start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=6
article-no=
start-page=2485
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250311
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Vesicular Glutamate Transporter 3 Is Involved in Glutamatergic Signalling in Podocytes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Glomerular podocytes act as a part of the filtration barrier in the kidney. The activity of this filter is regulated by ionotropic and metabotropic glutamate receptors. Adjacent podocytes can potentially release glutamate into the intercellular space; however, little is known about how podocytes release glutamate. Here, we demonstrated vesicular glutamate transporter 3 (VGLUT3)-dependent glutamate release from podocytes. Immunofluorescence analysis revealed that rat glomerular podocytes and an immortal mouse podocyte cell line (MPC) express VGLUT1 and VGLUT3. Consistent with this finding, quantitative RT-PCR revealed the expression of VGLUT1 and VGLUT3 mRNA in undifferentiated and differentiated MPCs. In addition, the exocytotic proteins vesicle-associated membrane protein 2, synapsin 1, and synaptophysin 1 were present in punctate patterns and colocalized with VGLUT3 in MPCs. Interestingly, approximately 30% of VGLUT3 colocalized with VGLUT1. By immunoelectron microscopy, VGLUT3 was often observed around clear vesicle-like structures in differentiated MPCs. Differentiated MPCs released glutamate following depolarization with high potassium levels and after stimulation with the muscarinic agonist pilocarpine. The depletion of VGLUT3 in MPCs by RNA interference reduced depolarization-dependent glutamate release. These results strongly suggest that VGLUT3 is involved in glutamatergic signalling in podocytes and may be a new drug target for various kidney diseases.
en-copyright=
kn-copyright=
en-aut-name=NishiiNaoko
en-aut-sei=Nishii
en-aut-mei=Naoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawaiTomoko
en-aut-sei=Kawai
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YasuokaHiroki
en-aut-sei=Yasuoka
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AbeTadashi
en-aut-sei=Abe
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TatsumiNanami
en-aut-sei=Tatsumi
en-aut-mei=Nanami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HaradaYuika
en-aut-sei=Harada
en-aut-mei=Yuika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MiyajiTakaaki
en-aut-sei=Miyaji
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=LiShunai
en-aut-sei=Li
en-aut-mei=Shunai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TsukanoMoemi
en-aut-sei=Tsukano
en-aut-mei=Moemi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=WatanabeMasami
en-aut-sei=Watanabe
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OgawaDaisuke
en-aut-sei=Ogawa
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TakeiKohji
en-aut-sei=Takei
en-aut-mei=Kohji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=YamadaHiroshi
en-aut-sei=Yamada
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cell Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Genomics and Proteomics, Advanced Science Research Center, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Genomics and Proteomics, Advanced Science Research Center, Okayama University
kn-affil=
affil-num=8
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Central Research Laboratory, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=VGLUT3
kn-keyword=VGLUT3
en-keyword=glutamate
kn-keyword=glutamate
en-keyword=podocyte
kn-keyword=podocyte
en-keyword=glutamatergic transmission
kn-keyword=glutamatergic transmission
END
start-ver=1.4
cd-journal=joma
no-vol=2024
cd-vols=
no-issue=
article-no=
start-page=6505595
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240528
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Circadian Rhythms Fluctuate the Treatment Effects of Intravesical Treatments on Rat Urinary Frequency Models
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objectives. It is still not clear how the intravesical instillation of drugs affects rat urinary frequency. This study aimed to examine the dynamics of intravesical treatments' treatment effect on rat urinary frequency models by real-time and extended monitoring using a novel continuous urination monitoring system. Methods. Nine eleven-week-old female Wistar rats were divided into three groups to receive intravesical instillation of 0.1% acetic acid (AA), 1.0% AA, or phosphate-buffered saline (PBS). Thirty minutes later, these drugs were voided, and rats were moved to a continuous urination monitoring system, UM-100. UM-100 monitored rat urination quantitatively and continuously for 24 hours. Rats were then euthanized, and histopathologic examinations using a damage score validated the severity of bladder inflammation. We used nine additional rats to determine the treatment effect of various drugs against the urinary frequency. These rats were also treated with 1.0% AA in the same way and divided into three groups (n = 3 each) to receive intravesical instillation of lidocaine, silver nitrate (AgNO3), or dimethyl sulfoxide (DMSO), respectively. Thirty minutes later, rats were catheterized again and moved to the UM-100, and their voiding was monitored for 24 hours. Results. Intravesical instillation of AA increased the urinary frequency and decreased the mean voided volume (VV) in a concentration-dependent manner, with statistical significance at a concentration of 1.0% (urinary frequency; p = 0.0007 , mean VV; p = 0.0032 , respectively) compared with PBS. Histopathological analysis of these models demonstrated a significantly higher damage score of bladder mucosa in both 0.1% AA and 1.0% AA compared with PBS, with the severity in concordance with the clinical severity of urinary frequency (0.1% AA: p < 0.0001 , 1.0% AA: p < 0.0001 ). Moreover, intravesical instillation of lidocaine, AgNO3, and DMSO decreased the urinary frequency. Continuous monitoring with UM-100 also demonstrated that the treatment effect of these intravesically instilled drugs occurred only at night. Conclusions. The extended monitoring of rat urination by UM-100 revealed a significant fluctuation in the treatment effect of intravesically instilled drugs between day and night. These findings may help establish novel therapies for urinary frequency.
en-copyright=
kn-copyright=
en-aut-name=WatanabeTomofumi
en-aut-sei=Watanabe
en-aut-mei=Tomofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SadahiraTakuya
en-aut-sei=Sadahira
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TominagaYusuke
en-aut-sei=Tominaga
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MaruyamaYuki
en-aut-sei=Maruyama
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NagasakiNaoya
en-aut-sei=Nagasaki
en-aut-mei=Naoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SekitoTakanori
en-aut-sei=Sekito
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=EdamuraKohei
en-aut-sei=Edamura
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=WatanabeToyohiko
en-aut-sei=Watanabe
en-aut-mei=Toyohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=WatanabeMasami
en-aut-sei=Watanabe
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=101
cd-vols=
no-issue=4
article-no=
start-page=431
end-page=447
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230304
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Novel extracellular role of REIC/Dkk-3 protein in PD-L1 regulation in cancer cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The adenovirus-REIC/Dkk-3 expression vector (Ad-REIC) has been the focus of numerous clinical studies due to its potential for the quenching of cancers. The cancer-suppressing mechanisms of the REIC/DKK-3 gene depend on multiple pathways that exert both direct and indirect effects on cancers. The direct effect is triggered by REIC/Dkk-3-mediated ER stress that causes cancer-selective apoptosis, and the indirect effect can be classified in two ways: (i) induction, by Ad-REIC-mis-infected cancer-associated fibroblasts, of the production of IL-7, an important activator of T cells and NK cells, and (ii) promotion, by the secretory REIC/Dkk-3 protein, of dendritic cell polarization from monocytes. These unique features allow Ad-REIC to exert effective and selective cancer-preventative effects in the manner of an anticancer vaccine. However, the question of how the REIC/Dkk-3 protein leverages anticancer immunity has remained to be answered. We herein report a novel function of the extracellular REIC/Dkk-3—namely, regulation of an immune checkpoint via modulation of PD-L1 on the cancer-cell surface. First, we identified novel interactions of REIC/Dkk-3 with the membrane proteins C5aR, CXCR2, CXCR6, and CMTM6. These proteins all functioned to stabilize PD-L1 on the cell surface. Due to the dominant expression of CMTM6 among the proteins in cancer cells, we next focused on CMTM6 and observed that REIC/Dkk-3 competed with CMTM6 for PD-L1, thereby liberating PD-L1 from its complexation with CMTM6. The released PD-L1 immediately underwent endocytosis-mediated degradation. These results will enhance our understanding of not only the physiological nature of the extracellular REIC/Dkk-3 protein but also the Ad-REIC-mediated anticancer effects.
en-copyright=
kn-copyright=
en-aut-name=GoharaYuma
en-aut-sei=Gohara
en-aut-mei=Yuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TomonobuNahoko
en-aut-sei=Tomonobu
en-aut-mei=Nahoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KinoshitaRie
en-aut-sei=Kinoshita
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FutamiJunichiro
en-aut-sei=Futami
en-aut-mei=Junichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AudebertLéna
en-aut-sei=Audebert
en-aut-mei=Léna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ChenYouyi
en-aut-sei=Chen
en-aut-mei=Youyi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KomalasariNi Luh Gede Yoni
en-aut-sei=Komalasari
en-aut-mei=Ni Luh Gede Yoni
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=JiangFan
en-aut-sei=Jiang
en-aut-mei=Fan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YoshizawaChikako
en-aut-sei=Yoshizawa
en-aut-mei=Chikako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MurataHitoshi
en-aut-sei=Murata
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YamamotoKen-ichi
en-aut-sei=Yamamoto
en-aut-mei=Ken-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=WatanabeMasami
en-aut-sei=Watanabe
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KumonHiromi
en-aut-sei=Kumon
en-aut-mei=Hiromi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=7
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=12
en-affil=Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=13
en-affil=Innovation Center Okayama for Nanobio-Targeted Therapy, Okayama University
kn-affil=
affil-num=14
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
en-keyword=Breast cancer
kn-keyword=Breast cancer
en-keyword=REIC/Dkk-3
kn-keyword=REIC/Dkk-3
en-keyword=PD-L1
kn-keyword=PD-L1
en-keyword=Immune checkpoint
kn-keyword=Immune checkpoint
en-keyword=Cancer therapy
kn-keyword=Cancer therapy
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=
article-no=
start-page=1187479
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230518
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Etiology of recurrent cystitis in postmenopausal women based on vaginal microbiota and the role of Lactobacillus vaginal suppository
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: The vaginal microbiota can be altered by uropathogenic bacteria associated with recurrent cystitis (RC), and the vaginal administration of Lactobacillus have suggested certain effects to prevent RC. The relationship between vaginal microbiota and the development of RC has not been elucidated. We aimed to clarify the etiology of RC from vaginal microbiota and importance of vaginal Lactobacillus.
Methods: Vaginal samples obtained from 39 postmenopausal women were classified into four groups: healthy controls; uncomplicated cystitis; RC; and prevention (prevented RC by Lactobacillus crispatus-containing vaginal suppositories). Principal coordinate analysis and beta-diversity analysis was used to assess 16S rRNA gene sequencing data from the vaginal microbiome.
Results: Cluster analysis divided the vaginal bacterial communities among 129 vaginal samples into three clusters (A, B, and C). Fourteen of 14 (100%) samples from the RC group and 51 of 53 (96%) samples from the prevention group were in clusters B and C, while 29 of 38 (76%) samples from the healthy group and 14 of 24 (58%) samples from the uncomplicated cystitis group were in cluster A. The principal coordinate analysis showed that plots in the uncomplicated cystitis group were similar to the healthy group, indicating a large separation between the RC group and the uncomplicated cystitis group. On beta-diversity analysis, there were significant differences between the healthy group and the uncomplicated cystitis group (p = 0.045), and between the RC group and the uncomplicated cystitis group or the healthy group (p = 0.001, p = 0.001, respectively). There were no significant differences between the RC group and the prevention group (p = 0.446). The top six taxa were as follows: Prevotella, Lactobacillus, Streptococcus, Enterobacteriaceae, Anaerococcus, and Bifidobacterium. Among patients with RC, Lactobacillus was undetectable before administration of suppositories, while the median relative abundance of Lactobacillus was 19% during administration of suppositories (p = 0.0211), reducing the average cystitis episodes per year (6.3 vs. 2.4, p = 0.0015).
Conclusion: The vaginal microbiota of postmenopausal women with RC is differed from healthy controls and uncomplicated cystitis in terms of lack of Lactobacillus and relatively dominant of Enterobacteriaceae. Vaginal administration of Lactobacillus-containing suppositories can prevent RC by stabilizing vaginal dysbiosis and causing a loss of pathogenic bacteria virulence.
en-copyright=
kn-copyright=
en-aut-name=SekitoTakanori
en-aut-sei=Sekito
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WadaKoichiro
en-aut-sei=Wada
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IshiiAyano
en-aut-sei=Ishii
en-aut-mei=Ayano
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IwataTakehiro
en-aut-sei=Iwata
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MatsubaraTakehiro
en-aut-sei=Matsubara
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TomidaShuta
en-aut-sei=Tomida
en-aut-mei=Shuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=WatanabeMasami
en-aut-sei=Watanabe
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SadahiraTakuya
en-aut-sei=Sadahira
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science
kn-affil=
affil-num=2
en-affil=Department of Urology, Shimane University Faculty of Medicine
kn-affil=
affil-num=3
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science
kn-affil=
affil-num=4
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science
kn-affil=
affil-num=5
en-affil=Okayama University Hospital Biobank, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science
kn-affil=
affil-num=8
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science
kn-affil=
affil-num=9
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science
kn-affil=
en-keyword=cystitis
kn-keyword=cystitis
en-keyword=vagina
kn-keyword=vagina
en-keyword=microbiota
kn-keyword=microbiota
en-keyword=Lactobacillus
kn-keyword=Lactobacillus
en-keyword=urinary tract infection
kn-keyword=urinary tract infection
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=3
article-no=
start-page=522
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230306
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Genotypic and Phenotypic Characteristics Contributing to Flomoxef Sensitivity in Clinical Isolates of ESBL-Producing E. coli Strains from Urinary Tract Infections
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We carried out a molecular biological analysis of extended-spectrum beta-lactamase (ESBL)-producing E. coli strains and their sensitivity to flomoxef (FMOX). Sequence type (ST) analysis by multilocus sequence typing (MLST) and classification of ESBL genotypes by multiplex PCR were performed on ESBL-producing E. coli strains isolated from urine samples collected from patients treated at our institution between 2008 and 2018. These sequences were compared with results for antimicrobial drug susceptibility determined using a micro-liquid dilution method. We also analyzed cases treated with FMOX at our institution to examine its clinical efficacy. Of the 911 E. coli strains identified, 158 (17.3%) were ESBL-producing. Of these, 67.7% (107/158) were strain ST-131 in ST analysis. Nearly all (154/158; 97.5%) were CTX-M genotypes, with M-14 and M-27 predominating. The isolated strains were sensitive to FMOX in drug susceptibility tests. Among the patient samples, 33 cases received FMOX, and of these, 5 had ESBL-producing E. coli. Among these five cases, three received FMOX for surgical prophylaxis as urinary carriers of ESBL-producing E. coli, and postoperative infections were prevented in all three patients. The other two patients received FMOX treatment for urinary tract infections. FMOX treatment was successful for one, and the other was switched to carbapenem. Our results suggest that FMOX has efficacy for perioperative prophylactic administration in urologic surgery involving carriers of ESBL-producing bacteria and for therapeutic administration for urinary tract infections. Use of FMOX avoids over-reliance on carbapenems or beta-lactamase inhibitors and thus is an effective antimicrobial countermeasure.
