ID | 63446 |
フルテキストURL | |
著者 |
Hayasaka, Futoshi
Department of Environmental and Mathematical Sciences, Okayama University
Kaken ID
researchmap
|
抄録 | In this paper, we construct indecomposable integrally closed modules of arbitrary rank over a two-dimensional regular local ring. The modules are quite explicitly constructed from a given complete monomial ideal. We also give structural and numerical results on integrally closed modules. These are used in the proof of indecomposability of the modules. As a consequence, we have a large class of indecomposable integrally closed modules of arbitrary rank whose ideal is not necessarily simple. This extends the original result on the existence of indecomposable integrally closed modules and strengthens the non-triviality of the theory developed by Kodiyalam.
|
キーワード | integral closure
indecomposable module
monomial ideal
regular local ring
|
備考 | © 2022 Elsevier B.V. This manuscript version is made available under the CC-BY-NC-ND 4.0 License. http://creativecommons.org/licenses/by-nc-nd/4.0/.
This is the accepted manuscript version. The formal published version is available at [https://doi.org/10.1016/j.jpaa.2022.107026] .
This fulltext is available in Jan. 2024.
|
発行日 | 2022-08
|
出版物タイトル |
Journal of Pure and Applied Algebra
|
巻 | 226巻
|
号 | 8号
|
出版者 | Elsevier BV
|
開始ページ | 107026
|
ISSN | 0022-4049
|
NCID | AA00705737
|
資料タイプ |
学術雑誌論文
|
言語 |
英語
|
OAI-PMH Set |
岡山大学
|
著作権者 | © 2022 Elsevier B.V.
|
論文のバージョン | author
|
DOI | |
Web of Science KeyUT | |
関連URL | isVersionOf https://doi.org/10.1016/j.jpaa.2022.107026
|
ライセンス | http://creativecommons.org/licenses/by-nc-nd/4.0/
|
助成機関名 |
Japan Society for the Promotion of Science
|
助成番号 | JP20K03535
|