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TSETLIN LIBRARY ON P-COLORED PERMUTATIONS
AND Q-ANALOGUE

YUTO NAKAGAWA AND FUMIHIKO NAKANO

ABSTRACT. K. Brown [1] studied the random to top shuffle (the Tsetlin
libary) by semigroup method. In this paper, (i) we extend his results
to the colored permutation groups, and (ii) we consider a g-analogue
of Tsetlin library which is different from what is studied in [1]. In
(i), the results also extends those results for the top to random shuffle
[4],[5], [6] to arbitrary distribution of choosing cards, but we still have
derangement numbers in the multiplicity of each eigenvalues. In (ii), a
version of g-analogue of derangement numbers by Chen-Rota [3] appears
in the multiplicity of eigenvalues.

1. INTRODUCTION

Markov chains generated by card shuffles are formulated in terms of ran-
dom walks on the symmetric groups, and many studies are done on this
subject, including estimates on the mixing times and cut-off. Among them,
random to top shuffles (Tsetlin library) can be analyzed clearly by using the
left regular band (LRB, in short) [1]. In this paper, we discuss (i) an exten-
sion of his results to the colored permutation group, and (ii) a g-analogue,
which is different from that in [1].

The first one, that is, the Tsetlin library on p-colored permutation is
described as follows. Let p € N and suppose that we have certain amount of
book covers of p-types. We pick up a book at random from a bookshelf, put a
randomly chosen cover, and then put it at the leftmost side of the bookshelf.
The corresponding Markov chain (called the p-Tsetlin library) is formu-
lated as follows. Let Gy, 5, be the colored permutation group of p-colors which
we consider as the state space. We identify Gy, = Cp U] &p, where [n] :=
{1,2,--- ,n} and C} := {0,1,--- ,p—1}. Let {vi}ic[n), {hj}jec, be distribu-
tions on [n] and C, respectively. Given an element ((z1,¢1)," ", (Zn,qn)) €
([n] x Cp)"™ (xq # xp (a # b)), we pick up a number ¢ € [n] with probability
v;, and a number g € Cp, with probability h,. If i = x, we pick up (z, qx)
change its color into ¢, and then put it at the top. So the new element

is ((fl?]g, Q)’ (3717 Q1), T, (ajk—la qk—l)v (xk:—‘rla Qk+1)7 Uy (xTH qn)) The corre-
sponding random walk on G, is called the p-Tsetlin library.

Mathematics Subject Classification. Primary 35C07; Secondary 35K57.
Key words and phrases. Tsetlin library, Left Regular Band, colored permutation group.

133



134 Y. NAKAGAWA AND F. NAKANO
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suppose that we pick up number 7 and color 1. Then we have
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Brown [1] studied Tsetlin library for p = 1 using LRB, computed the eigen-

values and multiplicities of the transition probability matrix, and showed
that they are given by Ax = > .y v, mx = d,,_|x|, where X ranges over
all subsets of [n], and d,, := t{o € &, | o(k) # k, k € [n]} is the number of
permutations with no fixed points. Furthermore Chatterjee, Diaconis, and
Kim [2] studied some enumerative properties of the Tsetlin library, such as
distribution of top (and bottom) k cards. First of all, we extend Brown’s
result for p-Tsetlin library.

Theorem 1.1
(1) The eigenvalues and corresponding multiplicities of the transition prob-
ability matriz of the p-Tsetlin library are given by {(Ax,mx)}xc[n where
X(C [n]) ranges over all subsets of [n] and

n—|X|

n— —1 4§
=Y my= XY CUE x e
ieX k=0 P

We have mx = d,_|x|,p where dy p is equal to the number of elements of
Gn.p with no fized points.

aq a9 “e G,
n .
(=1
= nlp" E —
= I

(2) The stationary distribution is given by

7'('((.%'1, bl), ey (wn, bn))
_ hblv.Tl hbszg hbngg hbn—lvxn—l hbnvwn

dn,pizﬁ{7'2<o-1 oy .- an)eGn,p|0¢7§i\/a¢7§O‘v’i€[n]}

1 1_0111_(%31 +U$2)1_(vx1+'..+U$n72)1_(vfrl+...+’U$n71)

which is equal to the probability arranging the cards x; with color b; |,
T9 with color bs , and so on. It also has an integral representation as in
remarked in [2] :

7'('((1'1, bl)a R (xna bn))
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oo [e%e) [e%s} [e%s} n
=V, Uy, Dy -+ P, / / / . / exp(— E Vg Tk )dxy -+ - day,
r1=0 Jxo=x1 Jr3=72 Tp=Tn—1 k=1

which is equal to the probability that having colors b1, bs, ..., b, and that
X1 < X9 <+ < X, , where X has exponential sidtribution with parame-
ter vy, .