en-copyright=
kn-copyright=
en-aut-name=SakaedaKazuma
en-aut-sei=Sakaeda
en-aut-mei=Kazuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SadahiraTakuya
en-aut-sei=Sadahira
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MaruyamaYuki
en-aut-sei=Maruyama
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IwataTakehiro
en-aut-sei=Iwata
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WatanabeMasami
en-aut-sei=Watanabe
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=WadaKoichiro
en-aut-sei=Wada
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Koichiro Wada Department of Urology, School of Medicine, Shimane University
kn-affil=
affil-num=7
en-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=antimicrobial resistance
kn-keyword=antimicrobial resistance
en-keyword=Escherichia coli
kn-keyword=Escherichia coli
en-keyword=urinary tract infections
kn-keyword=urinary tract infections
en-keyword=flomoxef
kn-keyword=flomoxef
en-keyword=ST131
kn-keyword=ST131
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=2
article-no=
start-page=285
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220131
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Dkk3/REIC Deficiency Impairs Spermiation, Sperm Fibrous Sheath Integrity and the Sperm Motility of Mice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The role of Dickkopf-3 (Dkk3)/REIC (The Reduced Expression in Immortalized Cells), a Wnt-signaling inhibitor, in male reproductive physiology remains unknown thus far. To explore the functional details of Dkk3/REIC in the male reproductive process, we studied the Dkk3/REIC knock-out (KO) mouse model. By examining testicular sections and investigating the sperm characteristics (count, vitality and motility) and ultrastructure, we compared the reproductive features between Dkk3/REIC-KO and wild-type (WT) male mice. To further explore the underlying molecular mechanism, we performed RNA sequencing (RNA-seq) analysis of testicular tissues. Our results showed that spermiation failure existed in seminiferous tubules of Dkk3/REIC-KO mice, and sperm from Dkk3/REIC-KO mice exhibited inferior motility (44.09 +/- 8.12% vs. 23.26 +/- 10.02%, p < 0.01). The Ultrastructure examination revealed defects in the sperm fibrous sheath of KO mice. Although the average count of Dkk3/REIC-KO epididymal sperm was less than that of the wild-types (9.30 +/- 0.69 vs. 8.27 +/- 0.87, x10(6)), neither the gap (p > 0.05) nor the difference in the sperm vitality rate (72.83 +/- 1.55% vs. 72.50 +/- 0.71%, p > 0.05) were statistically significant. The RNA-seq and GO (Gene Oncology) enrichment results indicated that the differential genes were significantly enriched in the GO terms of cytoskeleton function, cAMP signaling and calcium ion binding. Collectively, our research demonstrates that Dkk3/REIC is involved in the process of spermiation, fibrous sheath integrity maintenance and sperm motility of mice.
en-copyright=
kn-copyright=
en-aut-name=XueRuizhi
en-aut-sei=Xue
en-aut-mei=Ruizhi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=LinWenfeng
en-aut-sei=Lin
en-aut-mei=Wenfeng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FujitaHirofumi
en-aut-sei=Fujita
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SunJingkai
en-aut-sei=Sun
en-aut-mei=Jingkai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KinoshitaRie
en-aut-sei=Kinoshita
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OchiaiKazuhiko
en-aut-sei=Ochiai
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=FutamiJunichiro
en-aut-sei=Futami
en-aut-mei=Junichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=WatanabeMasami
en-aut-sei=Watanabe
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OhuchiHideyo
en-aut-sei=Ohuchi
en-aut-mei=Hideyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TangZhengyan
en-aut-sei=Tang
en-aut-mei=Zhengyan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=HuangPeng
en-aut-sei=Huang
en-aut-mei=Peng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=NasuYasutomo
en-aut-sei=Nasu
en-aut-mei=Yasutomo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KumonHiromi
en-aut-sei=Kumon
en-aut-mei=Hiromi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Laboratory of Veterinary Hygiene, Nippon Veterinary and Life Science University
kn-affil=
affil-num=7
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Urology, Xiangya Hospital, Central South University
kn-affil=
affil-num=12
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Innovation Center Okayama for Nanobio-Targeted Therapy, Okayama University
kn-affil=
en-keyword=Dkk3/REIC
kn-keyword=Dkk3/REIC
en-keyword=fibrous sheath
kn-keyword=fibrous sheath
en-keyword=knock-out
kn-keyword=knock-out
en-keyword=RNA-seq
kn-keyword=RNA-seq
en-keyword=spermiation
kn-keyword=spermiation
en-keyword=sperm motility
kn-keyword=sperm motility
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=3
article-no=
start-page=1214
end-page=1228
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220116
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Identification of MICALL2 as a Novel Prognostic Biomarker Correlating with Inflammation and T Cell Exhaustion of Kidney Renal Clear Cell Carcinoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose: The interplay of inflammation and immunity affects all stages from tumorigenesis to progression, and even tumor response to therapy. A growing interest has been attracted from the biological function of MICALL2 to its effects on tumor progression. This study was designed to verify whether MICALL2 could be a prognostic biomarker to predict kidney renal clear cell carcinoma (KIRC) progression, inflammation, and immune infiltration within tumor microenvironment (TME).
Methods: We firstly analyzed MICALL2 expressions across 33 cancer types from the UCSC Xena database and verified its expression in KIRC through GEPIA platform and GEO datasets. The clinicopathological characteristics were further analyzed based on the median expression. Kaplan-Meier method, univariate and multivariate analyses were applied to compare survival outcomes. ESTIMATE and CIBERSORT algorithms were performed to assess immune infiltration, and a co-expression analysis was conducted to evaluate the correlation between MICALL2 and immunoregulatory genes. Enrichment analysis was finally performed to explore the biological significance of MICALL2.
Results: MICALL2 was highly expressed in 16 types of cancers compared with normal tissues. MICALL2 expression increased with advanced clinicopathological parameters and was an independent predictor for poor prognosis in KIRC. Moreover, MICALL2 closely correlated with inflammation-promoting signatures and immune infiltration including T cell exhaustion markers. Consistently, MICALL2 involved in the regulation of signaling pathways associated with tumor immunity, tumor progression, and impaired metabolic activities.
Conclusion: MICALL2 can function as a prognostic biomarker mediating inflammation, immune infiltration, and T cell exhaustion within the microenvironment of KIRC.
en-copyright=
kn-copyright=
en-aut-name=LinWenfeng
en-aut-sei=Lin
en-aut-mei=Wenfeng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ChenWenwei
en-aut-sei=Chen
en-aut-mei=Wenwei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ZhongJisheng
en-aut-sei=Zhong
en-aut-mei=Jisheng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=UekiHideo
en-aut-sei=Ueki
en-aut-mei=Hideo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=XuAbai
en-aut-sei=Xu
en-aut-mei=Abai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=WatanabeMasami
en-aut-sei=Watanabe
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=LiuChunxiao
en-aut-sei=Liu
en-aut-mei=Chunxiao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NasuYasutomo
en-aut-sei=Nasu
en-aut-mei=Yasutomo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HuangPeng
en-aut-sei=Huang
en-aut-mei=Peng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Urology, Zhujiang Hospital, Southern Medical University
kn-affil=
affil-num=3
en-affil=School of Medicine, Xiamen University
kn-affil=
affil-num=4
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Urology, Zhujiang Hospital, Southern Medical University
kn-affil=
affil-num=6
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Urology, Zhujiang Hospital, Southern Medical University
kn-affil=
affil-num=9
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=MICALL2
kn-keyword=MICALL2
en-keyword=biomarker
kn-keyword=biomarker
en-keyword=inflammation
kn-keyword=inflammation
en-keyword=T cell exhaustion
kn-keyword=T cell exhaustion
en-keyword=kidney renal clear cell carcinoma
kn-keyword=kidney renal clear cell carcinoma
END
start-ver=1.4
cd-journal=joma
no-vol=75
cd-vols=
no-issue=6
article-no=
start-page=763
end-page=766
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202112
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Clinical Efficacy and Safety of Sitafloxacin 200 mg Once Daily for Refractory Genitourinary Tract Infections
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The aim of this ongoing trial is to evaluate the clinical efficacy and safety of sitafloxacin (STFX) 200 mg once daily (QD) for 7 days in patients with refractory genitourinary tract infections, which include recurrent or complicated cystitis, complicated pyelonephritis, bacterial prostatitis, and epididymitis. The primary endpoint is the microbiological efficacy at 5-9 days after the last administration of STFX. Recruitment began in February 2021, and the target total sample size is 92 participants.
en-copyright=
kn-copyright=
en-aut-name=IwataTakehiro
en-aut-sei=Iwata
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SadahiraTakuya
en-aut-sei=Sadahira
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MaruyamaYuki
en-aut-sei=Maruyama
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SekitoTakanori
en-aut-sei=Sekito
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YoshinagaKasumi
en-aut-sei=Yoshinaga
en-aut-mei=Kasumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=WatariShogo
en-aut-sei=Watari
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NagaoKentaro
en-aut-sei=Nagao
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KawadaTatsushi
en-aut-sei=Kawada
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TominagaYusuke
en-aut-sei=Tominaga
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NishimuraShingo
en-aut-sei=Nishimura
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TakamotoAtsushi
en-aut-sei=Takamoto
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=SakoTomoko
en-aut-sei=Sako
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=EdamuraKohei
en-aut-sei=Edamura
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KobayashiYasuyuki
en-aut-sei=Kobayashi
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=IshiiAyano
en-aut-sei=Ishii
en-aut-mei=Ayano
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=WatanabeMasami
en-aut-sei=Watanabe
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=WatanabeToyohiko
en-aut-sei=Watanabe
en-aut-mei=Toyohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=NasuYasutomo
en-aut-sei=Nasu
en-aut-mei=Yasutomo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=WadaKoichiro
en-aut-sei=Wada
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
affil-num=1
en-affil=Department of Urology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Urology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Urology, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Urology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Urology, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Urology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Urology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Urology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Urology, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Urology, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Urology, Okayama University Hospital
kn-affil=
affil-num=12
en-affil=Department of Urology, Okayama University Hospital
kn-affil=
affil-num=13
en-affil=Department of Urology, Okayama University Hospital
kn-affil=
affil-num=14
en-affil=Department of Urology, Okayama University Hospital
kn-affil=
affil-num=15
en-affil=Department of Urology, Okayama University Hospital
kn-affil=
affil-num=16
en-affil=Department of Urology, Okayama University Hospital
kn-affil=
affil-num=17
en-affil=Department of Urology, Okayama University Hospital
kn-affil=
affil-num=18
en-affil=Department of Urology, Okayama University Hospital
kn-affil=
affil-num=19
en-affil=Department of Urology, Okayama University Hospital
kn-affil=
affil-num=20
en-affil=Department of Urology, Okayama University Hospital
kn-affil=
en-keyword=genitourinary tract infections
kn-keyword=genitourinary tract infections
en-keyword=fluoroquinolone resistance
kn-keyword=fluoroquinolone resistance
en-keyword=extended-spectrum beta-lactamase
kn-keyword=extended-spectrum beta-lactamase
END
start-ver=1.4
cd-journal=joma
no-vol=75
cd-vols=
no-issue=6
article-no=
start-page=705
end-page=711
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202112
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Testosterone Recovery after Neoadjuvant Gonadotropin-Releasing Hormone Antagonist versus Agonist on Permanent Iodine-125 Seed Brachytherapy in Prostate Cancer Patients: A Propensity Score Analysis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Optimal neoadjuvant hormone therapy (NHT) for reducing prostate cancer (PC) patients’ prostate volume pre-brachytherapy is controversial. We evaluated the differential impact of neoadjuvant gonadotropin-releasing hormone (GnRH) antagonist versus agonist on post-brachytherapy testosterone recovery in 112 patients treated pre-brachytherapy with NHT (GnRH antagonist, n=32; GnRH agonists, n=80) (Jan. 2007-June 2019). We assessed the effects of patient characteristics and a GnRH analogue on testosterone recovery with logistic regression and a propensity score analysis (PSA). There was no significant difference in the rate of testosterone recovery to normal levels (> 300 ng/dL) between the GnRH antagonist and agonists (p=0.07). The GnRH agonists induced a significantly more rapid testosterone recovery rate at 3 months post-brachytherapy versus the GnRH antagonist (p<0.0001); there was no difference in testosterone recovery at 12 months between the GnRH antagonist/agonists (p=0.8). In the multivariate analysis, no actor was associated with testosterone recovery. In the PSA, older age and higher body mass index (BMI) were significantly associated with longer testosterone recovery. Post-brachytherapy testosterone recovery was quicker with the neoadjuvant GnRH agonists than the antagonist, and the testosterone recovery rate was significantly associated with older age and higher BMI. Long-term follow-ups are needed to determine any differential effects of GnRH analogues on the quality of life of brachytherapy-treated PC patients.
