKana en-aut-sei=Hashimoto en-aut-mei=Kana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=LuoFangjia en-aut-sei=Luo en-aut-mei=Fangjia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TanakaRie en-aut-sei=Tanaka en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=AkitaFusamichi en-aut-sei=Akita en-aut-mei=Fusamichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KatoKoji en-aut-sei=Kato en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KangJungmin en-aut-sei=Kang en-aut-mei=Jungmin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SaitohYasunori en-aut-sei=Saitoh en-aut-mei=Yasunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KishiShunpei en-aut-sei=Kishi en-aut-mei=Shunpei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=YuHuaxin en-aut-sei=Yu en-aut-mei=Huaxin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=MatsubaraNaoki en-aut-sei=Matsubara en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=FujiiHajime en-aut-sei=Fujii en-aut-mei=Hajime kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=SugaharaMichihiro en-aut-sei=Sugahara en-aut-mei=Michihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=SuzukiMamoru en-aut-sei=Suzuki en-aut-mei=Mamoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=MasudaTetsuya en-aut-sei=Masuda en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=KimuraTetsunari en-aut-sei=Kimura en-aut-mei=Tetsunari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=ThaoTran Nguyen en-aut-sei=Thao en-aut-mei=Tran Nguyen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=YonekuraShinichiro en-aut-sei=Yonekura en-aut-mei=Shinichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=YuLong-Jiang en-aut-sei=Yu en-aut-mei=Long-Jiang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=ToshaTakehiko en-aut-sei=Tosha en-aut-mei=Takehiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=TonoKensuke en-aut-sei=Tono en-aut-mei=Kensuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=JotiYasumasa en-aut-sei=Joti en-aut-mei=Yasumasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=HatsuiTakaki en-aut-sei=Hatsui en-aut-mei=Takaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=YabashiMakina en-aut-sei=Yabashi en-aut-mei=Makina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=KuboMinoru en-aut-sei=Kubo en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=IwataSo en-aut-sei=Iwata en-aut-mei=So kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= en-aut-name=IsobeHiroshi en-aut-sei=Isobe en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=31 ORCID= en-aut-name=YamaguchiKizashi en-aut-sei=Yamaguchi en-aut-mei=Kizashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=32 ORCID= en-aut-name=SugaMichihiro en-aut-sei=Suga en-aut-mei=Michihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=33 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=34 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Institute of Multidisciplinary Research for Advanced Materials, Tohoku University kn-affil= affil-num=4 en-affil=Japan Synchrotron Radiation Research Institute kn-affil= affil-num=5 en-affil=Department of Picobiology, Graduate School of Life Science, University of Hyogo kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Japan Synchrotron Radiation Research Institute kn-affil= affil-num=8 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=9 en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=10 en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=11 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=12 en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=13 en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=14 en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=15 en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=16 en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=17 en-affil=Japan Synchrotron Radiation Research Institute kn-affil= affil-num=18 en-affil=Institute for Protein Research, Osaka University kn-affil= affil-num=19 en-affil=Division of Food and Nutrition, Faculty of Agriculture, Ryukoku University kn-affil= affil-num=20 en-affil=Department of Chemistry, Graduate School of Science, Kobe University kn-affil= affil-num=21 en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=22 en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=23 en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=24 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=25 en-affil=Japan Synchrotron Radiation Research Institute kn-affil= affil-num=26 en-affil=Japan Synchrotron Radiation Research Institute kn-affil= affil-num=27 en-affil=Japan Synchrotron Radiation Research Institute kn-affil= affil-num=28 en-affil=Japan Synchrotron Radiation Research Institute kn-affil= affil-num=29 en-affil=Department of Picobiology, Graduate School of Life Science, University of Hyogo kn-affil= affil-num=30 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=31 en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=32 en-affil=Center for Quantum Information and Quantum Biology, Osaka University kn-affil= affil-num=33 en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=34 en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=59 cd-vols= no-issue=6 article-no= start-page=1314 end-page=1328 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240310 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Wetting property of Fe‐S melt in solid core: Implication for the core crystallization process in planetesimals en-subtitle= kn-subtitle= en-abstract= kn-abstract=In differentiated planetesimals, the liquid core starts to crystallize during secular cooling, followed by the separation of liquid?solid phases in the core. The wetting property between liquid and solid iron alloys determines whether the core melts are trapped in the solid core or they can separate from the solid core during core crystallization. In this study, we performed high-pressure experiments under the conditions of the interior of small bodies (0.5?3.0?GPa) to study the wetting property (dihedral angle) between solid Fe and liquid Fe-S as a function of pressure and duration. The measured dihedral angles are approximately constant after 2?h and decrease with increasing pressure. The dihedral angles range from 30° to 48°, which are below the percolation threshold of 60° at 0.5?3.0?GPa. The oxygen content in the melt decreases with increasing pressure and there are strong positive correlations between the S?+?O or O content and the dihedral angle. Therefore, the change in the dihedral angle is likely controlled by the O content of the Fe-S melt, and the dihedral angle tends to decrease with decreasing O content in the Fe-S melt. Consequently, the Fe-S melt can form interconnected networks in the solid core. In the obtained range of the dihedral angle, a certain amount of the Fe-S melt can stably coexist with solid Fe, which would correspond to the “trapped melt” in iron meteorites. Excess amounts of the melt would migrate from the solid core over a long period of core crystallization in planetesimals. en-copyright= kn-copyright= en-aut-name=MatsubaraShiori en-aut-sei=Matsubara en-aut-mei=Shiori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TerasakiHidenori en-aut-sei=Terasaki en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YoshinoTakashi en-aut-sei=Yoshino en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=UrakawaSatoru en-aut-sei=Urakawa en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YumitoriDaisuke en-aut-sei=Yumitori en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Earth Sciences, Graduate School of Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Earth Sciences, Graduate School of Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Institute for Planetary Materials, Okayama University kn-affil= affil-num=4 en-affil=Department of Earth Sciences, Graduate School of Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Department of Earth Sciences, Graduate School of Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=299 cd-vols= no-issue=7 article-no= start-page=104839 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202307 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structural insights into the action mechanisms of artificial electron acceptors in photosystem II en-subtitle= kn-subtitle= en-abstract= kn-abstract=Photosystem II (PSII) utilizes light energy to split water, and the electrons extracted from water are transferred to QB, a plastoquinone molecule bound to the D1 subunit of PSII. Many artificial electron acceptors (AEAs) with molecular structures similar to that of plastoquinone can accept electrons from PSII. However, the molecular mechanism by which AEAs act on PSII is unclear. Here, we solved the crystal structure of PSII treated with three different AEAs, 2,5-dibromo-1,4-benzoquinone, 2,6dichloro-1,4-benzoquinone, and 2-phenyl-1,4-benzoquinone, at 1.95 to 2.10 angstrom resolution. Our results show that all AEAs substitute for QB and are bound to the QB-binding site (QB site) to receive electrons, but their binding strengths are different, resulting in differences in their efficiencies to accept electrons. The acceptor 2-phenyl-1,4-benzoquinone binds most weakly to the QB site and showed the highest oxygen-evolving activity, implying a reverse relationship between the binding strength and oxygen-evolving activity. In addition, a novel quinonebinding site, designated the QD site, was discovered, which is located in the vicinity of QB site and close to QC site, a binding site reported previously. This QD site is expected to play a role as a channel or a storage site for quinones to be transported to the QB site. These results provide the structural basis for elucidating the actions of AEAs and exchange mechanism of QB in PSII and also provide information for the design of more efficient electron acceptors. en-copyright= kn-copyright= en-aut-name=KamadaShinji en-aut-sei=Kamada en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakajimaYoshiki en-aut-sei=Nakajima en-aut-mei=Yoshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Faculty of Science, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Photosystem II kn-keyword=Photosystem II en-keyword=photosynthesis kn-keyword=photosynthesis en-keyword=electron transfer kn-keyword=electron transfer en-keyword=structural biology kn-keyword=structural biology en-keyword=crystal structure kn-keyword=crystal structure en-keyword=electron acceptor kn-keyword=electron acceptor END start-ver=1.4 cd-journal=joma no-vol=115 cd-vols= no-issue=4 article-no= start-page=1317 end-page=1332 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240126 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Antitumor activity of α-pinene in T-cell tumors en-subtitle= kn-subtitle= en-abstract= kn-abstract=T-cell acute leukemia and lymphoma have a poor prognosis. Although new therapeu-tic agents have been developed, their therapeutic effects are suboptimal. α- Pinene, a monoterpene compound, has an antitumor effect on solid tumors; however, few comprehensive investigations have been conducted on its impact on hematologic ma-lignancies. This report provides a comprehensive analysis of the potential benefits of using α- pinene as an antitumor agent for the treatment of T-cell tumors. We found that α- pinene inhibited the proliferation of hematologic malignancies, especially in T- cell tumor cell lines EL-4 and Molt-4, induced mitochondrial dysfunction and re-active oxygen species accumulation, and inhibited NF-κB p65 translocation into the nucleus, leading to robust apoptosis in EL-4 cells. Collectively, these findings suggest that α- pinene has potential as a therapeutic agent for T-cell malignancies, and further investigation is warranted. en-copyright= kn-copyright= en-aut-name=AbeMasaya en-aut-sei=Abe en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AsadaNoboru en-aut-sei=Asada en-aut-mei=Noboru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KimuraMaiko en-aut-sei=Kimura en-aut-mei=Maiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FukuiChie en-aut-sei=Fukui en-aut-mei=Chie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamadaDaisuke en-aut-sei=Yamada en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=WangZiyi en-aut-sei=Wang en-aut-mei=Ziyi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MiyakeMasayuki en-aut-sei=Miyake en-aut-mei=Masayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakaradaTakeshi en-aut-sei=Takarada en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OnoMitsuaki en-aut-sei=Ono en-aut-mei=Mitsuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=AoeMichinori en-aut-sei=Aoe en-aut-mei=Michinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KitamuraWataru en-aut-sei=Kitamura en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MatsudaMasayuki en-aut-sei=Matsuda en-aut-mei=Masayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MoriyamaTakashi en-aut-sei=Moriyama en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=MatsumuraAkifumi en-aut-sei=Matsumura en-aut-mei=Akifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Division of Hematology, Department of Medicine, Kobe University Hospital kn-affil= affil-num=5 en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Division of Medical Support, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Division of Medical Support, Okayama University Hospital kn-affil= affil-num=11 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=15 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=alpha-pinene kn-keyword=alpha-pinene en-keyword=apoptosis kn-keyword=apoptosis en-keyword=hematologic malignancies kn-keyword=hematologic malignancies en-keyword=lymphoblastic leukemia, acute, T-cell kn-keyword=lymphoblastic leukemia, acute, T-cell en-keyword=T-cell lymphoma kn-keyword=T-cell lymphoma END start-ver=1.4 cd-journal=joma no-vol=53 cd-vols= no-issue= article-no= start-page=104348 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202402 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Multi-isotopic analysis of domestic burials from sin Cabezas, Escuintla, Guatemala en-subtitle= kn-subtitle= en-abstract= kn-abstract=We present the results from the stable isotope measurements of strontium (87Sr/86Sr) and oxygen (δ 18O) in tooth enamel from 36 individuals from the site of Sin Cabezas, Escuintla, Guatemala. This is the first contribution of isotopic proveniencing from the Pacific Coast of Guatemala and offers new solid baseline reference data from a large archaeological sample. Although some outlier cases are identified, the high homogeneity is the most evident feature in the sample. Based on this homogeneity, we discuss a critical issue of baseline data between Teotihuacan and the Pacific Coast, where the material culture has indicated intimate cultural interactions. A critical overlap for both strontium and oxygen reference between the Mexican metropolis and the coastal region is pointed out. This is why detecting human movement between both regions is still elusive. A case study of a possible Mexican individual is introduced. We also assess the outlier cases in terms of proveniencing and add several osteobiographic notes for the most relevant cases whose origin could be seen among the Northern - Eastern part of the Guatemalan Highlands, the Soconusco border region, or Central Honduras. en-copyright= kn-copyright= en-aut-name=SuzukiShintaro en-aut-sei=Suzuki en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=BarrientosTom?s en-aut-sei=Barrientos en-aut-mei=Tom?s kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Mej?aH?ctor en-aut-sei=Mej?a en-aut-mei=H?ctor kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=PriceT. Douglas en-aut-sei=Price en-aut-mei=T. Douglas kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Research Institute for the Dynamics of Civilizations, Okayama University kn-affil= affil-num=2 en-affil=Centro de Investigaciones Arqueol?gicas y Antropol?gicas, Universidad del Valle de Guatemala kn-affil= affil-num=3 en-affil=Transportadora de Energ?a de Centroam?rica, Universidad de San Carlos de Guatemala kn-affil= affil-num=4 en-affil=University of Wisconsin kn-affil= END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=1 article-no= start-page=e914 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231226 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Clinical parameter-guided initial resuscitation in adult patients with septic shock: A systematic review and network meta-analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Aim: To identify the most useful tissue perfusion parameter for initial resuscitation in sepsis/septic shock adults using a network meta-analysis.
Methods: We searched major databases until December 2022 for randomized trials comparing four tissue perfusion parameters or against usual care. The primary outcome was short-term mortality up to 90?days. The Confidence in Network Meta-Analysis web application was used to assess the quality of evidence.
Results: Seventeen trials were identified. Lactate-guided therapy (risk ratios, 0.59; 95% confidence intervals [0.45?0.76]; high certainty) and capillary refill time-guided therapy (risk ratios, 0.53; 95% confidence intervals [0.33?0.86]; high certainty) were significantly associated with lower short-term mortality compared with usual care, whereas central venous oxygen saturation-guided therapy (risk ratio, 1.50; 95% confidence intervals [1.16?1.94]; moderate certainty) increased the risk of short-term mortality compared with lactate-guided therapy.
Conclusions: Lactate or capillary refill time-guided initial resuscitation for sepsis/septic shock patients may decrease short-term mortality. More research is essential to personalize and optimize treatment strategies for septic shock resuscitation. en-copyright= kn-copyright= en-aut-name=YumotoTetsuya en-aut-sei=Yumoto en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KuribaraTomoki en-aut-sei=Kuribara en-aut-mei=Tomoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamadaKohei en-aut-sei=Yamada en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SatoTakehito en-aut-sei=Sato en-aut-mei=Takehito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KobaShigeru en-aut-sei=Koba en-aut-mei=Shigeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TetsuharaKenichi en-aut-sei=Tetsuhara en-aut-mei=Kenichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KashiuraMasahiro en-aut-sei=Kashiura en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SakurayaMasaaki en-aut-sei=Sakuraya en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=School of Nursing, Sapporo City University kn-affil= affil-num=3 en-affil=Department of Traumatology and Critical Care Medicine, National Defense Medical College Hospital kn-affil= affil-num=4 en-affil=Department of Anesthesiology, Nagoya University Hospital kn-affil= affil-num=5 en-affil=Department of Critical Care Medicine, Nerima Hikarigaoka Hospital kn-affil= affil-num=6 en-affil=Department of Critical Care Medicine, Fukuoka Children's Hospital kn-affil= affil-num=7 en-affil=Department of Emergency and Critical Care Medicine, Saitama Medical Center, Jichi Medical University kn-affil= affil-num=8 en-affil=Department of Emergency and Intensive Care Medicine, JA Hiroshima General Hospital kn-affil= en-keyword=capillary refill timecarbon dioxide gapcentral venous oxygen saturationlactatenetwork meta-analysissepsisseptic shock kn-keyword=capillary refill timecarbon dioxide gapcentral venous oxygen saturationlactatenetwork meta-analysissepsisseptic shock END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue= article-no= start-page=RP88822 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231121 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Characterization of tryptophan oxidation affecting D1 degradation by FtsH in the photosystem II quality control of chloroplasts en-subtitle= kn-subtitle= en-abstract= kn-abstract=Photosynthesis is one of the most important reactions for sustaining our environment. Photosystem II (PSII) is the initial site of photosynthetic electron transfer by water oxidation. Light in excess, however, causes the simultaneous production of reactive oxygen species (ROS), leading to photo-oxidative damage in PSII. To maintain photosynthetic activity, the PSII reaction center protein D1, which is the primary target of unavoidable photo-oxidative damage, is efficiently degraded by FtsH protease. In PSII subunits, photo-oxidative modifications of several amino acids such as Trp have been indeed documented, whereas the linkage between such modifications and D1 degradation remains elusive. Here, we show that an oxidative post-translational modification of Trp residue at the N-terminal tail of D1 is correlated with D1 degradation by FtsH during high-light stress. We revealed that Arabidopsis mutant lacking FtsH2 had increased levels of oxidative Trp residues in D1, among which an N-terminal Trp-14 was distinctively localized in the stromal side. Further characterization of Trp-14 using chloroplast transformation in Chlamydomonas indicated that substitution of D1 Trp-14 to Phe, mimicking Trp oxidation enhanced FtsH-mediated D1 degradation under high light, although the substitution did not affect protein stability and PSII activity. Molecular dynamics simulation of PSII implies that both Trp-14 oxidation and Phe substitution cause fluctuation of D1 N-terminal tail. Furthermore, Trp-14 to Phe modification appeared to have an additive effect in the interaction between FtsH and PSII core in vivo. Together, our results suggest that the Trp oxidation at its N-terminus of D1 may be one of the key oxidations in the PSII repair, leading to processive degradation by FtsH. en-copyright= kn-copyright= en-aut-name=KatoYusuke en-aut-sei=Kato en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KurodaHiroshi en-aut-sei=Kuroda en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OzawaShin-Ichiro en-aut-sei=Ozawa en-aut-mei=Shin-Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SaitoKeisuke en-aut-sei=Saito en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=DograVivek en-aut-sei=Dogra en-aut-mei=Vivek kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ScholzMartin en-aut-sei=Scholz en-aut-mei=Martin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ZhangGuoxian en-aut-sei=Zhang en-aut-mei=Guoxian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=de VitryCatherine en-aut-sei=de Vitry en-aut-mei=Catherine kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IshikitaHiroshi en-aut-sei=Ishikita en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KimChanhong en-aut-sei=Kim en-aut-mei=Chanhong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=HipplerMichael en-aut-sei=Hippler en-aut-mei=Michael kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TakahashiYuichiro en-aut-sei=Takahashi en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=SakamotoWataru en-aut-sei=Sakamoto en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=4 en-affil=Research Center for Advanced Science and Technology, The University of Tokyo kn-affil= affil-num=5 en-affil=Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences kn-affil= affil-num=6 en-affil=Institute of Plant Biology and Biotechnology, University of M?nster kn-affil= affil-num=7 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=8 en-affil=Institut de Biologie Physico-Chimique, Unit? Mixte de Recherche 7141, Centre National de la Recherche Scientifique and Sorbonne Universit? Pierre et Marie Curie kn-affil= affil-num=9 en-affil=Research Center for Advanced Science and Technology, The University of Tokyo kn-affil= affil-num=10 en-affil=Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences kn-affil= affil-num=11 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=12 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=13 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= en-keyword=post-translational modification kn-keyword=post-translational modification en-keyword=Arabidopsis thaliana kn-keyword=Arabidopsis thaliana en-keyword=protein degradation kn-keyword=protein degradation en-keyword=photosystem II kn-keyword=photosystem II en-keyword=photo-oxidative damage kn-keyword=photo-oxidative damage en-keyword=tryptophan oxidation kn-keyword=tryptophan oxidation en-keyword=Chlamydomonas reinhardtii kn-keyword=Chlamydomonas reinhardtii END start-ver=1.4 cd-journal=joma no-vol=210 cd-vols= no-issue= article-no= start-page=154 end-page=161 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231015 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Negative correlations of mitochondrial DNA copy number in commercial frozen bull spermatozoa with the motility parameters after thawing en-subtitle= kn-subtitle= en-abstract= kn-abstract=The purpose of the current study was to investigate the relationship between mitochondrial content of commercial frozen-thawed bull spermatozoa and motility. Firstly, mitochondrial DNA copy number per spermatozoon (MDCN), mitochondrial content (MC), the percentage of spermatozoa with high mitochondrial membrane potential (HMMP), intracellular reactive oxygen species (ROS) and motility parameters of frozen-thawed spermatozoa derived from five bulls were determined by using qPCR, flow cytometry and CASA, respectively, and analyzed the relationships. Results showed that all parameters examined, including MDCN, MC, HMMP, ROS and motility indicators, significantly differed among frozen spermatozoa from different bulls. Both MDCN and MC were negatively correlated with HMMP and motility indicators, but positively with ROS, of course, whereas there was a highly positive relationship between MDCN and MC. Secondly, when MDCN and MC were examined in frozen spermatozoa prepared at different points in the lives of four bulls, those did not correlate overall throughout their lives (1.3?14.3 years old), but did correlate significantly in two sires. From these results, we conclude that MDCN and MC of frozen spermatozoa differ among sires, and are negatively correlated with HMMP and sperm motility parameters, probably due to mitochondrial oxidative stress resulted in the presence of ROS, demonstrating that these appear to be useful markers to assess sires’ spermatozoa. It should be noted that the MDCN and MC of bull spermatozoa may not vary overall with the age of the sire, whereas those changes with age in some individuals and may affect sperm motility. en-copyright= kn-copyright= en-aut-name=NguyenHai Thanh en-aut-sei=Nguyen en-aut-mei=Hai Thanh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=DoSon Quang en-aut-sei=Do en-aut-mei=Son Quang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KobayashiHiroshi en-aut-sei=Kobayashi en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WakaiTakuya en-aut-sei=Wakai en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FunahashiHiroaki en-aut-sei=Funahashi en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Okayama Prefectural Center for Animal Husbandry and Research kn-affil= affil-num=4 en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=Spermatozoa kn-keyword=Spermatozoa en-keyword=Bulls kn-keyword=Bulls en-keyword=Mitochondrial content kn-keyword=Mitochondrial content en-keyword=Motility kn-keyword=Motility en-keyword=Frozen semen kn-keyword=Frozen semen END start-ver=1.4 cd-journal=joma no-vol=64 cd-vols= no-issue=4 article-no= start-page=ezad304 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231012 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Intravenous infusion of cardiac progenitor cells in animal models of single ventricular physiology en-subtitle= kn-subtitle= en-abstract= kn-abstract=OBJECTIVES: The goal of this study was to identify the practical applications of intravenous cell therapy for single-ventricle physiology (SVP) by establishing experimental SVP models.
METHODS: An SVP with a three-stage palliation was constructed in an acute swine model without cardiopulmonary bypass. A modified Blalock?Taussig (MBT) shunt was created using an aortopulmonary shunt with the superior and inferior venae cavae (SVC and IVC, respectively) connected to the left atrium (n?=?10). A bidirectional cavopulmonary shunt (BCPS) was constructed using a graft between the IVC and the left atrium with an SVC cavopulmonary connection (n?=?10). The SVC and the IVC were connected to the pulmonary artery to establish a total cavopulmonary connection (TCPC, n?=?10). The survival times of half of the animal models were studied. The other half and the biventricular sham control (n?=?5) were injected intravenously with cardiosphere-derived cells (CDCs), and the cardiac retention of CDCs was assessed after 2?h.
RESULTS: All SVP models died within 20?h. Perioperative mortality was higher in the BCPS group because of lower oxygen saturation (P? CONCLUSIONS: Without the total right heart exclusion, stage-specific SVP models can be functionally constructed in pigs with stable outcomes. Intravenous CDC injections may be applicable in patients with SVP before TCPC completion, given that the initial lung trafficking is efficiently bypassed and sufficient systemic blood flow is supplied from the single ventricle. en-copyright= kn-copyright= en-aut-name=GotoTakuya en-aut-sei=Goto en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OusakaDaiki en-aut-sei=Ousaka en-aut-mei=Daiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HiraiKenta en-aut-sei=Hirai en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KotaniYasuhiro en-aut-sei=Kotani en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KasaharaShingo en-aut-sei=Kasahara en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Cardiovascular Pediatrics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital kn-affil= en-keyword=animal model kn-keyword=animal model en-keyword=single ventricular physiology kn-keyword=single ventricular physiology en-keyword=cell therapy kn-keyword=cell therapy en-keyword=cardiosphere-derived cell kn-keyword=cardiosphere-derived cell en-keyword=intravenous kn-keyword=intravenous END start-ver=1.4 cd-journal=joma no-vol=77 cd-vols= no-issue=5 article-no= start-page=537 end-page=543 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202310 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Relationship of Intraoperative SpO2 and ETCO2 Values with Postoperative Hypoxemia in Elderly Patients after Non-Cardiac Surgery en-subtitle= kn-subtitle= en-abstract= kn-abstract=Elderly patients are at higher risk of postoperative hypoxemia due to their decreased respiratory function. The aim of this study was to investigate the relationship of intraoperative oxygen saturation (SpO2) and end-expiratory carbon dioxide (ETCO2) values with postoperative hypoxemia in elderly patients. The inclusion criteria were: 1) patients aged?75 years; 2) underwent general anesthesia in non-cardiac surgery; 3) operative time longer than two hours; and 4) admission to the intensive care unit (ICU) following surgery performed between January and December 2019. Intraoperative SpO2 and ETCO2 values were collected every minute for the first two hours during surgery. The 253 patients were divided into two groups: SpO2?92% and SpO2<92%. The time-weighted averages of intraoperative SpO2 and ETCO2 were used to compare differences between the two groups. The incidence of postoperative hypoxemia was 22.5%. For similar ventilator settings, patients with postoperative hypoxemia had lower intraoperative SpO2 and higher ETCO2 values. Sex, ASA classification, and intraoperative SpO2 were independent risk factors for postoperative hypoxemia. In conclusion, postoperative SpO2<92% was a frequent occurrence (> 20%) in elderly patients who underwent major non-cardiac surgery. Postoperative hypoxemia was associated with low intraoperative SpO2 and relatively higher ETCO2. en-copyright= kn-copyright= en-aut-name=SongQingqing en-aut-sei=Song en-aut-mei=Qingqing kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=PanYu en-aut-sei=Pan en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KanazawaTomoyuki en-aut-sei=Kanazawa en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MorimatsuHiroshi en-aut-sei=Morimatsu en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=oxygen saturation kn-keyword=oxygen saturation en-keyword=end-expiratory carbon dioxide kn-keyword=end-expiratory carbon dioxide en-keyword=postoperative hypoxemia kn-keyword=postoperative hypoxemia END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=6 article-no= start-page=3300 end-page=3308 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220126 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Flame retardance-donated lignocellulose nanofibers (LCNFs) by the Mannich reaction with (amino-1,3,5-triazinyl)phosphoramidates and their properties en-subtitle= kn-subtitle= en-abstract= kn-abstract=Nitrogen/phosphorus-containing melamines (NPCM), a durable flame-retardant, were prepared by the successive treatment of ArOH (Ar = BrnC6H5?n, n = 0, 1, 2, and 3) with POCl3 and melamine monomer. The prepared flame-retardants were grafted through the CH2 unit to lignocellulose nanofibers (LCNFs) by the Mannich reaction. The resulting three-component products were characterized using FT-IR (ATR) and EA. The thermal behavior of the NPCM-treated LCNF fabric samples was determined using TGA and DSC analyses, and their flammability resistances were evaluated by measuring their Limited Oxygen Index (LOI) and the UL-94V test. A multitude of flame retardant elements in the fabric samples increased the LOI values as much as 45 from 20 of the untreated LCNFs. Moreover, the morphology of both the NPCM-treated LCNFs and their burnt fabrics was studied with a scanning electron microscope (SEM). The heat release lowering effect of the LCNF fabric against the water-based paint was observed with a cone calorimeter. Furthermore, the mechanical properties represented as the tensile strength of the NPCM-treated LCNF fabrics revealed that the increase of the NPCM content in the PP-composites led to an increased bending strength with enhancing the flame-retardance. en-copyright= kn-copyright= en-aut-name=OnoFumiaki en-aut-sei=Ono en-aut-mei=Fumiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkiharaTakumi en-aut-sei=Okihara en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OsakaNoboru en-aut-sei=Osaka en-aut-mei=Noboru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NagaokaNoriyuki en-aut-sei=Nagaoka en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KameokaYuji en-aut-sei=Kameoka en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IshikawaAkira en-aut-sei=Ishikawa en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OokiHironari en-aut-sei=Ooki en-aut-mei=Hironari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ItoTakumi en-aut-sei=Ito en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TodomeDaisuke en-aut-sei=Todome en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=UemotoShinya en-aut-sei=Uemoto en-aut-mei=Shinya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=FurutaniMitsuaki en-aut-sei=Furutani en-aut-mei=Mitsuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=InokuchiTsutomu en-aut-sei=Inokuchi en-aut-mei=Tsutomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=OkadaKenji en-aut-sei=Okada en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Okayama Biomass Innovation Creative Center kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Science, Okayama University of Science kn-affil= affil-num=4 en-affil=Advanced Research Center for Oral and Craniofacial Science, Okayama University Dental School kn-affil= affil-num=5 en-affil=Marubishi Oil Chemical Co., Ltd kn-affil= affil-num=6 en-affil=Marubishi Oil Chemical Co., Ltd kn-affil= affil-num=7 en-affil=Gen Gen Corporation kn-affil= affil-num=8 en-affil=Gen Gen Corporation kn-affil= affil-num=9 en-affil=Faculty of Science, Okayama University of Science kn-affil= affil-num=10 en-affil=Okayama Biomass Innovation Creative Center kn-affil= affil-num=11 en-affil=Okayama Biomass Innovation Creative Center kn-affil= affil-num=12 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=13 en-affil=Department of Life Science, Kurashiki University of Science & the Arts kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2005 dt-pub=20050930 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=犬実験モデルを用いた慢性の圧負荷を伴う右心不全に対するポンプを用いない膜型人工肺による体外循環(ECMO)補助の血行動態に及ぼす効果 kn-title=Hemodynamic effects of pumpless extracorporeal membrane oxygenation (ECMO) support for chronically pressure-overloaded right heart failure in a canine experimental model en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=TamesueKiyokazu en-aut-sei=Tamesue en-aut-mei=Kiyokazu kn-aut-name=爲季清和 kn-aut-sei=爲季 kn-aut-mei=清和 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2005 dt-pub=20051231 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Perfluorocarbonを使用した消化管による呼吸補助 : 還流量による検討 kn-title=Transintestinal oxygenation with perfluorocarbon : investigation of perfusion rate en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=KotaniKazutoshi en-aut-sei=Kotani en-aut-mei=Kazutoshi kn-aut-name=小谷一敏 kn-aut-sei=小谷 kn-aut-mei=一敏 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=15 article-no= start-page=5028 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230731 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Evidence for Hypoxia-Induced Shift in ATP Production from Glycolysis to Mitochondrial Respiration in Pulmonary Artery Smooth Muscle Cells in Pulmonary Arterial Hypertension en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: The metabolic state of pulmonary artery smooth muscle cells (PASMCs) from patients with pulmonary arterial hypertension (PAH) is not well understood. In this study, we examined the balance between glycolysis and mitochondrial respiration in non-PAH-PASMCs and PAH-PASMCs under normoxia and hypoxia. Methods: We investigated the enzymes involved in glycolysis and mitochondrial respiration, and studied the two major energy-yielding pathways (glycolysis and mitochondrial respiration) by measuring extracellular acidification rate (ECAR) and cellular oxygen consumption rate (OCR) using the Seahorse extracellular flux technology. Results: Under both normoxia and hypoxia, the mRNA and protein levels of pyruvate dehydrogenase kinase 1 and pyruvate dehydrogenase were increased in PAH-PASMCs compared with non-PAH-PASMCs. The mRNA and protein levels of lactate dehydrogenase, as well as the intracellular lactate concentration, were also increased in PAH-PASMCs compared with non-PAH-PASMCs under normoxia. However, these were not significantly increased in PAH-PASMCs compared with non-PAH-PASMCs under hypoxia. Under normoxia, ATP production was significantly lower in PAH-PASMCs (59 ± 5 pmol/min) than in non-PAH-PASMCs (70 ± 10 pmol/min). On the other hand, ATP production was significantly higher in PAH-PASMCs (31 ± 5 pmol/min) than in non-PAH-PASMCs (14 ± 3 pmol/min) under hypoxia. Conclusions: There is an underlying change in the metabolic strategy to generate ATP production under the challenge of hypoxia. en-copyright= kn-copyright= en-aut-name=AkagiSatoshi en-aut-sei=Akagi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KondoMegumi en-aut-sei=Kondo en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HirohataSatoshi en-aut-sei=Hirohata en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=UdonoHeiichiro en-aut-sei=Udono en-aut-mei=Heiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NishidaMikako en-aut-sei=Nishida en-aut-mei=Mikako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SaitoYukihiro en-aut-sei=Saito en-aut-mei=Yukihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YoshidaMasashi en-aut-sei=Yoshida en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Immunology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Immunology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=glycolysis kn-keyword=glycolysis en-keyword=mitochondrial respiration kn-keyword=mitochondrial respiration en-keyword=pulmonary arterial hypertension kn-keyword=pulmonary arterial hypertension en-keyword=pulmonary artery smooth muscle cells kn-keyword=pulmonary artery smooth muscle cells en-keyword=Seahorse technology kn-keyword=Seahorse technology en-keyword=hypoxia kn-keyword=hypoxia en-keyword=ATP production kn-keyword=ATP production END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=7 article-no= start-page=1438 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230718 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Combined Effect of Salicylic Acid and Proline Mitigates Drought Stress in Rice (Oryza sativa L.) through the Modulation of Physiological Attributes and Antioxidant Enzymes en-subtitle= kn-subtitle= en-abstract= kn-abstract=Salicylic acid (SA) and proline exhibit protective effects against a wide range of stresses. However, the combined impact of SA and proline on rice under drought stress is still unknown. Therefore, we investigated the protective roles of SA and/or proline in conferring drought tolerance in rice. There were eight treatments comprising the control (T1; 95-100% FC), 1.5 mM SA (T2), 2 mM proline (T3), 0.75 mM SA + 1 mM proline (T4), 45-50% FC (T5, drought stress), T5 + 1.5 mM SA (T6), T5 + 2 mM proline (T7), and T5 + 0.75 mM SA + 1 mM proline (T8), and two rice varieties: BRRI dhan66 and BRRI dhan75. Drought stress significantly decreased the plant growth, biomass, yield attributes, photosynthetic rate (Pn), stomatal conductance (gs), transpiration rate (Tr), photosynthetic pigments (chlorophyll and carotenoids content), relative water content (RWC), membrane stability index (MSI), soluble sugar and starch content, and uptake of N, P and K+ in roots and shoots. Drought-induced oxidative stress in the form of increased hydrogen peroxide (H2O2) production and lipid peroxidation (MDA) was observed. The combined application of SA (0.75 mM) + proline (1 mM) was found to be more effective than the single application of either for drought stress mitigation in rice. A combined dose of SA + proline alleviated oxidative stress through boosting antioxidant enzymatic activity in contrast to their separate application. The application of SA + proline also enhanced proline, soluble sugar and starch content, which resulted in the amelioration of osmotic stress. Consequently, the combined application of SA and proline significantly increased the gas exchange characteristics, photosynthetic pigments, RWC, MSI, nutrient uptake, plant growth, biomass and yield of rice. Therefore, the combined application of SA and proline alleviated the detrimental impacts of drought stress more pronouncedly than their separate application did by increasing osmoprotectants, improving nutrient transport, up-regulating antioxidant enzyme activity and inhibiting oxidative stress. en-copyright= kn-copyright= en-aut-name=UrmiTahmina Akter en-aut-sei=Urmi en-aut-mei=Tahmina Akter kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IslamMd. Moshiul en-aut-sei=Islam en-aut-mei=Md. Moshiul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ZumurKamrun Naher en-aut-sei=Zumur en-aut-mei=Kamrun Naher kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AbedinMd. Anwarul en-aut-sei=Abedin en-aut-mei=Md. Anwarul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HaqueM. Moynul en-aut-sei=Haque en-aut-mei=M. Moynul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SiddiquiManzer H. en-aut-sei=Siddiqui en-aut-mei=Manzer H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MurataYoshiyuki en-aut-sei=Murata en-aut-mei=Yoshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HoqueMd. Anamul en-aut-sei=Hoque en-aut-mei=Md. Anamul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Soil Science, Faculty of Agriculture, Bangladesh Agricultural University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Department of Agronomy, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University kn-affil= affil-num=4 en-affil=Department of Soil Science, Faculty of Agriculture, Bangladesh Agricultural University kn-affil= affil-num=5 en-affil=Department of Agronomy, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University kn-affil= affil-num=6 en-affil=Department of Botany and Microbiology, College of Science, King Saud University kn-affil= affil-num=7 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Department of Soil Science, Faculty of Agriculture, Bangladesh Agricultural University kn-affil= en-keyword=rice kn-keyword=rice en-keyword=drought stress kn-keyword=drought stress en-keyword=osmolytes kn-keyword=osmolytes en-keyword=reactive oxygen species kn-keyword=reactive oxygen species en-keyword=lipid peroxidation kn-keyword=lipid peroxidation en-keyword=antioxidant kn-keyword=antioxidant END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=14 article-no= start-page=2738 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230723 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Low-Oxygen Responses of Cut Carnation Flowers Associated with Modified Atmosphere Packaging en-subtitle= kn-subtitle= en-abstract= kn-abstract=Gaseous factors affect post-harvest physiological processes in horticultural crops, including ornamental flowers. However, the molecular responses of cut flowers to the low-oxygen conditions associated with modified atmosphere packaging (MAP) have not yet been elucidated. Here, we show that storage of cut carnation flowers in a sealed polypropylene bag decreased the oxygen concentration in the bag to 3-5% and slowed flower opening. The vase life of carnation flowers after storage for seven days under MAP conditions was comparable to that without storage and was improved by the application of a commercial-quality preservative. The adenylate energy charge (AEC) was maintained at high levels in petals from florets stored under MAP conditions. This was accompanied by the upregulation of four hypoxia-related genes, among which the HYPOXIA-RESPONSIVE ETHYLENE RESPONSE FACTOR and PHYTOGLOBIN genes (DcERF19 and DcPGB1) were newly identified. These results suggest that hypoxia-responsive genes contribute to the maintenance of the energy status in carnation flowers stored under MAP conditions, making this gas-controlling technique potentially effective for maintaining cut flower quality without cooling. en-copyright= kn-copyright= en-aut-name=NakayamaMisaki en-aut-sei=Nakayama en-aut-mei=Misaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HaradaNao en-aut-sei=Harada en-aut-mei=Nao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MuraiAi en-aut-sei=Murai en-aut-mei=Ai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=UeyamaSayaka en-aut-sei=Ueyama en-aut-mei=Sayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HaradaTaro en-aut-sei=Harada en-aut-mei=Taro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=School of Education, Okayama University kn-affil= affil-num=2 en-affil=School of Education, Okayama University kn-affil= affil-num=3 en-affil=School of Education, Okayama University kn-affil= affil-num=4 en-affil=School of Education, Okayama University kn-affil= affil-num=5 en-affil=Faculty of Education, Okayama University kn-affil= en-keyword=carnation kn-keyword=carnation en-keyword=modified atmosphere packaging kn-keyword=modified atmosphere packaging en-keyword=adenylate energy charge kn-keyword=adenylate energy charge en-keyword=hypoxia-responsive genes kn-keyword=hypoxia-responsive genes en-keyword=AP2/ERF superfamily kn-keyword=AP2/ERF superfamily END start-ver=1.4 cd-journal=joma no-vol=23 cd-vols= no-issue=1 article-no= start-page=216 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230620 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Associations of systemic oxygen consumption with age and body temperature under general anesthesia: retrospective cohort study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Body temperature (BT) is thought to have associations with oxygen consumption (VO2). However, there have been few studies in which the association between systemic VO2 and BT in humans was investigated in a wide range of BTs. The aims of this study were 1) to determine the association between VO2 and age and 2) to determine the association between VO2 and BT.
Methods This study was a retrospective study of patients who underwent surgery under general anesthesia at a tertiary teaching hospital. VO2 was measured by the Dr?ger Perseus A500 anesthesia workstation (Dr?ger Medical, Lubeck, Germany). The associations of VO2 with age and BT were examined using spline regression and multivariable regression analysis with a random effect.
Results A total of 7,567 cases were included in this study. A linear spline with one knot shows that VO2 was reduced by 2.1 ml/kg/min with one year of age (p???=?36 °C and???=?36 °C and???=?36.5 °C and???=?37 °C and???=?37.5 °C and???=?38 °C and???=?38.5 °C (p? Conclusions VO2 increases in parallel with increase in body temperature in a hyperthermic state but remains constant in a hypothermic state. Neonates and infants, who have high VO2, may have a large systemic organ response in VO2 to change in BT. en-copyright= kn-copyright= en-aut-name=KimuraSatoshi en-aut-sei=Kimura en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShimizuKazuyoshi en-aut-sei=Shimizu en-aut-mei=Kazuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MorimatsuHiroshi en-aut-sei=Morimatsu en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital kn-affil= en-keyword=Oxygen Consumption kn-keyword=Oxygen Consumption en-keyword=Body Temperature kn-keyword=Body Temperature en-keyword=General Anesthesia kn-keyword=General Anesthesia END start-ver=1.4 cd-journal=joma no-vol=4 cd-vols= no-issue= article-no= start-page=918273 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220718 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Sea Surface Temperature and Salinity in Lombok Strait Reconstructed From Coral Sr/Ca and δ18O, 1962?2012 en-subtitle= kn-subtitle= en-abstract= kn-abstract=Coral geochemical tracers have been used in studies of the paleoclimatology and paleoceanography of the tropics and subtropics. We measured Sr/Ca and oxygen isotope ratios (δ18O) in a coral sample collected from the southern part of Lombok Strait, a significant outlet of the Indonesian Throughflow (ITF) to the Indian Ocean, to reconstruct the historical record of sea surface temperature (SST) and seawater δ18O. Seawater δ18O can be used to approximate sea surface salinity (SSS) because it reflects the balance of evaporation and precipitation. The resulting time series reconstructed SST and SSS, covering the period 1962?2012, shows no clear trend of global warming, although the record includes a large cooling event (~4°C) during 1996?1997. Although neither SST nor SSS shows a systematic relationship with El Ni?o?Southern Oscillation and Indian Ocean Dipole (IOD), weak but significant correlations are found partly. In addition, the coral data show signals of major IOD and El Ni?o events in 1994 and 1997, respectively, although climatic trends recorded in the coral are not consistent with those found along the Java-Sumatra coast. To evaluate other influences on the ITF in Lombok Strait, we compared our coral record with coral records from sites in the Java Sea, the southern part of Makassar Strait, and Ombai Strait. During the northwest monsoon (December?January?February), variations in SST and SSS at Lombok Strait site are similar to those at the Java Sea and southern Makassar sites for the period 1962?1995, which suggests that low-salinity water from the Java Sea is carried at least to the southern part of Makassar Strait where it suppresses the ITF upstream from Lombok Strait. However, the SST and SSS records differ at the three sites during the southeast monsoon (June?July?August), indicating that surface conditions in Lombok Strait vary separately from those in the Java Sea. In the longer term, although global warming has been widely identified in the Indonesian Seas, the coral record shows no clear warming trend in the southern part of Lombok Strait, where fluctuations in the ITF may be modulating the distribution of heat in the surface waters of the western Pacific and eastern Indian Ocean. en-copyright= kn-copyright= en-aut-name=GendaAi en-aut-sei=Genda en-aut-mei=Ai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IkeharaMinoru en-aut-sei=Ikehara en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SuzukiAtsushi en-aut-sei=Suzuki en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ArmanAli en-aut-sei=Arman en-aut-mei=Ali kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=InoueMayuri en-aut-sei=Inoue en-aut-mei=Mayuri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Center for Advanced Marine Core Research, Kochi University kn-affil= affil-num=3 en-affil=Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST) kn-affil= affil-num=4 en-affil=Research and Technology Center for Application of Isotope and Radiation, National Research and Innovation Agency kn-affil= affil-num=5 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=coral kn-keyword=coral en-keyword=geochemical tracers kn-keyword=geochemical tracers en-keyword=Sr/Ca kn-keyword=Sr/Ca en-keyword=δ 18O kn-keyword=δ 18O en-keyword=sea surface temperature kn-keyword=sea surface temperature en-keyword=salinity kn-keyword=salinity en-keyword=Lombok Strait kn-keyword=Lombok Strait END start-ver=1.4 cd-journal=joma no-vol=174 cd-vols= no-issue=2 article-no= start-page=343 end-page=349 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202308 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Hydrogen inhalation attenuates lung contusion after blunt chest trauma in mice en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Lung contusion caused by blunt chest trauma evokes a severe inflammatory reaction in the pulmonary parenchyma that may be associated with acute respiratory distress syndrome. Although hydrogen gas has antioxidant and anti-inflammatory effects and is protective against multiple types of lung injury at safe concentrations, the effects of inhaled hydrogen gas on blunt lung injury have not been previously investigated. Therefore, using a mouse model, we tested the hypothesis that hydrogen inhalation after chest trauma would reduce pulmonary inflammation and acute lung injury associated with lung contusion.
Methods: Inbred male C57BL/6 mice were randomly divided into 3 groups: sham with air inhalation, lung contusion with air inhalation, and lung contusion with 1.3% hydrogen inhalation. Experimental lung contusion was induced using a highly reproducible and standardized apparatus. Immediately after induction of lung contusion, mice were placed in a chamber exposed to 1.3% hydrogen gas in the air. Histopathological analysis and real-time polymerase chain reaction in lung tissue and blood gas analysis were performed 6 hours after contusion.
Results: Histopathological examination of the lung tissue after contusion revealed perivascular/intra-alveolar hemorrhage, perivascular/interstitial leukocyte infiltration, and interstitial/intra-alveolar edema. These histological changes and the extent of lung contusion, as determined by computed tomography, were significantly mitigated by hydrogen inhalation. Hydrogen inhalation also significantly reduced inflammatory cytokine and chemokine mRNA levels and improved oxygenation.
