start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=1 article-no= start-page=9916 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251111 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A node-localized efflux transporter for loading iron to developing tissues in rice en-subtitle= kn-subtitle= en-abstract= kn-abstract=Iron (Fe) is an essential micronutrient for plant growth and development. It plays crucial roles in various organs and tissues of plants, but the molecular mechanisms governing its distribution to the above-ground parts after root uptake remain unclear. In this study, we identify OsIET1 (Oryza sativa Iron Efflux Transporter 1), a rice gene highly expressed in the nodes. OsIET1 encodes a plasma membrane-localized protein, which shows efflux transport activity for ferrous iron. It is predominantly expressed in the xylem regions of diffuse vascular bundles, and its expression is upregulated under high Fe conditions. Disruption of OsIET1 impairs Fe allocation, reducing Fe transport to developing tissues (young leaves and grains), while increasing accumulation in nodes and older leaves. This misdistribution causes chlorosis in young leaves and decreases grain yield, especially under Fe-deficient conditions. Furthermore, we detect excessive Fe deposition around the xylem of diffuse vascular bundles in the nodes. Given the pivotal role of nodes in mineral distribution, our results indicate that OsIET1 mediates inter-vascular Fe transfer by facilitating Fe loading into the xylem of diffuse vascular bundles. This process ensures preferential Fe delivery to developing tissues, thereby promoting optimal plant growth and productivity. en-copyright= kn-copyright= en-aut-name=CheJing en-aut-sei=Che en-aut-mei=Jing kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HuangSheng en-aut-sei=Huang en-aut-mei=Sheng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=QuYuting en-aut-sei=Qu en-aut-mei=Yuting kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YoshiokaYuma en-aut-sei=Yoshioka en-aut-mei=Yuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TomitaChiyuri en-aut-sei=Tomita en-aut-mei=Chiyuri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MiyajiTakaaki en-aut-sei=Miyaji en-aut-mei=Takaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=LiuZhenyang en-aut-sei=Liu en-aut-mei=Zhenyang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShenRenfang en-aut-sei=Shen en-aut-mei=Renfang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YamajiNaoki en-aut-sei=Yamaji en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MaJian Feng en-aut-sei=Ma en-aut-mei=Jian Feng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences kn-affil= affil-num=4 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences kn-affil= affil-num=8 en-affil=State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences kn-affil= affil-num=9 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=10 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=7661 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240916 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Neurotransmitter recognition by human vesicular monoamine transporter 2 en-subtitle= kn-subtitle= en-abstract= kn-abstract=Human vesicular monoamine transporter 2 (VMAT2), a member of the SLC18 family, plays a crucial role in regulating neurotransmitters in the brain by facilitating their uptake and storage within vesicles, preparing them for exocytotic release. Because of its central role in neurotransmitter signalling and neuroprotection, VMAT2 is a target for neurodegenerative diseases and movement disorders, with its inhibitor being used as therapeutics. Despite the importance of VMAT2 in pharmacophysiology, the molecular basis of VMAT2-mediated neurotransmitter transport and its inhibition remains unclear. Here we show the cryo-electron microscopy structure of VMAT2 in the substrate-free state, in complex with the neurotransmitter dopamine, and in complex with the inhibitor tetrabenazine. In addition to these structural determinations, monoamine uptake assays, mutational studies, and pKa value predictions were performed to characterize the dynamic changes in VMAT2 structure. These results provide a structural basis for understanding VMAT2-mediated vesicular transport of neurotransmitters and a platform for modulation of current inhibitor design. en-copyright= kn-copyright= en-aut-name=ImDohyun en-aut-sei=Im en-aut-mei=Dohyun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=JormakkaMika en-aut-sei=Jormakka en-aut-mei=Mika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=JugeNarinobu en-aut-sei=Juge