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Abstract: In the digital age, sharing moments through photos has become a daily habit.
However, every face captured in these photos is vulnerable to unauthorized identification
and potential misuse through AI-powered synthetic content generation. Previously, we
introduced SnapSafe, a secure system for enabling selective image privacy focusing on
facial regions for single-party scenarios. Recognizing that group photos with multiple
subjects are a more common scenario, we extend SnapSafe to support multi-user facial
privacy protection with dynamic access control designed for online photo platforms. Our
approach introduces key splitting for access control, an owner-centric permission system
for granting and revoking access to facial regions, and a request-based mechanism allowing
subjects to initiate access permissions. These features ensure that facial regions remain
protected while maintaining the visibility of non-facial content for general viewing. To
ensure reproducibility and isolation, we implemented our solution using Docker con-
tainers. Our experimental assessment covered diverse scenarios, categorized as “Single”,
“Small”, “Medium”, and “Large”, based on the number of faces in the photos. The results
demonstrate the system’s effectiveness across all test scenarios, consistently performing
face encryption operations in under 350 ms and achieving average face decryption times
below 286 ms across various group sizes. The key-splitting operations maintained a 100%
success rate across all group configurations, while revocation operations were executed
efficiently with server processing times remaining under 16 ms. These results validate
the system’s capability in managing facial privacy while maintaining practical usability in
online photo sharing contexts.

Keywords: facial privacy protection; selective facial encryption; multi-user access control;
deep-learning applications; online photo platform

1. Introduction
Online platforms have transformed communication by facilitating the global sharing

of personal content, such as photographs, through social networks and cloud storage.
Although these platforms offer significant benefits for convenience and connectivity, they
also pose substantial privacy risks [1]. Shared content frequently includes sensitive facial
data, exposing individuals to potential privacy threats in the public domain. For instance,
facial recognition technologies can exploit this data for biometric-based surveillance [2].

Biometric surveillance involves the collection and analysis of biometric data, such as
facial images, to identify and monitor individuals [3]. Since facial images inherently carry
the risk of unauthorized identification, their widespread availability on online platforms
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increases privacy concerns, especially when combined with other data sources, such as
online activities or location metadata [4].

In addition, analyzing facial images alongside contextual elements, such as back-
ground details, can inadvertently reveal sensitive information, including an individual’s
location or daily routines. These vulnerabilities have been exploited in real-world incidents,
where perpetrators used facial details from social media to locate and harm individuals [5].

Furthermore, these concerns have become increasingly urgent due to recent advances
in deep-learning generative models, particularly their ability to create and manipulate
realistic facial data. For example, Karras et al. [6] introduced StyleGAN, a model that can
generate highly realistic human faces. Similarly, Chen et al. [7] developed a face-swap
technique that can seamlessly replace faces in both images and videos. Xu et al. [8] further
proposed a framework for generating videos of people speaking from a single static image,
demonstrating the rapid progression in video synthesis.

Despite their impressive capabilities, these technological advancements pose signifi-
cant threats to individual privacy and societal integrity due to potential misuse, such as
impersonation and misinformation. Although progress has been made in the detection
of synthetic content [9–11], the rapid advancement of generative models continues to
challenge existing detection methods as they generate increasingly realistic images that
are often indistinguishable from authentic ones, even by human observers. This ongoing
challenge underscores the urgent need for proactive privacy protection strategies that safe-
guard image data at its source, rather than relying solely on reactive measures to mitigate
potential harms.

However, despite these growing concerns, many users continue to underestimate
the privacy implications of sharing facial images online [12]. This lack of awareness is
intensified by the ease of capturing and disseminating images on modern online platforms,
resulting in a surge of biometric data available for exploitation [13].

While existing online platforms implement system-level privacy controls to protect bio-
metric data, these measures remain inadequate in addressing facial data privacy challenges.
Images shared online are often stored in unencrypted formats and accessible via direct
links without authentication, making them vulnerable to unauthorized access and misuse.
Furthermore, the persistence of files on online platforms poses another risk, as deleting
photos does not guarantee the removal of facial data. Images may still be accessible via
their URLs, even after deletion [14]. These limitations highlight the need for file-level
facial privacy protection to ensure that facial data remain secure regardless of the image’s
online accessibility.

A common approach to file-level privacy in online platforms involves obscuring faces
with emoticons or stickers. While this approach may be sufficient for concealing facial
features at the file level, it lacks the sophistication of techniques such as image encryption,
which enable the restoration of the original face when necessary.

Image encryption provides a robust solution to protect facial data by ensuring that
the original face remains hidden until decrypted. Although encryption protects against
unauthorized access, it introduces challenges in balancing an image’s security and usability.
For instance, encrypting an entire image can render it unusable for general viewing [15].
This tradeoff is particularly significant on online platforms, where the goal is to share
visually meaningful images [16]. Full-image encryption undermines this usability by
obscuring both facial and non-sensitive content, limiting the effectiveness of image sharing.

To address these limitations, our previous work introduced SnapSafe [17], a single-party
system designed to protect individuals’ privacy by selectively encrypting facial regions
in images while preserving the visibility of non-sensitive content. SnapSafe focuses on
proactive privacy protection at the source, ensuring that individuals’ privacy is preserved
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before an image enters the public domain. Using a deep-learning model based on the
YOLOv8 architecture [18] for face detection and an AES algorithm for image encryption,
SnapSafe demonstrated the feasibility of safeguarding facial data with minimal impact
on image usability. This approach provides a practical solution for protecting facial data
in shared images, particularly in the SnapSafe context, i.e., organizational settings where
privacy concerns are paramount.

However, in the context of SnapSafe, the original system was designed primarily
for organizational use cases, where a single entity—the organization—controlled both
encryption and decryption. Consequently, only the organization could reveal faces, as it
retained exclusive control over the decryption keys. This centralized model restricted
access to the original faces solely to the organization.

Nevertheless, the demand for secure photo sharing extends beyond organizational
contexts to online photo platforms, where images are shared among multiple users. Given
the limitations of SnapSafe, particularly its single-party design and lack of dynamic access
control mechanisms, our current work addresses these gaps by introducing dynamic access
control mechanisms that enable controlled sharing of facial data among multiple users
while ensuring flexible, user-centered privacy protection.

In this study, we classify users into two categories: image owners and image con-
sumers. The interaction between these two groups, including how images are shared and
accessed, is illustrated in Figure 1.

An image owner, referred to as Alice, is an individual who captures and uploads
a photograph to the system, rather than the person depicted in it. This classification aligns
with U.S. Copyright Office Circular 42 [19], which states that copyright belongs to the pho-
tographer, not the subject, unless transferred to another party. However, this assumption
must be applied carefully, as publishing images containing identifiable individuals raises
privacy concerns that vary across jurisdictions.

Once an image is uploaded, it may be shared publicly, making it accessible to the
public domain, or within a restricted group, where access is limited to specific users.
As shown in Figure 1, people who have permission to view facial data are referred to
as image consumers, Bob representing an example. Bob can view the facial data unless
his access is revoked, whereas the public domain can only access images with encrypted
face regions.

Our proposed system enables image owners to encrypt facial data when necessary.
This encryption may be optional for individuals prioritizing privacy or mandatory for
organizations (e.g., schools, Non-Governmental Organizations (NGOs), or companies)
to comply with regulations such as the General Data Protection Regulation (GDPR) [20].
For example, a school that shares images of its activities online acts as the image owner
and can implement measures to protect students’ privacy before publication. If a parent
(acting as an image consumer) wishes to view their child’s face in an image, they must
submit a permission request, which the school administrator may approve or deny based
on institutional policies and privacy considerations. However, the process of verifying
image consumers—such as determining whether or not the requester is the child’s parent
in the school use case and whether or not they have the right to view the face—is beyond
the scope of this study.

Upon approval, the system splits the original secret key into two shares: one assigned
to the owner and the other to the consumer. For decryption, the image consumer must have
access to both key shares, ensuring security and restricting access exclusively to authorized
users. As part of this process, the image consumer must provide relevant details, such as
the image identifier, to initiate the decryption. If all conditions are met, the system decrypts
the facial data and displays the original face to the consumer. Although Figure 1 illustrates
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the decryption process for the consumer, it does not depict the decryption process by the
image owner, which will be detailed in subsequent sections.