Conclusion: Hydrogen inhalation therapy significantly mitigated inflammatory responses associated with lung contusion in mice. Hydrogen inhalation therapy may be a supplemental therapeutic strategy for treating lung contusion. en-copyright= kn-copyright= en-aut-name=AgetaKohei en-aut-sei=Ageta en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HirayamaTakahiro en-aut-sei=Hirayama en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AokageToshiyuki en-aut-sei=Aokage en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SeyaMizuki en-aut-sei=Seya en-aut-mei=Mizuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MengYing en-aut-sei=Meng en-aut-mei=Ying kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NojimaTsuyoshi en-aut-sei=Nojima en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamamotoHirotsugu en-aut-sei=Yamamoto en-aut-mei=Hirotsugu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ObaraTakafumi en-aut-sei=Obara en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NakaoAtsunori en-aut-sei=Nakao en-aut-mei=Atsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YumotoTetsuya en-aut-sei=Yumoto en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TsukaharaKohei en-aut-sei=Tsukahara en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NaitoHiromichi en-aut-sei=Naito en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=592 cd-vols= no-issue= article-no= start-page=121751 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220915 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effect of bond valence sum on the structural modeling of lead borate glass en-subtitle= kn-subtitle= en-abstract= kn-abstract=The structural model of 66.7PbO-33.3B2O3 glass was constructed using a reverse Monte Carlo (RMC) method, in which bond valence sum (BVS) was added as a constraint condition to suppress formation of unrealistic local structures. Based on the crystal structures, the optimal BVS calculating conditions were determined. As a result, BVS distributions with small deviation were successfully achieved without lowering the reproducibility of other experimental constraints. The geometric asymmetry of PbOn polyhedra was evaluated from the eccentric distance between Pb and gravity center of oxygen atoms. The average eccentric distance was shorter than that in the lead borate crystals, indicating less asymmetry of PbOn units in the RMC glass model. The connectivity between BOn and PbOn units was investigated. It was consequently concluded that the glass had a different network structure from the crystal with the same composition, which might be due to the different chemical bonding character between the lead borate glasses and crystals. en-copyright= kn-copyright= en-aut-name=NagaoMasaaki en-aut-sei=Nagao en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SakidaShinichi en-aut-sei=Sakida en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=BeninoYasuhiko en-aut-sei=Benino en-aut-mei=Yasuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NanbaTokuro en-aut-sei=Nanba en-aut-mei=Tokuro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MukunokiAtsushi en-aut-sei=Mukunoki en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ChibaTamotsu en-aut-sei=Chiba en-aut-mei=Tamotsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KikuchiTakahiro en-aut-sei=Kikuchi en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SakuragiTomofumi en-aut-sei=Sakuragi en-aut-mei=Tomofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OwadaHitoshi en-aut-sei=Owada en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Environmental Management Center, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=JGC Japan Corporation kn-affil= affil-num=6 en-affil=JGC Japan Corporation kn-affil= affil-num=7 en-affil=JGC Japan Corporation kn-affil= affil-num=8 en-affil=Radioactive Waste Management Funding and Research Center kn-affil= affil-num=9 en-affil=Radioactive Waste Management Funding and Research Center kn-affil= en-keyword=Lead borate glass kn-keyword=Lead borate glass en-keyword=Reverse Monte Carlo modeling kn-keyword=Reverse Monte Carlo modeling en-keyword=Bond valence sum kn-keyword=Bond valence sum en-keyword=Coordination polyhedron kn-keyword=Coordination polyhedron END start-ver=1.4 cd-journal=joma no-vol=134 cd-vols= no-issue=2 article-no= start-page=73 end-page=75 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=The 2021 Incentive Award of the Okayama Medical Association in Cancer Research (2021 Hayashibara Prize and Yamada Prize) kn-title=令和3年度岡山医学会賞 がん研究奨励賞(林原賞・山田賞) en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=NishidaMikako en-aut-sei=Nishida en-aut-mei=Mikako kn-aut-name=西田充香子 kn-aut-sei=西田 kn-aut-mei=充香子 aut-affil-num=1 ORCID= affil-num=1 en-affil=Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil=岡山大学大学院医歯薬学総合研究科 免疫学 END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue= article-no= start-page=1105460 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230316 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Mutagenic analysis of actin reveals the mechanism of His161 flipping that triggers ATP hydrolysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=The dynamic assembly of actin is controlled by the hydrolysis of ATP, bound to the center of the molecule. Upon polymerization, actin undergoes a conformational change from the monomeric G-form to the fibrous F-form, which is associated with the flipping of the side chain of His161 toward ATP. His161 flipping from the gauche-minus to gauche-plus conformation leads to a rearrangement of the active site water molecules, including ATP attacking water (W1), into an orientation capable of hydrolysis. We previously showed that by using a human cardiac muscle a-actin expression system, mutations in the Pro-rich loop residues (A108G and P109A) and in a residue that was hydrogen-bonded to W1 (Q137A) affect the rate of polymerization and ATP hydrolysis. Here, we report the crystal structures of the three mutant actins bound to AMPPNP or ADP-P-i determined at a resolution of 1.35-1.55( )angstrom, which are stabilized in the F-form conformation with the aid of the fragmin F1 domain. In A108G, His161 remained non-flipped despite the global actin conformation adopting the F-form, demonstrating that the side chain of His161 is flipped to avoid a steric clash with the methyl group of A108. Because of the non-flipped His161, W1 was located away from ATP, similar to G-actin, which was accompanied by incomplete hydrolysis. In P109A, the absence of the bulky proline ring allowed His161 to be positioned near the Pro-rich loop, with a minor influence on ATPase activity. In Q137A, two water molecules replaced the side-chain oxygen and nitrogen of Gln137 almost exactly at their positions; consequently, the active site structure, including the W1 position, is essentially conserved. This seemingly contradictory observation to the reported low ATPase activity of the Q137A filament could be attributed to a high fluctuation of the active site water. Together, our results suggest that the elaborate structural design of the active site residues ensures the precise control of the ATPase activity of actin. en-copyright= kn-copyright= en-aut-name=IwasaMitsusada en-aut-sei=Iwasa en-aut-mei=Mitsusada kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakedaShuichi en-aut-sei=Takeda en-aut-mei=Shuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NaritaAkihiro en-aut-sei=Narita en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MaedaYuichiro en-aut-sei=Maeda en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OdaToshiro en-aut-sei=Oda en-aut-mei=Toshiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Informatics, Nagoya University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University kn-affil= affil-num=3 en-affil=Structural Biology Research Center, Graduate School of Science, Nagoya University kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University kn-affil= affil-num=5 en-affil=Faculty of Health and Welfare, Tokai Gakuin University kn-affil= en-keyword=MD simulation kn-keyword=MD simulation en-keyword=actin kn-keyword=actin en-keyword=water dynamics kn-keyword=water dynamics en-keyword=ATP hydrolysis kn-keyword=ATP hydrolysis en-keyword=X-ray structure kn-keyword=X-ray structure en-keyword=baculovirus expression kn-keyword=baculovirus expression END start-ver=1.4 cd-journal=joma no-vol=77 cd-vols= no-issue=1 article-no= start-page=117 end-page=120 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202302 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Organ Donation after Extracorporeal Cardiopulmonary Resuscitation and Brain Death en-subtitle= kn-subtitle= en-abstract= kn-abstract=A 38-year-old primipara Japanese woman suffered cardiac arrest due to a pulmonary thromboembolism 1 day after undergoing a cesarean section. Extracorporeal cardiopulmonary resuscitation was initiated and extracorporeal membrane oxygenation support was needed for 24 h. Despite intensive care, the patient was diagnosed with brain death on day 6. With the family’s consent, comprehensive end-of-life care including organ donation was discussed based on our hospital’s policy. The family decided to donate her organs. Specific training and education are required for emergency physicians to optimize the process of incorporating organ donation into end-of-life care while respecting the patient’s and family’s wishes. en-copyright= kn-copyright= en-aut-name=ObaraTakafumi en-aut-sei=Obara en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YumotoTetsuya en-aut-sei=Yumoto en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AoshimaKenji en-aut-sei=Aoshima en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TsukaharaKohei en-aut-sei=Tsukahara en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NaitoHiromichi en-aut-sei=Naito en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakaoAtsunori en-aut-sei=Nakao en-aut-mei=Atsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=brain death kn-keyword=brain death en-keyword=end-of-life kn-keyword=end-of-life en-keyword=extracorporeal cardiopulmonary resuscitation kn-keyword=extracorporeal cardiopulmonary resuscitation en-keyword=organ donation kn-keyword=organ donation en-keyword=potential organ donor kn-keyword=potential organ donor END start-ver=1.4 cd-journal=joma no-vol=298 cd-vols= no-issue=12 article-no= start-page=102668 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202212 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Crystal structures of photosystem II from a cyanobacterium expressing psbA2 in comparison to psbA3 reveal differences in the D1 subunit en-subtitle= kn-subtitle= en-abstract= kn-abstract=Three psbA genes (psbA1, psbA2, and psbA3) encoding the D1 subunit of photosystem II (PSII) are present in the ther-mophilic cyanobacterium Thermosynechococcus elongatus and are expressed differently in response to changes in the growth environment. To clarify the functional differences of the D1 protein expressed from these psbA genes, PSII dimers from two strains, each expressing only one psbA gene (psbA2 or psbA3), were crystallized, and we analyzed their structures at resolu-tions comparable to previously studied PsbA1-PSII. Our results showed that the hydrogen bond between pheophytin/D1 (PheoD1) and D1-130 became stronger in PsbA2-and PsbA3-PSII due to change of Gln to Glu, which partially explains the increase in the redox potential of PheoD1 observed in PsbA3. In PsbA2, one hydrogen bond was lost in PheoD1 due to the change of D1-Y147F, which may explain the decrease in stability of PheoD1 in PsbA2. Two water molecules in the Cl-1 channel were lost in PsbA2 due to the change of D1-P173M, leading to the narrowing of the channel, which may explain the lower efficiency of the S-state transition beyond S2 in PsbA2-PSII. In PsbA3-PSII, a hydrogen bond between D1-Ser270 and a sulfoquinovosyl-diacylglycerol molecule near QB dis-appeared due to the change of D1-Ser270 in PsbA1 and PsbA2 to D1-Ala270. This may result in an easier exchange of bound QB with free plastoquinone, hence an enhancement of oxygen evolution in PsbA3-PSII due to its high QB exchange efficiency. These results provide a structural basis for further functional examination of the three PsbA variants. en-copyright= kn-copyright= en-aut-name=NakajimaYoshiki en-aut-sei=Nakajima en-aut-mei=Yoshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=Ugai-AmoNatsumi en-aut-sei=Ugai-Amo en-aut-mei=Natsumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ToneNaoki en-aut-sei=Tone en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakagawaAkiko en-aut-sei=Nakagawa en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IwaiMasako en-aut-sei=Iwai en-aut-mei=Masako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IkeuchiMasahiko en-aut-sei=Ikeuchi en-aut-mei=Masahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SugiuraMiwa en-aut-sei=Sugiura en-aut-mei=Miwa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SugaMichihiro en-aut-sei=Suga en-aut-mei=Michihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=Jian-RenShen en-aut-sei=Jian-Ren en-aut-mei=Shen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Proteo-Science Research Center, Ehime University kn-affil= affil-num=5 en-affil=Graduate School and College of Arts and Sciences, The University of Tokyo kn-affil= affil-num=6 en-affil=Graduate School and College of Arts and Sciences, The University of Tokyo kn-affil= affil-num=7 en-affil=Proteo-Science Research Center, Ehime University kn-affil= affil-num=8 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=9 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=2 cd-vols= no-issue= article-no= start-page=18 end-page=31 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=The beginning date of wet rice cultivation at the of Okayama University site: Tree ring oxygen isotope dating and radiocarbon 14 age of weirs from the mid-I stage of the Yayoi period kn-title=岡山大学構内遺跡における水田稲作の開始年代 ―T期中段階の堰の酸素同位体比年輪年代と炭素14年代― en-subtitle= kn-subtitle= en-abstract= kn-abstract=This article clarifies the date when paddy field rice cultivation began at the archaeological site located within the Okayama University campus. The analysis used tree ring oxygen isotope dating and radiocarbon dating. When the oxygen isotope ratios of wood used in paddy weirs detected in the 23rd excavation season were examined, peaks could be seen in two places: in the 10th century BC and the 6th century BC. Since the weir was accompanied by mid-I stage Yayoi pottery, which was dated to the 6th century BC using radiocarbon dating, tree ring dating determined that the weir was made from wood cut down soon after 540 BC. Therefore, it was reaffirmed that one of the points of the mid-I stage can be dated to the middle of the 6th century BC.
Next is the age of the early-I stage, when paddy field rice cultivation began on the Okayama Plain. In the Tsuruba area of the Nishikawazu archaeological site in Shimane Prefecture, where paddy field rice cultivation is thought to have begun at the same time as on the Okayama Plain, tree ring oxygen isotope dating of wood accompanied by early-I stage pottery has been reported. The date of 649 BC date means that one of the earliest stages of the early-I period dates to the middle of the 7th century BC. Therefore, we reaffirmed the view that paddy rice cultivation in the Chugoku region, such as Okayama and Shimane, began in the 7th century BC.
It also became clear that the beginning of paddy field rice cultivation in the Chugoku region occurred at a time when the climate that had been the base of cold in the 10th century BC gradually warmed and the relatively humid climate began to turn to arid. en-copyright= kn-copyright= en-aut-name=FUJIOShinichiro en-aut-sei=FUJIO en-aut-mei=Shinichiro kn-aut-name=藤尾慎一郎 kn-aut-sei=藤尾 kn-aut-mei=慎一郎 aut-affil-num=1 ORCID= en-aut-name=SAKAMOTOMinoru en-aut-sei=SAKAMOTO en-aut-mei=Minoru kn-aut-name=坂本稔 kn-aut-sei=坂本 kn-aut-mei=稔 aut-affil-num=2 ORCID= en-aut-name=SANOMasaki en-aut-sei=SANO en-aut-mei=Masaki kn-aut-name=佐野雅規 kn-aut-sei=佐野 kn-aut-mei=雅規 aut-affil-num=3 ORCID= affil-num=1 en-affil=The National Museum of Japanese History, School of Cultural and Social Studies, The Graduate University for Advanced Studies kn-affil= affil-num=2 en-affil=The National Museum of Japanese History, School of Cultural and Social Studies, The Graduate University for Advanced Studies kn-affil= affil-num=3 en-affil=Graduate School of Environmental Studies, Nagoya University kn-affil= en-keyword=土器付着炭化物:carbides adhering to pottery kn-keyword=土器付着炭化物:carbides adhering to pottery en-keyword=酸素同位体比年輪年代法:tree ring oxygen isotope dating kn-keyword=酸素同位体比年輪年代法:tree ring oxygen isotope dating en-keyword=炭素14年代法:radiocarbon dating kn-keyword=炭素14年代法:radiocarbon dating en-keyword=岡山大学構内遺跡:the Okayama University site kn-keyword=岡山大学構内遺跡:the Okayama University site en-keyword=弥生前期:the early Yayoi period kn-keyword=弥生前期:the early Yayoi period en-keyword=水田稲作:wet rice cultivation kn-keyword=水田稲作:wet rice cultivation en-keyword=堰:weirs kn-keyword=堰:weirs END start-ver=1.4 cd-journal=joma no-vol=471 cd-vols= no-issue= article-no= start-page=214742 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202211 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Geometric, electronic and spin structures of the CaMn4O5 catalyst for water oxidation in oxygen-evolving photosystem II. Interplay between experiments and theoretical computations en-subtitle= kn-subtitle= en-abstract= kn-abstract=The aim of this review is to elucidate geometric structures of the catalytic CaMn4Ox (x = 5, 6) cluster in the Kok cycle for water oxidation in the oxygen evolving complex (OEC) of photosystem II (PSII) based on the high-resolution (HR) X-ray diffraction (XRD) and serial femtosecond crystallography (SFX) experiments using the X-ray free-electron laser (XFEL). Quantum mechanics (QM) and QM/molecular mechanics (MM) computations are performed to elucidate the electronic and spin structures of the CaMn4Ox (x = 5, 6) cluster in five states S-i (i = 0 similar to 4) on the basis of the X-ray spectroscopy, electron paramagnetic resonance (EPR) and related experiments. Interplay between the experiments and theoretical computations has been effective to elucidate the coordination structures of the CaMn4Ox (x = 5, 6) cluster ligated by amino acid residues of the protein matrix of PSII, valence states of the four Mn ions and total spin states by their exchange-couplings, and proton-shifted isomers of the CaMn4Ox (x = 5, 6) cluster. The HR XRD and SFX XFEL experiments have also elucidated the biomolecular systems structure of OEC of PSII and the hydrogen bonding networks consisting of water molecules, chloride anions, etc., for water inlet and proton release pathways in PSII. Large-scale QM/MM computations have been performed for elucidation of the hydrogen bonding distances and angles by adding invisible hydrogen atoms to the HR XRD structure. Full geometry optimizations by the QM and QM/MM methods have been effective for elucidation of the molecular systems structure around the CaMn4Ox (x = 5, 6) cluster in OEC. DLPNO-CCSD(T-0) method has been applied to elucidate relative energies of possible intermediates in each state of the Kok cycle for water oxidation. Implications of these results are discussed in relation to the blueprint for developments of artificial catalysts for water oxidation. en-copyright= kn-copyright= en-aut-name=YamaguchiKizashi en-aut-sei=Yamaguchi en-aut-mei=Kizashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShojiMitsuo en-aut-sei=Shoji en-aut-mei=Mitsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IsobeHiroshi en-aut-sei=Isobe en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KawakamiTakashi en-aut-sei=Kawakami en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MiyagawaKoichi en-aut-sei=Miyagawa en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SugaMichihiro en-aut-sei=Suga en-aut-mei=Michihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AkitaFusamichi en-aut-sei=Akita en-aut-mei=Fusamichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Center for Quantum Information and Quantum Biology, Osaka University kn-affil= affil-num=2 en-affil=Center of Computational Sciences, Tsukuba University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=RIKEN Center for Computational Science kn-affil= affil-num=5 en-affil=Center of Computational Sciences, Tsukuba University kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Water oxidation kn-keyword=Water oxidation en-keyword=Oxygen evolution kn-keyword=Oxygen evolution en-keyword=Photosystem II kn-keyword=Photosystem II en-keyword=HR XRD kn-keyword=HR XRD en-keyword=SFX XFEL kn-keyword=SFX XFEL en-keyword=QM/MM calculation kn-keyword=QM/MM calculation en-keyword=DLPNO CCSD(T-0) computations, Oxyl radical character kn-keyword=DLPNO CCSD(T-0) computations, Oxyl radical character END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=11 article-no= start-page=673 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20221110 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Functional Blockage of S100A8/A9 Ameliorates Ischemia-Reperfusion Injury in the Lung en-subtitle= kn-subtitle= en-abstract= kn-abstract=(1) Background: Lung ischemia-reperfusion (IR) injury increases the mortality and morbidity of patients undergoing lung transplantation. The objective of this study was to identify the key initiator of lung IR injury and to evaluate pharmacological therapeutic approaches using a functional inhibitor against the identified molecule. (2) Methods: Using a mouse hilar clamp model, the combination of RNA sequencing and histological investigations revealed that neutrophil-derived S100A8/A9 plays a central role in inflammatory reactions during lung IR injury. Mice were assigned to sham and IR groups with or without the injection of anti-S100A8/A9 neutralizing monoclonal antibody (mAb). (3) Results: Anti-S100A8/A9 mAb treatment significantly attenuated plasma S100A8/A9 levels compared with control IgG. As evaluated by oxygenation capacity and neutrophil infiltration, the antibody treatment dramatically ameliorated the IR injury. The gene expression levels of cytokines and chemokines induced by IR injury were significantly reduced by the neutralizing antibody. Furthermore, the antibody treatment significantly reduced TUNEL-positive cells, indicating the presence of apoptotic cells. (4) Conclusions: We identified S100A8/A9 as a novel therapeutic target against lung IR injury. en-copyright= kn-copyright= en-aut-name=NakataKentaro en-aut-sei=Nakata en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkazakiMikio en-aut-sei=Okazaki en-aut-mei=Mikio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SakaueTomohisa en-aut-sei=Sakaue en-aut-mei=Tomohisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KinoshitaRie en-aut-sei=Kinoshita en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KomodaYuhei en-aut-sei=Komoda en-aut-mei=Yuhei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShimizuDai en-aut-sei=Shimizu en-aut-mei=Dai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamamotoHaruchika en-aut-sei=Yamamoto en-aut-mei=Haruchika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TanakaShin en-aut-sei=Tanaka en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SuzawaKen en-aut-sei=Suzawa en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ShienKazuhiko en-aut-sei=Shien en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MiyoshiKentaroh en-aut-sei=Miyoshi en-aut-mei=Kentaroh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=YamamotoHiromasa en-aut-sei=Yamamoto en-aut-mei=Hiromasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=OharaToshiaki en-aut-sei=Ohara en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=SugimotoSeiichiro en-aut-sei=Sugimoto en-aut-mei=Seiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=YamaneMasaomi en-aut-sei=Yamane en-aut-mei=Masaomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=MatsukawaAkihiro en-aut-sei=Matsukawa en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=SakaguchiMasakiyo en-aut-sei=Sakaguchi en-aut-mei=Masakiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= affil-num=1 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine kn-affil= affil-num=4 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine kn-affil= affil-num=6 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network kn-affil= affil-num=8 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=15 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil= Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=17 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=18 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=ischemia reperfusion injury kn-keyword=ischemia reperfusion injury en-keyword= S100A8/A9 kn-keyword= S100A8/A9 en-keyword=lung transplantation kn-keyword=lung transplantation en-keyword=damage-associated molecule patterns kn-keyword=damage-associated molecule patterns END start-ver=1.4 cd-journal=joma no-vol=126 cd-vols= no-issue=38 article-no= start-page=7212 end-page=7228 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220915 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Roles of the Flexible Primary Coordination Sphere of the Mn4CaOx Cluster: What Are the Immediate Decay Products of the S-3 State? en-subtitle= kn-subtitle= en-abstract= kn-abstract=The primary coordination sphere of the multinuclear cofactor (Mn4CaOx) in the oxygen-evolving complex (OEC) of photosystem II is absolutely conserved to maintain its structure and function. Recent time-resolved serial femtosecond crystallography identified large reorganization of the primary coordination sphere in the S-2 to S-3 transition, which elicits a cascade of events involving Mn oxidation and water molecule binding to a putative catalytic Mn site. We examined how the crystallographic fields, created by transient conformational states of the OEC at various time points, affect the thermodynamics of various isomers of the Mn cluster using DFT calculations, with an aim of comprehending the functional roles of the flexible primary coordination sphere in the S-2 to S-3 transition and in the recovery of the S-2 state. The results show that the relative movements of surrounding residues change the size and shape of the cavity of the cluster and thereby affect the thermodynamics of various catalytic intermediates as well as the ability to capture a new water molecule at a coordinatively unsaturated site. The implication of these findings is that the protein dynamics may serve to gate the catalytic reaction efficiently by controlling the sequence of Mn oxidation/reduction and water binding/release. This interpretation is consistent with EPR experiments; g similar to 5 and g similar to 3 signals obtained after near-infrared (NIR) excitation of the S-3 state at 4 K and a g similar to 5 only signal produced after prolonged incubation of the S-3 state at 77 K can be best explained as originating from water-bound S-2 clusters (S-total = 7/2) under a S-3 ligand field, i.e., the immediate one-electron reduction products of the oxyl-oxo (S-total = 6) and hydroxo-oxo (S-total = 3) species in the S-3 state. en-copyright= kn-copyright= en-aut-name=IsobeHiroshi en-aut-sei=Isobe en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShojiMitsuo en-aut-sei=Shoji en-aut-mei=Mitsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SuzukiTakayoshi en-aut-sei=Suzuki en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamaguchiKizashi en-aut-sei=Yamaguchi en-aut-mei=Kizashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Center for Computational Science, University of Tsukuba, kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=5 en-affil=Institute for NanoScience Design, Osaka University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=76 cd-vols= no-issue=6 article-no= start-page=723 end-page=730 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202212 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Serum miR-377 Can Be Used as a Diagnostic Marker for Acute Coronary Syndrome and Can Regulate Proinflammatory Factors and Endothelial Injury Markers en-subtitle= kn-subtitle= en-abstract= kn-abstract=The diagnostic value of microRNA-377 (miR-377) in patients with acute coronary syndrome (ACS) and explored miR-377’s potential mechanisms. We performed an qRT-PCR to assess serum miR-377 levels in ACS patients and coronary artery ligation rat models. The diagnostic value of miR-377 was evaluated by determining the ROC curve. An ELISA assay was conducted to detect the model rat endothelial damage markers von Willebrand factor (vWF) and heart-type fatty acid binding protein (H-FABP), and proinflammatory cytokines TNF-α, IL-6, and IL-1β. The serum miR-377 level was elevated in the ACS patients and significantly increased in the ACS rats. MiR-377 has a high diagnostic value in ACS patients, with a 0.844 ROC, 76.47% specificity, and 87.10% sensitivity. MiR-377 was positively correlated with the expressions of vWF, H-FABP, cTnI, TNF-α, IL-6, and IL-1β. In ACS rats, reducing the expression of miR-377 significantly inhibited the increases in vWF, H-FABP, TNF-α, IL-6, and IL-1β. An elevated miR-377 level can be used as a diagnostic marker in patients with ACS. A reduction of miR-377 may alleviate ACS by improving myocardial damage such as endothelial injury and the inflammatory response. en-copyright= kn-copyright= en-aut-name=ZhangQuan en-aut-sei=Zhang en-aut-mei=Quan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YangLixia en-aut-sei=Yang en-aut-mei=Lixia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WanGuozhen en-aut-sei=Wan en-aut-mei=Guozhen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ZhangXiaoqiang en-aut-sei=Zhang en-aut-mei=Xiaoqiang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WangYing en-aut-sei=Wang en-aut-mei=Ying kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ZhaoGuannan en-aut-sei=Zhao en-aut-mei=Guannan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Affiliated Hospital of Gansu Medical College kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Affiliated Hospital of Gansu Medical College kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Affiliated Hospital of Gansu Medical College kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Affiliated Hospital of Gansu Medical College kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Affiliated Hospital of Gansu Medical College kn-affil= affil-num=6 en-affil=Department of Dermatological, Pingliang Traditional Chinese Medicine Hospital kn-affil= en-keyword=microRNA-377 kn-keyword=microRNA-377 en-keyword=acute coronary syndrome kn-keyword=acute coronary syndrome en-keyword=diagnosis kn-keyword=diagnosis en-keyword=endothelial injury kn-keyword=endothelial injury en-keyword=inflammatory kn-keyword=inflammatory END start-ver=1.4 cd-journal=joma no-vol=76 cd-vols= no-issue=6 article-no= start-page=651 end-page=660 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202212 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Intraoperative Hypothermia Is Not Associated with Surgical Site Infections after Total Hip or Knee Arthroplasty en-subtitle= kn-subtitle= en-abstract= kn-abstract=Maintaining perioperative normothermia decreases the post-surgery surgical site infection (SSI) rate. We investigated whether SSI is associated with intraoperative hypothermia in total hip (THA) and total knee (TKA) arthroplasties by retrospectively analyzing 297 THA and TKA cases. The patients’ intraoperative core body temperature (BT) was measured by bladder catheter or forehead sensor. We evaluated the associations between SSI and intraoperative BT and other variables and patient characteristics. Fifty-six patients (18.8%) had hypothermia (BT <36°C); 43 developed SSI (14.5%); only five had hypothermia (11.6%). Intraoperative hypothermia and SSI were not significantly associated. The SSI group had more men (34.9% vs. 18.1%) and THA patients (77.4%), a longer mean surgical duration (174.3 vs. 143.5 mins), and a higher average BT (36.4°C vs. 36.2°C) than the no-SSI group. The SSI patients had a higher intraoperative BT. A multivariable analysis revealed that SSI was associated with male sex (OR 2.3, 95%CI: 1.031-4.921, p=0.042), longer surgery (OR, 1.01, 95%CI: 1.003-1.017, p=0.004), THA (OR 3.6, 95%CI: 1.258-10.085, p=0.017), and intraoperative BT >36.0°C (OR 3.6, 95%CI: 1.367-9.475, p=0.009). Intraoperative hypothermia was not associated with SSI in adults who underwent THA or TKA. These results suggest that hypothermia might not be the problem for SSI. en-copyright= kn-copyright= en-aut-name=Bright Osman Abugri en-aut-sei=Bright Osman Abugri en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsusakiTakashi en-aut-sei=Matsusaki en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=RenWanxu en-aut-sei=Ren en-aut-mei=Wanxu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MorimatsuHiroshi en-aut-sei=Morimatsu en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Anesthesiology and Resuscitology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Anesthesiology and Resuscitology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Anesthesiology and Resuscitology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Anesthesiology and Resuscitology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=hypothermia kn-keyword=hypothermia en-keyword=surgical site infection kn-keyword=surgical site infection en-keyword=total hip arthroplasty (THA) kn-keyword=total hip arthroplasty (THA) en-keyword=knee arthroplasty (TKA) kn-keyword=knee arthroplasty (TKA) END start-ver=1.4 cd-journal=joma no-vol=76 cd-vols= no-issue=6 article-no= start-page=635 end-page=643 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202212 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=MiR-338-3p Is a Biomarker in Neonatal Acute Respiratory Distress Syndrome (ARDS) and Has Roles in the Inflammatory Response of ARDS Cell Models en-subtitle= kn-subtitle= en-abstract= kn-abstract=To investigate the association between serum miR-338-3p levels and neonatal acute respiratory distress syndrome (ARDS) and its mechanism. The relative miR-338-3p expression in serum was detected by quantitative real-time RT-PCR. Interleukin-1beta (IL-1β), IL-6, and tumor necrosis factor-alpha (TNF-α) levels were detected by ELISAs. A receiver operating characteristic (ROC) curve analysis of serum miR-338-3p evaluated the diagnosis of miR-338-3p in neonatal ARDS. Pearson’s correlation analysis evaluated the correlation between serum miR-338-3p and neonatal ARDS clinical factors. Flow cytometry evaluated apoptosis, and a CCK-8 assay assessed cell viability. A luciferase assay evaluated the miR-338-3p/AKT3 relationship. The miR- 338-3p expression was decreased in neonatal ARDS patients and in lipopolysaccharide (LPS)-treated cells. The ROC curve showed the accuracy of miR-338-3p for evaluating neonatal ARDS patients. The correlation analysis demonstrated that miR-338-3p was related to PRISM-III, PaO2/FiO2, oxygenation index, IL-1β, IL-6, and TNF-α in neonatal ARDS patients. MiR-338-3p overexpression inhibited the secretion of inflammatory components, stifled cell apoptosis, and LPS-induced advanced cell viability. The double-luciferase reporter gene experiment confirmed that miR-338-3p negatively regulates AKT3 mRNA expression. Serum miR-338-3p levels were related to the diagnosis and severity of neonatal ARDS, which may be attributed to its regulatory effect on inflammatory response in ARDS. en-copyright= kn-copyright= en-aut-name=ZhangCuicui en-aut-sei=Zhang en-aut-mei=Cuicui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=JiYanan en-aut-sei=Ji en-aut-mei=Yanan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WangQin en-aut-sei=Wang en-aut-mei=Qin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=RuanLianying en-aut-sei=Ruan en-aut-mei=Lianying kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Pediatric Intensive Care Unit, Xingtai People’s Hospital kn-affil= affil-num=2 en-affil=Pediatric Intensive Care Unit, Xingtai People’s Hospital kn-affil= affil-num=3 en-affil=Pediatric Intensive Care Unit, Xingtai People’s Hospital kn-affil= affil-num=4 en-affil=Pediatric Intensive Care Unit, Xingtai People’s Hospital kn-affil= en-keyword=miR-338-3p kn-keyword=miR-338-3p en-keyword=AKT3 kn-keyword=AKT3 en-keyword=neonatal ARDS kn-keyword=neonatal ARDS en-keyword=inflammation kn-keyword=inflammation en-keyword=diagnosis kn-keyword=diagnosis END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220922 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=小児心臓外科における心肺バイパスにおける平均動脈圧と局所脳酸素飽和度との相関  kn-title=Correlation between Mean Arterial Pressure and Regional Cerebral Oxygen Saturation on Cardiopulmonary Bypass in Pediatric Cardiac Surgery en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=PANYU en-aut-sei=PAN en-aut-mei=YU kn-aut-name=潘禹 kn-aut-sei=潘 kn-aut-mei=禹 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学大学院医歯薬学総合研究科 END start-ver=1.4 cd-journal=joma no-vol=76 cd-vols= no-issue=5 article-no= start-page=609 end-page=615 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202210 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Idiopathic Pneumonia Syndrome Refractory to Ruxolitinib after Post-Transplant Cyclophosphamide-based Haploidentical Hematopoietic Stem Cell Transplantation: Lung Pathological Findings from an Autopsy Case en-subtitle= kn-subtitle= en-abstract= kn-abstract=A 69-year-old Japanese man with acute leukemia received post-transplant cyclophosphamide-based haploidentical stem cell transplantation (PTCY-haplo-SCT) but was readmitted with dyspnea and ground-glass-opacities of the lungs. Bronchoscopy showed inflammatory changes with no signs of infection. He received steroids but required intubation as his condition deteriorated. In addition to antithymocyte globulin and cyclophosphamide, we administered ruxolitinib but failed to save him. Autopsy findings revealed fibrotic nonspecific interstitial pneumonia (NSIP) without evidence of organizing pneumonia or infection. Thus, we diagnosed idiopathic pneumonia syndrome (IPS). As far as our knowledge, this is the first case of IPS with NSIP histology after PTCY-haplo-SCT. en-copyright= kn-copyright= en-aut-name=MatsumotoKen en-aut-sei=Matsumoto en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujishitaKeigo en-aut-sei=Fujishita en-aut-mei=Keigo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsudaMasayuki en-aut-sei=Matsuda en-aut-mei=Masayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OkaSatoshi en-aut-sei=Oka en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FujisawaYuka en-aut-sei=Fujisawa en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ImaiToshi en-aut-sei=Imai en-aut-mei=Toshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MachidaTakuya en-aut-sei=Machida en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Hematology and Blood Transfusion, Kochi Health Sciences Center kn-affil= affil-num=2 en-affil=Department of Hematology and Blood Transfusion, Kochi Health Sciences Center kn-affil= affil-num=3 en-affil=Department of Hematology and Blood Transfusion, Kochi Health Sciences Center kn-affil= affil-num=4 en-affil=Department of Hematology and Blood Transfusion, Kochi Health Sciences Center kn-affil= affil-num=5 en-affil=Department of Hematology and Blood Transfusion, Kochi Health Sciences Center kn-affil= affil-num=6 en-affil=Department of Hematology and Blood Transfusion, Kochi Health Sciences Center kn-affil= affil-num=7 en-affil=Department of Hematology and Blood Transfusion, Kochi Health Sciences Center kn-affil= en-keyword=idiopathic pneumonia syndrome kn-keyword=idiopathic pneumonia syndrome en-keyword=ruxolitinib kn-keyword=ruxolitinib en-keyword=post-transplant cyclophosphamide-based haploidentical stem cell transplantation kn-keyword=post-transplant cyclophosphamide-based haploidentical stem cell transplantation en-keyword=nonspecific interstitial pneumonia kn-keyword=nonspecific interstitial pneumonia END start-ver=1.4 cd-journal=joma no-vol=76 cd-vols= no-issue=5 article-no= start-page=557 end-page=564 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202210 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Correlation between Mean Arterial Pressure and Regional Cerebral Oxygen Saturation on Cardiopulmonary Bypass in Pediatric Cardiac Surgery en-subtitle= kn-subtitle= en-abstract= kn-abstract=Some pediatric cardiac patients might experience low regional cerebral oxygen saturation (rSO2) during surgery. We investigated whether a pediatric patient’s mean arterial pressure (MAP) can affect the rSO2 value during cardiopulmonary bypass (CPB). We retrospectively analyzed the cases of the pediatric patients who underwentcardiac surgery at our hospital (Jan. ?Dec. 2019; n=141). At each MAP stage, we constructed line charts through the mean of the rSO2 values corresponding to each MAP and then calculated the correlation coefficients. We next divided the patients into age subgroups (neonates, infants, children) and into cyanotic congenital heart disease (CHD) and acyanotic CHD groups and analyzed these groups in the same way. The analyses of all 141 patients revealed that during CPB the rSO2 value increased with an increase in MAP (r=0.1626). There was a correlation between rSO2 and MAP in the children (r=0.2720) but not in the neonates (r=0.06626) or infants (r=0.05260). Cyanotic CHD or acyanotic CHD did not have a significant effect on the rSO2/MAP correlation. Our analysis demonstrated different patterns of a correlation between MAP and rSO2 in pediatric cardiac surgery patients, depending on age. MAP was positively correlated with rSO2 typically in children but not in neonate or infant patients. en-copyright= kn-copyright= en-aut-name=PanYu en-aut-sei=Pan en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SongQingqing en-aut-sei=Song en-aut-mei=Qingqing kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KanazawaTomoyuki en-aut-sei=Kanazawa en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MorimatsuHiroshi en-aut-sei=Morimatsu en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=mean arterial pressure kn-keyword=mean arterial pressure en-keyword=cerebral oxygen saturation kn-keyword=cerebral oxygen saturation END start-ver=1.4 cd-journal=joma no-vol=76 cd-vols= no-issue=5 article-no= start-page=535 end-page=540 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202210 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Psychological Stress Induced by Prone Positioning among Adults with Severe Cerebral Palsy en-subtitle= kn-subtitle= en-abstract= kn-abstract=The purpose of this study was to investigate the psychological impact of various positionings in subjects with cerebral palsy (CP). The participants were 17 individuals with severe motor and intellectual disability due to CP. They began in a sitting position in their wheelchair, and were placed consecutively in prone or supine positions, with no intervals between placements. Physiological observations were made in each position, and included salivary α-amylase activity, pulse, percutaneous oxygen saturation, respiratory rate, learance or not of airway secretions, and occurrence or not of adverse events. Salivary α-amylase activity values were higher in the prone position than in the baseline and supine positions (p<0.05). Clearance of airway secretions was significantly more prevalent in the prone position than in the baseline and supine positions (p <0.05). The participants’ pulse was significantly lower in the supine and prone positions than in the baseline position (p<0.05). Greater prevalence of airway secretion clearance and significantly higher stress levels as indicated by saliva amylase were observed in the prone position than in the other two positions. Therefore, when such patients are placed in a prone position, close attention to airway management and the potential for psychological stress may be necessary. en-copyright= kn-copyright= en-aut-name=MatsudaTadashi en-aut-sei=Matsuda en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AkezakiYoshiteru en-aut-sei=Akezaki en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TsujiYoko en-aut-sei=Tsuji en-aut-mei=Yoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HamadaKazunori en-aut-sei=Hamada en-aut-mei=Kazunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OokuraMitsuhiro en-aut-sei=Ookura en-aut-mei=Mitsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Rehabilitation, Suita Municipal Disability Support Center I-Hope Suita kn-affil= affil-num=2 en-affil=Division of Physical Therapy, Kochi Professional University of Rehabilitation kn-affil= affil-num=3 en-affil=Division of Occupational Therapy, Department of Rehabilitation Sciences, Faculty of Allied Health Sciences, Kansai University of Welfare Sciences kn-affil= affil-num=4 en-affil=Division of Physical Therapy, Kochi Professional University of Rehabilitation kn-affil= affil-num=5 en-affil=Division of Physical Therapy, Kochi Professional University of Rehabilitation kn-affil= en-keyword=alpha-amylase kn-keyword=alpha-amylase en-keyword=stress kn-keyword=stress en-keyword=positioning kn-keyword=positioning en-keyword= cerebral palsy kn-keyword= cerebral palsy en-keyword=severe motor and intellectual disability kn-keyword=severe motor and intellectual disability END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue= article-no= start-page=1004184 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220915 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Time-series transcriptome of Brachypodium distachyon during bacterial flagellin-induced pattern-triggered immunity en-subtitle= kn-subtitle= en-abstract= kn-abstract=Plants protect themselves from microorganisms by inducing pattern-triggered immunity (PTI) via recognizing microbe-associated molecular patterns (MAMPs), conserved across many microbes. Although the MAMP perception mechanism and initial events during PTI have been well-characterized, knowledge of the transcriptomic changes in plants, especially monocots, is limited during the intermediate and terminal stages of PTI. Here, we report a time-series high-resolution RNA-sequencing (RNA-seq) analysis during PTI in the leaf disks of Brachypodium distachyon. We identified 6,039 differentially expressed genes (DEGs) in leaves sampled at 0, 0.5, 1, 3, 6, and 12 hours after treatment (hat) with the bacterial flagellin peptide flg22. The k-means clustering method classified these DEGs into 10 clusters (6 upregulated and 4 downregulated). Based on the results, we selected 10 PTI marker genes in B. distachyon. Gene ontology (GO) analysis suggested a tradeoff between defense responses and photosynthesis during PTI. The data indicated the recovery of photosynthesis started at least at 12 hat. Over-representation analysis of transcription factor genes and cis-regulatory elements in DEG promoters implied the contribution of 12 WRKY transcription factors in plant defense at the early stage of PTI induction. en-copyright= kn-copyright= en-aut-name=OgasaharaTsubasa en-aut-sei=Ogasahara en-aut-mei=Tsubasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KouzaiYusuke en-aut-sei=Kouzai en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WatanabeMegumi en-aut-sei=Watanabe en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakahashiAkihiro en-aut-sei=Takahashi en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakahagiKotaro en-aut-sei=Takahagi en-aut-mei=Kotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KimJune-Sik en-aut-sei=Kim en-aut-mei=June-Sik kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamamotoMikihiro en-aut-sei=Yamamoto en-aut-mei=Mikihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MochidaKeiichi en-aut-sei=Mochida en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Kihara Institute for Biological Research, Yokohama City University kn-affil= affil-num=6 en-affil=Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science kn-affil= affil-num=7 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=10 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=11 en-affil=Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science kn-affil= affil-num=12 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=Brachypodium distachyon kn-keyword=Brachypodium distachyon en-keyword=monocotyledonous plant kn-keyword=monocotyledonous plant en-keyword=microbe-associated molecular pattern kn-keyword=microbe-associated molecular pattern en-keyword=time-series transcriptome analysis kn-keyword=time-series transcriptome analysis en-keyword=reactive oxygen species kn-keyword=reactive oxygen species en-keyword=pattern-triggered immunity kn-keyword=pattern-triggered immunity END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=9 article-no= start-page=1805 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202209 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Rice Nudix Hydrolase OsNUDX2 Sanitizes Oxidized Nucleotides en-subtitle= kn-subtitle= en-abstract= kn-abstract=Nudix hydrolase (NUDX) hydrolyzes 8-oxo-(d)GTP to reduce the levels of oxidized nucleotides in the cells. 8-oxo-(d)GTP produced by reactive oxygen species (ROS) is incorporated into DNA/RNA and mispaired with adenine, causing replicational and transcriptional errors. Here, we identified a rice OsNUDX2 gene, whose expression level was increased 15-fold under UV-C irradiation. The open reading frame of the OsNUDX2 gene, which encodes 776 amino acid residues, was cloned into Escherichia coli cells to produce the protein of 100 kDa. The recombinant protein hydrolyzed 8-oxo-dGTP, in addition to dimethylallyl diphosphate (DMAPP) and isopentenyl diphosphate (IPP), as did Arabidopsis AtNUDX1; whereas the amino acid sequence of OsNUDX2 had 18% identity with AtNUDX1. OsNUDX2 had 14% identity with barley HvNUDX12, which hydrolyzes 8-oxo-dGTP and diadenosine tetraphosphates. Suppression of the lacZ amber mutation caused by the incorporation of 8-oxo-GTP into mRNA was prevented to a significant degree when the OsNUDX2 gene was expressed in mutT-deficient E. coli cells. These results suggest that the different substrate specificity and identity among plant 8-oxo-dGTP-hydrolyzing NUDXs and OsNUDX2 reduces UV stress by sanitizing the oxidized nucleotides. en-copyright= kn-copyright= en-aut-name=KondoYuki en-aut-sei=Kondo en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=RikiishiKazuhide en-aut-sei=Rikiishi en-aut-mei=Kazuhide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SugimotoManabu en-aut-sei=Sugimoto en-aut-mei=Manabu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=8-oxo-dGTP kn-keyword=8-oxo-dGTP en-keyword=nudix hydrolase kn-keyword=nudix hydrolase en-keyword=Oryza sativa kn-keyword=Oryza sativa en-keyword=transcriptional error kn-keyword=transcriptional error en-keyword=UV-C kn-keyword=UV-C END start-ver=1.4 cd-journal=joma no-vol=76 cd-vols= no-issue=4 article-no= start-page=415 end-page=421 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202208 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=5-Nitro-2-(3-phenylpropylamino) Benzoic Acid Inhibits the Proliferation and Migration of Lens Epithelial Cells by Blocking CaMKII Signaling en-subtitle= kn-subtitle= en-abstract= kn-abstract=Posterior capsule opacification (PCO) is a post-surgery complication of cataract surgery, and lens epithelial cells (LECs) are involved in its development. A suppressive effect on LECs is exerted by the non specific chloride channel inhibitor 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) exerts. Herein, the growth and migration inhibitory effects of NPPB on LECs were assessed, and the mechanism underlying the effects were investigated by focusing on Ca2+/CaMKII signaling. LECs were treated with different concentrations of NPPB, and the changes in cell viability, cell-cycle distribution, anchorage-dependent growth, migration, Ca2+ level, and CaMKII expression were evaluated. NPPB inhibited LECs’ proliferation and induced G1 cell-cycle arrest in the cells. Regarding LECs’ mobility, NPPB suppressed the cells’ anchorage-dependent growth ability and inhibited their migration. Changes in cell phenotypes were associated with an increased intracellular Ca2+ level and down-regulation of CaMKII. Together these results confirmed the inhibitory effect of NPPB on the proliferation and migration of LECs, and the effect was shown to be associated with the induced level of Ca2+ and the inhibition of CaMKII signaling transduction. en-copyright= kn-copyright= en-aut-name=KangHaijun en-aut-sei=Kang en-aut-mei=Haijun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HuangDongmei en-aut-sei=Huang en-aut-mei=Dongmei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KangGangjin en-aut-sei=Kang en-aut-mei=Gangjin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YangXu en-aut-sei=Yang en-aut-mei=Xu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=LiHeng en-aut-sei=Li en-aut-mei=Heng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=LiuSiyuan en-aut-sei=Liu en-aut-mei=Siyuan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=GouWenjun en-aut-sei=Gou en-aut-mei=Wenjun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=LiuLinglin en-aut-sei=Liu en-aut-mei=Linglin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=QiuYuyan en-aut-sei=Qiu en-aut-mei=Yuyan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Ophthalmology, Suining Central Hospital kn-affil= affil-num=2 en-affil=Department of Cardiovascular, Suining Central Hospital kn-affil= affil-num=3 en-affil=Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University kn-affil= affil-num=4 en-affil=Department of Ophthalmology, Suining Central Hospital kn-affil= affil-num=5 en-affil=Department of Ophthalmology, Suining Central Hospital kn-affil= affil-num=6 en-affil=Department of Ophthalmology, Suining Central Hospital kn-affil= affil-num=7 en-affil=Department of Ophthalmology, Suining Central Hospital kn-affil= affil-num=8 en-affil=Department of Ophthalmology, Suining Central Hospital kn-affil= affil-num=9 en-affil=Department of Ophthalmology, Suining Central Hospital kn-affil= en-keyword=5-nitro-2-(3-phenylpropylamino) benzoic acid kn-keyword=5-nitro-2-(3-phenylpropylamino) benzoic acid en-keyword=CaMKII kn-keyword=CaMKII en-keyword=lens epithelial cell kn-keyword=lens epithelial cell en-keyword=migration kn-keyword=migration en-keyword=proliferation kn-keyword=proliferation END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue= article-no= start-page=904215 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220630 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Pemafibrate Prevents Rupture of Angiotensin II-Induced Abdominal Aortic Aneurysms en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Abdominal aortic aneurysm (AAA) is a life-threatening disease that lacks effective preventive therapies. This study aimed to evaluate the effect of pemafibrate, a selective peroxisome proliferator-activated receptor alpha (PPAR alpha) agonist, on AAA formation and rupture.
Methods: Experimental AAA was induced by subcutaneous angiotensin II (AngII) infusion in ApoE(-)(/)(-) mice for 4 weeks. Pemafibrate (0.1 mg/kg/day) was administered orally. Dihydroethidium staining was used to evaluate the reactive oxygen species (ROS).
Results: The size of the AngII-induced AAA did not differ between pemafibrate- and vehicle-treated groups. However, a decreased mortality rate due to AAA rupture was observed in pemafibrate-treated mice. Pemafibrate ameliorated AngII-induced ROS and reduced the mRNA expression of interleukin-6 and tumor necrosis factor-alpha in the aortic wall. Gelatin zymography analysis demonstrated significant inhibition of matrix metalloproteinase-2 activity by pemafibrate. AngII-induced ROS production in human vascular smooth muscle cells was inhibited by pre-treatment with pemafibrate and was accompanied by an increase in catalase activity. Small interfering RNA-mediated knockdown of catalase or PPAR alpha significantly attenuated the anti-oxidative effect of pemafibrate.
