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TSETLIN LIBRARY ON P-COLORED PERMUTATIONS

AND Q-ANALOGUE

Yuto Nakagawa and Fumihiko Nakano

Abstract. K. Brown [1] studied the random to top shuffle (the Tsetlin
libary) by semigroup method. In this paper, (i) we extend his results
to the colored permutation groups, and (ii) we consider a q-analogue
of Tsetlin library which is different from what is studied in [1]. In
(i), the results also extends those results for the top to random shuffle
[4],[5], [6] to arbitrary distribution of choosing cards, but we still have
derangement numbers in the multiplicity of each eigenvalues. In (ii), a
version of q-analogue of derangement numbers by Chen-Rota [3] appears
in the multiplicity of eigenvalues.

1. Introduction

Markov chains generated by card shuffles are formulated in terms of ran-
dom walks on the symmetric groups, and many studies are done on this
subject, including estimates on the mixing times and cut-off. Among them,
random to top shuffles (Tsetlin library) can be analyzed clearly by using the
left regular band (LRB, in short) [1]. In this paper, we discuss (i) an exten-
sion of his results to the colored permutation group, and (ii) a q-analogue,
which is different from that in [1].

The first one, that is, the Tsetlin library on p-colored permutation is
described as follows. Let p ∈ N and suppose that we have certain amount of
book covers of p-types. We pick up a book at random from a bookshelf, put a
randomly chosen cover, and then put it at the leftmost side of the bookshelf.
The corresponding Markov chain (called the p-Tsetlin library) is formu-
lated as follows. Let Gn,p be the colored permutation group of p-colors which
we consider as the state space. We identify Gn,p = Cp ≀[n] Sn, where [n] :=
{1, 2, · · · , n} and Cp := {0, 1, · · · , p−1}. Let {vi}i∈[n], {hj}j∈Cp be distribu-

tions on [n] and Cp respectively. Given an element
(
(x1, q1), · · · , (xn, qn)

)
∈

([n]× Cp)
n (xa ̸= xb (a ̸= b)), we pick up a number i ∈ [n] with probability

vi, and a number q ∈ Cp with probability hq. If i = xk, we pick up (xk, qk)
change its color into q, and then put it at the top. So the new element
is
(
(xk, q), (x1, q1), · · · , (xk−1, qk−1), (xk+1, qk+1), · · · , (xn, qn)

)
. The corre-

sponding random walk on Gn,p is called the p-Tsetlin library.
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Example (p = 3, n = 7) : For given

((
3
0

)(
5
2

)(
7
2

)(
4
0

)(
1
2

)(
6
1

)(
2
0

))
suppose that we pick up number 7 and color 1. Then we have((

3
0

)(
5
2

)(
7
2

)(
4
0

)(
1
2

)(
6
1

)(
2
0

))
7→
((

7
1

)(
3
0

)(
5
2

)(
4
0

)(
1
2

)(
6
1

)(
2
0

))
.

Brown [1] studied Tsetlin library for p = 1 using LRB, computed the eigen-
values and multiplicities of the transition probability matrix, and showed
that they are given by λX =

∑
i∈X vi, mX = dn−|X|, where X ranges over

all subsets of [n], and dn := ♯{σ ∈ Sn |σ(k) ̸= k, k ∈ [n]} is the number of
permutations with no fixed points. Furthermore Chatterjee, Diaconis, and
Kim [2] studied some enumerative properties of the Tsetlin library, such as
distribution of top (and bottom) k cards. First of all, we extend Brown’s
result for p-Tsetlin library.

Theorem 1.1
(1) The eigenvalues and corresponding multiplicities of the transition prob-
ability matrix of the p-Tsetlin library are given by {(λX ,mX)}X⊂[n] where
X(⊂ [n]) ranges over all subsets of [n] and

λX =
∑
i∈X

vi, mX = (n− |X|)! pn−|X|
n−|X|∑
k=0

(−1)k

k!pk
, X ⊂ [n].

