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Photosynthetic symbiosis occurs across diverse animal lineages, including
Porifera, Cnidaria, Xenacoelomorpha and Mollusca. These associations
between animal hosts and photosynthetic algae often involve the
exchange of essential macronutrients, supporting adaptation to a wide
range of aquatic environments. A small yet taxonomically widespread
subset of animals host photosymbionts from the core chlorophytes, a
phylogenetically expansive clade of green algae. These rare instances of
‘plant-like’ animals have arisen independently across distantly related
lineages, resulting in striking ecological and physiological diversity.
Although such associations provide valuable insights into the evolution of
symbiosis and adaptation to novel ecological niches, animal–chlorophyte
photosymbioses remain relatively understudied. Here, we present
an overview of photosymbioses between animals and chlorophytes,
highlighting their independent evolutionary origins, ecological diversity
and emerging genomic resources. Focusing on Porifera, Cnidaria and
Xenacoelomorpha, we review shared and lineage-specific adaptations
underlying these associations. We also contrast them with dinoflagellate-
based systems to demonstrate their distinct ecological and cellular features.
Our work sets the stage for elucidating the molecular mechanisms
underlying these associations, enhancing our understanding of how
interspecies interactions drive adaptation to unique ecological niches
through animal–chlorophyte symbiosis.

1. Introduction
Photosynthetic symbiosis, or photosymbiosis, is a close and long-term
association between distinct organisms in which an autotrophic endosym-
biont resides within a heterotrophic host. These associations involve complex
metabolic interactions that can profoundly influence the life history and
evolutionary fitness of both partners [1–3]. Photosymbiosis has facilitated
the radiation of animals in aquatic environments, as the macronutrients
provided by algal photosymbionts enable their hosts to explore and exploit
new ecological niches [4–6]. A wide range of animal lineages have photo-
symbiotic associations with various types of broadly defined ‘algae’, such
as green algae, dinoflagellates and diatoms [3]. The multiple evolutionary
origins of these associations in both hosts and photosymbionts have resulted
in multifaceted ecological and physiological characteristics.

The core chlorophytes are a phenotypically rich and ecologically impor-
tant clade of green algae, falling under the division Chlorophyta—one of
the two major clades forming the green plant lineage [7]. Having originated
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from simple unicellular planktonic marine algae, core chlorophytes diversified drastically in form and radiated into freshwater
and terrestrial environments. They now consist of four major classes: Chlorodendrophyceae, unicellular planktonic algae
characterized by four flagella; Trebouxiophyceae, a diverse lineage including unicellular coccoid algae and terrestrial lichen
algae; Chlorophyceae, the most species-rich class abundant in freshwater habitats; and Ulvophyceae, predominantly benthic
marine macroalgae (figure 1a,b) [7,15,16]. These four classes contain all known green algal photosymbionts of animals, and
photosymbiosis arose independently in numerous distinct algal lineages. Photosymbiotic species are scattered across Trebouxio-
phyceae in particular, with especially high representation in the family Chlorellaceae [17,18].

In this review, we summarize the current understanding of chlorophyte photosymbiosis in animals, with a comparative
perspective across Porifera, Cnidaria and Xenacoelomorpha—the three phyla in which this trait is best characterized—to
highlight its commonality and diversity. We also contrast these associations with well-studied dinoflagellate-based systems,
such as those in corals and giant clams. Given the numerous independent origins of this trait across lineages, we discuss
ecological factors that may influence the evolvability of animal–chlorophyte photosymbiosis. We highlight key adaptations
that facilitate these associations, such as symbiosomes in cnidarians, which are derived from host phagosomes and serve
to compartmentalize intracellular symbionts, and phototaxis in acoels, which enables symbiotic animals to optimize light
exposure. These are discussed alongside the underlying molecular interactions that support and regulate photosymbiosis. In
light of recent advances in omics approaches and the growing availability of genomic data, we provide an overview of current
genomic resources for photosymbiotic animals and chlorophytes. Overall, animal–chlorophyte photosymbiosis is characterized
by complexity and heterogeneity, indicating the need for further investigation in this underexplored area.