Conclusion: Pemafibrate prevented AAA rupture in a murine model, concomitant with reduced ROS, inflammation, and extracellular matrix degradation in the aortic wall. The protective effect against AAA rupture was partly mediated by the anti-oxidative effect of catalase induced by pemafibrate in the smooth muscle cells. en-copyright= kn-copyright= en-aut-name=AmiokaNaofumi en-aut-sei=Amioka en-aut-mei=Naofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YonezawaTomoko en-aut-sei=Yonezawa en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KondoMegumi en-aut-sei=Kondo en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AkagiSatoshi en-aut-sei=Akagi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YoshidaMasashi en-aut-sei=Yoshida en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SaitoYukihiro en-aut-sei=Saito en-aut-mei=Yukihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Molecular Biology and Biochemistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=pemafibrate kn-keyword=pemafibrate en-keyword=angiotensin II kn-keyword=angiotensin II en-keyword=abdominal aortic aneurysm kn-keyword=abdominal aortic aneurysm en-keyword=oxidative stress kn-keyword=oxidative stress en-keyword=catalase kn-keyword=catalase END start-ver=1.4 cd-journal=joma no-vol=8 cd-vols= no-issue=1 article-no= start-page=48 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220705 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Temporary hypotension and ventilation difficulty during endoscopic injection sclerotherapy for esophageal varices in a child with Fontan circulation: a case report en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background : Endoscopic procedures are rarely performed in children with congenital heart disease (CHD); therefore, the associated complications are unknown. We report an abrupt change in circulatory and respiratory condition during endoscopic injection sclerotherapy for esophageal varices.
Case presentation : A 9-year-old boy with a history of total anomalous pulmonary venous connection (TAPVC) repair and Fontan procedure for asplenia and a single ventricle with TAPVC underwent endoscopic injection sclerotherapy under general anesthesia for esophageal varices. Systolic blood pressure decreased from 70 to 50 mmHg following a sclerosant injection; a second injection reduced his peripheral oxygen saturation from 93 to 79% secondary to ventilation difficulty. Although we suspected anaphylaxis intraoperatively, postoperative imaging suggested that balloon dilation performed to prevent sclerosing agent leakage caused compression of the pulmonary venous chamber and trachea owing to the anomalous intrathoracic organ anatomy.
Conclusion : Thorough understanding of the complex anatomy is important before performing endoscopic procedures in children with CHD to preoperatively anticipate possible intraoperative complications and select the optimal therapeutic approach and anesthesia management. en-copyright= kn-copyright= en-aut-name=YasutomiNanako en-aut-sei=Yasutomi en-aut-mei=Nanako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShimizuTatsuhiko en-aut-sei=Shimizu en-aut-mei=Tatsuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KanazawaTomoyuki en-aut-sei=Kanazawa en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShimizuKazuyoshi en-aut-sei=Shimizu en-aut-mei=Kazuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IwasakiTatsuo en-aut-sei=Iwasaki en-aut-mei=Tatsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MorimatsuHiroshi en-aut-sei=Morimatsu en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Anesthesiology, Japanese Red Cross Kobe Hospital kn-affil= affil-num=2 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital kn-affil= en-keyword=Congenital heart disease kn-keyword=Congenital heart disease en-keyword=Fontan circulation kn-keyword=Fontan circulation en-keyword=Esophageal varices kn-keyword=Esophageal varices en-keyword=Endoscopic injection sclerotherapy kn-keyword=Endoscopic injection sclerotherapy END start-ver=1.4 cd-journal=joma no-vol=1866 cd-vols= no-issue=8 article-no= start-page=130171 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202208 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Metformin-ROS-Nrf2 connection in the host defense mechanism against oxidative stress, apoptosis, cancers, and ageing en-subtitle= kn-subtitle= en-abstract= kn-abstract=Reactive oxygen species (ROS) acts as a second messenger to trigger biological responses in low concentrations, while it is implicated to be toxic to biomolecules in high concentrations. Mild inhibition of respiratory chain Complex I by metformin at physiologically relevant concentrations stimulates production of low-level mitochondrial ROS. The ROS seems to induce anti-oxidative stress response via activation of nuclear factor erythroid 2-related factor 2 (Nrf2) and glutathione peroxidase (GPx), which results in not only elimination of ROS but also activation of cellular responses including resistance to apoptosis, metabolic changes, cell proliferation, senescence prevention, lifespan extension, and immune T cell activation against cancers, regardless of its effect controlling blood glucose level and T2DM. Although metformin's effect against T2DM, cancers, and ageing, are believed mostly attributed to the activation of AMP-activated protein kinase (AMPK), the cellular responses involving metformin-ROS-Nrf2 axis might be another natural asset to improve healthspan and lifespan. en-copyright= kn-copyright= en-aut-name=UdonoHeiichiro en-aut-sei=Udono en-aut-mei=Heiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishidaMikako en-aut-sei=Nishida en-aut-mei=Mikako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Immunology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Immunology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=Mitochondrial ROS kn-keyword=Mitochondrial ROS en-keyword=Oxidative stress kn-keyword=Oxidative stress en-keyword=Apoptosis kn-keyword=Apoptosis en-keyword=Ageing kn-keyword=Ageing en-keyword=Nrf2 kn-keyword=Nrf2 END start-ver=1.4 cd-journal=joma no-vol=126 cd-vols= no-issue=22 article-no= start-page=9257 end-page=9263 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220525 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Role of Oxygen Vacancy in the Photocarrier Dynamics of WO3 Photocatalysts: The Case of Recombination Centers en-subtitle= kn-subtitle= en-abstract= kn-abstract=Defects in powder photocatalysts determine the photocatalytic activity. The addition of defects sometimes enhances the activity, but sometimes decreases it. However, the factors determining the difference between these cases have not been fully elucidated yet. Herein, we investigated the effects of oxygen vacancies on photocarrier dynamics in WO3 powder using broadband transient absorption spectroscopy. It was found that the decay of deeply trapped electrons was accelerated when the number of oxygen vacancies was increased by H-2 reduction. This result suggests that oxygen vacancies in WO3 mainly act as recombination centers. This is in contrast to many other photocatalysts such as TiO2 and SrTiO3, where the carrier lifetime increases with increasing oxygen vacancy concentration. These differences can be attributed to the difference in the distance between oxygen vacancies. When defects are dispersed, trapped electrons need to travel over long distances by repeatedly hopping and tunneling between defects to combine with holes, resulting in decelerated recombination. In contrast, when the defects are connected or located close together, the trapped electrons can readily migrate among defects, leading to enhanced recombination. Control of the distance between defects is thus important for enhancing photocatalytic activity. en-copyright= kn-copyright= en-aut-name=KatoKosaku en-aut-sei=Kato en-aut-mei=Kosaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UemuraYohei en-aut-sei=Uemura en-aut-mei=Yohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AsakuraKiyotaka en-aut-sei=Asakura en-aut-mei=Kiyotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamakataAkira en-aut-sei=Yamakata en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Institute for Molecular Science kn-affil= affil-num=3 en-affil=Institute for Catalysis, Hokkaido University kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=酸素吸入はバルーン肺動脈拡張術前の慢性血栓塞栓性肺高血圧症患者の肺動脈を選択的に拡張する kn-title=Oxygen inhalation can selectively dilate pulmonary arteries in patients with chronic thromboembolic pulmonary hypertension before balloon angioplasty en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=ShigetoshiMasataka en-aut-sei=Shigetoshi en-aut-mei=Masataka kn-aut-name=重歳正尚 kn-aut-sei=重歳 kn-aut-mei=正尚 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学大学院医歯薬学総合研究科 END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=1 article-no= start-page=4930 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220323 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=LCZ696 ameliorates doxorubicin-induced cardiomyocyte toxicity in rats en-subtitle= kn-subtitle= en-abstract= kn-abstract=Doxorubicin (DOX)-based chemotherapy induces cardiotoxicity, which is considered the main bottleneck for its clinical application. In this study, we investigated the potential benefit of LCZ696, an angiotensin receptor-neprilysin inhibitor against DOX-induced cardiotoxicity in rats and H9c2 cells and determined whether the mechanism underlying any such effects involves its antioxidant activity. Male Sprague-Dawley rats were randomly separated into four groups, each consisting of 15 rats (DOX (1.5 mg/kg/day intraperitoneally for 10 days followed by non-treatment for 8 days); DOX + valsartan (31 mg/kg/day by gavage from day 1 to day 18); DOX + LCZ696 (68 mg/kg/day by gavage from day 1 to day 18); and control (saline intraperitoneally for 10 days). DOX-induced elevation of cardiac troponin T levels on day 18 was significantly reduced by LCZ696, but not valsartan. The DOX-induced increase in myocardial reactive oxygen species (ROS) levels determined using dihydroethidium was significantly ameliorated by LCZ696, but not valsartan, and was accompanied by the suppression of DOX-induced increase in p47phox. LCZ696 recovered the DOX-induced decrease in phosphorylation of adenosine monophosphate-activated protein kinase and increased the ratio of Bax and Bcl-2. In H9c2 cardiomyocytes, LCZ696 reduced DOX-induced mitochondrial ROS generation and improved cell viability more than valsartan. Our findings indicated that LCZ696 ameliorated DOX-induced cardiotoxicity in rat hearts in vivo and in vitro, possibly by mediating a decrease in oxidative stress. en-copyright= kn-copyright= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AmiokaNaofumi en-aut-sei=Amioka en-aut-mei=Naofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HatipogluOmer F. en-aut-sei=Hatipoglu en-aut-mei=Omer F. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YonezawaTomoko en-aut-sei=Yonezawa en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SaitoYukihiro en-aut-sei=Saito en-aut-mei=Yukihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YoshidaMasashi en-aut-sei=Yoshida en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AkagiSatoshi en-aut-sei=Akagi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Pharmacology, Kindai University kn-affil= affil-num=5 en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=70 cd-vols= no-issue=2 article-no= start-page=87 end-page=92 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=2022 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Confirmation of efficacy, elucidation of mechanism, and new search for indications of radon therapy en-subtitle= kn-subtitle= en-abstract= kn-abstract=Indications of radon therapy include various diseases related to respiratory, painful, digestive, chronic degenerative, senile, etc. derived from reactive oxygen species, but most are based on empirical prescriptions. For this reason, we have evaluated the relation between the biological response caused by radon and the tissue/organ absorbed dose more quantitatively, and have promoted the elucidation of mechanisms related to the indication and searching newly. As a result, as a mechanism, a series of moderate physiological stimulative effects accompanying a small amount of oxidative stress by radon inhalation are being elucidated. That is, hyperfunction of anti-oxidation/immune regulation/damage repair, promotion of anti-inflammation/circulating metabolism/hormone secretion, induction of apoptosis/heat shock protein, etc. Also, new indications include inflammatory/neuropathic pain, hepatic/renal injury, colitis, type 1 diabetes, complication kidney injury, hyperuricemia, transient cerebral ischemia, and inflammatory edema. Furthermore, we examined the combined antioxidant effect of radon inhalation and antioxidants or therapeutic agents. As a result, it was clear that any combination treatment could enhance the suppression effect of disease. It can be expected that radon therapy can be used effectively by applying it in addition to usual treatment, since reduction in its dosage can also be expected by concomitant use for drugs with strong side effects. en-copyright= kn-copyright= en-aut-name=YamaokaKiyonori en-aut-sei=Yamaoka en-aut-mei=Kiyonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KataokaTakahiro en-aut-sei=Kataoka en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Health Sciences, Institute of Academic and Research, Okayama University kn-affil= affil-num=2 en-affil=Health Sciences, Institute of Academic and Research, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=5 article-no= start-page=1309 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220227 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Serial Changes of Long COVID Symptoms and Clinical Utility of Serum Antibody Titers for Evaluation of Long COVID en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Various symptoms persist even after the acute symptoms in about one third of patients with COVID-19. In February 2021, we established an outpatient clinic in a university hospital for patients with long COVID and started medical treatment for sequelae that persisted one month or more after infection. Methods: To determine the key factors that affect the onset and clinical course of sequelae, a retrospective analysis was performed at Okayama University Hospital (Japan) between February and July 2021. We focused on changes in the numbers of symptoms and the background of the patients during a three-month period from the first outpatient visit. We also examined the relationship with SARS-CoV-2 antibody titers. Results: Information was obtained from medical records for 65 patients. The symptoms of sequelae were diverse, with more than 20 types. The most frequent symptoms were general malaise, dysosmia, dysgeusia, sleeplessness, and headache. These symptoms improved in about 60% of the patients after 3 months. Patients who required hospitalization and had a poor condition in the acute phase and patients who received oxygen/dexamethasone therapy had higher antibody titers at the time of consultation. Patients with antibody titers >= 200 U/mL showed significantly fewer improvements in long COVID symptoms in 1 month, but they showed improvements at 3 months after the first visit. Conclusion: Long COVID symptoms were improved at 3 months after the initial visit in more than half of the patients. Serum antibody titers were higher in patients who experienced a severe acute phase, but the serum antibody titers did not seem to be directly related to the long-term persistence of long COVID symptoms. en-copyright= kn-copyright= en-aut-name=SakuradaYasue en-aut-sei=Sakurada en-aut-mei=Yasue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SunadaNaruhiko en-aut-sei=Sunada en-aut-mei=Naruhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HondaHiroyuki en-aut-sei=Honda en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TokumasuKazuki en-aut-sei=Tokumasu en-aut-mei=Kazuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OtsukaYuki en-aut-sei=Otsuka en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakanoYasuhiro en-aut-sei=Nakano en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HanayamaYoshihisa en-aut-sei=Hanayama en-aut-mei=Yoshihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=FurukawaMasanori en-aut-sei=Furukawa en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HagiyaHideharu en-aut-sei=Hagiya en-aut-mei=Hideharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Laboratory Medicine, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Laboratory Medicine, Okayama University Hospital kn-affil= en-keyword=Anti-SARS-CoV2 antibody kn-keyword=Anti-SARS-CoV2 antibody en-keyword=dysgeusia kn-keyword=dysgeusia en-keyword=dysosmia kn-keyword=dysosmia en-keyword=general fatigue kn-keyword=general fatigue en-keyword=long COVID kn-keyword=long COVID END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=3 article-no= start-page=30 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220207 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Mitigation of groundwater iron-induced clogging by low-cost bioadsorbent in open loop geothermal heat pump systems en-subtitle= kn-subtitle= en-abstract= kn-abstract=Green energy production from natural resources can reduce emissions of greenhouse gases and pollutants from burning of fossil fuels in power plants. Recently, groundwater geothermal energy (GGE) is harnessed by deploying closed- and open-loop heat systems. In open-loop geothermal heat pump systems (OLGHPS), groundwater is reinjected into aquifer after harnessing GGE. Nevertheless, OLGHPS face noxious clogging issue because of elusive chemistry (corrosion or precipitation) of chemical species, principally of iron (Fe), in pipes and aquifers during reinjection process via oxidation reactions. Plethora of filtering materials are available for removal of ions, but these are quite expensive and environmentally unsafe. More recently, low-cost, eco-friendly, green filtering materials gain much interest. These materials can remove ions from groundwater that can minimize clogging in heat exchange systems, injection wells, and aquifer. In the present study, three filtering materials, i.e., wooden charcoal (biomaterial), yamazuna fine sand, and volcanic ash, were tested to estimate their Fe removal capacity. In upward flow mode with minimum oxygen-water contact, serial column (each with 6 ports) experiments were conducted under constant pressure head and constant velocity conditions. Columns were connected to well water having dissolved Fe concentration of 10.85 mg L-1. Sampling was done at the well, column inlets, column's six sampling ports and column outlets, and samples were analyzed for Fe by atomic absorption spectroscopy. Related tested parameters include pH, EC, temperature, turbidity, porosity, particle diameter, and dissolved oxygen. Volcanic ash showed less Fe removal, while sand filter showed substantial reduction in velocity. Biomaterial (wooden charcoal) displayed higher Fe adsorption capacity compared to other materials that can be ascribed to its surface chemistry and functional groups. Under different flow rates, maximum Fe content of 3.5 g Fe kg(-1) dry charcoal was obtained. By considering a safety factor and influence of groundwater composition, it is possible to design a biomaterial-based iron filter system to minimize Fe-induced chemical clogging in OLGHPS which is an eco-friendly, green energy source. en-copyright= kn-copyright= en-aut-name=FujitaClaudia en-aut-sei=Fujita en-aut-mei=Claudia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AkhtarM. Shahbaz en-aut-sei=Akhtar en-aut-mei=M. Shahbaz kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HidakaRay en-aut-sei=Hidaka en-aut-mei=Ray kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishigakiMakoto en-aut-sei=Nishigaki en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Geo?Environmental Evaluation Laboratory, Department of Environmental Design and Civil Engineering, Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Geo?Environmental Evaluation Laboratory, Department of Environmental Design and Civil Engineering, Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Geo?Environmental Evaluation Laboratory, Department of Environmental Design and Civil Engineering, Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Geo?Environmental Evaluation Laboratory, Department of Environmental Design and Civil Engineering, Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=Dissolved iron removal kn-keyword=Dissolved iron removal en-keyword=Chemical clogging kn-keyword=Chemical clogging en-keyword=Open-loop geothermal systems kn-keyword=Open-loop geothermal systems en-keyword=Retention potential kn-keyword=Retention potential en-keyword=Wooden charcoal kn-keyword=Wooden charcoal END start-ver=1.4 cd-journal=joma no-vol=89 cd-vols= no-issue= article-no= start-page=373 end-page=378 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=2021 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Performance of Oyster Shell Powder Size on Methane Gas Generation in Two-Stage Anaerobic Digestion System en-subtitle= kn-subtitle= en-abstract= kn-abstract=An anaerobic digester system is a sequence of process to digest biodegradable waste into biogas in the absence of oxygen. In two-stage anaerobic digestion system acid-forming steps or hydrolysis stage are separated from the methane forming steps. Although hydrolysis stage tends to get too acidic, addition of alkali substance can prevent pH from dropping too low so as to maintain good decomposition condition for microorganism. Oyster shell powder is a useful pH control additive containing CaCO3 at high percentage that can neutralize acid. In this study, the performances between industry-made fine oyster shell (IOS) powder (size 10.5 μm) and manually ground oyster shell (OS) powder (size < 1 mm) in methane generation yield were compared. NaOH, which is an alkali reagent for controlling pH, also used in comparison. The result showed that at the end of the hydrolysis stage, IOS powder increased pH up to 6.63, NaOH did almost the same (6.72), and OS powder was the lowest (6.1). In liquid residue, ratio of inorganic ash content with IOS treatment was the highest (2.1 %), but OS was the lowest (1.4 %). In the methanogenesis stage, CH4 concentration with NaOH treatment was the highest (80 %) compared to oyster shell powders: 74.33 % in IOS and 74.24 % in OS. Average methane yield over observation period of IOS treatment was the highest (533.9 mL/gVS), followed by alkali (487.3 mL/gVS) and OS (413.7 mL/gVS). Total CH4 from IOS treatment was 37 % and 8 % higher than OS and alkali treatment. Powder size of oyster shell greatly affected pH control, methane yield, and solid-liquid separation, but not methane concentration. Using IOS powder as pH control in hydrolysis of two-stage anaerobic system resulted in 78 % less cost than using NaOH. en-copyright= kn-copyright= en-aut-name=Peni Astrini Notodarmojo en-aut-sei=Peni Astrini Notodarmojo en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujiwaraTakeshi en-aut-sei=Fujiwara en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Habuer en-aut-sei=Habuer en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=Mochammad Chaerul en-aut-sei=Mochammad Chaerul en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Okayama University kn-affil= affil-num=2 en-affil=Okayama University kn-affil= affil-num=3 en-affil=Okayama University kn-affil= affil-num=4 en-affil=Bandung Institute of Technology kn-affil= END start-ver=1.4 cd-journal=joma no-vol=573 cd-vols= no-issue=30 article-no= start-page=151483 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202201 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Uniform coating of magnesium oxide crystal with reduced graphene oxide achieves moisture barrier performance en-subtitle= kn-subtitle= en-abstract= kn-abstract=Magnesium oxide (MgO) has high thermal conductivity while keeping insulation; thus, MgO is attractive material as a filler for thermosetting or thermoplastic resins. However, MgO readily hydrates with water or moisture. Thus, the surface of MgO is coated with organic or inorganic substances.
We focused on graphene oxide (GO) as a surface coating agent. It has a 2-dimensional thin sheet structure, oxygen functional groups on the surface, and negative zeta-potential. Typically, GO has been used as a support material for metal nanoparticles. In this research, GO was coated on MgO micro-crystal surface to improve the surface character of MgO. The negatively charged GO and the positively charged MgO were combined with strong interaction. 0.5wt% GO coated MgO showed excellent moisture resistance compared to organic substances coating. Coating of MgO with GO or rGO is effective to overcome the weaknesses of MgO. Due to the hydrophilicity and high thermal conductivity of rGO, MgO/rGO composite can be a filler for high moisture resistance and thermal conductivity. en-copyright= kn-copyright= en-aut-name=SaitoAkinori en-aut-sei=Saito en-aut-mei=Akinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ObataSeiji en-aut-sei=Obata en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishinaYuta en-aut-sei=Nishina en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Tateho chemical industries co. ltd kn-affil= affil-num=2 en-affil=Research Core for Interdisciplinary Sciences, Okayama University kn-affil= affil-num=3 en-affil=Research Core for Interdisciplinary Sciences, Okayama University kn-affil= en-keyword=magnesium oxide kn-keyword=magnesium oxide en-keyword=graphene oxide kn-keyword=graphene oxide en-keyword=surface coating kn-keyword=surface coating en-keyword=moisture resistance kn-keyword=moisture resistance END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=10 article-no= start-page=1537 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210928 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Reactive Oxygen Species and Antioxidative Defense in Chronic Obstructive Pulmonary Disease en-subtitle= kn-subtitle= en-abstract= kn-abstract=The respiratory system is continuously exposed to endogenous and exogenous oxidants. Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation of the airways, leading to the destruction of lung parenchyma (emphysema) and declining pulmonary function. It is increasingly obvious that reactive oxygen species (ROS) and reactive nitrogen species (RNS) contribute to the progression and amplification of the inflammatory responses related to this disease. First, we described the association between cigarette smoking, the most representative exogenous oxidant, and COPD and then presented the multiple pathophysiological aspects of ROS and antioxidative defense systems in the development and progression of COPD. Second, the relationship between nitric oxide system (endothelial) dysfunction and oxidative stress has been discussed. Third, we have provided data on the use of these biomarkers in the pathogenetic mechanisms involved in COPD and its progression and presented an overview of oxidative stress biomarkers having clinical applications in respiratory medicine, including those in exhaled breath, as per recent observations. Finally, we explained the findings of recent clinical and experimental studies evaluating the efficacy of antioxidative interventions for COPD. Future breakthroughs in antioxidative therapy may provide a promising therapeutic strategy for the prevention and treatment of COPD.

en-copyright= kn-copyright= en-aut-name=TaniguchiAkihiko en-aut-sei=Taniguchi en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TsugeMitsuru en-aut-sei=Tsuge en-aut-mei=Mitsuru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MiyaharaNobuaki en-aut-sei=Miyahara en-aut-mei=Nobuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TsukaharaHirokazu en-aut-sei=Tsukahara en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Hematology, Oncology, Allergy and Respiratory Medicine, Okayama University Academic Field of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Pediatrics, Okayama University Academic Field of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Medical Technology, Okayama University Academic Field of Health Sciences kn-affil= affil-num=4 en-affil=Department of Pediatrics, Okayama University Academic Field of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=reactive oxygen species kn-keyword=reactive oxygen species en-keyword=nitric oxide kn-keyword=nitric oxide en-keyword=oxidant kn-keyword=oxidant en-keyword=antioxidant kn-keyword=antioxidant en-keyword=oxidative stress kn-keyword=oxidative stress en-keyword=chronic obstructive pulmonary disease kn-keyword=chronic obstructive pulmonary disease en-keyword=cigarette smoke kn-keyword=cigarette smoke en-keyword=asymmetric dimethylarginine kn-keyword=asymmetric dimethylarginine en-keyword=arginine kn-keyword=arginine en-keyword=biomarker kn-keyword=biomarker END start-ver=1.4 cd-journal=joma no-vol=7 cd-vols= no-issue=1 article-no= start-page=81 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20211103 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Intact survival from severe cardiogenic shock caused by the first attack of atrial tachycardia treated with extracorporeal membrane oxygenation and surgical left atrium appendage resection: a case report en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Atrial tachycardia (AT) is rare in children and can usually be reversed to sinus rhythm with pharmacotherapy and cardioversion. We report a rare case of severe left-sided heart failure due to refractory AT. Case presentation A 12-year-old boy had AT with a heart rate of 180 beats/minute, which was refractory to any medication and defibrillation despite the first attack. Due to rapid cardiorespiratory collapse shortly after arriving at our hospital, central extracorporeal membrane oxygenation (ECMO) with left arterial venting was started immediately. Although AT persisted after that, it stopped on the 3rd day after admission following surgical resection of the left atrial appendage thought to be the source of AT. He was weaned off ECMO on the 7th day and ventilator on the 14th day. Conclusions The appropriate timing of central ECMO and surgical ablation were effective in saving this child from a life-threatening situation caused by refractory AT. en-copyright= kn-copyright= en-aut-name=ShimizuTatsuhiko en-aut-sei=Shimizu en-aut-mei=Tatsuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KanazawaTomoyuki en-aut-sei=Kanazawa en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SakuraTakanobu en-aut-sei=Sakura en-aut-mei=Takanobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShimizuKazuyoshi en-aut-sei=Shimizu en-aut-mei=Kazuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IwasakiTatsuo en-aut-sei=Iwasaki en-aut-mei=Tatsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Focal atrial tachycardia kn-keyword=Focal atrial tachycardia en-keyword=Central extracorporeal membrane oxygenation kn-keyword=Central extracorporeal membrane oxygenation en-keyword=Surgical ablation kn-keyword=Surgical ablation END start-ver=1.4 cd-journal=joma no-vol=88 cd-vols= no-issue= article-no= start-page=106474 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202111 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The diagnosis of delayed expanding traumatic pseudoaneurysm of thoracic aorta caused by self-inflicted penetrating injury with crossbow bolt: A case report en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction and importance: Penetrating chest trauma caused by a crossbow bolt is very rare. Herein, we report a successfully treated patient who attempted suicide by directing a crossbow to the chest cavity and developed an expanding pseudoaneurysm of the thoracic aorta during eight-day follow up.
Case presentation: A 51-year-old male was admitted to the emergency department after firing a crossbow bolt twice into his left chest. At admission, the patient was hemodynamically stable and maintaining oxygenation. The bolt had already been removed from the body. Contrast-enhanced computed tomography (CT) revealed a cavity pseudoaneurysm 2.5 mm in size in the aortic arch. Three-dimensional reconstruction of the CT demonstrated wound tracts showing probable damage by the bolt. The patient was admitted to the emergency department for careful observation and transferred to the psychiatric ward on day two. Follow-up contrast-enhanced CT on day eight demonstrated rapid expansion of the pseudoaneurysm from 2.5 mm to 4.0 mm in size. We performed thoracic endovascular aortic repair (TEVAR) on day 13. The patient was uneventfully discharged on the 20th hospital day.
Clinical discussion: Emergency physicians should be aware that damage to the surrounding tissue may be accompanied by delayed expansion of an aortic pseudoaneurysm, even if the bolts do not cause direct aortic wall injury.
Conclusion: This case suggests that understanding the injury mechanism, confirming the tract of the bolts, and carefully exploring traumatic pseudoaneurysm can lead to a less invasive operation due to early detection. en-copyright= kn-copyright= en-aut-name=NakamuraShunsuke en-aut-sei=Nakamura en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamadaTaihei en-aut-sei=Yamada en-aut-mei=Taihei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NaitoHiromichi en-aut-sei=Naito en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SakodaNaoya en-aut-sei=Sakoda en-aut-mei=Naoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakaoAtsunori en-aut-sei=Nakao en-aut-mei=Atsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Traumatology and Emergency Intensive Care Medicine, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Case report kn-keyword=Case report en-keyword=Traumatic pseudoaneurysm kn-keyword=Traumatic pseudoaneurysm en-keyword=Thoracic aortic injury kn-keyword=Thoracic aortic injury en-keyword=Crossbow bolt kn-keyword=Crossbow bolt en-keyword=Three-dimensional reconstruction kn-keyword=Three-dimensional reconstruction en-keyword=Computed tomography kn-keyword=Computed tomography END start-ver=1.4 cd-journal=joma no-vol=7 cd-vols= no-issue=1 article-no= start-page=77 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20211016 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Veno-venous extracorporeal membrane oxygenation in the management of refractory bilateral bronchial dehiscence after lung transplant: a case report en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background
Bronchial dehiscence is a life-threatening complication after lung transplant. If it is not treated by placement of stent or reanastomosis, the chance of survival will depend on the availability of a new graft. However, retransplant is not a practical management option in Japan, where waiting time for lung transplant is extensive. We described a case of refractory bilateral bronchial dehiscence managed by veno-venous extracorporeal oxygenation membrane (VV ECMO) while allowing the dehiscence to heal.

Case presentation
A 25-year-old man with idiopathic pulmonary arterial hypertension underwent a bilateral lung transplant. The patient developed bilateral bronchial dehiscence. Open reanastomosis was not successful, and air leakage recurred under low positive pressure ventilation. VV ECMO was established to maintain oxygenation with spontaneous breathing until both dehiscence were closed by adhesions.

Conclusion
In a patient with refractory bilateral bronchial dehiscence, VV ECMO may provide bronchial rest and serve as a bridge therapy to recovery. en-copyright= kn-copyright= en-aut-name=TaniMakiko en-aut-sei=Tani en-aut-mei=Makiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Department of Anesthesiology and Resuscitology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Bronchial dehiscence kn-keyword=Bronchial dehiscence en-keyword=Extracorporeal membrane oxygenation kn-keyword=Extracorporeal membrane oxygenation en-keyword=Lung transplant kn-keyword=Lung transplant END start-ver=1.4 cd-journal=joma no-vol=75 cd-vols= no-issue=6 article-no= start-page=677 end-page=684 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202112 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=EG-VEGF Induces Invasion of a Human Trophoblast Cell Line via PROKR2 en-subtitle= kn-subtitle= en-abstract= kn-abstract=Extravillous trophoblast (EVT) invasion is important for embryo implantation, placental development, and successful remodeling of the uterine spiral artery. Endocrine gland derived-vascular endothelial growth factor (EG-VEGF) and matrix metalloproteinases (MMPs) are implicated in EVT invasion; however, the high con-centrations found in pregnancy pathologies have not been investigated in non-tumor trophoblasts. The roles of EG-VEGF, prokineticin receptors (PROKR1/2), MMP-2, and MMP-9 in EVT invasion during spiral artery remodeling were evaluated using human EVT from HTR-8/SVneo cell lines. The expression of MMP-2, MMP-9, and mitogen-activated protein kinase (MAPK), and Akt pathways in HTR-8/SVneo cells treated with recom-binant EG-VEGF alongside anti-PROKR1 and/or anti-PROKR2 antibodies was evaluated using quantitative reverse transcription-PCR and western blotting. Wound-healing and cell invasion assays were performed to assess the migration and invasion of these treated cells. Interestingly, 20 nM EG-VEGF activated ERK1/2 sig-naling and upregulated MMP-2 and MMP-9. This effect was suppressed by anti-PROKR2 antibody via ERK1/2 downregulation. Anti-PROKR2 antibody inhibited the migration and invasion of EG-VEGF-stimulated HTR-8/SVneo cells. Elevated concentrations of EG-VEGF enhance EVT invasion in a human trophoblast cell line by upregulating MMP-2 and MMP-9 via PROKR2. These new insights into the regulation of epithelial cell invasion may help in developing therapeutic interventions for placental-related diseases during pregnancy. en-copyright= kn-copyright= en-aut-name= en-aut-sei= en-aut-mei= kn-aut-name=TaniKazumasa kn-aut-sei=Tani kn-aut-mei=Kazumasa aut-affil-num=1 ORCID= en-aut-name=MitsuiTakashi en-aut-sei=Mitsui en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MishimaSakurako en-aut-sei=Mishima en-aut-mei=Sakurako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OhiraAkiko en-aut-sei=Ohira en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MakiJota en-aut-sei=Maki en-aut-mei=Jota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=EtoEriko en-aut-sei=Eto en-aut-mei=Eriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HayataKei en-aut-sei=Hayata en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakamuraKeiichiro en-aut-sei=Nakamura en-aut-mei=Keiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MasuyamaHisashi en-aut-sei=Masuyama en-aut-mei=Hisashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=endocrine gland-derived vascular endothelial growth factor kn-keyword=endocrine gland-derived vascular endothelial growth factor en-keyword=prokineticin kn-keyword=prokineticin en-keyword=extravillous trophoblast kn-keyword=extravillous trophoblast en-keyword=matrix metalloproteinase kn-keyword=matrix metalloproteinase en-keyword=obstetric diseases kn-keyword=obstetric diseases END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=9 article-no= start-page=1842 end-page=1850 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20219 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Comparison of Oxygen Saturation Between Nasal High-Flow Oxygen and Conventional Nasal Cannula in Obese Patients Undergoing Dental Procedures With Deep Sedation: A Randomized Crossover Trial en-subtitle= kn-subtitle= en-abstract= kn-abstract=Purpose:
In anesthetic management, it is widely accepted that obese patients are more likely to suffer airway obstructions and reductions in arterial oxygen saturation (SpO2). Therefore, it is important to take special measures to prevent oxygen desaturation during the deep sedation of obese patients. This clinical study examined whether the use of nasal high-flow systems (NHFS) keep higher SpO2 and reduced hypoxemia than conventional nasal cannula during the deep sedation of obese patients with intellectual disabilities for dental treatment.
Materials and Methods:
Eighteen obese patients (body mass index: >25) with intellectual disabilities who underwent dental sedation were enrolled. In each case, sedation was induced using propofol and maintained at a bispectral index of 50?70. The subjects were randomly assigned to the control oxygen administration (5 L/min via a nasal cannula) or NHFS (40% O2, 40 L/min, 37°C) arm in alternate shifts as a crossover trial. The primary endpoint was the minimum SpO2 value, and the incidence of hypoxemia during dental treatment was also evaluated. Results: The mean minimum SpO2 value was significantly higher in the NHFS arm than in the 4 control arm (95.8 ± 2.1 % vs. 93.6 ± 4.1 %, p=0.0052, 95% confidence interval: 0.608?3.947). Hypoxemic episodes (SpO2: ?94%) occurred 3 cases (16.7%) in the NHFS arm and 11 case (61.1%) in the control arm (P=0.0076, odds ratio: 0.127, 95% confidence interval 0.0324 to 0.630). Conclusion: NHFS resulted in higher minimum SpO2 and reduced hypoxemia than nasal cannula in obese patients during deep sedation for dental treatment en-copyright= kn-copyright= en-aut-name=HiguchiHitoshi en-aut-sei=Higuchi en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=Takaya-IshidaKumiko en-aut-sei=Takaya-Ishida en-aut-mei=Kumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MiyakeSaki en-aut-sei=Miyake en-aut-mei=Saki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FujimotoMaki en-aut-sei=Fujimoto en-aut-mei=Maki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NishiokaYukiko en-aut-sei=Nishioka en-aut-mei=Yukiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MaedaShigeru en-aut-sei=Maeda en-aut-mei=Shigeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MiyawakiTakuya en-aut-sei=Miyawaki en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Dental Anesthesiology, Okayama University Hospita kn-affil= affil-num=2 en-affil=Department of Dental Anesthesiology, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Dental Anesthesiology, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Dental Anesthesiology and Special Care Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Dental Anesthesiology, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Dental Anesthesiology, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Dental Anesthesiology and Special Care Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=75 cd-vols= no-issue=4 article-no= start-page=533 end-page=538 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202108 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Tumor Lysis Syndrome due to Eribulin Administration for Metastatic Undifferentiated Pleomorphic Sarcoma of the Buttock en-subtitle= kn-subtitle= en-abstract= kn-abstract=Tumor lysis syndrome (TLS) is a complication of cancer treatment that requires urgent intervention. It is extremely rare in the treatment of soft tissue sarcoma (STS) of the limbs or trunk, and there are currently no reports of TLS occurrence from eribulin therapy. We report the case of a 78-year-old woman with an undiffer-entiated pleomorphic sarcoma on the right buttock. We initiated chemotherapy with intravenous eribulin mesylate. Deterioration of renal function, mild hyperkalemia, hyperuricemia, hypocalcemia, and hyperphos-phatemia were confirmed on examination, suggesting the presence of TLS. We present an extremely rare case of TLS from eribulin for STS. en-copyright= kn-copyright= en-aut-name=TsuchieHiroyuki en-aut-sei=Tsuchie en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyakoshiNaohisa en-aut-sei=Miyakoshi en-aut-mei=Naohisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NagasawaHiroyuki en-aut-sei=Nagasawa en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShimadaYoichi en-aut-sei=Shimada en-aut-mei=Yoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Orthopedic Surgery, Akita University Graduate School of Medicine kn-affil= affil-num=2 en-affil=Department of Orthopedic Surgery, Akita University Graduate School of Medicine kn-affil= affil-num=3 en-affil=Department of Orthopedic Surgery, Akita University Graduate School of Medicine kn-affil= affil-num=4 en-affil=Department of Orthopedic Surgery, Akita University Graduate School of Medicine kn-affil= en-keyword=tumor lysis syndrome kn-keyword=tumor lysis syndrome en-keyword=eribulin kn-keyword=eribulin en-keyword=soft tissue sarcoma kn-keyword=soft tissue sarcoma en-keyword=cancer chemotherapy kn-keyword=cancer chemotherapy en-keyword=metastasis kn-keyword=metastasis END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210807 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Single domain growth and charge ordering of epitaxial YbFe2O4 films en-subtitle= kn-subtitle= en-abstract= kn-abstract=YbFe2O4 is a charge-ordered ferroelectric that exhibits coupling between magnetization and electric polarization near room temperature and crystallizes in a rhombohedral structure (R3?m). This study presents an attempt to fabricate stoichiometric and epitaxial YbFe2O4-δ films with a nearly single-domain structure using an RF magnetron sputtering method. The (0001)-oriented epitaxial films of YbFe2O4-δ on YSZ (111) substrates via reactive sputtering method exhibited clear three-fold symmetry normal to the substrate without the formation of twin domains rotated by 60°. The oxygen stoichiometry of the epitaxial YbFe2O4-δ was improved by controlling an oxygen partial pressure (PO2) during the deposition. The films showed a sharp ferrimagnetic transition, and the transition temperature (TN) increased linearly to approximately 245 K with decreasing PO2. The magnitude of magnetization of the obtained films was comparable to that of bulk single crystals. Further, the electron diffraction pattern of the stoichiometric films confirmed the presence of three-dimensional charge order, which is consistent with the behavior of the bulk crystals as well. en-copyright= kn-copyright= en-aut-name=SakagamiTakumi en-aut-sei=Sakagami en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OtaReika en-aut-sei=Ota en-aut-mei=Reika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KanoJun en-aut-sei=Kano en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IkedaNaoshi en-aut-sei=Ikeda en-aut-mei=Naoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FujiiTatsuo en-aut-sei=Fujii en-aut-mei=Tatsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Applied Chemistry, Okayama University kn-affil= affil-num=2 en-affil=Department of Applied Chemistry, Okayama University kn-affil= affil-num=3 en-affil=Department of Applied Chemistry, Okayama University kn-affil= affil-num=4 en-affil=Department of Physics, Okayama University kn-affil= affil-num=5 en-affil=Department of Applied Chemistry, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=8 cd-vols= no-issue=1 article-no= start-page=e690 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210816 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Prevalence and predictors of direct discharge home following hospitalization of patients with serious adverse events managed by the rapid response system in Japan: a multicenter, retrospective, observational study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Aim: The rapid response system (RRS) is an in-hospital medical safety system. To date, not much is known about patient disposition after RRS activation, especially discharge home. This study aimed to investigate the prevalence, characteristics, and outcomes of patients with adverse events who required RRS activation.
Methods: Retrospective data from the In-Hospital Emergency Registry in Japan collected from April 2016 to November 2020 were eligible for our analysis. We divided patients into Home Discharge, Transfer, and Death groups. The primary outcome was the prevalence of direct discharge home, and independently associated factors were determined using multivariable logistic regression.
Results: We enrolled 2,043 patients who met the inclusion criteria. The prevalence of discharge home was 45.7%; 934 patients were included in the Home Discharge group. Age (adjusted odds ratio [AOR] 0.96; 95% confidence interval [CI], 0.95-0.97), malignancy (AOR 0.69; 95% CI, 0.48-0.99), oxygen administration before RRS (AOR 0.49; 95% CI, 0.36-0.66), cerebral performance category score on admission (AOR 0.38; 95% CI, 0.26-0.56), do not attempt resuscitation order before RRS (AOR 0.17; 95% CI, 0.10-0.29), RRS call for respiratory failure (AOR 0.50; 95% CI, 0.34-0.72), RRS call for stroke (AOR 0.12; 95% CI, 0.03-0.37), and intubation (AOR 0.20; 95% CI, 0.12-0.34) were independently negative, and RRS call for anaphylaxis (AOR 15.3; 95% CI, 2.72-86.3) was positively associated with discharge home.