Cryptographic Service Provider

AES 
ENCRYPTION

FACE REGION 
DETECTION

Alice (Image Owner)

Proposed System

Server Secure Key Storage

Public DomainAuth

Bob 
(Image Consumer)

Legend

: Image With Encrypted Faces

: Image Identifier

: Alice's Original Secret Key

: Image With Encrypted Faces, Identified by Identifier

: Detected Face Regions 

: Alice's Share of Original Key

: Bob's Share of Original Key

: Face Protection Flow

: Face Reveal Flow

: Key Management Flow

: Server Storage 

Figure 1. Overview of the interaction between image owners and consumers in the proposed system.

Additionally, the system enables the image owner to revoke previously granted access
at any time, ensuring that full control over facial data is retained. This owner-centric
permission system, combined with the request-based mechanism for initiating permissions,
guarantees that non-facial areas of images remain accessible for general viewing, while
facial data are protected under strict, dynamic access control policies.

By implementing encryption-based access control, our system ensures file-level se-
curity for images, allowing only authorized users to access facial data. This approach is
particularly relevant for securely sharing privacy-sensitive images while enforcing strict
access control measures. While our discussion primarily focuses on school environments,
similar concerns extend to other domains. For instance, companies may need to regulate
access to event photos, NGOs might publish images from community projects while safe-
guarding individuals’ identities, and individuals may wish to share photos from social
gatherings while preserving the privacy of those depicted.

Building on this foundation, our approach redefines the role of organizational users
in the original single-party SnapSafe system. Instead of a single-user control model, these
users now participate equally in sharing protected photos online. This shift to a multi-user
access model expands the system’s applicability, supporting a wider range of use cases.

The following sections outline the proposed system in detail and are structured as
follows. Section 2 presents related works on facial privacy protection. Section 3 provides
a preliminary discussion of key concepts and technologies relevant to the proposed system,
along with an overview of this work’s contributions. Section 4 describes the proposed
system in detail, covering its components, the workflow for key operations, and security
considerations. Section 5 discusses the experimental setup and analysis. Finally, Section 6
summarizes the study’s findings and conclusions and outlines potential directions for
future research.

2. Related Works
Facial privacy protection has attracted significant attention in recent years due to the

proliferation of facial data on online platforms and the increasing risks of misuse. Various
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techniques have been proposed to address these challenges, each targeting different aspects
of facial data protection. Some approaches focus on image modification to protect facial
privacy, while others emphasize user consent and access control mechanisms.

In this section, we review several existing works on facial privacy protection, high-
lighting their key features and limitations. Table 1 presents a comparative overview of
approaches focused on image modification, while Table 2 provides a comparison of ap-
proaches that prioritize user consent and access control.

Table 1. Comparative overview of proposed approaches with some existing works in facial pri-
vacy protection.

Approach Key Features Face Reversibility Multi User Access Control

DIFP [21] Diffusion-based facial
privacy protection network

Reversible but not
pixel-perfect No

Diff-Privacy [22] Privacy-preserving facial
image generation

Reversible but not
pixel-perfect No

PluGeN4Faces [23] Person’s attribute
manipulation Irreversible No

DM [24] Irreversible anonymization
of facial features Irreversible No

SnapSafe [17] Selective facial encryption
for single-party scenarios Pixel-perfect and reversible No

Proposed System
Dynamic multi-user access
control for facial
privacy protection

Pixel-perfect and reversible Yes

In the context of image modification to protect facial privacy, You et al. [21] proposed
the Diffusion-Based Facial Privacy Protection Network (DIFP), which employs diffusion
models to generate photorealistic and privacy-preserving images. DIFP ensures the re-
versibility of protected images, enabling the restoration of the original faces when necessary.
Similarly, He et al. [22] introduced Diff-Privacy, which produces visually realistic and
diverse anonymized images while maintaining the ability to recover original identities
as needed. Although both approaches ensure reversibility, the restored images are not
identical to the original images at the pixel level.

Suwala et al. [23] proposed PluGeN4Faces, a method for decoupling facial attributes
from identity in StyleGAN’s latent space, allowing for precise attribute manipulation while
maintaining image realism. Although not explicitly designed for privacy protection, this
approach could be adapted to anonymize facial images by altering identifiable attributes,
such as age, hairstyle, or beard. Yang et al. [24] introduced the Digital Mask (DM), which
uses 3D reconstruction and deep-learning algorithms to irreversibly anonymize facial
features while preserving disease-relevant attributes. Unlike DIFP and Diff-Privacy, both
PluGeN4Faces and DM lack the capability to reverse to the original image. Nevertheless,
these methods offer promising alternatives for generating privacy-preserving facial images.

Another key aspect of facial privacy protection is access control, which involves
obtaining user consent and granting users control over the usage of their facial data.
Xu et al. [25] introduced a system where social media users depicted in a photo are notified
and allowed to participate in decisions about photo sharing to prevent privacy breaches.
Similarly, Tang et al. [26] proposed an automatic tagging framework that restricts photo
access based on the identities of tagged individuals. Although these approaches focus on
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user consent and access control, they do not address the challenges of file-level protection
through the selective encryption of facial data in multi-user scenarios. Moreover, their
approaches require users to provide personal photos for face model training, which may
raise privacy concerns.

Table 2. Comparative overview of proposed approaches with some existing works in user consent
and access control for facial privacy protection.

Approach Key Features Relies on User’s Private Photos File-Level Protection

Xu et al. [25] Photo-sharing consent system for
privacy protection Yes No

Tang et al. [26] Automatic tagging framework for
photo access control Yes No

Proposed System Dynamic multi-user access control for
facial privacy protection No Yes

While the discussed approaches provide valuable insights into facial privacy pro-
tection, they do not address the challenges of selective image encryption in multi-user
scenarios. Additionally, although methods such as DIFP and Diff-Privacy ensure re-
versibility, the restored images are not pixel-perfect, which limits their applicability in
scenarios requiring precise image restoration. In contrast, our proposed system provides
a comprehensive solution for dynamic multi-user access control in online photo platforms.
It safeguards facial data through file-level selective image encryption while allowing pixel-
perfect restoration when needed. Moreover, it eliminates the need for participating users to
submit personal photos for face model training, enhancing both privacy and usability.

3. Preliminaries
3.1. YOLOv8 for Face Detection

Object detection models are essential for identifying objects in images and videos. One
of the most popular object detection models is the YOLO (You Only Look Once) model,
which is known for its remarkable speed and accuracy in object detection tasks. Over the
years, YOLO has undergone multiple iterations, each aimed at improving the model’s
performance and efficiency.

YOLOv8 [18] is one of the recent iterations of the YOLO model, which is optimized
for both speed and accuracy. Building upon YOLOv5 [27], it incorporates enhancements to
refine the original architecture.

Figure 2 illustrates an overview of the YOLOv8 architecture, which comprises three
primary components: the backbone, the neck, and the head. The backbone network extracts
features from the input image, the neck network refines these features, and the head
network performs a specific task, such as object detection, classification, segmentation,
or pose estimation. The model is trained on extensive datasets to learn object features and
accurately perform the designated task.

Although YOLO is designed primarily for general object detection tasks, its adapt-
ability facilitates specialized applications. For example, training YOLOv8 on a dataset
containing facial images enables the model to accurately detect facial regions. This capabil-
ity is essential for facial data encryption, as it allows systems to identify and encrypt facial
regions while leaving other parts of the image unmodified.
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Figure 2. Overview of YOLOv8 architecture.

In this work, we leverage the YOLOv8 architecture for face detection to identify
facial regions in images. By training the model on facial datasets, we achieve accurate face
detection and selectively encrypt these regions to protect sensitive facial data. This approach
ensures that facial data remain secure while maintaining the visibility of non-sensitive
content in shared images, thereby preserving the usability of the image. The details of the
model’s training process and configuration are discussed in Section 5.1.2.

3.2. Selective Image Encryption

Selective image encryption differs from traditional methods, such as AES, by taking the
image file’s structure into account. Conventional encryption algorithms treat an image as
a generic data stream, making the encrypted output unreadable by standard image viewers.
Because these methods disregard the original file structure, necessary modifications can
be easily performed before encryption to ensure the plaintext complies with algorithmic
requirements. However, in selective image encryption, preserving the file structure is
essential, making such modifications more challenging or even impractical.

For instance, the AES algorithm employs padding to adjust the plaintext size to match
its required block size of 16 bytes. While this ensures compliance with AES encryption stan-
dards, it can disrupt the structure of image data, making the encrypted output incompatible
with standard image encoding formats. This limitation underscores the need for specialized
image encryption techniques that preserve structural integrity while maintaining usability
in common image viewers.

