このエントリーをはてなブックマークに追加
ID 63446
フルテキストURL
著者
Hayasaka, Futoshi Department of Environmental and Mathematical Sciences, Okayama University Kaken ID researchmap
抄録
In this paper, we construct indecomposable integrally closed modules of arbitrary rank over a two-dimensional regular local ring. The modules are quite explicitly constructed from a given complete monomial ideal. We also give structural and numerical results on integrally closed modules. These are used in the proof of indecomposability of the modules. As a consequence, we have a large class of indecomposable integrally closed modules of arbitrary rank whose ideal is not necessarily simple. This extends the original result on the existence of indecomposable integrally closed modules and strengthens the non-triviality of the theory developed by Kodiyalam.
キーワード
integral closure
indecomposable module
monomial ideal
regular local ring
備考
© 2022 Elsevier B.V. This manuscript version is made available under the CC-BY-NC-ND 4.0 License. http://creativecommons.org/licenses/by-nc-nd/4.0/. This is the accepted manuscript version. The formal published version is available at [https://doi.org/10.1016/j.jpaa.2022.107026] .
This fulltext is available in Jan. 2024.
発行日
2022-08
出版物タイトル
Journal of Pure and Applied Algebra
226巻
8号
出版者
Elsevier BV
開始ページ
107026
ISSN
0022-4049
NCID
AA00705737
資料タイプ
学術雑誌論文
言語
英語
OAI-PMH Set
岡山大学
著作権者
© 2022 Elsevier B.V.
論文のバージョン
author
DOI
Web of Science KeyUT
関連URL
isVersionOf https://doi.org/10.1016/j.jpaa.2022.107026
ライセンス
http://creativecommons.org/licenses/by-nc-nd/4.0/
助成機関名
Japan Society for the Promotion of Science
助成番号
JP20K03535