2. Evolution of animal–chlorophyte photosymbioses
Chlorophyte photosymbiosis has evolved independently in multiple animal lineages, yet certain species have emerged as
key models for studying this association in detail. Recently, the facultatively symbiotic freshwater sponge Ephydatia muelleri
(Porifera) has received increased attention as a model system [19]. In addition to the sponge, obligate symbioses are exemplified
by two well-established systems: the freshwater hydrozoan Hydra viridissima (Cnidaria), commonly known as green hydra
(figure 1c–e) [20], and the marine acoel Symsagittifera roscoffensis (Xenacoelomorpha), a small acoelomate worm inhabiting
intertidal zones (figure 1f–h) [2,21]. These three phyla span several major branches of animal evolution: Porifera and Cnidaria
are early diverging metazoans, while Xenacoelomorpha is thought to be the sister group to all other Bilateria or to Ambulacraria
[22–24]. Despite their independent origins, these systems converge on similar symbiotic traits, such as host-controlled symbio-
somes in cnidarians and sponges (figure 1i, table 1 and electronic supplementary material, table S1) [38–40].

In Porifera, intracellular photosymbioses have been documented in freshwater sponges of the order Spongillida (table 1).
These sponges facultatively establish intracellular associations with green algae from multiple families, including Chlorellaceae,
Coccomyxaceae (Trebouxiophyceae) and Mychonastaceae (Chlorophyceae) (figure 1i and table 1) [25,26,28,29]. These sponge
associations involve polyphyletic algal partners and vary geographically, reflecting the broader ecological flexibility of the
sponge holobiont [25,26]. This pattern suggests that members of Spongillida may possess a generalized capacity for green algal
photosymbiosis, with associations forming opportunistically based on local environmental availability.

In Cnidaria, the green hydra H. viridissima offers a particularly tractable framework for investigating the dynamics of
animal–chlorophyte symbiosis. As the earliest branching member of the genus Hydra, it established a stable association with
Chlorella species (Trebouxiophyceae) following its divergence from other species within the genus (table 1) [10,11,41]. The
paraphyly of Chlorella symbionts initially suggested that photosymbiosis in H. viridissima may have arisen through multiple
independent acquisition events [42]. However, molecular phylogenetic analyses have identified five host–symbiont cospeciation
events, supporting an alternative scenario in which symbiotic Chlorella lineages reverted to a free-living state during an early
period of unstable association [17]. These host–symbiont partnerships are maintained across generations via vertical transmis-
sion [43,44], and the symbionts reside within host-derived symbiosomes, physically isolated from the external environment
(figure 1d,e). This compartmentalization suggests that adaptation to the host niche may have led to a reduction in algal
autonomy [20]. By contrast, H. vulgaris, commonly known as the brown hydra, rarely harbours symbionts in nature (table 1).
Nonetheless, it can sustain artificially introduced Chlorella, indicating that algal uptake is not strictly restricted in Hydra [31,33],
although the establishment of stable, long-term symbiosis appears to require high specificity [45].

All photosymbiotic acoels belong to the family Convolutidae—a derived and morphologically diverse group—and are
distributed across two distinct clades [13,46,47]. Within the Convolutidae, one clade harbours intracellular, vertically trans-
mitted dinoflagellates, whereas another forms extracellular associations with chlorophytes that are predominantly acquired
through horizontal transmission (figure 1h,i and table 1). Many species within the second clade, including S. roscoffensis and
Praesagittifera naikaiensis, exhibit high specificity for Tetraselmis species (Chlorodendrophyceae) and are obligately dependent
on their symbionts for survival [48]. Notably, symbiont identity can differ even among sympatric acoel species [49]. Both
clades include early branching, non-photosymbiotic taxa, suggesting that photosymbiosis evolved independently in the two
lineages. A few species deviate from these general patterns: Amphiscolops oni harbours multiple algal symbionts, while Convoluta
convoluta associates with a diatom (figure 1i and electronic supplementary material, table S1). Together with findings from
Porifera and Cnidaria, these observations suggest the evolutionary plasticity of animal–chlorophyte photosymbioses and the
diverse strategies through which they have emerged across the animal tree of life.
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3. Ecological factors underlying photosymbioses
During photosymbiosis, environmental factors such as temperature [50–52], light availability [53,54] and salinity [55,56] have
been shown to influence the photosynthetic performance of algal symbionts. In particular, differences in photosynthetic
pigments between dinoflagellates and chlorophytes are closely linked to their distinct ecological niches. Dinoflagellates possess
chlorophyll c and the carotenoid peridinin, which enable absorption of green to yellow wavelengths (approximately 470−550
nm), optimizing light harvesting in clear marine environments where these wavelengths penetrate most effectively [57–60]. In
contrast, chlorophytes utilize chlorophyll b, which primarily absorbs blue (approx. 455 nm) and red light. Animal–chlorophyte
symbioses are typically found in turbid, eutrophic or shallow-water habitats, such as riverbanks, intertidal zones or freshwater
lakes, where the underwater light spectrum is altered by suspended particles and dissolved organic matter, resulting in a
reduction of red and blue light penetration. In such conditions, chlorophyll b may facilitate efficient harvesting of the remaining
short-wavelength light near the surface [57,59,61,62]. These distinct light regimes likely contributed to the divergent evolution
of light-harvesting pigments in dinoflagellates and chlorophytes. This physiological constraint is reflected in the ecology
of chlorophyte-photosymbiotic animals, including hydras, acoels and freshwater sponges, whose distributions are similarly
limited to shallow, illuminated and nutrient-rich environments.