Some existing image encryption methods produce encrypted images that remain view-
able. Recent research has proposed various encryption techniques incorporating methods
such as Hilbert curve scrambling, Discrete Wavelet Transform (DWT), and dynamic DNA
coding to ensure pixel-level security [28]; fractal geometry combined with chaotic maps
and Paillier homomorphic encryption [29]; and chaotic synchronization systems enhanced
by Radial Basis Function Neural Networks (RBFNN) and Particle Swarm Optimization
(PSO) [30]. However, these approaches typically encrypt the entire image.

While full-image encryption is essential for protecting sensitive data, there are scenar-
ios where selective encryption of specific regions is more appropriate [17]. For example,
in online photo sharing, users may prefer to encrypt only sensitive areas while leaving
non-sensitive regions unaltered. Encrypting an entire image presents a challenge in bal-
ancing security and usability. Although the image remains viewable in a standard viewer,
it appears as noise and is incomprehensible to the human eye. In contrast, selective en-
cryption of an image encrypts specific regions while preserving the interpretability of the
non-sensitive areas.

Our work in SnapSafe [17] introduced a method to selectively encrypt sensitive facial
regions in an image, ensuring that facial data remain secure while the rest of the image
remains usable for sharing. This approach is particularly suitable for online platforms
where sharing visual information is essential while maintaining privacy protection.

However, implementing selective image encryption effectively requires address-
ing several challenges. First, encrypted regions must be compatible with reintegration
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into the original image without disrupting its structure. Additionally, the approach
should support encryption of rectangular regions of varying sizes, as sensitive areas in
images can differ in dimensions and location. For example, the method proposed by
Geng et al. [28] is unsuitable for this purpose due to its reliance on Hilbert curve scrambling
and DWT decomposition, which only support square regions. This limitation makes it
infeasible for encrypting arbitrary rectangular areas, such as those detected using object
detection algorithms.

Our previous work [17] introduced an algorithm to overcome this challenge by ad-
justing the bounding box of the image segment prior to AES encryption. This adjustment
ensures that the byte size of the region is a multiple of 16 bytes, eliminating the need for
padding and facilitating seamless reintegration into the original image. Since the encrypted
data maintain structural compatibility with standard image formats, this approach enables
selective encryption without introducing compatibility issues.

In this work, we enhance the applicability of the selective image encryption approach
introduced in SnapSafe by extending its functionality to support multi-user access control.
Building on SnapSafe’s foundation, our improved system integrates dynamic access control
mechanisms, allowing multiple authorized individuals to securely access facial data while
maintaining strong privacy safeguards. This advancement ensures that SnapSafe is no
longer restricted to a single-entity access model, making it more versatile and practical for
broader use cases.

3.3. Contributions

In this paper, we present a multi-user security system that facilitates the controlled
sharing of facial data on online photo platforms. The proposed system extends SnapSafe to
support multi-user scenarios, enabling the selective encryption of facial regions in images
while preserving the visibility of non-sensitive content. By incorporating dynamic access
controls, the system ensures that facial data remain secure and accessible only to authorized
users. The key contributions of this work are as follows:

• Key Splitting for Access Control: The system introduces key splitting as a mechanism
to enable access control over shared facial data. This approach allows the image
owner to selectively share access to facial regions in shared images. This key splitting
operation enables the secure sharing of facial data while keeping the image owner
exclusive access to the original key.

• Owner-Centric Permission System: The system implements an owner-centric permis-
sion system, designating the image owner as the primary authority for granting access
to facial data. This system ensures that the owner retains full control over the shared
data, enabling the management of access permissions for multiple users. In addition
to granting access, the owner can revoke previously granted permissions at any time,
ensuring that facial data remain protected under the owner’s supervision.

• Request-Based Access Mechanism: The system incorporates a request-based access
mechanism that allows users to request permission to access protected facial regions.
By default, this mechanism ensures that facial regions in images shared on online
platforms remain protected. Only the image owner has access to these regions, while
other users must submit access requests. The owner retains full authority to approve
or reject such requests, thereby maintaining control over the visibility of facial data.

4. Proposed System
4.1. System Components

The system consists of three key components: the client application, the server, and the
Cryptographic Service Provider (CSP). These components collaboratively enable the secure
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sharing of facial data among multiple users. Each component serves a critical function, en-
suring that facial data are protected and accessible only to authorized users. The following
sections detail the roles and responsibilities of each component.

4.1.1. Client Application

The client application serves as the primary interface for users to interact with the
system. It is responsible for collecting user input, such as credentials and original images,
and securely transmitting these data to the server.

The client application does not perform cryptographic operations or store sensitive
cryptographic information locally. It operates as a front-end interface that allows users
to initiate cryptographic processes performed on the server. These processes include
encrypting facial regions, key splitting for access sharing, and decrypting the facial regions
only for authorized users.

Additionally, the client application provides an interface for user registration, login,
and access management. Through this interface, users can register for accounts, log in
to the system, and manage access permissions for shared images (including granting,
rejecting, or revoking access). Furthermore, to maintain secure user sessions and ensure
the integrity of communication with the server, the application employs JSON Web Tokens
(JWT) for authentication.

4.1.2. Server

The server plays a central role in the system by handling user requests, verifying
user credentials, and securely storing encrypted images along with metadata related to
encryption processes. Furthermore, it acts as an intermediary, forwarding client requests
related to cryptographic operations to the CSP, where those operations are performed.
A detailed discussion of the CSP component is provided in Section 4.1.3.

In this context, communication between the server and the CSP is authenticated and
conducted over a secure internal network, ensuring that only the server is exposed to the
public internet. By serving as an intermediary, the server ensures the secure execution of
cryptographic operations and protects sensitive data from unauthorized access.

Finally, the server manages user sessions through the use of JWT authentication,
ensuring that users remain authenticated throughout their interactions with the system.
By validating the JWT token in each request, the server can authenticate users without the
need for server-side session storage.

4.1.3. Cryptographic Service Provider

The Cryptographic Service Provider (CSP) is responsible for executing all crypto-
graphic operations and managing the associated cryptographic secrets. Specifically, it
manages the generation of secret keys, the production of salts required for cryptographic
processes, the encryption of facial regions in images, the implementation of key splitting for
shared access, the decryption of facial regions for authorized users, and the secure storage
of sensitive data.

The storage system within the CSP is designed to mitigate the risk of unauthorized
access. This component utilizes authentication mechanisms to allow the server to perform
various actions within the CSP, such as generating, storing, and retrieving keys, as well as
salt management. Additionally, the CSP ensures that the server can access stored data only
through authenticated and secure internal communication channels, thereby preventing
unauthorized access. To further enhance security, the CSP encrypts sensitive secrets using
the user’s password, ensuring that only the correct password holder can decrypt the
key. The implementation details of secure data handling in the CSP’s storage system are
discussed in Section 4.3.1.
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4.2. System Workflow

The system involves two categories of users: the image owner and the image consumer.
The proposed system facilitates interactions between these two user categories to enable
the secure sharing of facial data in images. The image owner is responsible for encrypting
images, granting access to selected consumers, and revoking previously granted access.
The image consumer can request access to protected facial regions and view them upon the
image owner’s approval.

Furthermore, the system supports multiple image consumers (e.g., Bob, Carol,
and Dave) requesting access to the same image. The image owner (e.g., Alice) retains
full control over access permissions and can manage each relationship independently.
For instance, Alice may grant access to Bob and Carol while denying it to Dave. Addition-
ally, Alice can revoke access previously granted to Carol while maintaining Bob’s access.
This granular control ensures that the system restricts unauthorized users to non-facial
areas of the image while permitting only authorized users to view protected facial regions.

These interactions are made possible through the collaboration of the system’s primary
components, as previously described: the client application, the server, and the CSP.
Together, these components ensure the secure sharing of facial data by managing user
interactions, processing requests, and performing cryptographic operations.

The following sections provide a detailed description of these interactions, as outlined
in the system workflow for key operations: user registration, face encryption, face decryp-
tion by owner, key splitting, and face decryption by consumer. Each operation is illustrated
in a step-by-step process, detailing the interactions between the system components and
the roles of the image owner and image consumer.

4.2.1. User Registration

The user registration process begins when an individual (e.g., Alice, Bob, or Carol)
creates an account by submitting credentials through the web client application. For exam-
ple, as illustrated in Figure 3, Alice submits her username (uname) and password (pwd) to
the server. Upon receiving these credentials, the server validates them and issues a JSON
Web Token (JWT), which is then securely stored on Alice’s web client. The JWT serves as
a session token for subsequent requests, enabling secure communication between the client
and the server.