We have mX = dn−|X|, p where dn,p is equal to the number of elements of
Gn,p with no fixed points.

dn,p := ♯
{
τ =

(
σ1 σ2 · · · σn
a1 a2 · · · an

)
∈ Gn,p |σi ̸= i ∨ ai ̸= 0 ∀i ∈ [n]

}
= n!pn

n∑
j=0

(−1)j

j!pj

(2) The stationary distribution is given by

π((x1, b1), . . . , (xn, bn))

=
hb1vx1

1

hb2vx2

1− vx1

hb3vx3

1− (vx1 + vx2)

hbn−1vxn−1

1− (vx1 + · · ·+ vxn−2)

hbnvxn

1− (vx1 + · · ·+ vxn−1)

which is equal to the probability arranging the cards x1 with color b1 ,
x2 with color b2 , and so on. It also has an integral representation as in
remarked in [2] :

π((x1, b1), . . . , (xn, bn))
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=vx1
· · · vxn

hb1 · · ·hbn

∫ ∞

x1=0

∫ ∞

x2=x1

∫ ∞

x3=x2

· · ·
∫ ∞

xn=xn−1

exp(−
n∑

k=1

vxk
xk)dx1 · · · dxn

which is equal to the probability that having colors b1, b2, . . . , bn and that
X1 < X2 < · · · < Xn , where Xk has exponential sidtribution with parame-
ter vxk

.
For the top to random shuffle, which is the “inverse” of random to top

shuffle of equal weights. Diaconis-Fill-Pitman [4], Garsia [5] (p = 1), Nakano-
Sadahiro-Sakurai [6] ( general p), used some algebraic properties of such
shuffles to obtain the primitive orthogonal idempotents, leading to the same
results, and moreover also obtained the estimates on mixing time and cut-
off. But they have to assume that {vi}, {hj} are uniformly distributed. On
the other hand, Theorem 1.1 says that the Brown’s method of LRB works
for general distributions {vi}, {hj} for p-Tsetlin library. It also implies that
the eigenvalues and multiplicities depend only on “the choice of books” {vi}
and not on that of “the choice of colors” {hj}.

We next turn to the q-analogue. Let Fq be the finite field of q elements

and set Vn,q = Fn
q \ {⃗0}. We identify GLn(Vn,q) with the set of Cn,q , where

Cn,q := {X = (x1, . . . , xn) |xi ∈ Vn,q, x1, · · · , xn: linearly independent}. We
define the action of v ∈ Vn,q on A = (x1, . . . , xn) ∈ Cn,q from the left as fol-
lows. Let k be the minimum integer satisfying the condition : “ xk is equal
to a linear combination of v, x0, x1, · · · , xk−1”. Then we eliminate xk from
A and set vA := (v, x1, . . . , xk−1, xk+1, . . . , xn) ∈ Cn,q.

Example (q = 3, n = 3) :

v =

 1
1
0

 , A =


 1

0
0

 ,

 0
1
0

 ,

 0
0
1

 , vA =


 1

1
0

 ,

 1
0
0

 ,

 0
0
1


Let {wv}v∈Vn,q be a distribution on Vn,q. Given A = (x1, . . . , xn) ∈ Cn,q, we
pick up v ∈ Vn,q with probability wv and set vA. The corresponding Markov
chain on GLn(Vn,q) is called the q-analogue I of the Tsetlin library (we
will discuss q-analogue II later).