en-aut-mei=Narinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KishikawaJun-ichi en-aut-sei=Kishikawa en-aut-mei=Jun-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KatoTakayuki en-aut-sei=Kato en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SugitaYukihiko en-aut-sei=Sugita en-aut-mei=Yukihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NodaTakeshi en-aut-sei=Noda en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=UemuraTomoko en-aut-sei=Uemura en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ShiimuraYuki en-aut-sei=Shiimura en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MiyajiTakaaki en-aut-sei=Miyaji en-aut-mei=Takaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=AsadaHidetsugu en-aut-sei=Asada en-aut-mei=Hidetsugu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=IwataSo en-aut-sei=Iwata en-aut-mei=So kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Cell Biology, Graduate School of Medicine, Kyoto University kn-affil= affil-num=2 en-affil=Department of Cell Biology, Graduate School of Medicine, Kyoto University kn-affil= affil-num=3 en-affil=Department of Genomics and Proteomics, Advanced Science Research Center, Okayama University kn-affil= affil-num=4 en-affil=Department of Applied Biology, Kyoto Institute of Technology kn-affil= affil-num=5 en-affil=Institute for Protein Research, Osaka University kn-affil= affil-num=6 en-affil=Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University kn-affil= affil-num=7 en-affil=Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University kn-affil= affil-num=8 en-affil=Department of Cell Biology, Graduate School of Medicine, Kyoto University kn-affil= affil-num=9 en-affil=Department of Cell Biology, Graduate School of Medicine, Kyoto University kn-affil= affil-num=10 en-affil=Department of Genomics and Proteomics, Advanced Science Research Center, Okayama University kn-affil= affil-num=11 en-affil=Department of Cell Biology, Graduate School of Medicine, Kyoto University kn-affil= affil-num=12 en-affil=Department of Cell Biology, Graduate School of Medicine, Kyoto University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=26 cd-vols= no-issue=6 article-no= start-page=2485 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250311 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Vesicular Glutamate Transporter 3 Is Involved in Glutamatergic Signalling in Podocytes en-subtitle= kn-subtitle= en-abstract= kn-abstract=Glomerular podocytes act as a part of the filtration barrier in the kidney. The activity of this filter is regulated by ionotropic and metabotropic glutamate receptors. Adjacent podocytes can potentially release glutamate into the intercellular space; however, little is known about how podocytes release glutamate. Here, we demonstrated vesicular glutamate transporter 3 (VGLUT3)-dependent glutamate release from podocytes. Immunofluorescence analysis revealed that rat glomerular podocytes and an immortal mouse podocyte cell line (MPC) express VGLUT1 and VGLUT3. Consistent with this finding, quantitative RT-PCR revealed the expression of VGLUT1 and VGLUT3 mRNA in undifferentiated and differentiated MPCs. In addition, the exocytotic proteins vesicle-associated membrane protein 2, synapsin 1, and synaptophysin 1 were present in punctate patterns and colocalized with VGLUT3 in MPCs. Interestingly, approximately 30% of VGLUT3 colocalized with VGLUT1. By immunoelectron microscopy, VGLUT3 was often observed around clear vesicle-like structures in differentiated MPCs. Differentiated MPCs released glutamate following depolarization with high potassium levels and after stimulation with the muscarinic agonist pilocarpine. The depletion of VGLUT3 in MPCs by RNA interference reduced depolarization-dependent glutamate release. These results strongly suggest that VGLUT3 is involved in glutamatergic signalling in podocytes and may be a new drug target for various kidney diseases. en-copyright= kn-copyright= en-aut-name=NishiiNaoko en-aut-sei=Nishii en-aut-mei=Naoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawaiTomoko en-aut-sei=Kawai en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YasuokaHiroki en-aut-sei=Yasuoka en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AbeTadashi en-aut-sei=Abe en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TatsumiNanami en-aut-sei=Tatsumi en-aut-mei=Nanami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HaradaYuika en-aut-sei=Harada en-aut-mei=Yuika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MiyajiTakaaki en-aut-sei=Miyaji en-aut-mei=Takaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=LiShunai en-aut-sei=Li