start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=50 article-no= start-page=50041 end-page=50048 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241205 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Conformational Flexibility of D1-Glu189: A Crucial Determinant in Substrate Water Selection, Positioning, and Stabilization within the Oxygen-Evolving Complex of Photosystem II en-subtitle= kn-subtitle= en-abstract= kn-abstract=Photosynthetic water oxidation is a vital process responsible for producing dioxygen and supplying the energy necessary to sustain life on Earth. This fundamental reaction is catalyzed by the oxygen-evolving complex (OEC) of photosystem II, which houses the Mn4CaO5 cluster as its catalytic core. In this study, we specifically focus on the D1-Glu189 amino acid residue, which serves as a direct ligand to the Mn4CaO5 cluster. Our primary goal is to explore, using density functional theory (DFT), how the conformational flexibility of the D1-Glu189 side chain influences crucial catalytic processes, particularly the selection, positioning, and stabilization of a substrate water molecule within the OEC. Our investigation is based on a hypothesis put forth by Li et al. (Nature, 2024, 626, 670), which suggests that during the transition from the S2 to S3 state, a specific water molecule temporarily coordinating with the Ca ion, referred to as O6*, may exist as a hydroxide ion (OH-). Our results demonstrate a key mechanism by which the detachment of the D1-Glu189 carboxylate group from its coordination with the Ca ion allows the creation of a specialized microenvironment within the OEC that enables the selective attraction of O6* in its deprotonated form (OH-) and stabilizes it at the catalytic metal (MnD) site. Our findings indicate that D1-Glu189 is not only a structural ligand for the Ca ion but may also play an active and dynamic role in the catalytic process, positioning O6* optimally for its subsequent participation in the oxidation sequence during the water-splitting cycle. en-copyright= kn-copyright= en-aut-name=IsobeHiroshi en-aut-sei=Isobe en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SuzukiTakayoshi en-aut-sei=Suzuki en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SugaMichihiro en-aut-sei=Suga en-aut-mei=Michihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamaguchiKizashi en-aut-sei=Yamaguchi en-aut-mei=Kizashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=5 en-affil=Center for Quantum Information and Quantum Biology, Osaka University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=19 cd-vols= no-issue=1 article-no= start-page=23-00531 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=2024 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Radiative energy transfer via surface plasmon polaritons around metal–insulator grating: For better understanding of magnetic polariton en-subtitle= kn-subtitle= en-abstract= kn-abstract=A conventional metal–insulator nanograting has the potential to transmit near-infrared thermal radiation because an electromagnetic wave is resonated in the grating structure. Surface plasmon polaritons (SPPs) take place at the interface between the metal and the insulator with boundaries at both ends. Physicists formulated the resonance frequency of the grating from the Fabry–Pérot interference between the grating thickness and the wavelength of SPPs in a short-range coupled mode. On the other hand, engineering researchers often use a lumped-element model assuming a resonant circuit consisting of an inductance of metal and a capacitance of metal-insulator-metal grating structure. Furthermore, they have considered that the resonant circuit excites a strong magnetic field independent of SPPs. This study compares each physical model and numerical simulation results, then clearly shows that all resonance frequencies and features of the circuit resonance can be described by the Fabry–Pérot interference of the SPPs in short-range coupled mode. Moreover, the estimated resonance frequencies obviously correspond to the local maxima of the transmittance of the nanograting with the various thicknesses and pitches. In this case, a strong magnetic field can be observed in the insulator layer as if it might be an isolated magnetic quantum. However, since materials show no magnetism at near-infrared frequencies, the magnetic response appears due to the contribution of SPPs. en-copyright= kn-copyright= en-aut-name=ISOBEKazuma en-aut-sei=ISOBE en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YAMADAYutaka en-aut-sei=YAMADA en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HORIBEAkihiko en-aut-sei=HORIBE en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HANAMURAKatsunori en-aut-sei=HANAMURA en-aut-mei=Katsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Advanced Mechanics, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Advanced Mechanics, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Department of Advanced Mechanics, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=School of Engineering, Department of Mechanical Engineering, Tokyo Institute of Technology kn-affil= en-keyword=Surface plasmon polariton kn-keyword=Surface plasmon polariton en-keyword=Circuit resonance kn-keyword=Circuit resonance en-keyword=Magnetic polariton kn-keyword=Magnetic polariton en-keyword=Lumped-element model kn-keyword=Lumped-element model en-keyword=Fabry–Pérot interference kn-keyword=Fabry–Pérot interference END start-ver=1.4 cd-journal=joma no-vol=20 cd-vols= no-issue=7 article-no= start-page=1611 end-page=1619 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240118 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Controlled mechanical properties of poly(ionic liquid)-based hydrophobic ion gels by the introduction of alumina nanoparticles with different shapes en-subtitle= kn-subtitle= en-abstract= kn-abstract=Ionic–liquid gels, also known as ion gels, have gained considerable attention due to their high ionic conductivity and CO2 absorption capacity. However, their low mechanical strength has hindered their practical applications. A potential solution to this challenge is the incorporation of particles, such as silica nanoparticles, TiO2 nanoparticles, and metal–organic frameworks (MOFs) into ion gels. Comparative studies on the effect of particles with different shapes are still in progress. This study investigated the effect of the shape of particles introduced into ion gels on their mechanical properties. Consequently, alumina/poly(ionic liquid) (PIL) double-network (DN) ion gels consisting of clustered alumina nanoparticles with various shapes (either spherical or rod-shaped) and a chemically crosslinked poly[1-ethyl-3-vinylimidazolium bis(trifluoromethanesulfonyl)imide] (PC2im-TFSI, PIL) network were prepared. The results revealed that the mechanical strengths of the alumina/PIL DN ion gels were superior to those of PIL single-network ion gels without particles. Notably, the fracture energies of the rod-shaped alumina/PIL DN ion gels were approximately 2.6 times higher than those of the spherical alumina/PIL DN ion gels. Cyclic tensile tests were performed, and the results indicate that the loading energy on the ion gel was dissipated through the fracture of the alumina network. TEM observation suggests that the variation in the mechanical strength depending on the shape can be attributed to differences in the aggregation structure of the alumina particles, thus indicating the possibility of tuning the mechanical strength of ion gels by altering not only particle kinds but its shape. en-copyright= kn-copyright= en-aut-name=MizutaniYuna en-aut-sei=Mizutani en-aut-mei=Yuna kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WatanabeTakaichi en-aut-sei=Watanabe en-aut-mei=Takaichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=LopezCarlos G. en-aut-sei=Lopez en-aut-mei=Carlos G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OnoTsutomu en-aut-sei=Ono en-aut-mei=Tsutomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Applied Chemistry, Graduate School of Natural Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Applied Chemistry, Graduate School of Natural Science, Okayama University kn-affil= affil-num=3 en-affil=Department of Materials Science and Engineering, The Pennsylvania State University kn-affil= affil-num=4 en-affil=Department of Applied Chemistry, Graduate School of Natural Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=221 cd-vols= no-issue= article-no= start-page=125047 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202404 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Bayesian optimization of periodic multilayered slabs for passive absorptivity control en-subtitle= kn-subtitle= en-abstract= kn-abstract=A vanadium dioxide (VO2) film grown on a titanium oxide crystal shows a metal–insulator transition at room temperature with drastically changed optical properties. A multilayered slab with a sub-micron scale VO2 film was proposed to utilize its unique properties for passive intensity control of sunlight absorption and radiative cooling. Its optimal geometries were numerically explored using the Bayesian optimization (BO) method. BO was applied for three types of multilayered slabs, those having one, two, or three isolated slabs of different widths. For each type of multilayered slab, BO could optimize geometric variables with practical calculation times considering the total number of possible combinations of variables, which is subsequently referred to as the total number of candidates. Optimization results revealed that two isolated slabs had the most suitable spectral absorptivity in both hot and cold environments. The infrared absorptivity of the double slab was kept low in cold conditions to suppress radiative cooling. However, the double slab exhibited good radiative cooling performance under hot conditions. Electromagnetic energy density surrounding the slab illustrated that metallic VO2 and gold placed in a parallel manner excited the coupled mode of surface plasmon polaritons to enhance absorptivity. Radiative cooling faded for the triple slab because each slab could couple with radiation propagating only across a portion of the cross-sectional area. Through three BO trials, improvement of the VO2 visible reflectivity was recognized as a future issue for further development of passive sunlight absorption control. en-copyright= kn-copyright= en-aut-name=IsobeKazuma en-aut-sei=Isobe en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamamotoTsuyoshi en-aut-sei=Yamamoto en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamadaYutaka en-aut-sei=Yamada en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HoribeAkihiko en-aut-sei=Horibe en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Advanced Mechanics, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Advanced Mechanics, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Department of Advanced Mechanics, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Department of Advanced Mechanics, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Radiative cooling kn-keyword=Radiative cooling en-keyword=Sunlight absorption kn-keyword=Sunlight absorption en-keyword=Bayesian optimization kn-keyword=Bayesian optimization en-keyword=Vanadium dioxide kn-keyword=Vanadium dioxide en-keyword=Short-range surface plasmon polariton kn-keyword=Short-range surface plasmon polariton END start-ver=1.4 cd-journal=joma no-vol=8 cd-vols= no-issue=31 article-no= start-page=e202301644 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230817 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Polymer Template Synthesis of CuOx/Clay Nanocomposites with Controllable CuOx Formation en-subtitle= kn-subtitle= en-abstract= kn-abstract=Metal oxides have the excellent functions including high thermal stability, electrical properties, catalytic performance, and adsorption properties of acid gases such as CO2 via the acid-base interactions. However, they suffer from low reserves, porosity control, and low adsorption efficiency per weight