Theorem 1.2
(1) The eigenvalues and corresponding multiplicities of the transition proba-
bility matrix of the q-analogue I of the Tsetlin library are given by {(λX ,mX)}X⊂Vn,q

where X ranges over all subspaces of Vn,q and

λX =
∑
v∈X

wv, X ⊂ Vn,q, X : subspace
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mX = {n− dimX}q!
n−dimX∑

j=0

(−1)jq(
j
2)qdimX(n−dimX−j)

{j}q!

where

{0}q := 0 {n}q := qn−1(qn − 1) (n ≥ 1)

{0}q! := 1 {n}q! :=
n∏

k=1

{k}q =
n∏

k=1

qk−1(qk − 1) (n ≥ 1)

(2) The stationary distribution is given by

π(a1, . . . , an)

=
wa1

1

wa2

1− (
∑

d∈span{a1} wd)

wa3

1− (
∑

d∈span{a1,a2} wd)
· · · wai

1− (
∑

d∈span{a1,...,ai−1} wd)

· · · wan

1− (
∑

d∈span{a1,...,an−1} wd)

Remark
mX is related to a q-analogue of derangement number discussed in [3] which
we briefly recall here. Let V be an n-dimensional linear space over the finite
field Fq Gn(q) (resp. Fn(k)) be the number of automorphisms on V with
no fixed points (resp. the number of automorphisms on V fixing points in a
k-dimensional subspace and does not fix any other points) :

Gn(q) := ♯ {A ∈ auto (V ) |Ax ̸= x, for any x ̸= 0}

Fn(k) := ♯
{
f ∈ auto (V )

∣∣∣ f(x) = x, f(y) ̸= y, for any x ∈ X, y /∈ X

for some k-dimensional subspace X
}

Then Chen and Rota [3] showed

Gn(q) = {n}q!
n∑

j=0

(−1)j
q(

j
2)

{j}q!

Fn(k) =

[
n
k

]
q

{n− k}q!
n−k∑
j=0

(−1)j
q(

j
2)qk(n−k−j)

{j}q!

where

[
n
k

]
q

:=
[n]q!

[n− k]q![k]q!
is the q-binomial coefficient and

[0]q := 0, [n]q :=
qn − 1

q − 1
(n ≥ 1), [0]q! := 1, [n]q! :=

n∏
k=1

[k]q (n ≥ 1).
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These formulas imply that we cannot have the analogy of the relations which
hold in the usual set situation.

Fn(k) ̸=
[
n
k

]
q

Gn−k(q).

And the formula for mX in Theorem 1.2 implies that mX is equal to “the
derangement number per a subspace”. That is,

mX =
Fn(dimX)[

n
dimX

]
q

.

On the other hand, Brown [1] considererd another Markov chain, which
we call the q-analogue II of the Tsetlin library, such that the state
space is the set of the chains of subspaces of Vn,q and the random operation
corresponding to the map (v,A) 7→ vA mentioned in the definition of q-
analogue I. The eigenvalues of the transition probability matrix are similar
as those in Theorem 1.2, but the multiplicities are equal to dn−dimX(q)
where dn(q) is the q-derangement number introduced by [7]. dn(q) satisfies

[n]q! =
∑n

k=0

[
n
k

]
q

dk(q) as the usual derangement number does, but Fn(k)

has explicit meaning as “the derangement as a map”. In Sections 2, 3,
we prove Theorems 1.1 and 1.2 respectively, which are done by choosing
appropriate semigroups and apply Brown’s theory of LRB. In Appendix I,
we briefly recall Brown’s result on LRB [1]. In Appendix II, we recall the
definition of the q-analogue I and the statement corresponding to Theorem
1.2. In Appendix III, we show that the random walk on the hypercube
{0, 1}n with any weights can be analyzed using LRB.

2. Proof of Theorem 1.1

In this section, we introduce a LRB by which p-Tsetling library is de-
scribed, and apply Brown’s result [1] to prove Theorem 1.1. Let S′

n be the
set of arrangement of distinct numbers in [n] of length l(= 1, 2, · · · , n). And
let Sn be the corresponding set with colors.

