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Abstract: Induced pluripotent stem cell (iPSC)-derived biological pacemakers have emerged as an
alternative to traditional electronic pacemakers for managing cardiac arrhythmias. While effective,
electronic pacemakers face challenges such as device failure, lead complications, and surgical risks,
particularly in children. iPSC-derived pacemakers offer a promising solution by mimicking the
sinoatrial node’s natural pacemaking function, providing a more physiological approach to rhythm
control. These cells can differentiate into cardiomyocytes capable of autonomous electrical activity,
integrating into heart tissue. However, challenges such as achieving cellular maturity, long-term
functionality, and immune response remain significant barriers to clinical translation. Future research
should focus on refining gene-editing techniques, optimizing differentiation, and developing scalable
production processes to enhance the safety and effectiveness of these biological pacemakers. With
further advancements, iPSC-derived pacemakers could offer a patient-specific, durable alternative for
cardiac rhythm management. This review discusses key advancements in differentiation protocols
and preclinical studies, demonstrating their potential in treating dysrhythmias.
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1. Introduction

Arrhythmias, characterized by irregular or abnormal heart rhythms, are a significant
contributor to morbidity and mortality worldwide [1]. Central to maintaining regular heart
rhythm is the sinoatrial node (SAN), a specialized group of pacemaker cells responsible
for initiating the heartbeat through spontaneous electrical impulses. Disruption in the
function of the SAN can result in bradyarrhythmias. Atrioventricular (AV) block, another
common arrhythmia, occurs when the electrical signal from the atria to the ventricles is
partially or completely blocked, impairing synchronized cardiac contraction and reducing
effective blood flow. These conditions often necessitate external interventions to stabilize
rhythm. Traditionally, electronic pacemakers have been the gold standard for managing
symptomatic arrhythmias such as atrioventricular block or SAN dysfunction [2]. In the
United States alone, over 350,000 pacemaker procedures are conducted every year, with
sinus node dysfunction accounting for more than half of these implantations [3].

Pacemakers are typically effective and reliable, benefiting from continuous advance-
ments in technology. However, they are not without limitations. A primary concern is
the potential for device malfunction, which can arise from issues such as loose or faulty
leads, battery exhaustion, or interference caused by electromagnetic fields. The incidence
of post-implantation complications is 9% in the first month and 6% over the following
years [4]. Another complication is device infection, which, although rare, is a serious issue
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linked to significant morbidity and an elevated risk of mortality [5]. Furthermore, cardiac
pacing in newborns and infants is particularly risky because their great vessels are often
too narrow or inaccessible due to congenital malformations [6]. Additionally, they are asso-
ciated with complications such as lead fractures and pacemaker-induced cardiomyopathy,
especially with long-term use in younger patients [7]. These challenges underscore the
need for alternative therapeutic strategies that can provide more natural and sustainable
solutions for rhythm management [8].

The concept of a biological pacemaker has emerged as a promising alternative to
electronic devices. Biological pacemakers aim to restore the heart’s rhythm using cells
capable of spontaneous electrical activity, similar to the native SAN [9]. Induced pluripotent
stem cells (iPSCs), which can be reprogrammed from adult somatic cells and differentiated
into various cell types, have become a focal point in this endeavor [10,11]. Unlike gene-
based approaches that modify existing heart cells and face limitations—such as host cell
maturity, potential off-target effects, and the challenge of sustained rhythm control—iPSC-
derived pacemaker cells offer distinct advantages. These cells can be generated in vitro
and transplanted to form new pacemaker tissue, developing specialized cells that naturally
exhibit pacemaker activity, independent of host cells, thus providing more stable and
consistent rhythm regulation [12,13]. Preclinical studies have shown that iPSC-derived
cardiomyocytes can successfully integrate into host cardiac tissue and restore rhythmic
activity in models of heart block, demonstrating their potential as a biological alternative
to electronic pacemakers [14,15] (Figure 1).