compared with lightweight materials including carbon and silica. To solve these issues, various methods for supporting metal oxides on porous carriers, such as decomposition-precipitation and impregnation, have been investigated, but controlling the formation of metal oxide on clay nanosheets remains as a challenge. Herein, we developed a soft-template method for supporting metal oxide (CuOx) nanoparticles on activated clay nanosheets. The intercalation of polyethyleneimine (PEI)−Cu2+ complexes between the layers of clay nanosheets followed by calcination to construct CuOx and remove the PEI templates afforded CuOx/clay nanocomposites. The constructed CuOx/clay nanocomposites had the close porosity to that of clay. Tuning the Cu2+/PEI ratio in PEI−Cu2+ complex allowed to control CuOx states (loadings, particle sizes, etc.). Tuning of the supporting conditions allowed constructing a structure suitable for CO2 uptake. These findings will contribute to the development of the material science of metal oxide nanoparticles and their hybrid materials in diverse fields including CO2 adsorbents, energy devices, and catalysts. en-copyright= kn-copyright= en-aut-name=TakeuchiYuki en-aut-sei=Takeuchi en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OhkuboTakahiro en-aut-sei=Ohkubo en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Inorganic Chemistry Laboratory, Graduate School of Natural Science & Technology, Okayama University kn-affil= affil-num=2 en-affil=Inorganic Chemistry Laboratory, Graduate School of Natural Science & Technology, Okayama University kn-affil= en-keyword=Clay nanosheets kn-keyword=Clay nanosheets en-keyword=CO2 adsorption kn-keyword=CO2 adsorption en-keyword=Metal oxide nanoparticles kn-keyword=Metal oxide nanoparticles en-keyword=Nanocomposites kn-keyword=Nanocomposites en-keyword=Template method kn-keyword=Template method END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=1 article-no= start-page=537 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230111 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Semiconductor-metal transition in Bi2Se3 caused by impurity doping en-subtitle= kn-subtitle= en-abstract= kn-abstract=Doping a typical topological insulator, Bi2Se3, with Ag impurity causes a semiconductor-metal (S-M) transition at 35 K. To deepen the understanding of this phenomenon, structural and transport properties of Ag-doped Bi2Se3 were studied. Single-crystal X-ray diffraction (SC-XRD) showed no structural transitions but slight shrinkage of the lattice, indicating no structural origin of the transition. To better understand electronic properties of Ag-doped Bi2Se3, extended analyses of Hall effect and electric-field effect were carried out. Hall effect measurements revealed that the reduction of resistance was accompanied by increases in not only carrier density but carrier mobility. The field-effect mobility is different for positive and negative gate voltages, indicating that the E-F is located at around the bottom of the bulk conduction band (BCB) and that the carrier mobility in the bulk is larger than that at the bottom surface at all temperatures. The pinning of the E-F at the BCB is found to be a key issue to induce the S-M transition, because the transition can be caused by depinning of the E-F or the crossover between the bulk and the top surface transport. en-copyright= kn-copyright= en-aut-name=UchiyamaTakaki en-aut-sei=Uchiyama en-aut-mei=Takaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=GotoHidenori en-aut-sei=Goto en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UesugiEri en-aut-sei=Uesugi en-aut-mei=Eri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakaiAkihisa en-aut-sei=Takai en-aut-mei=Akihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ZhiLei en-aut-sei=Zhi en-aut-mei=Lei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MiuraAkari en-aut-sei=Miura en-aut-mei=Akari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HamaoShino en-aut-sei=Hamao en-aut-mei=Shino kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=EguchiRitsuko en-aut-sei=Eguchi en-aut-mei=Ritsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OtaHiromi en-aut-sei=Ota en-aut-mei=Hiromi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SugimotoKunihisa en-aut-sei=Sugimoto en-aut-mei=Kunihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=FujiwaraAkihiko en-aut-sei=Fujiwara en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MatsuiFumihiko en-aut-sei=Matsui en-aut-mei=Fumihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KimuraKoji en-aut-sei=Kimura en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=HayashiKouichi en-aut-sei=Hayashi en-aut-mei=Kouichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=UenoTeppei en-aut-sei=Ueno en-aut-mei=Teppei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=KobayashiKaya en-aut-sei=Kobayashi en-aut-mei=Kaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=AkimitsuJun en-aut-sei=Akimitsu en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=KubozonoYoshihiro en-aut-sei=Kubozono en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=5 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=7 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=8 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=9 en-affil=Advanced Science Research Center, Okayama University kn-affil= affil-num=10 en-affil=Faculty of Science and Engineering, Kindai University kn-affil= affil-num=11 en-affil=Department of Nanotechnology for Sustainable Energy, Kwansei Gakuin University kn-affil= affil-num=12 en-affil=Institute for Molecular Science, UVSOR Synchrotron Facility kn-affil= affil-num=13 en-affil=Department of Physical Science and Engineering, Nagoya Institute of Technology kn-affil= affil-num=14 en-affil=Department of Physical Science and Engineering, Nagoya Institute of Technology kn-affil= affil-num=15 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=16 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=17 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=18 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=61 cd-vols= no-issue=6 article-no= start-page=1775 end-page=1783 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210615 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effect of Impeller and Gas Stirring on Agglomeration Behavior of Polydisperse Fine Particles in Liquid en-subtitle= kn-subtitle= en-abstract= kn-abstract=Agglomeration, coalescence and flotation of non-metallic inclusions in steel melt are effective for obtaining “clean steel.” In this study, the agglomeration and breakup behaviors of particles with a primary particle size distribution (hereinafter, polydisperse particles) in a liquid under impeller and gas stirring were compared by numerical calculations and model experiments. The particle-size-grouping (PSG) method in the numerical agglomeration model of particles was combined with a breakup term of agglomeration due to bubble bursting at the free surface. Polydisperse and monodisperse polymethylmethacrylate (PMMA) particles were used in the agglomeration experiments. The agglomeration rate of the polydisperse particles under impeller stirring was increased by an increasing energy input rate, whereas the agglomeration rate under gas stirring decreased under this condition due to the larger contribution of the breakup of agglomerated particles during bubble bursting in gas stirring. At the same energy input rate, agglomeration of polydisperse particles was larger under impeller stirring than under gas stirring. The agglomeration rate of polydisperse particles was larger than that of monodisperse particles under both impeller and gas stirring at the same energy input rate. The computational temporal changes in the total number of particles were in good agreement with the experimental results. This means that the difference in the agglomeration behaviors observed in impeller and gas stirring can be explained by the turbulent coagulation and subsequent agglomerated particle breakup in gas stirring. The computational temporal change in the number of each group approximately agreed with the experimental change in both impeller and gas stirring. en-copyright= kn-copyright= en-aut-name=YamaguchiAkito en-aut-sei=Yamaguchi en-aut-mei=Akito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkanoHitoshi en-aut-sei=Okano en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SumitomoSyunsuke en-aut-sei=Sumitomo en-aut-mei=Syunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=UddinMd. Azhar en-aut-sei=Uddin en-aut-mei=Md. Azhar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KatoYoshiei en-aut-sei=Kato en-aut-mei=Yoshiei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Material and Energy Science, Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Material and Energy Science, Graduate School of Environmental Science kn-affil= affil-num=3 en-affil=Department of Material and Energy Science, Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Department of Material and Energy Science, Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Department of Material and Energy Science, Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=agglomeration kn-keyword=agglomeration en-keyword=breakup kn-keyword=breakup en-keyword=particle kn-keyword=particle en-keyword=impeller stirring kn-keyword=impeller stirring en-keyword=gas agitation kn-keyword=gas agitation en-keyword=particle-size-grouping method kn-keyword=particle-size-grouping method END start-ver=1.4 cd-journal=joma no-vol=18 cd-vols= no-issue=3 article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230324 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Knockout of ribosomal protein RpmJ leads to zinc resistance in Escherichia coli en-subtitle= kn-subtitle= en-abstract= kn-abstract=Zinc is an essential metal for cells, but excess amounts are toxic. Other than by regulating the intracellular zinc concentration by zinc uptake or efflux, the mechanisms underlying bacterial resistance to excess zinc are unknown. In the present study, we searched for zinc-resistant mutant strains from the Keio collection, a gene knockout library of Escherichia coli, a model gram-negative bacteria. We found that knockout mutant of RpmJ (L36), a 50S ribosomal protein, exhibited zinc resistance. The rpmJ mutant was sensitive to protein synthesis inhibitors and had altered translation fidelity, indicating ribosomal dysfunction. In the rpmJ mutant, the intracellular zinc concentration was decreased under excess zinc conditions. Knockout of ZntA, a zinc efflux pump, abolished the zinc-resistant phenotype of the rpmJ mutant. RNA sequence analysis revealed that the rpmJ mutant exhibited altered gene expression of diverse functional categories, including translation, energy metabolism, and stress response. These findings suggest that knocking out RpmJ alters gene expression patterns and causes zinc resistance by lowering the intracellular zinc concentration. Knockouts of other ribosomal proteins, including RplA, RpmE, RpmI, and RpsT, also led to a zinc-resistant phenotype, suggesting that deletion of ribosomal proteins is closely related to zinc resistance. en-copyright= kn-copyright= en-aut-name=ShirakawaRiko en-aut-sei=Shirakawa en-aut-mei=Riko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IshikawaKazuya en-aut-sei=Ishikawa en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FurutaKazuyuki en-aut-sei=Furuta en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KaitoChikara en-aut-sei=Kaito en-aut-mei=Chikara kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=105 cd-vols= no-issue=3 article-no= start-page=035108 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202216 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Magnetotransport studies of the Sb square-net compound LaAgSb2 under high pressure and rotating magnetic fields en-subtitle= kn-subtitle= en-abstract= kn-abstract=Square-net-layered materials have attracted attention as an extended research platform of Dirac fermions and of exotic magnetotransport phenomena. In this study, we