For the top to random shuffle, which is the “inverse” of random to top
shuffle of equal weights. Diaconis-Fill-Pitman [4], Garsia [5] (p = 1), Nakano-
Sadahiro-Sakurai [6] ( general p), used some algebraic properties of such
shuffles to obtain the primitive orthogonal idempotents, leading to the same
results, and moreover also obtained the estimates on mixing time and cut-
off. But they have to assume that {v;}, {h;} are uniformly distributed. On
the other hand, Theorem 1.1 says that the Brown’s method of LRB works
for general distributions {v;}, {h;} for p-Tsetlin library. It also implies that
the eigenvalues and multiplicities depend only on “the choice of books” {v;}
and not on that of “the choice of colors” {h;}.

We next turn to the g-analogue. Let F, be the finite field of ¢ elements
and set V, o = Fy \ {0}. We identify G L, (V;,,) with the set of C, , , where
Chg={X=(21,...,2,) |xi € Vg, 1, -+ , 2y linearly independent}. We
define the action of v € V,, , on A = (x1,...,2,) € Cy 4 from the left as fol-
lows. Let k be the minimum integer satisfying the condition : “ xj is equal
to a linear combination of v, xg, 1, - ,Tr_1". Then we eliminate x; from
A and set vA = (v,Z1,...,Th—1, Tht1,---,Zn) € Cnyg.

Example (¢=3,n=3):

() G ) )

Let {wy }vev, , be a distribution on V;, 4. Given A = (z1,...,7,) € Cy 4, We
pick up v € V;, 4 with probability w, and set vA. The corresponding Markov
chain on GLy(V;, 4) is called the g-analogue I of the Tsetlin library (we
will discuss g-analogue II later).

o O

Theorem 1.2
(1) The eigenvalues and corresponding multiplicities of the transition proba-
bility matrix of the g-analogue I of the Tsetlin library are given by {(Ax, mx)}xcv, ,
where X ranges over all subspaces of V,, , and

Ax = Zwv, X C Vyq, X : subspace
veX
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n—dim X (_1)jq(%)qdimX(n7dimej)

mx = {n —dim X },! jgo 77

where

{0}g:=0  {n}g=¢""(¢"-1) (n>1)

{0}l=1  {n}!:=][{k} =] -1 (=1
k=1

k=1

(2) The stationary distribution is given by

w(a, ..., an)
1= Caepantary W) 1= Cacpantaras) Wa) 1= (Laespan(ar,...a,_r} W)
Wa,,
1- <Zd€span{a1 ..... an—1} U)d)
Remark

mx is related to a g-analogue of derangement number discussed in [3] which
we briefly recall here. Let V' be an n-dimensional linear space over the finite
field F, G,(q) (resp. Fy(k)) be the number of automorphisms on V' with
no fixed points (resp. the number of automorphisms on V fixing points in a
k-dimensional subspace and does not fix any other points) :

Gn(q) :=8{A € auto (V)| Az # x, for any z # 0}
Fo(k) i= #{ f € auto (V)| f(x) =, f(y) £y, forany v € X, y ¢ X
for some k-dimensional subspace X }
Then Chen and Rota [3] showed
o)

Gulg) = {n}! Z( D

n ok B) gk(n—k—)
Fo(k) = |: Lk }q{n_k}q!jzg(_lyq (flj}q!
n n)q! . L .
where [ k L = [n—[kL![k:]q! is the g-binomial coefficient and
Oi=0, flyi=L=F =0, =1 (ot [T 02 )
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These formulas imply that we cannot have the analogy of the relations which
hold in the usual set situation.

n

R | | Gusto)

And the formula for mx in Theorem 1.2 implies that mx is equal to “the
derangement number per a subspace”. That is,

F,(dim X)
my = ——————.