S′
n :=

{
x = (x1, . . . , xl) ∈ [n]l

∣∣∣xi ̸= xj for i ̸= j, l = 1, 2, · · · , n
}
∪ {e}

Sn :=
{
x =

(
(x1, a1), . . . , (xl, al)

) ∣∣∣ (x1, . . . , xl) ∈ S′
n, ai ∈ Cp, l = 1, 2, · · · , n

}
∪ {e}

where e is the identity element. For x =
(
(x1, a1), . . . , (xl, al)

)
∈ Sn, let

ẋ =
(
x1 . . . xl

)
∈ S′

n be the one obtained by eliminating colors from x. Also,

for x =
(
(x1, a1), . . . , (xi, ai)

)
, y =

(
(y1, b1), · · · , (yj , bj)

)
∈ Sn, we define
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product x ∗ y of x, y to be

x ∗ y =
(
(x1, a1), . . . , (xl, al), (y1, b1), . . . , (ym, bm)

)∧
where ∧ means to eliminate any yi’s which already appears in xj ’s : that is,
on the formal concatenation of ẋ and ẏ

(x1, . . . , xl, y1, . . . , ym),

if we find a number which appears twice, then we delete what is on the right.

Example : p = 3, n = 7((
2
2

)(
1
1

)(
7
0

))
∗
((

3
0

)(
5
2

)(
7
2

)(
4
0

)(
1
2

)(
6
1

))
=

((
2
2

)(
1
1

)(
7
0

)(
3
0

)(
5
2

)(
7
2

)(
4
0

)(
1
2

)(
6
1

))∧

=

((
2
2

)(
1
1

)(
7
0

)(
3
0

)(
5
2

)(
4
0

)(
6
1

))
Then (Sn, ∗) is LRB. Moreover if we take l = 1 for x and l = n for y, say
x = (i, q) ∈ [n]×Cp and y =

(
(y1, b1), · · · , (yn, bn)

)
∈ Sn, x∗y is equal to an

element in Sn obtained by first picking up (yk, bk) = (i, bk) whose number
is equal to i, changing color to q and putting it in the leftmost position :

x ∗ y =
(
(i, q), (y1, b1), · · · , (yn, bn)

)
,

and this operation coincides with that in p-Tsetlin library. In what follows,
we write xy instead of x ∗ y.

Remark 1
When p = 1, Tsetlin library can also be represented by a suitable choice of
hyperplane arrangement. It is also the case for p = 2 which will be discussed
in our forthcoming paper.

Remark 2
Another (natural) definition of p-Tsetlin library would be to pick up (i, q) ∈
[n] × Cp, r ∈ Cp with probability vi, hr respectively, to change color to
(i, q + r) ∈ [n] × Cp and to put in the leftmost position. However, this
Markov chain cannot be represented by LRB unless {hr}r∈Cp is uniformly
distributed as in [6].

Having expressed p-Tselin library by LRB, we then apply Brown’s theory

[1] in Appendix I. First of all, we set an equivalence relation x ∼ y
def⇐⇒ xy =



TSETLIN LIBRARY ON P-COLORED PERMUTATIONS AND Q-ANALOGUE 139

x, yx = y, define L := Sn/ ∼, and let supp : Sn → L be the natural surjective

map. L becomes a lattice under the ordering : suppx ≤ supp y
def⇐⇒ yx = y.

For given X ∈ L, then let x ∈ supp−1(X) and set cX := ♯{c ∈ Cn |xc = c}.
This number is independent of the choice of x ∈ Sn such that suppx = X
so that cX is well defined.

Lemma 2.1.
(1) L = 2[n] with X ≤ Y ⇔ X ⊂ Y (X,Y ∈ L) and support map is given
as follows.

Sn ↠ L(= 2[n])
x =

(
(x1, j1), · · · , (xl, jl)

)
7→ {x1 · · ·xl}

(2) When X = {x1, · · · , xk} ∈ L, we have cX = pn−k(n− k)!.