Despite these promising developments, significant challenges remain in the translation
of iPSC-derived biological pacemakers to clinical use. Issues such as ensuring the purity
of differentiated cells, managing cellular heterogeneity, and achieving stable long-term
functionality must be addressed [16,17]. Furthermore, understanding the complex interplay
of ion channels and cellular mechanisms that underlie spontaneous pacemaking is crucial
for optimizing the performance of iPSC-derived pacemaker cells [18]. This review aims to
explore the current state of iPSC-derived biological pacemakers, detailing the differenti-
ation strategies, preclinical successes, and challenges that need to be overcome for their
clinical application.
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2. iPSC in the Realm of Arrhythmia

The discovery of iPSCs has marked a significant milestone in regenerative medicine,
offering a versatile platform for studying disease mechanisms and developing innovative
therapeutic approaches [19]. iPSCs are generated by reprogramming adult somatic cells,
such as skin fibroblasts and peripheral blood cells, back to a pluripotent state through the
introduction of specific transcription factors (OCT4, SOX2, KLF4, and MYC) [20]. This
ability to generate patient-specific pluripotent cells holds considerable promise in the field
of cardiovascular medicine, particularly in the development of biological pacemakers
designed with the aim of treating cardiac arrhythmias [21–23].

The SAN generates electrical impulses that maintain a steady heart rhythm through a
complex interplay between the “membrane clock”—comprising ion channels and trans-
porters on the cell membrane—and the intracellular “Ca2+ clock”, which involves subcel-
lular calcium-handling mechanisms [24,25]. When SAN function is compromised due to
disease or aging, the heart’s ability to regulate its rhythm is impaired, leading to conditions
such as bradycardia and sinus node dysfunction [26].

Traditional treatment for these conditions involves the use of electronic pacemakers,
which deliver electrical impulses to regulate the heart rate. However, as discussed, these
devices are not without their drawbacks. In contrast, iPSC-derived biological pacemakers
offer a novel approach by utilizing stem cell technology to create functional pacemaker cells
capable of autonomous electrical activity. iPSCs can be differentiated into various cardiac
cell types, including nodal-like cells that mimic the properties of SAN and AV node cells,
by guiding them through specific developmental pathways. This process often involves the
modulation of signaling pathways such as FGF, retinoic acid, and nodal/activin [25–27].
These factors drive the differentiation of iPSCs into cardiac mesoderm, ultimately yielding
pacemaker-like cells that exhibit spontaneous depolarization and rhythmic contraction.

3. Mechanisms of Pacemaking in iPSC-Derived Cardiomyocytes

SAN is distinct in its cellular composition, mechanical structure, and electrical activity
when compared to other regions of the heart. Its pacemaker activity originates from
nodal cardiomyocytes, which generate rhythmic electrical impulses that initiate myocardial
contraction. SAN cardiomyocytes differ significantly from chamber cardiomyocytes. Due
to the lower mechanical demands, pacemaker cells exhibit less-organized contractile units,
fewer mitochondria, and typically present as spindle- or spider-shaped forms with a
smaller cytoplasm. They also have a unique protein profile, such as low-conductance
connexin (Cx) 45, in contrast to the higher-conductance Cx43 or Cx40 observed in other
cardiomyocytes [28,29]. The expression of specific ion channels underlies two proposed
mechanisms of automaticity: the calcium clock and the membrane clock. There is evidence
suggesting that they have interacting roles [30]. The interplay between the If current and
calcium cycling within the cell is often described as the “coupled-clock” system, where
spontaneous local Ca2+, released from the SR, interacts with membrane ion channels to
generate the rhythmic action potentials of pacemaker cells [31]. The synchronized function
of various ion channels is crucial for the generation of stable pacemaker activity (Figure 2).

