このエントリーをはてなブックマークに追加
ID 41608
JaLCDOI
Sort Key
5
フルテキストURL
著者
Fujimoto, Takao
Ranade, Ravindra R. Department of Economics, University of Kagawa
抄録
This paper presents a geometrical approach to the univalence problem for a system of cost functions. We present a natural (almost tautological) extension of a geometrical theorem due to McKenzie: our sufficient condition is related to the non-separability of two cones formed by convex combinations of the rows of the Jacobian matrix. This means that the cones spanned by the rows of Jacobian matrix (i.e., production coefficients) do not move wildly so that the two cones corresponding to the two end points (i.e., factor price vectors) cannot be separated by the hyperplane orthogonal to the vector of changes in factor prices. Unlike most ofthe previous propositions, our condition can naturally include as a special case such linear systems as having a non-singular matrix. We also give an alternative condition employing the concept of monotone functions. Dual to the above result is one more condition, which is shown to be closely connected with Kuhn's WARP-like requirement when the given functions are concave as well as homogeneous of degree one.
備考
研究ノート (Note)
出版物タイトル
岡山大学経済学会雑誌
発行日
1998-03-15
29巻
4号
出版者
岡山大学経済学会
出版者(別表記)
The Economic Association of Okayama University
開始ページ
125
終了ページ
132
ISSN
0386-3069
NCID
AN00032897
資料タイプ
学術雑誌論文
OAI-PMH Set
岡山大学
言語
英語
論文のバージョン
publisher
NAID
Eprints Journal Name
oer