Storing data into permanent storage.

A l i c e CSPSer ver
P r i v a t e  N e t w o rk

Figure 3. User registration process.

Subsequently, the server forwards Alice’s registration request to the CSP, which gen-
erates a unique public–private key pair, denoted as pkalice (public key) and skalice (private
key). The key pair is generated using the RSA(256, IDalice) function, where 256 spec-
ifies the key size and IDalice is a unique identifier associated with Alice. The IDalice
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serves as the key identifier that will be used to retrieve the stored key from the CSP’s key
storage management.

After generating the key pair, the CSP retains the public key (pkalice) in plaintext
while encrypting the private key (skalice) as skenc

alice. The encryption process employs the
function E and a secret key derived from Alice’s password (pwd) using a key derivation
function (KDF). The KDF uses pwd and a randomly generated salt (saltalice) to derive
the encryption key. The salt is generated using a cryptographically secure pseudorandom
number generator, CSPRNG(128, IDalice), where 128 denotes the salt’s bit length. Finally,
the CSP securely stores saltalice, skenc

alice, and pkalice in its secure key storage system.
This password-based encryption mechanism ensures that only Alice can access her

private key. Even if the keys stored within the CSP are compromised, an attacker cannot
retrieve sensitive facial data protected by the system.

4.2.2. Face Encryption

After completing the registration process, users can protect facial information in shared
images through encryption. For instance, as illustrated in Figure 4, when Alice intends to
share an image with a broad audience while ensuring the preservation of facial privacy,
she uploads an image I containing facial regions via the client application to the server.

Storing data into permanent storage. Accessing data from permanent storage.
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Figure 4. Face encryption and decryption by owner.

Upon receiving the request, the server validates it and generates a unique identifier, a,
for image I using a UUID version 4 generator, denoted as UUID4(16), where 16 specifies
the byte length. Subsequently, the server retrieves Alice’s identifier, IDalice, from storage
and forwards the image I along with a and IDalice to the CSP.

The CSP processes the image I to identify facial regions using the function DETECT(I),
resulting in a set of facial regions, F = { f1, f2, . . . , fn}. Each fi ∈ F represents the bound-
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ing box coordinates of the i-th detected face, defined as fi = (xi, yi, wi, hi), where (xi, yi)

denotes the top-left corner coordinates and (wi, hi) specifies the width and height of the
bounding box, respectively.

Building on our prior work [17], this face detection process is designed to ensure that
the byte size of each facial region matches the 16-byte block size of AES, thus eliminating
the need for padding to ensure the compatibility of encrypted data with the original image
format. This approach enables seamless reintegration of encrypted facial data into the
original image, preserving the image’s structural integrity.

Subsequently, the CSP generates a symmetric key, Ka, and an initialization vector,
IVa, to encrypt the facial regions, F, within the image, I. Using these generated values
(Ka and IVa), the CSP encrypts the regions corresponding to F, resulting in the encrypted
image Ienc. This encryption process follows the methodology outlined in our previous
work [17], where facial regions are encrypted sequentially based on the order of fi in F. This
sequential approach ensures that even overlapping facial regions can be fully reconstructed
during decryption.

Then, for key storage, the symmetric key Ka is encrypted using Alice’s public key
pkalice, producing Kenc

a . The CSP stores Kenc
a and IVa securely for future decryption.

Finally, the CSP returns the encrypted image Ienc and facial region metadata F to the
server. The server associates these elements with identifier a to produce Ienc

a and Fa, storing
them in persistent storage for future retrieval. Subsequently, the server transmits Ienc to the
client application for display to Alice, completing the encryption process.

4.2.3. Face Decryption by Owner

To initiate the face decryption process, Alice, the image owner, must provide both
the image identifier (a) and her password (pwd) to the server, as illustrated in Figure 4.
Although Alice is authenticated with the server via a JSON Web Token (JWT) during
registration or login, her password is required for each face decryption operation. This
password is used to derive a decryption key, which is subsequently employed to decrypt
Alice’s private key stored on the server. This approach ensures that only Alice, as the sole
holder of the password, can access her private key and decrypt the facial data.

Upon receiving and validating the request, the server retrieves Alice identifier IDalice,
the encrypted image Ienc

a , and associated face regions Fa from its storage and forwards them
as a request to the CSP alongside Alice’s password pwd.

Upon receiving the request from the server, the CSP then retrieves Alice’s salt saltalice,
encrypted Alice’s private key skenc

alice, and initialization vector IVa from its storage. Using
pwd and saltalice, the CSP calls function KDF(pwd, saltalice) to derives a decryption key
Kdec, which is then used to decrypt skenc

alice using function D. This decrypted private key,
skalice, is then used to decrypt Kenc

a , producing Ka. With Ka, IVa, and Fa, the CSP decrypts
face regions within Ienc

a , producing the original image I. The CSP then returns the processed
image to Alice through the server. This process ensures that only Alice, as the image owner,
can access and view the protected facial data.

4.2.4. Key Splitting for Shared Access

After encrypting the facial regions in an image I, Alice can selectively share the image
with others, such as Bob, by granting access to the encrypted facial data. To initiate this
shared access mechanism, Bob submits a request to Alice for permission to view the pro-
tected regions. Alice can then approve or reject the request. Upon approval, Bob is granted
access to the encrypted facial regions in the image. This process is illustrated in Figure 5.
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Storing data into permanent storage. Accessing data from permanent storage.
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Figure 5. Key splitting process for shared access. This figure illustrates the process by which
Alice splits the symmetric key of a shared image into two shares: one for herself and one for Bob,
the image consumer.

The access-granting process begins when Bob sends an access request to Alice via the
server. This request includes the image identifier a, which uniquely identifies the image.
Upon receiving and validating the request, the server identifies that the user with identifier
IDbob is requesting access to the image and notifies Alice of the pending request.

If Alice rejects the request, she submits a request to the server to deny access, and no
further action is taken by the server except for deleting the request. If Alice approves
the request, she submits a follow-up request to the server to initiate the key-splitting
process. This request contains the image identifier a, Alice’s password pwdalice, and Bob’s
user identifier IDbob. The server validates Alice’s request and forwards it to the CSP
for processing.

Upon receiving the server’s request, the CSP retrieves the encrypted symmetric key
Kenc

a , the salt generated for Alice saltalice, Alice’s encrypted private key skenc
alice, and Bob’s

public key pkbob from its storage. Since skenc
alice is encrypted, the CSP decrypts it using a key

derived from Alice’s password pwdalice and saltalice, yielding skalice. This private key is
then used to decrypt Kenc

a , resulting in the original symmetric key Ka, which is required to
reveal the facial data in the image.

Once the symmetric key Ka is obtained, the CSP splits it into two shares: one for
Alice q⟨alice,a⟩ and one for Bob q⟨bob,a⟩—using Shamir’s secret sharing scheme, denoted as
SPLIT(Ka). These shares are then encrypted using Bob’s public key pkbob, ensuring that
only Bob can decrypt and recombine them. As Bob’s public key is available in plaintext,
this process does not require his direct involvement to provide credentials during key
splitting. Finally, the encrypted shares are stored and can be accessed by Bob when he
submits a subsequent request to the server to perform decryption of the facial regions,
as described in the next section.

If Alice later decides to revoke Bob’s access to the facial data, she can submit
a revocation request to the server. Upon verifying Alice’s identity and her ownership
rights to the image, the server forwards the request to the CSP. The CSP then deletes Alice’s
share q⟨alice,a⟩ of the key for image a from its key storage. Since both shares, q⟨alice,a⟩ and
q⟨bob,a⟩, are required for the consumer to decrypt the facial data in image a, removing
Alice’s share q⟨alice,a⟩ automatically renders Bob’s share q⟨bob,a⟩ invalid. This revocation
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mechanism ensures that Alice retains full control over access to the facial data in her shared
images, even after initially granting permission.

4.2.5. Face Decryption by Consumer

The decryption process for Bob, the image consumer, primarily follows similar steps to
those performed by Alice, the image owner. The difference is in the method of accessing the
symmetric decryption key. While Alice has direct ownership of the image and can access
the symmetric key directly, Bob does not possess this direct ownership. Instead, Bob uses
key shares provided by Alice during the key splitting process to reconstruct the original
symmetric key. With the reconstructed key, Bob decrypts the encrypted facial regions in the
image to access the protected data. This decryption process for the consumer is illustrated
in Figure 6.

CSPSer ver Bob

Exist?

Yes

No

P r i v a t e  N e t w o rk

Accessing data from permanent storage.