The ability of iPSC-derived cardiomyocytes to generate spontaneous electrical im-
pulses is crucial for their potential application as biological pacemakers. This pacemaking
activity is driven by intricate interactions between ion channels and intracellular signaling
pathways, closely resembling the characteristics of native SAN cells. A deeper understand-
ing of these mechanisms is essential for optimizing iPSC-derived pacemaker cells and
ensuring their effectiveness in restoring normal heart rhythms.
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(SR) via ryanodine receptors, which activate the sodium–calcium exchanger (NCX) to assist with 
cell depolarization. Subsequently, calcium is reabsorbed into the SR by SERCA, regulated by phos-
pholamban, to prepare for the next cycle. These clocks function together to create spontaneous de-
polarizations, and their activity is modulated by the autonomic nervous system through β-adrener-
gic and muscarinic signals that influence kinases such as PKA and CAMKII. (SR: sarcoplasmic re-
ticulum; NCX: sodium–calcium exchanger; SERCA: sarcoplasmic Ca2⁺-ATPase; PKA: protein kinase 
A; CAMKII: calmodulin-stimulated protein kinase II). 
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Figure 2. SAN coupled-clock system: A coupled-clock system consists of a membrane clock and
a calcium clock. The membrane clock generates diastolic depolarization through pacemaker cur-
rents facilitated by HCN channels and L-type and T-type calcium channels. In parallel, the calcium
clock operates in synchrony with the membrane clock, releasing calcium from the sarcoplasmic
reticulum (SR) via ryanodine receptors, which activate the sodium–calcium exchanger (NCX) to
assist with cell depolarization. Subsequently, calcium is reabsorbed into the SR by SERCA, regulated
by phospholamban, to prepare for the next cycle. These clocks function together to create sponta-
neous depolarizations, and their activity is modulated by the autonomic nervous system through
β-adrenergic and muscarinic signals that influence kinases such as PKA and CAMKII. (SR: sarcoplas-
mic reticulum; NCX: sodium–calcium exchanger; SERCA: sarcoplasmic Ca2+-ATPase; PKA: protein
kinase A; CAMKII: calmodulin-stimulated protein kinase II).

3.1. The Membrane Clock Mechanism

The primary factors driving spontaneous pacemaking in both native SAN cells and iPSC-
derived cardiomyocytes are a range of cell-surface ion channels, including hyperpolarization-
activated cyclic-nucleotide-gated (HCN) channels, L-type and T-type voltage-gated calcium
channels, and delayed rectifier potassium channels. HCN channels, especially HCN4
isoforms, are the most prevalent for the sarcolemma of pacemaker cells and play a critical
role in initiating the diastolic depolarization that triggers spontaneous action potential
firing [32,33]. As the cell membrane becomes more polarized, HCN channels increase their
probability of opening, creating a slow inward current during the diastolic phase. This
depolarizing current, known as the “funny” (I(f)) current, is activated as the membrane
potential grows more negative, allowing sodium (Na+) and potassium (K+) ions to enter
the cell, gradually moving the membrane potential closer to the action potential threshold.
Following this, delayed rectifier potassium channels produce an outward current that
brings the membrane potential back to a range where HCN channels can reopen, thus
initiating a new cycle [34].

A significant limitation of using iPSC-derived cardiac cells as a model for studying
working cardiomyocytes lies in their immature electrical properties [35]. In 2021, Federica
Giannetti demonstrated that, under standard culture conditions, human iPSC-derived
cardiomyocytes (hiPSC-CMs) predominantly expressed HCN4 and HCN1 isoforms. The
density of the If current remained stable across different stages of cardiomyocyte differenti-
ation (days 15, 30, and 60). However, after day 30, the voltage dependence of activation
shifted to more negative potentials, and the activation time constants (τ) became slower.
This shift contributed to a gradual decrease in the cells’ spontaneous beating rate over
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time [36]. Other research from Yukihiro Saito in 2022 illustrated that overexpressing HCN4
in hiPSC-CMs improved their pacemaker function by increasing the If current, resulting
in higher spontaneous firing rates and more stable pacing activity [37]. These studies
suggest that adjusting HCN channel expression in iPSC-derived pacemaker cells may
be a promising approach to improve their capacity to replace the native SAN in cases
of dysrhythmia.

3.2. The Calcium Clock Mechanism

In addition to HCN-mediated If currents, the “calcium clock” mechanism is essential
for pacemaker cell automaticity. This mechanism relies on rhythmic calcium release from
the sarcoplasmic reticulum (SR) through ryanodine receptors, causing transient increases
in intracellular calcium levels [38]. This calcium release activates the sodium–calcium
exchanger (NCX1), which expels one calcium ion in exchange for three sodium ions, thereby
elevating the membrane potential to the threshold needed to open voltage-gated calcium
channels and trigger depolarization [39]. Following this, the SERCA2 pump reloads calcium
into the SR, readying the cell for the next cycle. The autonomic nervous system closely
modulates the action potential rate by binding neurotransmitters to G-protein-coupled
receptors (β-adrenergic and muscarinic receptors), activating pathways such as cAMP and
PKA signaling to adjust heart rate [40].