en-copyright=
kn-copyright=
en-aut-name=IwataTakehiro
en-aut-sei=Iwata
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MaruyamaYuki
en-aut-sei=Maruyama
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KawadaTatsushi
en-aut-sei=Kawada
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SadahiraTakuya
en-aut-sei=Sadahira
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KatayamaSatoshi
en-aut-sei=Katayama
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TakamotoAtsushi
en-aut-sei=Takamoto
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SakoTomoko
en-aut-sei=Sako
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=WadaKoichiro
en-aut-sei=Wada
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=EdamuraKohei
en-aut-sei=Edamura
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KobayashiYasuyuki
en-aut-sei=Kobayashi
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=WatanabeMasami
en-aut-sei=Watanabe
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=WatanabeToyohiko
en-aut-sei=Watanabe
en-aut-mei=Toyohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=NasuYasutomo
en-aut-sei=Nasu
en-aut-mei=Yasutomo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=testosterone recovery
kn-keyword=testosterone recovery
en-keyword=GnRH antagonist
kn-keyword=GnRH antagonist
en-keyword=GnRH agonist
kn-keyword=GnRH agonist
en-keyword=brachytherapy
kn-keyword=brachytherapy
en-keyword=prostate cancer
kn-keyword=prostate cancer
END
start-ver=1.4
cd-journal=joma
no-vol=75
cd-vols=
no-issue=4
article-no=
start-page=415
end-page=421
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202108
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Cell Cycle Checkpoint Gene, RAD17 rs1045051, Is Associated with Prostate Cancer Risk
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Human RAD17, as an agonist of checkpoint signaling, plays an essential role in mediating DNA damage. This hospital-based case-control study aimed to explore the association between RAD17 rs1045051, a missense sin-gle nucleotide polymorphism (SNP), and prostate cancer risk. Subjects were 358 prostate cancer patients and 314 cancer-free urology patients undergoing treatment at the Zhujiang Hospital of Southern Medical University in China. RAD17 gene polymorphism rs1045051 was evaluated by the SNaPshot method. Compared with the RAD17 gene polymorphism rs1045051 AA genotype, there was a higher risk of prostate cancer for the CC gen-otype (adjusted odds ratio [AOR] = 1.731, 95% confidence interval [95%CI] = 1.031−2.908, p = 0.038). Compared with the A allele, the C allele was significantly associated with the disease status (AOR = 1.302, 95%CI = 1.037−1.634, p = 0.023). All these findings indicate that in the SNP rs1045051, both the CC genotype and C allele may have a substantial influence on the prostate cancer risk.
en-copyright=
kn-copyright=
en-aut-name=SunJingkai
en-aut-sei=Sun
en-aut-mei=Jingkai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=LinWenfeng
en-aut-sei=Lin
en-aut-mei=Wenfeng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WangQixu
en-aut-sei=Wang
en-aut-mei=Qixu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SakaiAkiko
en-aut-sei=Sakai
en-aut-mei=Akiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=XueRuizhi
en-aut-sei=Xue
en-aut-mei=Ruizhi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=WatanabeMasami
en-aut-sei=Watanabe
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=LiuChunxiao
en-aut-sei=Liu
en-aut-mei=Chunxiao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SadahiraTakuya
en-aut-sei=Sadahira
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NasuYasutomo
en-aut-sei=Nasu
en-aut-mei=Yasutomo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=XuAbai
en-aut-sei=Xu
en-aut-mei=Abai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HuangPeng
en-aut-sei=Huang
en-aut-mei=Peng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Urology, Zhujiang Hospital, Southern Medical University
kn-affil=
affil-num=2
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Urology, Zhujiang Hospital, Southern Medical University
kn-affil=
affil-num=4
en-affil=Department of Molecular Genetics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Urology, Zhujiang Hospital, Southern Medical University
kn-affil=
affil-num=8
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Urology, Zhujiang Hospital, Southern Medical University
kn-affil=
affil-num=11
en-affil=Department of Urology, Zhujiang Hospital, Southern Medical University
kn-affil=
en-keyword=prostate cancer
kn-keyword=prostate cancer
en-keyword=single-nucleotide polymorphisms
kn-keyword=single-nucleotide polymorphisms
en-keyword=cell cycle checkpoint
kn-keyword=cell cycle checkpoint
en-keyword=rs1045051
kn-keyword=rs1045051
en-keyword=RAD17
kn-keyword=RAD17
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=12
article-no=
start-page=3255
end-page=3267
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210725
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Discovery and Validation of Nitroxoline as a Novel STAT3 Inhibitor in Drug-resistant Urothelial Bladder Cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Repeated cycles of first-line chemotherapy drugs such as doxorubicin (DOX) and cisplatin (CIS) trigger frequent chemoresistance in recurrent urothelial bladder cancer (UBC). Nitroxoline (NTX), an antibiotic to treat urinary tract infections, has been recently repurposed for cancer treatment. Here we aimed to investigate whether NTX suppresses drug-resistant UBC and its molecular mechanism. The drug-resistant cell lines T24/DOX and T24/CIS were established by continual exposure of parental cell line T24 to DOX and CIS, respectively. T24/DOX and T24/CIS cells were resistant to DOX and CIS, respectively, but they were sensitive to NTX time-and dose-dependently. Overexpressions of STAT3 and P-glycoprotein (P-gp) were identified in T24/DOX and T24/CIS, which could be reversed by NTX. Western blot revealed that NTX downregulated p-STAT3, c-Myc, Cyclin D1, CDK4, CDK6, Bcl-xL, Mcl-1, and Survivin, which were further confirmed by Stattic, a selective STAT3 inhibitor. In vivo, NTX exhibited the significant anti-tumor effect in T24/DOX and T24/CIS tumor-bearing mice. These results suggested that NTX-induced P-gp reversal, G0/G1 arrest, and apoptosis in drug-resistant UBC were mediated by inhibition of STAT3 signaling. Our findings repurpose NTX as a novel STAT3 inhibitor to induce P-gp reversal, G0/G1 arrest, and apoptosis in drug-resistant UBC.
en-copyright=
kn-copyright=
en-aut-name=LinWenfeng
en-aut-sei=Lin
en-aut-mei=Wenfeng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SunJingkai
en-aut-sei=Sun
en-aut-mei=Jingkai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SadahiraTakuya
en-aut-sei=Sadahira
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=XuNaijin
en-aut-sei=Xu
en-aut-mei=Naijin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WadaKoichiro
en-aut-sei=Wada
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=LiuChunxiao
en-aut-sei=Liu
en-aut-mei=Chunxiao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=XuAbai
en-aut-sei=Xu
en-aut-mei=Abai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=WatanabeMasami
en-aut-sei=Watanabe
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NasuYasutomo
en-aut-sei=Nasu
en-aut-mei=Yasutomo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HuangPeng
en-aut-sei=Huang
en-aut-mei=Peng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Urology, Zhujiang Hospital, Southern Medical University
kn-affil=
affil-num=7
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Urology, Zhujiang Hospital, Southern Medical University
kn-affil=
affil-num=9
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Urothelial bladder cancer
kn-keyword=Urothelial bladder cancer
en-keyword=doxorubicin
kn-keyword=doxorubicin
en-keyword=cisplatin
kn-keyword=cisplatin
en-keyword=chemoresistance
kn-keyword=chemoresistance
en-keyword=nitroxoline
kn-keyword=nitroxoline
en-keyword=STAT3
kn-keyword=STAT3
END
start-ver=1.4
cd-journal=joma
no-vol=53
cd-vols=
no-issue=5
article-no=
start-page=1494
end-page=1500
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=2021428
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=ABO Blood Incompatibility Positively Affects Early Graft Function: Single-Center Retrospective Cohort Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background
We investigated the association between ABO-incompatible (ABO-I) kidney transplantation and early graft function.
Methods
We retrospectively analyzed 95 patients who underwent living donor kidney transplantation between May 2009 and July 2019. It included 61 ABO-compatible (ABO-C) and 34 ABO-I transplantations. We extracted data on immunologic profile, sex, age, cold ischemic time, type of immunosuppression, and graft function. Two definitions were used for slow graft function (SGF) as follows: postoperative day (POD) 3 serum creatinine level >3 mg/dL and estimated glomerular filtration rate (eGFR) <20 mL/min/1.73 m2. Logistic regression analysis was performed to analyze the effect of ABO-I on the incidence of SGF.
Results
The characteristics between the ABO-C and ABO-I were not different. ABO-I received rituximab and plasma exchange. Patients also received tacrolimus and mycophenolate mofetil for 2 weeks and prednisolone for 1 week before transplantation as preconditioning. Of the 95 study patients, 19 (20%) and 21 (22%) were identified with SGF according to POD 3 serum creatinine level or eGFR, respectively. Multivariable analysis revealed that ABO-I significantly reduced the incidence of SGF (odds ratio, 0.15; 95% confidence interval, 0.03-0.7; P = .02), and cold ischemic time >150 min increased the incidence of SGF (odds ratio, 6.5; 95% confidence interval, 1.7-25; P = .006). Similar results were identified in POD 3 eGFR. Inferior graft function in patients with SGF was identified up to 6 months after transplantation.
Conclusion
ABO-I reduces the incidence of SGF, which is associated with an inferior graft function up to 6 months.
en-copyright=
kn-copyright=
en-aut-name=WatariShogo
en-aut-sei=Watari
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WadaKoichiro
en-aut-sei=Wada
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YoshinagaKasumi
en-aut-sei=Yoshinaga
en-aut-mei=Kasumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MaruyamaYuki
en-aut-sei=Maruyama
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MitsuiYosuke
en-aut-sei=Mitsui
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SadahiraTakuya
en-aut-sei=Sadahira
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KubotaRisa
en-aut-sei=Kubota
en-aut-mei=Risa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NishimuraShingo
en-aut-sei=Nishimura
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KobayashiYasuyuki
en-aut-sei=Kobayashi
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TakeuchiHidemi
en-aut-sei=Takeuchi
en-aut-mei=Hidemi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TanabeKatsuyuki
en-aut-sei=Tanabe
en-aut-mei=Katsuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KitagawaMasashi
en-aut-sei=Kitagawa
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=MorinagaHiroshi
en-aut-sei=Morinaga
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KitamuraShinji
en-aut-sei=Kitamura
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=SugiyamaHitoshi
en-aut-sei=Sugiyama
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=WatanabeMasami
en-aut-sei=Watanabe
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=WatanabeToyohiko
en-aut-sei=Watanabe
en-aut-mei=Toyohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=NasuYasutomo
en-aut-sei=Nasu
en-aut-mei=Yasutomo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
affil-num=1
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science
kn-affil=
affil-num=2
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science
kn-affil=
affil-num=3
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science
kn-affil=
affil-num=4
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science
kn-affil=
affil-num=5
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science
kn-affil=
affil-num=6
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science
kn-affil=
affil-num=7
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science
kn-affil=
affil-num=8
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science
kn-affil=
affil-num=9
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science
kn-affil=
affil-num=10
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science
kn-affil=
affil-num=11
en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science
kn-affil=
affil-num=12
en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science
kn-affil=
affil-num=13
en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science
kn-affil=
affil-num=14
en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science
kn-affil=
affil-num=15
en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science
kn-affil=
affil-num=16
en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science
kn-affil=
affil-num=17
en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science
kn-affil=
affil-num=18
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science
kn-affil=
affil-num=19
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science
kn-affil=
affil-num=20
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210608
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Feasible kidney donation with living marginal donors, including diabetes mellitus
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objectives: To compare the donor outcomes of living donor kidney transplantation between standard donors (SDs) and marginal donors (MDs) including diabetic patients (MD + DM).
Methods: MDs were defined according to Japanese guideline criteria: (a) age >70-years, (b) blood pressure <= 130/80 mmHg on hypertension medicine, (c) body mass index >25 to <= 32 kg/m(2), (d) 24-h creatinine clearance >= 70 to <80 ml/min/1.73 m(2), and (e) hemoglobin A1c > 6.2 or <= 6.5 with oral diabetic medicine. Fifty-three of 114 donors were MDs. We compared donor kidney functions until 60 months postoperatively.
Results: No kidney function parameters were different between SDs and MDs. When comparing SD and MD + DM, MD + DM had a lower postoperative eGFR (48 vs. 41 (1 (month), p = .02), 49 vs. 40 (12, p < .01), 48 vs. 42 (24, p = .04), 47 vs. 38 (36, p = .01)) and the percentage of residual eGFR (SD vs. MD + DM: 63 vs. 57 (1 (month), p < .01), 63 vs. 57 (2, p < .01), 64 vs. 56 (12, p < .01), 63 vs. 57 (24, p < .01), 63 vs. 52 (36, p = .02)). However, when MD with a single risk factor of DM was compared to SD, the difference disappeared. Nine out of 12 (75%) MD + DM had >= 2 risk factors.