Figure 6. Face decryption by consumer: This figure illustrates the process by which an image
consumer, such as Bob, decrypts facial regions in a shared image using key shares provided by the
image owner, Alice.

To initiate the face decryption process, Bob sends a request to the server containing
the image identifier a and his password pwd. Similar to the image owner, the password is
essential for each decryption request to successfully reveal the facial regions.

Upon receiving and validating Bob’s request, the server retrieves the face coordinates
Fa, the encrypted image Ienc

a , along with the identifiers for Alice (IDalice) and Bob (IDbob)
from its storage. This information is then forwarded to the CSP for processing.

Upon receiving the request from the server, the CSP retrieves the encrypted key shares
(qenc

⟨alice,a⟩, qenc
⟨bob,a⟩), Bob’s encrypted private key skenc

bob , along with the initialization vector IVa

used to encrypt the facial regions in the image Ienc
a . The CSP checks for the availability

of both Alice’s and Bob’s key shares. If either share is missing, the decryption process
terminates. If both shares are available, the CSP proceeds with key reconstruction.
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To reconstruct the symmetric key for image decryption, the CSP decrypts Bob’s private
key skenc

bob using Bob’s password pwd and a salt saltbob associated with Bob’s account,
yielding skbob. Once skbob is obtained, the CSP decrypts the encrypted key shares qenc

⟨alice,a⟩
and qenc

⟨bob,a⟩ using skbob. The decrypted key shares are then combined using the function
RECON(q⟨alice,a⟩, q⟨bob,a⟩), which uses Shamir’s secret sharing scheme to reconstruct the
symmetric key K′. Using K′ and IVa, the CSP decrypts the facial regions in the image Ienc

a ,
producing the original image I. The CSP then returns the processed image to Bob via the
server, completing the decryption process.

4.3. Security Considerations
4.3.1. Security Implementation for Data Handling

The system ensures the security of data in transit and stored data through multiple
mechanisms. Data in transit is protected using the HTTPS protocol, which encrypts infor-
mation exchanged between the client application and the server. This ensures that sensitive
data, such as user credentials and image data, remain confidential during transmission.
Additionally, the server communicates with the CSP through an internal network, isolating
data exchanges from external threats and maintaining security.

To protect stored data, the system does not retain original images or sensitive crypto-
graphic information on the server. Instead, the server stores only face-encrypted images
and metadata related to the face encryption processes. Sensitive data, such as private and
symmetric keys, are securely managed by the CSP using two primary mechanisms. First,
the CSP leverages Hashicorp Vault [31], a dedicated key management system, to store
secrets securely. Access to Vault is strictly controlled, and the CSP communicates with it
using the AppRole authentication method [32], which enforces specific policies and login
constraints to obtain tokens with the required permissions. Second, the CSP employs
password-based encryption, where private keys are encrypted with a key derived from
the user’s password. This ensures that only the user can access their private key, even
if the secrets management system is compromised. Finally, although public keys are not
sensitive, they are also stored in Vault for consistency.

4.3.2. Potential Security Risks from Adversarial Image Attacks

While our proposed system implements a data protection mechanism for both data in
transit and stored data, it is essential to consider potential adversarial attacks that could
compromise image security. One such attack involves the use of manipulated images
to bypass the face protection mechanism. Although these risks are concerning, they are
unlikely to occur under normal circumstances. In our system, users do not typically attempt
to bypass encryption, as they are the ones who choose to encrypt their data. If they wish to
bypass encryption, they can simply opt not to encrypt their data.

However, the risks associated with manipulated images may arise in adversarial attack
scenarios, such as when a user’s device is compromised. In such cases, an attacker could
alter images before they are uploaded to the server without the user’s knowledge. This
manipulation could cause the face detection algorithm to fail, rendering the face encryption
mechanism ineffective.

To mitigate this risk, the system could implement additional security measures, such
as image integrity verification. By verifying the integrity of uploaded images using crypto-
graphic hashing algorithms, the system could detect unauthorized modifications. However,
this approach may not be foolproof, as attackers could potentially manipulate both the
image and its hash value to evade detection. Therefore, a comprehensive security strategy
is needed to address this risk effectively. Nonetheless, since adversarial attacks are not
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the primary focus of this work, a detailed analysis of their risks and potential mitigation
strategies is beyond the scope of this study and intended for future research.

5. Experiments
This section presents our experimental validation of proposed system capabilities and

performance. We evaluated the system’s performance and effectiveness of face encryption,
key splitting, face decryption operations, and revocation mechanism. The detail of the
experiment design, including the system configuration, test dataset, and evaluation sce-
nario, is provided in Section 5.1. The results of the experiments are presented and analyzed
in Section 5.2.

5.1. Experiment Design
5.1.1. System Configuration

The experiments were conducted on a Ubuntu 24.04.1 LTS machine with the following
specifications: 12th Gen Intel® Core™ i7-12700H, 16 GB RAM, 512 GB SSD, and NVIDIA
GeForce RTX™ 3050 Ti Laptop GPU. The system was implemented using Docker con-
tainers running on Docker v27 [33] to ensure reproducibility and isolation. The following
containers were deployed for the experiments:

• Server Container: Django v5.1.3, base image: python:3.10-slim, port: 8000
• Database Container: PostgreSQL v17, base image: postgres:17, port: 5432
• CSP Container: Django v5.1.3, base image: python:3.10-slim, port: 8081
• Vault Container: HashiCorp Vault v1.18.3, base image: hashicorp/vault:1.18,

port: 8200

Only the server container is accessible from the public network. In this configuration,
the server container communicates with both the CSP and the database containers through
the internal network. Additionally, for key management operations, the CSP container
interacts with the Vault container over the same internal network to ensure the secure
management of cryptographic keys.

5.1.2. Deep-Learning Model Configuration

For face detection, we employed the same model as in our previous work [17], based on
the YOLOv8 architecture. The model was trained on the WIDER Face dataset [34] to detect
facial regions in images. Specifically, we utilized the YOLOv8m pre-trained model [35]
and fine-tuned it on the WIDER Face dataset to adapt it to our use case. YOLOv8m
is a medium-sized model in the YOLOv8 family, achieving a 50.2 mAP on the COCO
validation set [36]. With 25.9 million parameters and 78.9 billion FLOPs, the model achieves
a balance between accuracy and computational efficiency. YOLOv8m is more complex
than YOLOv8n and YOLOv8s but less resource-intensive than YOLOv8l and YOLOv8x. It
processes images in 234.7 ms on a CPU (ONNX) and 1.83 ms on an NVIDIA A100 GPU
(TensorRT), making it suitable for real-time applications [37].

Our fine-tuned model was trained using Python version 3.10 with PyTorch version
2.2.0 [38] and the Ultralytics Python library version 8.1.9 [18]. Training was performed on
a system with an NVIDIA RTX 3070 GPU for 300 epochs, achieving a precision of 0.875 and
a recall of 0.651 in the final epoch.

As shown in Figure 7, our model achieved high accuracy on both the validation and
test sets of the WIDER Face dataset. In the test set, it obtained Average Precision (AP) scores
of 0.924 for easy, 0.907 for medium, and 0.809 for hard levels, demonstrating its effectiveness
in detecting facial regions in previously unseen images, even in challenging conditions.
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Figure 7. Precision–recall curve of the fine-tuned YOLOv8m model on the (a) validation and (b) test
sets of the WIDER Face dataset.

5.1.3. Test Dataset

In this study, we assessed the performance of the system using a subset of images from
the WIDER Face dataset [34]. The WIDER Face dataset includes images with annotated
facial regions, making it an ideal benchmark for evaluating face detection capabilities. It
is widely recognized for its diverse collection of images, with varying levels of difficulty,
categorized as easy, medium, and hard.

In this study, we selected a subset of images from the validation set of the WIDER
Face dataset to assess the performance of the proposed system. This selection was made
due to the unavailability of ground truth annotations for the test set. To ensure an accurate
assessment of the system’s computational performance, we focused on images where our
deep-learning model could reliably detect all facial regions.

We selected the face regions from the ‘medium’ level of the WIDER Face validation
dataset. Based on the detection results of our model, the selected images were categorized
into four groups according to the number of faces detected: Single (1 face), Small (2–5 faces),
Medium (6–10 faces), and Large (11–65 faces). An overview of these face categories and the
corresponding number of images in each category is provided in Table 3.

Table 3. Face categories and image counts.