The influence of ecological factors becomes evident when comparing the global distributions of animals engaged in green
algal versus dinoflagellate photosymbioses. By mapping georeferenced records from the Global Biodiversity Information
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half-filled circles represent kleptoplasty in sacoglossans, where plastids are retained but algae are digested. (c–e) Hydra–Chlorella photosymbiosis: (c) Hydra viridissima
with Chlorella (Trebouxiophyceae) (scale bar, 2 mm); (d) host epithelial cell with intracellular symbionts (arrowhead; scale bar, 30 µm); (e) transmission electron
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Facility, we found that animals with green algal symbionts are more prevalent in cooler climates, particularly in regions north of
the Tropic of Cancer and south of the Tropic of Capricorn (figure 2a). These species occur in both marine and freshwater
environments, typically along coastlines or in inland waters. In contrast, animals that harbour dinoflagellate symbionts, such as
corals and giant clams, are primarily concentrated in the warm, clear, coastal waters of the tropics. These patterns suggest that
dinoflagellate photosymbiosis is better suited to warmer environments, whereas green algal symbiosis may be favoured under
cooler conditions.

This pattern is supported by studies of the sea anemones Anthopleura elegantissima and A. xanthogrammica, which associate
with chlorophyte and/or dinoflagellate photosymbionts (figure 1i and table 1), and regulate the relative abundance of symbiont
types in response to environmental conditions [63,64]. Dinoflagellate-rich symbioses are more commonly found at lower
latitudes, likely reflecting the higher thermal tolerance of dinoflagellate symbionts [65–67]. Although the cold tolerance of
chlorophyte symbionts has not been directly characterized, the ability to associate with multiple algal partners may enhance
host fitness by increasing resilience to environmental fluctuations [64,66].

In contrast to poriferans and cnidarians, the motility of photosymbiotic acoels enables them to adapt to their environment
and optimize photosynthesis through circatidal vertical migration [68]. Like other bilaterians, acoels possess innervated sensory
structures, including photoreceptors and a gravity-sensing organ (figure 1g) [69,70]. These organs enable them to detect
environmental cues such as light and gravity, allowing movement to the sand surface or burrowing into the substrate as
needed. This behavioural plasticity enables S. roscoffensis to regulate light exposure, supporting its photosymbiotic lifestyle in
intertidal zones where light intensity, temperature and osmolarity fluctuate markedly throughout the day [71,72]. Together,
these examples illustrate how ecological and behavioural traits shape the distribution, stability and evolution of animal–chloro-
phyte photosymbioses across diverse lineages.