en-aut-mei=Shunai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TsukanoMoemi en-aut-sei=Tsukano en-aut-mei=Moemi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=WatanabeMasami en-aut-sei=Watanabe en-aut-mei=Masami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OgawaDaisuke en-aut-sei=Ogawa en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TakeiKohji en-aut-sei=Takei en-aut-mei=Kohji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=YamadaHiroshi en-aut-sei=Yamada en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cell Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Genomics and Proteomics, Advanced Science Research Center, Okayama University kn-affil= affil-num=7 en-affil=Department of Genomics and Proteomics, Advanced Science Research Center, Okayama University kn-affil= affil-num=8 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=9 en-affil=Central Research Laboratory, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=11 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=VGLUT3 kn-keyword=VGLUT3 en-keyword=glutamate kn-keyword=glutamate en-keyword=podocyte kn-keyword=podocyte en-keyword=glutamatergic transmission kn-keyword=glutamatergic transmission END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=5 article-no= start-page=387 end-page=399 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202410 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effect of Radon Inhalation on Murine Brain Proteins: Investigation Using Proteomic and Multivariate Analyses en-subtitle= kn-subtitle= en-abstract= kn-abstract=Radon is a known risk factor for lung cancer; however, it can be used beneficially, such as in radon therapy. We have previously reported the enhancement of antioxidant effects associated with trace amounts of oxidative stress as one of the positive biological effects of radon inhalation. However, the biological effects of radon inhalation are incompletely understood, and more detailed and comprehensive studies are required. Although several studies have used proteomics to investigate the effects of radon inhalation on body proteins, none has focused on brain proteins. In this study, we evaluated the expression status of proteins in murine brains using proteomic and multivariate analyses to identify those whose expressions changed following two days of radon inhalation at a concentration of 1,500 Bq/m3. We found associations of radon inhalation with the expressions of seven proteins related to neurotransmission and heat shock. These proteins may be proposed as biomarkers indicative of radon inhalation. Although further studies are required to obtain the detailed biological significance of these protein alterations, this study contributes to the elucidation of the biological effects of radon inhalation as a low-dose radiation. en-copyright= kn-copyright= en-aut-name=NaoeShota en-aut-sei=Naoe en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TanakaAyumi en-aut-sei=Tanaka en-aut-mei=Ayumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KanzakiNorie en-aut-sei=Kanzaki en-aut-mei=Norie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakenakaReiju en-aut-sei=Takenaka en-aut-mei=Reiju kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SakodaAkihiro en-aut-sei=Sakoda en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MiyajiTakaaki en-aut-sei=Miyaji en-aut-mei=Takaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamaokaKiyonori en-aut-sei=Yamaoka en-aut-mei=Kiyonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KataokaTakahiro en-aut-sei=Kataoka en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=3 en-affil=Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency kn-affil= affil-num=4 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=5 en-affil=Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency kn-affil= affil-num=6 en-affil=Advanced Science Research Center, Okayama University kn-affil= affil-num=7 en-affil=Faculty of Health Sciences, Okayama University kn-affil= affil-num=8 en-affil=Faculty of Health Sciences, Okayama University kn-affil= en-keyword=radon inhalation kn-keyword=radon inhalation en-keyword=proteomics kn-keyword=proteomics en-keyword=multivariate analysis kn-keyword=multivariate analysis en-keyword=brain kn-keyword=brain en-keyword=oxidative stress kn-keyword=oxidative stress END start-ver=1.4 cd-journal=joma no-vol=6 cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2015 dt-pub=20150105 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=AtPHT4;4 is a chloroplast-localized ascorbate transporter in Arabidopsis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Ascorbate is an