Proof.
For given x = ((x1, j1), · · · , (xl, jl)) ∈ Sn, s(x) := {x1, · · · , xl}. Then x ∼ y
iff yx = y and xy = x. Since yx = y iff s(x) ⊂ s(y), we have x ∼ y iff

s(x) = s(y). Therefore we have proved L = S/ ∼= 2[n] and yx = y iff
s(x) ⊂ s(y).
(2) For given X = {x1, · · · , xk} ∈ L, let x = ((x1, q1), · · · , (xl, qk)) ∈
supp−1(X). Since xc = c iff the first k words in c coincides with x, cX
is equal to the number of choices of remaining (n − k) words in c which is
given by cX = pn−k(n− k)!. □

Proof of Theorem 1.1
(1) We apply Theorem A.1.1. To compute the eigenvalues of the transition
probability matrix P , we take a subset X of [n], and

λX =
∑

supp y≤X

wy =
∑

y=((i,q))
supp y≤X

vihq =
∑
i∈X

p−1∑
j=0

vihj =
∑
i∈X

vi.

Since the Möbius function of L = 2[n] is given by µ(X,Y ) = (−1)|Y |−|X|

(X ⊂ Y ), we have

mX =
∑
Y≥X

µ(X,Y )cY =
∑
Y⊇X

(−1)|Y |−|X|pn−|Y |(n− |Y |)!

=

n−|X|∑
k=0

(−1)k
(
n− |X|

k

)
pn−|X|−k(n− k − |X|)!

= (n− |X|)!pn−|X|
n−|X|∑
k=0

(−1)k

k!pk
= dn−|X|, p.
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(2) The stationary distribution π can be computed directly by using its
definition :

π((x1, b1), . . . , (xn, bn))

= lim
k→∞

P(Xk = ((x1, b1), . . . , (xn, bn)))

= lim
m→∞

∑
a1+···an=m

hb1vx1v
a1
x1
hb2vx2(vx1 + vx2)

a2 + · · ·+ (vx1 + · · ·+ vxn−1)
an−1hbnvxn1

an

=
hb1vx1

1

hb2vx2

1− vx1

hb3vx3

1− (vx1 + vx2)

hbn−1vxn−1

1− (vx1 + · · ·+ vxn−2)

hbnvxn

1− (vx1 + · · ·+ vxn−1)

One can also derive it by computing the primitive idempotents as in
Section 8.5 in [1].

3. Proof of Theorem 1.2

In this section, we consider the q-analogue I of Tsetlin library. Set Vn,q =
Fn
q and we consider the set Sn,q of l-tuples of independent vectors in Vn,q

with l = 0, 1, · · · , n.
Sn,q := {(x1, . . . , xl) |xi ∈ Vn,q, 1 ≤ l ≤ n, x1, · · · , xl : linearly independent } ∪ {e}

where e is the identity element. For x = (x1, · · · , xl) ∈ Sn,q and y =
(y1, · · · , ym) ∈ Sn,q, we define x ∗ y ∈ Sn,q as follows.

x ∗ y = (x1, . . . , xl) ∗ (y1, . . . , ym) := (x1, . . . , xl, y1, . . . , ym)∧

where ∧ means that “delete any vector that is linearly dependent on the
earlier vectors”. As in the proof of Theorem 1.1, (Sn,q, ∗) is a finite LRB
with identity. Since x ∼ y iff xy = x, yx = y iff span x = span y, the lattice
L corresponding to Sn,q is given as follows.

L := Sn,q/ ∼= {W ⊂ Vn,q |W is a subspace of Vn,q} ( isomorphism as a poset ).

The set Cn,q := {c ∈ Sn,q | cx = c, ∀x ∈ Sn,q} of chambers is given by setting
l = n in the definition of Sn,q.

Cn,q = {(x1, · · · , xn) |xi ∈ Vn,q, x1, · · · , xn : independent }.
Moreover, for given X = span{x1, · · · , xk} ∈ L, we take x = (x1, · · · , xk) ∈
supp−1(X) so that

cX = ♯{c ∈ Sn,q |xc = c}
= ♯
{
c = (x1, · · · , xk, y1, · · · , yn−k) | y1, · · · , yn−k ∈ Vn,q,

(x1, · · · , xk, y1, · · · , yn−k) : independent
}

Therefore the number of chambers and cX are given as follows.

|Cn,q| =
n−1∏
j=0

(qn − qj), cX =

k+l−1∏
j=k

(qn − qj), k := dimX.
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For completeness, we shall derive the Möbius function on L.