In fact, the membrane clock and the calcium clock do not operate independently;
instead, functional interactions between them are essential for normal pacemaker activity.
Surface membrane proteins influence both membrane potential and intracellular Ca2+

cycling, while Ca2+ cycling proteins reciprocally affect the membrane potential through
Ca2+-modulated surface electrogenic molecules [41]. Additionally, coupling factors such as
PKA and CaMKII phosphorylation, which impact proteins in both clocks, play a crucial
role in regulating this coupled-clock system for normal automaticity [42,43]. These unique
SAN properties offer valuable insights for biological pacemaker designs.

3.3. Other Ion Channels in Pacemaking

In addition to HCN channels and calcium channels, sodium channels are crucial in
shaping the action potentials of iPSC-derived pacemaker cells. Potassium currents, such
as the inward-rectified K+ current, play a key role in regulating the resting membrane
potential and ensuring appropriate action potential duration [44]. For iPSC-CMs, reduced
expression of IK1 is advantageous as it promotes easier depolarization, supporting the
spontaneous activity of these cells, similar to the native SAN [45]. Achieving a balance
between depolarizing and repolarizing currents is critical for maintaining the rhythmic
firing of pacemaker cells, ensuring their functionality when transplanted into the heart.
However, hiPSC-CMs can sometimes express ion channels that are not typically present
in cardiac cells. For example, big-conductance calcium-activated potassium currents (IBK,
Ca) have been implicated in causing induced after-depolarizations and oscillations in
engineered heart tissue (EHT) derived from an hiPSC line, C25 [46]. These occurrences can
result from genetic alterations during the cell culture process. Kilpinen et al. highlighted
that chromosome 10, which contains BKCa/KCNMA1, is one of the loci most prone to copy
number alterations [47].

4. Differentiation Protocols for Making Pacemaker-like Cells

The ability to derive functional pacemaker cells from iPSCs hinges on efficient differ-
entiation protocols that replicate the developmental pathways of SAN. These protocols
aim to produce cells with the electrophysiological and molecular characteristics of native
SAN pacemaker cells, making them suitable for use as biological pacemakers. Recent
advancements in stem cell research have led to a variety of methods that promote the
differentiation of iPSCs into pacemaker-like cells, yet challenges remain in achieving high
efficiency, purity, and consistency.
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4.1. SAN Development

The development of the SAN is a complex process in which pacemaker cells rapidly
gain their distinctive characteristics during early embryonic stages, unlike the remaining
myocardium, which continues to mature postnatally. Pacemaker cells originate from
the lateral plate mesoderm, with fate mapping studies indicating that their lineage is
determined shortly after gastrulation [48,49]. This specification process occurs before
visible heart structures form and before classic cardiac markers are expressed. The early
differentiation of pacemaker cells is influenced by signaling pathways, such as those of
retinoic acid (RA), bone morphogenic proteins (BMPs), and Wnt [50–52]. During this time,
pacemaker cells begin expressing unique transcription factors, such as ISL1, TBX18, TBX3,
and SHOX2 [53–55], marking their divergence from other cardiac cells. As development
continues, they integrate into the sinus venosus, the precursor to the right atrium, while
expressing the ion channels and proteins necessary for their rhythmic activity [56].

The ability of pacemaker cells to generate and propagate action potentials depends not
only on their inherent properties but also on overcoming the electrochemical constraints
posed by their environment. These cells have a less negative resting membrane potential
compared to atrial cells, creating challenges for impulse transmission [57]. The SAN must
overcome a “source-sink” mismatch, where the small number of pacemaker cells must
generate sufficient current to influence the larger atrial myocardium [58,59]. To address
this, the SAN reduces electrical coupling through a lower expression of high-conductance
gap junction proteins such as CX43 and CX40, while increasing the expression of low-
conductance channels such as CX45, ensuring that pacemaker cells retain their charge
longer and function autonomously [58].