antioxidant and coenzyme for various metabolic reactions in vivo. In plant chloroplasts, high ascorbate levels are required to overcome photoinhibition caused by strong light. However, ascorbate is synthesized in the mitochondria and the molecular mechanisms underlying ascorbate transport into chloroplasts are unknown. Here we show that AtPHT4;4, a member of the phosphate transporter 4 family of Arabidopsis thaliana, functions as an ascorbate transporter. In vitro analysis shows that proteoliposomes containing the purified AtPHT4;4 protein exhibit membrane potential- and Cl-dependent ascorbate uptake. The AtPHT4;4 protein is abundantly expressed in the chloroplast envelope membrane. Knockout of AtPHT4;4 results in decreased levels of the reduced form of ascorbate in the leaves and the heat dissipation process of excessive energy during photosynthesis is compromised. Taken together, these observations indicate that the AtPHT4;4 protein is an ascorbate transporter at the chloroplast envelope membrane, which may be required for tolerance to strong light stress. en-copyright= kn-copyright= en-aut-name=MiyajiTakaaki en-aut-sei=Miyaji en-aut-mei=Takaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KuromoriTakashi en-aut-sei=Kuromori en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakeuchiYu en-aut-sei=Takeuchi en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamajiNaoki en-aut-sei=Yamaji en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YokoshoKengo en-aut-sei=Yokosho en-aut-mei=Kengo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShimazawaAtsushi en-aut-sei=Shimazawa en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SugimotoEriko en-aut-sei=Sugimoto en-aut-mei=Eriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OmoteHiroshi en-aut-sei=Omote en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MaJian Feng en-aut-sei=Ma en-aut-mei=Jian Feng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ShinozakiKazuo en-aut-sei=Shinozaki en-aut-mei=Kazuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MoriyamaYoshinori en-aut-sei=Moriyama en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil= kn-affil=Advanced Science Research Center, Okayama University affil-num=2 en-affil= kn-affil=Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science affil-num=3 en-affil= kn-affil=Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=4 en-affil= kn-affil=Institute of Plant Science and Resources, Okayama University affil-num=5 en-affil= kn-affil=Institute of Plant Science and Resources, Okayama University affil-num=6 en-affil= kn-affil=Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=7 en-affil= kn-affil=Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science affil-num=8 en-affil= kn-affil=Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=9 en-affil= kn-affil=Institute of Plant Science and Resources, Okayama University affil-num=10 en-affil= kn-affil=Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science affil-num=11 en-affil= kn-affil=Advanced Science Research Center, Okayama University END start-ver=1.4 cd-journal=joma no-vol=4 cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2014 dt-pub=20141030 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Identification of a mammalian vesicular polyamine transporter en-subtitle= kn-subtitle= en-abstract= kn-abstract=Spermine and spermidine act as neuromodulators upon binding to the extracellular site(s) of various ionotropic receptors, such as N-methyl-d-aspartate receptors. To gain access to the receptors, polyamines synthesized in neurons and astrocytes are stored in secretory vesicles and released upon depolarization. Although vesicular storage is mediated in an ATP-dependent, reserpine-sensitive fashion, the transporter responsible for this process remains unknown. SLC18B1 is the fourth member of the SLC18 transporter family, which includes vesicular monoamine transporters and vesicular acetylcholine transporter. Proteoliposomes containing purified human SLC18B1 protein actively transport spermine and spermidine by exchange of H+. SLC18B1 protein is predominantly expressed in the hippocampus and is associated with vesicles in astrocytes. SLC18B1 gene knockdown decreased both SLC18B1 protein and spermine/spermidine contents in astrocytes. These results indicated that SLC18B1 encodes a vesicular polyamine transporter (VPAT). en-copyright= kn-copyright= en-aut-name=HiasaMiki en-aut-sei=Hiasa en-aut-mei=Miki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyajiTakaaki en-aut-sei=Miyaji en-aut-mei=Takaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HarunaYuka en-aut-sei=Haruna