Conclusion: Less than half of the in-hospital patients under RRS activation could discharge home. Patients' conditions before RRS activation, disorders requiring RRS activation, and intubation were factors that affected direct discharge home. en-copyright= kn-copyright= en-aut-name=HongoTakashi en-aut-sei=Hongo en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NaitoHiromichi en-aut-sei=Naito en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujiwaraToshifumi en-aut-sei=Fujiwara en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NaitoTakaki en-aut-sei=Naito en-aut-mei=Takaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HommaYosuke en-aut-sei=Homma en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FujimotoYoshihisa en-aut-sei=Fujimoto en-aut-mei=Yoshihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakayaMorooka en-aut-sei=Takaya en-aut-mei=Morooka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamamoriYuji en-aut-sei=Yamamori en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NakadaTaka-Aki en-aut-sei=Nakada en-aut-mei=Taka-Aki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NojimaTsuyoshi en-aut-sei=Nojima en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NakaoAtsunori en-aut-sei=Nakao en-aut-mei=Atsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=FujitaniShigeki en-aut-sei=Fujitani en-aut-mei=Shigeki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=In-Hospital Emergency Study Group en-aut-sei=In-Hospital Emergency Study Group en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Emergency Department, Okayama Saiseikai General Hospital kn-affil= affil-num=4 en-affil=Department of Emergency and Critical Care Medicine, St. Marianna University School of Medicine kn-affil= affil-num=5 en-affil=Department of Emergency and Critical Care Medicine, Tokyo Bay Urayasu Ichikawa Medical Center kn-affil= affil-num=6 en-affil=Department of Emergency and Critical Care Medicine, Tokyo Bay Urayasu Ichikawa Medical Center kn-affil= affil-num=7 en-affil=Emergency and Critical Care Medical Center, Osaka City General Hospital kn-affil= affil-num=8 en-affil=Department of Emergency and Critical Care Medicine, Shimane Prefectural Central Hospital kn-affil= affil-num=9 en-affil=Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine kn-affil= affil-num=10 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Emergency and Critical Care Medicine, St. Marianna University School of Medicine kn-affil= affil-num=13 en-affil= kn-affil= en-keyword=discharge to home kn-keyword=discharge to home en-keyword=DNAR kn-keyword=DNAR en-keyword=RRS kn-keyword=RRS en-keyword=serious adverse event kn-keyword=serious adverse event END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=7 article-no= start-page=e16738 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210729 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Right Hemiplegia Following Acute Carbon Monoxide Poisoning en-subtitle= kn-subtitle= en-abstract= kn-abstract=Acute carbon monoxide (CO) poisoning remains a common cause of poison-related death and influences neurological function. An 83-year-old female was transferred to our emergency unit due to hypertension with dizziness, headache, and right hemiplegia. There was no radiographic evidence of ischemic stroke. The family members reported that the patient may have been exposed to CO by briquettes burned inside a closed room. High flow oxygen therapy was given for suspected CO intoxication and her symptoms quickly improved. Although we do not have clear evidence, we presume that hemiplegia in our patient was caused by CO intoxication, based on rapid recovery with oxygen therapy, carboxyhemoglobin (COHb) level elevation (3.0%), polycythemia, and neuroimaging. Despite the hematogenous effects of CO, paralysis appeared to be more severe on her right side than on her left side. MRI and blood tests helped to support CO as the suspected cause of her hemiplegia. This case reconfirms the importance of medical interviewing by medical practitioners, even in an emergency setting. en-copyright= kn-copyright= en-aut-name=AoshimaKenji en-aut-sei=Aoshima en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamaokaHidenaru en-aut-sei=Yamaoka en-aut-mei=Hidenaru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakamuraShunsuke en-aut-sei=Nakamura en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NojimaTsuyoshi en-aut-sei=Nojima en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NaitoHiromichi en-aut-sei=Naito en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakaoAtsunori en-aut-sei=Nakao en-aut-mei=Atsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Center for Graduate Medical Education, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Cardiology, Okayama R?sai Hospital kn-affil= affil-num=3 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=carbon monoxide kn-keyword=carbon monoxide en-keyword=carbon monoxide poisoning kn-keyword=carbon monoxide poisoning en-keyword=hemiplegia kn-keyword=hemiplegia en-keyword=stroke kn-keyword=stroke en-keyword=tia kn-keyword=tia en-keyword=globus pallidus lesions kn-keyword=globus pallidus lesions en-keyword=neurologic manifestation kn-keyword=neurologic manifestation END start-ver=1.4 cd-journal=joma no-vol=22 cd-vols= no-issue=13 article-no= start-page=7235 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210705 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Citric Acid-Mediated Abiotic Stress Tolerance in Plants en-subtitle= kn-subtitle= en-abstract= kn-abstract=Several recent studies have shown that citric acid/citrate (CA) can confer abiotic stress tolerance to plants. Exogenous CA application leads to improved growth and yield in crop plants under various abiotic stress conditions. Improved physiological outcomes are associated with higher photosynthetic rates, reduced reactive oxygen species, and better osmoregulation. Application of CA also induces antioxidant defense systems, promotes increased chlorophyll content, and affects secondary metabolism to limit plant growth restrictions under stress. In particular, CA has a major impact on relieving heavy metal stress by promoting precipitation, chelation, and sequestration of metal ions. This review summarizes the mechanisms that mediate CA-regulated changes in plants, primarily CA's involvement in the control of physiological and molecular processes in plants under abiotic stress conditions. We also review genetic engineering strategies for CA-mediated abiotic stress tolerance. Finally, we propose a model to explain how CA's position in complex metabolic networks involving the biosynthesis of phytohormones, amino acids, signaling molecules, and other secondary metabolites could explain some of its abiotic stress-ameliorating properties. This review summarizes our current understanding of CA-mediated abiotic stress tolerance and highlights areas where additional research is needed. en-copyright= kn-copyright= en-aut-name=Tahjib-Ul-ArifMd. en-aut-sei=Tahjib-Ul-Arif en-aut-mei=Md. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ZahanMst, Ishrat en-aut-sei=Zahan en-aut-mei=Mst, Ishrat kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KarimMd. Masudul en-aut-sei=Karim en-aut-mei=Md. Masudul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ImranShahin en-aut-sei=Imran en-aut-mei=Shahin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HunterCharles T. en-aut-sei=Hunter en-aut-mei=Charles T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IslamMd. Saiful en-aut-sei=Islam en-aut-mei=Md. Saiful kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MiaMd. Ashik en-aut-sei=Mia en-aut-mei=Md. Ashik kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HannanMd. Abdul en-aut-sei=Hannan en-aut-mei=Md. Abdul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=RhamanMohammad Saidur en-aut-sei=Rhaman en-aut-mei=Mohammad Saidur kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HossainMd. Afzal en-aut-sei=Hossain en-aut-mei=Md. Afzal kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=BresticMarian en-aut-sei=Brestic en-aut-mei=Marian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SkalickyMilan en-aut-sei=Skalicky en-aut-mei=Milan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MurataYoshiyuki en-aut-sei=Murata en-aut-mei=Yoshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Plant Breeding Division, Bangladesh Rice Research Institute kn-affil= affil-num=3 en-affil=Department of Crop Botany, Bangladesh Agricultural University kn-affil= affil-num=4 en-affil=Department of Agronomy, Khulna Agricultural University kn-affil= affil-num=5 en-affil=Chemistry Research Unit, United States Department of Agriculture?Agricultural Research Service kn-affil= affil-num=6 en-affil=Department of Fisheries, Bangamata Sheikh Fojilatunnesa Mujib Science and Technology University kn-affil= affil-num=7 en-affil=Department of Crop Botany, Bangladesh Agricultural University kn-affil= affil-num=8 en-affil=Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University kn-affil= affil-num=9 en-affil=Department of Seed Science and Technology, Bangladesh Agricultural University kn-affil= affil-num=10 en-affil=Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University kn-affil= affil-num=11 en-affil=Department of Plant Physiology, Slovak University of Agriculture kn-affil= affil-num=12 en-affil=Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague kn-affil= affil-num=13 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=citrate kn-keyword=citrate en-keyword=heavy metal stress kn-keyword=heavy metal stress en-keyword=drought stress kn-keyword=drought stress en-keyword=antioxidant kn-keyword=antioxidant en-keyword=reactive oxygen species kn-keyword=reactive oxygen species en-keyword=salinity kn-keyword=salinity en-keyword=aluminum toxicity kn-keyword=aluminum toxicity END start-ver=1.4 cd-journal=joma no-vol=566 cd-vols= no-issue= article-no= start-page=190 end-page=196 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=2021820 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Role of the TRPM4 channel in mitochondrial function, calcium release, and ROS generation in oxidative stress en-subtitle= kn-subtitle= en-abstract= kn-abstract=Ischemic heart disease is one of the most common causes of death worldwide. Mitochondrial dysfunction, excessive reactive oxygen species (ROS) generation, and calcium (Ca2?) overload are three key factors leading to myocardial death during ischemia-reperfusion (I/R) injury. Inhibition of TRPM4, a Ca2?-activated nonselective cation channel, protects the rat heart from I/R injury, but the specific mechanism underlying this effect is unclear. In this study, we investigated the mechanism of cardioprotection against I/R injury via TRPM4 using hydrogen peroxide (H2O2), a major contributor to oxidative stress, as an I/R injury model. We knocked out the TRPM4 gene in the rat cardiomyocyte cell line H9c2 using CRISPR/Cas9. Upon H2O2 treatment, intracellular Ca2? level and ROS production increased in wild type (WT) cells but not in TRPM4 knockout (TRPM4KO) cells. With this treatment, two indicators of mitochondrial function, mitochondrial membrane potential (DJm) and intracellular ATP levels, decreased inWT but not in TRPM4KO cells. Taken together, these findings suggest that blockade of the TRPM4 channel might protect the myocardium from oxidative stress by maintaining the mitochondrial membrane potential and intracellular ATP levels, possibly through preventing aberrant increases in intracellular Ca2? and ROS. en-copyright= kn-copyright= en-aut-name=WangChen en-aut-sei=Wang en-aut-mei=Chen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ChenJian en-aut-sei=Chen en-aut-mei=Jian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WangMengxue en-aut-sei=Wang en-aut-mei=Mengxue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NaruseKeiji en-aut-sei=Naruse en-aut-mei=Keiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakahashiKen en-aut-sei=Takahashi en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=6 article-no= start-page=591 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=2021621 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Photoelectric Dye, NK-5962, as a Potential Drug for Preventing Retinal Neurons from Apoptosis: Pharmacokinetic Studies Based on Review of the Evidence en-subtitle= kn-subtitle= en-abstract= kn-abstract=NK-5962 is a key component of photoelectric dye-based retinal prosthesis (OUReP). In testing the safety and efficacy, NK-5962 was safe in all tests for the biological evaluation of medical devices (ISO 10993) and effective in preventing retinal cells from death even under dark conditions. The long-term implantation of the photoelectric dye-coupled polyethylene film in the subretinal space of hereditary retinal dystrophic (RCS) rats prevented neurons from apoptosis in the adjacent retinal tissue. The intravitreous injection of NK-5962 in the eyes of RCS rats, indeed, reduced the number of apoptotic cells in the retinal outer nuclear layer irrespective of light or dark conditions. In this study, we reviewed the in vitro and in vivo evidence of neuroprotective effect of NK-5962 and designed pharmacokinetic experiments. The in vitro IC50 of 1.7 μM, based on the protective effect on retinal cells in culture, could explain the in vivo EC50 of 3 μM that is calculated from concentrations of intravitreous injection to prevent retinal neurons from apoptosis. Pharmacokinetics of NK-5962 showed that intravenous administration, but not oral administration, led to the effective concentration in the eye of rats. NK-5962 would be a candidate drug for delaying the deterioration of retinal dystrophy, such as retinitis pigmentosa. en-copyright= kn-copyright= en-aut-name=MatsuoToshihiko en-aut-sei=Matsuo en-aut-mei=Toshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=LiuShihui en-aut-sei=Liu en-aut-mei=Shihui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UchidaTetsuya en-aut-sei=Uchida en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OnoueSatomi en-aut-sei=Onoue en-aut-mei=Satomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakagawaShinsaku en-aut-sei=Nakagawa en-aut-mei=Shinsaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IshiiMayumi en-aut-sei=Ishii en-aut-mei=Mayumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KanamitsuKayoko en-aut-sei=Kanamitsu en-aut-mei=Kayoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Ophthalmology, Okayama University Hospital kn-affil= affil-num=2 en-affil=Okayama University Graduate School of Interdisciplinary Science and Engineering in Health Systems kn-affil= affil-num=3 en-affil=Polymer Materials Science, Okayama University Graduate School of Natural Science and Technology kn-affil= affil-num=4 en-affil=Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka kn-affil= affil-num=5 en-affil=Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University kn-affil= affil-num=6 en-affil=Drug Discovery Initiative, The University of Tokyo kn-affil= affil-num=7 en-affil=Drug Discovery Initiative, The University of Tokyo kn-affil= en-keyword=NK-5962 kn-keyword=NK-5962 en-keyword=photoelectric dye kn-keyword=photoelectric dye en-keyword=apoptosis kn-keyword=apoptosis en-keyword=retinal neuron kn-keyword=retinal neuron en-keyword=neuroprotection kn-keyword=neuroprotection en-keyword=pharmacokinetics kn-keyword=pharmacokinetics en-keyword=ADME kn-keyword=ADME en-keyword=phototoxic/photosensitive assay kn-keyword=phototoxic/photosensitive assay en-keyword=reactive oxygen species assay kn-keyword=reactive oxygen species assay en-keyword=photosafety kn-keyword=photosafety END start-ver=1.4 cd-journal=joma no-vol=75 cd-vols= no-issue=3 article-no= start-page=289 end-page=297 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202106 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Efficacy and Safety of Early Intravenous Landiolol on Myocardial Salvage in Patients with ST-segment Elevation Myocardial Infarction before Primary Percutaneous Coronary Intervention: A Randomized Study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Early treatment with an oral β-blocker is recommended in patients with a ST-segment?elevation myocardial infarction (STEMI). In this multicenter study, we evaluated the effects of a continuous administration of landiolol, an ultrashort-acting β-blocker, before primary percutaneous coronary intervention (PCI) on myocardial salvage and its safety in STEMI patients. A total of 47 Japanese patients with anterior or lateral STEMI undergoing a primary PCI within 12 h of symptom onset were randomized to receive intravenous landiolol (started at 3 μg/min/kg dose and continued to a total of 50 mg; n=23) or not (control; n=24). Patients with Killip class III or more were excluded. The primary outcome was the myocardial salvage index on cardiac magnetic resonance imaging (MRI) performed 5-7 days after the PCI. Cardiac MRI was performed in 35 patients (74%). The myocardial salvage index in the landiolol group was significantly greater than that in the control group (44.4±14.6% vs. 31.7±18.9%, respectively; p=0.04). There were no significant differences in adverse events at 24 h between the landiolol and control groups. A continuous administration of landiolol before a primary PCI may increase the degree of myocardial salvage without additional hemodynamic adverse effects within the first 24 h after STEMI. en-copyright= kn-copyright= en-aut-name=MiyamotoMasakazu en-aut-sei=Miyamoto en-aut-mei=Masakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OsawaKazuhiro en-aut-sei=Osawa en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MoriAtsushi en-aut-sei=Mori en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YoshikawaMasaki en-aut-sei=Yoshikawa en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OkaTakefumi en-aut-sei=Oka en-aut-mei=Takefumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IchikawaKeishi en-aut-sei=Ichikawa en-aut-mei=Keishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cardiology, Tsuyama Central Hospital kn-affil= affil-num=5 en-affil=Department of Cardiology, Fukuyama City Hospital kn-affil= affil-num=6 en-affil=Department of Cardiology, Tsuyama Central Hospital kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=myocardial infarction kn-keyword=myocardial infarction en-keyword=landiolol kn-keyword=landiolol en-keyword= magnetic resonance imaging kn-keyword= magnetic resonance imaging en-keyword=STEMI kn-keyword=STEMI en-keyword=PCI kn-keyword=PCI END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=腎組織灌流,酸素化,腎機能におけるノルエピネフリンに対するバソプレシンの有用性〜羊敗血症性腎障害モデルを用いて〜 kn-title=Beneficial Effects of Vasopressin Compared With Norepinephrine on Renal Perfusion, Oxygenation, and Function in Experimental Septic Acute Kidney Injury en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=OkazakiNobuki en-aut-sei=Okazaki en-aut-mei=Nobuki kn-aut-name=岡ア信樹 kn-aut-sei=岡ア kn-aut-mei=信樹 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学大学院医歯薬学総合研究科 END start-ver=1.4 cd-journal=joma no-vol=21 cd-vols= no-issue=1 article-no= start-page=123 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210421 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Integrated pulmonary index can predict respiratory compromise in high-risk patients in the post-anesthesia care unit: a prospective, observational study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Respiratory compromise (RC) including hypoxia and hypoventilation is likely to be missed in the postoperative period. Integrated pulmonary index (IPI) is a comprehensive respiratory parameter evaluating ventilation and oxygenation. It is calculated from four parameters: end-tidal carbon dioxide, respiratory rate, oxygen saturation measured by pulse oximetry (SpO(2)), and pulse rate. We hypothesized that IPI monitoring can help predict the occurrence of RC in patients at high-risk of hypoventilation in post-anesthesia care units (PACUs).
Methods: This prospective observational study was conducted in two centers and included older adults (>= 75-year-old) or obese (body mass index >= 28) patients who were at high-risk of hypoventilation. Monitoring was started on admission to the PACU after elective surgery under general anesthesia. We investigated the onset of RC defined as respiratory events with prolonged stay in the PACU or transfer to the intensive care units; airway narrowing, hypoxemia, hypercapnia, wheezing, apnea, and any other events that were judged to require interventions. We evaluated the relationship between several initial parameters in the PACU and the occurrence of RC. Additionally, we analyzed the relationship between IPI fluctuation during PACU stay and the occurrences of RC using individual standard deviations of the IPI every five minutes (IPI-SDs).
Results: In total, 288 patients were included (199 elderly, 66 obese, and 23 elderly and obese). Among them, 18 patients (6.3 %) developed RC. The initial IPI and SpO(2) values in the PACU in the RC group were significantly lower than those in the non-RC group (6.7 +/- 2.5 vs. 9.0 +/- 1.3, p < 0.001 and 95.9 +/- 4.2 % vs. 98.3 +/- 1.9 %, p = 0.040, respectively). We used the area under the receiver operating characteristic curves (AUC) to evaluate their ability to predict RC. The AUCs of the IPI and SpO(2) were 0.80 (0.69-0.91) and 0.64 (0.48-0.80), respectively. The IPI-SD, evaluating fluctuation, was significantly greater in the RC group than in the non-RC group (1.47 +/- 0.74 vs. 0.93 +/- 0.74, p = 0.002).
Conclusions: Our study showed that low value of the initial IPI and the fluctuating IPI after admission to the PACU predict the occurrence of RC. The IPI might be useful for respiratory monitoring in PACUs and ICUs after general anesthesia. en-copyright= kn-copyright= en-aut-name=KuroeYasutoshi en-aut-sei=Kuroe en-aut-mei=Yasutoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiharaYuko en-aut-sei=Mihara en-aut-mei=Yuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OkaharaShuji en-aut-sei=Okahara en-aut-mei=Shuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IshiiKenzo en-aut-sei=Ishii en-aut-mei=Kenzo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KanazawaTomoyuki en-aut-sei=Kanazawa en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MorimatsuHiroshi en-aut-sei=Morimatsu en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Anesthesiology and Resuscitology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Anesthesiology and Resuscitology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Anesthesiology and Resuscitology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Anesthesiology and Oncological Pain Medicine, Fukuyama City Hospital kn-affil= affil-num=5 en-affil=Department of Pediatric Anesthesiology, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Anesthesiology and Resuscitology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Integrated pulmonary index kn-keyword=Integrated pulmonary index en-keyword=Respiratory compromise kn-keyword=Respiratory compromise en-keyword=Post‐anesthesia care unit kn-keyword=Post‐anesthesia care unit END start-ver=1.4 cd-journal=joma no-vol=8 cd-vols= no-issue= article-no= start-page=431 end-page=443 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202105 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Capturing structural changes of the S-1 to S-2 transition of photosystem II using time-resolved serial femtosecond crystallography en-subtitle= kn-subtitle= en-abstract= kn-abstract=Photosystem II (PSII) catalyzes light-induced water oxidation through an S-i-state cycle, leading to the generation of di-oxygen, protons and electrons. Pumpprobe time-resolved serial femtosecond crystallography (TR-SFX) has been used to capture structural dynamics of light-sensitive proteins. In this approach, it is crucial to avoid light contamination in the samples when analyzing a particular reaction intermediate. Here, a method for determining a condition that avoids light contamination of the PSII microcrystals while minimizing sample consumption in TR-SFX is described. By swapping the pump and probe pulses with a very short delay between them, the structural changes that occur during the S-1-to-S-2 transition were examined and a boundary of the excitation region was accurately determined. With the sample flow rate and concomitant illumination conditions determined, the S-2-state structure of PSII could be analyzed at room temperature, revealing the structural changes that occur during the S-1-to-S-2 transition at ambient temperature. Though the structure of the manganese cluster was similar to previous studies, the behaviors of the water molecules in the two channels (O1 and O4 channels) were found to be different. By comparing with the previous studies performed at low temperature or with a different delay time, the possible channels for water inlet and structural changes important for the water-splitting reaction were revealed. en-copyright= kn-copyright= en-aut-name=LiHongjie en-aut-sei=Li en-aut-mei=Hongjie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakajimaYoshiki en-aut-sei=Nakajima en-aut-mei=Yoshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NomuraTakashi en-aut-sei=Nomura en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SugaharaMichihiro en-aut-sei=Sugahara en-aut-mei=Michihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YonekuraShinichiro en-aut-sei=Yonekura en-aut-mei=Shinichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ChanSiu Kit en-aut-sei=Chan en-aut-mei=Siu Kit kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakaneTakanori en-aut-sei=Nakane en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamaneTakahiro en-aut-sei=Yamane en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=UmenaYasufumi en-aut-sei=Umena en-aut-mei=Yasufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SuzukiMamoru en-aut-sei=Suzuki en-aut-mei=Mamoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MasudaTetsuya en-aut-sei=Masuda en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MotomuraTaiki en-aut-sei=Motomura en-aut-mei=Taiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NaitowHisashi en-aut-sei=Naitow en-aut-mei=Hisashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=MatsuuraYoshinori en-aut-sei=Matsuura en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=KimuraTetsunari en-aut-sei=Kimura en-aut-mei=Tetsunari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=TonoKensuke en-aut-sei=Tono en-aut-mei=Kensuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=OwadaShigeki en-aut-sei=Owada en-aut-mei=Shigeki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=JotiYasumasa en-aut-sei=Joti en-aut-mei=Yasumasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=TanakaRie en-aut-sei=Tanaka en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=NangoEriko en-aut-sei=Nango en-aut-mei=Eriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=AkitaFusamichi en-aut-sei=Akita en-aut-mei=Fusamichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=KuboMinoru en-aut-sei=Kubo en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=IwataSo en-aut-sei=Iwata en-aut-mei=So kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=SugaMichihiro en-aut-sei=Suga en-aut-mei=Michihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Life Science, University of Hyogo kn-affil= affil-num=4 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=5 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Department of Biological Science, Graduate School of Science, The University of Tokyo kn-affil= affil-num=8 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=9 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=10 en-affil=Institute for Protein Research, Osaka University kn-affil= affil-num=11 en-affil=Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University kn-affil= affil-num=12 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=13 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=14 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=15 en-affil=Department of Chemistry, Graduate School of Science, Kobe University kn-affil= affil-num=16 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=17 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=18 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=19 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=20 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=21 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=22 en-affil=Graduate School of Life Science, University of Hyogo kn-affil= affil-num=23 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=24 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=25 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=time-resolved serial crystallography kn-keyword=time-resolved serial crystallography en-keyword=X-ray free-electron lasers kn-keyword=X-ray free-electron lasers en-keyword=membrane proteins kn-keyword=membrane proteins en-keyword=photosystem II kn-keyword=photosystem II en-keyword=serial crystallography kn-keyword=serial crystallography en-keyword=molecular movies kn-keyword=molecular movies en-keyword=protein structures kn-keyword=protein structures END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210505 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Carbon monoxide poisoning during pregnancy treated with hyperbaric oxygen en-subtitle= kn-subtitle= en-abstract= kn-abstract=Acute carbon monoxide (CO) intoxication during pregnancy causes fetal death and teratogenic effects. Hyperbaric oxygen (HBO2) therapy has the potential to improve them. HBO2 therapy should be considered to treat CO intoxication during pregnancy. en-copyright= kn-copyright= en-aut-name=KosakiYoshinori en-aut-sei=Kosaki en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MaeyamaHiroki en-aut-sei=Maeyama en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NojimaTsuyoshi en-aut-sei=Nojima en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ObaraTakafumi en-aut-sei=Obara en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakaoAtsunori en-aut-sei=Nakao en-aut-mei=Atsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NaitoHiromichi en-aut-sei=Naito en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=carbon monoxide kn-keyword=carbon monoxide en-keyword=case reports kn-keyword=case reports en-keyword=hyperbaric oxygen therapy kn-keyword=hyperbaric oxygen therapy en-keyword=pregnancy kn-keyword=pregnancy END start-ver=1.4 cd-journal=joma no-vol=8 cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210413 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Systematic Understanding of Pathophysiological Mechanisms of Oxidative Stress-Related Conditions-Diabetes Mellitus, Cardiovascular Diseases, and Ischemia-Reperfusion Injury en-subtitle= kn-subtitle= en-abstract= kn-abstract=Reactive oxygen species (ROS) plays a role in intracellular signal transduction under physiological conditions while also playing an essential role in diseases such as hypertension, ischemic heart disease, and diabetes, as well as in the process of aging. The influence of ROS has some influence on the frequent occurrence of cardiovascular diseases (CVD) in diabetic patients. In this review, we considered the pathophysiological relationship between diabetes and CVD from the perspective of ROS. In addition, considering organ damage due to ROS elevation during ischemia-reperfusion, we discussed heart and lung injuries. Furthermore, we have focused on the transient receptor potential (TRP) channels and L-type calcium channels as molecular targets for ROS in ROS-induced tissue damages and have discussed about the pathophysiological mechanism of the injury. en-copyright= kn-copyright= en-aut-name=WangMengxue en-aut-sei=Wang en-aut-mei=Mengxue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=LiuYun en-aut-sei=Liu en-aut-mei=Yun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=LiangYin en-aut-sei=Liang en-aut-mei=Yin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NaruseKeiji en-aut-sei=Naruse en-aut-mei=Keiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakahashiKen en-aut-sei=Takahashi en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=oxidative stress kn-keyword=oxidative stress en-keyword=reactive oxygen species kn-keyword=reactive oxygen species en-keyword=inflammation kn-keyword=inflammation en-keyword=diabetes mellitus kn-keyword=diabetes mellitus en-keyword=ischemia-reperfusion injury kn-keyword=ischemia-reperfusion injury en-keyword=mitochondria kn-keyword=mitochondria en-keyword=transient receptor potential channels kn-keyword=transient receptor potential channels END start-ver=1.4 cd-journal=joma no-vol=75 cd-vols= no-issue=2 article-no= start-page=169 end-page=175 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202104 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Effects of Low-Dose-Rate γ-irradiation on Forced Swim Test-Induced Immobility and Oxidative Stress in Mice en-subtitle= kn-subtitle= en-abstract= kn-abstract=The forced swim test (FST) induces immobility in mice. Low-dose (high-dose-rate) X-irradiation inhibits FSTinduced immobility in mice due to its antioxidative function. We evaluated the effects of low-dose γ-irradiation at a low-dose-rate on the FST-induced depletion of antioxidants in mouse organs. Mice received whole-body low-dose-rate (0.6 or 3.0 mGy/h) of low-dose γ-irradiation for 1 week, followed by daily FSTs (5 days). The immobility rate on day 2 compared to day 1 was significantly lower in the 3.0 mGy/h irradiated mice than in sham irradiated mice. The FST significantly decreased the catalase (CAT) activity and total glutathione (t-GSH) content in the brain and kidney, respectively. The superoxide dismutase (SOD) activity and t-GSH content in the liver of the 3.0 mGy/h irradiated mice were significantly lower than those of the non-FST-treated mice. The CAT activity in the lungs of mice exposed to 3.0 mGy/h γ-irradiation was higher than that of non-FST treated mice and mice treated with FST. However, no significant differences were observed in the levels of these antioxidant markers between the sham and irradiated groups except for the CAT activity in lungs. These findings suggest that the effects of low-dose-rate and low-dose γ-irradiation on FST are highly organ-dependent. en-copyright= kn-copyright= en-aut-name=NakadaTetsuya en-aut-sei=Nakada en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KataokaTakahiro en-aut-sei=Kataoka en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NomuraTakaharu en-aut-sei=Nomura en-aut-mei=Takaharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShutoHina en-aut-sei=Shuto en-aut-mei=Hina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YanoJunki en-aut-sei=Yano en-aut-mei=Junki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NaoeShota en-aut-sei=Naoe en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HanamotoKatsumi en-aut-sei=Hanamoto en-aut-mei=Katsumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamaokaKiyonori en-aut-sei=Yamaoka en-aut-mei=Kiyonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=3 en-affil=Central Research Institute of Electric Power Industry kn-affil= affil-num=4 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= en-keyword=low-dose-rate γ-irradiation kn-keyword=low-dose-rate γ-irradiation en-keyword=forced swim test kn-keyword=forced swim test en-keyword=antioxidant kn-keyword=antioxidant en-keyword=oxidative stress kn-keyword=oxidative stress END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210403 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Cooperation between NRF2-mediated transcription and MDIG-dependent epigenetic modifications in arsenic-induced carcinogenesis and cancer stem cells en-subtitle= kn-subtitle= en-abstract= kn-abstract= Environmental exposure to arsenic, a well-established carcinogen linked to a number of human cancers, is a public health concern in many areas of the world. Despite extensive studies on the molecular mechanisms of arsenic-induced carcinogenesis, how initial cellular responses, such as activation of stress kinases and the generation of reactive oxygen species, converge to affect the transcriptional and/or epigenetic reprogramming required for the malignant transformation of normal cells or normal stem cells remains to be elucidated. In this review, we discuss some recent discoveries showing how the transcription factor NRF2 and an epigenetic regulator, MDIG, contribute to the arsenic-induced generation of cancer stem-like cells (CSCs) as determined by applying CRISPR-Cas9 gene editing and chromosome immunoprecipitation followed by DNA sequencing (ChIP-seq). en-copyright= kn-copyright= en-aut-name=BiZhuoyue en-aut-sei=Bi en-aut-mei=Zhuoyue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ZhangQian en-aut-sei=Zhang en-aut-mei=Qian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FuYao en-aut-sei=Fu en-aut-mei=Yao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SenoAkimasa en-aut-sei=Seno en-aut-mei=Akimasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WadgaonkarPriya en-aut-sei=Wadgaonkar en-aut-mei=Priya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=QiuYiran en-aut-sei=Qiu en-aut-mei=Yiran kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AlmutairyBandar en-aut-sei=Almutairy en-aut-mei=Bandar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=XuLiping en-aut-sei=Xu en-aut-mei=Liping kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ZhangWenxuan en-aut-sei=Zhang en-aut-mei=Wenxuan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ThakurChitra en-aut-sei=Thakur en-aut-mei=Chitra kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=ChenFei en-aut-sei=Chen en-aut-mei=Fei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University kn-affil= affil-num=2 en-affil=Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University kn-affil= affil-num=3 en-affil=Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University kn-affil= affil-num=4 en-affil=Faculty of Engineering, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=5 en-affil=Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University kn-affil= affil-num=6 en-affil=Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University kn-affil= affil-num=7 en-affil=Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University kn-affil= affil-num=8 en-affil=Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University kn-affil= affil-num=9 en-affil=Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University kn-affil= affil-num=10 en-affil=Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University kn-affil= affil-num=11 en-affil=Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University kn-affil= en-keyword=Arsenic kn-keyword=Arsenic en-keyword=NRF2 kn-keyword=NRF2 en-keyword=MDIG kn-keyword=MDIG en-keyword=Cancer stem cells kn-keyword=Cancer stem cells en-keyword=Carcinogenesis kn-keyword=Carcinogenesis END start-ver=1.4 cd-journal=joma no-vol=4 cd-vols= no-issue=1 article-no= start-page=382 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210322 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=High-resolution cryo-EM structure of photosystem II reveals damage from high-dose electron beams en-subtitle= kn-subtitle= en-abstract= kn-abstract=Photosystem II (PSII) plays a key role in water-splitting and oxygen evolution. X-ray crystallography has revealed its atomic structure and some intermediate structures. However, these structures are in the crystalline state and its final state structure has not been solved. Here we analyzed the structure of PSII in solution at 1.95?? resolution by single-particle cryo-electron microscopy (cryo-EM). The structure obtained is similar to the crystal structure, but a PsbY subunit was visible in the cryo-EM structure, indicating that it represents its physiological state more closely. Electron beam damage was observed at a high-dose in the regions that were easily affected by redox states, and reducing the beam dosage by reducing frames from 50 to 2 yielded a similar resolution but reduced the damage remarkably. This study will serve as a good indicator for determining damage-free cryo-EM structures of not only PSII but also all biological samples, especially redox-active metalloproteins. en-copyright= kn-copyright= en-aut-name=KatoKoji en-aut-sei=Kato en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyazakiNaoyuki en-aut-sei=Miyazaki en-aut-mei=Naoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HamaguchiTasuku en-aut-sei=Hamaguchi en-aut-mei=Tasuku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakajimaYoshiki en-aut-sei=Nakajima en-aut-mei=Yoshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AkitaFusamichi en-aut-sei=Akita en-aut-mei=Fusamichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YonekuraKoji en-aut-sei=Yonekura en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba kn-affil= affil-num=3 en-affil=Biostructural Mechanism Laboratory, RIKEN Spring-8 Center kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Institute of Multidisciplinary Research for Advanced Materials, Tohoku University kn-affil= affil-num=7 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=1 article-no= start-page=2045894019831217 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190215 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Improvement of lung function and pulmonary hypertension after pulmonary aneurysm repair: case series en-subtitle= kn-subtitle= en-abstract= kn-abstract=Pulmonary artery aneurysms (PAA) can be complicated with pulmonary arterial hypertension (PAH), causing sudden death due to PA rupture and dissection. Because treatment with PAH-targeted drugs does not always prevent PAA progression, prophylactic surgical repair of the PAA seems a promising alternative. However, although it avoids rupture and dissection of the PAs, additional benefits have not been forthcoming. We therefore present two patients with co-existing PAH and a PAA who underwent surgical repair of the aneurysm. Following the surgery, their lung function and pulmonary hypertension improved. Optimal treatment of PAA remains uncertain, however, with no clear guidelines regarding the best therapeutic approach. This case series provides physicians with reasons to repair PAA surgically in patients with PAH. en-copyright= kn-copyright= en-aut-name=AkagiSatoshi en-aut-sei=Akagi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=EjiriKentaro en-aut-sei=Ejiri en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KasaharaShingo en-aut-sei=Kasahara en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=3 en-affil=Department of Cardiovascular Surgery, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= en-keyword=vital capacity kn-keyword=vital capacity en-keyword=pulmonary artery pressure kn-keyword=pulmonary artery pressure en-keyword=lung perfusion and oxygenation kn-keyword=lung perfusion and oxygenation END start-ver=1.4 cd-journal=joma no-vol=22 cd-vols= no-issue=4 article-no= start-page=1729 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210209 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Treatment of Oxidative Stress with Exosomes in Myocardial Ischemia en-subtitle= kn-subtitle= en-abstract= kn-abstract=A thrombus in a coronary artery causes ischemia, which eventually leads to myocardial infarction (MI) if not removed. However, removal generates reactive oxygen species (ROS), which causes ischemia-reperfusion (I/R) injury that damages the tissue and exacerbates the resulting MI. The mechanism of I/R injury is currently extensively understood. However, supplementation of exogenous antioxidants is ineffective against oxidative stress (OS). Enhancing the ability of endogenous antioxidants may be a more effective way to treat OS, and exosomes may play a role as targeted carriers. Exosomes are nanosized vesicles wrapped in biofilms which contain various complex RNAs and proteins. They are important intermediate carriers of intercellular communication and material exchange. In recent years, diagnosis and treatment with exosomes in cardiovascular diseases have gained considerable attention. Herein, we review the new findings of exosomes in the regulation of OS in coronary heart disease, discuss the possibility of exosomes as carriers for the targeted regulation of endogenous ROS generation, and compare the advantages of exosome therapy with those of stem-cell therapy. Finally, we explore several miRNAs found in exosomes against OS. en-copyright= kn-copyright= en-aut-name=LiuYun en-aut-sei=Liu en-aut-mei=Yun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WangMengxue en-aut-sei=Wang en-aut-mei=Mengxue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=LiangYin en-aut-sei=Liang en-aut-mei=Yin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WangChen en-aut-sei=Wang en-aut-mei=Chen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NaruseKeiji en-aut-sei=Naruse en-aut-mei=Keiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakahashiKen en-aut-sei=Takahashi en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=exosome kn-keyword=exosome en-keyword=oxidative stress kn-keyword=oxidative stress en-keyword=exosome therapy kn-keyword=exosome therapy en-keyword=myocardial infarction kn-keyword=myocardial infarction en-keyword=coronary heart disease kn-keyword=coronary heart disease en-keyword=reactive oxygen radicals kn-keyword=reactive oxygen radicals END start-ver=1.4 cd-journal=joma no-vol=1 cd-vols= no-issue=3 article-no= start-page=80 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20201217 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=On the Occurrence of Clathrate Hydrates in Extreme Conditions: Dissociation Pressures and Occupancies at Cryogenic Temperatures with Application to Planetary Systems en-subtitle= kn-subtitle= en-abstract= kn-abstract=We investigate the thermodynamic stability of clathrate hydrates at cryogenic temperatures from the 0 K limit to 200 K in a wide range of pressures, covering the thermodynamic conditions of interstellar space and the surface of the hydrosphere in satellites. Our evaluation of the phase behaviors is performed by setting up quantum partition functions with variable pressures on the basis of a rigorous statistical mechanics theory that requires only the intermolecular interactions as input. Noble gases, hydrocarbons, nitrogen, and oxygen are chosen as the guest species, which are key components of the volatiles in such satellites. We explore the hydrate/water two-phase boundary of those clathrate hydrates in water-rich conditions and the hydrate/guest two-phase boundary in guest-rich conditions, either of which occurs on the surface or subsurface of icy satellites. The obtained phase diagrams indicate that clathrate hydrates can be in equilibrium with either water or the guest species over a wide range far distant from the three-phase coexistence condition and that the stable pressure zone of each clathrate hydrate expands significantly on intense cooling. The implication of our findings for the stable form of water in Titan is that water on the surface exists only as clathrate hydrate with the atmosphere down to a shallow region of the crust, but clathrate hydrate in the remaining part of the crust can coexist with water ice. This is in sharp contrast to the surfaces of Europa and Ganymede, where the thin oxygen air coexists exclusively with pure ice. en-copyright= kn-copyright= en-aut-name=TanakaHideki en-aut-sei=Tanaka en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YagasakiTakuma en-aut-sei=Yagasaki en-aut-mei=Takuma kn-aut-name=琢 kn-aut-sei= kn-aut-mei=琢 aut-affil-num=2 ORCID= en-aut-name=MatsumotoMasakazu en-aut-sei=Matsumoto en-aut-mei=Masakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=232 cd-vols= no-issue=1 article-no= start-page=17 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210106 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Enhancement of Zinc Ion Removal from Water by Physically Mixed Particles of Iron/Iron Sulfide en-subtitle= kn-subtitle= en-abstract= kn-abstract=Zinc (Zn) removal by physically mixed particles of zero-valent iron (Fe) and iron sulfide (FeS) was investigated as one technology for Zn removal from waste groundwater. The effects of the Fe/FeS mass ratio, including a single Fe and FeS particles, and pH on changes in the concentrations of Zn, Fe, and S were examined by a batch test and column tests, and the mechanism of Zn elimination was discussed. Among all the mixing fractions of Fe and FeS, Zn was eliminated most effectively by 3Fe/7FeS (mass ratio of Fe/FeS?=?3/7). The Zn removal rate decreased in the order of 3Fe/7FeS, FeS, and Fe, whereas the Fe concentration decreased in the order of Fe, FeS, and 3Fe/7FeS. The S concentration of FeS was larger than that of 3Fe/7FeS. The Zn removal rate by physically mixed 3Fe/7FeS particles was enhanced by a local cell reaction between the Fe and FeS particles. The electrons caused by Fe corrosion moved to the FeS surface and reduced the dissolved oxygen in the solution. Zn2+, Fe2+, and OH? ions in the solution were then coprecipitated on the particles as ZnFe2(OH)6 and oxidized to ZnFe2O4. Moreover, Zn2+ was sulfurized as ZnS by both the Fe/FeS mixture and the simple FeS particles. The Zn removal rate increased with increasing pH in the range from pH 3 to 7. From a kinetic analysis of Zn removal, the rate constant of anode (Fe)/cathode (FeS) reaction was almost the same as that of ZnS formation and slightly larger than that of Fe alone. en-copyright= kn-copyright= en-aut-name=KambaYuya en-aut-sei=Kamba en-aut-mei=Yuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UetaMiharu en-aut-sei=Ueta en-aut-mei=Miharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UddinMd. Azhar en-aut-sei=Uddin en-aut-mei=Md. Azhar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KatoYoshiei en-aut-sei=Kato en-aut-mei=Yoshiei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Material and Energy Science, Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Material and Energy Science, Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Department of Material and Energy Science, Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Department of Material and Energy Science, Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=Zero-valent iron kn-keyword=Zero-valent iron en-keyword=Iron sulfide kn-keyword=Iron sulfide en-keyword=Zinc ion kn-keyword=Zinc ion en-keyword=Zinc removal kn-keyword=Zinc removal en-keyword=Groundwater treatment kn-keyword=Groundwater treatment END start-ver=1.4 cd-journal=joma no-vol=7 cd-vols= no-issue=1 article-no= start-page=e618 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20201220 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Incidence and related factors of hypoxia associated with elderly femoral neck fractures in the emergency department setting en-subtitle= kn-subtitle= en-abstract= kn-abstract=Aim
Femoral neck fractures in elderly patients needing oxygen therapy are often encountered in the emergency department. This single‐center, retrospective, observational study aimed to examine the frequency, cause, and factors related to hypoxia in elderly patients with femoral neck fractures.
Methods
We analyzed data from 241 patients admitted to Okayama Saiseikai General Hospital (Okayama, Japan) from April 2016 to March 2019. Hypoxia was defined as PaO2 / FiO2 ratio under 300. The independent factors for hypoxia were determined by multiple logistic regression analysis.
Results
There were 194 patients who met the study inclusion criteria, 148 in the non‐hypoxia group and 46 in the hypoxia group. The hypoxia group included patients with pneumonia (n = 3), chronic obstructive pulmonary disease (n = 2), pulmonary edema (n = 1), and pulmonary embolization (n = 1). The cause of hypoxia was undetermined in 39 cases. However, occult fat embolism syndrome was suspected in 29 of these 39 cases based on Gurd and Wilson criteria after considering clinical examination results. Barthel indexes were significantly lower in the hypoxia group on discharge. Age (adjusted odds ratio [OR] 1.07; 95% confidence interval [CI], 1.00?1.14; P = 0.038), D‐dimer (adjusted OR 1.02; 95% CI, 1.00?1.03; P = 0.005), and transtricuspid pressure gradient (adjusted OR 1.03; 95% CI, 1.00?1.07; P = 0.015) were independently associated with the hypoxia.