[ ; ]
dim X
q

On the other hand, Brown [1] considererd another Markov chain, which
we call the g-analogue II of the Tsetlin library, such that the state
space is the set of the chains of subspaces of V,, ;, and the random operation
corresponding to the map (v, A) — vA mentioned in the definition of ¢-
analogue I. The eigenvalues of the transition probability matrix are similar
as those in Theorem 1.2, but the multiplicities are equal to d;,_qim x(q)
where d,,(q) is the g-derangement number introduced by [7]. d,(q) satisfies
il =i | 7 |
has explicit meaning as “the derangement as a map”. In Sections 2, 3,
we prove Theorems 1.1 and 1.2 respectively, which are done by choosing
appropriate semigroups and apply Brown’s theory of LRB. In Appendix I,
we briefly recall Brown’s result on LRB [1]. In Appendix II, we recall the
definition of the g-analogue I and the statement corresponding to Theorem
1.2. In Appendix III, we show that the random walk on the hypercube
{0,1}™ with any weights can be analyzed using LRB.

dr(q) as the usual derangement number does, but F,, (k)

2. PROOF OF THEOREM 1.1

In this section, we introduce a LRB by which p-Tsetling library is de-
scribed, and apply Brown’s result [1] to prove Theorem 1.1. Let S/, be the
set of arrangement of distinct numbers in [n] of length I(=1,2,--- ,n). And
let S, be the corresponding set with colors.

Sl = {x:(ml,...,xl)e [n]l‘xi;ﬁxj fori#£35,1=1,2,--- ,n}U{e}
Sy = {x: ((ml,al),...,(xl,al))‘(ml,...,xl) €S, a€Cy 1=12,- ,n}U{e}

where e is the identity element. For z = ((xl,al), ce (xl,al)) € Sy, let
T = (wl .. .wl)e S/ be the one obtained by eliminating colors from z. Also,

for x = ((wl,al),...,(aci,ai)),y = ((yl,bl),--- ,(yj,bj)) € S,, we define
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product z * y of x,y to be
Tr*Yy = ((Il)al)u ey (Ilaal)7 (yl)b1)7 ey (ymvbm))/\

where A means to eliminate any y;’s which already appears in z;’s : that is,
on the formal concatenation of & and y

(xlu"'vxluyla”'uym))

if we find a number which appears twice, then we delete what is on the right.

(ODEOEO)

Then (S, *) is LRB. Moreover if we take [ = 1 for x and [ = n for y, say
x=(i,q) € [n]xCpand y = ((y1,b1), e ,(yn,bn)) € Sy, x*y is equal to an
element in S,, obtained by first picking up (yx,bx) = (i, bx) whose number
is equal to 7, changing color to ¢ and putting it in the leftmost position :

TxY = ((iv(I)a (ylvbl)a T a(ynabn))a

and this operation coincides with that in p-Tsetlin library. In what follows,
we write zy instead of x * y.

Remark 1
When p = 1, Tsetlin library can also be represented by a suitable choice of
hyperplane arrangement. It is also the case for p = 2 which will be discussed
in our forthcoming paper.

Remark 2
Another (natural) definition of p-Tsetlin library would be to pick up (i,¢q) €
[n] x Cp, r € C, with probability v;, h, respectively, to change color to
(ti,g + 1) € [n] x Cp and to put in the leftmost position. However, this
Markov chain cannot be represented by LRB unless {h,},cc, is uniformly
distributed as in [6].

Having expressed p-Tselin library by LRB, we then apply Brown’s theory

d
[1] in Appendix I. First of all, we set an equivalence relation z ~ y L, Ty =
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x,yx =y, define £ := S,,/ ~, and let supp : S,, = L be the natural surjective
map. £ becomes a lattice under the ordering : suppz < suppy g) yr =y.
For given X € L, then let x € supp ' (X) and set cx := #{c € Cy, |zc = c}.
This number is independent of the choice of x € S;, such that suppxr = X
so that cx is well defined.

Lemma 2.1.
(1) £ = 2 with X <Y & X C Y (X,Y € £) and support map is given
as follows.
Sn —» L(= 2[”])
z ::((x17j1),...,(xzhﬁ)) — {x1-- 2}

(2) When X = {z1,--- ,23} € L, we have cx = p"*(n — k)!.

Proof.

For given z = ((x1,j1), -+, (21, 1)) € S, s(x) :={x1,--- ,27}. Thenx ~y
iff yr = y and zy = x. Since yzr = y iff s(x) C s(y), we have z ~ y iff
s(z) = s(y). Therefore we have proved £ = S/ ~= 2" and yz = y iff
s(z) C s(y).