investigated the magnetotransport properties of LaAgSb2, which has Sb-square-net layers and shows charge density wave (CDW) transitions at ambient pressure. The application of pressure suppresses the CDWs, and above a pressure of 3.2 GPa a normal metallic phase with no CDWs is realized. By utilizing a mechanical rotator combined with a high-pressure cell, we observed the angular dependence of the Shubnikov–de Haas (SdH) oscillation up to 3.5 GPa, and we confirmed the notable two-dimensional nature of the Fermi surface. In the normal metallic phase, we also observed a remarkable field-angular-dependent magnetoresistance (MR), which exhibited a “butterflylike” polar pattern. To understand these results, we theoretically calculated the Fermi surface and conductivity tensor at the normal metallic phase. We showed that the SdH frequency and Hall coefficient calculated based on the present Fermi surface model agree well with the experiment. The transport properties in the normal metallic phase are mostly dominated by the anisotropic Dirac band, which has the highest conductivity due to linear energy dispersions.We also proposed that momentum-dependent relaxation time plays an important role in the large transverse MR and negative longitudinal MR in the normal metallic phase, which is experimentally supported by the considerable violation of Kohler’s scaling rule. Although quantitatively complete reproduction was not achieved, the calculation showed that the elemental features of the butterfly MR could be reasonably explained as the geometrical effect of the Fermi surface. en-copyright= kn-copyright= en-aut-name=AkibaKazuto en-aut-sei=Akiba en-aut-mei=Kazuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UmeshitaNobuaki en-aut-sei=Umeshita en-aut-mei=Nobuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KobayashiTatsuo C. en-aut-sei=Kobayashi en-aut-mei=Tatsuo C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=162 cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20223 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Valence control of charge and orbital frustrated system YbFe2O4 with electrochemical Li+ intercalation en-subtitle= kn-subtitle= en-abstract= kn-abstract=We report an attempt valence control of the mixed valence iron triangular oxide YbFe2O4 to develop an effective technique controling the frustration of charges in strongly correlated electron systems. The electrochemical doping of Li + into YbFe2O4 was examined on a cell-type sample similar to the Li-ion secondary battery cell. Systematic changes in the lattice constant and Fe – Fe and Fe–Yb distance were observed with Li doping. Maximum value of the doping was over 300 mAh/g. An EXAFS experiment indicated that Li positioned between Yb octahedron layer (U-layer) and Fe-bipyramidal layer (W-layer). However, detailed change of iron valence state of YbFe2O4was not clearly observed because of the superimpose of the signal from iron metal nano particles in XANES observation. We discuss that the uncertainty might arise from the inhomogeneous distribution of the sample particle size, which might prevent the homogeneous doping of Li because the doping occurs on the surface of each nano-particles. en-copyright= kn-copyright= en-aut-name=MuraseS. en-aut-sei=Murase en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YoshikawaY. en-aut-sei=Yoshikawa en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujiwaraK. en-aut-sei=Fujiwara en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FukadaY. en-aut-sei=Fukada en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TeranishiT. en-aut-sei=Teranishi en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KanoJ. en-aut-sei=Kano en-aut-mei=J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=FujiiT. en-aut-sei=Fujii en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=InadaY. en-aut-sei=Inada en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KatayamaM. en-aut-sei=Katayama en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YoshiiK. en-aut-sei=Yoshii en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TsujiT. en-aut-sei=Tsuji en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MatsumuraD. en-aut-sei=Matsumura en-aut-mei=D. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=IkedaN. en-aut-sei=Ikeda en-aut-mei=N. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=College of Life Sciences, Ritsumeikan University kn-affil= affil-num=9 en-affil=College of Life Sciences, Ritsumeikan University kn-affil= affil-num=10 en-affil=Japan Atomic Energy Agency kn-affil= affil-num=11 en-affil=Japan Atomic Energy Agency kn-affil= affil-num=12 en-affil=Japan Atomic Energy Agency kn-affil= affil-num=13 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=RFe2O4 kn-keyword=RFe2O4 en-keyword=YbFe2O4 kn-keyword=YbFe2O4 en-keyword=Triangular lattice kn-keyword=Triangular lattice en-keyword=Charge frustration kn-keyword=Charge frustration en-keyword=Spin frustration kn-keyword=Spin frustration en-keyword=Orbital frustration kn-keyword=Orbital frustration en-keyword=Frustration control kn-keyword=Frustration control en-keyword=Li doping kn-keyword=Li doping END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=2 article-no= start-page=109 end-page=114 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202110 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Formation and Its Mechanism of High-speed Micro-grooving on Metal Surface by Angled CW Laser Irradiation en-subtitle= kn-subtitle= en-abstract= kn-abstract=In general, pulsed lasers with high peak power have been used for the micro-groove formation. However, the processing speed is limited by the pulse repetition rate. On the other hand, CW laser can be expected to perform the high-speed processing by continuous energy input. The mechanism of micro-groove formation by CW laser was investigated by high-speed observation and the thermal fluid analysis. In the perpendicular irradiation of CW laser, the molten metal flows symmetrically around the keyhole to the backward direction, and micro-grooves remain at both edges of molten region. In contrast, in the angled irradiation, the molten metal at the reflection-side scatters as spatters. The remained molten metal flows from the reflection-side to the incident-side through the bottom of keyhole, since the recoil pressure is generated from the reflection-side to the incident-side. In addition, high-speed scanning contributes to keeping the sufficient time and force to move the molten metal in the backward direction. Then, the micro-groove remains at the reflection-side, while the upheaval is formed at the incident-side by gathering the molten metal from the reflection-side and the front of keyhole. Asymmetrical behavior of molten metal flow in angled irradiation of CW laser can create micro-groove in the reflection-side. en-copyright= kn-copyright= en-aut-name=TauraNozomi en-aut-sei=Taura en-aut-mei=Nozomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MitsunobuAkiya en-aut-sei=Mitsunobu en-aut-mei=Akiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SakaiTatsuhiko en-aut-sei=Sakai en-aut-mei=Tatsuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OkamotoYasuhiro en-aut-sei=Okamoto en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OkadaAkira en-aut-sei=Okada en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University, Japan kn-affil= affil-num=2 en-affil=Faculty of Engineering, Okayama University, Japan kn-affil= affil-num=3 en-affil=NIPPON STEEL CORPORATION, Japan kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University, Japan kn-affil= affil-num=5 en-affil=Graduate School of Natural Science and Technology, Okayama University, Japan kn-affil= en-keyword=CW laser kn-keyword=CW laser en-keyword=micro-groove kn-keyword=micro-groove en-keyword=high-speed scanning kn-keyword=high-speed scanning en-keyword=thermal fluid analysis kn-keyword=thermal fluid analysis en-keyword=high-speed observation kn-keyword=high-speed observation END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=19 article-no= start-page=5476 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210922 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Electrical Resistivity of Cu and Au at High Pressure above 5 GPa: Implications for the Constant Electrical Resistivity Theory along the Melting Curve of the Simple Metals en-subtitle= kn-subtitle= en-abstract= kn-abstract=The electrical resistivity of solid and liquid Cu and Au were measured at high pressures from 6 up to 12 GPa and temperatures & SIM;150 K above melting. The resistivity of the metals was also measured as a function of pressure at room temperature. Their resistivity decreased and increased with increasing pressure and temperature, respectively. With increasing pressure at room temperature, we observed a sharp reduction in the magnitude of resistivity at & SIM;4 GPa in both metals. In comparison with 1 atm data and relatively lower pressure data from previous studies, our measured temperature-dependent resistivity in the solid and liquid states show a similar trend. The observed melting temperatures at various fixed pressure are in reasonable agreement with previous experimental and theoretical studies. Along the melting curve, the present study found the resistivity to be constant within the range of our investigated pressure (6-12 GPa) in agreement with the theoretical prediction. Our results indicate that the invariant resistivity theory could apply to the simple metals but at higher pressure above 5 GPa. These results were discussed in terms of the saturation of the dominant nuclear screening effect caused by the increasing difference in energy level between the Fermi level and the d-band with increasing pressure. en-copyright= kn-copyright= en-aut-name=EzenwaInnocent C. en-aut-sei=Ezenwa en-aut-mei=Innocent C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YoshinoTakashi en-aut-sei=Yoshino en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Institute for Planetary Materials, Okayama University kn-affil= affil-num=2 en-affil=Institute for Planetary Materials, Okayama University kn-affil= en-keyword=electrical resistivity kn-keyword=electrical resistivity en-keyword=thermal conductivity kn-keyword=thermal conductivity en-keyword=electrons and phonons interactions kn-keyword=electrons and phonons interactions en-keyword=high pressure and temperature kn-keyword=high pressure and temperature en-keyword=constant resistivity kn-keyword=constant resistivity en-keyword=melting curve kn-keyword=melting curve END start-ver=1.4 cd-journal=joma no-vol=33 cd-vols= no-issue=3 article-no= start-page=035501 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20201016 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Soft x-ray irradiation induced metallization of layered TiNCl en-subtitle= kn-subtitle= en-abstract= kn-abstract=We have performed soft x-ray spectroscopy in order to study the photoirradiation time dependence of the valence band structure and chemical states of layered transition metal nitride chloride TiNCl. Under the soft x-ray irradiation, the intensities of the states near the Fermi level (EF) and the Ti3+ component increased, while the Cl 2p intensity decreased. Ti 2p–3d resonance photoemission spectroscopy confirmed a distinctive Fermi edge with Ti 3d character. These results indicate the photo-induced metallization originates from deintercalation due to Cl desorption, and thus provide a new carrier doping method that controls the conducting properties of TiNCl. en-copyright= kn-copyright= en-aut-name=KataokaNoriyuki en-aut-sei=Kataoka en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TanakaMasashi en-aut-sei=Tanaka en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HosodaWataru en-aut-sei=Hosoda en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TaniguchiTakumi en-aut-sei=Taniguchi en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FujimoriShin-ichi en-aut-sei=Fujimori en-aut-mei=Shin-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=WakitaTakanori en-aut-sei=Wakita en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MuraokaYuji