このエントリーをはてなブックマークに追加


ID 69054
フルテキストURL
fulltext.pdf 3.89 MB
suppl1.pdf 155 KB
suppl2.pdf 65.8 KB
suppl3.pdf 1.22 MB
著者
Kurogi, Haruna Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
Takasugi, Nobumasa Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
Kubota, Sho Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
Kumar, Ashutosh Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN
Suzuki, Takehiro Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science
Dohmae, Naoshi Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science
Sawada, Daisuke Department of Fine Organic Synthesis, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Kaken ID researchmap
Zhang, Kam Y.J. Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN
Uehara, Takashi Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University ORCID Kaken ID
抄録
Inositol-requiring enzyme 1α (IRE1α) is a sensor of endoplasmic reticulum (ER) stress and drives ER stress response pathways. Activated IRE1α exhibits RNase activity and cleaves mRNA encoding X-box binding protein 1, a transcription factor that induces the expression of genes that maintain ER proteostasis for cell survival. Previously, we showed that IRE1α undergoes S-nitrosylation, a post-translational modification induced by nitric oxide (NO), resulting in reduced RNase activity. Therefore, S-nitrosylation of IRE1α compromises the response to ER stress, making cells more vulnerable. We conducted virtual screening and cell-based validation experiments to identify compounds that inhibit the S-nitrosylation of IRE1α by targeting nitrosylated cysteine residues. We ultimately identified a compound (1ACTA) that selectively inhibits the S-nitrosylation of IRE1α and prevents the NO-induced reduction of RNase activity. Furthermore, 1ACTA reduces the rate of NO-induced cell death. Our research identified S-nitrosylation as a novel target for drug development for IRE1α and provides a suitable screening strategy.
発行日
2024-11-12
出版物タイトル
ACS Chemical Biology
19巻
12号
出版者
American Chemical Society (ACS)
開始ページ
2429
終了ページ
2437
ISSN
1554-8929
資料タイプ
学術雑誌論文
言語
英語
OAI-PMH Set
岡山大学
著作権者
© 2024 The Authors.
論文のバージョン
publisher
PubMed ID
DOI
Web of Science KeyUT
関連URL
isVersionOf https://doi.org/10.1021/acschembio.4c00403
ライセンス
https://creativecommons.org/licenses/by-nc-nd/4.0/
助成情報
22K19380: 一酸化窒素によるエピジェネティクス依存的誘導遺伝子のデータベース構築 ( 文部科学省 / Ministry of Education )
24H00678: 健康を担うエピゲノムレジリエンスの維持・破綻機構の統合的理解 ( 文部科学省 / Ministry of Education )
21lm0203008 : 健康寿命の延伸を目指した次世代医療橋渡し研究支援拠点 ( 国立研究開発法人日本医療研究開発機構 / Japan Agency for Medical Research and Development )
22ym0126810: 健康寿命の延伸を目指した次世代医療橋渡し研究支援拠点 ( 国立研究開発法人日本医療研究開発機構 / Japan Agency for Medical Research and Development )
JPMJSP2126: ( 国立研究開発法人科学技術振興機構 / Japan Science and Technology Agency )
24KJ1712: 一酸化窒素によるタンパク質の異常を介したNAFLD病態進展メカニズムの解明 ( 独立行政法人日本学術振興会 / Japan Society for the Promotion of Science )