(2) For given X = {z1,---,z1} € L, let = = ((x1,q1), -+, (z1,qx)) €
supp_}(X). Since zc = c iff the first & words in ¢ coincides with z, cx
is equal to the number of choices of remaining (n — k) words in ¢ which is

given by cx = p"*(n — k)L [] O

Proof of Theorem 1.1
(1) We apply Theorem A.1.1. To compute the eigenvalues of the transition
probability matrix P, we take a subset X of [n], and

p—1
E ’U)y: E Uihq: E E Uihj: E V;.
supp y<X y=((i,9)) i€X =0 ieX
supp y<X

Since the Mébius function of £ = 2" is given by u(X,Y) = (=1)¥1-IXI
(X CY), we have

mx = 3 (X, V)ey = 3 (~)Y XY — v )):

Y>X YOX
n—|X|
n— X[\ ,_ix—
D I e
k=0
n—|X|

flk
X
— =S i,
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(2) The stationary distribution 7 can be computed directly by using its
definition :
m((x1,b1), ..., (Tn,bn))
= kli}m P(Xk = ((a:l, bl), ey (.Tn, bn)))
= lim Z hiy Ve Vg1 By Vo (Vg 4 2y )™ + -+ 4 (Ve + -+ + Ve )" " hp, V2, 177

m— oo
al4-ap=m

_ hblvxl thUwg hbgvxg hbn_lvz",I hbnvxn
1 1_U11 1—(1)11 +vr2) 1- (Uzl +"’+Uﬂvn—2) 1- (Uzl +"’+Uﬂvn—1)

One can also derive it by computing the primitive idempotents as in
Section 8.5 in [1].

3. PROOF OF THEOREM 1.2

In this section, we consider the g-analogue I of Tsetlin library. Set V;, ; =
Fj and we consider the set S, 4 of [-tuples of independent vectors in Vj, 4
with {=0,1,--- ,n.

Sng ={(z1,...,21) |zi € Vi g, 1 <1<, x1,--- ,2; : linearly independent } U {e}
where e is the identity element. For x = (x1,---,2;) € Spq and y =
(1, ,Ym) € Sn,q, we define z xy € S, 4 as follows.

rry = (1,...,2) % (YL, Ym) = (X1, T YLy s Ym)
where A means that “delete any vector that is linearly dependent on the
earlier vectors”. As in the proof of Theorem 1.1, (S, 4,%) is a finite LRB
with identity. Since x ~ y iff zy = x, yz = y iff span = span y, the lattice
L corresponding to S, 4 is given as follows.

L:=S,4/ ~={W CV,,|W is a subspace of V;, ;} ( isomorphism as a poset ).

The set Cp, 4 :={c € Sy q|cx = ¢, Y € S, 4} of chambers is given by setting
[ = n in the definition of S, 4.

Chg={(z1,--- ,zpn) | i € Viyg, 1, -+ , Ty : independent }.

Moreover, for given X = span{xy,--- ,xx} € L, we take x = (x1,--- ,xp) €
supp~(X) so that

cx =#{c€ Spqlac=c}
= jj{c: (T1, Ty Y1y > Ynk) | ULy Ynk € Vg,
(1, , Tk, Y1, ,Yn—k) : independent }
Therefore the number of chambers and cx are given as follows.

n—1 k+1-1

|Crgl = H(qn_qj)’ Cx = H (qn—qj), k = dim X.
Jj=0 =k
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For completeness, we shall derive the M&bius function on L.

Lemma 3.1. The Mobius function g on £ is given as follows.
M(X, Y) _ (_1)dimY—diqu(dimY;di"‘x)’ X’ Y c E’ X c Y

Proof. Let X, Y € £, X C Y, and let v¥(X,Y) be the quantity in RHS in
the statement of Lemma 3.1. Then by definition, it suffices to show the
following equality.