en-aut-sei=Muraoka en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YokoyaTakayoshi en-aut-sei=Yokoya en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Engineering, Kyushu Institute of Technology kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Materials Sciences Research Center, Japan Atomic Energy Agency kn-affil= affil-num=6 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=1 article-no= start-page=7307 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200429 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Controlling Electronic States of Few-walled Carbon Nanotube Yarn via Joule-annealing and p-type Doping Towards Large Thermoelectric Power Factor en-subtitle= kn-subtitle= en-abstract= kn-abstract=Flexible, light-weight and robust thermoelectric (TE) materials have attracted much attention to convert waste heat from low-grade heat sources, such as human body, to electricity. Carbon nanotube (CNT) yarn is one of the potential TE materials owing to its narrow band-gap energy, high charge carrier mobility, and excellent mechanical property, which is conducive for flexible and wearable devices. Herein, we propose a way to improve the power factor of CNT yarns fabricated from few-walled carbon nanotubes (FWCNTs) by two-step method; Joule-annealing in the vacuum followed by doping with p-type dopants, 2,3,5,6-tetrafluo-7,7,8,8-tetracyanoquinodimethane (F4TCNQ). Numerical calculations and experimental results explain that Joule-annealing and doping modulate the electronic states (Fermi energy level) of FWCNTs, resulting in extremely large thermoelectric power factor of 2250 mu Wm(-1) K-2 at a measurement temperature of 423K. Joule-annealing removes amorphous carbon on the surface of the CNT yarn, which facilitates doping in the subsequent step, and leads to higher Seebeck coefficient due to the transformation from (semi) metallic to semiconductor behavior. Doping also significantly increases the electrical conductivity due to the effective charge transfers between CNT yarn and F4TCNQ upon the removal of amorphous carbon after Joule-annealing. en-copyright= kn-copyright= en-aut-name=MyintMay Thu Zar en-aut-sei=Myint en-aut-mei=May Thu Zar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishikawaTakeshi en-aut-sei=Nishikawa en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OmotoKazuki en-aut-sei=Omoto en-aut-mei=Kazuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=InoueHirotaka en-aut-sei=Inoue en-aut-mei=Hirotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamashitaYoshifumi en-aut-sei=Yamashita en-aut-mei=Yoshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KyawAung Ko Ko en-aut-sei=Kyaw en-aut-mei=Aung Ko Ko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HayashiYasuhiko en-aut-sei=Hayashi en-aut-mei=Yasuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Department of Electrical and Electronic Engineering, Southern University of Science and Technology kn-affil= affil-num=7 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Materials science kn-keyword=Materials science en-keyword=Nanoscience and technology kn-keyword=Nanoscience and technology END start-ver=1.4 cd-journal=joma no-vol=8 cd-vols= no-issue=29 article-no= start-page=14472 end-page=14481 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200519 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Mechanisms for overcharging of carbon electrodes in lithium-ion/sodium-ion batteries analysed by operando solid-state NMR en-subtitle= kn-subtitle= en-abstract= kn-abstract=A precise understanding of the mechanism for metal (Li and Na) plating on negative electrodes that occurs with overcharging is critical to managing the safety of lithium- and sodium-ion batteries. In this work, an in-depth investigation of the overlithiation/oversodiation and subsequent delithiation/desodiation of graphite and hard carbon electrodes in the first cycle was conducted using operando7Li/23Na solid-state NMR. In the 7Li NMR spectra of half cells of carbon electrodes and metal counter electrodes, three types of signals corresponding to Li dendrites that formed on the surface of graphite, hard carbon, and the counter electrode were distinguished from the signal of Li metal foil of the counter electrode by applying an appropriate orientation of the testing cell. For graphite overlithiation, the deposition of Li dendrites started immediately or soon after the minimum electric potential in the lithiation curve. In contrast, the deposition of Li dendrites in hard carbon started after the end of quasimetallic lithium formation for overlithiation at rates below 3.0C. Similar behaviour was also observed for the oversodiation of hard carbon. The formation of quasimetallic Li or Na in the pores of hard carbon serves as a buffer for the metal plating that occurs with overcharging of the batteries. Furthermore, some of the deposited Li/Na dendrites contribute to reversible capacities. A mechanism for the inhomogeneous disappearance of quasimetallic Li during delithiation of hard carbon is also proposed. en-copyright= kn-copyright= en-aut-name=GotohKazuma en-aut-sei=Gotoh en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamakamiTomu en-aut-sei=Yamakami en-aut-mei=Tomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishimuraIshin en-aut-sei=Nishimura en-aut-mei=Ishin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KometaniHina en-aut-sei=Kometani en-aut-mei=Hina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AndoHideka en-aut-sei=Ando en-aut-mei=Hideka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HashiKenjiro en-aut-sei=Hashi en-aut-mei=Kenjiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ShimizuTadashi en-aut-sei=Shimizu en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IshidaHiroyuki en-aut-sei=Ishida en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Graduate School of Natural Science & Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science & Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science & Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Natural Science & Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Natural Science & Technology, Okayama University kn-affil= affil-num=6 en-affil=National Institute for Materials Science kn-affil= affil-num=7 en-affil=National Institute for Materials Science kn-affil= affil-num=8 en-affil=Graduate School of Natural Science & Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=6 cd-vols= no-issue= article-no= start-page=132 end-page=141 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200203 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Alkali Elution Behavior of Steelmaking Slag Packed in an Open Channel Vessel in Seawater en-subtitle= kn-subtitle= en-abstract= kn-abstract=The alkali elution behavior of steelmaking slag in seawater was kinetically investigated and simulated under continuous flow in an open channel vessel with packed bed of steelmaking slag. Two types of steelmaking slags, viz. decarburization slag and dephosphorization slag, were used in this study. The alkali elution rate of decarburization slag was larger than that of dephosphorization slag due to larger free CaO content. The pH value for dephosphorization slag was almost the same as the seawater pH value in 3–4 days, whereas that for decarburization slag was stabilized in 3 days although the pH value was slightly larger than that of seawater. The capacity coefficients of alkali elution for dephosphorization and decarburization slags decreased together in an exponential manner with time. Based on a regression equation on the mass transfer capacity coefficient change with time, the alkali elution behavior was simulated and the calculated results agreed well with the experimental ones. The temporal pH change was predicted by changing slag surface area and seawater flow rate as a parameter. According to the simulation results for dephosphorization slag, the seawater pH value did not reach a high level in the ocean area. en-copyright= kn-copyright= en-aut-name=MatsudaYamato en-aut-sei=Matsuda en-aut-mei=Yamato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UddinMd. Azhar en-aut-sei=Uddin en-aut-mei=Md. Azhar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KatoYoshiei en-aut-sei=Kato en-aut-mei=Yoshiei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MiyataYasuhito en-aut-sei=Miyata en-aut-mei=Yasuhito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KisoEiji en-aut-sei=Kiso en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Material and Energy Science, Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Material and Energy Science, Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Slag & Refractories Research Department, Steel Research Laboratory, JFE Steel Corporation kn-affil= affil-num=5 en-affil=Marketing Development, Slag & Cement Division, Nippon Steel Corporation kn-affil= en-keyword=Steelmaking slag kn-keyword=Steelmaking slag en-keyword=Alkali elution kn-keyword=Alkali elution en-keyword=Seawater kn-keyword=Seawater en-keyword=Open channel kn-keyword=Open channel en-keyword=Packed bed kn-keyword=Packed bed END start-ver=1.4 cd-journal=joma no-vol=7 cd-vols= no-issue=3 article-no= start-page=036001 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200316 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Inhomogeneous superconductivity in thin crystals of FeSe1-xTex (x=1.0, 0.95, and 0.9) en-subtitle= kn-subtitle= en-abstract= kn-abstract=We investigated the temperature dependence of resistivity in thin crystals of FeSe1-xTex (x = 1.0, 0.95, and 0.9), though bulk crystals with 1.0 x 0.9 are known to be non-superconducting. With decreasing thickness of the crystals, the resistivity of x = 0.95 and 0.9 decreases and reaches zero at a low temperature, which indicates a clear superconducting transition. The anomaly of resistivity related to the structural and magnetic transitions completely disappears in 55- to 155-nm-thick crystals of x = 0.9, resulting in metallic behavior in the normal state. Microbeam x-ray diffraction measurements were performed on bulk single crystals and thin crystals of FeSe1-xTex. A significant difference of the lattice constant, c, was observed in FeSe1-xTex, which varied with differing Te content (x), and even in crystals with the same x, which was mainly caused by inhomogeneity of the Se/Te distribution. It has been found that the characteristic temperatures causing the structural and magnetic transition (T-t), the superconducting transition (T-c), and the zero resistivity (T-c(zero)) are closely related to the value of c in thin crystals of FeSe1-xTex. en-copyright= kn-copyright= en-aut-name=EguchiRitsuko en-aut-sei=Eguchi en-aut-mei=Ritsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SendaMegumi en-aut-sei=Senda en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UesugiEri en-aut-sei=Uesugi en-aut-mei=Eri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=GotoHidenori en-aut-sei=Goto en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FujiwaraAkihiko en-aut-sei=Fujiwara en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ImaiYasuhiko en-aut-sei=Imai en-aut-mei=Yasuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KimuraShigeru en-aut-sei=Kimura en-aut-mei=Shigeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NojiTakashi en-aut-sei=Noji en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KoikeYoji en-aut-sei=Koike en-aut-mei=Yoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KubozonoYoshihiro en-aut-sei=Kubozono en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=5 en-affil=Department of Nanotechnology for Sustainable Energy, Kwansei Gakuin University kn-affil= affil-num=6 en-affil=Japan Synchrotron Radiation Research Institute (JASRI) kn-affil= affil-num=7 en-affil=Japan Synchrotron Radiation Research Institute (JASRI) kn-affil= affil-num=8 en-affil=Department of Applied Physics, Tohoku University kn-affil= affil-num=9 en-affil=Department of Applied Physics, Tohoku University kn-affil= affil-num=10 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= en-keyword=iron-based