Conclusions: Although long-term observation of donor kidney function is necessary, careful MD + DM selection had the potential to expand the donor pool.
en-copyright=
kn-copyright=
en-aut-name=YoshinagaKasumi
en-aut-sei=Yoshinaga
en-aut-mei=Kasumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WadaKoichiro
en-aut-sei=Wada
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SekitoTakanori
en-aut-sei=Sekito
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WatariShogo
en-aut-sei=Watari
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MaruyamaYuki
en-aut-sei=Maruyama
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MitsuiYosuke
en-aut-sei=Mitsui
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SadahiraTakuya
en-aut-sei=Sadahira
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KubotaRisa
en-aut-sei=Kubota
en-aut-mei=Risa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NishimuraShingo
en-aut-sei=Nishimura
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=EdamuraKohei
en-aut-sei=Edamura
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KobayashiYasuyuki
en-aut-sei=Kobayashi
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TanabeKatsuyuki
en-aut-sei=Tanabe
en-aut-mei=Katsuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TakeuchiHidemi
en-aut-sei=Takeuchi
en-aut-mei=Hidemi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KitagawaMasashi
en-aut-sei=Kitagawa
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=KitamuraShinji
en-aut-sei=Kitamura
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=WatanabeMasami
en-aut-sei=Watanabe
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=WatanabeToyohiko
en-aut-sei=Watanabe
en-aut-mei=Toyohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=NasuYasutomo
en-aut-sei=Nasu
en-aut-mei=Yasutomo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
affil-num=1
en-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=14
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=15
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=16
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=17
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=18
en-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=19
en-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=20
en-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
en-keyword=diabetes mellitus
kn-keyword=diabetes mellitus
en-keyword=kidney function
kn-keyword=kidney function
en-keyword=kidney transplantation
kn-keyword=kidney transplantation
en-keyword=marginal donor
kn-keyword=marginal donor
END
start-ver=1.4
cd-journal=joma
no-vol=21
cd-vols=
no-issue=1
article-no=
start-page=45
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Photodynamic diagnostic ureteroscopy using the VISERA ELITE video system for diagnosis of upper-urinary tract urothelial carcinoma: a prospective cohort pilot study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background The advantages of photodynamic diagnostic technology using 5-aminolevulinic acid (ALA-PDD) have been established. The aim of this prospective cohort study was to evaluate the usefulness of ALA-PDD to diagnose upper tract urothelial carcinoma (UT-UC) using the Olympus VISERA ELITE video system. Methods We carried out a prospective, interventional, non-randomized, non-contrast and open label cohort pilot study that involved patients who underwent ureterorenoscopy (URS) to detect UT-UC. 5-aminolevulinic acid hydrochloride was orally administered before URS. The observational results and pathological diagnosis with ALA-PDD and traditional white light methods were compared, and the proportion of positive subjects and specimens were calculated. Results A total of 20 patients were enrolled and one patient who had multiple bladder tumors did not undergo URS. Fifteen of 19 patients were pathologically diagnosed with UT-UC and of these 11 (73.3%) were ALA-PDD positive. Fourteen of 19 patients were ALA-PDD positive and of these 11 were pathologically diagnosed with UC. For the 92 biopsy specimens that were malignant or benign, the sensitivity for both traditional white light observation and ALA-PDD was the same at 62.5%, whereas the specificities were 73.1% and 67.3%, respectively. Of the 38 specimens that were randomly biopsied without any abnormality under examination by both white light and ALA-PDD, 11 specimens (28.9%) from 5 patients were diagnosed with high grade UC. In contrast, four specimens from 4 patients, which were negative in traditional white light observation but positive in ALA-PDD, were diagnosed with carcinoma in situ (CIS). Conclusions Our results suggest that ALA-PDD using VISERA ELITE is not sufficiently applicable for UT-UC. Nevertheless, it might be better particularly for CIS than white light and superior results would be obtained using VISERA ELITE II video system. Trial registration: The present clinical study was approved by the Okayama University Institutional Review Board prior to study initiation (Application no.: RIN 1803-002) and was registered with the UMIN Clinical Trials Registry (UMIN-CTR), Japan (Accession no.: UMIN000031205).
en-copyright=
kn-copyright=
en-aut-name=WadaKoichiro
en-aut-sei=Wada
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TanimotoRyuta
en-aut-sei=Tanimoto
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SadahiraTakuya
en-aut-sei=Sadahira
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WatariShogo
en-aut-sei=Watari
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MaruyamaYuki
en-aut-sei=Maruyama
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MitsuiYosuke
en-aut-sei=Mitsui
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakajimaHirochika
en-aut-sei=Nakajima
en-aut-mei=Hirochika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=AcostaHerik
en-aut-sei=Acosta
en-aut-mei=Herik
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KatayamaSatoshi
en-aut-sei=Katayama
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=IwataTakehiro
en-aut-sei=Iwata
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NishimuraShingo
en-aut-sei=Nishimura
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TakamotoAtsushi
en-aut-sei=Takamoto
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=SakoTomoko
en-aut-sei=Sako
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=EdamuraKohei
en-aut-sei=Edamura
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=KobayashiYasuyuki
en-aut-sei=Kobayashi
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=WatanabeMasami
en-aut-sei=Watanabe
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=WatanabeToyohiko
en-aut-sei=Watanabe
en-aut-mei=Toyohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=NasuYasutomo
en-aut-sei=Nasu
en-aut-mei=Yasutomo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
affil-num=1
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Urology, Kagawa Prefectural Central Hospital
kn-affil=
affil-num=4
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Urology, Fukuyama City Hospital
kn-affil=
affil-num=9
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=17
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=18
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=19
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Photodynamic diagnosis
kn-keyword=Photodynamic diagnosis
en-keyword=5-Aminolevulinic acid
kn-keyword=5-Aminolevulinic acid
en-keyword=ALA-PDD
kn-keyword=ALA-PDD
en-keyword=Upper urinary tract urothelial carcinoma
kn-keyword=Upper urinary tract urothelial carcinoma
en-keyword=VISERA ELITE video system
kn-keyword=VISERA ELITE video system
END
start-ver=1.4
cd-journal=joma
no-vol=51
cd-vols=
no-issue=1
article-no=
start-page=130
end-page=137
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=2020727
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Long-term ureteroscopic management of upper tract urothelial carcinoma: 28-year single-centre experience
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background
Long-term survival outcomes of patients who undergo endoscopic management of non-invasive upper tract urothelial carcinoma remain uncertain. The longest mean follow-up period in previous studies was 6.1 years. This study reports the long-term outcomes of patients with upper tract urothelial carcinoma who underwent ureteroscopic ablation at a single institution over a 28-year period.
Methods
We identified all patients who underwent ureteroscopic management of upper tract urothelial carcinoma as their primary treatment at our institution between January 1991 and April 2011. Survival outcomes, including overall survival, cancer-specific survival, upper-tract recurrence-free survival and renal unit survival, were estimated using Kaplan−Meier methodology.
Results
A total of 15 patients underwent endoscopic management, with a mean age at diagnosis of 66 years. All patients underwent ureteroscopy, and biopsy-confirmed pathology was obtained. Median (range; mean) follow-up was 11.7 (2.3–20.9, 11.9) years. Upper tract recurrence occurred in 87% (n = 13) of patients. Twenty percent (n = 3) of patients proceeded to nephroureterectomy. The estimated cancer-specific survival rate was 93% at 5, 10, 15 and 20 years. Estimated overall survival rates were 86, 80, 54 and 20% at 5, 10, 15 and 20 years. Only one patient experienced cancer-specific mortality. The estimated mean and median overall survival times were 14.5 and 16.6 years, respectively. The estimated mean cancer-specific survival time was not reached.
Conclusions
Although upper tract recurrence is common, endoscopic management of non-invasive upper tract urothelial carcinoma provides a 90% cancer-specific survival rate at 20 years in selected patients.
en-copyright=
kn-copyright=
en-aut-name=MaruyamaYuki
en-aut-sei=Maruyama
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WadaKoichiro
en-aut-sei=Wada
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YoshinagaKasumi
en-aut-sei=Yoshinaga
en-aut-mei=Kasumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MitsuiYosuke
en-aut-sei=Mitsui
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SadahiraTakuya
en-aut-sei=Sadahira
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NishimuraShingo
en-aut-sei=Nishimura
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=EdamuraKohei
en-aut-sei=Edamura
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KobayashiYasuyuki
en-aut-sei=Kobayashi
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=WatanabeMasami
en-aut-sei=Watanabe
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=WatanabeToyohiko
en-aut-sei=Watanabe
en-aut-mei=Toyohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MongaManoj
en-aut-sei=Monga
en-aut-mei=Manoj
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=NasuYasutomo
en-aut-sei=Nasu
en-aut-mei=Yasutomo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KumonHiromi
en-aut-sei=Kumon
en-aut-mei=Hiromi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Urology, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Science
kn-affil=
affil-num=2
en-affil=Department of Urology, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Science
kn-affil=
affil-num=3
en-affil=Department of Urology, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Science
kn-affil=
affil-num=4
en-affil=Department of Urology, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Science
kn-affil=
affil-num=5
en-affil=Department of Urology, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Science
kn-affil=
affil-num=6
en-affil=Department of Urology, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Science
kn-affil=
affil-num=7
en-affil=Department of Urology, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Science
kn-affil=
affil-num=8
en-affil=Department of Urology, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Science
kn-affil=
affil-num=9
en-affil=Department of Urology, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Science
kn-affil=
affil-num=10
en-affil=Department of Urology, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Science
kn-affil=
affil-num=11
en-affil=Department of Urology, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Science
kn-affil=
affil-num=12
en-affil=Department of Urology, The Cleveland Clinic
kn-affil=
affil-num=13
en-affil=Department of Urology, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Science
kn-affil=
affil-num=14
en-affil=Innovation Center Okayama for Nanobio-Targeted Therapy, Okayama University
kn-affil=
en-keyword=urothelial carcinoma
kn-keyword=urothelial carcinoma
en-keyword=urinary tract cancer
kn-keyword=urinary tract cancer
en-keyword=ureteroscopy
kn-keyword=ureteroscopy
en-keyword=long-term survival
kn-keyword=long-term survival
en-keyword=renal pelvis
kn-keyword=renal pelvis
en-keyword=ureter
kn-keyword=ureter
END
start-ver=1.4
cd-journal=joma
no-vol=45
cd-vols=
no-issue=2
article-no=
start-page=121
end-page=130
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=2020
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Internalization of AMPA-type Glutamate Receptor in the MIN6 Pancreatic β-cell Line
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The activity of AMPA-type glutamate receptor is involved in insulin release from pancreatic β-cells. However, the mechanism and dynamics that underlie AMPA receptor-mediated insulin release in β-cells is largely unknown. Here, we show that AMPA induces internalization of glutamate receptor 2/3 (GluR2/3), AMPA receptor subtype, in the mouse β-cell line MIN6. Immunofluorescence experiments showed that GluR2/3 appeared as fine dots that were distributed throughout MIN6 cells. Intracellular GluR2/3 co-localized with AP2 and clathrin, markers for clathrin-coated pits and vesicles. Immunoelectron microscopy revealed that GluR2/3 was also localized at plasma membrane. Surface biotinylation and immunofluorescence measurements showed that addition of AMPA caused an approximate 1.8-fold increase in GluR2/3 internalization under low-glucose conditions. Furthermore, internalized GluR2 largely co-localized with EEA1, an early endosome marker. In addition, GluR2/3 co-immunoprecipitated with cortactin, a F-actin binding protein. Depletion of cortactin by RNAi in MIN6 cells altered the intracellular distribution of GluR2/3, suggesting that cortactin is involved in internalization of GluR2/3 in MIN6 cells. Taken together, our results suggest that pancreatic β-cells adjust the amount of AMPA-type GluR2/3 on the cell surface to regulate the receptive capability of the cell for glutamate.
en-copyright=
kn-copyright=
en-aut-name=LaThe Mon
en-aut-sei=La
en-aut-mei=The Mon
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamadaHiroshi
en-aut-sei=Yamada
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SeirikiSayaka
en-aut-sei=Seiriki
en-aut-mei=Sayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=LiShun-AI
en-aut-sei=Li
en-aut-mei=Shun-AI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FujiseKenshiro
en-aut-sei=Fujise
en-aut-mei=Kenshiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KatsumiNatsuho
en-aut-sei=Katsumi
en-aut-mei=Natsuho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=AbeTadashi
en-aut-sei=Abe
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=WatanabeMasami
en-aut-sei=Watanabe
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TakeiKohji
en-aut-sei=Takei
en-aut-mei=Kohji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=endocytosis
kn-keyword=endocytosis
en-keyword=GluR2
kn-keyword=GluR2
en-keyword=AMPA
kn-keyword=AMPA
en-keyword=cortactin
kn-keyword=cortactin
en-keyword=MIN6
kn-keyword=MIN6
END
start-ver=1.4
cd-journal=joma
no-vol=34
cd-vols=
no-issue=12
article-no=
start-page=16449
end-page=16463
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20201017
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Dynamin 1 is important for microtubule organization and stabilization in glomerular podocytes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Dynamin 1 is a neuronal endocytic protein that participates in vesicle formation by scission of invaginated membranes. Dynamin 1 is also expressed in the kidney; however, its physiological significance to this organ remains unknown. Here, we show that dynamin 1 is crucial for microtubule organization and stabilization in glomerular podocytes. By immunofluorescence and immunoelectron microscopy, dynamin 1 was concentrated at microtubules at primary processes in rat podocytes. By immunofluorescence of differentiated mouse podocytes (MPCs), dynamin 1 was often colocalized with microtubule bundles, which radially arranged toward periphery of expanded podocyte. In dynamin 1-depleted MPCs by RNAi, alpha-tubulin showed a dispersed linear filament-like localization, and microtubule bundles were rarely observed. Furthermore, dynamin 1 depletion resulted in the formation of discontinuous, short acetylated alpha-tubulin fragments, and the decrease of microtubule-rich protrusions. Dynamins 1 and 2 double-knockout podocytes showed dispersed acetylated alpha-tubulin and rare protrusions. In vitro, dynamin 1 polymerized around microtubules and cross-linked them into bundles, and increased their resistance to the disassembly-inducing reagents Ca(2+)and podophyllotoxin. In addition, overexpression and depletion of dynamin 1 in MPCs increased and decreased the nocodazole resistance of microtubules, respectively. These results suggest that dynamin 1 supports the microtubule bundle formation and participates in the stabilization of microtubules.