Lemma 3.1. The Möbius function µ on L is given as follows.

µ(X,Y ) = (−1)dimY−dimXq(
dimY −dimX

2 ), X, Y ∈ L, X ⊂ Y

Proof. Let X,Y ∈ L, X ⊂ Y , and let ν(X,Y ) be the quantity in RHS in
the statement of Lemma 3.1. Then by definition, it suffices to show the
following equality.

(3.1)
∑

Z :X⊂Z⊂Y

ν(X,Z) = 1(X = Y )

Let k = dimX, m = dimY . Since (3.1) is clear for k = m, we suppose
k < m. Then∑

Z :X⊂Z⊂Y

ν(X,Z) =

m−k∑
l=0

∑
Z :X⊂Z⊂Y,
dimZ=k+l

ν(X,Z)

=
m−k∑
l=0

♯{Z |X ⊂ Z ⊂ Y, dimZ = k + l}(−1)lq(
l
2)

=
m−k∑
l=0

[
m− k

l

]
q

(−1)lq(
l
2) = 0

At the last step, we used q-binomial theorem. □

Proof of Theorem 1.2
We apply Theorem A.1.1 again. To compute the eigenvalue of the transition
probability matrix, we take a subspace X of Vn,q and use the fact that
supp v ≤ X iff v ∈ X.

λX =
∑

v : supp v≤X

wv =
∑

v : v∈X
wv, X ∈ L.

For the multiplicitymX of the eigenvalue λX , we set k = dimX and compute

mX =
∑
Y≥X

µ(X,Y ) cY

=
∑

Y :Y⊇X

(−1)dimY−dimXq(
dimY −dimX

2 )
n−1∏

l=dimY

(qn − ql)

=

n−k∑
j=0

∑
Y : dimY=k+j

(−1)jq(
j
2)

n−1∏
l=k+j

(qn − ql)
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=
n−k∑
j=0

[
n− k
j

]
q

(−1)jq(
j
2)

n−1∏
l=k+j

(qn − ql).(3.2)

Here we note that

n−1∏
l=k+j

(qn − ql) =
n−1∏

l=k+j

ql(qn−l − 1) =
q(

n
2)

q(
k+j
2 )

[n− k − j]q!(q − 1)n−k−j

On the other hand, using

[n]q! =
{n}q!

q(
n
2)(q − 1)n

we have

[
n− k
j

]
q

=
[n− k]q!

[j]q![n− k − j]q!
=

{n− k}q!

q(
n−k
2 )(q − 1)n−k

[n− k − j]q!
{j}q!

q(
j
2)(q − 1)j

=
{n− k}q!
{j}q!

· q(
j
2)

q(
n−k
2 )

· 1

[n− k − j]q!
· 1

(q − 1)n−k−j
.

Substituting them into (3.2) yields

mX =

n−k∑
j=0

(−1)jq(
j
2)
{n− k}q!
{j}q!

q(
j
2)

q(
n−k
2 )

q(
n
2)

q(
k+j
2 )

= {n− k}q!
n−k∑
j=0

(−1)jq(
j
2)

{j}q!
qk(n−k−j).

A. Appendix 1 : LRB

In this section, we recall the Brown’s theory [1] on LRB. Let (S, ∗) be a
finite semigroup with identity. We say (S, ∗) is a left regular band(LRB) if
it satisfies the following condition.

x2 = x, xyx = xy, x, y ∈ S

We introduce an order ≤, an binary relationship ⪯, and an equivalence
relation ∼ corresponding to ⪯ as follows.

(1) x ≤ y
def⇐⇒ xy = y

(2) x ⪯ y
def⇐⇒ yx = y

(3) x ∼ y
def⇐⇒ x ⪯ y, y ⪯ x
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Let L := S/ ∼ and let supp : S → L be the natural surjection. L is an
ordered set under

X ≤ Y
def⇐⇒ x ⪯ y, where X,Y ∈ L, x ∈ supp−1(X), y ∈ supp−1(Y ).