As the SAN develops, it undergoes structural changes that further promote electrical
insulation. After pacemaker cells differentiate, mesenchymal cells invade the region,
forming a collagen-rich extracellular matrix (ECM) [56]. This remodeling creates clusters
of pacemaker cells with reduced connectivity to the surrounding myocardium. The ECM
and changes in cellular architecture help to preserve the pacemaker’s rhythm and prevent
conduction block at the SAN–atrium junction [56]. Disruptions in this remodeling process
can lead to irregular heart rhythms, emphasizing the importance of a well-patterned
environment for pacemaker function [59].

4.2. Overview of Strategies to Develop Pacemaker-like Cells

The differentiation of iPSCs into cardiac pacemaker cells involves guiding the cells
through stages that mimic embryonic heart development. This process typically begins
with the induction of cardiac mesoderm, followed by further specialization into pacemaker-
like cells. Key steps include the modulation of signaling pathways such as Wnt/β-catenin,
BMPs, and transforming growth factor-beta (TGF-β), which are crucial for specifying
cardiac progenitors [60]. To induce a pacemaker-like phenotype, differentiation protocols
often incorporate factors that are known to influence SAN development.

One prominent approach is functional genetic re-engineering, which involves in-
troducing pacemaker-related genes into quiescent ventricular cardiomyocytes to induce
spontaneous electrical activity. This method aims to replicate the function of pacemaker
cells by expressing genes such as HCN channels, β2-adrenergic receptors, and mutant
KIR2.1 channels, either individually or in combination [61–63]. These genetic modifications
can induce spontaneous action in non-pacing cells; however, the approach faces challenges
such as arrhythmic complications and difficulty in achieving stable heart rates, which has
led to the exploration of mutant-gene-based or dual-gene strategies [64–66].

Another strategy is the hybrid approach, where genes associated with pacemaker
activity are introduced into non-cardiomyocyte cells, including human mesenchymal stem
cells (hMSCs), human cardiomyocyte progenitor cells (hCPCs), or fibroblasts [67,68]. These
engineered cells can be transplanted into cardiac tissue, where they interact with adjacent
ventricular myocytes (VMs) through cell fusion or electrical coupling, influencing local
cardiac activity [69]. The incorporation of HCNs (HCN1, 2, and 4) into non-cardiomyocyte
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cells has the potential to induce pacemaker ion currents (If) in in vitro cell models. This ap-
proach benefits from the immune-privileged properties of certain stem cells, but it requires
time for the engineered cells to establish functional connections and exhibits limitations
such as low basal heart rates and concerns about cell migration and differentiation [67,70].

A third approach involves the direct reprogramming of VMs into pacemaker-like
cells using transcription factors such as TBX18 or TBX3, which mimic the natural devel-
opment processes of SAN [71]. This method induces a comprehensive change in cellular
structure and function, closely resembling genuine pacemaker cells. Initial studies have
demonstrated successful automaticity in animal models, and advances in delivery methods,
such as adeno-associated viruses and chemically modified mRNAs, have reduced immune
responses and improved clinical applicability [72–74].

Recently, iPSCs have gained attention as a potential approach for creating biological
pacemakers. These cells can be guided into becoming pacemaker-like cardiomyocytes
through either transgene-dependent or transgene-free strategies. Transgene-dependent
techniques involve genetic modifications, such as inducing MYC expression with doxy-
cycline and inhibiting NODAL, which helps suppress NKX2-5 and enriches populations
of SAN-like cells [75,76]. Another strategy involves modulating Wnt/β-catenin signaling
to boost the expression of SAN-specific markers such as ISL1 and TBX18 [76]. In contrast,
transgene-free approaches focus on altering signaling pathways without genetic alterations;
they employ elements such as Wnt/β-catenin inhibitors BMP4, RA, and NODALor using
co-culturing methods with mouse visceral endoderm-like cells (END-2) to drive SAN-like
cell differentiation [12,27,77,78]. Moreover, the incorporation of cadherin-5 (CDH5) has
been found to aid in the differentiation of pacemaker cells [78]. Each protocol seeks to recre-
ate the developmental microenvironment of the sinoatrial node to generate hiPSC-derived
pacemaker cells, with ongoing research aiming to refine these strategies for enhanced
efficiency, purity, and functionality (Figure 3). Table 1 shows the advantages and limitations
of each protocol.
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automaticity. (B) Somatic reprogramming involves the overexpression of the T-box transcription
factor TBX18 using virus vectors, transforming adult cardiac chamber cardiomyocytes into induced
SAN-like cells. (C) A hybrid method employs cells such as fibroblasts to introduce ion channel
genes to generate cardiac automaticity. (D) hESCs or iPSCs are differentiated with pharmacological
manipulation to create SAN-like cells and transplanted into specific heart regions to integrate with
the surrounding myocardium and establish biological pacing.