superconductor kn-keyword=iron-based superconductor en-keyword=thin crystals kn-keyword=thin crystals en-keyword=microbeam XRD kn-keyword=microbeam XRD END start-ver=1.4 cd-journal=joma no-vol=5 cd-vols= no-issue=4 article-no= start-page=551 end-page=560 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190923 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Separation Between Silicon and Aluminum Powders Contained Within Pulverized Scraped Silicon-Based Waste Solar Cells by Flotation Method en-subtitle= kn-subtitle= en-abstract= kn-abstract= There are few study examples on the separation of metals by floating method. In this study, separation of silicon and aluminum, which are the main components of silicon-based solar cell module, was carried out by floating method in order to purify silicon from waste solar cell module. The selection of surfactant, control of electric charge, wettability of the solid particles, surface tensions, and bubble surface area are important for separation of solids by floating method. Sodium dodecyl sulfate (SDS) can increase the hydrophobicity of aluminum powder due to the difference of surface potentials between silicon and aluminum. SDS behaves as a collector of aluminum as well as a frothing agent to decrease the bubble size. At a SDS concentration of 2 g/L and sample dipping time of 10 min, 80.1 mass% of aluminum was floated and separated, and the sedimentary silicon reached a purity of 90.7% from a mixture of 50 mass% aluminum and 50 mass% silicon. Finally, at a pH value of 7.0, SDS concentration between 1.0 and 2.5 g/L and air flow rate of 2.5 L/min (STP) were suitable experimental conditions to purify silicon from a mixture of silicon and aluminum by flotation separation method. en-copyright= kn-copyright= en-aut-name=HaradaSho en-aut-sei=Harada en-aut-mei=Sho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UddinMd. Azhar en-aut-sei=Uddin en-aut-mei=Md. Azhar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KatoYoshiei en-aut-sei=Kato en-aut-mei=Yoshiei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KawanishiTakanori en-aut-sei=Kawanishi en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HayashiYoshiaki en-aut-sei=Hayashi en-aut-mei=Yoshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Material and Energy Science, Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Material and Energy Science, Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Department of Material and Energy Science, Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Wet Process Division, Toho Kasei Co., Ltd kn-affil= affil-num=5 en-affil=Wet Process Division, Toho Kasei Co., Ltd kn-affil= en-keyword=Flotation kn-keyword=Flotation en-keyword=Floating separation kn-keyword=Floating separation en-keyword=Waste solar cell module kn-keyword=Waste solar cell module en-keyword=Silicon kn-keyword=Silicon en-keyword=Sodium dodecyl sulfate kn-keyword=Sodium dodecyl sulfate END start-ver=1.4 cd-journal=joma no-vol=74 cd-vols= no-issue=1 article-no= start-page=1 end-page=6 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=202002 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Promising New Anti-Cancer Strategy: Iron Chelators Targeting CSCs en-subtitle= kn-subtitle= en-abstract= kn-abstract= Iron is a trace but vital element in the human body and is necessary for a multitude of crucial processes in life. However, iron overload is known to induce carcinogenesis via oxidative stress. Cancer cells require large amounts of iron for their rapid division and cell growth. Iron was recently found to play a role in cancer stem cells (CSCs); it maintains stemness during development. Iron also plays an important role in stemness by moderating reactive oxygen species. Thus, iron metabolism in CSCs is a promising therapeutic target. In this review, we summarize the roles of iron in cancer cells and CSCs. We also summarize anti-cancer therapeutic studies with iron chelators and describe our expectation of a new therapeutic strategy for CSCs on the basis of our findings. en-copyright= kn-copyright= en-aut-name=ChenYuehua en-aut-sei=Chen en-aut-mei=Yuehua kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OharaToshiaki en-aut-sei=Ohara en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=XingBoyi en-aut-sei=Xing en-aut-mei=Boyi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=QiJiping en-aut-sei=Qi en-aut-mei=Jiping kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NomaKazuhiro en-aut-sei=Noma en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MatsukawaAkihiro en-aut-sei=Matsukawa en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Pathology, the First Affiliated Hospital of Harbin Medical University kn-affil= affil-num=5 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=cancer stem cell kn-keyword=cancer stem cell en-keyword=stemness kn-keyword=stemness en-keyword=iron kn-keyword=iron en-keyword=chelation kn-keyword=chelation en-keyword=chemotherapy kn-keyword=chemotherapy END start-ver=1.4 cd-journal=joma no-vol=8 cd-vols= no-issue=1 article-no= start-page=17906 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2018 dt-pub=201812 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Fermi surface topology in a metallic phase of VO2 thin films grown on TiO2(001) substrates en-subtitle= kn-subtitle= en-abstract= kn-abstract= Since the first observation of the metal-to-insulator transition (MIT), VO2 has attracted substantial attention in terms of whether this transition is impelled by electron-phonon interaction (Peierls transition) or electron-electron interaction. Regarding Peierls transition, it has been theoretically predicted that the Fermi surface (FS) cross-section exhibits certain nesting features for a metallic phase of VO2. Various experimental studies related to the nesting feature have been reported. Nevertheless, there is no experimental result on FS topology. In this work, we determine the FS topology of the metallic phase of VO2 through studies of VO2 epitaxial thin films on TiO2(001) substrates, using synchrotron radiation angle-resolved photoemission spectroscopy (ARPES). Three electron pockets around Γ are observed in band structures along the Γ-X direction. These three bands form electron surfaces around Γ in the ΓXRZ plane. Furthermore, the lowest energy band FS exhibits the nesting feature corresponding to a nesting vector [Formula: see text] = ΓR, as predicted by the calculation. Our results strongly indicate the formation of the charge-density wave with [Formula: see text] = ΓR and thus, the importance of Peierls transition for the mechanism of the MIT in VO2. en-copyright= kn-copyright= en-aut-name=MuraokaYuji en-aut-sei=Muraoka en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NagaoHiroki en-aut-sei=Nagao en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YaoYuichiro en-aut-sei=Yao en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WakitaTakanori en-aut-sei=Wakita en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TerashimaKensei en-aut-sei=Terashima en-aut-mei=Kensei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YokoyaTakayoshi en-aut-sei=Yokoya en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KumigashiraHiroshi en-aut-sei=Kumigashira en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=Oshima Masaharu en-aut-sei=Oshima en-aut-mei=Masaharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil= Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=5 en-affil= Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=6 en-affil= Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=7 en-affil= High Energy Accelerator Research Organization (KEK), Photon Factory kn-affil= affil-num=8 en-affil=The Institute for Solid State Physics, The University of Tokyo kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2018 dt-pub=20180630 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=肺動静脈奇形コイル塞栓術後の患者に対する肺ヘリカルCTにおける第2世代SEMARの有効性 kn-title=Utility of second-generation single-energy metal artifact reduction en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=AsanoYudai en-aut-sei=Asano en-aut-mei=Yudai kn-aut-name=浅野雄大 kn-aut-sei=浅野 kn-aut-mei=雄大 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学大学院医歯薬学総合研究科 END start-ver=1.4 cd-journal=joma no-vol=93 cd-vols= no-issue=10 article-no= start-page=104508 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=201603 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Correlation of superconductivity with crystal structure in (NH3)(y)CsxFeSe en-subtitle= kn-subtitle= en-abstract= kn-abstract= The superconducting transition temperature T-c of ammoniated metal-doped FeSe (NH3)(y)MxFeSe (M: metal atom) has been scaled with the FeSe plane spacing, and it has been suggested that the FeSe plane spacing depends on the location of metal atoms in (NH3)(y)MxFeSe crystals. Although the crystal structure of (NH3)(y)LixFeSe exhibiting a high T-c (similar to 44 K) was determined from neutron diffraction, the structure of (NH3)(y)MxFeSe exhibiting a low T-c (similar to 32 K) has not been determined thus far. Here, we determined the crystal structure of (NH3)(y)Cs0.4FeSe (T-c = 33 K) through the Rietveld refinement of the x-ray diffraction (XRD) pattern measured with synchrotron radiation at 30 K. The XRD pattern was analyzed based on two different models, on-center and off-center, under a space group of 14/mmm. In the on-center structure, the Cs occupies the 2a site and the N of NH3 may occupy either the 4c or 2b site, or both. In the off-center structure, the Cs may occupy either the 4c or 2b site, or both, while the N occupies the 2a site. Only an on-center structure model in which the Cs occupies the 2a and the N of NH3 occupies the 4c site provided reasonable results in the Rietveld analysis. Consequently, we concluded that (NH3)(y)Cs0.4FeSe can be assigned to the on-center structure, which produces a smaller FeSe plane spacing leading to the lower T-c. en-copyright= kn-copyright= en-aut-name=ZhengLu en-aut-sei=Zheng en-aut-mei=Lu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiaoXiao en-aut-sei=Miao en-aut-mei=Xiao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SakaiYusuke en-aut-sei=Sakai en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=GotoHidenori en-aut-sei=Goto en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=UesugiEri en-aut-sei=Uesugi en-aut-mei=Eri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=EguchiRitsuko en-aut-sei=Eguchi en-aut-mei=Ritsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NishiyamaSaki en-aut-sei=Nishiyama en-aut-mei=Saki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SugimotoKunihisa en-aut-sei=Sugimoto en-aut-mei=Kunihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=FujiwaraAkihiko en-aut-sei=Fujiwara en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KubozonoYoshihiro en-aut-sei=Kubozono en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Research Laboratory for Surface Science, Okayama University kn-affil= affil-num=2 en-affil=Research Laboratory for Surface Science, Okayama University kn-affil= affil-num=3 en-affil=Research Laboratory for Surface Science, Okayama University kn-affil= affil-num=4 en-affil=Research Laboratory for Surface Science, Okayama University kn-affil= affil-num=5 en-affil=Research Laboratory for Surface Science, Okayama University kn-affil= affil-num=6 en-affil=Research Laboratory for Surface Science, Okayama University kn-affil= affil-num=7 en-affil=Research Laboratory for Surface Science, Okayama University kn-affil= affil-num=8 en-affil=Japan Synchrotron Radiation Research Institute, SPring-8 kn-affil= affil-num=9 en-affil=Department of Nanotechnology for Sustainable Energy, Kwansei Gakuin University kn-affil= affil-num=10 en-affil=Research Centre of New Functional Materials for Energy Production, Storage and Transport, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=96 cd-vols= no-issue=1 article-no= start-page=014502 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=201707 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Preparation of new superconductors by