We note that the relation x ⪯ y does not depend on the choice of x, y
in supp−1(X), supp−1(Y ) respectively, so the definition of X ≤ Y is well-

defined. Moreover L is a lattice with minimal 0̂(= supp e) and maximal

element 1̂. The set C of elements in supp−1(1̂)

C := {c ∈ S | supp c = 1̂} = {c ∈ C | cx = c, ∀x ∈ S}

is called the chamber and we denote by C≥x the set of chambers c satisfying
x ≤ c.

C≥x := {c ∈ C |x ≤ c} = {c ∈ C |xc = c}.

For X ∈ L, we take x ∈ supp−1(X) and set

cX := ♯C≥x = #{c ∈ C |xc = c}.

Since suppx = suppx′ implies #C≥x = #C≥x′ , cX is well-defined.
For given probability distribution {wx}x∈S on S, we define the random

walk on C by picking up x ∈ S with probability wx and multiply x to c ∈ S
from the left : c 7→ xc. The transition probability matrix P is given by

P (c, d) :=
∑

x :xc=d

wx, c, d ∈ C.

Theorem A.1.1
P is diagonalizable and its eigenvalues and corresponding multiplicities are
given by {(λX ,mX)}X∈L where

λX :=
∑

y : supp y≤X

wy, mX :=
∑

Y :X≤Y

µ(X,Y ) cY , X ∈ L

and µ(X,Y ) is the Möbius function on L.

B. Appendix 2 : q-analogue II

In this section, we shall discuss the q-analogue II of the Tsetlin library
which is studied in [1]. The state space Cn,q is the set of chains of subspaces
of Vn,q(= Fn

q ) instead of taking the basis of them :

Cn,q :=
{
{Xi}ni=0

∣∣∣ 0 = X0 < X1 < · · · < Xn = Vn,q, dimXi = i, i = 0, 1, · · · , n
}
.

Given {Xi}ni=0 ∈ Cn,q, pick up one-dimensional subspace(line) ℓ of Vn,q with
given probability weight {wℓ}ℓ and add ℓ to each components of {Xi}ni=0 :

0 < ℓ ≤ X1 + ℓ ≤ X2 + ℓ ≤ · · · ≤ Xn−1 + ℓ ≤ Vn,q
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Eliminating the repetition, we obtain another element of Cn,q. We call this
Markov chain the q-analogue II of the Tsetling library.

Theorem A.2.1
The eigenvalues and corresponding multiplicities of the q-analogue II of the
Tsetling library is given as follows.

λX =
∑
v∈X

wv, X : subspace of Vn,q, dimX ̸= n− 1

mX = [n− dimX]q!

ndimX∑
j=0

(−1)j

[j]q!
q(

j
2).

where [n]q, [n]q! are q-analogue of natural number and factorial defined by

[0]q := 0, [n]q :=
qn − 1

q − 1
(n ≥ 1), [0]q! := 1, [n]q! :=

n∏
k=1

[k]q (n ≥ 1).

To prove Theorem A.2.1, we consider a LRB and the corresponding lattice
L.

Sn,q :=
{
{Xi}ℓi=0

∣∣∣Xi: subspaces, 0 = X0 < X1 < · · · < Xℓ−1 < Xℓ = V,

dimXi = i, 0 ≤ i ≤ ℓ− 1, i = 0, · · · , ℓ, ℓ = 0, 1, · · · , n
}

L := {W |W subspace of Vn,q, dimW ̸= n− 1}

Then support map is given by

supp(X0, · · · , Xℓ) :=

{
Xℓ−1 ℓ < n

Vn,q ℓ = n

Remark The multiplicity mX can be written as mX = dn−dimX(q) where

dn(q) := [n]q!
n∑

k=0

(−1)k

[k]q!
q(

k
2)

is called the q-derangement number [7]. To compare with Fn(k)/

[
n

dimX

]
q

,

which appeared in Theorem 2.1, we recall its definition. We write the ele-
ment σ ∈ Sn of Sn as σ = (σ1, · · · , σn). We define the descent set des(σ)
and major index maj(σ) as

des(σ) := {i ∈ [n− 1] |σi > σi+1}
maj(σ) :=

∑
i∈des(σ)

i.
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The following formula due to MacMahon is well-known.∑
σ∈Sn

qmaj(σ) = [n]q!