Conclusion
We found that hypoxia, including undetermined hypoxia, was commonly encountered in the emergency department. Hypoxia in elderly patients with femoral neck fractures was associated with age, D‐dimer, and transtricuspid pressure gradient and needs further investigation. en-copyright= kn-copyright= en-aut-name=HongoTakashi en-aut-sei=Hongo en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NaitoHiromichi en-aut-sei=Naito en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujiwaraToshifumi en-aut-sei=Fujiwara en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=InabaMototaka en-aut-sei=Inaba en-aut-mei=Mototaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FujisakiNoritomo en-aut-sei=Fujisaki en-aut-mei=Noritomo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakaoAtsunori en-aut-sei=Nakao en-aut-mei=Atsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Emergency Department, Okayama Saiseikai General Hospital kn-affil= affil-num=2 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=3 en-affil=Emergency Department, Okayama Saiseikai General Hospital kn-affil= affil-num=4 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=5 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=6 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= en-keyword=D-dimer kn-keyword=D-dimer en-keyword=geriatric kn-keyword=geriatric en-keyword=hypoxia kn-keyword=hypoxia en-keyword=injury kn-keyword=injury en-keyword=TRPG kn-keyword=TRPG END start-ver=1.4 cd-journal=joma no-vol=2 cd-vols= no-issue=10 article-no= start-page=4417 end-page=4420 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200824 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Bottom-up synthesis of nitrogen-doped nanocarbons by a combination of metal catalysis and a solution plasma process en-subtitle= kn-subtitle= en-abstract= kn-abstract=We aimed to develop the bottom-up synthesis of nanocarbons with specific functions from molecules without any leaving group, halogen atom and boronic acid, by employing a metal catalyst under solution plasma irradiation. Pyridine was used as a source of carbon. In the presence of a Pd catalyst, the plasma treatment enabled the synthesis of N-doped carbons with a pyridinic configuration, which worked as an active catalytic site for the oxygen reduction reaction. en-copyright= kn-copyright= en-aut-name=ZhouYang en-aut-sei=Zhou en-aut-mei=Yang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishinaYuta en-aut-sei=Nishina en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Research Core for Interdisciplinary Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=6 cd-vols= no-issue=Suppl. 7 article-no= start-page=248 end-page=254 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20201204 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Self-assembly of Ni?Fe layered double hydroxide at room temperature for oxygen evolution reaction en-subtitle= kn-subtitle= en-abstract= kn-abstract=Active and stable electrocatalysts are the key to water electrolysis for hydrogen production. This paper reports a facile direct growth method to synthesize NiFe-layered double hydroxides (LDHs) on nickel foil as an electrocatalyst for the oxygen evolution reaction. The NiFe-LDH is synthesized by a galvanic process at room temperature without any additional energy for synthesis. The synthesized NiFe-LDH is a karst landform with abundant active sites and efficient mass diffusion. The NiFe-LDH with an oxygen defect show excellent electrocatalytic performance for the OER, with a low overpotential (272?mV at 10 mA/cm2), a small Tafel slope (43 mV/dec), and superior durability. Direct growth synthesis provide excellent electrical conductivity as well as strong bonding between the catalyst layer and the substrate. In addition, this synthesis process is simple to apply in the fabrication of a large size electrode and is believed to be applicable to commercialized alkaline water electrolysis. en-copyright= kn-copyright= en-aut-name=KimSeong Hyun en-aut-sei=Kim en-aut-mei=Seong Hyun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ParkYoo Sei en-aut-sei=Park en-aut-mei=Yoo Sei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KimChiho en-aut-sei=Kim en-aut-mei=Chiho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KwonIl Yeong en-aut-sei=Kwon en-aut-mei=Il Yeong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=LeeJooyoung en-aut-sei=Lee en-aut-mei=Jooyoung kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=JinHyunsoo en-aut-sei=Jin en-aut-mei=Hyunsoo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=LeeYoon-Seok en-aut-sei=Lee en-aut-mei=Yoon-Seok kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ChoiSung Mook en-aut-sei=Choi en-aut-mei=Sung Mook kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KimYangdo en-aut-sei=Kim en-aut-mei=Yangdo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Materials Science and Engineering, Pusan National University kn-affil= affil-num=2 en-affil=Department of Materials Science and Engineering, Pusan National University kn-affil= affil-num=3 en-affil=Department of Materials Science and Engineering, Pusan National University kn-affil= affil-num=4 en-affil=Department of Materials Science and Engineering, Pusan National University kn-affil= affil-num=5 en-affil=Materials Center for Energy Department, Surface Technology Division, Korea Institute of Materials Science, kn-affil= affil-num=6 en-affil=Department of Mechanical Engineering, Worcester Polytechnic Institute kn-affil= affil-num=7 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Materials Center for Energy Department, Surface Technology Division, Korea Institute of Materials Science kn-affil= affil-num=9 en-affil=Department of Materials Science and Engineering, Pusan National University kn-affil= en-keyword=Water electrolysis kn-keyword=Water electrolysis en-keyword=Oxygen evolution reaction kn-keyword=Oxygen evolution reaction en-keyword=NiFe layered double hydroxide kn-keyword=NiFe layered double hydroxide en-keyword=Room temperature synthesis kn-keyword=Room temperature synthesis en-keyword=Electrocatalyst kn-keyword=Electrocatalyst END start-ver=1.4 cd-journal=joma no-vol=31 cd-vols= no-issue= article-no= start-page=101224 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=202012 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Extracorporeal membrane oxygenation in Stenotrophomonas maltophilia pneumonia during acute myeloid leukemia: A case report en-subtitle= kn-subtitle= en-abstract= kn-abstract=Stenotrophomonas maltophilia (S. maltophilia) is a Gram-negative, multidrug-resistant organism that both opportunistically infects the bloodstream and leads to pneumonia in immunosuppressed patients, including those with hematologic malignancies. In patients with severe respiratory failure, venovenous extracorporeal membrane oxygenation (VV ECMO) can stabilize the respiratory status. However, whether ECMO in patients with hematologic malignancies improves the clinical outcomes is still controversial because ECMO increases the risk of the exacerbation of sepsis and bleeding. We report a case of a 46-year-old man with Stenotrophomonas maltophilia hemorrhagic pneumonia acquired during consolidation chemotherapy for acute myeloid leukemia in whom VV ECMO lead to a good clinical outcome. The stabilization of his respiratory status achieved with VV ECMO allowed time for trimethoprim-sulfamethoxazole antibiotic therapy to improve the pneumonia. We suggest the background of patients, including comorbidities and general conditions, should be taken into account when considering the clinical indications of ECMO. en-copyright= kn-copyright= en-aut-name=SaitoKenki en-aut-sei=Saito en-aut-mei=Kenki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AokageToshiyuki en-aut-sei=Aokage en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SatoTakayuki en-aut-sei=Sato en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TsukaharaKohei en-aut-sei=Tsukahara en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TokiokaFumiaki en-aut-sei=Tokioka en-aut-mei=Fumiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OtakeTakanao en-aut-sei=Otake en-aut-mei=Takanao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IrieHiromasa en-aut-sei=Irie en-aut-mei=Hiromasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=UedaYasunori en-aut-sei=Ueda en-aut-mei=Yasunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Hematology/Oncology, Kurashiki Central Hospital kn-affil= affil-num=2 en-affil=Department of Geriatric Emergency Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Hematology/Oncology, Kurashiki Central Hospital kn-affil= affil-num=4 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Respiratory Medicine, Kurashiki Central Hospital kn-affil= affil-num=6 en-affil=Department of Anesthesiology, Kurashiki Central Hospital kn-affil= affil-num=7 en-affil=Department of Anesthesiology, Kurashiki Central Hospital kn-affil= affil-num=8 en-affil=Department of Hematology/Oncology, Kurashiki Central Hospital kn-affil= en-keyword=Stenotrophomonas maltophilia kn-keyword=Stenotrophomonas maltophilia en-keyword=Severe pneumonia kn-keyword=Severe pneumonia en-keyword=Acute panmyelosis with myelofibrosis kn-keyword=Acute panmyelosis with myelofibrosis en-keyword=Acute myeloid leukemia kn-keyword=Acute myeloid leukemia en-keyword=Extracorporeal membrane oxygenation kn-keyword=Extracorporeal membrane oxygenation END start-ver=1.4 cd-journal=joma no-vol=363 cd-vols= no-issue= article-no= start-page=137257 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20201210 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Sophisticated rGO synthesis and pre-lithiation unlocking full-cell lithium-ion battery high-rate performances en-subtitle= kn-subtitle= en-abstract= kn-abstract=For the application to portable devices and storage of renewable energies, high-performance lithium-ion batteries are in great demand. To this end, the development of high-performance electrode materials has been actively investigated. However, even if new materials exhibit high performance in a simple evaluation, namely half-cell tests, it is often impossible to obtain satisfactory performance with an actual battery (full cell). In this study, the structure of graphene analogs is modified in various ways to change crystallinity, disorder, oxygen content, electrical conductivity, and specific surface area. These graphene analogs are evaluated as negative electrodes for lithium-ion batteries, and we found reduced graphene oxide prepared by combination of chemical reduction and thermal treatment was the optimum. In addition, a full cell is fabricated by combining it with LiCoO2 modified with BaTiO3, which is applicable to high-speed charge?discharge cathode material developed in our previous research. In general, pre-lithiation is performed for the anode when assembling full cells. In this study, we optimized a "direct pre-lithiation" method in which the electrode and lithium foil were in direct contact before assembling a full cell, and created a lithium-ion battery with an output of 293 Wh kg?1 at 8,658 W kg?1. en-copyright= kn-copyright= en-aut-name=Camp?onBeno?t Denis Louis en-aut-sei=Camp?on en-aut-mei=Beno?t Denis Louis kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YoshikawaYumi en-aut-sei=Yoshikawa en-aut-mei=Yumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TeranishiTakashi en-aut-sei=Teranishi en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishinaYuta en-aut-sei=Nishina en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Graphene kn-keyword=Graphene en-keyword=Lithium-ion battery kn-keyword=Lithium-ion battery en-keyword=Full-cell kn-keyword=Full-cell en-keyword=LiCoO2 kn-keyword=LiCoO2 en-keyword=High-rate kn-keyword=High-rate END start-ver=1.4 cd-journal=joma no-vol=60 cd-vols= no-issue= article-no= start-page=101228 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=202012 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Isotopic proveniencing at Classic Copan and in the southern periphery of the Maya Area: A new perspective on multi-ethnic society en-subtitle= kn-subtitle= en-abstract= kn-abstract=Strontium, oxygen, and carbon isotopes were measured in human tooth enamel from 66 burials in 9L-22 and 9L-23 residential groups at the Classic Maya site of Copan in western Honduras. These results are discussed in relation to earlier studies at Copan and baseline measurements from the surrounding region and the Maya area in general. Nearly 50% of the individuals are identified as non-local based on combinations of strontium, oxygen, and carbon isotope ratios. They came from a variety of places in the Maya area. This migratory pattern at the 9L-22 & 9L-23 residential complex from the Early to Late Classic (ca. 400?800 CE) is compared with 10J-45 sector from the mainly Early Classic occupation (ca. 400?650 CE) and an interesting change is noted. The social privileges observed among the Early Classic immigrants from the north Maya Lowlands were apparently revoked in the Late Classic. New immigrants, probably from the “non-Maya” regions of Western/Central Honduras, appear to have gained those social privileges. High-status Honduran individuals in the urban core suggests a strategy by the Copan dynasty in the Late Classic that incorporated the emerging “non-Maya” elites from Western/Central Honduras. en-copyright= kn-copyright= en-aut-name=SuzukiShintaro en-aut-sei=Suzuki en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakamuraSeiichi en-aut-sei=Nakamura en-aut-mei=Seiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=PriceT. Douglas en-aut-sei=Price en-aut-mei=T. Douglas kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Humanities and Social Sciences, Okayama University kn-affil= affil-num=2 en-affil=Center for Cultural Resource Studies, Institute of Human and Social Sciences, Kanazawa University kn-affil= affil-num=3 en-affil=Laboratory for Archaeological Chemistry, University of Wisconsin kn-affil= en-keyword=Prehispanic mesoamerica kn-keyword=Prehispanic mesoamerica en-keyword=Maya kn-keyword=Maya en-keyword=Non-Maya kn-keyword=Non-Maya en-keyword=Borderland kn-keyword=Borderland en-keyword=Mobility kn-keyword=Mobility en-keyword=Strontium kn-keyword=Strontium en-keyword=Oxygen kn-keyword=Oxygen en-keyword=Carbon kn-keyword=Carbon END start-ver=1.4 cd-journal=joma no-vol=7 cd-vols= no-issue=1 article-no= start-page=e501 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200413 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Therapeutic strategies for ischemia reperfusion injury in emergency medicine en-subtitle= kn-subtitle= en-abstract= kn-abstract=Ischemia reperfusion (IR) injury occurs when blood supply, perfusion, and concomitant reoxygenation is restored to an organ or area following an initial poor blood supply after a critical time period. Ischemia reperfusion injury contributes to mortality and morbidity in many pathological conditions in emergency medicine clinical practice, including trauma, ischemic stroke, myocardial infarction, and post-cardiac arrest syndrome. The process of IR is multifactorial, and its pathogenesis involves several mechanisms. Reactive oxygen species are considered key molecules in reperfusion injury due to their potent oxidizing and reducing effects that directly damage cellular membranes by lipid peroxidation. In general, IR injury to an individual organ causes various pro-inflammatory mediators to be released, which could then induce inflammation in remote organs, thereby possibly advancing the dysfunction of multiple organs. In this review, we summarize IR injury in emergency medicine. Potential therapies include pharmacological treatment, ischemic preconditioning, and the use of medical gases or vitamin therapy, which could significantly help experts develop strategies to inhibit IR injury. en-copyright= kn-copyright= en-aut-name=NaitouHiromichi en-aut-sei=Naitou en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NojimaTsuyoshi en-aut-sei=Nojima en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujisakiNoritomo en-aut-sei=Fujisaki en-aut-mei=Noritomo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TsukaharaKohei en-aut-sei=Tsukahara en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamamotoHirotsugu en-aut-sei=Yamamoto en-aut-mei=Hirotsugu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamadaTaihei en-aut-sei=Yamada en-aut-mei=Taihei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AokageToshiyuki en-aut-sei=Aokage en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YumotoTetsuya en-aut-sei=Yumoto en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OsakoTakaaki en-aut-sei=Osako en-aut-mei=Takaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NakaoAtsunori en-aut-sei=Nakao en-aut-mei=Atsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Emergency medicine kn-keyword=Emergency medicine en-keyword=inflammation kn-keyword=inflammation en-keyword=ischemia reperfusion kn-keyword=ischemia reperfusion en-keyword=remote ischemic preconditioning kn-keyword=remote ischemic preconditioning en-keyword=shock kn-keyword=shock en-keyword=therapeutic hypothermia kn-keyword=therapeutic hypothermia END start-ver=1.4 cd-journal=joma no-vol=405 cd-vols= no-issue= article-no= start-page=112905 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210115 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Exploring reaction pathways for the structural rearrangements of the Mn cluster induced by water binding in the S3 state of the oxygen evolving complex of photosystem II en-subtitle= kn-subtitle= en-abstract= kn-abstract=Photosynthetic oxidation of water to dioxygen is catalyzed by the Mn4CaO5 cluster in the protein-cofactor complex photosystem II. The light-driven catalytic cycle consists of four observable intermediates (S0, S1, S2, and S3) and one transient S4 state. Recently, using X-ray free-electron laser crystallography, two experimental groups independently observed incorporation of one additional oxygen into the cluster during the S2 to S3 transition, which is likely to represent a substrate. The present study implicates two competing reaction routes encountered during the structural rearrangement of the catalyst induced by the water binding and immediately preceding the formation of final stable forms in the S3 state. This mutually exclusive competition involves concerted versus stepwise conformational changes between two isomers, called open and closed cubane structures, which have different consequences on the immediate product in the S3 state. The concerted pathway involves a one-step conversion between two isomeric hydroxo forms without changes to the metal oxidation and total spin (Stotal?=?3) states. Alternatively, in the stepwise process, the bound waters are oxidized and transformed into an oxyl?oxo form in a higher spin (Stotal?=?6) state. Here, density functional calculations are used to characterize all relevant intermediates and transition structures and demonstrate that the stepwise pathway to the substrate activation is substantially favored over the concerted one, as evidenced by comparison of the activation barriers (11.1 and 20.9?kcal?mol?1, respectively). Only after formation of the oxyl?oxo precursor can the hydroxo species be generated; this occurs with a slow kinetics and an activation barrier of 17.8?kcal?mol?1. The overall thermodynamic driving force is likely to be controlled by the movements of two glutamate ligands, D1-Glu189 and CP43-Glu354, in the active site and ranges from very weak (+0.4?kcal mol?1) to very strong (?23.5?kcal?mol?1). en-copyright= kn-copyright= en-aut-name=IsobeHiroshi en-aut-sei=Isobe en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShojiMitsuo en-aut-sei=Shoji en-aut-mei=Mitsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SuzukiTakayoshi en-aut-sei=Suzuki en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamaguchiKizashi en-aut-sei=Yamaguchi en-aut-mei=Kizashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Center for Computational Science, University of Tsukuba kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=5 en-affil=Institute for NanoScience Design, Osaka University kn-affil= en-keyword=Photosynthesis kn-keyword=Photosynthesis en-keyword=Water oxidation kn-keyword=Water oxidation en-keyword=Photosystem II kn-keyword=Photosystem II en-keyword=Oxygen evolving complex kn-keyword=Oxygen evolving complex en-keyword=Mn4CaO6 cluster kn-keyword=Mn4CaO6 cluster en-keyword=Ligand environment kn-keyword=Ligand environment END start-ver=1.4 cd-journal=joma no-vol=132 cd-vols= no-issue=2 article-no= start-page=102 end-page=107 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200803 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Drug interaction (48. Interaction of drug with extracorporeal membrane oxygenation (ECMO)) kn-title=薬物相互作用(48―体外式膜型人工肺(ECMO)と 薬物の相互作用) en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=OkawaYasumasa en-aut-sei=Okawa en-aut-mei=Yasumasa kn-aut-name=大川恭昌 kn-aut-sei=大川 kn-aut-mei=恭昌 aut-affil-num=1 ORCID= en-aut-name=EsumiSatoru en-aut-sei=Esumi en-aut-mei=Satoru kn-aut-name=江角悟 kn-aut-sei=江角 kn-aut-mei=悟 aut-affil-num=2 ORCID= en-aut-name=SendoToshiaki en-aut-sei=Sendo en-aut-mei=Toshiaki kn-aut-name=千堂年昭 kn-aut-sei=千堂 kn-aut-mei=年昭 aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil=岡山大学病院 薬剤部 affil-num=2 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil=岡山大学病院 薬剤部 affil-num=3 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil=岡山大学病院 薬剤部 END start-ver=1.4 cd-journal=joma no-vol=128 cd-vols= no-issue=10 article-no= start-page=843 end-page=846 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=2020101 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Crystal structure of Ca(Fe0.4Si0.6)O2.8 oxygen-deficient perovskite en-subtitle= kn-subtitle= en-abstract= kn-abstract=The crystal structure of Ca(Fe3+0.4Si0.6)O2.8 oxygen-deficient perovskite phase synthesized at 12 GPa and 1400 °C was studied using synchrotron powder X-ray diffraction. The phase is isostructural to low-pressure phase of Ca(Al0.4Si0.6)O2.8. The structure was refined by the Rietveld method and is consists of a perovskite-like triple-layer of corner-shared (Fe3+,Si)O6 octahedra and a double-layer of SiO4 tetrahedra those are stacked alternatively in the [111] direction of ideal cubic perovskite. Small degree of Fe3+/Si disorder was detected between two octahedral sites. The structure is compared with other oxygen-deficient perovskites. en-copyright= kn-copyright= en-aut-name=KanzakiMasami en-aut-sei=Kanzaki en-aut-mei=Masami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Institute for Planetary Materials, Okayama University kn-affil= en-keyword=Crystal structure kn-keyword=Crystal structure en-keyword=Rietveld refinement kn-keyword=Rietveld refinement en-keyword=Oxygen-deficient perovskite kn-keyword=Oxygen-deficient perovskite en-keyword=High-pressure silicate kn-keyword=High-pressure silicate END start-ver=1.4 cd-journal=joma no-vol=8 cd-vols= no-issue=1 article-no= start-page=79 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20201014 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Oxygen administration for postoperative surgical patients: a narrative review en-subtitle= kn-subtitle= en-abstract= kn-abstract=Most postoperative surgical patients routinely receive supplemental oxygen therapy to prevent the potential development of hypoxemia due to incomplete lung re-expansion, reduced chest wall, and diaphragmatic activity caused by surgical site pain, consequences of hemodynamic impairment, and residual effects of anesthetic drugs (most notably residual neuromuscular blockade), which may result in atelectasis, ventilation-perfusion mismatch, alveolar hypoventilation, and impaired upper airway patency. Additionally, the World Health Organization guidelines for reducing surgical site infection have recommended the perioperative administration of high-dose oxygen, including during the immediate postoperative period. However, supplemental oxygen and hyperoxemia also have harmful effects on the respiratory and cardiovascular systems, with several clinical studies having reported an association between high perioperative oxygen administration and worse clinical outcomes. Recently, the increased availability of new and short-acting anesthetic drugs, comprehensive pharmacological knowledge, postoperative multimodal analgesia, and new minimally invasive surgery options could result in lower incidences of postoperative hypoxemia. Moreover, recommendations promoting high oxygen administration to prevent surgical site infections have been challenged, considering the lack of scientific investigations, and have not been widely accepted. Given the potential harmful effects of hyperoxemia, routine postoperative oxygen administration might not be recommended. Recent clinical studies have indicated that a conservative approach to oxygen therapy, where oxygen administration is titrated to achieve slightly lower oxygen levels than usual, could be safely implemented and decrease acutely ill patients' susceptibility to hyperoxemia. Based on current evidence, appropriate monitoring, including peripheral oxygen saturation, and oxygen titration should be required during postoperative oxygen administration to avoid both hypoxemia and hyperoxemia. Future trials should therefore focus on determining the optimal oxygen target during postoperative care. en-copyright= kn-copyright= en-aut-name=SuzukiSatoshi en-aut-sei=Suzuki en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Department of Intensive Care, Okayama University Hospital kn-affil= en-keyword=Oxygen therapy kn-keyword=Oxygen therapy en-keyword=Hyperoxemia kn-keyword=Hyperoxemia en-keyword=Hypoxemia kn-keyword=Hypoxemia en-keyword=Postoperative care kn-keyword=Postoperative care en-keyword=Surgical site infection kn-keyword=Surgical site infection END start-ver=1.4 cd-journal=joma no-vol=74 cd-vols= no-issue=5 article-no= start-page=407 end-page=413 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=202010 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Comprehensive Prospective Analysis of the Factors Contributing to Aspiration Pneumonia Following Endoscopic Submucosal Dissection in Patients with Early Gastric Neoplasms en-subtitle= kn-subtitle= en-abstract= kn-abstract=Endoscopic submucosal dissection (ESD) has become the first-line treatment for early gastric neoplasms; however, a subset of patients treated by this method develop aspiration pneumonia. We conducted a comprehensive prospective analysis of the factors contributing to post-ESD aspiration pneumonia in early gastric neoplasms in this study, with special focus on whether pre-treatment oral care can prevent aspiration pneumonia. Sixty-one patients who underwent ESD for gastric neoplasms were randomly assigned to the oral care or control groups. ESD was performed under deep sedation. Of 60 patients whose data were available for analysis, 5 (8.3%) experienced pneumonia confirmed either by chest radiography or computed tomography. Although no difference in the rate of pneumonia was found between the control and oral care groups, the post-oral care bacteria count was significantly higher in the saliva of patients who developed pneumonia compared to those without pneumonia. In addition, the presence of vascular brain diseases and the dose of meperidine were also significantly associated with the occurrence of pneumonia. These results suggest that the number of oral bacteria as well as pre-existing vascular brain diseases and high-dose narcotics can affect the incidence of post-ESD pneumonia. en-copyright= kn-copyright= en-aut-name=TogoMasaaki en-aut-sei=Togo en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AkazawaYuko en-aut-sei=Akazawa en-aut-mei=Yuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AkashiTaro en-aut-sei=Akashi en-aut-mei=Taro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamashitaRika en-aut-sei=Yamashita en-aut-mei=Rika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YoshitomiIzumi en-aut-sei=Yoshitomi en-aut-mei=Izumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OhbaKazuo en-aut-sei=Ohba en-aut-mei=Kazuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HashimotoSatsuki en-aut-sei=Hashimoto en-aut-mei=Satsuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IwashitaHiroko en-aut-sei=Iwashita en-aut-mei=Hiroko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KurogiTadafumi en-aut-sei=Kurogi en-aut-mei=Tadafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OsadaYukiko en-aut-sei=Osada en-aut-mei=Yukiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=WadaNoriko en-aut-sei=Wada en-aut-mei=Noriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=ImamuraYoshifumi en-aut-sei=Imamura en-aut-mei=Yoshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=HashiguchiKeiichi en-aut-sei=Hashiguchi en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=YamaguchiNaoyuki en-aut-sei=Yamaguchi en-aut-mei=Naoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=KondoHisayoshi en-aut-sei=Kondo en-aut-mei=Hisayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=NakaoKazuhiko en-aut-sei=Nakao en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences kn-affil= affil-num=4 en-affil=Oral Care Center, Nagasaki University Hospital kn-affil= affil-num=5 en-affil=JCHO Isahaya General Hospital kn-affil= affil-num=6 en-affil=JCHO Isahaya General Hospital kn-affil= affil-num=7 en-affil=JCHO Isahaya General Hospital kn-affil= affil-num=8 en-affil=JCHO Isahaya General Hospital kn-affil= affil-num=9 en-affil=Oral Care Center, Nagasaki University Hospital kn-affil= affil-num=10 en-affil=Dental Hygienist's Office, Department of Medical Technology, Nagasaki University Hospital kn-affil= affil-num=11 en-affil=Dental Hygienist's Office, Department of Medical Technology, Nagasaki University Hospital kn-affil= affil-num=12 en-affil=Department of Respiratory Medicine, Nagasaki University Hospital kn-affil= affil-num=13 en-affil=Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences kn-affil= affil-num=14 en-affil=Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences kn-affil= affil-num=15 en-affil=Biostatistics Section, Division of Scientific Data Registry, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Medicine kn-affil= affil-num=16 en-affil=Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences kn-affil= en-keyword=endoscopy kn-keyword=endoscopy en-keyword=oral bacteria kn-keyword=oral bacteria en-keyword=respiratory disease kn-keyword=respiratory disease en-keyword=pneumonia kn-keyword=pneumonia en-keyword=sedation kn-keyword=sedation END start-ver=1.4 cd-journal=joma no-vol=153 cd-vols= no-issue=11 article-no= start-page=114501 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200916 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structure and phase behavior of high-density ice from molecular-dynamics simulations with the ReaxFF potential en-subtitle= kn-subtitle= en-abstract= kn-abstract=We report a molecular dynamics simulation study of dense ice modeled by the reactive force field (ReaxFF) potential, focusing on the possibility of phase changes between crystalline and plastic phases as observed in earlier simulation studies with rigid water models. It is demonstrated that the present model system exhibits phase transitions, or crossovers, among ice VII and two plastic ices with face-centered cubic (fcc) and body-centered cubic (bcc) lattice structures. The phase diagram derived from the ReaxFF potential is different from those of the rigid water models in that the bcc plastic phase lies on the high-pressure side of ice VII and does the fcc plastic phase on the low-pressure side of ice VII. The phase boundary between the fcc and bcc plastic phases on the pressure, temperature plane extends to the high-temperature region from the triple point of ice VII, fcc plastic, and bcc plastic phases. Proton hopping, i.e., delocalization of a proton, along between two neighboring oxygen atoms in dense ice is observed for the ReaxFF potential but only at pressures and temperatures both much higher than those at which ice VII?plastic ice transitions are observed. en-copyright= kn-copyright= en-aut-name=AdachiYuji en-aut-sei=Adachi en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KogaKenichiro en-aut-sei=Koga en-aut-mei=Kenichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Natural Sciences, Okayama University kn-affil= affil-num=2 en-affil=2Department of Chemistry, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=85 cd-vols= no-issue=9 article-no= start-page=2737 end-page=2744 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200825 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A comparative study of the antioxidant profiles of olive fruit and leaf extracts against five reactive oxygen species as measured with a multiple free‐radical scavenging method en-subtitle= kn-subtitle= en-abstract= kn-abstract=Olive fruits and leaves are recognized to have great potential as natural sources of antioxidants. The major phenolic antioxidant component in these plant tissues is oleuropein. The antioxidant activity of olive fruits and leaves was evaluated in this study using multiple free‐radical scavenging (MULTIS) methods, wherein we determined the scavenging abilities of different extracts against five reactive oxygen species (ROS; HO?, O2??, RO?, t‐BuOO?, and 1O2). Raw olive fruits taste bitter and are inedible without undergoing a debittering treatment. Following the NaOH‐debittering process, the radical scavenging activity of olives decreased by 90%. The MULTIS measurements indicated that oleuropein and hydroxytyrosol are responsible for the radical scavenging activity of olive fruits. Furthermore, we evaluated the radical scavenging profiles of olive leaf extracts against five ROS and found significant seasonal variations in their antioxidant activities. Leaves picked in August possessed greater radical scavenging abilities (180% to 410% for different ROS) than those picked in the cold season (December and February). In roasted olive leaves, we found marked increases (230% to 300% and 180% to 220%) in the antioxidant activities of Maillard reaction products against RO? and t‐BuOO?, respectively. This study presented a useful comparative analysis of the antioxidant capacities of food against various types of ROS. en-copyright= kn-copyright= en-aut-name=SueishiYoshimi en-aut-sei=Sueishi en-aut-mei=Yoshimi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NiiRisako en-aut-sei=Nii en-aut-mei=Risako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Chemistry, Faculty of Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemistry, Faculty of Science, Okayama University kn-affil= en-keyword=antioxidant capacity kn-keyword=antioxidant capacity en-keyword=fruit extract kn-keyword=fruit extract en-keyword=leaf extract kn-keyword=leaf extract en-keyword=MULTIS kn-keyword=MULTIS en-keyword=olive kn-keyword=olive END start-ver=1.4 cd-journal=joma no-vol=1135 cd-vols= no-issue= article-no= start-page=99 end-page=106 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200827 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=On-site analysis of paraquat using a completely portable photometric detector operated with small, rechargeable batteries en-subtitle= kn-subtitle= en-abstract= kn-abstract=This work describes a methodology that can be used to achieve on-site analysis of paraquat in water samples by using a miniaturized portable photometer consisting of a couple of light-emitting diodes (LEDs). Paraquat produces a colored radical via a redox reaction with sodium dithionite, which is unstable against oxygen in solution. The steps taken to stabilize the reagent solution included control of the pH and the addition of organic solvents, but the most effective was the formation of an oil layer. Together, these steps stabilized the reagent solution for two days. An increase in the duration of reagent stability, however, is necessary in order to transport the reagent for on-site applications in remote locales. For the time being, an excess amount of solid sodium dithionite can be added directly to sample solutions because the unreacted dithionite shows no influence on absorbance of the paraquat radical. Orange LEDs with a maximum emission wavelength of 609 nm were employed in the portable photometer to measure the absorbance of paraquat radical produced by a redox reaction that has an absorption maximum of 603 nm. The developed photometer showed excellent performance with a linear range of from 2.0 mg L?1 to 40.0 mg L?1 and a linear regression (r2 = 1). The limits of detection and quantification were 0.5 mg L?1 and 1.5 mg L?1, respectively, intra-day precision (n = 3) and inter-day precision (n = 5) were both less than 5%, and accuracy based on the percentage of sample recovery ranged from 89 ± 0 to 105 ± 0% (n = 3). The proposed method was applied to the analysis of paraquat in water samples taken from rice fields. The results showed no paraquat in all thirteen samples, which could have been due to strong adsorption of paraquat by soil particles and/or to complications with the sampling conditions. To confirm the adsorption onto soil of paraquat contained in water, we constructed an artificial rice field where water containing paraquat was impounded above the soil layer. The results showed that paraquat in water gradually decreased within three days and could be measured in the soil on the fourth day. These results were confirmed by HPLC analysis, which underscores the utility of this portable photometer for the on-site monitoring of paraquat in water samples. en-copyright= kn-copyright= en-aut-name=SeetasangSasikarn en-aut-sei=Seetasang en-aut-mei=Sasikarn kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KanetaTakashi en-aut-sei=Kaneta en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Light-emitting diode kn-keyword=Light-emitting diode en-keyword=Paraquat kn-keyword=Paraquat en-keyword=Portable photometric detector kn-keyword=Portable photometric detector en-keyword=Rice field kn-keyword=Rice field en-keyword=Sodium dithionite kn-keyword=Sodium dithionite en-keyword=Thailand kn-keyword=Thailand END start-ver=1.4 cd-journal=joma no-vol=74 cd-vols= no-issue=4 article-no= start-page=319 end-page=325 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=202008 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Relationship Between Partial Carbon Dioxide Pressure and Strong Ions in Humans: A Retrospective Study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Little is known about the role of a strong ions in humans with respiratory abnormalities. In this study, we investigated the associations between partial carbon dioxide pressure (pCO2) and each of sodium ion (Na+) concentrations, chloride ion (Cl?) concentrations and their difference (SIDNa-Cl). Blood gas data were obtained from patients in a teaching hospital intensive care unit between August 2013 and January 2017. The association between pCO2 and SIDNa-Cl was defined as the primary outcome. The associations between pCO2 and [Cl?], [Na+] and other strong ions were secondary outcomes. pCO2 was stratified into 10 mmHg-wide bands and treated as a categorical variable for comparison. As a result, we reviewed 115,936 blood gas data points from 3,840 different ICU stays. There were significant differences in SIDNa-Cl, [Cl?], and [Na+] among all categorized pCO2 bands. The respective pCO2 SIDNa-Cl, [Cl?], and [Na+] correlation coefficients were 0.48, ?0.31, and 0.08. SIDNa-Cl increased and [Cl?] decreased with pCO2, with little relationship between pCO2 and [Na+] across subsets. In conclusion, we found relatively strong correlations between pCO2 and SIDNa-Cl in the multiple blood gas datasets examined. Correlations between pCO2 and chloride concentrations, but not sodium concentrations, were further found to be moderate in these ICU data. en-copyright= kn-copyright= en-aut-name=IsoyamaSatoshi en-aut-sei=Isoyama en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KimuraSatoshi en-aut-sei=Kimura en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MorimatsuHiroshi en-aut-sei=Morimatsu en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Anesthesiology and Resuscitation, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Anesthesiology and Resuscitation, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Anesthesiology and Resuscitation, Okayama University Hospital kn-affil= en-keyword=acid-base phenomena kn-keyword=acid-base phenomena en-keyword=Stewart approach kn-keyword=Stewart approach en-keyword=strong ion difference kn-keyword=strong ion difference en-keyword=chlorine ion kn-keyword=chlorine ion en-keyword=partial carbon dioxide pressure kn-keyword=partial carbon dioxide pressure END start-ver=1.4 cd-journal=joma no-vol=74 cd-vols= no-issue=4 article-no= start-page=275 end-page=283 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=202008 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Decreased Serum Antioxidant Marker is Predictive of Early Recurrence in the Same Segment after Radical Ablation for Hepatocellular Carcinoma en-subtitle= kn-subtitle= en-abstract= kn-abstract=Radiofrequency ablation (RFA) for hepatocellular carcinoma (HCC) is a promising method for controlling tumors, although it does not entirely eliminate recurrence. Oxidative stress is associated with the progression of hepatocarcinogenesis, while also acting as an anticancer response. The objective of the present study was to investigate the factors influencing post-RFA outcomes. We recruited 235 newly diagnosed HCC patients who received RFA for single tumors. The patients with recurrence were sub-grouped into early and segmental recurrence groups. The characteristics of the sub-grouped patients were evaluated, including by measuring oxidative stress marker reactive oxygen metabolites and antioxidant marker OXY-adsorbent tests. The factors associated with poor survival were a high Child-Pugh score and early recurrence within 2 years in the same segment. The patients who experienced recurrence within 2 years in the same segment showed a larger tumor diameter than did others. According to a multivariate analysis, the OXY values were also significantly low in these patients. In conclusion, maintaining the antioxidant reservoir function with a high OXY value might be necessary to prevent early recurrence within the RFA-treated segment. en-copyright= kn-copyright= en-aut-name=MuroTaiko en-aut-sei=Muro en-aut-mei=Taiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakamuraShinichiro en-aut-sei=Nakamura en-aut-mei=Shinichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakakiAkinobu en-aut-sei=Takaki en-aut-mei=Akinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OnishiHideki en-aut-sei=Onishi en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WadaNozomu en-aut-sei=Wada en-aut-mei=Nozomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YasunakaTetsuya en-aut-sei=Yasunaka en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=UchidaDaisuke en-aut-sei=Uchida en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OyamaAtsushi en-aut-sei=Oyama en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=AdachiTakuya en-aut-sei=Adachi en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ShirahaHidenori en-aut-sei=Shiraha en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OkadaHiroyuki en-aut-sei=Okada en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=oxidative stress kn-keyword=oxidative stress en-keyword=hepatocellular carcinoma kn-keyword=hepatocellular carcinoma en-keyword=recurrence, kn-keyword=recurrence, en-keyword=radiofrequency ablation kn-keyword=radiofrequency ablation END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue=159 article-no= start-page=e61104 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200505 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Model of Ischemic Heart Disease and Video-Based Comparison of Cardiomyocyte Contraction Using hiPSC-Derived Cardiomyocytes en-subtitle= kn-subtitle= en-abstract= kn-abstract=Ischemic heart disease is a significant cause of death worldwide. It has therefore been the subject of a tremendous amount of research, often with small-animal models such as rodents. However, the physiology of the human heart differs significantly from that of the rodent heart, underscoring the need for clinically relevant models to study heart disease. Here, we present a protocol to model ischemic heart disease using cardiomyocytes differentiated from human induced pluripotent stem cells (hiPS-CMs) and to quantify the damage and functional impairment of the ischemic cardiomyocytes. Exposure to 2% oxygen without glucose and serum increases the percentage of injured cells, which is indicated by staining of the nucleus with propidium iodide, and decreases cellular viability. These conditions also decrease the contractility of hiPS-CMs as confirmed by displacement vector field analysis of microscopic video images. This protocol may furthermore provide a convenient method for personalized drug screening by facilitating the use of hiPS cells from individual patients. Therefore, this model of ischemic heart disease, based on iPS-CMs of human origin, can provide a useful platform for drug screening and further research on ischemic heart disease. en-copyright= kn-copyright= en-aut-name=LiuYun en-aut-sei=Liu en-aut-mei=Yun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=LiangYin en-aut-sei=Liang en-aut-mei=Yin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WangMengxue en-aut-sei=Wang en-aut-mei=Mengxue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WangChen en-aut-sei=Wang en-aut-mei=Chen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=Wei Heng en-aut-sei=Wei en-aut-mei= Heng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NaruseKeiji en-aut-sei=Naruse en-aut-mei=Keiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakahashiKen en-aut-sei=Takahashi en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University kn-affil= affil-num=6 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Medicine kn-keyword=Medicine en-keyword=Issue 159 kn-keyword=Issue 159 en-keyword=Ischemic heart disease kn-keyword=Ischemic heart disease en-keyword= hypoxia, Myocardial infarction kn-keyword= hypoxia, Myocardial infarction en-keyword=Human induced pluripotent stem cells kn-keyword=Human induced pluripotent stem cells en-keyword=cellular differentiation kn-keyword=cellular differentiation en-keyword=Cardiomyocytes kn-keyword=Cardiomyocytes END start-ver=1.4 cd-journal=joma no-vol=21 cd-vols= no-issue=11 article-no= start-page=4137 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200610 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Cerebellar Blood Flow and Gene Expression in Crossed Cerebellar Diaschisis after Transient Middle Cerebral Artery Occlusion in Rats en-subtitle= kn-subtitle= en-abstract= kn-abstract=Crossed cerebellar diaschisis (CCD) is a state of hypoperfusion and hypometabolism in the contralesional cerebellar hemisphere caused by a supratentorial lesion, but its pathophysiology is not fully understood. We evaluated chronological changes in cerebellar blood flow (CbBF) and gene expressions in the cerebellum using a rat model of transient middle cerebral artery occlusion (MCAO). CbBF was analyzed at two and seven days after MCAO using single photon emission computed tomography (SPECT). DNA microarray analysis and western blotting of the cerebellar cortex were performed and apoptotic cells in the cerebellar cortex were stained. CbBF in the contralesional hemisphere was significantly decreased and this lateral imbalance recovered over one week. Gene set enrichment analysis revealed that a gene set for "oxidative phosphorylation" was significantly upregulated while fourteen other gene sets including "apoptosis", "hypoxia" and "reactive oxygen species" showed a tendency toward upregulation in the contralesional cerebellum. MCAO upregulated the expressions of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) in the contralesional cerebellar cortex. The number of apoptotic cells increased in the molecular layer of the contralesional cerebellum. Focal cerebral ischemia in our rat MCAO model caused CCD along with enhanced expression of genes related to oxidative stress and apoptosis. en-copyright= kn-copyright= en-aut-name=KidaniNaoya en-aut-sei=Kidani en-aut-mei=Naoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HishikawaTomohito en-aut-sei=Hishikawa en-aut-mei=Tomohito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HiramatsuMasafumi en-aut-sei=Hiramatsu en-aut-mei=Masafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishihiroShingo en-aut-sei=Nishihiro en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KinKyohei en-aut-sei=Kin en-aut-mei=Kyohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakahashiYu en-aut-sei=Takahashi en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MuraiSatoshi en-aut-sei=Murai en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SugiuKenji en-aut-sei=Sugiu en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YasuharaTakao en-aut-sei=Yasuhara en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MiyazakiIkuko en-aut-sei=Miyazaki en-aut-mei=Ikuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=AsanumaMasato en-aut-sei=Asanuma en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=DateIsao en-aut-sei=Date en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=apoptosis kn-keyword=apoptosis en-keyword=cerebral blood flow kn-keyword=cerebral blood flow en-keyword=crossed cerebellar diaschisis kn-keyword=crossed cerebellar diaschisis en-keyword=ischemic stroke kn-keyword=ischemic stroke en-keyword=oxidative stress kn-keyword=oxidative stress END start-ver=1.4 cd-journal=joma no-vol=20 cd-vols= no-issue=1 article-no= start-page=156 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200603 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Recovery from hypoxemia and Hypercapnia following noninvasive pressure support ventilation in a patient with statin-associated necrotizing myopathy: a case report en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Statin-associated necrotizing myopathy (SANM) is a rare autoimmune disorder caused by administration of statins. SANM is characterized by weakness due to necrosis and regeneration of myofibers. Here we report the first case of SANM with acute respiratory failure treated with noninvasive pressure support ventilation in addition to immunosuppressants.
Case presentation: A 59-year-old woman who had been treated with 2.5 mg/day of rosuvastatin calcium for 5 years stopped taking the drug 4 months before admission to our hospital due to elevation of creatine kinase (CK). Withdrawal of rosuvastatin for 1 month did not decrease the level of CK, and she was admitted to our hospital due to the development of muscle weakness of her neck and bilateral upper extremities. Anti-3-hydroxy-3-methylglutaryl coenzyme A reductase antibodies were positive. Magnetic resonance imaging showed myositis, and muscle biopsy from the right biceps brachii muscle showed muscle fiber necrosis and regeneration without inflammatory cell infiltration, suggesting SANM. After the diagnosis, she received methylprednisolone pulse therapy (mPSL, 1 g/day × 3 days, twice) and subsequent oral prednisolone therapy (PSL, 30 mg/day for 1 month, 25 mg/day for 1 month and 22.5 mg/day for 1 month), leading to improvement of her muscle weakness. One month after the PSL tapering to 20 mg/day, her muscle weakness deteriorated with oxygen desaturation (SpO2: 93% at room air) due to hypoventilation caused by weakness of respiratory muscles. BIPAP was used for the management of acute respiratory failure in combination with IVIG (20 g/day × 5 days) followed by mPSL pulse therapy (1 g/day × 3 days), oral PSL (30 mg/day × 3 weeks, then tapered to 25 mg/day) and tacrolimus (3 mg/day). Twenty-seven days after the start of BIPAP, she was weaned from BIPAP with improvement of muscle weakness, hypoxemia and hypercapnia. After she achieved remission with improvement of muscle weakness and reduction of serum CK level to a normal level, the dose of oral prednisolone was gradually tapered to 12.5 mg/day without relapse for 3 months.
Conclusions: Our report provides new insights into the role of immunosuppressants and biphasic positive airway pressure for induction of remission in patients with SANM. en-copyright= kn-copyright= en-aut-name=YamamuraYuriko en-aut-sei=Yamamura en-aut-mei=Yuriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsumotoYoshinori en-aut-sei=Matsumoto en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TadokoroKoh en-aut-sei=Tadokoro en-aut-mei=Koh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OhtaYasuyuki en-aut-sei=Ohta en-aut-mei=Yasuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SatoKota en-aut-sei=Sato en-aut-mei=Kota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamashitaToru en-aut-sei=Yamashita en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamamuraMasahiro en-aut-sei=Yamamura en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SadaKen-Ei en-aut-sei=Sada en-aut-mei=Ken-Ei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=AbeKoji en-aut-sei=Abe en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Center for Rheumatology, Okayama Saiseikai General Hospital kn-affil= affil-num=8 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Noninvasive pressure support ventilation kn-keyword=Noninvasive pressure support ventilation en-keyword=Statin-associated necrotizing myopathy kn-keyword=Statin-associated necrotizing myopathy en-keyword=BIPAP kn-keyword=BIPAP END start-ver=1.4 cd-journal=joma no-vol=2020 cd-vols= no-issue= article-no= start-page=9509105 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200428 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Impact of Right Ventricular Dilatation in Patients with Atrial Septal Defect en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objective. The aim of this study was to examine the relationship between right ventricular (RV) volume and exercise capacity in adult patients with atrial septal defect (ASD) and to determine the degree of RV dilatation for transcatheter ASD closure. Background. RV dilatation is an indication of transcatheter ASD closure; however, few studies have reported the clinical significance of RV dilatation. Methods. We enrolled 82 consecutive patients (mean age, 49 +/- 18 years; female, 68%) who underwent cardiac magnetic resonance imaging and symptom-limited cardiopulmonary exercise test before ASD closure. The relationship between RV volume and peak oxygen uptake (VO2) was evaluated. Results. The mean RV end-diastolic volume index was 108 +/- 27 ml/m(2) (range, 46 to 180 ml/m(2)). The mean peak VO2 was 24 +/- 7 ml/min/kg (range, 14 to 48 ml/min/kg), and the mean predicted peak VO2 was 90 +/- 23%. There were significant negative relationships of RV end-diastolic volume index with peak VO2 (r = -0.28, p<0.01) and predicted peak VO2 (r = -0.29, p<0.01). The cutoff value of RV end-diastolic volume index <80% of predicted peak VO2 was 120 ml/m(2), with the sensitivity of 49% and the specificity of 89%. Conclusions. There was a relationship between RV dilatation and exercise capacity in adult patients with ASD. RV end-diastolic volume index >= 120 ml/m(2) was related to the reduction in peak VO2. This criterion of RV dilatation may be valuable for the indication of transcatheter ASD closure. en-copyright= kn-copyright= en-aut-name=NakayamaRie en-aut-sei=Nakayama en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakayaYoichi en-aut-sei=Takaya en-aut-mei=Yoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AkagiTeiji en-aut-sei=Akagi en-aut-mei=Teiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakagawaKoji en-aut-sei=Nakagawa en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WatanabeNobuhisa en-aut-sei=Watanabe en-aut-mei=Nobuhisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NobusadaSaori en-aut-sei=Nobusada en-aut-mei=Saori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsushitaToshi en-aut-sei=Matsushita en-aut-mei=Toshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TohNorihisa en-aut-sei=Toh en-aut-mei=Norihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KanazawaSusumu en-aut-sei=Kanazawa en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name=伊藤浩 kn-aut-sei=伊藤 kn-aut-mei=浩 aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine,Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine,Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine,Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine,Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Division of Medical Support, Okayama University Hospital kn-affil= affil-num=6 en-affil=Division of Medical Support, Okayama University Hospital kn-affil= affil-num=7 en-affil=Division of Medical Support, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine,Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine,Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine,Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=52 cd-vols= no-issue=2 article-no= start-page=630 end-page=633 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200331 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Pediatric Living Donor Liver Transplantation for Congenital Absence of the Portal Vein With Pulmonary Hypertension: A Case Report en-subtitle= kn-subtitle= en-abstract= kn-abstract=Few reports of liver transplantation exist in patients with congenital absence of the portal vein and pulmonary hypertension. Living donor liver transplantation is usually performed before exacerbation of pulmonary hypertension. A 7-year-old girl (height: 131.5 cm; weight: 27.4 kg) with congenital absence of the portal vein was diagnosed with pulmonary hypertension (mean pulmonary artery pressure 35 mm Hg), and liver transplantation was planned before exacerbation of pulmonary hypertension. We successfully managed her hemodynamic parameters using low-dose dopamine and noradrenaline under monitoring of arterial blood pressure, central venous pressure, cardiac output, and stroke volume variation. Anesthesia was maintained using air-oxygen-sevoflurane and remifentanil 0.1 to 0.6 μg?kg-1?min-1. It is necessary to understand the potential perioperative complications in such cases and to adopt a multidisciplinary team approach in terms of the timing of transplantation and readiness to deal with exacerbation of pulmonary hypertension. en-copyright= kn-copyright= en-aut-name=MatsumotoNaohisa en-aut-sei=Matsumoto en-aut-mei=Naohisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsusakiTakashi en-aut-sei=Matsusaki en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HiroiKazumasa en-aut-sei=Hiroi en-aut-mei=Kazumasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KakuRyuji en-aut-sei=Kaku en-aut-mei=Ryuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YoshidaRyuichi en-aut-sei=Yoshida en-aut-mei=Ryuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=UmedaYuzo en-aut-sei=Umeda en-aut-mei=Yuzo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YagiTakahito en-aut-sei=Yagi en-aut-mei=Takahito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MorimatsuHiroshi en-aut-sei=Morimatsu en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil= Department of Anesthesiology and Resuscitology, Okayama University Hospital kn-affil= affil-num=2 en-affil= Department of Anesthesiology and Resuscitology, Okayama University Hospital kn-affil= affil-num=3 en-affil= Department of Anesthesiology and Resuscitology, Okayama University Hospital kn-affil= affil-num=4 en-affil= Department of Anesthesiology and Resuscitology, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil= kn-affil= affil-num=8 en-affil= Department of Anesthesiology and Resuscitology, Okayama University Hospital kn-affil= END start-ver=1.4 cd-journal=joma no-vol=138 cd-vols= no-issue= article-no= start-page=105654 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200531 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Enhanced expression of nicotinamide nucleotide transhydrogenase (NNT) and its role in a human T cell line continuously exposed to asbestos en-subtitle= kn-subtitle= en-abstract= kn-abstract=The effects of asbestos fibers on human immune cells have not been well documented. We have developed a continuously exposed cell line model using the human T-lymphotropic virus 1 (HTLV-1)-immortalized human T cell line MT-2. Sublines continuously exposed to chrysotile (CH) or crocidolite (CR) showed acquired resistance to asbestos-induced apoptosis following transient and high-dose re-exposure with fibers. These sublines in addition to other immune cells such as natural killer cells or cytotoxic T lymphocytes exposed to asbestos showed a reduction in anti-tumor immunity. In this study, the expression of genes and molecules related to antioxidative stress was examined. Furthermore, complexes related to oxidative phosphorylation were investigated since the production of reactive oxygen species (ROS) is important when considering the effects of asbestos in carcinogenesis and the mechanisms involved in resistance to asbestos-induced apoptosis. In sublines continuously exposed to CH or CR, the expression of thioredoxin decreased. Interestingly, nicotinamide nucleotide transhydrogenase (NNT) expression was markedly enhanced. Thus, knockdown of NNT was then performed. Although the knockdown clones did not show any changes in proliferation or occurrence of apoptosis, these clones showed recovery of ROS production with returning NADPH/NADP+ ratio that increased with decreased production of ROS in continuously exposed sublines. These results indicated that NNT is a key factor in preventing ROS-induced cytotoxicity in T cells continuously exposed to asbestos. Considering that these sublines showed a reduction in anti-tumor immunity, modification of NNT may contribute to recovery of the anti-tumor effects in asbestos-exposed T cells. en-copyright= kn-copyright= en-aut-name=YamamotoShoko en-aut-sei=Yamamoto en-aut-mei=Shoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=LeeSuni en-aut-sei=Lee en-aut-mei=Suni kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsuzakiHidenori en-aut-sei=Matsuzaki en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=Kumagai-TakeiNaoko en-aut-sei=Kumagai-Takei en-aut-mei=Naoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YoshitomeKei en-aut-sei=Yoshitome en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SadaNagisa en-aut-sei=Sada en-aut-mei=Nagisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ShimizuYurika en-aut-sei=Shimizu en-aut-mei=Yurika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ItoTastsuo en-aut-sei=Ito en-aut-mei=Tastsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NishimuraYasumitsu en-aut-sei=Nishimura en-aut-mei=Yasumitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OtsukiTakemi en-aut-sei=Otsuki en-aut-mei=Takemi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Hygiene, Kawasaki Medical School kn-affil= affil-num=2 en-affil=Department of Hygiene, Kawasaki Medical School kn-affil= affil-num=3 en-affil=Department of Life Science, Faculty of Life and Environmental Science, Prefectural University of Hiroshima kn-affil= affil-num=4 en-affil=Department of Hygiene, Kawasaki Medical School kn-affil= affil-num=5 en-affil=Department of Hygiene, Kawasaki Medical School kn-affil= affil-num=6 en-affil=Department of Biophysical Chemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Hygiene, Kawasaki Medical School kn-affil= affil-num=9 en-affil=Department of Hygiene, Kawasaki Medical School kn-affil= affil-num=10 en-affil=Department of Hygiene, Kawasaki Medical School kn-affil= en-keyword=Asbestos kn-keyword=Asbestos en-keyword=Continuous exposure kn-keyword=Continuous exposure en-keyword=Oxidative phosphorylation kn-keyword=Oxidative phosphorylation en-keyword=T cell kn-keyword=T cell en-keyword=nicotinamide nucleotide transhydrogenase (NNT) kn-keyword=nicotinamide nucleotide transhydrogenase (NNT) END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=14 article-no= start-page=2460 end-page=2473 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200424 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Lennard-Jones Parameters Determined to Reproduce the Solubility of NaCl and KCl in SPC/E, TIP3P, and TIP4P/2005 Water en-subtitle= kn-subtitle= en-abstract= kn-abstract=Most classical nonpolarizable ion potential models underestimate the solubility values of NaCl and KCl in water significantly. We determine Lennard-Jones parameters of Na+, K+, and Cl? that reproduce the solubility as well as the hydration free energy in dilute aqueous solutions for three water potential models, SPC/E, TIP3P, and TIP4P/2005. The ion?oxygen distance in the solution and the cation?anion distance in salt are also considered in the parametrization. In addition to the target properties, the hydration enthalpy, hydration entropy, self-diffusion coefficient, coordination number, lattice energy, enthalpy of solution, density, viscosity, and number of contact ion pairs are calculated for comparison with 17 frequently used or recently developed ion potential models. The overall performance of each ion model is represented by a global score using a scheme that was originally developed for comparison of water potential models. The global score is better for our models than for the other 17 models not only because of the quite good prediction for the solubility but also because of the relatively small deviation from the experimental value for many of the other properties. en-copyright= kn-copyright= en-aut-name=YagasakiTakuma en-aut-sei=Yagasaki en-aut-mei=Takuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsumotoMasakazu en-aut-sei=Matsumoto en-aut-mei=Masakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanakaHideki en-aut-sei=Tanaka en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=141 cd-vols= no-issue=25 article-no= start-page=9832 end-page=9836 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=2019611 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Deoxygenative Insertion of Carbonyl Carbon into a C(sp3)?H Bond: Synthesis of Indolines and Indoles en-subtitle= kn-subtitle= en-abstract= kn-abstract=A simple deoxygenation reagent prepared in situ from commercially available Mo(CO)6 and ortho-quinone has been developed for the synthesis of indoline and indole derivatives. The Mo/quinone complex efficiently deoxygenates carbonyl compounds bearing a neighboring dialkylamino group and effects intramolecular cyclizations with the insertion of a deoxygenated carbonyl carbon into a C(sp3)?H bond, in which a carbonyl group acts as a carbene equivalent. The reaction also proceeds with a catalytic amount of Mo/quinone in the presence of disilane as an oxygen atom acceptor. en-copyright= kn-copyright= en-aut-name=AsakoSobi en-aut-sei=Asako en-aut-mei=Sobi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IshiharaSeina en-aut-sei=Ishihara en-aut-mei=Seina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HirataKeiya en-aut-sei=Hirata en-aut-mei=Keiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakaiKazuhiko en-aut-sei=Takai en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=C-H activation kn-keyword=C-H activation en-keyword=Oxidative addition kn-keyword=Oxidative addition en-keyword=Structural-characterization kn-keyword=Structural-characterization en-keyword=Ditungsten hexaalkoxides kn-keyword=Ditungsten hexaalkoxides en-keyword=Direct functionalization kn-keyword=Direct functionalization en-keyword=Organic-synthesis kn-keyword=Organic-synthesis en-keyword=Tertiary-amines kn-keyword=Tertiary-amines en-keyword=Oxo-alkylidene kn-keyword=Oxo-alkylidene en-keyword=Ketones kn-keyword=Ketones en-keyword=Chemistry kn-keyword=Chemistry END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=66 article-no= start-page=15189 end-page=15197 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190918 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Mechanistic Insights into Rhenium-Catalyzed Regioselective C-Alkenylation of Phenols with Internal Alkynes en-subtitle= kn-subtitle= en-abstract= kn-abstract= A (μ-aryloxo)rhenium complex was isolated and confirmed as a key precatalyst for rhenium-catalyzed ortho-alkenylation (C-alkenylation) of unprotected phenols with alkynes. The reaction exclusively provided ortho-alkenylphenols; the formation of para or multiply alkenylated phenols and hydrophenoxylation (O-alkenylation) products was not observed. Several mechanistic experiments excluded a classical Friedel-Crafts-type mechanism, leading to the proposed phenolic hydroxyl group assisted electrophilic alkenylation as the most plausible reaction mechanism. For this purpose, the use of rhenium, a metal between the early and late transition metals in the periodic table, was key for the activation of both the soft carbon-carbon triple bond of the alkyne and the hard oxygen atom of the phenol, at the same time. ortho-Selective alkenylation with allenes also provided the corresponding adducts with a substitution pattern different from that obtained by the addition reaction with alkynes. en-copyright= kn-copyright= en-aut-name=MuraiMasahito en-aut-sei=Murai en-aut-mei=Masahito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamamotoMasaki en-aut-sei=Yamamoto en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakaiKazuhiko en-aut-sei=Takai en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=alkenylation kn-keyword=alkenylation en-keyword=homogeneous catalysis kn-keyword=homogeneous catalysis en-keyword=reaction mechanisms kn-keyword=reaction mechanisms en-keyword=regioselectivity kn-keyword=regioselectivity en-keyword=rhenium kn-keyword=rhenium END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=2 article-no= start-page=335 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200202 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Sensitive Photodynamic Detection of Adult T-cell Leukemia/Lymphoma and Specific Leukemic Cell Death Induced by Photodynamic Therapy: Current Status in Hematopoietic Malignancies en-subtitle= kn-subtitle= en-abstract= kn-abstract=Adult T-cell leukemia/lymphoma (ATL), an aggressive type of T-cell malignancy, is caused by the human T-cell leukemia virus type I (HTLV-1) infections. The outcomes, following therapeutic interventions for ATL, have not been satisfactory. Photodynamic therapy (PDT) exerts selective cytotoxic activity against malignant cells, as it is considered a minimally invasive therapeutic procedure. In PDT, photosensitizing agent administration is followed by irradiation at an absorbance wavelength of the sensitizer in the presence of oxygen, with ultimate direct tumor cell death, microvasculature injury, and induced local inflammatory reaction. This review provides an overview of the present status and state-of-the-art ATL treatments. It also focuses on the photodynamic detection (PDD) of hematopoietic malignancies and the recent progress of 5-Aminolevulinic acid (ALA)-PDT/PDD, which can efficiently induce ATL leukemic cell-specific death with minor influence on normal lymphocytes. Further consideration of the ALA-PDT/PDD system along with the circulatory system regarding the clinical application in ATL and others will be discussed. ALA-PDT/PDD can be promising as a novel treatment modality that overcomes unmet medical needs with the optimization of PDT parameters to increase the effectiveness of the tumor-killing activity and enhance the innate and adaptive anti-tumor immune responses by the optimized immunogenic cell death. en-copyright= kn-copyright= en-aut-name=OkaTakashi en-aut-sei=Oka en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsuokaKen-Ichi en-aut-sei=Matsuoka en-aut-mei=Ken-Ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UtsunomiyaAtae en-aut-sei=Utsunomiya en-aut-mei=Atae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Hematology, Oncology & Respiratory Med., Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Hematology, Oncology & Respiratory Med., Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Hematology, Imamura General Hospital kn-affil= en-keyword=ATL kn-keyword=ATL en-keyword=HTLV-1 kn-keyword=HTLV-1 en-keyword=PDT kn-keyword=PDT en-keyword=PDD kn-keyword=PDD en-keyword=chemotherapy kn-keyword=chemotherapy en-keyword=allogeneic hematopoietic cell transplantation kn-keyword=allogeneic hematopoietic cell transplantation en-keyword=immunotherapy kn-keyword=immunotherapy en-keyword=GVHD kn-keyword=GVHD en-keyword=ALA-PDT/PDD kn-keyword=ALA-PDT/PDD END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=1 article-no= start-page=238 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200113 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structural basis for the adaptation and function of chlorophyll f in photosystem I en-subtitle= kn-subtitle= en-abstract= kn-abstract=Chlorophylls (Chl) play pivotal roles in energy capture, transfer and charge separation in photosynthesis. Among Chls functioning in oxygenic photosynthesis, Chl f is the most red-shifted type first found in a cyanobacterium Halomicronema hongdechloris. The location and function of Chl f in photosystems are not clear. Here we analyzed the high-resolution structures of photosystem I (PSI) core from H. hongdechloris grown under white or far-red light by cryo-electron microscopy. The structure showed that, far-red PSI binds 83 Chl a and 7 Chl f, and Chl f are associated at the periphery of PSI but not in the electron transfer chain. The appearance of Chl f is well correlated with the expression of PSI genes induced under far-red light. These results indicate that Chl f functions to harvest the far-red light and enhance uphill energy transfer, and changes in the gene sequences are essential for the binding of Chl f. en-copyright= kn-copyright= en-aut-name=KatoKoji en-aut-sei=Kato en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShinodaToshiyuki en-aut-sei=Shinoda en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NagaoRyo en-aut-sei=Nagao en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AkimotoSeiji en-aut-sei=Akimoto en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SuzukiTakehiro en-aut-sei=Suzuki en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=DohmaeNaoshi en-aut-sei=Dohmae en-aut-mei=Naoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ChenMin en-aut-sei=Chen en-aut-mei=Min kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AllakhverdievSuleyman I. en-aut-sei=Allakhverdiev en-aut-mei=Suleyman I. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=AkitaFusamichi en-aut-sei=Akita en-aut-mei=Fusamichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MiyazakiNaoyuki en-aut-sei=Miyazaki en-aut-mei=Naoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TomoTatsuya en-aut-sei=Tomo en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Science, Tokyo University of Science kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Science, Kobe University kn-affil= affil-num=5 en-affil=Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science kn-affil= affil-num=6 en-affil=Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science kn-affil= affil-num=7 en-affil=School of Life and Environmental Sciences, University of Sydney kn-affil= affil-num=8 en-affil=K.A. Timiryazev Institute of Plant Physiology RAS kn-affil= affil-num=9 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=10 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=11 en-affil=Institute for Protein Research, Laboratory of Protein Synthesis and Expression, Osaka University kn-affil= affil-num=12 en-affil=Faculty of Science, Tokyo University of Science kn-affil= END start-ver=1.4 cd-journal=joma no-vol=20 cd-vols= no-issue=1 article-no= start-page=46 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200219 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Right single lung transplantation using an inverted left donor lung: interposition of pericardial conduit for pulmonary venous anastomosis-a case report en-subtitle= kn-subtitle= en-abstract= kn-abstract=BACKGROUND:
Lung transplantation (LTx) is still limited by the shortage of suitable donor lungs. Developing flexible surgical procedures can help to increase the chances of LTx by unfolding recipient-to-donor matching options based on the pre-existing organ allocation concept. We report a case in which a successful left-to-right inverted LTx was completed using the interposition of a pericardial conduit for pulmonary venous anastomosis.
