
| ID | 47192 |
| フルテキストURL | |
| 著者 |
Moon, Hyunsuk
Department of Mathematics, College of Natural Sciences Kyungpook National University
|
| 抄録 | Let A be an abelian variety defined over a number field K. It is proved that for the composite field Kn of all Galois extensions over K of degree dividing n, the torsion subgroup of the Mordell-Weil group A(Kn) is finite. This is a variant of Ribet’s result ([7]) on the finiteness of torsion subgroup of A(K(ζ∞)). It is also proved that for the Jacobians of superelliptic curves yn = f(x) defined over K the Mordell-Weil group over the field generated by all nth roots of elements of K is the direct sum of a finite torsion group and a free ℤ-module of infinite rank.
|
| キーワード | Mordell-Weil group
Jacobian
superelliptic curve
|
| 発行日 | 2012-01
|
| 出版物タイトル |
Mathematical Journal of Okayama University
|
| 巻 | 54巻
|
| 号 | 1号
|
| 出版者 | Department of Mathematics, Faculty of Science, Okayama University
|
| 開始ページ | 49
|
| 終了ページ | 52
|
| ISSN | 0030-1566
|
| NCID | AA00723502
|
| 資料タイプ |
学術雑誌論文
|
| 言語 |
英語
|
| 著作権者 | Copyright©2012 by the Editorial Board of Mathematical Journal of Okayama University
|
| 論文のバージョン | publisher
|
| 査読 |
有り
|
| Submission Path | mjou/vol54/iss1/3
|
| JaLCDOI |