metal doping of two-dimensional layered materials using ethylenediamine en-subtitle= kn-subtitle= en-abstract= kn-abstract= We have studied new superconductors prepared by metal doping of two-dimensional (2D) layered materials, FeSe and FeSe0.5Te0.5, using ethylenediamine (EDA). The superconducting transition temperatures (T(c)s) of metal-doped FeSe and metal-doped FeSe0.5Te0.5, i.e., (EDA)(y)MxFeSe and (EDA)(y)MxFeSe0.5Te0.5 (M: Li, Na, and K), were 31-45 K and 19-25 K, respectively. The stoichiometry of each sample was clarified by energy dispersive x-ray (EDX) spectroscopy, and the x-ray powder diffraction pattern indicated a large expansion of lattice constant c, indicating the cointercalation of metal atoms and EDA. The pressure dependence of superconductivity in (EDA)(y)NaxFeSe0.5Te0.5 has been investigated at a pressure of 0-0.8GPa, showing negative pressure dependence in the same manner as (NH3)(y)NaxFeSe0.5Te0.5. The T-c-c phase diagrams of MxFeSe and MxFeSe0.5Te0.5 were drawn afresh from the T-c and c of (EDA)(y)MxFeSe and (EDA)(y)MxFeSe0.5Te0.5, showing that the T-c increases with increasing c but that extreme expansion of c reverses the T-c trend. en-copyright= kn-copyright= en-aut-name=MiaoXiao en-aut-sei=Miao en-aut-mei=Xiao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TeraoTakahiro en-aut-sei=Terao en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YangXiaofan en-aut-sei=Yang en-aut-mei=Xiaofan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishiyamaSaki en-aut-sei=Nishiyama en-aut-mei=Saki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MiyazakiTakafumi en-aut-sei=Miyazaki en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=GotoHidenori en-aut-sei=Goto en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IwasaYoshihiro en-aut-sei=Iwasa en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KubozonoYoshihiro en-aut-sei=Kubozono en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=5 en-affil=Research Laboratory for Surface Science, Okayama University kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=7 en-affil=Department of Applied Physics, The University of Tokyo kn-affil= affil-num=8 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=96 cd-vols= no-issue=9 article-no= start-page=094522 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=201709 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Pair breaking of multigap superconductivity under parallel magnetic fields in the electric-field-induced surface metallic state en-subtitle= kn-subtitle= en-abstract= kn-abstract=The roles of paramagnetic and diamagnetic pair-breaking effects in superconductivity in the electric-field-induced surface metallic state are studied using the Bogoliubov–de Gennes equation when magnetic fields are applied parallel to the surface. The multigap states of the subbands are related to the depth dependence and the magnetic field dependence of the superconductivity. In the Fermi-energy density of states and the spin density, subband contributions successively appear from higher-level subbands with increasing magnetic fields. The characteristic magnetic field dependence may be a key feature to identify the multigap structure of the surface superconductivity. en-copyright= kn-copyright= en-aut-name=NabetaMasahiro en-aut-sei=Nabeta en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TanakaKenta K. en-aut-sei=Tanaka en-aut-mei=Kenta K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OnariSeiichiro en-aut-sei=Onari en-aut-mei=Seiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IchiokaMasanori en-aut-sei=Ichioka en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Physics, Okayama University kn-affil= affil-num=2 en-affil=Department of Physics, Okayama University kn-affil= affil-num=3 en-affil=Department of Physics, Okayama University kn-affil= affil-num=4 en-affil=Department of Physics, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=109 cd-vols= no-issue=4 article-no= start-page=043702-1 end-page=043702-6 dt-received= dt-revised= dt-accepted= dt-pub-year=2011 dt-pub=20110215 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Spectroscopic evidence of the formation of (V,Ti)O2 solid solution in VO2 thinner films grown on TiO2(001) substrates en-subtitle= kn-subtitle= en-abstract= kn-abstract=We have prepared VO2 thin films epitaxially grown on TiO2(001) substrates with thickness systematically varied from 2.5 to 13 nm using a pulsed laser deposition method, and studied the transport property and electronic states of the films by means of resistivity and in situ synchrotron photoemission spectroscopy (SRPES). In resistivity measurements, the 13-nm-thick film exhibits a metal-insulator transition at around 290 K on cooling with change of three orders of magnitudes in resistivity. As the film thickness decreases, the metal-insulator transition broadens and the transition temperature increases. Below 4 nm, the films do not show the transition and become insulators. In situ SRPES measurements of near the Fermi level valence band find that the electronic state of the 2.5-nm-thick film is different than that of the temperature-induced insulator phase of VO2 itself although these two states are insulating. Ti 2p core-level photoemission measurements reveal that Ti ions exist near the interface between the films and TiO2 substrates, with a chemical state similar to that in (V,Ti)O-2 solid solution. These results indicate that insulating (V,Ti)O-2 solid solution is formed in the thinner films. We propose a simple growth model of a VO2 thin film on a TiO2(001) substrate. Near the interface, insulating (V,Ti) O-2 solid solution is formed due to the diffusion of Ti ions from the TiO2 substrate into the VO2 film. The concentration of Ti in (V,Ti) O-2 is relatively high near the interface and decreases toward the surface of the film. Beyond a certain film thickness (about 7 nm in the case of the present 13-nm-thick film), the VO2 thin film without any Ti ions starts to grow. Our work suggests that developing a technique for preparing the sharp interface between the VO2 thin films and TiO2 substrates is a key issue to study the physical property of an ultrathin film of "pure" VO2, especially to examine the presence of the novel electronic state called a semi-Dirac point phase predicted by calculations. en-copyright= kn-copyright= en-aut-name=MuraokaY. en-aut-sei=Muraoka en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SaekiK. en-aut-sei=Saeki en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=EguchiR. en-aut-sei=Eguchi en-aut-mei=R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WakitaT. en-aut-sei=Wakita en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HiraiM. en-aut-sei=Hirai en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YokoyaT. en-aut-sei=Yokoya en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ShinS. en-aut-sei=Shin en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=4 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=5 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=6 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=7 en-affil= kn-affil=RIKEN/SPring-8 END start-ver=1.4 cd-journal=joma no-vol=108 cd-vols= no-issue=4 article-no= start-page=043916-1 end-page=043916-4 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=20100815 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Bulk and surface physical properties of a CrO2 thin film prepared from a Cr8O21 precursor en-subtitle= kn-subtitle= en-abstract= kn-abstract=We have prepared a CrO(2) thin film by chemical vapor deposition from a Cr(8)O(21) precursor and studied the bulk and surface physical properties. The CrO(2) thin film is grown on a TiO(2) (100) substrate by heating of a Cr(8)O(21) precursor and TiO(2) (100) substrate together in a sealed quartz tube. The prepared film is found from x-ray diffraction analysis to be an (100)-oriented single phase. The magnetization and resistivity measurements indicate that the film is a ferromagnetic metal with a Curie temperature of about 400 K. Cr 3s core-level and valence band photoelectron spectroscopy spectra reveal the presence of a metallic CrO(2) in the surface region of the film. Our work indicates that preparation from a Cr(8)O(21) precursor is promising for obtaining a CrO(2) thin film with the metallic surface. en-copyright= kn-copyright= en-aut-name=IwaiK. en-aut-sei=Iwai en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MuraokaY. en-aut-sei=Muraoka en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WakitaT. en-aut-sei=Wakita en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HiraiM. en-aut-sei=Hirai en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YokoyaT. en-aut-sei=Yokoya en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KatoY. en-aut-sei=Kato en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MuroT. en-aut-sei=Muro en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TamenoriY. en-aut-sei=Tamenori en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=Faculty of Science, Research Laboratory for Surface Science, Okayama University affil-num=4 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=5 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=6 en-affil= kn-affil=Japan Synchrotron Radiation Research Institute (JASRI)/SPring-8 affil-num=7 en-affil= kn-affil=Japan Synchrotron Radiation Research Institute (JASRI)/SPring-8 affil-num=8 en-affil= kn-affil=Japan Synchrotron Radiation Research Institute (JASRI)/SPring-8 END start-ver=1.4 cd-journal=joma no-vol=72 cd-vols= no-issue=5 article-no= start-page=582 end-page=584 dt-received= dt-revised= dt-accepted= dt-pub-year=2011 dt-pub=20110501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Photoemission study of electronic structure evolution across the metal-insulator transition of heavily B-doped diamond en-subtitle= kn-subtitle= en-abstract= kn-abstract=We studied the electronic structure evolution of heavily B-doped diamond films across the metal-insulator transition (MIT) using ultraviolet photoemission spectroscopy (UPS). From high-temperature UPS, through which electronic states near the Fermi level (E(F)) up to similar to 5k(B)T can be observed (k(B) is the Boltzmann constant and T the temperature), we observed the carrier concentration dependence of spectral shapes near E(F). Using another carrier concentration dependent UPS, we found that the change in energy position of sp-band of the diamond valence band, which corresponds to the shift of E(F), can be explained by the degenerate semiconductor model, indicating that the diamond valence band is responsible for the metallic states for samples with concentrations above MIT. We discuss a possible electronic structure evolution across MIT. en-copyright= kn-copyright= en-aut-name=OkazakiH. en-aut-sei=Okazaki en-aut-mei=H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ArakaneT. en-aut-sei=Arakane en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SugawaraK. en-aut-sei=Sugawara en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SatoT. en-aut-sei=Sato en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakahashiT. en-aut-sei=Takahashi en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=WakitaT. en-aut-sei=Wakita en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HiraiM. en-aut-sei=Hirai en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MuraokaY. en-aut-sei=Muraoka en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TakanoY. en-aut-sei=Takano en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=IshiiS. en-aut-sei=Ishii en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=IriyamaS. en-aut-sei=Iriyama en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KawaradaH. en-aut-sei=Kawarada en-aut-mei=H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YokoyaT. en-aut-sei=Yokoya en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=Department of Physics, Tohoku University affil-num=3 en-affil= kn-affil=WPI Research Center, Advanced Institute for Materials Research, Tohoku University affil-num=4 en-affil= kn-affil=Advanced Science Research Center, Japan Atomic