Face Category Number of Faces Number of Images

Single 1 996
Small 2–5 715
Medium 6–10 171
Large 11–65 118

5.1.4. Materials and Method

In our study, we used images from the WIDER Face validation set, as explained in
Section 5.1.3, to evaluate the proposed system when the experimental evaluation considered
only quantitative metrics. However, when the evaluation involved qualitative assessment
with images depicting human faces, we used AI-generated images to simulate real-world
environments while mitigating ethical and privacy concerns. These images were generated
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for each face category listed in Table 3 and were later used in Section 5.2.3 to illustrate the
results of the face encryption and decryption operations performed by our system.

We used the Stable Diffusion 3.5 Medium model from Stability AI [39], which com-
prises 2.5 billion parameters and generates images ranging from 0.25 to 2 megapixels. In our
experiments, all generated images had a resolution of 1280 × 768 pixels, 96 dpi, and a bit
depth of 24. For each face category, we repeatedly generated images from scratch until we
obtained high-quality, natural-looking depictions of real-world environments.

The images were generated using specific prompts that defined the number of people,
their attributes, and the surrounding conditions. Some prompts precisely generated the
requested number of individuals, while others did not. However, the generated images
contained a sufficient number of individuals to satisfy the requirements of each face
category. Details of the prompts and hyperparameters used to generate the test images for
each category can be found in Appendix A.

We generated four images in total, each corresponding to a different face category.
The AI-generated images were initially saved in PNG format and later converted to JPG
before being processed by our system for evaluation.

5.1.5. Evaluation Scenario

The system facilitates interaction between two primary roles: the image owner and the
consumer. Image owners can upload images, view associated facial data, and manage access
privileges by granting or revoking permissions for consumers. Conversely, consumers can
request access to view facial data within images shared by image owners, with their access
dependent on the owner’s approval.

During evaluation tests, users were assigned to one of the following roles:

• Owner: The image owner can view facial data in their shared images.
• Consumer:

– Without Access: Unauthorized users cannot view facial data in shared images.
– After Grant: Authorized users can view facial data in shared images after the

owner grants access.
– After Revoke: Previously authorized users lose access to facial data in shared

images after the owner revokes access.

In the evaluation phase, consumer roles—without access, after grant, and after
revoke—were dynamically assigned. Meanwhile, the owner role was fixed and assigned to
a single user. This fixed assignment ensured consistency in testing the system’s functionali-
ties and facilitated a streamlined evaluation process. The scenario focused on assessing the
system’s access control mechanisms for facial data protection, with particular emphasis on
the visibility of facial regions in shared images across different user roles.

For this scenario, a single image owner, Alice, and multiple consumers (e.g., Bob,
Charlie, etc.) were defined. The number of consumers varied depending on the number of
faces detected in each image. Specifically, in the “Single” category, there was one consumer
per image, whereas in the “Small”, “Medium”, and “Large” categories, the number of
consumers corresponded to the number of detected faces in the images within each category.
Across all face categories, the total number of consumers was 6607 users, which matched
the total number of faces detected across all images. The distribution of consumers across
the face categories is presented in Table 4.
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Table 4. Consumer distribution across face categories.

Face Category Total Number of Consumers

Single 996
Small 2127
Medium 1275
Large 2209

In evaluating the system’s performance, we employed automated testing to quantify the
visibility of facial regions. This was achieved by calculating the average correlation values
across horizontal, vertical, and diagonal directions. The image I(x, y) was compared with
its shifted versions, including horizontally shifted IH(x, y) = I(x, y + 1), vertically shifted
IV(x, y) = I(x + 1, y), and diagonally shifted ID(x, y) = I(x + 1, y + 1). The correlation values
across these directions were calculated using Equations (1), (2), and (3), respectively.

ρH =
∑x,y(I(x, y)− Ī)(IH(x, y)− ¯IH)√

∑x,y(I(x, y)− Ī)2 ∑x,y(IH(x, y)− ¯IH)
2

(1)

ρV =
∑x,y(I(x, y)− Ī)(IV(x, y)− ¯IV)√

∑x,y(I(x, y)− Ī)2 ∑x,y(IV(x, y)− ¯IV)
2

(2)

ρD =
∑x,y(I(x, y)− Ī)(ID(x, y)− ¯ID)√

∑x,y(I(x, y)− Ī)2 ∑x,y(ID(x, y)− ¯ID)
2

(3)

where Ī, ¯IH , ¯IV , and ¯ID are the mean values of I, IH , IV , and ID, respectively.
Figure 8 compares original and encrypted face image pixel correlations. The original

image exhibits strong spatial correlations in the horizontal, vertical, and diagonal directions,
as shown by clustered scatter plots. In contrast, the encrypted image shows a uniform
distribution, indicating the removal of spatial correlations by the encryption process.

We used the average correlation values across all directions to quantify the visibility
of facial regions in shared images, as shown in Equation (4).

ρavg =
ρH + ρV + ρD

3
(4)

A threshold value of 0.1 was used to determine facial region visibility. If ρavg was
below the threshold, the facial region was considered visible; otherwise, it was consid-
ered protected.

Finally, system performance was evaluated by comparing expected and actual results
for operations such as face encryption, key splitting, face decryption, and access revocation.
Expected results were based on system design, while actual results were obtained through
automated testing. This evaluation comprehensively assessed the system’s access control
mechanism for facial data protection, emphasizing facial region visibility in shared images
for different user roles. Results are presented in the following section.
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Figure 8. Comparison of original (top row) and encrypted (bottom row) face image pixel correlations.

5.2. System Evaluation
5.2.1. Performance Analysis of Face Encryption Across Group Sizes

We evaluated the system’s performance in encrypting facial regions across different
group sizes to assess scalability and efficiency. The performance metrics for the CSP
component include average detection time, face encryption time, and overall execution
time. For the server, we measured average processing time and image storage overhead.
The results are presented in Table 5.

Table 5. Performance analysis of face encryption across group sizes.

CSP Server

Face Category Avg. Detection
Time (ms)

Avg. Face
Encryption Time

(ms) 1

Avg. Overall
Execution Time

(ms)

Avg. Processing
Time (ms)

Avg. Image
Storage

Overhead (%)

Single 198.22 ± 51.62 0.64 ± 0.74 303.82 ± 87.01 340.83 ± 90.98 1245.57 ± 292.26
Small 190.21 ± 18.26 0.48 ± 0.54 289.68 ± 32.45 325.14 ± 37.01 1156.74 ± 206.04
Medium 186.28 ± 14.96 0.44 ± 0.39 281.76 ± 24.64 314.59 ± 28.57 1060.01 ± 170.07
Large 186.44 ± 12.42 0.52 ± 0.22 283.03 ± 26.14 311.96 ± 27.30 1004 ± 123.62

1 The reported face encryption time represents the average total processing duration for all faces detected in
a single image.

The results indicate that the system’s performance in encrypting facial regions is
consistent across different group sizes. The average detection time ranged from 186.28 ms
to 198.22 ms, with the smallest group size (Single) exhibiting the highest detection time.
The average face encryption time was consistent across all group sizes, ranging from 0.44 ms
to 0.64 ms. The average overall execution time was also consistent, with values ranging
from 281.76 ms to 303.82 ms. The average processing time in the server was similar across
group sizes, with values ranging from 311.96 ms to 340.83 ms. These results demonstrate the
system’s scalability and efficiency in encrypting facial regions across different group sizes.

However, the storage requirement for images with encrypted faces is high. As shown
in Table 5, the need for lossless storage leads to a substantial increase in file size, typically
ranging from 10 to 12 times the size of the original image, which is encoded in JPG format.
The average storage overhead was highest for the single group size, at 1245.57%, and lowest
for the large group size, at 1004%.
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In our work, we attempted to store the output image using JPG encoding. However,
this encoding prevented the encrypted image from being decrypted due to compression
artifacts. Even at the highest quality setting (100), JPG encoding still resulted in decryption
failure. Therefore, the current version of our system uses only PNG encoding to store
encrypted images, which consequently leads to high storage overhead.

This limitation highlights a key direction for future research: optimizing encryption
and storage strategies to reduce storage overhead while preserving the integrity of en-
crypted facial regions. Such advancements would be especially valuable for large-scale
deployments where storage costs are a significant concern. Our storage evaluation, there-
fore, not only identifies a practical limitation of the current system but also emphasizes a
critical area for further investigation in privacy-preserving image sharing.

