このエントリーをはてなブックマークに追加


ID 41657
JaLCDOI
Sort Key
13
タイトル(別表記)
Stein Type Confidence Interval of the Disturbance Variance in a Linear Regression Model
フルテキストURL
著者
永田 靖
抄録
In this paper the interval estimation of the disturbance variance in a linear regression model is discussed from several view points. Firstly, a brief summary ofthe Stein type point estimation theory and the Stein type interval estimation theory is given. Then, the relationship between the improvement on the point estimation and the improvement on the interval estimation is discussed. It is shown that substituting the Stein type estimator for the usual estimator in the confidence interval leads to the improvement on the interval estimation. Secondly, the Neyman accuracy of the Stein type confidence interval is considered. The Neyman accuracy is a measure related to the unbiasedness of a confidence interval. It is shown that the Stein type confidence interval is not unbiased. Thirdly, the Wolfowitz accuracy of the Stein type confidence interval is considered. The Wolfowitz accuracy is related to the closeness of the endpoints to. the true parameter. The sufficient condition for the Stein type confidence interval to improve on the usual confidence interval is derived. Finally, the Stein type confidence interval is discussed under the multivariate Student-t distribution. It is shown that so far as the coverage probability and the multivariate Student-t distributions are concerned, the Stein type confidence interval is not robust against nonnormality, but that the superiority over the usual confidence interval still holds against nonnormality. Furthermore, for the case when it is known that error terms have a multivariate Student-t distribution, a Stein type confidence interval which improves on the usual confidence interval is presented.
備考
論説 (Article)
出版物タイトル
岡山大学経済学会雑誌
発行日
1997-03-10
28巻
4号
出版者
岡山大学経済学会
出版者(別表記)
The Economic Association of Okayama University
開始ページ
293
終了ページ
316
ISSN
0386-3069
NCID
AN00032897
資料タイプ
学術雑誌論文
OAI-PMH Set
岡山大学
言語
日本語
論文のバージョン
publisher
NAID
Eprints Journal Name
oer