Energy Agency affil-num=5 en-affil= kn-affil=Department of Physics, Tohoku University affil-num=6 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=7 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=8 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=9 en-affil= kn-affil=National Institute for Materials Science affil-num=10 en-affil= kn-affil=National Institute for Materials Science affil-num=11 en-affil= kn-affil=School of Science and Engineering, Waseda University affil-num=12 en-affil= kn-affil=School of Science and Engineering, Waseda University affil-num=13 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University END start-ver=1.4 cd-journal=joma no-vol=470 cd-vols= no-issue=S1 article-no= start-page=S641 end-page=S643 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=201012 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Angle-resolved photoemission study of Si electronic structure: Boron concentration dependence en-subtitle= kn-subtitle= en-abstract= kn-abstract=The boron concentration dependence of the Si electronic structure of Si(100)2 × 1 surfaces were investigated by angle-resolved photoemission spectroscopy (ARPES). The ARPES spectra exhibit rigid shifts toward lower binding energy as the boron concentration increases. The band dispersion was obtained from fitting procedure, and it is found that the top of the valence band does not exceed the Fermi level even with a boron concentration 35 times larger than the critical concentration of the metal-insulator transition. en-copyright= kn-copyright= en-aut-name=WakitaTakanori en-aut-sei=Wakita en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkazakiHiroyuki en-aut-sei=Okazaki en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakanoYoshihiko en-aut-sei=Takano en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HiraiMasaaki en-aut-sei=Hirai en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MuraokaYuji en-aut-sei=Muraoka en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YokoyaTakayoshi en-aut-sei=Yokoya en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil= kn-affil=Research Laboratory for Surface Science (RLSS), Okayama University affil-num=2 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=National Institute for Material Science (NIMS) affil-num=4 en-affil= kn-affil=Research Laboratory for Surface Science (RLSS), Okayama University affil-num=5 en-affil= kn-affil=Research Laboratory for Surface Science (RLSS), Okayama University affil-num=6 en-affil= kn-affil=Research Laboratory for Surface Science (RLSS), Okayama University END start-ver=1.4 cd-journal=joma no-vol=181 cd-vols= no-issue=2-3 article-no= start-page=249 end-page=251 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=201008 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Angle-resolved photoemission spectroscopy for VO2 thin films grown on TiO2 (0 0 1) substrates en-subtitle= kn-subtitle= en-abstract= kn-abstract=We present the results of angle-resolved photoemission spectroscopy (ARPES) measurements of metallic VO2 thin films. The VO2 thin films have been grown on TiO2 (0 0 1) single crystal substrates using pulsed laser deposition. The films exhibit a first-order metal–insulator transition (MIT) at 305 K. In the ARPES spectra of the metallic phase for the films, the O 2p band shows highly dispersive feature in the binding energy range of 3–8 eV along the Г–Z direction. The periodicity of the dispersive band is found to be 2.2 Å-1 which is almost identical with the periodicity expected from the c-axis length of the VO2 thin films. The overall feature of the experimental band structure is similar to the band structure calculations, supporting that we have succeeded in observing the dispersive band of the O 2p state in the metallic VO2 thin film. The present work indicates that the ARPES measurements using epitaxial thin films are promising for determining the band structure of VO2. en-copyright= kn-copyright= en-aut-name=MuraokaY en-aut-sei=Muraoka en-aut-mei=Y kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SaekiK en-aut-sei=Saeki en-aut-mei=K kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YaoY en-aut-sei=Yao en-aut-mei=Y kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WakitaT en-aut-sei=Wakita en-aut-mei=T kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HiraiM en-aut-sei=Hirai en-aut-mei=M kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YokoyaT en-aut-sei=Yokoya en-aut-mei=T kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=EguchiR en-aut-sei=Eguchi en-aut-mei=R kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShinS en-aut-sei=Shin en-aut-mei=S kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=4 en-affil= kn-affil=Faculty of Science, Research Laboratory for Surface Science, Okayama University affil-num=5 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=6 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=7 en-affil= kn-affil=RIKEN/SPring-8 affil-num=8 en-affil= kn-affil=RIKEN/SPring-8 en-keyword=ARPES kn-keyword=ARPES en-keyword=VO2 kn-keyword=VO2 en-keyword=Thin film kn-keyword=Thin film END start-ver=1.4 cd-journal=joma no-vol=82 cd-vols= no-issue=19 article-no= start-page=195114-1 end-page=195114-5 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=20101110 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Electronic structure of pristine and K-doped solid picene: Nonrigid band change and its implication for electron-intramolecular-vibration interaction en-subtitle= kn-subtitle= en-abstract= kn-abstract=We use photoemission spectroscopy to study electronic structures of pristine and K-doped solid picene. The valence band spectrum of pristine picene consists of three main features with no state at the Fermi level (EF) while that of K-doped picene has three structures similar to those of pristine picene with new states near EF, consistent with the semiconductor-metal transition. The K-induced change cannot be explained with a simple rigid-band model of pristine picene but can be interpreted by molecular-orbital calculations considering electron-intramolecular-vibration interaction. Excellent agreement of the K-doped spectrum with the calculations points to importance of electron-intramolecular-vibration interaction in K-doped picene. en-copyright= kn-copyright= en-aut-name=OkazakiH en-aut-sei=Okazaki en-aut-mei=H kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WakitaT en-aut-sei=Wakita en-aut-mei=T kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MuroT en-aut-sei=Muro en-aut-mei=T kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KajiY en-aut-sei=Kaji en-aut-mei=Y kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=LeeX en-aut-sei=Lee en-aut-mei=X kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MitamuraH en-aut-sei=Mitamura en-aut-mei=H kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KawasakiN en-aut-sei=Kawasaki en-aut-mei=N kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KubozonoY en-aut-sei=Kubozono en-aut-mei=Y kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YamanariY en-aut-sei=Yamanari en-aut-mei=Y kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KambeT en-aut-sei=Kambe en-aut-mei=T kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KatoT en-aut-sei=Kato en-aut-mei=T kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=HiraiM en-aut-sei=Hirai en-aut-mei=M kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MuraokaY en-aut-sei=Muraoka en-aut-mei=Y kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=YokoyaT en-aut-sei=Yokoya en-aut-mei=T kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=Japan Synchrotron Radiation Research Institute (JASRI)/SPring-8 affil-num=4 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=5 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=6 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=7 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=8 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=9 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=10 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=11 en-affil= kn-affil=Institute for Innovative Science and Technology, Graduate School of Engineering, Nagasaki Institute of Applied Science affil-num=12 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=13 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=14 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University END start-ver=1.4 cd-journal=joma no-vol=473 cd-vols= no-issue=7345 article-no= start-page=55 end-page=60 dt-received= dt-revised= dt-accepted= dt-pub-year=2011 dt-pub=20110505 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å en-subtitle= kn-subtitle= en-abstract= kn-abstract=Photosystem II is the site of photosynthetic water oxidation and contains 20 subunits with a total molecular mass of 350 kDa. The structure of photosystem II has been reported at resolutions from 3.8 to 2.9 angstrom. These resolutions have provided much information on the arrangement of protein subunits and cofactors but are insufficient to reveal the detailed structure of the catalytic centre of water splitting. Here we report the crystal structure of photosystem II at a resolution of 1.9 angstrom. From our electron density map, we located all of the metal atoms of the Mn(4)CaO(5) cluster, together with all of their ligands. We found that five oxygen atoms served as oxo bridges linking the five metal atoms, and that four water molecules were bound to the Mn(4)CaO(5) cluster; some of them may therefore serve as substrates for dioxygen formation. We identified more than 1,300 water molecules in each photosystem II monomer. Some of them formed extensive hydrogen-bonding networks that may serve as channels for protons, water or oxygen molecules. The determination of the high-resolution structure of photosystem II will allow us to analyse and understand its functions in great detail. en-copyright= kn-copyright= en-aut-name=UmenaYasufumi en-aut-sei=Umena en-aut-mei=Yasufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawakamiKeisuke en-aut-sei=Kawakami en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KamiyaNobuo en-aut-sei=Kamiya en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil= kn-affil=Department of Chemistry, Graduate School of Science, Osaka City University affil-num=2 en-affil= kn-affil=Division of Bioscience, Graduate School of Natural Science and Technology/Faculty of Science; Okayama University affil-num=3 en-affil= kn-affil=Division of Bioscience, Graduate School of Natural Science and Technology/Faculty of Science; Okayama University affil-num=4 en-affil= kn-affil=Department of Chemistry, Graduate School of Science, Osaka City University END start-ver=1.4 cd-journal=joma no-vol=96 cd-vols= no-issue=6 article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2006 dt-pub=20062 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Resonant inelastic x-ray scattering at the oxygen k resonance of nio:nonlocal charge transfer and double-singlet excitations en-subtitle= kn-subtitle= en-abstract= kn-abstract=
We report high-resolution polarization-dependent resonant inelastic x-ray scattering (RIXS) at the O K resonance of NiO showing a rich excitation spectrum. We perform multisite Ni6O19 cluster model calculations, revealing that solid state effects are substantial. We identify a nonlocal charge transfer excitation at 4-5 eV and double-singlet creation at 1.75 eV, both exhibiting significant scattering geometry dependence. Apart from an intense band of local charge transfer excitations (above 5 eV) also dd excitations at 1 eV are observed. Finally, we point out that O K RIXS of correlated metal oxides allows a quantitative and consistent determination of the charge transfer energy Delta and the Hund coupling energy J(H).