4. Molecular basis of photosymbioses
Photosymbioses involve the bidirectional exchange of essential nutrients. Classically, isotopic tracers have been applied to
understand metabolic interactions between hosts and symbionts [73–76], since this technique allows us to trace the flow of
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elements such as carbon and nitrogen. More recently, nanoscale secondary ion mass spectrometry (NanoSIMS) has enabled
the ultrastructural mapping of nutrient fate by visualizing the subcellular distribution of elements and their stable isotopes
[77–79]. These studies have revealed that hosts receive photosynthetically fixed carbon, such as sugars and lipids, from their
algal symbionts, while the symbionts obtain inorganic nitrogen compounds, including nitrate and ammonium, as well as amino
acids, from the host [4,74,80–82]. The specific metabolic products exchanged vary across host–symbiont pairings (figure 2b),
indicating that each association has evolved distinct metabolic characteristics. In the green hydra H. viridissima, the host supplies
nitrogen in the form of glutamine [83], and this is reflected in the symbiont’s loss of key genes required for nitrate assimilation,
including nitrate transporters and nitrite reductase [20]. This gene loss likely contributes to the reduced autonomy of the
symbiont, in contrast to symbiotic dinoflagellates, which retain the capacity to assimilate inorganic nitrogen independently
(figure 2b,c) [84]. In the freshwater sponge E. muelleri, asparagine synthetase is upregulated in the symbiotic state and may play
a key role in nitrogen provisioning (figure 2b) [19]. Corals and giant clams inhabit oligotrophic marine environments, where
the ability to assimilate inorganic nitrogen remains important for managing nitrogen availability. By contrast, in nutrient-rich
environments such as those inhabited by green hydra, metabolic efficiency may be favoured, with symbionts specializing in
carbon fixation while relying on the host for nitrogen [20]. However, the mechanisms of nutrient transport in photosymbiotic
acoels and sponges remain poorly understood, although several candidate genes have been identified [19,85].

In addition to nutrient exchange, host mechanisms that enhance symbiont photosynthesis also play a critical role in
maintaining photosymbiosis. One such adaptation is the carbon-concentrating mechanism (CCM), which improves photosyn-
thetic efficiency in low-CO2 environments [86]. In corals and giant clams, a host-controlled CCM has been identified, with
vacuolar-type H+-ATPase (VHA) playing a central role [87,88]. VHA, a ubiquitous eukaryotic enzyme, uses energy from ATP
hydrolysis to transport protons across biological membranes and localizes to the host membrane surrounding the symbionts
(figure 2b,c). This proton transport acidifies the lumen, promoting the conversion of HCO3

- and H+ into CO2, which can
then diffuse into the algal cells to support photosynthesis. Although there is currently no direct evidence that VHA enhances
photosynthesis in chlorophyte symbionts, it has been proposed that VHA may regulate acidification in host-derived symbio-
somes in green hydra and in the extracellular environment of acoels (figure 2b,c) [20,85].

The spatial positioning of symbionts within the host is a critical factor shaping molecular interactions in photosymbioses.
Electron microscopy has significantly contributed to our understanding of cellular structures, including symbiosomes, and
has facilitated the identification of cell types involved in photosymbiosis [37,89,90]. Following the establishment of symbiosis,
chlorophyte algae may be maintained intracellularly within host cells, as observed in green hydra and sponges, or extracellu-
larly, as in acoels. In intracellular systems, such as those between corals and their dinoflagellate symbionts from the family
Symbiodiniaceae [91], the symbionts are housed within host-derived symbiosomes (figures 1d,e and 2b) [92], whereas in acoels,
chlorophyte symbionts are located in the extracellular space within the parenchymal tissue (figures 1h and 2c) [2]. Unlike
giant clams, which possess highly specialized mantle tubules known as zooxanthellal tubes for housing symbionts (figure 2c)
[93], acoels lack dedicated photosymbiotic organs. A central challenge in photosymbiosis is maintaining metabolic cooperation
while preventing cellular damage to both partners. In intracellular systems, specific host cells, such as the endodermal or
gastrodermal cells in cnidarians, may facilitate nutrient exchange and regulate host-controlled CCM. However, this close
proximity also increases the host’s exposure to reactive oxygen species (ROS) generated during photosynthesis [87]. In contrast,
in acoels, ROS produced by extracellular symbionts are less likely to compromise the oxidative status of host cells directly due
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to spatial separation [94]. Together, these contrasting structural arrangements highlight the diversity of cellular strategies that
have evolved to balance metabolic integration and physiological protection in animal–chlorophyte photosymbioses.

5. Genomic resources for studying photosymbioses
Understanding photosymbiosis at the molecular level increasingly relies on high-quality genomic and transcriptomic data [85].
Genomes, for instance, enable the identification of genes involved in nutrient exchange, host–symbiont recognition and cellular
adaptation. More broadly, they have transformed evolutionary biology by providing insights into phylogeny, gene regulation
and cell differentiation [95]. In photosymbiotic systems, comparative host–symbiont genomics has revealed specific metabolic
dependencies between partners [20].