5.2.2. Performance Evaluation of Key Split Operations

We evaluated the performance of key-splitting operations in the context of multi-user
access to facial data. This evaluation aimed to assess the system’s efficiency in granting
decryption access to designated consumers. The key-splitting process involves generating
key shares and encrypting them, ensuring that only designated consumers are able to access
the facial data. The performance metrics included the average CSP split time, average CSP
peak memory usage, and key-split success rate. The results are presented in Table 6.

Table 6. The performance of key split operations.

Number of Number of Total Key Avg. CSP Split Avg. CSP Peak Key Split Success
Consumers 1 Images Splits Time (ms) Memory (MB) Rate (%) 2

1 996 996 70.39 ± 6.82 4333.06 ± 500.83 100%
2 342 684 69.99 ± 5.4 4921.35 ± 51.68 100%
3 147 441 70.05 ± 7.61 4915.35 ± 52.41 100%
4 128 512 69.21 ± 5.5 4915.68 ± 51.16 100%
5 98 490 69.79 ± 10.96 4927.14 ± 43.45 100%

6–10 171 1275 68.94 ± 5.3 4905.24 ± 70.65 100%
11–65 118 2209 68.91 ± 7.02 4988.1 ± 19.69 100%

1 The number of consumers refers to the count of detected faces in an image, where each face corresponds to
a unique consumer (i.e., the individual depicted in that face). 2 Success rate denotes the percentage of images for
which the key-splitting operation successfully granted decryption access to all designated consumers.

The results indicate that the system efficiently performs key-splitting operations across
different group sizes, with consistent performance metrics. The average CSP split time
ranged from 68.91 ms to 70.39 ms, with minimal variation across group sizes. The average
CSP peak memory usage was also consistent, with values ranging from 4333.06 MB to
4988.1 MB. The key-split success rate was 100% for all group sizes, indicating that the
system effectively granted decryption access to designated consumers. These results
demonstrate the system’s efficiency in managing key-splitting operations for multi-user
access to facial data.

5.2.3. Performance Evaluation of Face Decryption Operations

We evaluated the performance of face decryption operations for both the image owner
and consumers to assess the system’s efficiency in decrypting facial data. For the image
owner, the decryption process involves directly retrieving the symmetric key for the image
and decrypting the facial regions in the shared images. For consumers, the decryption
process requires reconstructing the symmetric key from key shares provided by the owner,
followed by decryption of the facial regions using the reconstructed key. The results are
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presented in Table 7. Performance metrics include the average decryption time for both the
owner and consumers.

Table 7. The Performance of face decryption operations for image owner and consumers.

Encrypted Face
Image

Decrypted Face
Image Face Category Number of Faces

Decryption
Time by Owner

(ms)

Decryption
Time by

Consumer (ms)

Single 1 215.17 211.08

Small 3 275.75 285.57 ± 15.66

Medium 8 218.62 239.57 ± 35.62

Large 11 227.81 253.46 ± 40.87

The decryption time for the owner ranged from 215.17 ms to 275.75 ms, while for
consumers it ranged from 211.08 ms to 285.57 ms. These results indicate that the system
efficiently decrypts facial data for both groups, with minimal variation in decryption time
across different face categories.

The slightly higher decryption time for consumers is attributed to the need for recon-
structing the symmetric key from key shares before decrypting the facial regions. However,
the minimal difference in decryption time suggests that the system efficiently manages
decryption operations for both the image owner and consumers, despite the additional
steps required for key reconstruction in the consumer decryption process.

5.2.4. Performance Evaluation of Revocation Operations

We evaluated the performance of revocation operations to assess the system’s effi-
ciency in removing decryption access for users previously authorized by the image owner.
The revocation process involves deleting key shares associated with revoked users, ensuring
they can no longer access the facial data.

The revocation process was conducted in three steps, with the number of revoked
users increasing at each step. In the final step, all consumer access was revoked, ensuring
that no consumers retained access to the facial data. The performance metrics consist of
the average server processing time and the average CSP revocation time. The results are
presented in Table 8.

The results indicate that the system efficiently performs revocation operations,
with consistent performance metrics across different revocation steps. The average server
processing time ranged from 11.95 ms to 15.7 ms, with minimal variation across revocation
steps. The average CSP revocation time was also consistent, with values ranging from
5.62 ms to 7.19 ms. These results demonstrate the system’s efficiency in managing revo-
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cation operations, ensuring that revoked users no longer have access to facial data while
maintaining access for authorized users.

Table 8. Performance evaluation of revocation operations.

Initial
Authorized

Users

Revocation
Step

Revoked
Users 1

Remaining
Authorized

Users 2

Avg. Server
Processing
Time (ms)

Avg. CSP
Revocation

Time

18 1st 5 13 15.7 ± 8.79 5.77 ± 0.52
2nd 6 7 12.51 ± 0.79 6.02 ± 0.69
3rd 7 0 12.58 ± 1.35 6.01 ± 0.82

27 1st 8 19 13.77 ± 2.13 7.19 ± 2.11
2nd 9 10 12.98 ± 3.42 6.63 ± 3.52
3rd 10 0 12.89 ± 2.09 6.45 ± 1.92

36 1st 11 25 12.27 ± 0.9 5.8 ± 0.59
2nd 12 13 12.85 ± 2.91 5.69 ± 0.77
3rd 13 0 11.95 ± 0.72 5.62 ± 0.62

1 The number of revoked users has been verified to ensure that their access has been successfully removed. 2 The
number of remaining authorized users has been validated to confirm their continued access to the face.

6. Conclusions
This paper presents a facial privacy protection system designed as a proactive measure

to protect facial data in shared images. The system encrypts facial regions before an image
is published, ensuring privacy at the source before others can access it. Building on our
previous work on a single-party face protection system, SnapSafe, this study introduces
a file-level facial protection mechanism with dynamic multi user access control. The pro-
posed system categorizes users into two roles: image owners, who upload and manage
images, and image consumers, who request access to protected facial data. Image owners
can grant or revoke access to specific consumers, ensuring controlled facial data sharing
through access limitations and an encryption-based permission system.

The system employs key splitting for secure access control, an owner-centric permis-
sion model for granting and revoking access, and a request-based mechanism that allows
consumers to request facial data access, subject to owner approval.

During the evaluation, the system was tested with varying numbers of faces, cate-
gorized into single, small, medium, and large groups. Results demonstrate the system’s
efficiency in safeguarding facial data while ensuring seamless access in multi-user envi-
ronments. The encryption of facial data was completed in an average time of less than
350 ms, measured from the request to the response of the server, reflecting real-world
performance when network variability is excluded. The system maintained a 100% success
rate in key-splitting operations across all group sizes, ensuring secure access sharing. Facial
data decryption for both image owners and consumers was averaged under 286 ms, while
revocation operations were efficiently processed with average server response times below
16 ms. These results highlight the system’s ability to balance security and usability for
facial data protection.

For future work, we aim to enhance system scalability by optimizing data storage
and exploring encryption schemes that are resilient to lossy compression. This will ensure
that encrypted images do not occupy excessive storage while still allowing facial data to
be decrypted even after image compression. Additionally, we will develop fine-grained
access control that enables image owners to grant selective access to specific facial regions.
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These improvements will improve user control over facial data sharing, ensuring that
image owners can grant access to specific facial data rather than revealing all faces to
authorized users.
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Appendix A. Image Generation for System Evaluation
The appendix provides additional details on the prompts used for image generation

with the Stable Diffusion 3.5 Medium model. These prompts, comprising both positive
and negative components, were designed to control the number of people in the generated
images and specify various attributes. The first and second prompts successfully produced
the intended number of people.

However, the third and fourth prompts did not generate the exact number of people
as specified due to inherent challenges in synthesizing images of groups with a relatively
large number of people. Nevertheless, the resulting images were sufficient for inclusion in
the medium and large groups, respectively. Table A1 lists the prompts used to evaluate the
system’s applicability in real-world scenarios, along with the hyperparameters employed
during image generation.

Table A1. Prompts for generating images using Stable Diffusion 3.5 to evaluate the system’s applica-
bility in real-world scenarios.

Positive Prompt Negative Prompt Hyperparameters Generated Image

Cinematic photograph of a man
wearing a t-shirt with the word
‘SnapSafe’ printed on it.
Captured in a 35 mm film style
with a shallow depth of field,
rich bokeh, and a natural,
professional lighting setup.
The image is highly detailed,
sharp, and rendered in 4 K
resolution, evoking the texture
and warmth of analog film.

bad hands, missing
fingers, too many
fingers,
deformed limbs

steps: 85, cfg: 5.5,
sampler: DPM++
2M, scheduler:
sgm_uniform,
denoise: 1.0
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Table A1. Cont.