en-copyright= kn-copyright= en-aut-name=DudaL C en-aut-sei=Duda en-aut-mei=L C kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SchmittT en-aut-sei=Schmitt en-aut-mei=T kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MangnusonM en-aut-sei=Mangnuson en-aut-mei=M kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ForsbergJ en-aut-sei=Forsberg en-aut-mei=J kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OlssonA en-aut-sei=Olsson en-aut-mei=A kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NordgrenJ. en-aut-sei=Nordgren en-aut-mei=J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OkadaK en-aut-sei=Okada en-aut-mei=K kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KotaniA en-aut-sei=Kotani en-aut-mei=A kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil= kn-affil=Uppsala University affil-num=2 en-affil= kn-affil=Uppsala University affil-num=3 en-affil= kn-affil=Uppsala University affil-num=4 en-affil= kn-affil=Uppsala University affil-num=5 en-affil= kn-affil=Uppsala University affil-num=6 en-affil= kn-affil=Uppsala University affil-num=7 en-affil= kn-affil=Okayama University affil-num=8 en-affil= kn-affil=High Energy Accelerator Research Organization en-keyword=transition-meal compounds kn-keyword=transition-meal compounds en-keyword=electronic-structure kn-keyword=electronic-structure en-keyword=raman-scattering kn-keyword=raman-scattering en-keyword=emission-spectroscopy kn-keyword=emission-spectroscopy en-keyword=spectra kn-keyword=spectra en-keyword=absorption kn-keyword=absorption en-keyword=coo kn-keyword=coo END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=3 article-no= start-page=205 end-page=515 dt-received= dt-revised= dt-accepted= dt-pub-year=1958 dt-pub=195810 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Cytochemicar demonstration of the sites of activity of the terminal electron transport system with the electron microscope en-subtitle= kn-subtitle= en-abstract= kn-abstract=In an attempt to pursue the relationship of the fine structure of a cell to the biochemical function, the author at first tried to demonstrate cytochemically the actual sites of activity of enzymes in the terminal electron transport system involved in energy production with the use of the electron microscope. Namely, cytochemical reactions were performed by using potassium tellurite, a heavy metal salt, and then the author succeeded in the electron microscopic detection of the enzymes by freezing-drying method and by means of formalin fixation, strong reducing agents and osmium tetroxide fixation. As the results the author has been able to verify that the reactions of the enzymes belonging to the terminal electron transport system are found localizing in the mitochondria being arranged fairly densely and continuously on the critae and partially on the membrane, although some differences in the grade of the activity are found in each mitochondria even in one cell and a marked difference between the mitocndria belonging to the different kinds of cells. Furthermore, it has been clarified that the activity of the endogenous dehydrogenase system (mainly DPNH- or TPNH-dehydrogenase and others) is chiefly strong in cristae, and that the succinoxidase system exists both in cristae and membrane.
en-copyright= kn-copyright= en-aut-name=OdaTakuzo en-aut-sei=Oda en-aut-mei=Takuzo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SakaiAkira en-aut-sei=Sakai en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OkazakiHiroaki en-aut-sei=Okazaki en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil= kn-affil=Okayama University affil-num=2 en-affil= kn-affil=Okayama University affil-num=3 en-affil= kn-affil=Okayama University END start-ver=1.4 cd-journal=joma no-vol=23 cd-vols= no-issue=5 article-no= start-page=3122 end-page=3124 dt-received= dt-revised= dt-accepted= dt-pub-year=2006 dt-pub=20061121 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Magnetic aftereffect in rare earth-iron-boron magnets en-subtitle= kn-subtitle= en-abstract= kn-abstract=The temperature dependences of the aftereffect coefficient Sv and the coercive force iHc have been measured from 4.2K to 300K on two specimens prepared from sintered magnets of Pr8Y7Fe77B8(sintered at 1060°C and 1100°C). The latter has higher maximum energy products. The Sv values of both have a maximum at 60K and 150K respectively. This is a new behavior which can not be explained by any theory proposed until now.
en-copyright= kn-copyright= en-aut-name=ShiJ. en-aut-sei=Shi en-aut-mei=J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamadaO. en-aut-sei=Yamada en-aut-mei=O. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MaruyamaH. en-aut-sei=Maruyama en-aut-mei=H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SagawaM. en-aut-sei=Sagawa en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HirosawaS. en-aut-sei=Hirosawa en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil= kn-affil=Okayama University affil-num=2 en-affil= kn-affil=Okayama University affil-num=3 en-affil= kn-affil=Okayama University affil-num=4 en-affil= kn-affil=Sumitomo Special Metals Co.. Ltd. affil-num=5 en-affil= kn-affil=Sumitomo Special Metals Company Limited END start-ver=1.4 cd-journal=joma no-vol=99 cd-vols= no-issue=7-8 article-no= start-page=863 end-page=879 dt-received= dt-revised= dt-accepted= dt-pub-year=1987 dt-pub=19870830 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Effects of copper, cadmium, zinc and two mixtures of these metals on oxidative phosphorylation, ATPase and electron transport of isolated rat liver mitochondoria. kn-title=ラット肝ミトコンドリアに対するカドミウム,銅,亜鉛の単独及び複合作用 en-subtitle= kn-subtitle= en-abstract= kn-abstract=The effects of metals on oxdative phosphorylation, ATPase and electron transport were examined. Cadmium accelerated state 4 respiration and increased latent ATPase activity, indicating that cadmium is an uncoupler of the energy transport reaction. Cadmium did not inhibit site 1, 2 or 3 of the electron transport chain. Copper inhibited state 3 respiration, accelerated state 4 respiration, increased latent ATPase activity and decreased stimulated ATPase activity, indicating that copper is an uncoupler and effects the energy tranport reaction. Copper did not inhibit site 1, 2 or 3 of the electron transport chain. Zinc inhibited state 3 and state 4 respiration, increased latent ATPase activity, decreased stimulated ATPase activity slightly, and inhibited sites 1 and 2 of the electron tranport chain. One pair of the 3 metals had additive effects on state 3 and 4 respiratory activity and on stimulated and latent ATPase activity. A competitive reaction between copper and zinc was observed in the effects on sites 1 and 2 of the electron transport chain. en-copyright= kn-copyright= en-aut-name=MiyajiYoshiyuki en-aut-sei=Miyaji en-aut-mei=Yoshiyuki kn-aut-name=宮地芳之 kn-aut-sei=宮地 kn-aut-mei=芳之 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学医学部公衆衛生学教室 en-keyword=Mitochondria kn-keyword=Mitochondria en-keyword=Cadmium kn-keyword=Cadmium en-keyword=Copper kn-keyword=Copper en-keyword=Zinc kn-keyword=Zinc en-keyword=Oxidative phosphorylation kn-keyword=Oxidative phosphorylation en-keyword=ATPase kn-keyword=ATPase en-keyword=Electron Transport System kn-keyword=Electron Transport System END start-ver=1.4 cd-journal=joma no-vol=5 cd-vols= no-issue=1 article-no= start-page=47 end-page=53 dt-received= dt-revised= dt-accepted= dt-pub-year=1970 dt-pub=19700901 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Diffusion Phenomena of Silver Ion in Molten Sodium Borate by Chronopotentiometry en-subtitle= kn-subtitle= en-abstract= kn-abstract=Diffusion phenomena of silver ion in the molten sodium diborate of low silver ion content were investigated at the temperature range from 880℃ to 625℃ by means of chronopotentiometry. From the results, it was shown that the silver ion was reduced reversibly to metallic state at the silver electrode used and silver ion was transported only by diffusion in case that transition time in a potential-time relation was within several seconds. Diffusion coefficients measured at various temperatures satisfied Arrhenius equation. The activation energy of diffusion and diffusion coefficient were respectively 32Kcal/mol and 6.5×10(-7) cm(2)/sec at the liquidous temperature. By comparing these values with those obtained in some molten salts, the difference of structure between the molten glass and molten salts was discussed. Moreover, the consideration for the size of borate anion existing in the molten glass was also tried from the viewpoint of rate process and from Stokes-Einstein's equation. en-copyright= kn-copyright= en-aut-name= en-aut-sei= en-aut-mei= kn-aut-name=TakahashiKatsuaki kn-aut-sei=Takahashi kn-aut-mei=Katsuaki aut-affil-num=1 ORCID= en-aut-name= en-aut-sei= en-aut-mei= kn-aut-name=MiuraYoshinari kn-aut-sei=Miura kn-aut-mei=Yoshinari aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Department of Industrial Chemistry affil-num=2 en-affil= kn-affil=Department of Industrial Chemistry END start-ver=1.4 cd-journal=joma no-vol=27 cd-vols= no-issue=1 article-no= start-page=27 end-page=32 dt-received= dt-revised= dt-accepted= dt-pub-year=1992 dt-pub=19921125 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Heat Transfer Characteristics of Two Phase Closed Thermosiphon for Geothermal Energy (2nd Report: Heat Transfer Behavior on Site) en-subtitle= kn-subtitle= en-abstract= kn-abstract=Heating and refrigerating technique such as snow melting of road and cold storage by utilizing temperature difference between underground soil and atmosphere is widely used[1-4] in a cold area. In the 1st Report, heat transfer characteristics of two phase closed thermosiphon for extracting geothermal energy is studied fundamentally. In the empirical study, heat extract rate is measured in connection with the change of atmospheric temperature utilizing real two thermosiphons on the site. Temperature distribution on the surface of the thermosiphon and underground soil around it is also measured. Based on the data of the empirical experiment, it is confirmed that prevention of freezing for fire hydrant can be achieved by geothermal heat utilizing two phase closed thermosiphon. Present paper describes the heat transfer behavior of the thermosiphon as the 2nd report. en-copyright= kn-copyright= en-aut-name= en-aut-sei= en-aut-mei= kn-aut-name=HirashimaMasao kn-aut-sei=Hirashima kn-aut-mei=Masao aut-affil-num=1 ORCID= en-aut-name=InabaHideo en-aut-sei=Inaba en-aut-mei=Hideo kn-aut-name=稲葉英男 kn-aut-sei=稲葉 kn-aut-mei=英男 aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Mitsui. Metal Engineering &Service Co., Ltd. affil-num=2 en-affil= kn-affil=Department of Mechanical Engineering END start-ver=1.4 cd-journal=joma no-vol=27 cd-vols= no-issue=1 article-no= start-page=11 end-page=26 dt-received= dt-revised= dt-accepted= dt-pub-year=1992 dt-pub=19921125 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Heat Transfer Characteristics of Two Phase ClosedThermosiphon for Geothermal Energy (1st Report: Measurement on Heat Transfer Coefficient) en-subtitle= kn-subtitle= en-abstract= kn-abstract=To prevent freezing of road and aquaduct by extracting geothermal heat with two phase closed thermosiphon has been widely used in a cold area. Both heat transfer characteristics in the underground soil and function of the thermosiphon to extract geothermal heat have to be made clear for the purpose of the above system. This study is directed for the purpose to prevent freezing of fire hydrant and composed of the fundamental experiment and the empirical experiment. In the fundamental study, heat transfer behavior is studied experimentally in the small size filling bath representing the underground soil layer. After recording temperature distribution, heat transfer coefficient is measured, they are proceeded into the correlation between the dimensionless number of Nusselt, Rayleigh and Fourier. The fundamental study is described as the first report. en-copyright= kn-copyright= en-aut-name= en-aut-sei= en-aut-mei= kn-aut-name=HirashimaMasao kn-aut-sei=Hirashima kn-aut-mei=Masao aut-affil-num=1 ORCID= en-aut-name=InabaHideo en-aut-sei=Inaba en-aut-mei=Hideo kn-aut-name=稲葉英男 kn-aut-sei=稲葉 kn-aut-mei=英男 aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Mitsui. Metal Engineering &Service Co., Ltd. affil-num=2 en-affil= kn-affil=Department of Mechanical Engineering END