start-ver=1.4 cd-journal=joma no-vol=91 cd-vols= no-issue=946 article-no= start-page=24-00128 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Development of a guideline proposal system for correcting cutting conditions based on the overhang length of ball end-mills kn-title=ボールエンドミルの突き出し長さに応じた切削条件補正システムの開発 en-subtitle= kn-subtitle= en-abstract= kn-abstract=In the field of die and mold machining, determining appropriate cutting conditions is crucial. Factors such as tool geometry, machining path, work material characteristics, machining efficiency, and finishing accuracy must be taken into consideration. However, the current method of determining cutting conditions relies heavily on the intuition and experience of skilled engineers, and there is a need for a system to replace such knowledge. One of the critical factors affecting machining accuracy and efficiency is the tool overhang length, which is directly related to tool geometry. Unfortunately, there is no clear guideline for its determination. In a previous study, researchers developed a system to quickly derive cutting conditions using a data mining method and Random Forest Regression (RFR) applied to a tool catalog database. In this study, we constructed a new cutting condition compensation system based on the existing model, which accounts for the tool overhang length. The results of cutting experiments under high aspect ratio overhang lengths confirm that the correction coefficients proposed by the system are significant. en-copyright= kn-copyright= en-aut-name=KODAMAHiroyuki en-aut-sei=KODAMA en-aut-mei=Hiroyuki kn-aut-name=児玉紘幸 kn-aut-sei=児玉 kn-aut-mei=紘幸 aut-affil-num=1 ORCID= en-aut-name=MORIYAYuki en-aut-sei=MORIYA en-aut-mei=Yuki kn-aut-name=守屋祐輝 kn-aut-sei=守屋 kn-aut-mei=祐輝 aut-affil-num=2 ORCID= en-aut-name=MORIMOTOTatsuo en-aut-sei=MORIMOTO en-aut-mei=Tatsuo kn-aut-name=盛元達雄 kn-aut-sei=盛元 kn-aut-mei=達雄 aut-affil-num=3 ORCID= en-aut-name=OHASHIKazuhito en-aut-sei=OHASHI en-aut-mei=Kazuhito kn-aut-name=大橋一仁 kn-aut-sei=大橋 kn-aut-mei=一仁 aut-affil-num=4 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil=岡山大学 学術研究院環境生命自然科学学域 affil-num=2 en-affil=Graduate school of Environmental, Life, Natural Science and Technology, Okayama University kn-affil=岡山大学 大学院環境生命自然科学研究科 affil-num=3 en-affil=Graduate school of Environmental, Life, Natural Science and Technology, Okayama University kn-affil=岡山大学 大学院環境生命自然科学研究科 affil-num=4 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil=岡山大学 学術研究院環境生命自然科学学域 en-keyword=Data mining kn-keyword=Data mining en-keyword=Cutting conditions kn-keyword=Cutting conditions en-keyword=Machine learning kn-keyword=Machine learning en-keyword=Random Forest Regression kn-keyword=Random Forest Regression en-keyword=Ball end-mill kn-keyword=Ball end-mill en-keyword=Tool overhang length kn-keyword=Tool overhang length END start-ver=1.4 cd-journal=joma no-vol=19 cd-vols= no-issue=3 article-no= start-page=337 end-page=345 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250505 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Study on the Grinding Temperature of Workpiece in Side Plunge Grinding Process en-subtitle= kn-subtitle= en-abstract= kn-abstract=Grinding is used to finish thrust metal attachment parts, such as crankshafts, which have both journal and thrust surfaces. In side plunge grinding, a thrust surface and a cylindrical surface of a shaft workpiece with collars are finished in a single plunge grinding process. However, the surface quality near the ground internal corner, where grinding fluid may not penetrate, can deteriorate, causing high residual stress and cracks owing to grinding heat. While it has been reported that quality issues at the inner corners of the ground surface can be mitigated by reducing the grinding point temperature through efficient cooling fluid supply, the mechanisms of grinding phenomena and heat generation in side plunge grinding are not yet fully understood. In this study, the variations in the grinding temperature at the thrust surface of a workpiece with a collar were experimentally investigated using a wire/workpiece thermocouple to clarify these phenomena. The results revealed a significant increase in the grinding temperature at the corners of the grinding zone. However, it slightly decreases as the thermocouple output approaches the center of the workpiece, indicating a slight effect of the grinding speed. The surface temperature of the workpiece in side plunge grinding is primarily influenced