著者 |
Kondo, Kei
Department of Mathematics, Faculty of Science, Okayama University
|
抄録 | We show, as our main theorem, that if a Lipschitz map from a compact Riemannian manifold
M to a connected compact Riemannian manifold N, where dim M ≥ dim N, has no singular points on M in the sense of Clarke, then the map admits a smooth approximation via Ehresmann fibrations. We also show the Reeb sphere theorem for Lipschitz functions, i.e., if a closed Riemannian manifold admits a Lipschitz function with exactly two singular points in the sense of Clarke, then the manifold is homeomorphic to the sphere.
|
キーワード | convex analysis
Ehresmann fibration
Lipschitz map
nonsmooth analysis
Reeb’s sphere theorem
smooth approximation
|
備考 | This article will be available in April 2025.
|
発行日 | 2022-4-21
|
出版物タイトル |
Journal of the Mathematical Society of Japan
|
巻 | 74巻
|
号 | 2号
|
出版者 | Mathematical Society of Japan (Project Euclid)
|
開始ページ | 521
|
終了ページ | 548
|
ISSN | 0025-5645
|
資料タイプ |
学術雑誌論文
|
言語 |
英語
|
OAI-PMH Set |
岡山大学
|
著作権者 | Copyright ©2022 Mathematical Society of Japan
|
論文のバージョン | publisher
|
DOI | |
Web of Science KeyUT | |
関連URL | isVersionOf https://doi.org/10.2969/jmsj/83448344
|
助成機関名 |
Japan Society for the Promotion of Science
|
助成番号 | 16K05133
17K05220
18K03280
|