(3.1) Y X, Z)=1X=Y)
Z:XCZCY

Let £ = dim X, m = dimY. Since (3.1) is clear for £ = m, we suppose
k < m. Then

S oux,2) = > v(X,2)

3
=

Z:XcZcy 1=0 Z:XCZCY,
dim Z=k+1
m—k .
=N H{Z|XCZCY, dimZ=k+1}(~1)q)
1=0
m—Fk
m—k !
_ Z [ l } (—1)lqgx) = 0
=0 q
At the last step, we used g-binomial theorem. | ] d

Proof of Theorem 1.2
We apply Theorem A.1.1 again. To compute the eigenvalue of the transition
probability matrix, we take a subspace X of V;,, and use the fact that
suppv < X iff v € X.

Ax = Z wU:Zwv, XeL.

v :suppv<X viveX

For the multiplicity mx of the eigenvalue Ax, we set k = dim X and compute

mx = Z wX,Y) ey

Y>X
n—1
. . dim Y —dim X
_ Z (_1)d1mY7d1qu( N ) H (qn - ql)
Y:YDOX [=dimY
n—~k n—1

- > e I @ -d)

J=0Y :dimY =k+j l=k+j
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n—~k n—k o n—1
(3:2) =2 [ j ] (~1)7q8) TT (a" =)
j=0 q I=k+j
Here we note that
N |
[[@w-d=1]] d'-1= (o) [ =k = dlala - 1)k
I=k+j I=k+j qt 2
On the other hand, using
[l = n{n}q!
(g 1)
we have
{n — k}g!
[nk] [ ¢ g'Q)(cz—l)”“"c
7o Ul =k =gl (j){J}q!
¢ (g —1)
_ {n—Ek},! q@) 1 1

(el (39 In—k—jl (q—1) 7
Substituting them into (3.2) yields
n—=k

I < VRS o2 ¢®) q(g). i n_kw K(n—k—j).
¥ Z( 1)q {j}q! q(n;k) q(k‘;]) { k}qlz {j}q! q

j=0 j=0

[

A. ArPENDIX 1 : LRB

In this section, we recall the Brown’s theory [1] on LRB. Let (S, %) be a
finite semigroup with identity. We say (5, ) is a left regular band(LRB) if
it satisfies the following condition.

=z, zyr=zy, z,yeS

We introduce an order <, an binary relationship =<, and an equivalence
relation ~ corresponding to < as follows.

1) z<y & ay=y

2) 2=y Ll ya=y

B) z~y & 2=y y=2
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Let £ := S/ ~ and let supp : S — L be the natural surjection. L is an
ordered set under

X<Y &Ly <y, where X,Y €L, xzecsupp (X), yesupp H(Y).
We note that the relation x < y does not depend on the choice of x,y
in supp~1(X), supp~!(Y) respectively, so the definition of X <Y is well-
defined. Moreover L is a lattice with minimal 0(= supp e) and maximal
element 1. The set C of elements in supp (1)
C:={ceS|suppc=1} ={ceC|cx =¢, Vo € S}
is called the chamber and we denote by C>, the set of chambers c satisfying
z<ec.
Csyi={celClz<c}={ceClac=c}.
For X € L, we take x € supp ' (X) and set
cx =4C>, = #{ce C|zc=c}.

Since supp x = supp ' implies #C>, = #C>,, cx is well-defined.

For given probability distribution {wy},es on S, we define the random
walk on C' by picking up x € S with probability w, and multiply x to ¢ € S
from the left : ¢ +— zc. The transition probability matrix P is given by

P(e,d) := Z wg, c¢,deC.
x:xc=d
Theorem A.1.1
P is diagonalizable and its eigenvalues and corresponding multiplicities are
given by {(Ax,mx)}xer where

Ax = Z Wy, Mmx = Z wX,Y)ey, XeLl
y:suppy<X Y: X<Y

and pu(X,Y) is the Mdbius function on L.

B. APPENDIX 2 : Q-ANALOGUE II

In this section, we shall discuss the g-analogue II of the Tsetlin library
which is studied in [1]. The state space Cy, 4 is the set of chains of subspaces
of Vpq(= Fy) instead of taking the basis of them :

Crog = {{Xi};;o‘ozxo <Xy << Xp=Vpg dimX; =i,i=0,1, n}

Given {X;}!", € Cy, 4, pick up one-dimensional subspace(line) ¢ of V;, , with
given probability weight {wy}, and add ¢ to each components of {X;}I' :

0<£§X1+€§X2+€§SXn—1+£§Vn,q
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Eliminating the repetition, we obtain another element of C,, ;. We call this
Markov chain the g-analogue II of the Tsetling library.