Table 1. Advantages and limitations of pacemaker-like cell development strategies.

Strategy Advantages Limitations

A. Genetic Re-Engineering
Induces spontaneous electrical activity in
non-pacemaker cells by introducing specific
pacemaker-related genes, such as HCN channels.

Potential for arrhythmic complications due to
unintended electrical disturbances; challenges in
achieving stable and physiologically appropriate
heart rates.

B. Reprogramming of
Ventricular Myocytes

Transcription factors such as TBX18 or TBX3 can
convert ventricular myocytes into
pacemaker-like cells, closely mimicking natural
sinoatrial node cells; advances in delivery
methods, such as adeno-associated viruses, have
improved clinical applicability.

Potential immune responses to introduced
factors or vectors; risk of incomplete
reprogramming, leading to partially converted
cells with unpredictable behavior.

C. Hybrid Approach

Engineered non-cardiomyocyte cells (e.g.,
human mesenchymal stem cells) can modulate
local cardiac activity through interaction with
native cardiomyocytes; utilizes cells with
potential immune-privileged properties,
potentially reducing immune rejection.

Requires time for engineered cells to establish
functional connections with native cardiac tissue;
may result in low basal heart rates, limiting
effectiveness; concerns about unintended cell
migration and differentiation into undesired
cell types.

D. iPSC-Derived
Pacemaker Cells

iPSCs can be directed to differentiate into
pacemaker-like cardiomyocytes using various
protocols, offering a renewable and
patient-specific cell source; transgene-free
approaches reduce risks associated with
permanent genetic modifications.

Differentiation efficiency and purity of
pacemaker-like cells may vary, affecting
consistency; functional integration into existing
cardiac tissue remains challenging, with
potential issues in establishing proper electrical
coupling; risk of tumorigenesis.

4.3. Challenges in Inducing SAN-like Cells

One of the key challenges in creating iPSC-derived biological pacemakers is achiev-
ing a high concentration of pacemaker-like cells within the differentiated population [79].
Differentiation protocols often result in a heterogeneous mixture of atrial, ventricular, and
pacemaker-like cells, which can complicate their application in clinical settings. Another
difficulty lies in maturing iPSC-derived pacemaker cells to attain the functional characteris-
tics of adult SAN cells. These cells often exhibit immature electrophysiological traits, such
as reduced upstroke velocities and extended action potential durations [35].

To address this, strategies such as fluorescence-activated cell sorting (FACS) based on
specific surface markers or genetic reporters linked to crucial pacemaker genes, such as
HCN4, are employed [80]. Furthermore, gene-editing techniques such as CRISPR/Cas9
offer ways to improve the precision and effectiveness of differentiation protocols by tar-
geting genes essential for SAN development, resulting in more consistent and functional
pacemaker cells [81]. Furthermore, bioengineering methods, including 3D bioprinting and
tissue engineering, can be used to create environments that closely resemble the natural
cardiac niche, thereby supporting the maturation of iPSC-derived pacemaker cells.