en-copyright=
kn-copyright=
en-aut-name=LaThe Mon
en-aut-sei=La
en-aut-mei=The Mon
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TachibanaHiromi
en-aut-sei=Tachibana
en-aut-mei=Hiromi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=LiShun-Ai
en-aut-sei=Li
en-aut-mei=Shun-Ai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AbeTadashi
en-aut-sei=Abe
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SeirikiSayaka
en-aut-sei=Seiriki
en-aut-mei=Sayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NagaokaHikaru
en-aut-sei=Nagaoka
en-aut-mei=Hikaru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakashimaEizo
en-aut-sei=Takashima
en-aut-mei=Eizo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakedaTetsuya
en-aut-sei=Takeda
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OgawaDaisuke
en-aut-sei=Ogawa
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MakinoShin-Ichi
en-aut-sei=Makino
en-aut-mei=Shin-Ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=AsanumaKatsuhiko
en-aut-sei=Asanuma
en-aut-mei=Katsuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=WatanabeMasami
en-aut-sei=Watanabe
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TianXuefei
en-aut-sei=Tian
en-aut-mei=Xuefei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=IshibeShuta
en-aut-sei=Ishibe
en-aut-mei=Shuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=SakaneAyuko
en-aut-sei=Sakane
en-aut-mei=Ayuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=SasakiTakuya
en-aut-sei=Sasaki
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=TakeiKohji
en-aut-sei=Takei
en-aut-mei=Kohji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=YamadaHiroshi
en-aut-sei=Yamada
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
affil-num=1
en-affil=Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Division of Malaria Research, Proteo-Science Center, Ehime University
kn-affil=
affil-num=7
en-affil=Division of Malaria Research, Proteo-Science Center, Ehime University
kn-affil=
affil-num=8
en-affil=Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Nephrology, Graduate School of Medicine, Chiba University
kn-affil=
affil-num=11
en-affil=Department of Nephrology, Graduate School of Medicine, Chiba University
kn-affil=
affil-num=12
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=13
en-affil=Department of Internal Medicine, Section of Nephrology, Yale University School of Medicine
kn-affil=
affil-num=14
en-affil=Department of Internal Medicine, Section of Nephrology, Yale University School of Medicine
kn-affil=
affil-num=15
en-affil=Department of Biochemistry, Tokushima University Graduate School of Medical Sciences
kn-affil=
affil-num=16
en-affil=Department of Biochemistry, Tokushima University Graduate School of Medical Sciences
kn-affil=
affil-num=17
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=18
en-affil=Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=19
en-affil=Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=dynamin
kn-keyword=dynamin
en-keyword=microtubules
kn-keyword=microtubules
en-keyword=podocyte
kn-keyword=podocyte
en-keyword=primary process
kn-keyword=primary process
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=22
article-no=
start-page=6633
end-page=6641
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20200923
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Nitroxoline inhibits bladder cancer progression by reversing EMT process and enhancing anti-tumor immunity
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Nitroxoline is considered to be an effective treatment for the urinary tract infections. Recently, it has been found to be effective against several cancers. However, few studies have examined the anti-tumor activity of nitroxoline in bladder cancer. The purpose of the study was to reveal the possible mechanisms how nitroxoline inhibited bladder cancer progression. In vitro assay, we demonstrated that nitroxoline inhibited bladder cancer cell growth and migration in a concentration-related manner. Western blot analysis demonstrated that nitroxoline downregulated the expressions of epithelial mesenchymal transition (EMT)-related proteins. Furthermore, treatment with nitroxoline in the C3H/He mice bladder cancer subcutaneous model resulted in significant inhibition of tumor growth. Moreover, the percentage of myeloid-derived suppressor cells (MDSC) in peripheral blood cells significantly decreased after treatment of nitroxoline. Taken together, our results suggested that nitroxoline may be used as a potential drug for bladder cancer.
en-copyright=
kn-copyright=
en-aut-name=XuNaijin
en-aut-sei=Xu
en-aut-mei=Naijin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=LinWenfeng
en-aut-sei=Lin
en-aut-mei=Wenfeng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SunJingkai
en-aut-sei=Sun
en-aut-mei=Jingkai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SadahiraTakuya
en-aut-sei=Sadahira
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=XuAbai
en-aut-sei=Xu
en-aut-mei=Abai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=WatanabeMasami
en-aut-sei=Watanabe
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=GuoKai
en-aut-sei=Guo
en-aut-mei=Kai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=LiGonghui
en-aut-sei=Li
en-aut-mei=Gonghui
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=LiuChunxiao
en-aut-sei=Liu
en-aut-mei=Chunxiao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NasuYasutomo
en-aut-sei=Nasu
en-aut-mei=Yasutomo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=HuangPeng
en-aut-sei=Huang
en-aut-mei=Peng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Urology, Zhujiang Hospital, Southern Medical University
kn-affil=
affil-num=6
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Urology, Zhujiang Hospital, Southern Medical University
kn-affil=
affil-num=8
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Urology, Zhujiang Hospital, Southern Medical University
kn-affil=
affil-num=11
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Nitroxoline
kn-keyword=Nitroxoline
en-keyword=Bladder cancer
kn-keyword=Bladder cancer
en-keyword=EMT
kn-keyword=EMT
en-keyword=immunotherapy preclinical model
kn-keyword=immunotherapy preclinical model
END
start-ver=1.4
cd-journal=joma
no-vol=2021
cd-vols=
no-issue=
article-no=
start-page=280
end-page=288
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20200616
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Cytopathic effects and local immune responses in repeated neoadjuvant HSV-tk + ganciclovir gene therapy for prostate cancer
en-subtitle=
kn-subtitle=
en-abstract=Cytopathic effects and local immune response were analyzed histologically in prostatic carcinoma (PCa) with in situ herpes simplex virus-thymidine kinase (HSV-tk)/ganciclovir (GCV) gene therapy (GT...
kn-abstract=ObjectiveCytopathic effects and local immune response were analyzed histologically in prostatic carcinoma (PCa) with in situ herpes simplex virus-thymidine kinase (HSV-tk)/ganciclovir (GCV) gene therapy (GT). MethodsFour high-risk PCa patients who received HSV-tk/GCV GT were investigated. After two cycles of intraprostatic injection of HSV-tk and administration of GCV, radical prostatectomy was performed. Formalin-fixed, paraffin-embedded sections were evaluated using immunohistochemistry. PCa with hormone therapy (HT, n = 3) or without neoadjuvant therapy (NT, n = 4) that were equivalent in terms of risk were also examined as reference. Immunoreactively-positive cells were counted in at least three areas in cancer tissue. Labeling indices (LI) were calculated as percentage values. ResultsssDNA LI in GT increased, indicating apoptosis, as well as tumor-infiltrating lymphocytes and CD68-positive macrophages, compared with their biopsies. GT cases showed significantly higher numbers of ssDNA LI, CD4/CD8-positive T cells and CD68-positive macrophages including M1/M2 macrophages than HT or NT cases. However, there was no significant difference in CD20-positive B cells among the types of case. There were strong correlations between CD8+ T cells and CD68+ macrophages (ρ = 0.656, p < 0.0001) as well as CD4+ T cells and CD20+ B cells (ρ = 0.644, p < 0.0001) in PCa with GT. ConclusionsEnhanced cytopathic effect and local immune response were might be indicated in PCa patients with HSV-tk/GCV gene therapy.
en-copyright=
kn-copyright=
en-aut-name=YanagisawaNobuyuki
en-aut-sei=Yanagisawa
en-aut-mei=Nobuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SatohTakefumi
en-aut-sei=Satoh
en-aut-mei=Takefumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TabataKen-ichi
en-aut-sei=Tabata
en-aut-mei=Ken-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TsumuraHideyasu
en-aut-sei=Tsumura
en-aut-mei=Hideyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NasuYasutomo
en-aut-sei=Nasu
en-aut-mei=Yasutomo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=WatanabeMasami
en-aut-sei=Watanabe
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ThompsonTimothy C.
en-aut-sei=Thompson
en-aut-mei=Timothy C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OkayasuIsao
en-aut-sei=Okayasu
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MurakumoYoshiki
en-aut-sei=Murakumo
en-aut-mei=Yoshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=BabaShiro
en-aut-sei=Baba
en-aut-mei=Shiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=IwamuraMasatsugu
en-aut-sei=Iwamura
en-aut-mei=Masatsugu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Pathology, St. Marianna University School of Medicine Yokohama-City Seibu Hospital, Yokohama
kn-affil=
affil-num=2
en-affil=Department of Urology, Kitasato University School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Urology, Kitasato University School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Urology, Kitasato University School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Urology, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Urology, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Genitourinary Medical Oncology - Research, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center
kn-affil=
affil-num=8
en-affil=Department of Pathology, Kitasato University School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Pathology, Kitasato University School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Pathology, Kitasato University School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Urology, Kitasato University School of Medicine
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=
article-no=
start-page=243
end-page=252
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=20190614
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Induction of Expandable Tissue-Specific Progenitor Cells from Human Pancreatic Tissue through Transient Expression of Defined Factors
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We recently demonstrated the generation of mouse induced tissue-specific stem (iTS) cells through transient overexpression of reprogramming factors combined with tissue-specific selection. Here we induced expandable tissue-specific progenitor (iTP) cells from human pancreatic tissue through transient expression of genes encoding the reprogramming factors OCT4 (octamer-binding transcription factor 4), p53 small hairpin RNA (shRNA), SOX2 (sex-determining region Y-box 2), KLF4 (Kruppel-like factor 4), L-MYC, and LIN28. Transfection of episomal plasmid vectors into human pancreatic tissue efficiently generated iTP cells expressing genetic markers of endoderm and pancreatic progenitors. The iTP cells differentiated into insulin-producing cells more efficiently than human induced pluripotent stem cells (iPSCs). iTP cells continued to proliferate faster than pancreatic tissue cells until days 100–120 (passages 15–20). iTP cells subcutaneously inoculated into immunodeficient mice did not form teratomas. Genomic bisulfite nucleotide sequence analysis demonstrated that the OCT4 and NANOG promoters remained partially methylated in iTP cells. We compared the global gene expression profiles of iPSCs, iTP cells, and pancreatic cells (islets >80%). Microarray analyses revealed that the gene expression profiles of iTP cells were similar, but not identical, to those of iPSCs but different from those of pancreatic cells. The generation of human iTP cells may have important implications for the clinical application of stem/progenitor cells.
en-copyright=
kn-copyright=
en-aut-name=NoguchiHirofumi
en-aut-sei=Noguchi
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=Miyagi-ShiohiraChika
en-aut-sei=Miyagi-Shiohira
en-aut-mei=Chika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakashimaYoshiki
en-aut-sei=Nakashima
en-aut-mei=Yoshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KinjoTakao
en-aut-sei=Kinjo
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KobayashiNaoya
en-aut-sei=Kobayashi
en-aut-mei=Naoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SaitohIssei
en-aut-sei=Saitoh
en-aut-mei=Issei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=WatanabeMasami
en-aut-sei=Watanabe
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ShapiroA. M. James
en-aut-sei=Shapiro
en-aut-mei=A. M. James
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KinTatsuya
en-aut-sei=Kin
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus
kn-affil=
affil-num=2
en-affil=Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus
kn-affil=
affil-num=3
en-affil=Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus
kn-affil=
affil-num=4
en-affil=Department of Basic Laboratory Sciences, School of Health Sciences in Faculty of Medicine, University of the Ryukyus
kn-affil=
affil-num=5
en-affil=Okayama Saidaiji Hospital
kn-affil=
affil-num=6
en-affil=Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University
kn-affil=
affil-num=7
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Clinical Islet Transplant Program and Department of Surgery, University of Alberta
kn-affil=
affil-num=9
en-affil=Clinical Islet Transplant Program and Department of Surgery, University of Alberta
kn-affil=
en-keyword=induced tissue-specific progenitor cells
kn-keyword=induced tissue-specific progenitor cells
en-keyword=iTP
kn-keyword=iTP
en-keyword=induced tissue-specific stem cells
kn-keyword=induced tissue-specific stem cells
en-keyword=iTS
kn-keyword=iTS
en-keyword=induced pluripotent stem cells
kn-keyword=induced pluripotent stem cells
en-keyword=iPSCs
kn-keyword=iPSCs
en-keyword=reprogramming factors
kn-keyword=reprogramming factors
en-keyword=pancreas
kn-keyword=pancreas
END
start-ver=1.4
cd-journal=joma
no-vol=71
cd-vols=
no-issue=2
article-no=
start-page=135
end-page=142
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2017
dt-pub=201704
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Downregulation of the Expression of CD147 by Tumor Suppressor REIC/Dkk-3, and Its Implication in Human Prostate Cancer Cell Growth Inhibition
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The cluster of differentiation 147 (CD147), also known as EMMPRIN, is a key molecule that promotes cancer progression. We previously developed an adenoviral vector encoding a tumor suppressor REIC/Dkk-3 gene (Ad-REIC) for cancer gene therapy. The therapeutic effects are based on suppressing the growth of cancer cells, but, the underlying molecular mechanism has not been fully clarified. To elucidate this mechanism, we investigated the effects of Ad-REIC on the expression of CD147 in LNCaP prostate cancer cells. Western blotting revealed that the expression of CD147 was significantly suppressed by Ad-REIC. Ad-REIC also suppressed the cell growth of LNCaP cells. Since other researchers have demonstrated that phosphorylated mitogen-activated protein kinases (MAPKs) and c-Myc protein positively regulate the expression of CD147, we investigated the correlation between the CD147 level and the activation of MAPK and c-Myc expression. Unexpectedly, no positive correlation was observed between CD147 and its possible regulators, suggesting that another signaling pathway was involved in the downregulation of CD147. This is the first study to show the downregulation of CD147 by Ad-REIC in prostate cancer cells. At least some of the therapeutic effects of Ad-REIC may be due to the downregulation of the cancer-progression factor, CD147.