Positive Prompt Negative Prompt Hyperparameters Generated Image

Wide-angle shot of three persons
with a sharp, high-quality lens,
full upper body, free from
distortions or aberrations.
The face is naturally
proportioned, with balanced
lighting and a realistic depth of
field, color negative,
with sunlight filtering shadows
on their faces, in the style of
instant film, KodakT-Max 100,
color negative film,
add noise, grain

bad hands, missing
fingers, too many
fingers,
deformed limbs

steps: 40, cfg: 5.5,
sampler: DPM++
2M, scheduler:
sgm_uniform,
denoise 1.0

The image is a group photo of
a group of young men posing
for a selfie in a kitchen. There
are nine men in the photo.

incorrect anatomy,
missing fingers, too
many
fingers, twins

steps: 65, cfg: 6.5,
sampler: DPM++
2M, scheduler:
sgm_uniform,
denoise: 1.0

A high-resolution photograph of
a 20 to 25 men wearing casual
T-shirts standing in front of
“ISEC” sign, close photograph,
soft natural daylight, creating a
warm, realistic, and slightly
nostalgic atmosphere,
0.35 mm lens

bad fingers, extra
fingers, asymmetric
face, missing legs,
extra legs, wrong
anatomy, twins

steps: 100, cfg: 10,
sampler: DPM++
2M, scheduler:
sgm_uniform,
denoise: 1.0
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Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3–8 January
2024; pp. 5222–5231.

24. Yang, Y.; Lyu, J.; Wang, R.; Wen, Q.; Zhao, L.; Chen, W.; Bi, S.; Meng, J.; Mao, K.; Xiao, Y.; et al. A digital mask to safeguard patient
privacy. Nat. Med. 2022, 28, 1883–1892. [CrossRef] [PubMed]

25. Xu, K.; Guo, Y.; Guo, L.; Fang, Y.; Li, X. My Privacy My Decision: Control of Photo Sharing on Online Social Networks. IEEE
Trans. Dependable Secur. Comput. 2017, 14, 199–210. [CrossRef]

26. Tang, L.; Ma, W.; Grobler, M.; Meng, W.; Wang, Y.; Wen, S. Faces are Protected as Privacy: An Automatic Tagging Framework
Against Unpermitted Photo Sharing in Social Media. IEEE Access 2019, 7, 75556–75567. [CrossRef]

27. Jocher, G.; Chaurasia, A.; Stoken, A.; Borovec, J.; NanoCode012; Kwon, Y.; Michael, K.; TaoXie; Fang, J.; imyhxy; et al. YOLOv5
SOTA Realtime Instance Segmentation, v7.0, Zenodo, 2022. Available online: https://doi.org/10.5281/zenodo.7347926 (accessed
on 17 December 2024).

28. Geng, S.; Li, J.; Zhang, X.; Wang, Y. An Image Encryption Algorithm Based on Improved Hilbert Curve Scrambling and Dynamic
DNA Coding. Entropy 2023, 25, 1178. [CrossRef] [PubMed]

29. Mfungo, D.E.; Fu, X. Fractal-Based Hybrid Cryptosystem: Enhancing Image Encryption with RSA, Homomorphic Encryption,
and Chaotic Maps. Entropy 2023, 25, 1478. [CrossRef] [PubMed]

30. Zhang, Y.; Zeng, J.; Yan, W.; Ding, Q. RBFNN-PSO Intelligent Synchronisation Method for Sprott B Chaotic Systems with External
Noise and Its Application in an Image Encryption System. Entropy 2024, 26, 855. [CrossRef] [PubMed]

31. HashiCorp. Vault v1.18.x Documentation. Available online: https://developer.hashicorp.com/vault/docs/v1.18.x (accessed on
14 December 2024).

http://dx.doi.org/10.1109/CVPR42600.2020.00872
http://dx.doi.org/10.1108/10662241111158290
http://dx.doi.org/10.1145/3547299
http://dx.doi.org/10.1109/MIC.2014.107
http://dx.doi.org/10.14722/ndss.2019.23432
http://dx.doi.org/10.1109/SP40000.2020.00006
http://dx.doi.org/10.1109/ITC-CSCC62988.2024.10628222
https://docs.ultralytics.com/models/yolov8
https://docs.ultralytics.com/models/yolov8
https://www.copyright.gov/circs/circ42.pdf
https://www.copyright.gov/circs/circ42.pdf
https://eur-lex.europa.eu/eli/reg/2016/679/oj
http://dx.doi.org/10.3390/e26060479
http://www.ncbi.nlm.nih.gov/pubmed/38920488
http://dx.doi.org/10.1109/TCSVT.2024.3449290
http://dx.doi.org/10.1038/s41591-022-01966-1
http://www.ncbi.nlm.nih.gov/pubmed/36109638
http://dx.doi.org/10.1109/TDSC.2015.2443795
http://dx.doi.org/10.1109/ACCESS.2019.2921029
https://doi.org/10.5281/zenodo.7347926
http://dx.doi.org/10.3390/e25081178
http://www.ncbi.nlm.nih.gov/pubmed/37628208
http://dx.doi.org/10.3390/e25111478
http://www.ncbi.nlm.nih.gov/pubmed/37998170
http://dx.doi.org/10.3390/e26100855
http://www.ncbi.nlm.nih.gov/pubmed/39451932
https://developer.hashicorp.com/vault/docs/v1.18.x


Future Internet 2024, 17, 124 27 of 27

32. HashiCorp. Auto-auth Method: Application Roles (AppRole). Available online: https://developer.hashicorp.com/vault/docs/
v1.18.x/agent-and-proxy/autoauth/methods/approle (accessed on 14 December 2024).

33. Docker. Docker Engine Release Notes: Version 27. Available online: https://docs.docker.com/engine/release-notes/27/
(accessed on 24 November 2024).

34. Yang, S.; Luo, P.; Loy, C.C.; Tang, X. WIDER FACE: A Face Detection Benchmark. In Proceedings of the 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE: Piscataway, NJ, USA, 2016;
pp. 5525–5533.

35. Ultralytics. YOLOv8m Pre-Trained Model. 2023. Available online: https://github.com/ultralytics/assets/releases/download/
v8.2.0/yolov8m.pt (accessed on 15 November 2024).

36. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in
Context. In Proceedings of the Computer Vision—ECCV 2014, Zurich, Switzerland, 6–12 September 2014; Fleet, D., Pajdla, T., Schiele,
B., Tuytelaars, T., Eds.; Springer: Cham, Switzerland, 2014; pp. 740–755.

37. Ultralytics. YOLOv8 Performance Metrics. 2023. Available online: https://docs.ultralytics.com/models/yolov8/#performance-
metrics (accessed on 17 December 2024).

38. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. arXiv 2019, arXiv:1912.01703. [CrossRef]

39. Stability AI. Stable Diffusion 3.5 Medium. 2024. Available online: https://huggingface.co/stabilityai/stable-diffusion-3.5-
medium (accessed on 21 February 2025).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://developer.hashicorp.com/vault/docs/v1.18.x/agent-and-proxy/autoauth/methods/approle
https://developer.hashicorp.com/vault/docs/v1.18.x/agent-and-proxy/autoauth/methods/approle
https://docs.docker.com/engine/release-notes/27/
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m.pt
https://docs.ultralytics.com/models/yolov8/#performance-metrics
https://docs.ultralytics.com/models/yolov8/#performance-metrics
http://dx.doi.org/10.48550/arXiv.1912.01703
https://huggingface.co/stabilityai/stable-diffusion-3.5-medium
https://huggingface.co/stabilityai/stable-diffusion-3.5-medium

	Introduction
	Related Works
	Preliminaries
	YOLOv8 for Face Detection
	Selective Image Encryption
	Contributions

	Proposed System
	System Components
	Client Application
	Server
	Cryptographic Service Provider

	System Workflow
	User Registration
	Face Encryption
	Face Decryption by Owner
	Key Splitting for Shared Access
	Face Decryption by Consumer

	Security Considerations
	Security Implementation for Data Handling
	Potential Security Risks from Adversarial Image Attacks


	Experiments
	Experiment Design
	System Configuration
	Deep-Learning Model Configuration
	Test Dataset
	Materials and Method
	Evaluation Scenario

	System Evaluation
	Performance Analysis of Face Encryption Across Group Sizes
	Performance Evaluation of Key Split Operations
	Performance Evaluation of Face Decryption Operations
	Performance Evaluation of Revocation Operations


	Conclusions
	Image Generation for System Evaluation
	References