5. Preclinical Studies of SAN-like Cell Treatment

The successful clinical translation of iPSC-derived pacemaker cells requires compre-
hensive preclinical testing to ensure their safety, efficacy, and proper integration with
host cardiac tissues (Table 2). Animal models, including guinea pigs, dogs, and pigs, are
essential for evaluating these cells, providing a bridge between laboratory research and
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therapeutic applications. One notable example is the work by Eduardo Marban’s team,
which first introduced the concept of biological pacemakers using viral vectors to suppress
IK1 in guinea pigs. This suppression enabled the modified myocytes to generate sponta-
neous, rhythmic electrical activity akin to natural pacemaker cells. In vivo testing revealed
that, while some animals maintained normal sinus rhythms with prolonged QT intervals,
others developed spontaneous ventricular rhythms, originating from the modified cells [64].
Despite the promise of this approach, it raised concerns about potential arrhythmic risks
and variability in outcomes, highlighting the importance of controlling gene expression
and ensuring stable integration with host tissue.

Table 2. Preclinical studies using pacemaker-like cells.

Study Cell Type Key Characteristics Animal Model Injection Site Outcome

Protze et al. [14] SAN-like pacemaker
cells (SANLPCs)

Spontaneous action
potentials; specific ion
channel profiles;
neurohormonal
responsiveness

Rat Apex

Successful integration
with host tissue; ectopic
pacemaker activity under
AV block conditions

Chauveau et al. [15] hiPSC-derived
embryoid bodies (EBs)

Pacemaker function;
60–80% beats from
injection site by week 4;
responsive to epinephrine

Canine Epicardium

Maintained pacemaker
function up to 13 weeks;
enhanced beat rate with
epinephrine

Yu-Feng Hu et al. [82] Quiescent cardiac cells
transdifferentiated

Functional and
morphological similarity
to native SAN cells

Rat Left ventricle Effective pacemaker
function in situ

Izhak Kehat [83] hES-CM-derived
embryoid bodies

Integration with host
tissue; natural pacing rates Pig Posterolateral

wall

Successful integration;
pacing similar to natural
rhythms confirmed via
electroanatomical
mapping

Tian Xu [84] hESC-CM-derived
embryoid bodies

Sustained pacemaker
function, electrical signal
spread from transplant site

Guinea Anterior
epicardium

Effective pacing without
arrhythmias or tumor
formation

In another approach, Protze et al. developed SAN-like pacemaker cells (SANLPCs)
through a transgene-independent protocol that involved the use of BMP and RA, alongside
inhibition of fibroblast growth factor (FGF) signaling. These SANLPCs demonstrated
typical pacemaker cell characteristics, including spontaneous action potentials, specific ion
channel profiles, and responsiveness to neurohormonal signals. When transplanted into the
apices of rat hearts, SANLPCs successfully integrated with the host tissue, initiating ectopic
pacemaker activity, particularly under conditions of induced atrioventricular block [14].

Similarly, Chauveau et al. investigated hiPSC-derived embryoid bodies (EBs) in a
canine model of atrioventricular block. The iPSC-CMs integrated into the heart tissue
and exhibited pacemaker function. By the first week post-transplantation, the grafted
cells demonstrated pacemaker activity, with 60–80% of the heartbeats originating from the
injection site by the fourth week. The infusion of epinephrine further enhanced the rate of
matching beats, indicating responsiveness to autonomic regulation. The study spanned
up to 13 weeks, during which the iPSC-CMs maintained pacemaker function, though
challenges such as variable rhythms and the need for immunosuppression persisted [15].
These limitations may be attributed to the use of an older differentiation method; thus, while
the results are promising, the study emphasizes the necessity for refined differentiation
protocols and enhanced integration strategies to achieve reliable outcomes.

In another study, Yu-Feng Hu et al. induced pacemaker cells from quiescent mature
cardiac cells by overexpressing the vascular endothelial cell-adhesion glycoprotein cadherin.
These transdifferentiated cells displayed both functional and morphological characteristics
similar to those of native SAN cardiomyocytes in vitro. Furthermore, when injected into
the left ventricles of rats, these SAN-like cells effectively functioned as sinoatrial nodes in
situ [82].
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Regarding hES-CMs, Izhak Kehat’s research involved transplanting hES-CM-derived
embryoid bodies into the hearts of pigs. The results demonstrated that the transplanted
cells survived, integrated with the host tissue, and paced the heart at rates similar to natural
rhythms. Electroanatomical mapping confirmed that electrical activity originated from the
graft site, indicating successful integration [83]. In another study, Tian Xu showed that
hESC-CM EBs were capable of pacing the heart following cryoablation of the atrioventricu-
lar node in a guinea pig model, with optical mapping revealing that electrical signals spread
from the site of transplantation to the surrounding myocardium. The transplanted cells
sustained pacemaker function throughout the study period without causing arrhythmias
or tumor formation [84].

