1	Human cord blood-endothelial progenitor cells alleviate intimal hyperplasia of
2	arterial damage in a rat stroke model.
3	Hongming Sun, ¹ Ryuta Morihara, ¹ Tian Feng, ¹ Zhihong Bian, ¹ Haibo Yu, ¹ Xiao Hu, ¹
4	Xinran Hu, ¹ Yuting Bian, ¹ Ryo Sasaki, ¹ Yusuke Fukui, ¹ Mami Takemoto, ¹ Taijun
5	Yunoki, ¹ Yumiko Nakano, ¹ Koji Abe, ² and Toru Yamashita ¹
6	
7	1) Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical
8	Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
9	2) National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-
10	higashi-cho, Kodaira-shi, Tokyo 187-8551, Japan
11	
12	Address correspondence and reprint requests to:
13	Dr. Toru Yamashita, Department of Neurology, Graduate School of Medicine, Dentistry and
14	Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-
15	8558, Japan.
16	Tel: 81-86-235-7365, Fax: 81-86-235-7368,
17	E-mail: toruyamashita@okayama-u.ac.jp

2	
3	Abbreviations
4	ANOVA, analysis of variance; CCA, common carotid artery; hCB-EPCs, human cord blood-
5	endothelial progenitor cells; HBSS, Hank's balanced salt solution; H&E, hematoxylin-eosin;
6	ICA, internal carotid artery; MCA, middle cerebral artery; PBS, phosphate-buffered saline;
7	PFA, paraformaldehyde; tMCAO, transient middle cerebral artery occlusion.
8	
9	Keywords: ischemic stroke, human cord blood-endothelial progenitor cells, mechanical
10	thrombectomy, intimal hyperplasia.
11	
12	

Running title: hCB-EPC treatment accelerates artery intimal remodeling in stroke rat

1

Abstract

2 Human cord blood-endothelial progenitor cells (hCB-EPCs) isolated from the human umbilical cord can be used to repair damaged arteries. In this study, we used an animal model 3 with pathological changes that mimics artery wall damage caused by stent retrievers in 4 5 humans. We injected hCB-EPCs to investigate their effect on endothelial hyperplasia and dysfunction during intimal repair. Four groups were established based on the length of 6 reperfusion (3 d and 28 d), as well as the presence or absence of hCB-EPC therapy. Damage 7 to the internal carotid artery was evaluated by hematoxylin-eosin and immunohistochemical 8 staining. Stroke volume was not significantly different between non-EPC and EPC groups 9 although EPC treatment alleviated intimal hyperplasia 28 d after intimal damage. VEGF and 10 11 eNOS expression were significantly higher in the EPC-treated group than in the non-EPC group 3 d after intimal damage. In addition, MMP9 and 4HNE expression in the EPC-treated 12 group was significantly lower than in the non-EPC group. Ultimately, this study found that 13 venous transplantation of hCB-EPCs could inhibit neointimal hyperplasia, alleviate 14 endothelial dysfunction, suppress intimal inflammation, and reduce oxidative stress during 15 healing of intimal damage. 16

17

18