en-copyright=
kn-copyright=
en-aut-name=MoriAkihiro
en-aut-sei=Mori
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WatanabeMasami
en-aut-sei=Watanabe
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SadahiraTakuya
en-aut-sei=Sadahira
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KobayashiYasuyuki
en-aut-sei=Kobayashi
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AriyoshiYuichi
en-aut-sei=Ariyoshi
en-aut-mei=Yuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UekiHideo
en-aut-sei=Ueki
en-aut-mei=Hideo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=WadaKoichiro
en-aut-sei=Wada
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OchiaiKazuhiko
en-aut-sei=Ochiai
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=LiShun-Ai
en-aut-sei=Li
en-aut-mei=Shun-Ai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NasuYasutomo
en-aut-sei=Nasu
en-aut-mei=Yasutomo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Urology, Okayama University, Graduate School of Medicine, Denistry and Pharmacentical Sciences
kn-affil=
affil-num=2
en-affil=Department of Urology, Okayama University, Graduate School of Medicine, Denistry and Pharmacentical Sciences
kn-affil=
affil-num=3
en-affil=Department of Urology, Okayama University, Graduate School of Medicine, Denistry and Pharmacentical Sciences
kn-affil=
affil-num=4
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Urology, Okayama University, Graduate School of Medicine, Denistry and Pharmacentical Sciences
kn-affil=
affil-num=7
en-affil=Department of Urology, Okayama University, Graduate School of Medicine, Denistry and Pharmacentical Sciences
kn-affil=
affil-num=8
en-affil=Department of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University
kn-affil=
affil-num=9
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Urology, Okayama University, Graduate School of Medicine, Denistry and Pharmacentical Sciences
kn-affil=
en-keyword=prostate cancer
kn-keyword=prostate cancer
en-keyword=REIC/Dkk-3
kn-keyword=REIC/Dkk-3
en-keyword=CD147
kn-keyword=CD147
en-keyword=cell growth
kn-keyword=cell growth
en-keyword=p38 MAP kinase
kn-keyword=p38 MAP kinase
END
start-ver=1.4
cd-journal=joma
no-vol=70
cd-vols=
no-issue=4
article-no=
start-page=299
end-page=302
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2016
dt-pub=201608
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Phase II Clinical Trial Evaluating the Preventive Effectiveness of Lactobacillus Vaginal Suppositories in Patients with Recurrent Cystitis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Urinary tract infections (UTIs) are the most common bacterial infections in women, and many patients experience frequent recurrence. The aim of this report is to introduce an on-going prospective phase II clinical trial performed to evaluate the preventive effectiveness of Lactobacillus vaginal suppositories for prevention of recurrent cystitis. Patients enrolled in this study are administered vaginal suppositories containing the GAI 98322 strain of Lactobacillus crispatus every 2 days or 3 times a week for one year. The primary endpoint is recurrence of cystitis and the secondary endpoints are adverse events. Recruitment began in December 2013 and target sample size is 20 participants.
en-copyright=
kn-copyright=
en-aut-name=WadaKoichiro
en-aut-sei=Wada
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UeharaShinya
en-aut-sei=Uehara
en-aut-mei=Shinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IshiiAyano
en-aut-sei=Ishii
en-aut-mei=Ayano
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SadahiraTakuya
en-aut-sei=Sadahira
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamamotoMasumi
en-aut-sei=Yamamoto
en-aut-mei=Masumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MitsuhataRitsuko
en-aut-sei=Mitsuhata
en-aut-mei=Ritsuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=Takamoto Atsushi
en-aut-sei=Takamoto
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KobayashiYasuyuki
en-aut-sei=Kobayashi
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=WatanabeMasami
en-aut-sei=Watanabe
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=WatanabeToyohiko
en-aut-sei=Watanabe
en-aut-mei=Toyohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=HottaKatsuyuki
en-aut-sei=Hotta
en-aut-mei=Katsuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=NasuYasutomo
en-aut-sei=Nasu
en-aut-mei=Yasutomo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Urology, Kawasaki Hospital, Kawasaki Medical School
kn-affil=
affil-num=3
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Center for innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=13
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=probiotics
kn-keyword=probiotics
en-keyword=lactobacilli
kn-keyword=lactobacilli
en-keyword=Lactobacillus crispatus
kn-keyword=Lactobacillus crispatus
en-keyword=urinary tract infection
kn-keyword=urinary tract infection
en-keyword=vaginal suppository
kn-keyword=vaginal suppository
END
start-ver=1.4
cd-journal=joma
no-vol=70
cd-vols=
no-issue=4
article-no=
start-page=295
end-page=297
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2016
dt-pub=201608
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Efficacy of Rituximab in High-risk Renal Transplant Recipients
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Although graft survival following renal transplantation (RTx) has improved, outcomes following highrisk RTx are variable. Preexisting antibodies, including donor-specific antibodies (DSA), play an important role in graft dysfunction and survival. We have designed a study to investigate the safety and efficacy of anti-CD20 monoclonal antibodies (rituximab) in high-risk RTx recipients. Major eligibility criteria include: 1) major and minor ABO blood group mismatch, 2) positive DSA. Thirty-five patients will receive 200 mg/body of rituximab. The primary endpoint is the incidence of B cell depletion. This study will clarify whether rituximab is efficacious in improving graft survival in high-risk RTx recipients.
en-copyright=
kn-copyright=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WadaKoichiro
en-aut-sei=Wada
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MitsuiYosuke
en-aut-sei=Mitsui
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KubotaRisa
en-aut-sei=Kubota
en-aut-mei=Risa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YoshiokaTakashi
en-aut-sei=Yoshioka
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AriyoshiYuichi
en-aut-sei=Ariyoshi
en-aut-mei=Yuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KobayashiYasuyuki
en-aut-sei=Kobayashi
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KitagawaMasashi
en-aut-sei=Kitagawa
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TanabeKatsuyuki
en-aut-sei=Tanabe
en-aut-mei=Katsuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SugiyamaHiroshi
en-aut-sei=Sugiyama
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=WatanabeMasami
en-aut-sei=Watanabe
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=WatanabeToyohiko
en-aut-sei=Watanabe
en-aut-mei=Toyohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=HottaKatsuyuki
en-aut-sei=Hotta
en-aut-mei=Katsuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=NasuYasutomo
en-aut-sei=Nasu
en-aut-mei=Yasutomo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=13
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=15
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=end-stage renal disease
kn-keyword=end-stage renal disease
en-keyword=immunosuppression
kn-keyword=immunosuppression
en-keyword=kidney transplantation
kn-keyword=kidney transplantation
END
start-ver=1.4
cd-journal=joma
no-vol=29
cd-vols=
no-issue=5
article-no=
start-page=973
end-page=983
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2014
dt-pub=201405
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Potential of adenovirus-mediated REIC/Dkk-3 gene therapy for use in the treatment of pancreatic cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background and AimThe reduced expression in immortalized cells REIC/the dickkopf 3 (Dkk-3) gene, tumor suppressor gene, is downregulated in various malignant tumors. In a prostate cancer study, an adenovirus vector carrying the REIC/Dkk-3 gene (Ad-REIC) induces apoptosis. In the current study, we examined the effects of REIC/Dkk-3 gene therapy in pancreatic cancer.
MethodsREIC/Dkk-3 expression was assessed by immunoblotting and immunohistochemistry in the pancreatic cancer cell lines (ASPC1, MIAPaCa2, Panc1, BxPC3, SUIT-2, KLM1, and T3M4) and pancreatic cancer tissues. The Ad-REIC agent was used to investigate the apoptotic effect in vitro and antitumor effects in vivo. We also assessed the therapeutic effects of Ad-REIC therapy with gemcitabine.
ResultsThe REIC/Dkk-3 expression was lost in the pancreatic cancer cell lines and decreased in pancreatic cancer tissues. Ad-REIC induced apoptosis and inhibited cell growth in the ASPC1 and MIAPaCa2 lines in vitro, and Ad-REIC inhibited tumor growth in the mouse xenograft model using ASPC1 cells. The antitumor effect was further enhanced in combination with gemcitabine. This synergistic effect may be caused by the suppression of autophagy via the enhancement of mammalian target of rapamycin signaling.
ConclusionsAd-REIC induces apoptosis and inhibits tumor growth in pancreatic cancer cell lines. REIC/Dkk-3 gene therapy is an attractive therapeutic tool for pancreatic cancer.
en-copyright=
kn-copyright=
en-aut-name=UchidaDaisuke
en-aut-sei=Uchida
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShirahaHidenori
en-aut-sei=Shiraha
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KatoHironari
en-aut-sei=Kato
en-aut-mei=Hironari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NagaharaTeruya
en-aut-sei=Nagahara
en-aut-mei=Teruya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IwamuroMasaya
en-aut-sei=Iwamuro
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KataokaJunro
en-aut-sei=Kataoka
en-aut-mei=Junro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HoriguchiShigeru
en-aut-sei=Horiguchi
en-aut-mei=Shigeru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=WatanabeMasami
en-aut-sei=Watanabe
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TakakiAkinobu
en-aut-sei=Takaki
en-aut-mei=Akinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NousoKazuhiro
en-aut-sei=Nouso
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NasuYasutomo
en-aut-sei=Nasu
en-aut-mei=Yasutomo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=YagiTakahito
en-aut-sei=Yagi
en-aut-mei=Takahito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KumonHiromi
en-aut-sei=Kumon
en-aut-mei=Hiromi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=YamamotoKazuhide
en-aut-sei=Yamamoto
en-aut-mei=Kazuhide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=
kn-affil=Okayama Univ, Dept Gastroenterol & Hepatol, Grad Sch Med Dent & Pharmaceut Sci
affil-num=2
en-affil=
kn-affil=Okayama Univ, Dept Gastroenterol & Hepatol, Grad Sch Med Dent & Pharmaceut Sci
affil-num=3
en-affil=
kn-affil=Okayama Univ, Dept Gastroenterol & Hepatol, Grad Sch Med Dent & Pharmaceut Sci
affil-num=4
en-affil=
kn-affil=Okayama Univ, Dept Gastroenterol & Hepatol, Grad Sch Med Dent & Pharmaceut Sci
affil-num=5
en-affil=
kn-affil=Okayama Univ, Dept Gastroenterol & Hepatol, Grad Sch Med Dent & Pharmaceut Sci
affil-num=6
en-affil=
kn-affil=Okayama Univ, Dept Gastroenterol & Hepatol, Grad Sch Med Dent & Pharmaceut Sci
affil-num=7
en-affil=
kn-affil=Okayama Univ, Dept Gastroenterol & Hepatol, Grad Sch Med Dent & Pharmaceut Sci
affil-num=8
en-affil=
kn-affil=Okayama Univ, Dept Urol, Grad Sch Med Dent & Pharmaceut Sci
affil-num=9
en-affil=
kn-affil=Okayama Univ, Dept Gastroenterol & Hepatol, Grad Sch Med Dent & Pharmaceut Sci
affil-num=10
en-affil=
kn-affil=Okayama Univ, Dept Mol Hepatol, Grad Sch Med Dent & Pharmaceut Sci
affil-num=11
en-affil=
kn-affil=Okayama Univ, Dept Urol, Grad Sch Med Dent & Pharmaceut Sci
affil-num=12
en-affil=
kn-affil=Okayama Univ, Dept Gastroenterol Surg Transplant & Surg Oncol, Grad Sch Med Dent & Pharmaceut Sci
affil-num=13
en-affil=
kn-affil=Okayama Univ, Dept Urol, Grad Sch Med Dent & Pharmaceut Sci
affil-num=14
en-affil=
kn-affil=Okayama Univ, Dept Gastroenterol & Hepatol, Grad Sch Med Dent & Pharmaceut Sci
en-keyword=apoptosis
kn-keyword=apoptosis
en-keyword=autophagy
kn-keyword=autophagy
en-keyword=dickkopf-related protein
kn-keyword=dickkopf-related protein
en-keyword=gene therapy
kn-keyword=gene therapy
en-keyword=mTOR pathway
kn-keyword=mTOR pathway
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=12
article-no=
start-page=1321
end-page=1327
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2013
dt-pub=201312
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Testosterone replacement elevates the serum uric acid levels in patients with female to male gender identity disorder
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Gender identity disorder (GID) results from a disagreement between a person's biological sex and the gender to which he or she identifies. With respect to the treatment of female to male GID, testosterone replacement therapy (TRT) is available. The uric acid (UA) level can be influenced by testosterone; however, the early effects and dose-dependency of TRT on the serum UA concentration have not been evaluated in this population. We herein conducted a dose-response analysis of TRT in 160 patients with female to male GID. The TRT consisted of three treatment groups who received intramuscular injections of testosterone enanthate: 125 mg every two weeks, 250 mg every three weeks and 250 mg every two weeks. Consequently, serum UA elevation was observed after three months of TRT and there was a tendency toward testosterone dose-dependency. The onset of hyperuricemia was more prevalent in the group who received the higher dose. We also demonstrated a positive correlation between increased levels of serum UA and serum creatinine. Since the level of serum creatinine represents an individual's muscle volume and the muscle is a major source of purine, which induces UA upregulation, the serum UA elevation observed during TRT is at least partially attributed to an increase in muscle mass. This is the first study showing an association between serum UA elevation and a TRT-induced increase in muscle mass. The current study provides important information regarding TRT for the follow-up and management of the serum UA levels in GID patients.
en-copyright=
kn-copyright=
en-aut-name=KurahashiHiroaki
en-aut-sei=Kurahashi
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WatanabeMasami
en-aut-sei=Watanabe
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SugimotoMorito
en-aut-sei=Sugimoto
en-aut-mei=Morito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AriyoshiYuichi
en-aut-sei=Ariyoshi
en-aut-mei=Yuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MahmoodSabina
en-aut-sei=Mahmood
en-aut-mei=Sabina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IshiiKazushi
en-aut-sei=Ishii
en-aut-mei=Kazushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NasuYasutomo
en-aut-sei=Nasu
en-aut-mei=Yasutomo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NagaiAtsushi
en-aut-sei=Nagai
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KumonHiromi
en-aut-sei=Kumon
en-aut-mei=Hiromi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=
kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Urol
affil-num=2
en-affil=
kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Urol
affil-num=3
en-affil=
kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Urol
affil-num=4
en-affil=
kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Urol
affil-num=5
en-affil=
kn-affil=Okayama Univ, Okayama Univ Hosp, Ctr Innovat Clin Med
affil-num=6
en-affil=
kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Urol
affil-num=7
en-affil=
kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Urol
affil-num=8
en-affil=
kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Urol
affil-num=9
en-affil=
kn-affil=Kawasaki Med Univ, Dept Urol
affil-num=10
en-affil=
kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Urol
en-keyword=Gender identity disorder
kn-keyword=Gender identity disorder
en-keyword=Testosterone
kn-keyword=Testosterone
en-keyword=Uric acid
kn-keyword=Uric acid
en-keyword=Creatinine
kn-keyword=Creatinine
en-keyword=Muscle
kn-keyword=Muscle
END
start-ver=1.4
cd-journal=joma
no-vol=68
cd-vols=
no-issue=1
article-no=
start-page=47
end-page=51
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2014
dt-pub=201402
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Rare Complication:Misdirection of an Indwelling Urethral Catheter into the Ureter
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We report 3 patients with the rare complication of an indwelling urethral catheter misdirected into the ureter. This is the largest series to date. Patients were referred to us for a variety of reasons following
exchange of their chronic indwelling urinary catheters. CT in all cases demonstrated the urinary catheters residing in the left ureter. The ages of the patients were 37, 67 and 81 years old. All patients suffered from neurogenic bladder. Two patients were female, one was male, and 2 of the 3 had a sensory disorder inhibiting their pain response. The catheters were replaced with open-end Foley catheters. Extensive follow-up CT scans were obtained in one case, demonstrating improvement of hydronephrosis and no evidence of ureteral stenosis. Cystoscopy in this patient demonstrated normally positioned and functioning ureteral orifices. Although the placement of an indwelling urethral catheter is a comparatively safe procedure, one must keep in mind that this complication can occur, particularly
in female patients with neurogenic bladder. CT without contrast is a noninvasive, definitive diagnostic tool.
