ID 60872
フルテキストURL
著者
Puthenpurakal, Tony J. Department of Mathematics, IIT Bombay
抄録
Let (A, m) be an excellent normal domain of dimension two. We define an m-primary ideal I to be a pg -ideal if the Rees algebra A[It] is a Cohen-Macaulay normal domain. If A has infinite residue field then it follows from a result of Rees that the product of two pg ideals is pg . When A contains an algebraically closed field k ∼= A/m then Okuma, Watanabe and Yoshida proved that A has pg -ideals and furthermore product of two pg -ideals is a pg ideal. In this article we show that if A is an excellent normal domain of dimension two containing a field k ∼= A/m of characteristic zero then also A has pg -ideals.
キーワード
pg -ideal
normal Rees rings
Cohen-Macaulay rings
stable ideals
備考
Mathematics Subject Classification. Primary 13A30, 13B22; Secondary 13A50, 14B05.
発行日
2021-01
出版物タイトル
Mathematical Journal of Okayama University
63巻
1号
出版者
Department of Mathematics, Faculty of Science, Okayama University
開始ページ
167
終了ページ
173
ISSN
0030-1566
NCID
AA00723502
資料タイプ
学術雑誌論文
言語
英語
著作権者
Copyright©2021 by the Editorial Board of Mathematical Journal of Okayama University
論文のバージョン
publisher
査読
有り
Submission Path
mjou/vol63/iss1/10
過去1年のアクセス数
アクセス数 : ?
ダウンロード数 : ?

今月のアクセス数
アクセス数 : ?
ダウンロード数 : ?