CASE PRESENTATION:
A left lung graft was offered to a 59-year-old male who had idiopathic pulmonary fibrosis with predominant damage in the right lung. He had been prescribed bed rest with constant oxygen inhalation through an oxymizer pendant and had been on the waiting list for 20?months. Considering the condition of the patient (LAS 34.3) and the scarcity of domestic organ offers, the patient was highly likely to be incapable of tolerating any additional waiting time for another donor organ if he was unable to accept the presently reported offer of a left lung. Eventually, we decided to transplant the left donor lung into the right thorax of the recipient. Because of the anterior-posterior position gap of the hilar structures, the cuff lengths of the pulmonary veins had to be adjusted. The patient did not develop any anastomotic complications after the transplantation.
CONCLUSIONS:
A left-to-right inverted LTx is technically feasible using an autologous pericardial conduit for pulmonary venous anastomosis in selected cases. This technique provides the potential benefit of resolving challenging situations in which surgeons must deal with a patient's urgency and the logistical limitations of organ allocation. en-copyright= kn-copyright= en-aut-name=YamamotoHaruchika en-aut-sei=Yamamoto en-aut-mei=Haruchika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyoshiKentaroh en-aut-sei=Miyoshi en-aut-mei=Kentaroh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OtaniShinji en-aut-sei=Otani en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KurosakiTakeshi en-aut-sei=Kurosaki en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SugimotoSeiichiro en-aut-sei=Sugimoto en-aut-mei=Seiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamaneMasaomi en-aut-sei=Yamane en-aut-mei=Masaomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KobayashiMotomu en-aut-sei=Kobayashi en-aut-mei=Motomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OtoTakahiro en-aut-sei=Oto en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Thoracic Surgery, Okayama University Hospital kn-affil= affil-num=2 en-affil=Organ Transplant Center, Okayama University Hospital kn-affil= affil-num=3 en-affil=Thoracic Surgery, Okayama University Hospital kn-affil= affil-num=4 en-affil=Organ Transplant Center, Okayama University Hospital kn-affil= affil-num=5 en-affil=Thoracic Surgery, Okayama University Hospital kn-affil= affil-num=6 en-affil=Thoracic Surgery, Okayama University Hospital kn-affil= affil-num=7 en-affil=Thoracic Surgery, Okayama University Hospital kn-affil= affil-num=8 en-affil=Anesthesiology, Okayama University Hospital kn-affil= affil-num=9 en-affil=Organ Transplant Center, Okayama University Hospital kn-affil= en-keyword=Inverted lung transplantation kn-keyword=Inverted lung transplantation en-keyword=Pericardial conduit kn-keyword=Pericardial conduit en-keyword=Pulmonary venous anastomosis kn-keyword=Pulmonary venous anastomosis en-keyword=Vessel formation kn-keyword=Vessel formation END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=10 article-no= start-page=223 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20191013 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Differential Response of Sugar Beet to Long-Term Mild to Severe Salinity in a Soil-Pot Culture en-subtitle= kn-subtitle= en-abstract= kn-abstract=Attempts to cultivate sugar beet (Beta vulgaris spp. vulgaris) in the sub-tropical saline soils are ongoing because of its excellent tolerance to salinity. However, the intrinsic adaptive physiology has not been discovered yet in the sub-tropical climatic conditions. In this study, we investigated morpho-physiological attributes, biochemical responses, and yield of sugar beet under a gradient of salinity in the soil-pot culture system to evaluate its adaptive mechanisms. Results exhibited that low and high salinity displayed a differential impact on growth, photosynthesis, and yield. Low to moderate salt stress (75 and 100 mM NaCl) showed no inhibition on growth and photosynthetic attributes. Accordingly, low salinity displayed simulative effect on chlorophyll and antioxidant enzymes activity which contributed to maintaining a balanced H2O2 accumulation and lipid peroxidation. Furthermore, relative water and proline content showed no alteration in low salinity. These factors contributed to improving the yield (tuber weight). On the contrary, 250 mM salinity showed a mostly inhibitory role on growth, photosynthesis, and yield. Collectively, our findings provide insights into the mild-moderate salt adaptation strategy in the soil culture test attributed to increased water content, elevation of photosynthetic pigment, better photosynthesis, and better management of oxidative stress. Therefore, cultivation of sugar beet in moderately saline-affected soils will ensure efficient utilization of lands. en-copyright= kn-copyright= en-aut-name=Tahjib-UI-ArifMd. en-aut-sei=Tahjib-UI-Arif en-aut-mei=Md. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SohagAbdullah Al Mamun en-aut-sei=Sohag en-aut-mei=Abdullah Al Mamun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AfrinSonya en-aut-sei=Afrin en-aut-mei=Sonya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=BasharKazi Khayrul en-aut-sei=Bashar en-aut-mei=Kazi Khayrul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AfrinTania en-aut-sei=Afrin en-aut-mei=Tania kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MahamudA. G. M. Sofi Uddin en-aut-sei=Mahamud en-aut-mei=A. G. M. Sofi Uddin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=PolashMohammed Arif Sadik en-aut-sei=Polash en-aut-mei=Mohammed Arif Sadik kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HossainMd. Tahmeed en-aut-sei=Hossain en-aut-mei=Md. Tahmeed kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SohelMd. Abu Taher en-aut-sei=Sohel en-aut-mei=Md. Abu Taher kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=BresticMarian en-aut-sei=Brestic en-aut-mei=Marian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MurataYoshiyuki en-aut-sei=Murata en-aut-mei=Yoshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Biochemistry and Molecular Biology, Faculty of Agriculture, Bangladesh Agricultural University kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Bangladesh Jute Research Institute kn-affil= affil-num=5 en-affil=Graduate Training Institute, Bangladesh Agricultural University kn-affil= affil-num=6 en-affil=Food Biochemistry Laboratory, Department of Biochemistry and Molecular Biology, Faculty of Agriculture, Bangladesh Agricultural University kn-affil= affil-num=7 en-affil=Department of Crop Botany, Faculty of Agriculture, Bangladesh Agricultural University kn-affil= affil-num=8 en-affil=Department of Biochemistry and Molecular Biology, Faculty of Agriculture, Bangladesh Agricultural University kn-affil= affil-num=9 en-affil=Agronomy and Farming System Division, Bangladesh Sugar Crop Research Institute kn-affil= affil-num=10 en-affil=Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture kn-affil= affil-num=11 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=antioxidant enzymes kn-keyword=antioxidant enzymes en-keyword=photosynthesis kn-keyword=photosynthesis en-keyword=reactive oxygen species kn-keyword=reactive oxygen species en-keyword=salinity kn-keyword=salinity en-keyword=sugar beet kn-keyword=sugar beet en-keyword=yield kn-keyword=yield END start-ver=1.4 cd-journal=joma no-vol=20 cd-vols= no-issue=23 article-no= start-page=5992 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20191128 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Comprehensive Identification of PTI Suppressors in Type III Effector Repertoire Reveals that Ralstonia solanacearum Activates Jasmonate Signaling at Two Different Steps en-subtitle= kn-subtitle= en-abstract= kn-abstract=Ralstonia solanacearum is the causative agent of bacterial wilt in many plants. To identify R. solanacearum effectors that suppress pattern-triggered immunity (PTI) in plants, we transiently expressed R. solanacearum RS1000 effectors in Nicotiana benthamiana leaves and evaluated their ability to suppress the production of reactive oxygen species (ROS) triggered by flg22. Out of the 61 effectors tested, 11 strongly and five moderately suppressed the flg22-triggered ROS burst. Among them, RipE1 shared homology with the Pseudomonas syringae cysteine protease effector HopX1. By yeast two-hybrid screening, we identified jasmonate-ZIM-domain (JAZ) proteins, which are transcriptional repressors of the jasmonic acid (JA) signaling pathway in plants, as RipE1 interactors. RipE1 promoted the degradation of JAZ repressors and induced the expressions of JA-responsive genes in a cysteine-protease-activity-dependent manner. Simultaneously, RipE1, similarly to the previously identified JA-producing effector RipAL, decreased the expression level of the salicylic acid synthesis gene that is required for the defense responses against R. solanacearum. The undecuple mutant that lacks 11 effectors with a strong PTI suppression activity showed reduced growth of R. solanacearum in Nicotiana plants. These results indicate that R. solanacearum subverts plant PTI responses using multiple effectors and manipulates JA signaling at two different steps to promote infection. en-copyright= kn-copyright= en-aut-name=NakanoMasahito en-aut-sei=Nakano en-aut-mei=Masahito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MukaiharaTakafumi en-aut-sei=Mukaihara en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Biological Sciences, Okayama (RIBS) kn-affil= en-keyword=Ralstonia solanacearum kn-keyword=Ralstonia solanacearum en-keyword=type III effector kn-keyword=type III effector en-keyword=jasmonic acid kn-keyword=jasmonic acid en-keyword=salicylic acid kn-keyword=salicylic acid en-keyword=Nicotiana plants kn-keyword=Nicotiana plants END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=4 article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20191218 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Liver transplantation in a patient with hereditary haemorrhagic telangiectasia and pulmonary hypertension en-subtitle= kn-subtitle= en-abstract= kn-abstract= Hereditary haemorrhagic telangiectasia or Rendu-Osler-Weber syndrome is a systemic vascular disease with autosomal dominant inheritance, mucocutaneous telangiectasia, and repeated nasal bleeding due to vascular abnormalities. Hereditary haemorrhagic telangiectasia may occasionally lead to complications, including arteriovenous malformations and pulmonary hypertension. We present a case of a 52-year-old female patient with hereditary haemorrhagic telangiectasia who was referred to our hospital for treatment of pulmonary hypertension. She had been diagnosed with hereditary haemorrhagic telangiectasia during adolescence and was being followed up. Six months prior to presentation, she had undergone coil embolization for pulmonary haemorrhage due to pulmonary arteriovenous malformations. She was in World Health Organization functional class IV, with a mean of pulmonary arterial pressure of 38 mmHg, a pulmonary capillary wedge pressure of 10 mmHg, and a right atrial pressure of 22 mmHg. A contrast-enhanced computed tomography angiography showed large arteriovenous malformations in the liver. Right heart catheterization revealed an increase in oxygen saturation in the inferior vena cava between the supra- and infra-hepatic veins, low pulmonary vascular resistance, and high right atrial pressure. Hence, she was diagnosed with hereditary haemorrhagic telangiectasia with pulmonary hypertension due to major arteriovenous shunt resulting from arteriovenous malformations in the liver. Therefore, we considered liver transplantation as an essential treatment option. She underwent cadaveric liver transplantation after a year resulting in dramatic haemodynamic improvement to World Health Organization functional class I. Liver transplantation is a promising treatment in patients with hereditary haemorrhagic telangiectasia and pulmonary hypertension resulting from arteriovenous shunt caused by arteriovenous malformations in the liver. en-copyright= kn-copyright= en-aut-name= en-aut-sei= en-aut-mei= kn-aut-name=EjiriKentaro kn-aut-sei=Ejiri kn-aut-mei=Kentaro aut-affil-num=1 ORCID= en-aut-name=AkagiSatoshi en-aut-sei=Akagi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AmiokaNaofumi en-aut-sei=Amioka en-aut-mei=Naofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IchikawaKeishi en-aut-sei=Ichikawa en-aut-mei=Keishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YagiTakahito en-aut-sei=Yagi en-aut-mei=Takahito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Hepato-Biliary-Pancreatic Surgery, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Rendu-Osler-Weber syndrome kn-keyword=Rendu-Osler-Weber syndrome en-keyword=arteriovenous malformation kn-keyword=arteriovenous malformation en-keyword=pulmonary haemorrhage kn-keyword=pulmonary haemorrhage END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20191227 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=高エネルギー外傷患者の入院後投与酸素濃度と背側無気肺形成の関連 kn-title=Relationship between a High-inspired Oxygen Concentration and Dorsal Atelectasis in High-energy Trauma Patients en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=IshiiKenzo en-aut-sei=Ishii en-aut-mei=Kenzo kn-aut-name=石井賢造 kn-aut-sei=石井 kn-aut-mei=賢造 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学大学院医歯薬学総合研究科 END start-ver=1.4 cd-journal=joma no-vol=74 cd-vols= no-issue=1 article-no= start-page=17 end-page=26 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=202002 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Relationship between a High-inspired Oxygen Concentration and Dorsal Atelectasis in High-energy Trauma Patients en-subtitle= kn-subtitle= en-abstract= kn-abstract= We performed a retrospective cohort study of 911 high-energy trauma patients who underwent chest CT scans at least twice after admission. We hypothesized that in high-energy trauma patients, a high-inspired oxygen concentration delivered after admission results in dorsal atelectasis. The study’s primary outcome was dorsal atelectasis formation diagnosed based on CT images. We defined dorsal atelectasis as the presence of atelectasis at ? 10 mm thick on CT images. We defined high-inspired oxygen concentration as >60% oxygen delivered between two CT scans. Four hundred sixty-five patients (51.0%) developed atelectasis according to the second CT scan, and 338 (37.1%) received a high-inspired oxygen concentration. A univariate analysis showed that the rate of the high-inspired oxygen concentration in the atelectasis group was significantly higher than that in the non-atelectasis group (43.4% vs. 30.1%, p<0.001). However, a logistic regression analysis showed that there was no significant relationship between the oxygen concentration and the formation of dorsal atelectasis (OR: 1.197, 95%CI: 0.852-1.683, p=0.30). Age, the Injury Severity Score, BMI, and smoking were found to be risk factors of dorsal atelectasis formation in high-energy trauma patients. There was no relationship between the oxygen concentration and atelectasis formation in our series of high-energy trauma patients. en-copyright= kn-copyright= en-aut-name=IshiiKenzo en-aut-sei=Ishii en-aut-mei=Kenzo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MorimatsuHiroshi en-aut-sei=Morimatsu en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OnoKazumi en-aut-sei=Ono en-aut-mei=Kazumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MiyashoKoji en-aut-sei=Miyasho en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Anesthesiology and Oncological Pain Medicine, Fukuyama City Hospital kn-affil= affil-num=2 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Anesthesiology and Oncological Pain Medicine, Fukuyama City Hospital kn-affil= affil-num=4 en-affil= Department of Critical Care and Emergency Medicine, Fukuyama City Hospital kn-affil= en-keyword=trauma patient kn-keyword=trauma patient en-keyword=dorsal atelectasis kn-keyword=dorsal atelectasis en-keyword=oxygen concentration kn-keyword=oxygen concentration END start-ver=1.4 cd-journal=joma no-vol=74 cd-vols= no-issue=1 article-no= start-page=1 end-page=6 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=202002 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Promising New Anti-Cancer Strategy: Iron Chelators Targeting CSCs en-subtitle= kn-subtitle= en-abstract= kn-abstract= Iron is a trace but vital element in the human body and is necessary for a multitude of crucial processes in life. However, iron overload is known to induce carcinogenesis via oxidative stress. Cancer cells require large amounts of iron for their rapid division and cell growth. Iron was recently found to play a role in cancer stem cells (CSCs); it maintains stemness during development. Iron also plays an important role in stemness by moderating reactive oxygen species. Thus, iron metabolism in CSCs is a promising therapeutic target. In this review, we summarize the roles of iron in cancer cells and CSCs. We also summarize anti-cancer therapeutic studies with iron chelators and describe our expectation of a new therapeutic strategy for CSCs on the basis of our findings. en-copyright= kn-copyright= en-aut-name=ChenYuehua en-aut-sei=Chen en-aut-mei=Yuehua kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OharaToshiaki en-aut-sei=Ohara en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=XingBoyi en-aut-sei=Xing en-aut-mei=Boyi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=QiJiping en-aut-sei=Qi en-aut-mei=Jiping kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NomaKazuhiro en-aut-sei=Noma en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MatsukawaAkihiro en-aut-sei=Matsukawa en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Pathology, the First Affiliated Hospital of Harbin Medical University kn-affil= affil-num=5 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=cancer stem cell kn-keyword=cancer stem cell en-keyword=stemness kn-keyword=stemness en-keyword=iron kn-keyword=iron en-keyword=chelation kn-keyword=chelation en-keyword=chemotherapy kn-keyword=chemotherapy END start-ver=1.4 cd-journal=joma no-vol=64 cd-vols= no-issue=2 article-no= start-page=143 end-page=147 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190301 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Heat Treatments of Ginger Root Modify but Not Diminish Its Antioxidant Activity as Measured With Multiple Free Radical Scavenging (MULTIS) Method en-subtitle= kn-subtitle= en-abstract= kn-abstract= Ginger (Zingiber officinale Rosc.) root (or rhizome) has been reported to have antioxidant properties such as reactive oxygen species scavenging activities. Using multiple free-radical scavenging method, we have newly determined the scavenging abilities of ginger roots against five reactive oxygen species, i.e., HO?, O2 -?, RO?, tert-BuOO?, and 1O2. After heating grated ginger roots at 80°C for 2 h, nearly 50% decrease in scavenging ability was recorded against 1O2 and tert-BuOO?. Conversely, the O2 -? scavenging ability increased by about 56% after heat treatment. Based on the antioxidant activity measurement of the ginger's components, i.e., 6-gingerol, 6-shogaol, and zingerone, active species acting as antioxidant capacity of ginger was shown. Additionally, ginger's antioxidant capacity was quantitatively compared with that of rosemary extract, indicating that rosemary is peroxyl specific scavenger while ginger has higher scavenging ability against HO? and 1O2. en-copyright= kn-copyright= en-aut-name=SueishiYoshimi en-aut-sei=Sueishi en-aut-mei=Yoshimi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MasamotoHiroaki en-aut-sei=Masamoto en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KotakeYashige en-aut-sei=Kotake en-aut-mei=Yashige kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Chemistry, Faculty of Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemistry, Faculty of Science, Okayama University kn-affil= affil-num=3 en-affil=RRINC-USA kn-affil= en-keyword=ESR spin trapping kn-keyword=ESR spin trapping en-keyword=MULTIS kn-keyword=MULTIS en-keyword=antioxidant capacity kn-keyword=antioxidant capacity en-keyword=ginger kn-keyword=ginger en-keyword=multiple free-radical scavenging method. kn-keyword=multiple free-radical scavenging method. END start-ver=1.4 cd-journal=joma no-vol=520 cd-vols= no-issue=3 article-no= start-page=600 end-page=605 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20191210 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Development of a model of ischemic heart disease using cardiomyocytes differentiated from human induced pluripotent stem cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=Ischemic heart disease remains the largest cause of death worldwide. Accordingly, many researchers have sought curative options, often using laboratory animal models such as rodents. However, the physiology of the human heart differs significantly from that of the rodent heart. In this study, we developed a model of ischemic heart disease using cardiomyocytes differentiated from human induced pluripotent stem cells (hiPS-CMs). After optimizing the conditions of ischemia, including the concentration of oxygen and duration of application, we evaluated the consequent damage to hiPS-CMs. Notably, exposure to 2% oxygen, 0 mg/ml glucose, and 0% fetal bovine serum increased the percentage of nuclei stained with propidium iodide, an indicator of membrane damage, and decreased cellular viability. These conditions also decreased the contractility of hiPS-CMs. Furthermore, ischemic conditioning increased the mRNA expression of IL-8, consistent with observed conditions in the in vivo heart. Taken together, these findings suggest that our hiPS-CM-based model can provide a useful platform for human ischemic heart disease research. en-copyright= kn-copyright= en-aut-name=WeiHeng en-aut-sei=Wei en-aut-mei=Heng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WangChen en-aut-sei=Wang en-aut-mei=Chen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=GuoRui en-aut-sei=Guo en-aut-mei=Rui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakahashiKen en-aut-sei=Takahashi en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NaruseKeiji en-aut-sei=Naruse en-aut-mei=Keiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Cardiomyocytes kn-keyword=Cardiomyocytes en-keyword=Human induced pluripotent stem cells kn-keyword=Human induced pluripotent stem cells en-keyword=Ischemic heart disease kn-keyword=Ischemic heart disease en-keyword=Myocardial infarction kn-keyword=Myocardial infarction END start-ver=1.4 cd-journal=joma no-vol=366 cd-vols= no-issue=6463 article-no= start-page=334 end-page=338 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20191018 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=An oxyl/oxo mechanism for dioxygen bond formation in PSII revealed by X-ray free electron lasers en-subtitle= kn-subtitle= en-abstract= kn-abstract= Photosynthetic water oxidation is catalyzed by the Mn4CaO5 cluster of photosystem II (PSII) with linear progression through five S-state intermediates (S0 to S4). To reveal the mechanism of water oxidation, we analyzed structures of PSII in the S1, S2, and S3 states by x-ray free-electron laser serial crystallography. No insertion of water was found in S2, but flipping of D1 Glu189 upon transition to S3 leads to the opening of a water channel and provides a space for incorporation of an additional oxygen ligand, resulting in an open cubane Mn4CaO6 cluster with an oxyl/oxo bridge. Structural changes of PSII between the different S states reveal cooperative action of substrate water access, proton release, and dioxygen formation in photosynthetic water oxidation. en-copyright= kn-copyright= en-aut-name=SugaMichihiro en-aut-sei=Suga en-aut-mei=Michihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AkitaFusamichi en-aut-sei=Akita en-aut-mei=Fusamichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamashitaKeitaro en-aut-sei=Yamashita en-aut-mei=Keitaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakajimaYoshiki en-aut-sei=Nakajima en-aut-mei=Yoshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=UenoGo en-aut-sei=Ueno en-aut-mei=Go kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=LiHongjie en-aut-sei=Li en-aut-mei=Hongjie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamaneTakahiro en-aut-sei=Yamane en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HirataKunio en-aut-sei=Hirata en-aut-mei=Kunio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=UmenaYasufumi en-aut-sei=Umena en-aut-mei=Yasufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YonekuraShinichiro en-aut-sei=Yonekura en-aut-mei=Shinichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YuLong-Jiang en-aut-sei=Yu en-aut-mei=Long-Jiang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MurakamiHironori en-aut-sei=Murakami en-aut-mei=Hironori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NomuraTakashi en-aut-sei=Nomura en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KimuraTetsunari en-aut-sei=Kimura en-aut-mei=Tetsunari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=KuboMinoru en-aut-sei=Kubo en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=BabaSeiki en-aut-sei=Baba en-aut-mei=Seiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=KumasakaTakashi en-aut-sei=Kumasaka en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=TonoKensuke en-aut-sei=Tono en-aut-mei=Kensuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=YabashiMakina en-aut-sei=Yabashi en-aut-mei=Makina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=IsobeHiroshi en-aut-sei=Isobe en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=YamaguchiKizashi en-aut-sei=Yamaguchi en-aut-mei=Kizashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=YamamotoMasaki en-aut-sei=Yamamoto en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=AgoHideo en-aut-sei=Ago en-aut-mei=Hideo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=9 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=10 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=11 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=12 en-affil=Japan Synchrotron Radiation Research Institute kn-affil= affil-num=13 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=14 en-affil=Department of Chemistry, Graduate School of Science, Kobe University kn-affil= affil-num=15 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=16 en-affil=Japan Synchrotron Radiation Research Institute kn-affil= affil-num=17 en-affil=Japan Synchrotron Radiation Research Institute kn-affil= affil-num=18 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=19 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=20 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=21 en-affil=The Institute for Scientific and Industrial Research, Osaka University kn-affil= affil-num=22 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=23 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=24 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=5 cd-vols= no-issue=51 article-no= start-page=53 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190817 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Early detection of cerebral ischemia due to pericardium traction using cerebral oximetry in pediatric minimally invasive cardiac surgery: a case report en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background
Minimally invasive cardiac surgery (MICS) for simple congenital heart defects has become popular, and monitoring of regional cerebral oxygen saturation (rSO2) is crucial for preventing cerebral ischemia during pediatric MICS. We describe a pediatric case with a sudden decrease in rSO2 during MICS.
Case presentation
An 8-month-old male underwent minimally invasive ventricular septal defect closure. He developed a sudden decrease in rSO2 and right radial artery blood pressure (RRBP) without changes in other parameters following pericardium traction. The rSO2 and RRBP immediately recovered after removal of pericardium fixation. Obstruction of the right innominate artery secondary to the pericardium traction would have been responsible for it.
Conclusions
Pericardium traction, one of the common procedures during MICS, triggered rSO2 depression alerting us to the risk of cerebral ischemia. We should be aware that pericardium traction during MICS can lead to cerebral ischemia, which is preventable by cautious observation of the patient. en-copyright= kn-copyright= en-aut-name=HayashiFumiaki en-aut-sei=Hayashi en-aut-mei=Fumiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishimotoRei en-aut-sei=Nishimoto en-aut-mei=Rei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShimizuKazuyoshi en-aut-sei=Shimizu en-aut-mei=Kazuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KanazawaTomoyuki en-aut-sei=Kanazawa en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IwasakiTatsuo en-aut-sei=Iwasaki en-aut-mei=Tatsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MorimatsuHiroshi en-aut-sei=Morimatsu en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital, kn-affil= affil-num=2 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital, kn-affil= affil-num=3 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital, kn-affil= affil-num=4 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital, kn-affil= affil-num=5 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital, kn-affil= affil-num=6 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital, kn-affil= en-keyword=Cerebral ischemia kn-keyword=Cerebral ischemia en-keyword=Near-infrared spectroscopy kn-keyword=Near-infrared spectroscopy en-keyword=Pediatric kn-keyword=Pediatric en-keyword=Minimally invasive cardiac surgery kn-keyword=Minimally invasive cardiac surgery en-keyword=Pericardium traction kn-keyword=Pericardium traction END start-ver=1.4 cd-journal=joma no-vol=252 cd-vols= no-issue= article-no= start-page=107 end-page=125 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Lithium- and oxygen-isotope compositions of chondrule constituents in the Allende meteorite en-subtitle= kn-subtitle= en-abstract= kn-abstract= We report in situ ion-microprobe analyses of Li- and O-isotope compositions for olivine, low-Ca pyroxene, high-Ca pyroxene, and chondrule mesostasis/plagioclase in nine chondrules from the Allende CV3 chondrite. Based on their mineralogy and O-isotope compositions, we infer that the chondrule mesostasis/plagioclase and ferroan olivine rims were extensively modified or formed during metasomatic alteration and metamorphism on the Allende parent asteroid. We excluded these minerals in order to determine the correlations between Li and both O and the chemical compositions of olivines and low-Ca pyroxenes in the chondrules and their igneous rims. Based on the O-isotope composition of the olivines, nine chondrules were divided into three groups. Average Δ17O of olivines (Fo>65) in group 1 and 2 chondrules are ?5.3?±?0.4 and ?6.2?±?0.4‰, respectively. Group 3 chondrules are characterized by the presence of 16O-rich relict grains and the Δ17O of their olivines range from ?23.7 to ?6.2‰. In group 1 olivines, as Fa content increases, variation of δ7Li becomes smaller and δ7Li approaches the whole-rock value (2.4‰; Seitz et al., 2012), suggesting nearly complete Li-isotope equilibration. In group 2 and 3 olivines, variation of δ7Li is limited even with a significant range of Fa content. We conclude that Li-isotope compositions of olivine in group 1 chondrules were modified not by an asteroidal process but by an igneous-rim formation process, thus chondrule olivines retained Li-isotope compositions acquired in the protosolar nebula. In olivines of the group 3 chondrule PO-8, we observed a correlation between O and Li isotopes: In relict 16O-rich olivine grains with Δ17O of ??25 to ?20‰, δ7Li ranges from ?23 to ?3‰; in olivine grains with Δ17O?>??20‰, δ7Li is nearly constant (?8?±?4‰). Based on the Li-isotope composition of low-Ca pyroxenes, which formed from melt during the crystallization of host chondrules and igneous rims, the existence of a gaseous reservoir with a δ7Li????11‰ is inferred. en-copyright= kn-copyright= en-aut-name=KunihiroTakuya en-aut-sei=Kunihiro en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OtaTsutomu en-aut-sei=Ota en-aut-mei=Tsutomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakamuraEizo en-aut-sei=Nakamura en-aut-mei=Eizo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=The Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University kn-affil= affil-num=2 en-affil=The Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University kn-affil= affil-num=3 en-affil=The Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University kn-affil= en-keyword=Lithium kn-keyword=Lithium en-keyword=Oxygen kn-keyword=Oxygen en-keyword=Chondrule kn-keyword=Chondrule en-keyword=Chondrite kn-keyword=Chondrite en-keyword=Asteroid kn-keyword=Asteroid en-keyword=Allende kn-keyword=Allende en-keyword=Igneous rim kn-keyword=Igneous rim en-keyword=SIMS kn-keyword=SIMS END start-ver=1.4 cd-journal=joma no-vol=85 cd-vols= no-issue=6 article-no= start-page=405 end-page=412 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190607 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A class III peroxidase PRX34 is a component of disease resistance in Arabidopsis en-subtitle= kn-subtitle= en-abstract= kn-abstract= PRX34 mediates the oxidative burst in Arabidopsis. Here we characterized two additional Arabidopsis prx34 null mutants (prx34-2, prx34-3), besides the well-studied prx34-1. Due to a decrease in corresponding peroxidase, the activity that generates reactive oxygen species (ROS) was significantly lower in cell wall extracts of prx34-2 and prx34-3 plants. Consistently, the prx34-2 and prx34-3 exhibited reduced accumulation both of ROS and callose in Flg22-elicitor-treated leaves, leading to enhanced susceptibility to bacterial and fungal pathogens. In contrast, ectopic expression of PRX34 in the wild type caused enhanced resistance. PRX34 is thus a component for disease resistance in Arabidopsis. en-copyright= kn-copyright= en-aut-name=ZhaoLei en-aut-sei=Zhao en-aut-mei=Lei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=Le Thi Phuong en-aut-sei=Le Thi Phuong en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Mai Thanh Luan en-aut-sei=Mai Thanh Luan en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=Aprilia Nur Fitrianti en-aut-sei=Aprilia Nur Fitrianti en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakagamiHirofumi en-aut-sei=Nakagami en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamamotoMikihiro en-aut-sei=Yamamoto en-aut-mei=Mikihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ShiraishiTomonori en-aut-sei=Shiraishi en-aut-mei=Tomonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Environmental and Life ScienceOkayama University kn-affil= affil-num=2 en-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Environmental and Life ScienceOkayama University kn-affil= affil-num=3 en-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Environmental and Life ScienceOkayama University kn-affil= affil-num=4 en-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Environmental and Life ScienceOkayama University kn-affil= affil-num=5 en-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Environmental and Life ScienceOkayama University kn-affil= affil-num=6 en-affil=RIKEN Center for Sustainable Resource Science kn-affil= affil-num=7 en-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Environmental and Life ScienceOkayama University kn-affil= affil-num=8 en-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Environmental and Life ScienceOkayama University kn-affil= affil-num=9 en-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Environmental and Life ScienceOkayama University kn-affil= affil-num=10 en-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Environmental and Life ScienceOkayama University kn-affil= affil-num=11 en-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Environmental and Life ScienceOkayama University kn-affil= en-keyword=Apoplastic oxidative burst kn-keyword=Apoplastic oxidative burst en-keyword=Arabidopsis kn-keyword=Arabidopsis en-keyword=Cell wall kn-keyword=Cell wall en-keyword=Class III peroxidase kn-keyword=Class III peroxidase en-keyword=PRX34 kn-keyword=PRX34 en-keyword=Reactive oxygen species (ROS) kn-keyword=Reactive oxygen species (ROS) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=165461 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2014 dt-pub=20140818 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Radiolabeled probes targeting hypoxia-inducible factor-1-active tumor microenvironments en-subtitle= kn-subtitle= en-abstract= kn-abstract= Because tumor cells grow rapidly and randomly, hypoxic regions arise from the lack of oxygen supply in solid tumors. Hypoxic regions in tumors are known to be resistant to chemotherapy and radiotherapy. Hypoxia-inducible factor-1 (HIF-1) expressed in hypoxic regions regulates the expression of genes related to tumor growth, angiogenesis, metastasis, and therapy resistance. Thus, imaging of HIF-1-active regions in tumors is of great interest. HIF-1 activity is regulated by the expression and degradation of its α subunit (HIF-1α), which is degraded in the proteasome under normoxic conditions, but escapes degradation under hypoxic conditions, allowing it to activate transcription of HIF-1-target genes. Therefore, to image HIF-1-active regions, HIF-1-dependent reporter systems and injectable probes that are degraded in a manner similar to HIF-1α have been recently developed and used in preclinical studies. However, no probe currently used in clinical practice directly assesses HIF-1 activity. Whether the accumulation of (18)F-FDG or (18)F-FMISO can be utilized as an index of HIF-1 activity has been investigated in clinical studies. In this review, the current status of HIF-1 imaging in preclinical and clinical studies is discussed. en-copyright= kn-copyright= en-aut-name=UedaMasashi en-aut-sei=Ueda en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SajiHideo en-aut-sei=Saji en-aut-mei=Hideo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Pharmaceutical Analytical Chemistry, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=19 cd-vols= no-issue=11 article-no= start-page=2821 end-page=2824 dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=20170518 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Synthesis of 3-Benzo[b]thienyl 3-Thienyl Ether via an Addition-Elimination Reaction and Its Transformation to an Oxygen-Fused Dithiophene Skeleton: Synthesis and Properties of Benzodithienofuran and Its π-Extended Derivatives en-subtitle= kn-subtitle= en-abstract= kn-abstract= The synthesis of 3-benzo[b]thienyl 3-thienyl ether and its dehydrogenative cyclization leading to benzodithienofuran (BDTF; [1]benzothieno[3,2-b]thieno[2,3-d]furan) are described for the first time. Further transformation of BDTF to more π-extended BDTF derivatives and their fundamental physical properties are also studied. en-copyright= kn-copyright= en-aut-name=MitsudoKoichi en-aut-sei=Mitsudo en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KurimotoYuji en-aut-sei=Kurimoto en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MandaiHiroki en-aut-sei=Mandai en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SugaSeiji en-aut-sei=Suga en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=73 cd-vols= no-issue=5 article-no= start-page=433 end-page=440 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=201910 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Relationship between Intracellular Signaling of the (Pro)renin Receptor and the Pathogenesis of Preeclampsia en-subtitle= kn-subtitle= en-abstract= kn-abstract= An association between preeclampsia and (pro)renin was recently reported. Intracellular signaling of the (pro) renin receptor [(P)RR] increases the expressions of TGF-β and PAI-1. In this study we sought to clarify the involvement of (pro)renin in the pathogenesis of preeclampsia via the intracellular signaling of (P)RR on preeclampsia placentas. Activated (pro)renin plasma concentrations were compared between pregnant women with (n=15) and without (n=28) preeclampsia. The placentas were immunohistochemically evaluated with anti-HIF-1α and anti-(P)RR antibodies. HTR-8/SVneo cells were cultured under hypoxic conditions and treated with human recombinant (pro)renin. The mRNA expressions of HIF-1α, (P)RR, PAI-1, TGF-β, and ET-1 were also examined by real-time RCR. The activated (pro)renin plasma concentration was significantly higher in the third vs. the second trimester in the preeclampsia patients. HIF-1α and (P)RR expressions were significantly increased in the preeclampsia placentas. The mRNA expressions of PAI-1, TGF-β, and ET-1 were significantly increased in the experiments using recombinant (pro)renin vs. hypoxic conditions. (P)RR expression in preeclampsia placentas is increased by persistent hypoxia through the second and third trimesters, and PAI-1, TGF-β, and ET-1 production is increased via (P)RR. Our results suggest that ET-1 production via the intracellular signaling of (P)RR is important in the pathogenesis of preeclampsia. en-copyright= kn-copyright= en-aut-name=TamadaShoko en-aut-sei=Tamada en-aut-mei=Shoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MitsuiTakashi en-aut-sei=Mitsui en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OhiraAkiko en-aut-sei=Ohira en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TaniKazumasa en-aut-sei=Tani en-aut-mei=Kazumasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MakiJota en-aut-sei=Maki en-aut-mei=Jota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=EguchiTakeshi en-aut-sei=Eguchi en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=EtoEriko en-aut-sei=Eto en-aut-mei=Eriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HayataKei en-aut-sei=Hayata en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MasuyamaHisashi en-aut-sei=Masuyama en-aut-mei=Hisashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=preeclampsia kn-keyword=preeclampsia en-keyword=(pro)renin kn-keyword=(pro)renin en-keyword=(pro)renin receptor kn-keyword=(pro)renin receptor en-keyword=endothelin-1 kn-keyword=endothelin-1 en-keyword=HTR-8/SVneo kn-keyword=HTR-8/SVneo END start-ver=1.4 cd-journal=joma no-vol=98 cd-vols= no-issue= article-no= start-page=38 end-page=46 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190228 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Hyperoxia reduces salivary secretion by inducing oxidative stress in mice en-subtitle= kn-subtitle= en-abstract= kn-abstract=OBJECTIVE:
The aim of this study was to determine the effects of prolonged hyperoxia on salivary glands and salivary secretion in mice.
DESIGN:
Male C57BL/6?J mice were kept in a 75% oxygen chamber (hyperoxia group) or a 21% oxygen chamber for 5 days. We measured the secretion volume, protein concentration, and amylase activity of saliva after the injection of pilocarpine. In addition, we evaluated the histological changes induced in the submandibular glands using hematoxylin and eosin and Alcian blue staining and assessed apoptotic changes using the TdT-mediated dUTP nick end labeling (TUNEL) assay. We also compared the submandibular gland expression levels of heme oxygenase-1 (HO-1), superoxide dismutase (SOD)-1, and SOD-2 using the real-time polymerase chain reaction.
RESULTS:
In the hyperoxia group, salivary secretion was significantly inhibited at 5 and 10?min after the injection of pilocarpine, and the total salivary secretion volume was significantly decreased. The salivary protein concentration and amylase activity were also significantly higher in the hyperoxia group. In the histological examinations, enlargement of the mucous acini and the accumulation of mucins were observed in the submandibular region in the hyperoxia group, and the number of TUNEL-positive cells was also significantly increased in the hyperoxia group. Moreover, the expression levels of HO-1, SOD-1, and SOD-2 were significantly higher in the hyperoxia group.
CONCLUSION:
Our results suggest that hyperoxia reduces salivary secretion, and oxidative stress reactions might be involved in this. en-copyright= kn-copyright= en-aut-name=TajiriAyako en-aut-sei=Tajiri en-aut-mei=Ayako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HiguchiHitoshi en-aut-sei=Higuchi en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MiyawakiTakuya en-aut-sei=Miyawaki en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Dental Anesthesiology and Special Care Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Dental Anesthesiology, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Dental Anesthesiology and Special Care Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Hyperoxia kn-keyword=Hyperoxia en-keyword=Hyposalivation kn-keyword=Hyposalivation en-keyword=Oxidative stress kn-keyword=Oxidative stress en-keyword=Saliva kn-keyword=Saliva END start-ver=1.4 cd-journal=joma no-vol=26 cd-vols= no-issue= article-no= start-page=87 end-page=90 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20191204 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Heat-not-burn cigarettes induce fulminant acute eosinophilic pneumonia requiring extracorporeal membrane oxygenation en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background
Although the cause of acute eosinophilic pneumonia (AEP) has not yet been fully clarified, cigarette smoking is reported to be a risk factor for developing AEP. The heat-not-burn cigarette (HNBC) was developed to reduce the adverse effects of smoke on the user's surroundings. However, the health risks associated with HNBCs have not yet been clarified. We report a successfully treated case of fatal AEP presumably induced by HNBC use.
Presentation of case
A 16-year-old man commenced HNBC smoking two weeks before admission and subsequently suffered from shortness of breath that gradually worsened. The patient was transferred to emergency department and immediately intubated because of respiratory failure. Computed tomography showed mosaic ground-glass shadows on the distal side of both lungs with a PaO2/FIO2 ratio of 76. The patient required veno-venous extracorporeal membrane oxygenation (ECMO) for severe respiratory failure. He was diagnosed with AEP by clinical course and detection of eosinophils in sputum; thus, methylprednisolone was administrated. The patient was weaned off ECMO four days after initiation and extubated the day after. He fully recovered without sequelae.