en-copyright=
kn-copyright=
en-aut-name=IshikawaTsutomu
en-aut-sei=Ishikawa
en-aut-mei=Tsutomu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HirataTakeshi
en-aut-sei=Hirata
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=WatanabeMasami
en-aut-sei=Watanabe
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=EbaraShin
en-aut-sei=Ebara
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=WatanabeToyohiko
en-aut-sei=Watanabe
en-aut-mei=Toyohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NasuYasutomo
en-aut-sei=Nasu
en-aut-mei=Yasutomo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KumonHiromi
en-aut-sei=Kumon
en-aut-mei=Hiromi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=2
en-affil=
kn-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=3
en-affil=
kn-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=4
en-affil=
kn-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=5
en-affil=
kn-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=6
en-affil=
kn-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=7
en-affil=
kn-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=8
en-affil=
kn-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
en-keyword=complication
kn-keyword=complication
en-keyword=indwelling urethral catheter
kn-keyword=indwelling urethral catheter
en-keyword=imaging
kn-keyword=imaging
en-keyword=computed tomography
kn-keyword=computed tomography
en-keyword=ureter
kn-keyword=ureter
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=7
article-no=
start-page=484
end-page=491
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2010
dt-pub=201007
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Potent antitumor effects of combined therapy with a telomerase-specific, replication-competent adenovirus (OBP-301) and IL-2 in a mouse model of renal cell carcinoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=OBP-301 (a telomerase-specific, replication-competent adenovirus with hTERT promoter) was constructed in a previous study and it showed a strong anticancer effect by inducing cell lysis in human lung and prostate cancer cells. This study investigated the effectiveness of a combination therapy of OBP-301 and interleukin-2 (IL-2) in a mouse model of renal cell carcinoma (RCC). The cell-killing effect of OBP-301 was confirmed in vitro in the RENCA cancer cells. In in vivo experiment, luciferase-expressing RENCA cells were implanted in the left kidney and lung of BALB/c mice to prepare the RCC metastatic model. The animals were randomly divided into four treatment groups: PBS, IL-2 alone, OBP-301 alone and the combination. The analyses of orthotopic tumor weight, lung metastasis and luciferin-stained tumor images 14 days after each treatment showed significant tumor growth inhibition in the combination group in comparison with that in the OBP-301- or IL-2-treated groups. In addition, the percentage of regulatory T-cells (Tregs) in the combination group was significantly suppressed in comparison with that in the PBS and single-agent treatment groups. The outcomes of this study suggest that tumor-specific oncolytic immunovirotherapy may become an attractive strategy for the treatment of human RCC.
en-copyright=
kn-copyright=
en-aut-name=HuangP
en-aut-sei=Huang
en-aut-mei=P
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KakuH
en-aut-sei=Kaku
en-aut-mei=H
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ChenJ
en-aut-sei=Chen
en-aut-mei=J
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KashiwakuraY
en-aut-sei=Kashiwakura
en-aut-mei=Y
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SaikaT
en-aut-sei=Saika
en-aut-mei=T
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NasuY
en-aut-sei=Nasu
en-aut-mei=Y
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=UrataY
en-aut-sei=Urata
en-aut-mei=Y
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=FujiwaraT
en-aut-sei=Fujiwara
en-aut-mei=T
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=WatanabeM
en-aut-sei=Watanabe
en-aut-mei=M
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KumonH
en-aut-sei=Kumon
en-aut-mei=H
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
affil-num=2
en-affil=
kn-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
affil-num=3
en-affil=
kn-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
affil-num=4
en-affil=
kn-affil=Innovation Center Okayama for Nanobio-Targeted Therapy, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
affil-num=5
en-affil=
kn-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
affil-num=6
en-affil=
kn-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
affil-num=7
en-affil=
kn-affil=Oncolys BioPharma Inc.
affil-num=8
en-affil=
kn-affil=Center for Gene and Cell Therapy, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
affil-num=9
en-affil=
kn-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
affil-num=10
en-affil=
kn-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
en-keyword=renal cell carcinoma
kn-keyword=renal cell carcinoma
en-keyword=OBP-301
kn-keyword=OBP-301
en-keyword=adenovirus
kn-keyword=adenovirus
en-keyword=hTERT
kn-keyword=hTERT
en-keyword=interleukin-2
kn-keyword=interleukin-2
END
start-ver=1.4
cd-journal=joma
no-vol=284
cd-vols=
no-issue=21
article-no=
start-page=14236
end-page=14244
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2009
dt-pub=20090522
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Overexpression of REIC/Dkk-3 in Normal Fibroblasts Suppresses Tumor Growth via Induction of Interleukin-7
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We previously showed that the tumor suppressor gene REIC/Dkk-3, when overexpressed by an adenovirus (Ad-REIC), exhibited a dramatic therapeutic effect on human cancers through a mechanism triggered by endoplasmic reticulum stress. Adenovirus vectors show no target cell specificity and thus may elicit unfavorable side effects through infection of normal cells even upon intra-tumoral injection. In this study, we examined possible effects of Ad-REIC on normal cells. We found that infection of normal human fibroblasts (NHF) did not cause apoptosis but induced production of interleukin (IL)-7. The induction was triggered by endoplasmic reticulum stress and mediated through IRE1 alpha, ASK1, p38, and IRF-1. When Ad-REIC-infected NHF were transplanted in a mixture with untreated human prostate cancer cells, the growth of the cancer cells was significantly suppressed. Injection of an IL-7 antibody partially abrogated the suppressive effect of Ad-REIC-infected NHF. These results indicate that Ad-REIC has another arm against human cancer, an indirect host-mediated effect because of overproduction of IL-7 by mis-targeted NHF, in addition to its direct effect on cancer cells.
en-copyright=
kn-copyright=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KataokaKen
en-aut-sei=Kataoka
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AbarzuaFernando
en-aut-sei=Abarzua
en-aut-mei=Fernando
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanimotoRyuta
en-aut-sei=Tanimoto
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WatanabeMasami
en-aut-sei=Watanabe
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MurataHitoshi
en-aut-sei=Murata
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ThanSwe Swe
en-aut-sei=Than
en-aut-mei=Swe Swe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KuroseKaoru
en-aut-sei=Kurose
en-aut-mei=Kaoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KashiwakuraYuji
en-aut-sei=Kashiwakura
en-aut-mei=Yuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OchiaiKazuhiko
en-aut-sei=Ochiai
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NasuYasutomo
en-aut-sei=Nasu
en-aut-mei=Yasutomo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KumonHiromi
en-aut-sei=Kumon
en-aut-mei=Hiromi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=HuhNam-ho
en-aut-sei=Huh
en-aut-mei=Nam-ho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
affil-num=2
en-affil=
kn-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
affil-num=3
en-affil=
kn-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
affil-num=4
en-affil=
kn-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
affil-num=5
en-affil=
kn-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
affil-num=6
en-affil=
kn-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
affil-num=7
en-affil=
kn-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
affil-num=8
en-affil=
kn-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
affil-num=9
en-affil=
kn-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
affil-num=10
en-affil=
kn-affil=Innovation Center Okayama for Nanobio-Targeted Therapy, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
affil-num=11
en-affil=
kn-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
affil-num=12
en-affil=
kn-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
affil-num=13
en-affil=
kn-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
END
start-ver=1.4
cd-journal=joma
no-vol=66
cd-vols=
no-issue=1
article-no=
start-page=7
end-page=16
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2012
dt-pub=201202
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Preclinical Safety and Efficacy of in Situ REIC/Dkk-3 Gene Therapy for Prostate Cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The preclinical safety and therapeutic efficacy of adenoviral vectors that express the REIC/Dkk-3 tumor suppressor gene (Ad-REIC) was examined for use in prostate cancer gene therapy. The Ad-human (h) and mouse (m) REIC were previously demonstrated to induce strong anti-cancer effects in vitro and in vivo, and we herein report the results of two in vivo studies. First, intra-tumor Ad-hREIC administration was examined for toxicity and therapeutic effects in a subcutaneous tumor model using the PC3 prostate cancer cell line. Second, intra-prostatic Ad-mREIC administration was tested for toxicity in normal mice. The whole-body and spleen weights, hematological and serum chemistry parameters, and histological evaluation of tissues from throughout the body were analyzed. Both experiments indicated that there was no significant difference in the examined parameters between the Ad-REIC-treated group and the control (PBS- or Ad-LacZ-treated) group. In the in vitro analysis using PC3 cells, a significant apoptotic effect was observed after Ad-hREIC treatment. Confirming this observation, the robust anti-tumor efficacy of Ad-hREIC was demonstrated in the in vivo subcutaneous prostate cancer model. Based on the results of these preclinical experiments, we consider the adenovirus-mediated REIC/Dkk-3 in situ gene therapy to be safe and useful for the clinical treatment of prostate cancer.
en-copyright=
kn-copyright=
en-aut-name=KawauchiKeiichiro
en-aut-sei=Kawauchi
en-aut-mei=Keiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WatanabeMasami
en-aut-sei=Watanabe
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KakuHaruki
en-aut-sei=Kaku
en-aut-mei=Haruki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HuangPeng
en-aut-sei=Huang
en-aut-mei=Peng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SasakiKasumi
en-aut-sei=Sasaki
en-aut-mei=Kasumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OchiaiKazuhiko
en-aut-sei=Ochiai
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HuhNam-ho
en-aut-sei=Huh
en-aut-mei=Nam-ho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NasuYasutomo
en-aut-sei=Nasu
en-aut-mei=Yasutomo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KumonHiromi
en-aut-sei=Kumon
en-aut-mei=Hiromi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=2
en-affil=
kn-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=3
en-affil=
kn-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=4
en-affil=
kn-affil=Center for Gene and Cell Therapy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=5
en-affil=
kn-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=6
en-affil=
kn-affil=Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=7
en-affil=
kn-affil=Innovation Center Okayama for Nanobio-Targeted Therapy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=8
en-affil=
kn-affil=Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=9
en-affil=
kn-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=10
en-affil=
kn-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
en-keyword=REIC
kn-keyword=REIC
en-keyword=Dickkopf-3
kn-keyword=Dickkopf-3
en-keyword=gene therapy
kn-keyword=gene therapy
en-keyword=prostate cancer
kn-keyword=prostate cancer
en-keyword=preclinical study
kn-keyword=preclinical study
END
start-ver=1.4
cd-journal=joma
no-vol=65
cd-vols=
no-issue=5
article-no=
start-page=315
end-page=323
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2011
dt-pub=201110
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Single Nucleotide Polymorphism WRN Leu1074Phe Is Associated with Prostate Cancer Susceptibility in Chinese Subjects
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Deficiencies in the human DNA repair gene WRN are the cause of Werner syndrome, a rare autosomal recessive disorder characterized by premature aging and a predisposition to cancer. This study evaluated the association of WRN Leu1074Phe (rs1801195), a common missense single nucleotide polymorphism in WRN, with prostate cancer susceptibility in Chinese subjects. One hundred and forty-seven prostate cancer patients and 111 male cancer-free control subjects from 3 university hospitals in China were included. Blood samples were obtained from each subject, and the single nucleotide polymorphism WRN Leu1074Phe was genotyped by using a Snapshot assay. The results showed that WRN Leu1074Phe was associated with the risk of prostate cancer in Chinese men and that the TG/GG genotype displayed a decreased prevalence of prostate cancer compared with the TT genotype (OR=0.58, 95%CI:0.35-0.97, p=0.039). Through stratified analysis, more significant associations were revealed for the TG/GG genotype in the subgroup with diagnosis age <_ 72 yr (OR=0.27, 95%CI:0.12-0.61, p=0.002) and in patients with localized diseases (OR=0.36, 95%CI:0.19-0.70, p=0.003). However, no statistically significant difference was found in the subgroup with age >72 yr or in patients with advanced diseases. We concluded that the genetic variant Leu1074Phe in the DNA repair gene WRN might play a role in the risk of prostate cancer in Chinese subjects.