which motivates to define the q-derangement number.

dn(q) :=
∑
σ∈Dn

qmaj(σ) where Dn := {σ ∈ Sn |σi ̸= i for any i ∈ [n]} .

Then being different from Fn(k), it satisfies

[n]q! =

n∑
k=0

[
n
k

]
q

dk(q)

and the Möbius inversion formula yields

dn(q) = [n]q!
n∑

k=0

(−1)k

[k]q!
q(

k
2).

C. Apendix 3 : RW on hypercube

In this section we show that the random walk on the hypercube {0, 1}n
can be analyzed by LRB. Let {vj}nj=1 be a probability distribution on

[n] and let (Xk)
∞
k=1 be be a lazy random walk such that for given Xk =

(X
(1)
k , . . . , X

(n)
k ) ∈ {0, 1}n, choose j ∈ [n] and flip X

(j)
k with probability

vj/2. Xk does not move with probability 1/2. In this appendix, we show
that {Xk} can be regarded as a random walk on a hyperplane arrangement
which is a typical example of LRB.

Theorem A.3.1
The eigenvalues of the transition probability matrix of this random walk are
given as follows.

λX :=
∑
i/∈X

vi , X ⊂ [n] , mX = 1.

In particular, if vi =
1

n
for all i eigenvalues and corresponding multiplicities

are given by

λi =
i

n
, mi =

(
n

i

)
, i = 0, 1, . . . , n

We begin by recalling briefly the random walk on hyperplane arrangement.
First of all, we consider a set of hyperplanes

A := {Hi}ni=1, Hi = {x = (x1, . . . , xn) ∈ Rn | xi = 0}.
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Let H+
i := {x ∈ Rn | xi > 0}, H−

i := {x ∈ Rn | xi < 0},and H0
i := Hi.

Then A induces a partitation of Rn into convex sets called faces :

F := {F =

n⋂
i=1

Hσi
i | σi = +,−, 0, i = 1, 2, . . . , n}.

Since each face F = ∩n
i=1H

σi
i ∈ F is characterized by {σ1, . . . , σn}, we

write σ(F ) := {σi(F )}ni=1, with σi(F ) := σi and call it the sign sequence of
F . Given F,G ∈ F , the product FG is defined to be the face whose sign
sequence is given by

σi(F ∗G) =

{
σi(F ) , σi(F ) ̸= 0

σi(G) , σi(F ) = 0
.

Then F becomes a LRB under this product, the corresponding lattice L is
the set of affine subspaces in Rn, and the support map supp : F → L is
given by

suppF =
⋂

σi(F )=0

Hi

We consider a set {F±
j }nj=1 of faces as follows.

F+
j = {x ∈ Rn | xj > 0, xi = 0, i ̸= j}

F−
j = {x ∈ Rn | xj < 0, xi = 0, i ̸= j}, j = 1, 2, . . . , n

and set a distribution {wF }F∈F as follows.

wF :=


wj

2 F = F+
j

wj

2 F = F−
j

0 otherwise

Then the corresponding Markov chain on A is nothing but the lazy random
walk on {0, 1}n and Theorem A.3.1 follows from Theorem A.1.1.

Remark
Since the transition probability matrix P of the random walk and that

Plazy of its lazy version satisfies Plazy = 1
2(P + I), the eigenvalues and its

multiplicities are given by

λX = 1− 2
∑
i∈X

vi , X ⊂ [n] , mX = 1.
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