by the wheel depth-of-cut in the thrust direction. Additionally, the effect of workpiece rotational speed and grinding infeed speed on temperature distribution has been demonstrated. en-copyright= kn-copyright= en-aut-name=GaoLingxiao en-aut-sei=Gao en-aut-mei=Lingxiao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KuidaMotoki en-aut-sei=Kuida en-aut-mei=Motoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KodamaHiroyuki en-aut-sei=Kodama en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OhashiKazuhito en-aut-sei=Ohashi en-aut-mei=Kazuhito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=grinding kn-keyword=grinding en-keyword=thrust surface kn-keyword=thrust surface en-keyword=grinding temperature kn-keyword=grinding temperature en-keyword=thermocouple kn-keyword=thermocouple END start-ver=1.4 cd-journal=joma no-vol=19 cd-vols= no-issue=1 article-no= start-page=JAMDSM0001 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Development of tool life prediction system for square end-mills based on database of servo motor current value en-subtitle= kn-subtitle= en-abstract= kn-abstract=Accurate prediction of tool life is crucial for reducing production costs and enhancing quality in the machining process. However, such predictions often rely on empirical knowledge, which may limit inexperienced engineers to reliably obtain accurate predictions. This study explores a method to predict the tool life of a cutting machine using servo motor current data collected during the initial stages of tool wear, which is a cost-effective approach. The LightGBM model was identified as suitable for predicting tool life from current data, given the challenges associated with predicting from the average variation of current values. By identifying and utilizing the top 50 features from the current data for prediction, the accuracy of tool life prediction in the early wear stage improved. As this prediction method was developed based on current data obtained during the very early wear stage in experiments with square end-mills, it was tested on extrapolated data using different end-mill diameters. The findings revealed average accuracy rates of 71.2% and 69.4% when using maximum machining time and maximum removal volume as thresholds, respectively. en-copyright= kn-copyright= en-aut-name=KODAMAHiroyuki en-aut-sei=KODAMA en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SUZUKIMakoto en-aut-sei=SUZUKI en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OHASHIKazuhito en-aut-sei=OHASHI en-aut-mei=Kazuhito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate school of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Milling kn-keyword=Milling en-keyword=LightGBM kn-keyword=LightGBM en-keyword=Tool life prediction kn-keyword=Tool life prediction en-keyword=Square end-mill kn-keyword=Square end-mill en-keyword=Servo motor current kn-keyword=Servo motor current END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=5 article-no= start-page=434 end-page=448 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230905 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effect of Vibration Behavior in Low-Frequency Vibration Cutting on Surface Properties of Workpiece en-subtitle= kn-subtitle= en-abstract= kn-abstract= The objective of this study was to determine the effect of vibration behavior on workpiece surface properties in low-frequency vibration cutting. The effects of the parameters that determine vibration behavior on surface roughness were quantitatively evaluated through a comparison with other cutting conditions. Furthermore, by clarifying how the surface properties of the workpiece, such as roughness, roundness, and cross-sectional curves, change depending on the vibration behavior, a search for optimal conditions for low-frequency vibration cutting was conducted. The best surface properties were obtained under the condition of spindle rotation per vibration E=4.5. By using a value close to the minimum possible spindle rotation R=0.5 when the workpiece is retracted, it is expected to be effective in suppressing the variation in surface roughness at each phase angle; this variation is characteristic of low-frequency vibration cutting. Workpieces machined under low-frequency vibration conditions such as (E=2.5, R=1.0) and (E=3.5, R=1.0) were found to form characteristic surface patterns on the workpiece surface owing to a phenomenon in which the depth of the cut to the workpiece