en-copyright=
kn-copyright=
en-aut-name=WangLei
en-aut-sei=Wang
en-aut-mei=Lei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KakuHaruki
en-aut-sei=Kaku
en-aut-mei=Haruki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HuangPeng
en-aut-sei=Huang
en-aut-mei=Peng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=XuKexin
en-aut-sei=Xu
en-aut-mei=Kexin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YangKai
en-aut-sei=Yang
en-aut-mei=Kai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ZhangJiheng
en-aut-sei=Zhang
en-aut-mei=Jiheng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=LiMing
en-aut-sei=Li
en-aut-mei=Ming
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=XieLiping
en-aut-sei=Xie
en-aut-mei=Liping
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=WangXiaofeng
en-aut-sei=Wang
en-aut-mei=Xiaofeng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SakaiAkiko
en-aut-sei=Sakai
en-aut-mei=Akiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=WatanabeMasami
en-aut-sei=Watanabe
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NasuYasutomo
en-aut-sei=Nasu
en-aut-mei=Yasutomo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=ShimizuKenji
en-aut-sei=Shimizu
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KumonHiromi
en-aut-sei=Kumon
en-aut-mei=Hiromi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=NaYanqun
en-aut-sei=Na
en-aut-mei=Yanqun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Urology, Peking University People's Hospital
affil-num=2
en-affil=
kn-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=3
en-affil=
kn-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=4
en-affil=
kn-affil=Department of Urology, Peking University People's Hospital
affil-num=5
en-affil=
kn-affil=Department of Urology, the First Affiliated Hospital, School of Medicine, Zhejiang University
affil-num=6
en-affil=
kn-affil=Department of Urology, Peking University School of Oncology, Beijing Cancer Hospital & Institute
affil-num=7
en-affil=
kn-affil=Department of Urology, Peking University School of Oncology, Beijing Cancer Hospital & Institute
affil-num=8
en-affil=
kn-affil=Department of Urology, the First Affiliated Hospital, School of Medicine, Zhejiang University
affil-num=9
en-affil=
kn-affil=Department of Urology, Peking University People's Hospital
affil-num=10
en-affil=
kn-affil=Department of Molecular Genetics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=11
en-affil=
kn-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=12
en-affil=
kn-affil=Research and Develop Center for Advanced Clinical Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=13
en-affil=
kn-affil=Department of Molecular Genetics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=14
en-affil=
kn-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=15
en-affil=
kn-affil=Department of Urology, Peking University People's Hospital
en-keyword=polymorphism
kn-keyword=polymorphism
en-keyword=prostatic neoplasms
kn-keyword=prostatic neoplasms
en-keyword=single nucleotide
kn-keyword=single nucleotide
en-keyword=susceptibility
kn-keyword=susceptibility
en-keyword=WRN
kn-keyword=WRN
END
start-ver=1.4
cd-journal=joma
no-vol=412
cd-vols=
no-issue=2
article-no=
start-page=391
end-page=395
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2011
dt-pub=20110826
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Tumor suppressor REIC/Dkk-3 interacts with the dynein light chain, Tctex-1
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Persistent hepatitis C virus (HCV) infection causes chronic liver diseases and is a global health problem. HuH-7 hepatoma-derived cells are widely used as the only cell-based HCV replication system for HCV research, including drug assays. Recently, using different hepatoma Li23-derived cells, we developed an HCV drug assay system (ORL8), in which the genome-length HCV RNA (O strain of genotype 1b) encoding renilla luciferase replicates efficiently. In this study, using the HuH-7-derived OR6 assay system that we developed previously and the ORL8 assay system, we evaluated 26 anti-HCV reagents, which other groups had reported as anti-HCV candidates using HuH-7-derived assay systems other than ORB. The results revealed that more than half of the reagents showed different anti-HCV activities from those in the previous studies, and that anti-HCV activities evaluated by the ORB and ORL8 assays were also frequently different. In further evaluation using the HuH-7-derived AH1R assay system, which was developed using the AH1 strain of genotype 1b, several reagents showed different anti-HCV activities in comparison with those evaluated by the OR6 and ORL8 assays. These results suggest that the different activities of anti-HCV reagents are caused by the differences in cell lines or HCV strains used for the development of assay systems. Therefore, we conclude that plural HCV assay systems developed using different cell lines or HCV strains are required for the objective evaluation of anti-HCV reagents.
en-copyright=
kn-copyright=
en-aut-name=OchiaiKazuhiko
en-aut-sei=Ochiai
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WatanabeMasami
en-aut-sei=Watanabe
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UekiHideo
en-aut-sei=Ueki
en-aut-mei=Hideo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HuangPeng
en-aut-sei=Huang
en-aut-mei=Peng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FujiiYasuyuki
en-aut-sei=Fujii
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NasuYasutomo
en-aut-sei=Nasu
en-aut-mei=Yasutomo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NoguchiHirofumi
en-aut-sei=Noguchi
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HirataTakeshi
en-aut-sei=Hirata
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HuhNam-ho
en-aut-sei=Huh
en-aut-mei=Nam-ho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KashiwakuraYuji
en-aut-sei=Kashiwakura
en-aut-mei=Yuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KakuHaruki
en-aut-sei=Kaku
en-aut-mei=Haruki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KumonHiromi
en-aut-sei=Kumon
en-aut-mei=Hiromi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=
kn-affil=Innovation Center Okayama for Nanobio-Targeted Therapy, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
affil-num=2
en-affil=
kn-affil=Innovation Center Okayama for Nanobio-Targeted Therapy, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
affil-num=3
en-affil=
kn-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
affil-num=4
en-affil=
kn-affil=Innovation Center Okayama for Nanobio-Targeted Therapy, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
affil-num=5
en-affil=
kn-affil=Innovation Center Okayama for Nanobio-Targeted Therapy, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
affil-num=6
en-affil=
kn-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
affil-num=7
en-affil=
kn-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
affil-num=8
en-affil=
kn-affil=Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
affil-num=9
en-affil=
kn-affil=Department of Cell Biology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
affil-num=10
en-affil=
kn-affil=Department of Cell Biology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
affil-num=11
en-affil=
kn-affil=
affil-num=12
en-affil=
kn-affil=
affil-num=13
en-affil=
kn-affil=
en-keyword=REIC
kn-keyword=REIC
en-keyword=Dkk-3
kn-keyword=Dkk-3
en-keyword=Tctex-1
kn-keyword=Tctex-1
en-keyword=Dynein
kn-keyword=Dynein
en-keyword=Endoplasmic reticulum
kn-keyword=Endoplasmic reticulum
en-keyword=Two-hybrid screening
kn-keyword=Two-hybrid screening
END
start-ver=1.4
cd-journal=joma
no-vol=59
cd-vols=
no-issue=2
article-no=
start-page=45
end-page=48
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2005
dt-pub=200504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Clinical results of one-stage urethroplasty with parameatal foreskin flap for hypospadias.
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
We investigated the usefulness of one-stage urethroplasty by the parameatal foreskin flap method (OUPF procedure), which is useful for repairing all types of hypospadias. Between June 1992 and March 2001, the OUPF procedure was performed on 18 patients with hypospadias: 10 patients with distal and 8 with proximal hypospadias. The follow-up periods ranged from 33-75 months, with an average of 52 months. The duration of surgery, the catheter indwelling period, and the postoperative complications of each patient were analyzed. The median age of the patients at the time of surgery was 3 years and 8 months. The length of surgery for OUPF II ranged from 150-230 min (average 186 min), and from 190-365 min (average 267 min) for OUPF IV. Postoperative complications were confirmed in 3 of the 18 patients (16.6%). Two patients had fistulas, and one had a meatal regression. The fistulas were successfully closed by the simple multilayered closure method. After adopting DuoDerm dressings instead of elastic bandages for protection of the wound, no fistulization occurred. DuoDerm dressings are useful in the healing of wounds without complications. To date, the longest follow-up period has been 75 months, and during that time there have been no late complications such as urethral stenosis or penile curvature. OUPF is a useful method in the treatment of hypospadias with a low incidence of early and late complications.
en-copyright= kn-copyright= en-aut-name=NagaiAtsushi en-aut-sei=Nagai en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NasuYasutomo en-aut-sei=Nasu en-aut-mei=Yasutomo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WatanabeMasami en-aut-sei=Watanabe en-aut-mei=Masami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KusumiNorihiro en-aut-sei=Kusumi en-aut-mei=Norihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TsuboiHiromu en-aut-sei=Tsuboi en-aut-mei=Hiromu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KumonHiromi en-aut-sei=Kumon en-aut-mei=Hiromi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil= kn-affil=Okayama University affil-num=2 en-affil= kn-affil=Okayama University affil-num=3 en-affil= kn-affil=Okayama University affil-num=4 en-affil= kn-affil=Okayama University affil-num=5 en-affil= kn-affil=Okayama University affil-num=6 en-affil= kn-affil=Okayama University en-keyword=hypospadias kn-keyword=hypospadias en-keyword=one-stageure throplasty kn-keyword=one-stageure throplasty en-keyword=OUPF kn-keyword=OUPF en-keyword=DuoDerm dressings kn-keyword=DuoDerm dressings END start-ver=1.4 cd-journal=joma no-vol=56 cd-vols= no-issue=4 article-no= start-page=205 end-page=209 dt-received= dt-revised= dt-accepted= dt-pub-year=2002 dt-pub=200208 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Localization of dynamin 2 in rat seminiferous tubules during the spermatogenic cycle. en-subtitle= kn-subtitle= en-abstract= kn-abstract=Dynamin is a protein essential to endocytosis. Dynamin 2, a dynamin isoform, is expressed most intensely in testicular tissue; however, precise localization has never been studied. Therefore, we investigated the expression of dynamin 2 in rat testicular tissue using immunohistochemical methods, and discuss here the physiological function of this protein. Testicular tissues were obtained from Wistar rats at 10, 21 and 63 days of age. Immunohistochemistrical examination and Western blot analysis were conducted using dynamin 2 specific antibody. Western blot analysis showed that expression in 21- and 63-day-old rats was more intense than that in 10-day-old rats. Dynamin 2 expression was observed using immunohistochemical method in the seminiferous tubules of all rats. In the 63-day-old rats, the expression was intense, especially in spermatids in the earlier maturation stages and in spermatocytes, and was observed in Sertoli cells. However, in spermatids, the expression gradually declined as spermatids matured to spermatozoa. In the 21-day-old rats, the expression was evident in spermatocytes and Sertoli cells, but that in the 10-day-old rats was weak. Intense expression of dynamin 2 during spermatogenesis suggests that this protein plays an important role in this process.
en-copyright= kn-copyright= en-aut-name=IguchiHiroki en-aut-sei=Iguchi en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WatanabeMasami en-aut-sei=Watanabe en-aut-mei=Masami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KamitaniAkihiro en-aut-sei=Kamitani en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NagaiAtsushi en-aut-sei=Nagai en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HosoyaOsamu en-aut-sei=Hosoya en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TsutsuiKimiko en-aut-sei=Tsutsui en-aut-mei=Kimiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KumonHiromi en-aut-sei=Kumon en-aut-mei=Hiromi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil= kn-affil=Okayama University affil-num=2 en-affil= kn-affil=Okayama University affil-num=3 en-affil= kn-affil=Okayama University affil-num=4 en-affil= kn-affil=Okayama University affil-num=5 en-affil= kn-affil=Okayama University affil-num=6 en-affil= kn-affil=Okayama University affil-num=7 en-affil= kn-affil=Okayama University en-keyword=dynamin 2 kn-keyword=dynamin 2 en-keyword=endocytosis kn-keyword=endocytosis en-keyword=spermatogenesis kn-keyword=spermatogenesis END start-ver=1.4 cd-journal=joma no-vol=62 cd-vols= no-issue=6 article-no= start-page=385 end-page=391 dt-received= dt-revised= dt-accepted= dt-pub-year=2008 dt-pub=200812 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Dynamin 2 Cooperates with Amphiphysin 1 in Phagocytosis in Sertoli Cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=Testicular Sertoli cells highly express dynamin 2 and amphiphysin 1. Here we demonstrate that dynamin 2 is implicated in phosphatidylserine (PS)-dependent phagocytosis in Sertoli cells. Immunofluorescence and dual-live imaging revealed that dynamin 2 and amphiphysin 1 accumulate simultaneously at ruffles. These proteins are specifically bound in vitro. Over-expression of dominant negative dynamin 2 (K44A) inhibits liposome-uptake and leads to the mis-localization of amphiphysin 1. Thus, the cooperative function of dynamin 2 and amphiphysin 1 in PS-dependent phagocytosis is strongly suggested.
en-copyright= kn-copyright= en-aut-name=NakanishiAkira en-aut-sei=Nakanishi en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AbeTadashi en-aut-sei=Abe en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WatanabeMasami en-aut-sei=Watanabe en-aut-mei=Masami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakeiKohji en-aut-sei=Takei en-aut-mei=Kohji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamadaHiroshi en-aut-sei=Yamada en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil= kn-affil=Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=2 en-affil= kn-affil=Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=3 en-affil= kn-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=4 en-affil= kn-affil=Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=5 en-affil= kn-affil=Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences en-keyword=dynamin kn-keyword=dynamin en-keyword=amphiphysin kn-keyword=amphiphysin en-keyword=phagocytosis kn-keyword=phagocytosis en-keyword=testis kn-keyword=testis END start-ver=1.4 cd-journal=joma no-vol=119 cd-vols= no-issue=1 article-no= start-page=1 end-page=5 dt-received= dt-revised= dt-accepted= dt-pub-year=2007 dt-pub=20070501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=アデノ随伴ウィルスベクターを用いた局所前立腺癌遺伝子治療の可能性:マスピンの長期発言により腫瘍増殖が効率的に抑制された en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=WatanabeMasami en-aut-sei=Watanabe en-aut-mei=Masami kn-aut-name=渡部昌実 kn-aut-sei=渡部 kn-aut-mei=昌実 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学大学院医歯薬総合研究科・泌尿器病態学 en-keyword=アデノ随伴ウィルス kn-keyword=アデノ随伴ウィルス en-keyword=マスピン kn-keyword=マスピン en-keyword=遺伝子治療 kn-keyword=遺伝子治療 en-keyword=前立腺癌 kn-keyword=前立腺癌 en-keyword=アポトーシス kn-keyword=アポトーシス END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2000 dt-pub=20000331 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=神経終末タンパク質AmphiphysinⅠのヒト精巣における発現 en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name= en-aut-sei= en-aut-mei= kn-aut-name=渡部昌実 kn-aut-sei=渡部 kn-aut-mei=昌実 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 END