en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakeuchiTomoya en-aut-sei=Takeuchi en-aut-mei=Tomoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HaradaYuika en-aut-sei=Harada en-aut-mei=Yuika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MoriyamaSawako en-aut-sei=Moriyama en-aut-mei=Sawako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamamotoAkitsugu en-aut-sei=Yamamoto en-aut-mei=Akitsugu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OmoteHiroshi en-aut-sei=Omote en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MoriyamaYoshinori en-aut-sei=Moriyama en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil= kn-affil=Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=2 en-affil= kn-affil=Advanced Science Research Center, Okayama University affil-num=3 en-affil= kn-affil=Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=4 en-affil= kn-affil=Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=5 en-affil= kn-affil=Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=6 en-affil= kn-affil=Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=7 en-affil= kn-affil=Faculty of Bioscience, Nagahama Institute of Bio-science and Technology affil-num=8 en-affil= kn-affil=Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=9 en-affil= kn-affil=Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences END start-ver=1.4 cd-journal=joma no-vol=105 cd-vols= no-issue=15 article-no= start-page=5683 end-page=5686 dt-received= dt-revised= dt-accepted= dt-pub-year=2008 dt-pub=20080401 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Identification of a vesicular nucleotide transporter en-subtitle= kn-subtitle= en-abstract= kn-abstract=

ATP is a major chemical transmitter in purinergic signal transmission. Before secretion, ATP is stored in secretory vesicles found in purinergic cells. Although the presence of active transport mechanisms for ATP has been postulated for a long time, the proteins responsible for its vesicular accumulation remains unknown. The transporter encoded by the human and mouse SLC17A9 gene, a novel member of an anion transporter family, was predominantly expressed in the brain and adrenal gland. The mouse and bovine counterparts were associated with adrenal chromaffin granules. Proteoliposomes containing purified transporter actively took up ATP, ADP, and GTP by using membrane potential as the driving force. The uptake properties of the reconstituted transporter were similar to that of the ATP uptake by synaptic vesicles and chromaffin granules. Suppression of endogenous SLC17A9 expression in PC12 cells decreased exocytosis of ATP. These findings strongly suggest that SLC17A9 protein is a vesicular nucleotide transporter and should lead to the elucidation of the molecular mechanism of ATP secretion in purinergic signal transmission.

en-copyright= kn-copyright= en-aut-name=SawadaKeisuke en-aut-sei=Sawada en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=EchigoNoriko en-aut-sei=Echigo en-aut-mei=Noriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=JugeNarinobu en-aut-sei=Juge en-aut-mei=Narinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MiyajiTakaaki en-aut-sei=Miyaji en-aut-mei=Takaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OtsukaMasato en-aut-sei=Otsuka en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OmoteHiroshi en-aut-sei=Omote en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamamotoAkitsugu en-aut-sei=Yamamoto en-aut-mei=Akitsugu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MoriyamaYoshinori en-aut-sei=Moriyama en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil= kn-affil=Okayama University affil-num=2 en-affil= kn-affil=Okayama University affil-num=3 en-affil= kn-affil=Okayama University affil-num=4 en-affil= kn-affil=Okayama University affil-num=5 en-affil= kn-affil=Okayama University affil-num=6 en-affil= kn-affil=Okayama University affil-num=7 en-affil= kn-affil=Nagahama Institute of Technology affil-num=8 en-affil= kn-affil=Okayama University en-keyword=chromaffin granule kn-keyword=chromaffin granule en-keyword=synaptic vesicle kn-keyword=synaptic vesicle en-keyword=ATP kn-keyword=ATP en-keyword=storage and exocytosis kn-keyword=storage and exocytosis en-keyword=purinergic signaling. kn-keyword=purinergic signaling. END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2009 dt-pub=20090325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=小胞型アスパラギン酸トランスポーターの発見とその生理的意義について en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=MiyajiTakaaki en-aut-sei=Miyaji en-aut-mei=Takaaki kn-aut-name=宮地孝明 kn-aut-sei=宮地 kn-aut-mei=孝明 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 END