Theorem A.2.1
The eigenvalues and corresponding multiplicities of the g-analogue II of the
Tsetling library is given as follows.

Ax = Z wy, X : subspace of V,, 4, dimX #n —1

veX
ndimX 1 j .
=0 714!

where [n]q, [n],! are g-analogue of natural number and factorial defined by

n

(n=1), [0g:=1, [n]!:= H[k]q (n>1).

k=1

q¢"—1
[0g :=0, [n]q:= q—1

To prove Theorem A.2.1, we consider a LRB and the corresponding lattice

L.

Sn,q = {{Xi}fzo ‘ X;: subspaces, 0 = Xg < X1 << Xp 1< Xy =V,
<mm&:@0§i§£—Li:muwae:QLn.m}
L := {W | W subspace of V,, 4, dimW #n — 1}
Then support map is given by

X1 f<n

X, -, Xyp) =
supp( 0 é) {qu /=n

Remark The multiplicity mx can be written as myx = d,,_qim x (¢) where

is called the g-derangement number [7]. To compare with F,,(k)/ [ dig X } ,
q

which appeared in Theorem 2.1, we recall its definition. We write the ele-
ment o € S, of &, as 0 = (01, ,0,). We define the descent set des(o)
and major index maj(o) as

des(o):={ie[n—1]|o; > 0iy1}

maj(o) = Z i.

i€des(o)
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The following formula due to MacMahon is well-known.
Z qmaj(g) = [n]g!
ceG,
which motivates to define the g-derangement number.
dn(q) = Z ¢"9%)  where D, := {0 € S,|0;#iforany i€ [n]}.
oc€D,

Then being different from F,,(k), it satisfies

n

=3 | Ldm)

k=0

and the Mobius inversion formula yields

S
S
—
=
~—
|
=)
=
(]
—
|
—_
~—
o
L)
~~
N
~—

2!

C. APENDIX 3 : RW ON HYPERCUBE

In this section we show that the random walk on the hypercube {0, 1}"
can be analyzed by LRB. Let {vj}g‘zl be a probability distribution on
[n] and let (X})22, be be a lazy random walk such that for given X =
(X,gl),...,X,in)) € {0,1}", choose j € [n] and flip X,g]) with probability
vj/2. X} does not move with probability 1/2. In this appendix, we show
that {X%} can be regarded as a random walk on a hyperplane arrangement
which is a typical example of LRB.

Theorem A.3.1
The eigenvalues of the transition probability matrix of this random walk are
given as follows.

)\X::Zvi,XC[n],mle.
igX

1
In particular, if v; = —for all i eigenvalues and corresponding multiplicities
n

are given by

)\izl, m; = <n> s i:(),l,...,n
n 1

We begin by recalling briefly the random walk on hyperplane arrangement.
First of all, we consider a set of hyperplanes

A={H;} |, Hi={z=(x1,...,2,) € R" | z; = 0}.
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Let HY == {z € R" | z; > 0}, H; := {x € R" | 2; < 0}, and H) := H,.
Then A induces a partitation of R™ into convex sets called faces :

n
f:{F:ﬂHlo'l‘UZ:+’—,O,Z:1,2,,n}
1=1

Since each face F = NI, H7" € F is characterized by {o1,...,0,}, we
write o(F) := {o;(F)}i, with o;(F') := 0; and call it the sign sequence of
F. Given F,G € F, the product FG is defined to be the face whose sign
sequence is given by
oi(FxG) = oilf) o) #0 )
oiG) . a(F)=0

Then F becomes a LRB under this product, the corresponding lattice £ is
the set of affine subspaces in R”, and the support map supp : F — L is
given by

supp F' = ﬂ H;
oi(F)=0

We consider a set {Ff}?:l of faces as follows.
Ff={zeR"[x;>0,2; =0,i # j}
Fr={zeR"|2;<0,z;=0,i#j},j=12,...,n

and set a distribution {wg}rer as follows.

wj _

7]‘ F = Fj
wp = % F=Fy

0 otherwise

Then the corresponding Markov chain on A is nothing but the lazy random
walk on {0,1}" and Theorem A.3.1 follows from Theorem A.1.1.

Remark

Since the transition probability matrix P of the random walk and that
Pygy of its lazy version satisfies Pj,., = %(P + I), the eigenvalues and its
multiplicities are given by

)\le—szi, X Cn], mx =1
1€X
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