changes. en-copyright= kn-copyright= en-aut-name=KodamaHiroyuki en-aut-sei=Kodama en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsunoShota en-aut-sei=Matsuno en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShibataNaoyuki en-aut-sei=Shibata en-aut-mei=Naoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OhashiKazuhito en-aut-sei=Ohashi en-aut-mei=Kazuhito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Okayama University kn-affil= affil-num=2 en-affil=Okayama University kn-affil= affil-num=3 en-affil=Okayama University kn-affil= affil-num=4 en-affil=Okayama University kn-affil= en-keyword=low-frequency vibration cutting kn-keyword=low-frequency vibration cutting en-keyword=vibration behavior kn-keyword=vibration behavior en-keyword=surface roughness kn-keyword=surface roughness en-keyword=cross-sectional curve kn-keyword=cross-sectional curve END start-ver=1.4 cd-journal=joma no-vol=65 cd-vols= no-issue= article-no= start-page=53 end-page=63 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=202009 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Thermal influence on surface layer of carbon fiber reinforced plastic (CFRP) in grinding en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this study, we investigated thermal influence on surface layer of CFRP in grinding with heat conduction analysis using grinding temperature at wheel contact area on dry and wet condition. Moreover, the thermal affected layer was analyzed through an experiment to examine the temperature of glass transition and thermal decomposition of the matrix resin that composes the CFRP used in this study. The influence of thermal effect on grinding of CFRP was verified based on observation of ground surface finish after grinding using SEM and the measurement of surface roughness. From the measurement result of DSC (Differential Scanning Calorimetry),TG-DTA (Thermogravimetry-Differential Thermal Analysis), It was found that the thermal affected layer of CFRP includes a layer in which the matrix resin is changed in quality by exceeding the glass transition temperature and a layer in which the matrix resin is thermally decomposed by exceeding the thermal decomposition temperature. In addition, it was found that the surface roughness was significantly reduced if the thermal affected layer with thermal decomposition was generated. In each grinding atmosphere, it tended to increase of grinding temperature at wheel contact area with increasing in the setting depth of cut. In the case of dry grinding, grinding temperature at wheel contact area increased up to t thermal decomposition temperature of the matrix resin. However, in the case of the wet grinding, grinding temperature at wheel contact area did not increase until thermally decomposition temperature. From the result of simulation about thermal affected layer, influence of grinding heat increased with increasing in the setting depth of cut. Ultimately, the thermal affected layer with thermal decomposition was generated in dry grinding. Moreover, from the results of SEM observation, it was confirmed that the surface finish properties deteriorated significantly due to thermal decomposition of the matrix resin in the case of Δ = 400 μm in the setting depth of cut at fiber angle θ = 0°. On the other hand, it was confirmed that the micro damage of carbon fiber was occurred in wet grinding at each setting depth of cut. en-copyright= kn-copyright= en-aut-name=KodamaHiroyuki en-aut-sei=Kodama en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkazakiShingo en-aut-sei=Okazaki en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=JiangYifan en-aut-sei=Jiang en-aut-mei=Yifan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YodenHiroyuki en-aut-sei=Yoden en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OhashiKazuhito en-aut-sei=Ohashi en-aut-mei=Kazuhito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Okayama University kn-affil= affil-num=2 en-affil=Okayama University kn-affil= affil-num=3 en-affil=Okayama University kn-affil= affil-num=4 en-affil=Industrial Technology Research Institute of Okayama Prefectural Government kn-affil= affil-num=5 en-affil=Okayama University kn-affil= en-keyword=Carbon fiber reinforced plastic (CFRP) kn-keyword=Carbon fiber reinforced plastic (CFRP) en-keyword=Grinding kn-keyword=Grinding en-keyword=Grinding heat kn-keyword=Grinding heat en-keyword=Heat-affected layer kn-keyword=Heat-affected layer en-keyword=Heat condition analysis kn-keyword=Heat condition analysis END