Currently, reference genomes are available for 14 chlorophyte–photosymbiotic animal species across four phyla (figure 3a).
Chromosome-level assemblies have been generated for the freshwater sponge E. muelleri and the acoel S. roscoffensis, both of
which are now being used to study the molecular basis of symbiosis. For example, the genome of E. muelleri has facilitated
the identification of genes related to nitrogen exchange and host–symbiont interactions [19,96]. Further efforts are underway
through the Aquatic Symbiosis Genomics (ASG) project, a global initiative launched in 2021 by the Wellcome Sanger Institute,
which aims to sequence 1000 high-quality genomes from 500 symbiotic systems [97]. As part of this effort, genomes of the
freshwater sponge Spongilla lacustris, symbiotic with Lewiniosphaera and Choricystis species (Trebouxiophyceae), and the sea
anemone Anthopleura xanthogrammica, symbiotic with Elliptochloris species (Trebouxiophyceae), have been released, contributing
to a growing genomic framework for investigating animal–chlorophyte photosymbioses (figure 3b,c and table 1) [25,34].

Despite advances in genome sequencing technologies, chromosome-level assemblies are currently available for only a
few animal hosts, with their chlorophyte symbionts still  lacking equivalent resources. Among chlorophyte photosymbiotic
systems, only the pairing of H. viridissima  and Chlorella  sp. A99 currently has draft genomic resources available for
both partners (figure 3a). Such genomic data are essential for analysing transcriptomes and investigating transcriptional
changes in both partners during photosymbiosis. In dinoflagellate-based systems, assembling complete symbiont genomes
has been particularly challenging. This is due to their dynamic community composition of Symbiodiniaceae symbionts,
which shifts in response to varying environmental conditions [98,99] and their exceptionally large genome sizes, which
range from 1 to 250 Gb [100]. In contrast, chlorophyte genomes are much smaller, typically between 20 and 300 Mb,
making sequencing and assembly more tractable (figure 3b,c). Furthermore, chlorophyte genomes have a much higher
GC content than metazoan genomes. While animal sequences typically have a GC content between 30% and 40%, green
algae range from 50% to 70%. This clear, non-overlapping difference suggests distinct gene regulatory mechanisms and
provides a useful feature for developing bioinformatics pipelines. The contrasting GC content generates distinct k-mer
signatures, which can be exploited to distinguish between host and symbiont sequences and to jointly analyse gene
expression within the holobiont. These advantages make animal–chlorophyte photosymbioses promising model systems
for exploring the genomic basis of symbiosis and host–symbiont co-evolution.

6. Conclusion
Animal–chlorophyte photosymbioses have been studied for over a century. A key breakthrough in the laboratory study of
these systems has been the ability to maintain hosts and symbionts independently over long periods. This enables researchers
to access non-symbiotic states, such as bleached green hydra, aposymbiotic juveniles of acoels and free-living algae [2,20].
These cleaner experimental conditions support the development of genetic resources that are free from contamination, which is
essential for identifying lineage-specific features and uncovering traits involved in the emergence of symbiotic mechanisms.

Cellular interactions between hosts and symbionts are central to photosymbiosis. Intracellular and extracellular associations
may offer distinct advantages, such as more efficient nutrient transfer or better management of oxidative stress. These interac-
tions affect not only the symbiotic interface but also the broader host tissue context. For instance, photosynthetic products must
be redistributed to the appropriate host cells. Classical studies using isotopic tracers and electron microscopy have revealed
aspects of nutrient transport and the cell types involved [73–76]. Yet, the genetic and spatial transcriptomic basis of these
processes remains poorly understood. Approaches such as single-cell RNA sequencing during symbiosis establishment, and
under varying environmental conditions, could reveal the dynamic gene expression landscapes that underlie these interactions
[101–103]. Identifying symbiosis-associated cell types and their molecular signatures will also allow for evolutionary compari-
sons across related species with and without symbionts.

This review has explored the diversity and common features of animal–chlorophyte photosymbioses, focusing on symbiont
localization, transmission strategies and molecular interactions. Their repeated occurrence across distantly related lineages
indicates strong selective pressures favouring the evolution of these associations. As genomic and transcriptomic resources
continue to expand, these systems offer a powerful framework for uncovering how interspecies partnerships drive the evolution
of cellular function and ecological adaptation.
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