Conclusion
As far as we know, our patient is the first case of AEP induced by HNBC use successfully treated with ECMO. Emergency physicians must be aware that HNBCs can induce fatal AEP. en-copyright= kn-copyright= en-aut-name=AokageToshiyuki en-aut-sei=Aokage en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TsukaharaKohei en-aut-sei=Tsukahara en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FukudaYasushi en-aut-sei=Fukuda en-aut-mei=Yasushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TokiokaFumiaki en-aut-sei=Tokioka en-aut-mei=Fumiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TaniguchiAkihiko en-aut-sei=Taniguchi en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NaitoHiromichi en-aut-sei=Naito en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakaoAtsunori en-aut-sei=Nakao en-aut-mei=Atsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Geriatric Emergency Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Respiratory Medicine, Kurashiki Central Hospital kn-affil= affil-num=4 en-affil=Department of Respiratory Medicine, Kurashiki Central Hospital kn-affil= affil-num=5 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Tobacco kn-keyword=Tobacco en-keyword=Cigarettes kn-keyword=Cigarettes en-keyword=Heat-not-burn cigarettes kn-keyword=Heat-not-burn cigarettes en-keyword=Acute eosinophilic pneumonia kn-keyword=Acute eosinophilic pneumonia en-keyword=Extracorporeal membrane oxygenation kn-keyword=Extracorporeal membrane oxygenation en-keyword=ECMO kn-keyword=ECMO END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=酸素発生光化学系IIの構造・機能解析 kn-title=Structural and functional studies of oxygen-evolving photosystem II en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=NakajimaYoshiki en-aut-sei=Nakajima en-aut-mei=Yoshiki kn-aut-name=中島芳樹 kn-aut-sei=中島 kn-aut-mei=芳樹 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil=岡山大学大学院自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=水チェレンコフ検出器によるニュートリノ-酸素中性カレント準弾性散乱反応の測定 kn-title=Neutrino-Oxygen Neutral Current Quasi-Elastic scattering measurement in the water Cherenkov detector en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=FukudaDaisuke en-aut-sei=Fukuda en-aut-mei=Daisuke kn-aut-name=福田大輔 kn-aut-sei=福田 kn-aut-mei=大輔 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil=岡山大学大学院自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=体外式膜型人工肺回路へのミダゾラム吸収に影響を及ぼす因子について kn-title=Factors Affecting the Absorption of Midazolam to the Extracorporeal Membrane Oxygenation Circuit en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=IidaAtsuyoshi en-aut-sei=Iida en-aut-mei=Atsuyoshi kn-aut-name=飯田淳義 kn-aut-sei=飯田 kn-aut-mei=淳義 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学大学院医歯薬学総合研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=ドナー由来遊離DNAは生体肺移植後の急性拒絶反応とグラフと機能不全における低酸素化と関連している kn-title=Donor-derived cell-free DNA is associated with acute rejection and decreased oxygenation in primary graft dysfunction after living donor-lobar lung transplantation en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=TanakaShin en-aut-sei=Tanaka en-aut-mei=Shin kn-aut-name=田中真 kn-aut-sei=田中 kn-aut-mei=真 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学大学院医歯薬学総合研究科 END start-ver=1.4 cd-journal=joma no-vol=20 cd-vols= no-issue=3 article-no= start-page=199 end-page=203 dt-received= dt-revised= dt-accepted= dt-pub-year=2015 dt-pub=2015 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Presence of Nitric Oxide-Sensing Systems in the Human Pathogen Vibrio vulnificus en-subtitle= kn-subtitle= en-abstract= kn-abstract= Vibrio vulnificus is a halophilic estuarine bacterium, but this species causes fatal septicemia in humans. V. vulnificus may encounter many kinds of stresses either in the natural environment or in the human body. One of the striking stresses is the exposure to the reactive oxygen species including nitric oxide (NO). The present study revealed that NO could participate in the regulation of the V. vulnificus community behavior. When the bacterium was cultivated in the presence of sub-lethal doses of an NO donor, the expression of the genes encoding NO-detoxifying enzymes was significantly increased. The NO donor was also found to cause significant increase in production of a metalloprotease, a putative virulence factor, by the bacterium. en-copyright= kn-copyright= en-aut-name=ElgamlAbdelaziz en-aut-sei=Elgaml en-aut-mei=Abdelaziz kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyoshiShin-ichi en-aut-sei=Miyoshi en-aut-mei=Shin-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Vibrio vulnificus kn-keyword=Vibrio vulnificus en-keyword=Nitric oxide kn-keyword=Nitric oxide en-keyword=Oxidative stress kn-keyword=Oxidative stress en-keyword=Detoxification kn-keyword=Detoxification END start-ver=1.4 cd-journal=joma no-vol=1 cd-vols= no-issue= article-no= start-page=0137 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=20170526 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Silicate?SiO reaction in a protoplanetary disk recorded by oxygen isotopes in chondrules en-subtitle= kn-subtitle= en-abstract= kn-abstract= The formation of planetesimals and planetary embryos during the earliest stages of the solar protoplanetary disk largely determined the composition and structure of the terrestrial planets. Within a few million years of the birth of the Solar System, chondrule formation and the accretion of the parent bodies of differentiated achondrites and the terrestrial planets took place in the inner protoplanetary disk 1,2 . Here we show that, for chondrules in unequilibrated enstatite chondrites, high-precision Δ17O values (where Δ17O is the deviation of the δ17O value from a terrestrial silicate fractionation line) vary significantly (ranging from ?0.49 to +0.84‰) and fall on an array with a steep slope of 1.27 on a three-oxygen-isotope plot. This array can be explained by the reaction between an olivine-rich chondrule melt and an SiO-rich gas derived from vaporized dust and nebular gas. Our study suggests that a large proportion of the building blocks of planetary embryos formed by successive silicate?gas interaction processes: silicate?H2O followed by silicate?SiO interactions under more oxidized and reduced conditions, respectively, within a few million years of the formation of the Solar System. en-copyright= kn-copyright= en-aut-name=TanakaRyoji en-aut-sei=Tanaka en-aut-mei=Ryoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakamuraEizo en-aut-sei=Nakamura en-aut-mei=Eizo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=2 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=73 cd-vols= no-issue=2 article-no= start-page=101 end-page=107 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=201904 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Factors Affecting the Absorption of Midazolam to the Extracorporeal Membrane Oxygenation Circuit en-subtitle= kn-subtitle= en-abstract= kn-abstract= Sedatives are administered during extracorporeal membrane oxygenation (ECMO) therapy to ensure patient safety, reduce the metabolic rate and correct the oxygen supply-demand balance. However, the concentrations of sedatives can be decreased due to absorption into the circuit. This study examined factors affecting the absorption of a commonly used sedative, midazolam (MDZ). Using multiple ex vivo simulation models, three factors that may influence MDZ levels in the ECMO circuit were examined: polyvinyl chloride (PVC) tubing in the circuit, use of a membrane oxygenator in the circuit, and heparin coating of the circuit. We also assessed changes in drug concentration when MDZ was re-injected in a circuit. The MDZ level decreased to approximately 60% of the initial concentration in simulated circuits within the first 30 minutes. The strongest factor in this phenomenon was contact with the PVC tubing. Membrane oxygenator use tended to increase MDZ loss, whereas heparin circuit coating had no influence on MDZ absorption. Similar results were obtained when a second dose of MDZ was injected to the second-use circuits. en-copyright= kn-copyright= en-aut-name=IidaAtsuyoshi en-aut-sei=Iida en-aut-mei=Atsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NaitoHiromichi en-aut-sei=Naito en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YorifujiTakashi en-aut-sei=Yorifuji en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ZamamiYoshito en-aut-sei=Zamami en-aut-mei=Yoshito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamadaAkane en-aut-sei=Yamada en-aut-mei=Akane kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KogaTadashi en-aut-sei=Koga en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ImaiToru en-aut-sei=Imai en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SendoToshiaki en-aut-sei=Sendo en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NakaoAtsunori en-aut-sei=Nakao en-aut-mei=Atsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=IchibaShingo en-aut-sei=Ichiba en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Emergency and Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Emergency and Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Human Ecology, Okayama University Graduate School of Environmental and Life Science kn-affil= affil-num=4 en-affil=Department of Clinical Pharmacy, Institute of Biomedical Sciences, Tokushima University Graduate School kn-affil= affil-num=5 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil= affil-num=6 en-affil=Drug Safety Research Laboratories, Shin Nippon Biomedical Laboratories, Ltd. kn-affil= affil-num=7 en-affil=Department of Pharmacy, Nihon University Itabashi Hospital kn-affil= affil-num=8 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Emergency and Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Surgical Intensive Care Medicine, Nippon Medical School Hospital kn-affil= en-keyword=sedatives kn-keyword=sedatives en-keyword=ECMO kn-keyword=ECMO en-keyword=polyvinyl chloride kn-keyword=polyvinyl chloride en-keyword=pharmacokinetics kn-keyword=pharmacokinetics en-keyword=pharmacodynamics kn-keyword=pharmacodynamics END start-ver=1.4 cd-journal=joma no-vol=73 cd-vols= no-issue=1 article-no= start-page=15 end-page=20 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=201902 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=High-flow Nasal Cannula Versus Noninvasive ventilation for Postextubation Acute Respiratory Failure after Pediatric Cardiac Surgery en-subtitle= kn-subtitle= en-abstract= kn-abstract= We compared the reintubation rate in children who received high-flow nasal cannula (HFNC) therapy to the rate in children who received noninvasive ventilation (NIV) therapy for acute respiratory failure (ARF) after cardiac surgery. This was a retrospective analysis of 35 children who received HFNC therapy for ARF after cardiac surgery in 2014-2015 (the HFNC group). We selected 35 children who had received NIV therapy for ARF after cardiac surgery in 2009-2012 as a control group. The matching parameters were body weight and risk adjustment for congenital heart surgery category 1. The reintubation rate within 48 h in the HFNC group tended to be lower than that in the NIV group (3% vs. 17%, p=0.06). The reintubation rate within 28 days was significantly lower in the HFNC group compared to the NIV group (3% vs. 26%, p=0.04). The HFNC group’s ICU stays were significantly shorter than those of the NIV group: 10 (IQR: 7-17) days vs. 17 (11-32) days, p=0.009. HFNC therapy might be associated with a reduced reintubation rate in children with ARF after cardiac surgery. en-copyright= kn-copyright= en-aut-name=ShiojiNaohiro en-aut-sei=Shioji en-aut-mei=Naohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KanazawaTomoyuki en-aut-sei=Kanazawa en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IwasakiTatsuo en-aut-sei=Iwasaki en-aut-mei=Tatsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShimizuKazuyoshi en-aut-sei=Shimizu en-aut-mei=Kazuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SuemoriTomohiko en-aut-sei=Suemori en-aut-mei=Tomohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KuroeYasutoshi en-aut-sei=Kuroe en-aut-mei=Yasutoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MorimatsuHiroshi en-aut-sei=Morimatsu en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital kn-affil= en-keyword=high-flow nasal cannula kn-keyword=high-flow nasal cannula en-keyword=noninvasive ventilation kn-keyword=noninvasive ventilation en-keyword=reintubation kn-keyword=reintubation en-keyword=congenital heart disease kn-keyword=congenital heart disease en-keyword=acute respiratory failure kn-keyword=acute respiratory failure END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2018 dt-pub=20180927 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=活性酸素種やアセトアルデヒドに対する潜在的保護剤としてのフェノール酸類 kn-title=Phenolic acids as potential protective agents against reactive oxygen species and acetaldehyde en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=XuWenSi en-aut-sei=Xu en-aut-mei=WenSi kn-aut-name=徐文思 kn-aut-sei=徐 kn-aut-mei=文思 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil=岡山大学大学院環境生命科学研究科 END start-ver=1.4 cd-journal=joma no-vol=72 cd-vols= no-issue=2 article-no= start-page=193 end-page=196 dt-received= dt-revised= dt-accepted= dt-pub-year=2018 dt-pub=201804 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Incidence of Pulmonary Complications with the Prophylactic Use of High-flow Nasal Cannula after Pediatric Cardiac Surgery: Prophylactic HFNC Study Protocol en-subtitle= kn-subtitle= en-abstract= kn-abstract= We will investigate the incidence of postoperative pulmonary complications (PPCs) with the prophylactic use of a high-flow nasal cannula (HFNC) after pediatric cardiac surgery. Children < 48 months old with congenital heart disease for whom cardiac surgery is planned will be included. The HFNC procedure will be commenced just after extubation, at a flow rate of 2 L/kg/min with adequate oxygen concentration to achieve target oxygen saturation ? 94%. This study will reveal the prevalence of PPCs after pediatric cardiac surgery with the prophylactic use of HFNC. en-copyright= kn-copyright= en-aut-name=ShiojiNaohiro en-aut-sei=Shioji en-aut-mei=Naohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KanazawaTomoyuki en-aut-sei=Kanazawa en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IwasakiTatsuo en-aut-sei=Iwasaki en-aut-mei=Tatsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShimizuKazuyoshi en-aut-sei=Shimizu en-aut-mei=Kazuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SuemoriTomohiko en-aut-sei=Suemori en-aut-mei=Tomohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KawaseHirokazu en-aut-sei=Kawase en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KimuraSatoshi en-aut-sei=Kimura en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KuroeYasutoshi en-aut-sei=Kuroe en-aut-mei=Yasutoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MorimatsuHiroshi en-aut-sei=Morimatsu en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital kn-affil= en-keyword=high-flow nasal cannula kn-keyword=high-flow nasal cannula en-keyword=postoperative pulmonary complications kn-keyword=postoperative pulmonary complications en-keyword=pediatric cardiac surgery kn-keyword=pediatric cardiac surgery en-keyword=congenital heart disease kn-keyword=congenital heart disease END start-ver=1.4 cd-journal=joma no-vol=72 cd-vols= no-issue=2 article-no= start-page=181 end-page=183 dt-received= dt-revised= dt-accepted= dt-pub-year=2018 dt-pub=201804 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Portal Venous Gas Following Ingestion of Hydrogen Peroxide Successfully Treated with Hyperbaric Oxygen Therapy en-subtitle= kn-subtitle= en-abstract= kn-abstract= The primary toxicity of hydrogen peroxide results from its interaction with catalase, which liberates water and oxygen. We report the case of a 14-year-old Japanese girl with portal venous gas that was caused by oxygen liberated from intentionally ingested hydrogen peroxide. Although she had a past history of atrial septal defect, recovery without cardiac or neurological sequelae was achieved using hyperbaric oxygen therapy. Emergency physicians must be aware of the danger of liberated oxygen due to hydrogen peroxide ingestion. en-copyright= kn-copyright= en-aut-name=TsuboiChika en-aut-sei=Tsuboi en-aut-mei=Chika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NaitoHiromichi en-aut-sei=Naito en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HagiokaShingo en-aut-sei=Hagioka en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HanafusaHiroaki en-aut-sei=Hanafusa en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HirayamaTakahiro en-aut-sei=Hirayama en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KosakiYoshinori en-aut-sei=Kosaki en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IidaAtsuyoshi en-aut-sei=Iida en-aut-mei=Atsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YumotoTetsuya en-aut-sei=Yumoto en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TsukaharaKohei en-aut-sei=Tsukahara en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MorimotoNaoki en-aut-sei=Morimoto en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NakaoAtsunori en-aut-sei=Nakao en-aut-mei=Atsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Emergency Center and Critical Care Unit, Tsuyama Chuo Hospital kn-affil= affil-num=2 en-affil=Department of Emergency and Critical Care Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Emergency Center and Critical Care Unit, Tsuyama Chuo Hospital kn-affil= affil-num=4 en-affil=Emergency Center and Critical Care Unit, Tsuyama Chuo Hospital kn-affil= affil-num=5 en-affil=Department of Emergency and Critical Care Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Emergency and Critical Care Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Emergency and Critical Care Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Emergency and Critical Care Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Emergency and Critical Care Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Emergency Center and Critical Care Unit, Tsuyama Chuo Hospital kn-affil= affil-num=11 en-affil=Department of Emergency and Critical Care Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=air embolism kn-keyword=air embolism en-keyword=ASD kn-keyword=ASD en-keyword=breaching agent kn-keyword=breaching agent en-keyword=HBO kn-keyword=HBO en-keyword=intoxication kn-keyword=intoxication END start-ver=1.4 cd-journal=joma no-vol=71 cd-vols= no-issue=6 article-no= start-page=543 end-page=546 dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=201712 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Severe Acute Respiratory Distress Syndrome Using Electrical Activity of the Diaphragm on Weaning from Extracorporeal Membrane Oxygenation en-subtitle= kn-subtitle= en-abstract= kn-abstract= The electrical activity of the diaphragm (EAdi) shows global diaphragmatic activation and power output from the central nervous system. We measured the EAdi as an indicator of breathing workload in a 40-year-old man suffering from severe acute respiratory distress syndrome (ARDS) secondary to influenza pneumonia in the process of weaning from extracorporeal membrane oxygenation (ECMO). Turning off the sweep gas flow immediately led to EAdi elevation, followed by hypoxia. The patient was successfully weaned from ECMO by reference to EAdi. This is the first case report to suggest that EAdi monitoring might be useful for ARDS patients during ECMO weaning. en-copyright= kn-copyright= en-aut-name=OkaharaShuji en-aut-sei=Okahara en-aut-mei=Shuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShimizuKazuyoshi en-aut-sei=Shimizu en-aut-mei=Kazuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MorimatsuHiroshi en-aut-sei=Morimatsu en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital kn-affil= en-keyword=electrical activity of the diaphragm kn-keyword=electrical activity of the diaphragm en-keyword=breathing workload kn-keyword=breathing workload en-keyword=respiratory extracorporeal membrane oxygenation kn-keyword=respiratory extracorporeal membrane oxygenation en-keyword=acute respiratory distress syndrome kn-keyword=acute respiratory distress syndrome END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=20170929 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=ウシ顆粒膜細胞の黄体化における低酸素および低酸素誘導因子1αの役割 kn-title=Roles of low oxygen condition and hypoxia-inducible factor 1α during luteinization of bovine granulosa cells en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=Fadhillah en-aut-sei=Fadhillah en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil=岡山大学大学院環境生命科学研究科 END start-ver=1.4 cd-journal=joma no-vol=122 cd-vols= no-issue=1 article-no= start-page=158 end-page=171 dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=20170114 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Pressure dependence of electrical conductivity in forsterite en-subtitle= kn-subtitle= en-abstract= kn-abstract= Electrical conductivity of dry forsterite has been measured in muli-anvil apparatus to investigate the pressure dependence of ionic conduction in forsterite. The starting materials for the conductivity experiments were a synthetic forsterite single crystal and a sintered forsterite aggregate synthesized from oxide mixture. Electrical conductivities were measured at 3.5, 6.7, 9.6, 12.1, and 14.9?GPa between 1300 and 2100?K. In the measured temperature range, the conductivity of single crystal forsterite decreases in the order of [001], [010], and [100]. In all cases, the conductivity decreases with increasing pressure and then becomes nearly constant for [100] and [001] and slightly increases above 7?GPa for [010] orientations and a polycrystalline forsterite sample. Pressure dependence of forsterite conductivity was considered as a change of the dominant conduction mechanism composed of migration of both magnesium and oxygen vacancies in forsterite. The activation energy (ΔE) and activation volume (ΔV) for ionic conduction due to migration of Mg vacancy were 1.8?2.7?eV and 5?19?cm3/mol, respectively, and for that due to O vacancy were 2.2?3.1?eV and ?1.1 to 0.3?cm3/mol, respectively. The olivine conductivity model combined with small polaron conduction suggests that the most part of the upper mantle is controlled by ionic conduction rather than small polaron conduction. The previously observed negative pressure dependence of the conductivity of olivine with low iron content (Fo90) can be explained by ionic conduction due to migration of Mg vacancies, which has a large positive activation volume. en-copyright= kn-copyright= en-aut-name=YoshinoTakashi en-aut-sei=Yoshino en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ZhangBaohua en-aut-sei=Zhang en-aut-mei=Baohua kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=RhymerBrandon en-aut-sei=Rhymer en-aut-mei=Brandon kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ZhaoChengcheng en-aut-sei=Zhao en-aut-mei=Chengcheng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FeiHongzhan en-aut-sei=Fei en-aut-mei=Hongzhan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Institute for Planetary Materials, Okayama University kn-affil= affil-num=2 en-affil=Key Laboratory for High-Temperature and High-Pressure Study of the Earth’s Interior, Institute of Geochemistry, Chinese Academy of Sciences kn-affil= affil-num=3 en-affil=Department of Geosciences, State University of New York at Stony Brook kn-affil= affil-num=4 en-affil=Institute for Planetary Materials, Okayama University kn-affil= affil-num=5 en-affil=Bayerisches Geoinstitut, University of Bayreuth kn-affil= END start-ver=1.4 cd-journal=joma no-vol=28 cd-vols= no-issue=10 article-no= start-page=1479 end-page=1486 dt-received= dt-revised= dt-accepted= dt-pub-year=2015 dt-pub=201505 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Multiple roles of hypoxia in ovarian function: roles of hypoxia-inducible factor-related and -unrelated signals during the luteal phase en-subtitle= kn-subtitle= en-abstract= kn-abstract= There is increasing interest in the role of oxygen conditions in the microenvironment of organs because of the discovery of a hypoxia-specific transcription factor, namely hypoxia-inducible factor (HIF) 1. Ovarian function has several phases that change day by day, including ovulation, follicular growth and corpus luteum formation and regression. These phases are regulated by many factors, including pituitary hormones and local hormones, such as steroids, peptides and cytokines, as well as oxygen conditions. Hypoxia strongly induces angiogenesis because transcription of the potent angiogenic factor vascular endothelial growth factor (VEGF) is regulated by HIF1. Follicular development and luteal formation are accompanied by a marked increase in angiogenesis assisted by HIF1-VEGF signalling. Hypoxia is also one of the factors that induces luteolysis by suppressing progesterone synthesis and by promoting apoptosis of luteal cells. The present review focuses on recent studies of hypoxic conditions, as well as HIF1-regulated genes and proteins, in the regulation of ovarian function. en-copyright= kn-copyright= en-aut-name=NishimuraRyo en-aut-sei=Nishimura en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkudaKiyoshi en-aut-sei=Okuda en-aut-mei=Kiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Laboratory of Reproductive Endocrinology, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Laboratory of Reproductive Endocrinology, Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=angiogenesis kn-keyword=angiogenesis en-keyword=apoptosis kn-keyword=apoptosis en-keyword=corpus luteum kn-keyword=corpus luteum en-keyword=follicular development kn-keyword=follicular development en-keyword=luteal formation kn-keyword=luteal formation en-keyword=luteal regression kn-keyword=luteal regression en-keyword=steroidogenesis kn-keyword=steroidogenesis END start-ver=1.4 cd-journal=joma no-vol=57 cd-vols= no-issue=6 article-no= start-page=1115 end-page=1122 dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=20160601 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Close Relationships Between the PSII Repair Cycle and Thylakoid Membrane Dynamics en-subtitle= kn-subtitle= en-abstract= kn-abstract= In chloroplasts, a three-dimensional network of thylakoid membranes is formed by stacked grana and interconnecting stroma thylakoids. The grana are crowded with photosynthetic proteins, where PSII-light harvesting complex II (LHCII) supercomplexes often show semi-crystalline arrays for efficient energy trapping, transfer and use. Although light is essential for photosynthesis, PSII is damaged by reactive oxygen species that are generated from primary photochemical reactions when plants are exposed to excess light. Because PSII complexes are embedded in the lipid bilayers of thylakoid membranes, their functions are affected by the conditions of the lipids. Electron paramagnetic resonance (EPR) spin trapping measurements showed that singlet oxygen was formed through peroxidation of thylakoid lipids, suggesting that lipid peroxidation can damage proteins, including the D1 protein. After photodamage, PSII is restored by a specific repair system in thylakoid membranes. In the PSII repair cycle, phosphorylation and dephosphorylation of the PSII proteins control the timing of PSII disassembly and subsequent degradation of the D1 protein. Under light stress, stacked grana turn into unstacked thylakoids with bent grana margins. These structural changes may be closely linked to the mechanisms of the PSII repair cycle because PSII can move more easily from the grana core to the stroma thylakoids through an expanded stromal gap between each thylakoid. Thus, plants modulate the structure of thylakoid membranes under high light to carry out efficient PSII repair. This review focuses on the behavior of the PSII complex and the active role of structural changes to thylakoid membranes under light stress. en-copyright= kn-copyright= en-aut-name=Yoshioka-NishimuraMiho en-aut-sei=Yoshioka-Nishimura en-aut-mei=Miho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=FtsH protease kn-keyword=FtsH protease en-keyword=Light stress kn-keyword=Light stress en-keyword=PSII kn-keyword=PSII en-keyword=PSII repair cycle kn-keyword=PSII repair cycle en-keyword=Photoinhibition kn-keyword=Photoinhibition en-keyword=Thylakoid membrane kn-keyword=Thylakoid membrane END start-ver=1.4 cd-journal=joma no-vol=27 cd-vols= no-issue=3 article-no= start-page=225 end-page=229 dt-received= dt-revised= dt-accepted= dt-pub-year=2012 dt-pub=201205 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Extracorporeal membrane oxygenation following pediatric cardiac surgery: development and outcomes from a single-center experience en-subtitle= kn-subtitle= en-abstract= kn-abstract= Extracorporeal membrane oxygenation (ECMO) has emerged as an effective mechanical support following cardiac surgery with respiratory and cardiac failure. However, there are no clear indications for ECMO use after pediatric cardiac surgery. We retrospectively reviewed medical records of 76 pediatric patients [mean age, 10.8 months (0-86); mean weight, 5.16 kg (1.16-16.5)] with congenital heart disease who received ECMO following cardiac surgery between January 1997 and October 2010. Forty-five patients were treated with an aggressive ECMO approach (aggressive ECMO group, April 2005-October 2010) and 31 with a delayed ECMO approach (delayed ECMO group, January 1997-March 2005). Demographics, diagnosis, operative variables, ECMO indication, and duration of survivors and non-survivors were compared. Thirty-four patients (75.5%) were successfully weaned from ECMO in the aggressive ECMO group and 26 (57.7%) were discharged. Conversely, eight patients (25.8%) were successfully weaned from ECMO in the delayed ECMO group and two (6.5%) were discharged. Forty-five patients with shunted single ventricle physiology (aggressive: 29 patients, delayed: 16 patients) received ECMO, but only 15 (33.3%) survived and were discharged. The survival rate of the aggressive ECMO group was significantly better when compared with the delayed ECMO group (p<0.01). Also, ECMO duration was significantly shorter among the aggressive ECMO group survivors (96.5 ± 62.9 h, p<0.01). Thus, the aggressive ECMO approach is a superior strategy compared to the delayed ECMO approach in pediatric cardiac patients. The aggressive ECMO approach improved our outcomes of neonatal and pediatric ECMO. en-copyright= kn-copyright= en-aut-name=ItohHideshi en-aut-sei=Itoh en-aut-mei=Hideshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IchibaShingo en-aut-sei=Ichiba en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UjikeYoshihito en-aut-sei=Ujike en-aut-mei=Yoshihito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KasaharaShingo en-aut-sei=Kasahara en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AraiSadahiko en-aut-sei=Arai en-aut-mei=Sadahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SanoShuji en-aut-sei=Sano en-aut-mei=Shuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Cardiovascular Surgery, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Cardiovascular Surgery, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Cardiovascular Surgery, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Cardiovascular Surgery, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Cardiovascular Surgery, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Cardiovascular Surgery, Okayama University Hospital kn-affil= en-keyword=Extracorporeal membrane oxygenation kn-keyword=Extracorporeal membrane oxygenation en-keyword=congenital heart disease kn-keyword=congenital heart disease en-keyword=cardiac surgery kn-keyword=cardiac surgery en-keyword=pediatric kn-keyword=pediatric en-keyword=hypoplastic left heart syndrome kn-keyword=hypoplastic left heart syndrome END start-ver=1.4 cd-journal=joma no-vol=543 cd-vols= no-issue=7643 article-no= start-page=131 end-page=135 dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=201703 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL en-subtitle= kn-subtitle= en-abstract= kn-abstract= Photosystem II (PSII) is a huge membrane-protein complex consisting of 20 different subunits with a total molecular mass of 350?kDa for a monomer. It catalyses light-driven water oxidation at its catalytic centre, the oxygen-evolving complex (OEC). The structure of PSII has been analysed at 1.9?? resolution by synchrotron radiation X-rays, which revealed that the OEC is a Mn4CaO5 cluster organized in an asymmetric, 'distorted-chair' form. This structure was further analysed with femtosecond X-ray free electron lasers (XFEL), providing the 'radiation damage-free' structure. The mechanism of O=O bond formation, however, remains obscure owing to the lack of intermediate-state structures. Here we describe the structural changes in PSII induced by two-flash illumination at room temperature at a resolution of 2.35?? using time-resolved serial femtosecond crystallography with an XFEL provided by the SPring-8 ?ngstr?m compact free-electron laser. An isomorphous difference Fourier map between the two-flash and dark-adapted states revealed two areas of apparent changes: around the QB/non-haem iron and the Mn4CaO5 cluster. The changes around the QB/non-haem iron region reflected the electron and proton transfers induced by the two-flash illumination. In the region around the OEC, a water molecule located 3.5?? from the Mn4CaO5 cluster disappeared from the map upon two-flash illumination. This reduced the distance between another water molecule and the oxygen atom O4, suggesting that proton transfer also occurred. Importantly, the two-flash-minus-dark isomorphous difference Fourier map showed an apparent positive peak around O5, a unique μ4-oxo-bridge located in the quasi-centre of Mn1 and Mn4 (refs 4,5). This suggests the insertion of a new oxygen atom (O6) close to O5, providing an O=O distance of 1.5?? between these two oxygen atoms. This provides a mechanism for the O=O bond formation consistent with that proposed previously en-copyright= kn-copyright= en-aut-name=SugaMichihiro en-aut-sei=Suga en-aut-mei=Michihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AkitaFusamichi en-aut-sei=Akita en-aut-mei=Fusamichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SugaharaMichihiro en-aut-sei=Sugahara en-aut-mei=Michihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KuboMinoru en-aut-sei=Kubo en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakajimaYoshiki en-aut-sei=Nakajima en-aut-mei=Yoshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakaneTakanori en-aut-sei=Nakane en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamashitaKeitaro en-aut-sei=Yamashita en-aut-mei=Keitaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=UmenaYasufumi en-aut-sei=Umena en-aut-mei=Yasufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NakabayashiMakoto en-aut-sei=Nakabayashi en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YamaneTakahiro en-aut-sei=Yamane en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NakanoTakamitsu en-aut-sei=Nakano en-aut-mei=Takamitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SuzukiMamoru en-aut-sei=Suzuki en-aut-mei=Mamoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MasudaTetsuya en-aut-sei=Masuda en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=InoueShigeyuki en-aut-sei=Inoue en-aut-mei=Shigeyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=KimuraTetsunari en-aut-sei=Kimura en-aut-mei=Tetsunari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=NomuraTakashi en-aut-sei=Nomura en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=YonekuraShinichiro en-aut-sei=Yonekura en-aut-mei=Shinichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=YuLong-Jiang en-aut-sei=Yu en-aut-mei=Long-Jiang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=SakamotoTomohiro en-aut-sei=Sakamoto en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=MotomuraTaiki en-aut-sei=Motomura en-aut-mei=Taiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=ChenJing-Hua en-aut-sei=Chen en-aut-mei=Jing-Hua kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=KatoYuki en-aut-sei=Kato en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=NoguchiTakumi en-aut-sei=Noguchi en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=TonoKensuke en-aut-sei=Tono en-aut-mei=Kensuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=JotiYasumasa en-aut-sei=Joti en-aut-mei=Yasumasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=KameshimaTakashi en-aut-sei=Kameshima en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=HatsuiTakaki en-aut-sei=Hatsui en-aut-mei=Takaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=NangoEriko en-aut-sei=Nango en-aut-mei=Eriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=TanakaRie en-aut-sei=Tanaka en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=NaitowHisashi en-aut-sei=Naitow en-aut-mei=Hisashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= en-aut-name=MatsuuraYoshinori en-aut-sei=Matsuura en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=31 ORCID= en-aut-name=YamashitaAyumi en-aut-sei=Yamashita en-aut-mei=Ayumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=32 ORCID= en-aut-name=YamamotoMasaki en-aut-sei=Yamamoto en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=33 ORCID= en-aut-name=NurekiOsamu en-aut-sei=Nureki en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=34 ORCID= en-aut-name=YabashiMakina en-aut-sei=Yabashi en-aut-mei=Makina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=35 ORCID= en-aut-name=IshikawaTetsuya en-aut-sei=Ishikawa en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=36 ORCID= en-aut-name=IwataSo en-aut-sei=Iwata en-aut-mei=So kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=37 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=38 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=4 en-affil=Japan Science and Technology Agency, PRESTO kn-affil= affil-num=5 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Department of Biological Sciences, Graduate School of Science, The University of Tokyo kn-affil= affil-num=7 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=8 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=9 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=10 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=11 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=12 en-affil=Institute for Protein Research, Osaka University kn-affil= affil-num=13 en-affil=Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University kn-affil= affil-num=14 en-affil=Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=15 en-affil=Department of Chemistry, Graduate School of Science, Kobe University kn-affil= affil-num=16 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=17 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=18 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=19 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=20 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=21 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=22 en-affil=Division of Material Science, Graduate School of Science, Nagoya University kn-affil= affil-num=23 en-affil=Division of Material Science, Graduate School of Science, Nagoya University kn-affil= affil-num=24 en-affil=Japan Synchrotron Radiation Research Institute kn-affil= affil-num=25 en-affil=Japan Synchrotron Radiation Research Institute kn-affil= affil-num=26 en-affil=Japan Synchrotron Radiation Research Institute46 kn-affil= affil-num=27 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=28 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=29 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=30 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=31 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=32 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=33 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=34 en-affil=Department of Biological Sciences, Graduate School of Science, The University of Tokyo kn-affil= affil-num=35 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=36 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=37 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=38 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=313 cd-vols= no-issue=1 article-no= start-page=169 end-page=174 dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=201707 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=In vitro analysis of radioprotective effect of monoterpenes en-subtitle= kn-subtitle= en-abstract= kn-abstract= Monoterpenes are naturally occurring hydrocarbons composed of two units of isoprenes. They exhibit antioxidant activity to scavenge reactive oxygen species, such as hydroxyl radicals. We investigated the potential of monoterpenes such as thymol, linalool, and menthol to act as radioprotectants. The proliferation of EL4 cells, a mouse lymphoma cell line, treated with linalool at a concentration of 500 μM or more was not affected by X-ray irradiation. Plasmid-nicking assay performed using formamidopyrimidine-DNA glycosylase showed that linalool prevented single strand breaks and oxidized purines on pUC19 plasmid DNA. These findings indicate that linalool has the ability to scavenge reactive oxygen species and is a potential radioprotector. en-copyright= kn-copyright= en-aut-name=KudoKen-ichi en-aut-sei=Kudo en-aut-mei=Ken-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HanafusaTadashi en-aut-sei=Hanafusa en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OnoToshiro en-aut-sei=Ono en-aut-mei=Toshiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil= kn-affil= affil-num=2 en-affil=Department of Radiation Research, Advanced Science Research CenterOkayama University kn-affil= affil-num=3 en-affil=Department of Radiation Research, Advanced Science Research CenterOkayama University kn-affil= en-keyword=Monoterpenes kn-keyword=Monoterpenes en-keyword= Linalool kn-keyword= Linalool en-keyword=X-ray irradiation kn-keyword=X-ray irradiation en-keyword= Reactive oxygen species kn-keyword= Reactive oxygen species en-keyword= SSB kn-keyword= SSB END start-ver=1.4 cd-journal=joma no-vol=129 cd-vols= no-issue=1 article-no= start-page=9 end-page=15 dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=20170403 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Does hydrogen-rich water really work? kn-title=水素水は怪しい水でしょうか? en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=NakaoAtsunori en-aut-sei=Nakao en-aut-mei=Atsunori kn-aut-name=中尾篤典 kn-aut-sei=中尾 kn-aut-mei=篤典 aut-affil-num=1 ORCID= affil-num=1 en-affil=Department of Emergency and Critical Care Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil=岡山大学大学院医歯薬学総合研究科 救急医学 en-keyword=水素水 kn-keyword=水素水 en-keyword=抗酸化作用 kn-keyword=抗酸化作用 en-keyword=抗炎症作用 kn-keyword=抗炎症作用 en-keyword=臨床応用 kn-keyword=臨床応用 en-keyword=疑似科学 kn-keyword=疑似科学 END start-ver=1.4 cd-journal=joma no-vol=39 cd-vols= no-issue= article-no= start-page=46 end-page=53 dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=201608 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structure and energy transfer pathways of the plant photosystem I-LHCI supercomplex en-subtitle= kn-subtitle= en-abstract= kn-abstract=Photosystem I (PSI) is one of the two photosystems in oxygenic photosynthesis, and absorbs light energy to generate reducing power for the reduction of NADP+ to NADPH with a quantum efficiency close to 100%. The plant PSI core forms a supercomplex with light-harvesting complex I (LHCI) with a total molecular weight of over 600 kDa. Recent X-ray structure analysis of the PSI-LHCI membrane-protein supercomplex has revealed detailed arrangement of the light-harvesting pigments and other cofactors especially within LHCI. Here we introduce the overall structure of the PSI-LHCI supercomplex, and then focus on the excited energy transfer (EET) pathways from LHCI to the PSI core and photoprotection mechanisms based on the structure obtained. en-copyright= kn-copyright= en-aut-name=SugaMichihiro en-aut-sei=Suga en-aut-mei=Michihiro kn-aut-name=菅倫寛 kn-aut-sei=菅 kn-aut-mei=倫寛 aut-affil-num=1 ORCID= en-aut-name=QinXiaochun en-aut-sei=Qin en-aut-mei=Xiaochun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KuangTingyun en-aut-sei=Kuang en-aut-mei=Tingyun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name=沈建仁 kn-aut-sei=沈 kn-aut-mei=建仁 aut-affil-num=4 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University kn-affil=岡山大学異分野基礎科学研究所 affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University kn-affil=岡山大学異分野基礎科学研究所 affil-num=3 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University kn-affil=岡山大学異分野基礎科学研究所 END start-ver=1.4 cd-journal=joma no-vol=128 cd-vols= no-issue=2 article-no= start-page=103 end-page=109 dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=20160801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Identification of the adipokine ‘vaspin’ and its significance in metabolic syndrome kn-title=アディポカイン「バスピン」の同定とメタボリックシンドロームにおける意義 en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name=和田淳 kn-aut-sei=和田 kn-aut-mei=淳 aut-affil-num=1 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil=岡山大学大学院医歯薬学総合研究科 腎・免疫・内分泌代謝内科学 en-keyword=metabolic syndrome kn-keyword=metabolic syndrome en-keyword=adipokine kn-keyword=adipokine en-keyword=atherosclerosis kn-keyword=atherosclerosis en-keyword=endothelial cells kn-keyword=endothelial cells en-keyword=apoptosis kn-keyword=apoptosis END start-ver=1.4 cd-journal=joma no-vol=70 cd-vols= no-issue=3 article-no= start-page=151 end-page=158 dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=201606 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Mitochondrial Dynamics and Mitochondrial Dysfunction in Diabetes en-subtitle= kn-subtitle= en-abstract= kn-abstract=The mitochondria are involved in active and dynamic processes, such as mitochondrial biogenesis, fission, fusion and mitophagy to maintain mitochondrial and cellular functions. In obesity and type 2 diabetes, impaired oxidation, reduced mitochondrial contents, lowered rates of oxidative phosphorylation and excessive reactive oxygen species (ROS) production have been reported. Mitochondrial biogenesis is regulated by various transcription factors such as peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), peroxisome proliferator-activated receptors (PPARs), estrogen-related receptors (ERRs), and nuclear respiratory factors (NRFs). Mitochondrial fusion is promoted by mitofusin 1 (MFN1), mitofusin 2 (MFN2) and optic atrophy 1 (OPA1), while fission is governed by the recruitment of dynamin-related protein 1 (DRP1) by adaptor proteins such as mitochondrial fission factor (MFF), mitochondrial dynamics proteins of 49 and 51 kDa (MiD49 and MiD51), and fission 1 (FIS1). Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) and PARKIN promote DRP1-dependent mitochondrial fission, and the outer mitochondrial adaptor MiD51 is required in DRP1 recruitment and PARKIN-dependent mitophagy. This review describes the molecular mechanism of mitochondrial dynamics, its abnormality in diabetes and obesity, and pharmaceuticals targeting mitochondrial biogenesis, fission, fusion and mitophagy. en-copyright= kn-copyright= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakatsukaAtsuko en-aut-sei=Nakatsuka en-aut-mei=Atsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=fusion kn-keyword=fusion en-keyword=fission kn-keyword=fission en-keyword=oxidative stress kn-keyword=oxidative stress en-keyword=mitochondria kn-keyword=mitochondria en-keyword=diabetes kn-keyword=diabetes END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=20160325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=急性心不全モデル仔豚による拍動流ECMOの血行動態エネルギーと全身微小循環に及ぼす影響 kn-title=Effect of the Pulsatile Extracorporeal Membrane Oxygenation on Hemodynamic Energy and Systemic Microcirculation in a Piglet Model of Acute Cardiac Failure en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=ItoHideshi en-aut-sei=Ito en-aut-mei=Hideshi kn-aut-name=伊藤英史 kn-aut-sei=伊藤 kn-aut-mei=英史 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=20160325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=肝移植術中の酸素消費量の測定意義 kn-title=Intraoperative Oxygen Consumption During Liver Transplantation en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=ShibataMari en-aut-sei=Shibata en-aut-mei=Mari kn-aut-name=柴田麻理 kn-aut-sei=柴田 kn-aut-mei=麻理 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 END start-ver=1.4 cd-journal=joma no-vol=6 cd-vols= no-issue= article-no= start-page=19742 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=20160128 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Molecular evolution of gas cavity in [NiFeSe] hydrogenases resurrected in silico en-subtitle= kn-subtitle= en-abstract= kn-abstract=Oxygen tolerance of selenium-containing [NiFeSe] hydrogenases (Hases) is attributable to the high reducing power of the selenocysteine residue, which sustains the bimetallic Ni?Fe catalytic center in the large subunit. Genes encoding [NiFeSe] Hases are inherited by few sulphate-reducing δ-proteobacteria globally distributed under various anoxic conditions. Ancestral sequences of [NiFeSe] Hases were elucidated and their three-dimensional structures were recreated in silico using homology modelling and molecular dynamic simulation, which suggested that deep gas channels gradually developed in [NiFeSe] Hases under absolute anaerobic conditions, whereas the enzyme remained as a sealed edifice under environmental conditions of a higher oxygen exposure risk. The development of a gas cavity appears to be driven by non-synonymous mutations, which cause subtle conformational changes locally and distantly, even including highly conserved sequence regions. en-copyright= kn-copyright= en-aut-name=TamuraTakashi en-aut-sei=Tamura en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TsunekawaNaoki en-aut-sei=Tsunekawa en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NemotoMichiko en-aut-sei=Nemoto en-aut-mei=Michiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=InagakiKenji en-aut-sei=Inagaki en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HiranoToshiyuki en-aut-sei=Hirano en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SatoFumitoshi en-aut-sei=Sato en-aut-mei=Fumitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil= kn-affil=Graduate School of Environmental and Life Science, Okayama University affil-num=2 en-affil= kn-affil=Institute of Industrial Science, the University of Tokyo affil-num=3 en-affil= kn-affil=Graduate School of Environmental and Life Science, Okayama University affil-num=4 en-affil= kn-affil=Graduate School of Environmental and Life Science, Okayama University affil-num=5 en-affil= kn-affil=Institute of Industrial Science, the University of Tokyo affil-num=6 en-affil= kn-affil=Institute of Industrial Science, the University of Tokyo END start-ver=1.4 cd-journal=joma no-vol=517 cd-vols= no-issue= article-no= start-page=99 end-page=103 dt-received= dt-revised= dt-accepted= dt-pub-year=2015 dt-pub=20150101 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Native structure of photosystem II at 1.95 ? resolution viewed by femtosecond X-ray pulses en-subtitle= kn-subtitle= en-abstract= kn-abstract=Photosynthesis converts light energy into biologically useful chemical energy vital to life on Earth. The initial reaction of photosynthesis takes place in photosystem II (PSII), a 700-kilodalton homodimeric membrane protein complex which catalyses photo-oxidation of water into dioxygen through an S-state cycle of the oxygen evolving complex (OEC). The structure of PSII has been solved by X-ray diffraction (XRD) at 1.9-?ngstr?m (?) resolution, which revealed that the OEC is a Mn4CaO5-cluster coordinated by a well-defined protein environment1. However, extended X-ray absorption fine structure (EXAFS) studies showed that the manganese cations in the OEC are easily reduced by X-ray irradiation2, and slight differences were found in the Mn?Mn distances between the results of XRD1, EXAFS3?7 and theoretical studies8?14. Here we report a ‘radiation-damage-free’ structure of PSII from Thermosynechococcus vulcanus in the S1 state at a resolution of 1.95 ? using femtosecond X-ray pulses of the SPring-8 ?ngstr?m compact free-electron laser (SACLA) and a huge number of large, highly isomorphous PSII crystals. Compared with the structure from XRD, the OEC in the X-ray free electron laser structure has Mn?Mn distances that are shorter by 0.1?0.2 ?. The valences of each manganese atom were tentatively assigned as Mn1D(III), Mn2C(IV), Mn3B(IV) and Mn4A(III), based on the average Mn?ligand distances and analysis of the Jahn?Teller axis on Mn(III). One of the oxo-bridged oxygens, O5, has significantly longer Mn?O distances in contrast to the other oxo-oxygen atoms, suggesting that it is a hydroxide ion instead of a normal oxygen dianion and therefore may serve as one of the substrate oxygen atoms. These findings provide a structural basis for the mechanism of oxygen evolution, and we expect that this structure will provide a blueprint for design of artificial catalysts for water oxidation. en-copyright= kn-copyright= en-aut-name=SugaMichihiro en-aut-sei=Suga en-aut-mei=Michihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AkitaFusamichi en-aut-sei=Akita en-aut-mei=Fusamichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HirataKunio en-aut-sei=Hirata en-aut-mei=Kunio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=UenoGo en-aut-sei=Ueno en-aut-mei=Go kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MurakamiHironori en-aut-sei=Murakami en-aut-mei=Hironori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakajimaYoshiki en-aut-sei=Nakajima en-aut-mei=Yoshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ShimizuTetsuya en-aut-sei=Shimizu en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamashitaKeitaro en-aut-sei=Yamashita en-aut-mei=Keitaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YamamotoMasaki en-aut-sei=Yamamoto en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=AgoHideo en-aut-sei=Ago en-aut-mei=Hideo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil= kn-affil=Photosynthesis Research Center, Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=Photosynthesis Research Center, Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=RIKEN SPring-8 Center affil-num=4 en-affil= kn-affil=RIKEN SPring-8 Center affil-num=5 en-affil= kn-affil=RIKEN SPring-8 Center affil-num=6 en-affil= kn-affil=Photosynthesis Research Center, Graduate School of Natural Science and Technology, Okayama University affil-num=7 en-affil= kn-affil=Photosynthesis Research Center, Graduate School of Natural Science and Technology, Okayama University affil-num=8 en-affil= kn-affil=RIKEN SPring-8 Center affil-num=9 en-affil= kn-affil=RIKEN SPring-8 Center affil-num=10 en-affil= kn-affil=RIKEN SPring-8 Center affil-num=11 en-affil= kn-affil=Photosynthesis Research Center, Graduate School of Natural Science and Technology, Okayama University END start-ver=1.4 cd-journal=joma no-vol=69 cd-vols= no-issue=3 article-no= start-page=145 end-page=153 dt-received= dt-revised= dt-accepted= dt-pub-year=2015 dt-pub=201506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Eosinophil Cationic Protein Shows Survival Effect on H9c2 Cardiac Myoblast Cells with Enhanced Phosphorylation of ERK and Akt/GSK-3β under Oxidative Stress en-subtitle= kn-subtitle= en-abstract= kn-abstract=Eosinophil cationic protein (ECP) is well known as a cationic protein contained in the basic granules of activated eosinophils. Recent studies have reported that ECP exhibits novel activities on various types of cells, including rat neonatal cardiomyocytes. Here we evaluated the effects of ECP on rat cardiac myoblast H9c2 cells. Our results showed that ECP enhanced the survival of the cells, in part by promoting the ERK and Akt/GSK-3β signaling pathways. ECP attenuated the cytotoxic effects of H2O2 on H9c2 cells as well as the production of reactive oxygen species, the number of apoptotic cells and caspase 3/7 activity in the cells. In conclusion, ECP activated the ERK and Akt/GSK-3β pathways, resulting in anti-oxidative effects on H9c2 cells that attenuated apoptosis. en-copyright= kn-copyright= en-aut-name=IshiiHiroko en-aut-sei=Ishii en-aut-mei=Hiroko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KamikawaShigeshi en-aut-sei=Kamikawa en-aut-mei=Shigeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HirohataSatoshi en-aut-sei=Hirohata en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MizutaniAkifumi en-aut-sei=Mizutani en-aut-mei=Akifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AbeKoji en-aut-sei=Abe en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SenoMasaharu en-aut-sei=Seno en-aut-mei=Masaharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OohashiToshitaka en-aut-sei=Oohashi en-aut-mei=Toshitaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NinomiyaYoshifumi en-aut-sei=Ninomiya en-aut-mei=Yoshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil= kn-affil=Departments of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine affil-num=2 en-affil= kn-affil=Departments of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine affil-num=3 en-affil= kn-affil=Departments of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine affil-num=4 en-affil= kn-affil=Department of Chemistry and Biotechnology, Graduate School of Natural Science and Technology, Okayama University affil-num=5 en-affil= kn-affil=Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, affil-num=6 en-affil= kn-affil=Department of Chemistry and Biotechnology, Graduate School of Natural Science and Technology, Okayama University affil-num=7 en-affil= kn-affil=Departments of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine affil-num=8 en-affil= kn-affil=Departments of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine en-keyword=ECP kn-keyword=ECP en-keyword=reactive oxygen species kn-keyword=reactive oxygen species en-keyword=Akt kn-keyword=Akt en-keyword=ERK kn-keyword=ERK END start-ver=1.4 cd-journal=joma no-vol=104 cd-vols= no-issue= article-no= start-page=1 end-page=4 dt-received= dt-revised= dt-accepted= dt-pub-year=2015 dt-pub=20150201 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Improvement of dye-mediated dehydrogenase activity of pyranose oxidase by site-directed mutagenesis kn-title=部位特異的変異によるピラノース酸化酵素の色素依存性脱水素酵素活性の向上 en-subtitle= kn-subtitle= en-abstract= kn-abstract= Pyranose oxidase (EC 1.1.3.10 ; PROD) catalyzes the oxidation of aldopyranoses at the position C?2 to yield the corresponding 2?keto-aldoses and H2O2 , using oxygen as an electron acceptor. The enzyme shows broad substrate specificity as well as reactivity for 1,5?anhydro?d?glucitol (1,5?AG), which is known as a clinical glycemic marker. It is considered that the reactivity of PROD for 1,5?AG is useful in the development of an amperometric-type biosensor, which is a convenient diagnostic device for selfmonitoring blood glucose (SMBG). However, the levels of dissolved oxygen in blood affect biosensor systems that are equipped with an artificial electron mediator. In the present study, we attempted to develop an O2?insensitive oxidase that would improve the dye-mediated dehydrogenase activity. We performed site-directed mutagenesis on PROD isolated from basidiomycetous fungus No. 52, which generated 11 mutants. The amino acid substitution Q421A exhibited a significant decrease (8.8% of wild type) in its oxidase activity, whereas it maintained its dehydrogenase activity (67% of wild type). In this study, we characterized PROD mutants from basidiomycetous fungus No. 52, which showed improved dye-mediated dehydrogenase activity. en-copyright= kn-copyright= en-aut-name=ArakiToshio en-aut-sei=Araki en-aut-mei=Toshio kn-aut-name=荒木俊雄 kn-aut-sei=荒木 kn-aut-mei=俊雄 aut-affil-num=1 ORCID= en-aut-name=NakatsukaTomoko en-aut-sei=Nakatsuka en-aut-mei=Tomoko kn-aut-name=中柄朋子 kn-aut-sei=中柄 kn-aut-mei=朋子 aut-affil-num=2 ORCID= en-aut-name=TamuraTakashi en-aut-sei=Tamura en-aut-mei=Takashi kn-aut-name=田村隆 kn-aut-sei=田村 kn-aut-mei=隆 aut-affil-num=3 ORCID= en-aut-name=InagakiKenji en-aut-sei=Inagaki en-aut-mei=Kenji kn-aut-name=稲垣賢二 kn-aut-sei=稲垣 kn-aut-mei=賢二 aut-affil-num=4 ORCID= affil-num=1 en-affil= kn-affil=池田食研株式会社 affil-num=2 en-affil= kn-affil=池田食研株式会社 affil-num=3 en-affil= kn-affil=岡山大学農学部 affil-num=4 en-affil= kn-affil=岡山大学農学部 en-keyword=pyranose oxidase kn-keyword=pyranose oxidase en-keyword=1,5-anhydro-d-glucitol kn-keyword=1,5-anhydro-d-glucitol en-keyword=biosensor kn-keyword=biosensor en-keyword=site-directed mutagenesis kn-keyword=site-directed mutagenesis en-keyword=SMBG kn-keyword=SMBG END start-ver=1.4 cd-journal=joma no-vol=68 cd-vols= no-issue=6 article-no= start-page=369 end-page=374 dt-received= dt-revised= dt-accepted= dt-pub-year=2014 dt-pub=201412 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Ultrastructural Analysis of an Enterolith Composed of Deoxycholic Acid en-subtitle= kn-subtitle= en-abstract= kn-abstract=A 67-year-old Japanese man underwent enterotomy because of enterolith ileus. Component analysis by infrared spectroscopy revealed that the enterolith was composed of a high concentration of deoxycholic acid. We further analyzed and compared the ultrastructure of the enterolith and a commercially available powdered form of deoxycholic acid by means of scanning electron microscopy and energy dispersive X-ray spectroscopy. Energy dispersive X-ray spectroscopy analysis revealed that the ratios of carbon and oxygen in the enterolith were equal to those in the deoxycholic acid powder. Scanning electron microscopy analysis showed rectangular prism-shaped particles on the surface of the enterolith. This structure was similar to that of the deoxycholic acid powder. The surgically removed enterolith had a twisted and coiled appearance. Possible mechanisms underlying the formation of this unique form are discussed. en-copyright= kn-copyright= en-aut-name=IwamuroMasaya en-aut-sei=Iwamuro en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyashimaYuichi en-aut-sei=Miyashima en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YoshiokaTakahiro en-aut-sei=Yoshioka en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MurataToshihiro en-aut-sei=Murata en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MiyabeYoshio en-aut-sei=Miyabe en-aut-mei=Yoshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KawaiYoshinari en-aut-sei=Kawai en-aut-mei=Yoshinari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=UrataHaruo en-aut-sei=Urata en-aut-mei=Haruo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShirahaHidenori en-aut-sei=Shiraha en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OkadaHiroyuki en-aut-sei=Okada en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YamamotoKazuhide en-aut-sei=Yamamoto en-aut-mei=Kazuhide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil= kn-affil=Department of Gastroenterology, Onomichi Municipal Hospital affil-num=2 en-affil= kn-affil=Department of Surgery, Onomichi Municipal Hospital affil-num=3 en-affil= kn-affil=Department of Surgery, Onomichi Municipal Hospital affil-num=4 en-affil= kn-affil=Department of Surgery, Onomichi Municipal Hospital affil-num=5 en-affil= kn-affil=Department of Gastroenterology, Onomichi Municipal Hospital affil-num=6 en-affil= kn-affil=Department of Gastroenterology, Onomichi Municipal Hospital affil-num=7 en-affil= kn-affil=Central Research Laboratory, Okayama University Medical School affil-num=8 en-affil= kn-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=9 en-affil= kn-affil=Department of Endoscopy, Okayama University Hospital affil-num=10 en-affil= kn-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences en-keyword=enterolith kn-keyword=enterolith en-keyword=deoxycholic acid kn-keyword=deoxycholic acid en-keyword=scanning electron microscopy kn-keyword=scanning electron microscopy en-keyword=infrared spectroscopy kn-keyword=infrared spectroscopy en-keyword=energy dispersive X-ray spectroscopy kn-keyword=energy dispersive X-ray spectroscopy END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2014 dt-pub=20140930 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=ウシ黄体退行機構に関する研究: プロスタグランデインF2αおよび活性酸素種による抗酸化酵素の調節 kn-title=Study on luteolytic mechanisms in cattle: Regulation of antioxidant enzymes by prostaglandin F2α and reactive oxygen species en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=Vu Van Hai en-aut-sei=Vu Van Hai en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 END start-ver=1.4 cd-journal=joma no-vol=146 cd-vols= no-issue=6 article-no= start-page=1534 end-page=1537 dt-received= dt-revised= dt-accepted= dt-pub-year=2013 dt-pub=201312 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Unilateral lung transplantation using right and left upper lobes: An experimental study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objective: The shortage of organ donors is a serious problem in Japan. The right and left upper lobes of rejected extended-criteria lungs have the potential to be used for downsized lung transplantation; however, the 2 upper lobes are too small for a size-matched recipient. The present study investigated the feasibility of unilateral transplantation using the right and left upper lobes. Methods: After harvesting the heart-lung block from donor swine, a left lung graft was created using the right and left upper lobes and transplanted into the left thoracic space of the recipient swine (group A, n = 5). We then evaluated graft function for 6 hours and compared these results with those of a control group (group B, n = 5), in which orthotopic left lung transplantation had been performed. Results: The mean partial pressure of oxygen in the arterial blood gas after reperfusion was 507 mm Hg in group A and 463 mm Hg in group B (P = .2). The mean pulmonary arterial pressure was 30.3 mm Hg in group A and 27.5 mm Hg in group B (P = .4). The mean airway pressure was 6.4 mm Hg in group A and 6.2 mm Hg in group B (P = .7). Conclusions: Our results suggest that unilateral left lung transplantation using the right and left upper lobes is technically and functionally feasible for size-matched recipients. In addition, this technique enables the use of rejected lungs if the upper lobes are still intact. en-copyright= kn-copyright= en-aut-name=NishikawaHitoshi en-aut-sei=Nishikawa en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OtoTakahiro en-aut-sei=Oto en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OtaniShinji en-aut-sei=Otani en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HaradaMasaaki en-aut-sei=Harada en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IgaNorichika en-aut-sei=Iga en-aut-mei=Norichika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MiyoshiKentaroh en-aut-sei=Miyoshi en-aut-mei=Kentaroh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MiyoshiShinichiro en-aut-sei=Miyoshi en-aut-mei=Shinichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil= kn-affil=Okayama Univ, Grad Sch Med, Dept Gen Thorac Surg affil-num=2 en-affil= kn-affil=Okayama Univ, Grad Sch Med, Dept Gen Thorac Surg affil-num=3 en-affil= kn-affil=Okayama Univ, Grad Sch Med, Dept Gen Thorac Surg affil-num=4 en-affil= kn-affil=Okayama Univ, Grad Sch Med, Dept Gen Thorac Surg affil-num=5 en-affil= kn-affil=Okayama Univ, Grad Sch Med, Dept Gen Thorac Surg affil-num=6 en-affil= kn-affil=Okayama Univ, Grad Sch Med, Dept Gen Thorac Surg affil-num=7 en-affil= kn-affil=Okayama Univ, Grad Sch Med, Dept Gen Thorac Surg END start-ver=1.4 cd-journal=joma no-vol=126 cd-vols= no-issue=2 article-no= start-page=117 end-page=126 dt-received= dt-revised= dt-accepted= dt-pub-year=2014 dt-pub=20140801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=The origin of infra-slow oscillations of oxygenated hemoglobin observed in functional near-infrared spectroscopy kn-title=光トポグラフィーでみられる酸素化ヘモグロビン量の低周波変動の発生源に関する研究 en-subtitle= kn-subtitle= en-abstract= kn-abstract=There is increasing interest in the intrinsic activity of the resting brain, especially the activity slower than 0.1Hz (i.e., low-frequency oscillations, or LFOs). To investigate the origin of LFOs observed in functional near-infrared spectroscopy (fNIRS), we recorded multichannel fNIRS and electroencephalography (EEG) from the frontal cortex of 11 healthy young volunteers in the resting state. Electrocardiography (ECG), electro-oculography and respiration were also measured. Synchronous oscillations of oxy-hemoglobin (oxy-Hb) around 1.0Hz were detected in all fNIRS channels, and their frequency was consistent with a peak frequency of ECG, suggesting the changes of cerebral blood flow due to heart beats. In addition, oxy-Hb oscillations around 0.1Hz (i.e., LFOs) appeared in the fNIRS. The channels where LFOs appeared differed among the subjects, and the LFOs appeared or disappeared even in the same fNIRS channels. The appearance of LFOs in fNIRS channels was significantly higher when the LFOs appeared on the EEG in the adjacent EEG electrodes compared to when LFOs did not appear on EEG. The amplitude and coherence (synchronicity) of the LFOs were increased by changing the subjects' position from dorsal to the sitting position in both fNIRS and EEG, and the coherence in particular was increased in the homologous fNIRS channels on the bilateral hemispheres. These results suggest that LFOs of oxy-Hb couple with resting-state EEG activity. en-copyright= kn-copyright= en-aut-name=ShoshiChikafumi en-aut-sei=Shoshi en-aut-mei=Chikafumi kn-aut-name=所司睦文 kn-aut-sei=所司 kn-aut-mei=睦文 aut-affil-num=1 ORCID= en-aut-name=UenoHiroshi en-aut-sei=Ueno en-aut-mei=Hiroshi kn-aut-name=上野浩司 kn-aut-sei=上野 kn-aut-mei=浩司 aut-affil-num=2 ORCID= en-aut-name=KuboMasako en-aut-sei=Kubo en-aut-mei=Masako kn-aut-name=久保正子 kn-aut-sei=久保 kn-aut-mei=正子 aut-affil-num=3 ORCID= en-aut-name=OdaMasuko en-aut-sei=Oda en-aut-mei=Masuko kn-aut-name=小田真珠子 kn-aut-sei=小田 kn-aut-mei=真珠子 aut-affil-num=4 ORCID= en-aut-name=HirataNaoya en-aut-sei=Hirata en-aut-mei=Naoya kn-aut-name=平田直也 kn-aut-sei=平田 kn-aut-mei=直也 aut-affil-num=5 ORCID= en-aut-name=TakemotoRika en-aut-sei=Takemoto en-aut-mei=Rika kn-aut-name=武本梨佳 kn-aut-sei=武本 kn-aut-mei=梨佳 aut-affil-num=6 ORCID= en-aut-name=KinugasaKazushi en-aut-sei=Kinugasa en-aut-mei=Kazushi kn-aut-name=衣笠和孜 kn-aut-sei=衣笠 kn-aut-mei=和孜 aut-affil-num=7 ORCID= en-aut-name=OkamotoMotoi en-aut-sei=Okamoto en-aut-mei=Motoi kn-aut-name=岡本基 kn-aut-sei=岡本 kn-aut-mei=基 aut-affil-num=8 ORCID= affil-num=1 en-affil= kn-affil=川崎医療短期大学 臨床検査科 affil-num=2 en-affil= kn-affil=近畿大学医学部 薬理学講座 affil-num=3 en-affil= kn-affil=東京工科大学医療保健学部 看護学科 affil-num=4 en-affil= kn-affil=倉敷成人病健診センター affil-num=5 en-affil= kn-affil=福山市民病院 affil-num=6 en-affil= kn-affil=岡山大学病院 医療技術部 affil-num=7 en-affil= kn-affil=岡山療護センター affil-num=8 en-affil= kn-affil=岡山大学大学院保健学研究科 検査技術科学 en-keyword=fNIRS kn-keyword=fNIRS en-keyword=EEG kn-keyword=EEG en-keyword=LFOs kn-keyword=LFOs en-keyword=コヒーレンス解析(Coherence analysis) kn-keyword=コヒーレンス解析(Coherence analysis) en-keyword=連続ウェーブレット解析(continuous wavelet transforms) kn-keyword=連続ウェーブレット解析(continuous wavelet transforms) END start-ver=1.4 cd-journal=joma no-vol=30 cd-vols= no-issue= article-no= start-page=8 end-page=10 dt-received= dt-revised= dt-accepted= dt-pub-year=2014 dt-pub=201404 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Assessment of acetate on anti-obesity effect with experimental animal kn-title=実験動物を用いた酢酸の肥満抑制効果の評価 en-subtitle= kn-subtitle= en-abstract= kn-abstract=Acetate is an endogenous metabolite of fatty acid β-oxidation in the liver mitochondria under starved condition. Orally administered acetate is readily absorbed in the blood stream and then taken up by tissues and activates AMP-activated protein kinase (AMPK) by increasing the AMP/ATP ratio. Administered acetate shows a marked reduction in lipid accumulation in the adipose tissue, protection against accumulation of fat in the liver, and improves glucose tolerance. It decreases the transcripts of the lipogenic genes in the liver, indicating an inhibition of lipogenesis in that organ. Furthermore, acetate treatment shows a higher rate of oxygen consumption and a smaller size of lipid droplets in white and brown adipose tissues. It is indicated that acetate taken up has a potential to prevent obesity and obesity-linked type 2 diabetes. en-copyright= kn-copyright= en-aut-name=YamashitaHiromi en-aut-sei=Yamashita en-aut-mei=Hiromi kn-aut-name=山下広美 kn-aut-sei=山下 kn-aut-mei=広美 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山県立大学 保健福祉学部 栄養学科 END start-ver=1.4 cd-journal=joma no-vol=2012 cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2012 dt-pub=2012 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Inhibitory Effects of Pretreatment with Radon on Acute Alcohol-Induced Hepatopathy in Mice en-subtitle= kn-subtitle= en-abstract= kn-abstract=We previously reported that radon inhalation activates antioxidative functions in the liver and inhibits carbon tetrachloride-induced hepatopathy in mice. In addition, it has been reported that reactive oxygen species contribute to alcohol-induced hepatopathy. In this study, we examined the inhibitory effects of radon inhalation on acute alcohol- induced hepatopathy in mice. C57BL/6J mice were subjected to intraperitoneal injection of 50% alcohol (5 g/kg bodyweight) after inhaling approximately 4000 Bq/m(3) radon for 24 h. Alcohol administration significantly increased the activities of glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT) in serum, and the levels of triglyceride and lipid peroxide in the liver, suggesting acute alcohol- induced hepatopathy. Radon inhalation activated antioxidative functions in the liver. Furthermore, pretreatment with radon inhibited the depression of hepatic functions and antioxidative functions. These findings suggested that radon inhalation activated antioxidative functions in the liver and inhibited acute alcohol- induced hepatopathy in mice. en-copyright= kn-copyright= en-aut-name=ToyotaTeruaki en-aut-sei=Toyota en-aut-mei=Teruaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KataokaTakahiro en-aut-sei=Kataoka en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishiyamaYuichi en-aut-sei=Nishiyama en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TaguchiTakehito en-aut-sei=Taguchi en-aut-mei=Takehito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamaokaKiyonori en-aut-sei=Yamaoka en-aut-mei=Kiyonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil= kn-affil=Okayama Univ, Grad Sch Hlth Sci affil-num=2 en-affil= kn-affil=Okayama Univ, Grad Sch Hlth Sci affil-num=3 en-affil= kn-affil=Okayama Univ, Grad Sch Hlth Sci affil-num=4 en-affil= kn-affil=Okayama Univ, Grad Sch Hlth Sci affil-num=5 en-affil= kn-affil=Okayama Univ, Grad Sch Hlth Sci END start-ver=1.4 cd-journal=joma no-vol=125 cd-vols= no-issue=3 article-no= start-page=201 end-page=204 dt-received= dt-revised= dt-accepted= dt-pub-year=2013 dt-pub=20131202 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Hydrogen as a treatment candidate for non-alcoholic steatohepatitis kn-title=NASHに対する水素分子の有用性 en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=KawaiDaisuke en-aut-sei=Kawai en-aut-mei=Daisuke kn-aut-name=河合大介 kn-aut-sei=河合 kn-aut-mei=大介 aut-affil-num=1 ORCID= en-aut-name=TakakiAkinobu en-aut-sei=Takaki en-aut-mei=Akinobu kn-aut-name=高木章乃夫 kn-aut-sei=高木 kn-aut-mei=章乃夫 aut-affil-num=2 ORCID= en-aut-name=YamamotoKazuhide en-aut-sei=Yamamoto en-aut-mei=Kazuhide kn-aut-name=山本和秀 kn-aut-sei=山本 kn-aut-mei=和秀 aut-affil-num=3 ORCID= affil-num=1 en-affil= kn-affil=岡山大学大学院医歯薬学総合研究科 消化器・肝臓内科学 affil-num=2 en-affil= kn-affil=岡山大学大学院医歯薬学総合研究科 消化器・肝臓内科学 affil-num=3 en-affil= kn-affil=岡山大学大学院医歯薬学総合研究科 消化器・肝臓内科学 en-keyword=酸化ストレス kn-keyword=酸化ストレス en-keyword=水素水 kn-keyword=水素水 en-keyword=NASH kn-keyword=NASH en-keyword=肝腫瘍 kn-keyword=肝腫瘍 END start-ver=1.4 cd-journal=joma no-vol=43 cd-vols= no-issue=10 article-no= start-page=1078 end-page=1092 dt-received= dt-revised= dt-accepted= dt-pub-year=2013 dt-pub=20130130 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Serum oxidative-anti-oxidative stress balance is dysregulated in patients with hepatitis C virus-related hepatocellular carcinoma en-subtitle= kn-subtitle= en-abstract= kn-abstract=Aim Oxidative stress is associated with progression of chronic liver disease (CLD). This association is best established in chronic hepatitis C. However, the anti-oxidative state is not well characterized. The objective of the present study was to investigate the balance of oxidative and anti-oxidative stress in CLD patients. Methods We recruited a study population of 208 patients, including healthy volunteers (HV; n?=?15), patients with hepatitis B virus (HBV)-related CLD without or with hepatocellular carcinoma (HBV-non-HCC, n?=?25, and HBV-HCC, n?=?50, respectively), and patients with hepatitis C virus (HCV)-related CLD without or with HCC (HCV-non-HCC, n?=?49, and HCV-HCC, n?=?69, respectively). Serum levels of reactive oxygen metabolites (ROM) and anti-oxidative markers (OXY-adsorbent test; OXY) were determined, and the balance of these values was used as the oxidative index. Correlations among ROM, OXY, oxidative index and clinical characteristics were investigated. Results Patients with CLD exhibited elevated ROM and oxidative index compared to HV. Among patients with CLD, HCV positive status correlated with increased ROM. In CLD, HCV-HCC patients exhibited the highest ROM levels. Among HCV-related CLD patients, lower OXY correlated with HCC positive status, but was recovered by eradication of HCC. In HCV-HCC, lower OXY correlated with high PT-INR. Conclusion HCV positive CLD patients displayed higher oxidative stress and HCV-HCC patients displayed lower anti-oxidative state. Anti-oxidative state depression was associated with liver reservoir-related data in HCV-HCC and could be reversed with HCC eradication. en-copyright= kn-copyright= en-aut-name=NishimuraMamoru en-aut-sei=Nishimura en-aut-mei=Mamoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakakiAkinobu en-aut-sei=Takaki en-aut-mei=Akinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TamakiNaofumi en-aut-sei=Tamaki en-aut-mei=Naofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MaruyamaTakayuki en-aut-sei=Maruyama en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OnishiHideki en-aut-sei=Onishi en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KobayashiSayo en-aut-sei=Kobayashi en-aut-mei=Sayo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NousoKazuhiro en-aut-sei=Nouso en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YasunakaTetsuya en-aut-sei=Yasunaka en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KoikeKazuko en-aut-sei=Koike en-aut-mei=Kazuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HagiharaHiroaki en-aut-sei=Hagihara en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KuwakiKenji en-aut-sei=Kuwaki en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NakamuraShinichiro en-aut-sei=Nakamura en-aut-mei=Shinichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=IkedaFusao en-aut-sei=Ikeda en-aut-mei=Fusao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=IwasakiYoshiaki en-aut-sei=Iwasaki en-aut-mei=Yoshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=TomofujiTakaaki en-aut-sei=Tomofuji en-aut-mei=Takaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=MoritaManabu en-aut-sei=Morita en-aut-mei=Manabu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=YamamotoKazuhide en-aut-sei=Yamamoto en-aut-mei=Kazuhide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= affil-num=1 en-affil= kn-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=2 en-affil= kn-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=3 en-affil= kn-affil=Department of Preventive Dentistry, Institute of Health Biosciences, The University of Tokushima Graduate School affil-num=4 en-affil= kn-affil=Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=5 en-affil= kn-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=6 en-affil= kn-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=7 en-affil= kn-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=8 en-affil= kn-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=9 en-affil= kn-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=10 en-affil= kn-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=11 en-affil= kn-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=12 en-affil= kn-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=13 en-affil= kn-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=14 en-affil= kn-affil=Health Service Center, Okayama University affil-num=15 en-affil= kn-affil=Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=16 en-affil= kn-affil=Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=17 en-affil= kn-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences en-keyword=anti-oxidant kn-keyword=anti-oxidant en-keyword=chronic hepatitis C kn-keyword=chronic hepatitis C en-keyword=hepatocellular carcinoma kn-keyword=hepatocellular carcinoma en-keyword=oxidative stress kn-keyword=oxidative stress END start-ver=1.4 cd-journal=joma no-vol=55 cd-vols= no-issue=1 article-no= start-page=31 end-page=40 dt-received= dt-revised= dt-accepted= dt-pub-year=1973 dt-pub=197303 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=The carbohydrate contents and oxygen consumption in the hybernating larvae of the Rice Stem-Borer, Chilo suppressalis WALKER kn-title=ニカメイガ越冬幼虫の炭水化物含量と酸素吸収量について en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=TsumukiH. en-aut-sei=Tsumuki en-aut-mei=H. kn-aut-name=積木久明 kn-aut-sei=積木 kn-aut-mei=久明 aut-affil-num=1 ORCID= en-aut-name=KanehisaK. en-aut-sei=Kanehisa en-aut-mei=K. kn-aut-name=兼久勝夫 kn-aut-sei=兼久 kn-aut-mei=勝夫 aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil= affil-num=2 en-affil= kn-affil= END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=3 article-no= start-page=95 end-page=109 dt-received= dt-revised= dt-accepted= dt-pub-year=1978 dt-pub=1978 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=CARBOHYDRATE CONTENT AND OXYGEN UPTAKE IN LARVAE OF RICE STEM BORER, CHILO SUPPRESSALIS WALKER en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=TsumukiHisaaki en-aut-sei=Tsumuki en-aut-mei=Hisaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KanehisaKatsuo en-aut-sei=Kanehisa en-aut-mei=Katsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil= affil-num=2 en-affil= kn-affil= END start-ver=1.4 cd-journal=joma no-vol=221 cd-vols= no-issue= article-no= start-page=47 end-page=55 dt-received= dt-revised= dt-accepted= dt-pub-year=2012 dt-pub=20120927 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Strong neuroprotection with a novel platinum nanoparticle against ischemic stroke- andtissue plasminogen activator-related brain damages in mice en-subtitle= kn-subtitle= en-abstract= kn-abstract=Reactive oxygen species (ROS) are major exacerbation factor in acute ischemic stroke, and thrombolytic agent tissue plasminogen activator (tPA) may worsen motor function and cerebral infarcts. The platinum nanoparticle (nPt) is a novel ROS scavenger, and thus we examined the clinical and neuroprotective effects of nPt in ischemic mouse brains. Mice were subjected to transient middle cerebral artery occlusion (tMCAO) for 60 min and divided into the following four groups by intravenous administration upon reperfusion, vehicle, tPA, tPA + nPt, and nPt. At 48 h after tMCAO, motor function, infarct volume, immunohistochemical analyses of neurovascular unit (NVU), in vivo imaging of matrix metalloproteinase (MMP), and zymography for MMP-9 activity were examined. Superoxide anion generation at 2 h after tMCAO was also examined with hydroethidine (HEt). As a result, administration of tPA deteriorated the motor function and infarct volume as compared to vehicle. In vivo optical imaging of MMP showed strong fluorescent signals in affected regions of tMCAO groups. Immunohistochemical analyses revealed that tMCAO resulted in a minimal decrease of NAGO and occludin, but a great decrease of collagen IV and a remarkable increase of MMP-9. HEt stain showed increased ROS generation by tMCAO. All these results became pronounced with tPA administration, and were greatly reduced by nPt. The present study demonstrates that nPt treatment ameliorates neurological function and brain damage in acute cerebral infarction with neuroprotective effect on NVU and inactivation of MMP-9. The strong reduction of ROS production by nPt could account for these remarkable neurological and neuroprotective effects against ischemic stroke. en-copyright= kn-copyright= en-aut-name=TakamiyaM. en-aut-sei=Takamiya en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyamotoY. en-aut-sei=Miyamoto en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamashitaT. en-aut-sei=Yamashita en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=DeguchiK. en-aut-sei=Deguchi en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OhtaY. en-aut-sei=Ohta en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AbeK. en-aut-sei=Abe en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Neurol affil-num=2 en-affil= kn-affil=Univ Tokyo, Grad Sch Frontier Sci, Dept Integrated Biosci affil-num=3 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Neurol affil-num=4 en-affil= kn-affil= affil-num=5 en-affil= kn-affil= affil-num=6 en-affil= kn-affil= en-keyword=platinum nanoparticle kn-keyword=platinum nanoparticle en-keyword=cerebral ischemia kn-keyword=cerebral ischemia en-keyword=free radical scavenger kn-keyword=free radical scavenger en-keyword=neuroprotection kn-keyword=neuroprotection en-keyword=matrix metalloproteinase-9 kn-keyword=matrix metalloproteinase-9 en-keyword=tissue plasminogen activator kn-keyword=tissue plasminogen activator END start-ver=1.4 cd-journal=joma no-vol=7 cd-vols= no-issue=6 article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2012 dt-pub=20120615 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The hTERT Promoter Enhances the Antitumor Activity of an Oncolytic Adenovirus under a Hypoxic Microenvironment en-subtitle= kn-subtitle= en-abstract= kn-abstract=Hypoxia is a microenvironmental factor that contributes to the invasion, progression and metastasis of tumor cells. Hypoxic tumor cells often show more resistance to conventional chemoradiotherapy than normoxic tumor cells, suggesting the requirement of novel antitumor therapies to efficiently eliminate the hypoxic tumor cells. We previously generated a tumor-specific replication-competent oncolytic adenovirus (OBP-301: Telomelysin), in which the human telomerase reverse transcriptase (hTERT) promoter drives viral E1 expression. Since the promoter activity of the hTERT gene has been shown to be upregulated by hypoxia, we hypothesized that, under hypoxic conditions, the antitumor effect of OBP-301 with the hTERT promoter would be more efficient than that of the wild-type adenovirus 5 (Ad5). In this study, we investigated the antitumor effects of OBP-301 and Ad5 against human cancer cells under a normoxic (20% oxygen) or a hypoxic (1% oxygen) condition. Hypoxic condition induced nuclear accumulation of the hypoxia-inducible factor-1 alpha and upregulation of hTERT promoter activity in human cancer cells. The cytopathic activity of OBP-301 was significantly higher than that of Ad5 under hypoxic condition. Consistent with their cytopathic activity, the replication of OBP-301 was significantly higher than that of Ad5 under the hypoxic condition. OBP-301-mediated E1A was expressed within hypoxic areas of human xenograft tumors in mice. These results suggest that the cytopathic activity of OBP-301 against hypoxic tumor cells is mediated through hypoxia-mediated activation of the hTERT promoter. Regulation of oncolytic adenoviruses by the hTERT promoter is a promising antitumor strategy, not only for induction of tumor-specific oncolysis, but also for efficient elimination of hypoxic tumor cells. en-copyright= kn-copyright= en-aut-name=HashimotoYuuri en-aut-sei=Hashimoto en-aut-mei=Yuuri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TazawaHiroshi en-aut-sei=Tazawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TeraishiFuminori en-aut-sei=Teraishi en-aut-mei=Fuminori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KojimaToru en-aut-sei=Kojima en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WatanabeYuichi en-aut-sei=Watanabe en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=UnoFutoshi en-aut-sei=Uno en-aut-mei=Futoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YanoShuya en-aut-sei=Yano en-aut-mei=Shuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=UrataYasuo en-aut-sei=Urata en-aut-mei=Yasuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KagawaShunsuke en-aut-sei=Kagawa en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Surg Gastroenterol affil-num=2 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Surg Gastroenterol affil-num=3 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Surg Gastroenterol affil-num=4 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Surg Gastroenterol affil-num=5 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Surg Gastroenterol affil-num=6 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Surg Gastroenterol affil-num=7 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Surg Gastroenterol affil-num=8 en-affil= kn-affil=Oncolys BioPharma Inc affil-num=9 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Surg Gastroenterol affil-num=10 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Surg Gastroenterol END start-ver=1.4 cd-journal=joma no-vol=125 cd-vols= no-issue=1 article-no= start-page=19 end-page=28 dt-received= dt-revised= dt-accepted= dt-pub-year=2013 dt-pub=20130401 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Immunity/inflammation-mediated pathophysiological mechanisms of atherosclerosis and clinical applications of antibody technology kn-title=免疫・炎症が関与する動脈硬化の病態生理学的機序と抗体工学の臨床応用 en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=MatsuuraEiji en-aut-sei=Matsuura en-aut-mei=Eiji kn-aut-name=松浦栄次 kn-aut-sei=松浦 kn-aut-mei=栄次 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学大学院医歯薬学総合研究科 産学官連携センター en-keyword=動脈硬化 kn-keyword=動脈硬化 en-keyword=自己免疫 kn-keyword=自己免疫 en-keyword=感染免疫 kn-keyword=感染免疫 en-keyword=インフラマソーム kn-keyword=インフラマソーム en-keyword=PET イメージング kn-keyword=PET イメージング END start-ver=1.4 cd-journal=joma no-vol=66 cd-vols= no-issue=6 article-no= start-page=435 end-page=442 dt-received= dt-revised= dt-accepted= dt-pub-year=2012 dt-pub=201212 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effects of Propofol on Left Ventricular Mechanoenergetics in the Excised Cross-circulated Canine Heart en-subtitle= kn-subtitle= en-abstract= kn-abstract=Although propofol is commonly used for general anesthesia, its direct effects on left ventricular (LV) contractility and energetics remain unknown. Accordingly, we studied the effects of intracoronary propofol on excised cross-circulated canine hearts using the framework of the Emax (a contractility index)-PVA (systolic pressure-volume area, a measure of total mechanical energy)-Vo2 (myocardial oxygen consumption per beat) relationship. We obtained 1) the Vo2-PVA relationship of isovolumic contractions with varied LV volumes at a constant Emax, 2) the Vo2-PVA relationship with varied LV volumes at a constant intracoronary concentration of propofol, and 3) the Vo2-PVA relationship under increased intracoronary concentrations of either propofol or CaCl2 at a constant LV volume to assess the cardiac mechanoenergetic effects of propofol. We found that propofol decreased Emax dose-dependently. The slope of the linear Vo2-PVA relationship (oxygen cost of PVA) remained unchanged by propofol. The PVA-independent Vo2-Emax relationship (oxygen cost of Emax) was the same for propofol and Ca2+. In conclusion, propofol showed a direct negative inotropic effect on LV. At its clinical concentrations, decreases in contractility by propofol were relatively small. Propofol shows mechanoenergetic effects on the LV that are similar to those of Ca2+ blockers or ?-antagonists?i.e., it exerts negative inotropic effects without changing the oxygen costs of Emax and PVA. en-copyright= kn-copyright= en-aut-name=FujinakaWaso en-aut-sei=Fujinaka en-aut-mei=Waso kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShimizuJuichiro en-aut-sei=Shimizu en-aut-mei=Juichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IribeGentaro en-aut-sei=Iribe en-aut-mei=Gentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ImaokaTakeshi en-aut-sei=Imaoka en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OshimaYu en-aut-sei=Oshima en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KiyookaTakahiko en-aut-sei=Kiyooka en-aut-mei=Takahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MoritaKiyoshi en-aut-sei=Morita en-aut-mei=Kiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MohriaSatoshi en-aut-sei=Mohria en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil= kn-affil=Department of Cardiovascular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=2 en-affil= kn-affil=Department of Cardiovascular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=3 en-affil= kn-affil=Department of Cardiovascular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=4 en-affil= kn-affil=Department of Cardiovascular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=5 en-affil= kn-affil=Department of Cardiovascular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=6 en-affil= kn-affil=Department of Cardiovascular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=7 en-affil= kn-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=8 en-affil= kn-affil=Department of Cardiovascular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences en-keyword=anesthesia kn-keyword=anesthesia en-keyword=heart kn-keyword=heart en-keyword=contractility kn-keyword=contractility en-keyword=myocardial oxygen consumption kn-keyword=myocardial oxygen consumption END start-ver=1.4 cd-journal=joma no-vol=49 cd-vols= no-issue=4 article-no= start-page=1118 end-page=1125 dt-received= dt-revised= dt-accepted= dt-pub-year=2011 dt-pub=201104 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Exfoliated graphene sheets decorated with metal / metal oxide nanoparticles: simple preparation from cation exchanged graphite oxide en-subtitle= kn-subtitle= en-abstract= kn-abstract=We produced carbon hybrid materials of graphene sheets decorated with metal or metal oxide nanoparticles of gold, silver, copper, cobalt, or nickel from cation exchanged graphite oxide. Measurements using powder X-ray diffraction, transmission electron microscopy, and X-ray absorption spectra revealed that the Au and Ag in the materials (Au-Gr and Ag-Gr) existed on graphene sheets as metal nanoparticles, whereas Cu and Co in the materials (Cu-Gr and Co-Gr) existed as a metal oxide. Most Ni particles in Ni-Gr were metal, but the surfaces of large particles were partly oxidized, producing a core-shell structure. The Ag-Gr sample showed a catalytic activity for the oxygen reduction reaction in 1.0 M KOH aq. under an oxygen atmosphere. Ag-Gr is superior as a cathode in alkaline fuel cells, which should not be disturbed by the methanol cross-over problem from the anode. We established an effective approach to prepare a series of graphene-nanoparticle composite materials using heat treatment. en-copyright= kn-copyright= en-aut-name=GotohKazuma en-aut-sei=Gotoh en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KinumotoTaro en-aut-sei=Kinumoto en-aut-mei=Taro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujiiEiji en-aut-sei=Fujii en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamamotoAki en-aut-sei=Yamamoto en-aut-mei=Aki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HashimotoHideki en-aut-sei=Hashimoto en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OhkuboTakahiro en-aut-sei=Ohkubo en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ItadaniAtsushi en-aut-sei=Itadani en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KurodaYasushige en-aut-sei=Kuroda en-aut-mei=Yasushige kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IshidaHiroyuki en-aut-sei=Ishida en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil= kn-affil=Okayama Univ affil-num=2 en-affil= kn-affil=Oita Univ affil-num=3 en-affil= kn-affil=Ind Technol Ctr affil-num=4 en-affil= kn-affil=Okayama Univ affil-num=5 en-affil= kn-affil=Okayama Univ affil-num=6 en-affil= kn-affil=Okayama Univ affil-num=7 en-affil= kn-affil=Okayama Univ affil-num=8 en-affil= kn-affil=Okayama Univ affil-num=9 en-affil= kn-affil=Okayama Univ END start-ver=1.4 cd-journal=joma no-vol=57 cd-vols= no-issue=4 article-no= start-page=241 end-page=251 dt-received= dt-revised= dt-accepted= dt-pub-year=2008 dt-pub=20080425 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Basic Study on Activation of Antioxidation Function in Some Organs of Mice by Radon Inhalation Using New Radon Exposure Device kn-title=ラドン吸入試作装置によるマウス諸臓器中の抗酸化機能の亢進に関する研究 en-subtitle= kn-subtitle= en-abstract=There are a lot of life style diseases that are related to reactive oxygen species in indications of the radon therapy, and, the further clarification of mechanism is expected. Therefore, in this study, we investigated the activation of antioxidation function in some organs of mice by radon inhalation using the new radon exposure device. It was enable that this device was the adjustments of radon concentration by changing the air flow rate to the specially processed radon source and so on. The mice were made to inhale the radon of 400Bq/m3 or 4000Bq/m3 with this device. Results show that in brain, lungs, liver, and kidney, both the activities of superoxide dismutase(SOD) and catalase increased, and lipid peroxide levels decreased. This suggests that radon inhalation enhanced the antioxidation function. These findings are important in understanding the mechanism of diseases in which radon therapy is used as treatment, and most of which are called activated oxygen-related diseases. kn-abstract=ラドン療法の適応症には活性酸素に由来する生活習慣病が多く,その機構の更なる解明が期待されている。また,汎用性があり医学的効果が再現できるラドン吸入装置の構築は意義が大きい。このため,著者らは共同で開発したラドン吸入試作装置を用い,マウス諸臓器中の抗酸化機能の変化特性を検討した。ラドン吸入試作装置は,特殊加工したラドン線源を収納したユニットの数量,それへの送風量及び湿度などを調節することによりラドン濃度を自在に調整可能にするものである。この装置によりマウスに400Bq/m3あるいは4000Bq/m3のラドンを吸入させた。その結果,脳・肺・肝臓・腎臓において,抗酸化系酵素であるSODとカタラーゼの両活性が増加し,過酸化脂質量が減少した。この抗酸化機能の亢進により,本実験条件でのラドン吸入は活性酸素障害の抑制,すなわち,生活習慣病の予防や症状緩和に効果のある可能性が改めて示唆できた。 en-copyright= kn-copyright= en-aut-name=NakagawaShinya en-aut-sei=Nakagawa en-aut-mei=Shinya kn-aut-name=中川慎也 kn-aut-sei=中川 kn-aut-mei=慎也 aut-affil-num=1 ORCID= en-aut-name=KataokaTakahiro en-aut-sei=Kataoka en-aut-mei=Takahiro kn-aut-name=片岡隆浩 kn-aut-sei=片岡 kn-aut-mei=隆浩 aut-affil-num=2 ORCID= en-aut-name=SakodaAkihiro en-aut-sei=Sakoda en-aut-mei=Akihiro kn-aut-name=迫田晃弘 kn-aut-sei=迫田 kn-aut-mei=晃弘 aut-affil-num=3 ORCID= en-aut-name=IshimoriYuu en-aut-sei=Ishimori en-aut-mei=Yuu kn-aut-name=石森有 kn-aut-sei=石森 kn-aut-mei=有 aut-affil-num=4 ORCID= en-aut-name=HanamotoKatsumi en-aut-sei=Hanamoto en-aut-mei=Katsumi kn-aut-name=花元克巳 kn-aut-sei=花元 kn-aut-mei=克巳 aut-affil-num=5 ORCID= en-aut-name=YamaokaKiyonori en-aut-sei=Yamaoka en-aut-mei=Kiyonori kn-aut-name=山岡聖典 kn-aut-sei=山岡 kn-aut-mei=聖典 aut-affil-num=6 ORCID= affil-num=1 en-affil= kn-affil=岡山大学大学院保健学研究科 affil-num=2 en-affil= kn-affil=岡山大学大学院保健学研究科 affil-num=3 en-affil= kn-affil=岡山大学大学院保健学研究科 affil-num=4 en-affil= kn-affil=独立行政法人 日本原子力研究開発機構人形峠環境技術センター affil-num=5 en-affil= kn-affil=岡山大学大学院保健学研究科 affil-num=6 en-affil= kn-affil=岡山大学大学院保健学研究科 en-keyword=new radon exposure device kn-keyword=new radon exposure device en-keyword=radon inhalation kn-keyword=radon inhalation en-keyword=antioxidative function kn-keyword=antioxidative function en-keyword=superoxide dismutase kn-keyword=superoxide dismutase en-keyword=catalase kn-keyword=catalase en-keyword=lipid peroxide kn-keyword=lipid peroxide en-keyword=active oxygen kn-keyword=active oxygen en-keyword=mouse kn-keyword=mouse en-keyword=radon-222 kn-keyword=radon-222 END start-ver=1.4 cd-journal=joma no-vol=2012 cd-vols= no-issue= article-no= start-page=11 end-page=11 dt-received= dt-revised= dt-accepted= dt-pub-year=2012 dt-pub=20120209 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Activation of Biodefense System by Low-Dose Irradiation or Radon Inhalation and Its Applicable Possibility for Treatment of Diabetes and Hepatopathy en-subtitle= kn-subtitle= en-abstract= kn-abstract=Adequate oxygen stress induced by low-dose irradiation activates biodefense system, such as induction of the synthesis of superoxide dismutase (SOD) and glutathione peroxidase. We studied the possibility for alleviation of oxidative damage, such as diabetes and nonalcoholic liver disease. Results show that low-dose γ-irradiation increases SOD activity and protects against alloxan diabetes. Prior or post-low-dose X- or γ-irradiation increases antioxidative functions in livers and inhibits ferric nitrilotriacetate and carbon tetrachloride-induced (CCl4) hepatopathy. Moreover, radon inhalation also inhibits CCl4-induced hepatopathy. It is highly possible that low-dose irradiation including radon inhalation activates the biodefence systems and, therefore, contributes to preventing or reducing reactive oxygen species-related diabetes and nonalcoholic liver disease, which are thought to involve peroxidation. en-copyright= kn-copyright= en-aut-name=KataokaTakahiro en-aut-sei=Kataoka en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamaokaKiyonori en-aut-sei=Yamaoka en-aut-mei=Kiyonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Graduate School of Health Sciences, Okayama University affil-num=2 en-affil= kn-affil=Graduate School of Health Sciences, Okayama University END start-ver=1.4 cd-journal=joma no-vol=48 cd-vols= no-issue=6 article-no= start-page=505 end-page=513 dt-received= dt-revised= dt-accepted= dt-pub-year=2007 dt-pub=20071121 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Inhibitory Effects of Prior Low-dose X-irradiation on Ischemia-reperfusion Injury in Mouse Paw en-subtitle= kn-subtitle= en-abstract= kn-abstract=We have reported that low-dose, unlike high-dose, irradiation enhanced antioxidation function and reduced oxidative damage. On the other hand, ischemia-reperfusion injury is induced by reactive oxygen species. In this study, we examined the inhibitory effects of prior low-dose X-irradiation on ischemia-reperfusion injury in mouse paw. BALB/c mice were irradiated by sham or 0.5 Gy of X-ray. At 4 hrs after irradiation, the left hind leg was bound 10 times with a rubber ring for 0.5, 1, or 2 hrs and the paw thickness was measured. Results show that the paw swelling thickness by ischemia for 0.5 hr was lower than that for 2 hrs. At 1 hr after reperfusion from ischemia for 1 hr, superoxide dismutase activity in serum was increased in those mice which received 0.5 Gy irradiation and in the case of the ischemia for 0.5 or 1 hr, the paw swelling thicknesses were inhibited by 0.5 Gy irradiation. In addition, interstitial edema in those mice which received 0.5 Gy irradiation was less than that in the mice which underwent by sham irradiation. These findings suggest that the ischemia-reperfusion injury is inhibited by the enhancement of antioxidation function by 0.5 Gy irradiation. en-copyright= kn-copyright= en-aut-name=KataokaTakahiro en-aut-sei=Kataoka en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MizuguchiYuko en-aut-sei=Mizuguchi en-aut-mei=Yuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YoshimotoMasaaki en-aut-sei=Yoshimoto en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TaguchiTakehito en-aut-sei=Taguchi en-aut-mei=Takehito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamaokaKiyonori en-aut-sei=Yamaoka en-aut-mei=Kiyonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil= kn-affil=Graduate School of Health Sciences, Okayama University affil-num=2 en-affil= kn-affil=Graduate School of Health Sciences, Okayama University affil-num=3 en-affil= kn-affil=Graduate School of Health Sciences, Okayama University affil-num=4 en-affil= kn-affil=Graduate School of Health Sciences, Okayama University affil-num=5 en-affil= kn-affil=Graduate School of Health Sciences, Okayama University en-keyword=Edema kn-keyword=Edema en-keyword=Ischemia-reperfusion injury kn-keyword=Ischemia-reperfusion injury en-keyword=Low-dose irradiation kn-keyword=Low-dose irradiation en-keyword=Reactive oxygen species kn-keyword=Reactive oxygen species en-keyword=Antioxidation function kn-keyword=Antioxidation function END