6. Challenges in Clinical Translation

The success of these preclinical models demonstrates the promise of iPSC-derived
biological pacemakers as a novel approach to treating bradycardia. However, it also
highlights the challenges that must be addressed to ensure the safety, efficacy, and scalability
of these therapies for clinical use. A key challenge for iPSC-derived pacemaker cells in
clinical use is the risk of immune rejection [85]. Although deriving iPSCs from a patient’s
own cells reduces this risk, genetic modifications or partially non-autologous cells can still
trigger immune responses. Long-term immunosuppressive therapies can increase infection
risk, highlighting the need for strategies such as gene editing for immune compatibility [86].
Ensuring the long-term functionality of iPSC-derived pacemaker cells is also crucial. While
these cells can initially establish rhythmic activity, their performance may diminish due to
factors such as cell loss, migration, or changes in behavior [87].

Variability in pacing rates due to differences in differentiation processes poses another
challenge, which may require refined protocols and bioengineered scaffolds for better
integration [64]. The potential risk of arrhythmias remains a significant concern, as the
action potential of hiPSCs is influenced by factors such as cell density [88] and changes in
culture protocols [89]. To enhance the efficacy of iPSC-based therapies, it can be beneficial
to select fully differentiated cells through methods such as FACS to sort for SAN-specific
markers (such as HCN or SHOX2); additionally, it can be beneficial to employ real-time
monitoring with AI technology to oversee cell differentiation and detect variations among
cell lines [90,91]. Scaling up the production of iPSC-derived pacemaker cells for clinical
use is another hurdle, requiring efficient and reproducible differentiation protocols and
adherence to strict manufacturing standards [92].

Developing a safe and effective delivery method is another essential aspect for the
clinical application of biological pacemakers. Traditionally, delivery methods have involved
highly invasive procedures, such as transarterial approaches or thoracotomy, which have
limited their feasibility for clinical use [93]. To minimize invasiveness, some studies have
employed intracardiac catheters through venous access to administer genetic therapy in
large animal models [94]. However, these techniques can lead to partial retention of cells
or genes, and the potential risk of systemic vector spread remains a concern after needle
injection. Recently, a new device has been developed to enable direct intramyocardial trans-
plantation of hiPSC-CM spheroids from large-scale cultures, achieving better distribution
and retention within the myocardium compared to conventional needle injections [95]. This
advancement may pave the way for clinical applications in human trials. Lastly, ethical
and regulatory aspects must be taken into account, especially concerning the safety of
genetically modified cells and the handling of patient data.

7. Future Directions and Research Opportunities

As the development of iPSC-derived biological pacemakers advances, several promis-
ing research directions have emerged. A hardware-free biological pacemaker offers a
valuable temporary solution for patients needing interim pacing, particularly beneficial
for high-risk individuals, such as the elderly or those with acute conditions that heighten
procedural risk. This approach is especially advantageous for patients requiring pacemaker
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removal due to infections, acting as a temporary bridge until a new device can be implanted
and thus reducing the risk of reinfection. Despite their potential, biological pacemakers
have not yet demonstrated the capability to completely replace electronic devices in a fully
hardware-free form. Achieving this level of functionality remains a crucial goal for future
clinical applications as a viable standalone alternative to traditional electronic pacemakers.

8. Conclusions

iPSC-derived biological pacemakers offer a promising alternative to traditional elec-
tronic pacemakers for treating cardiac arrhythmias. These cell-based therapies can provide
more natural rhythm control, reducing the need for maintenance and offering physiological
responsiveness. Preclinical studies have shown their potential to integrate with host tissue
and generate spontaneous pacing, but challenges remain, such as achieving long-term
functionality, minimizing immune responses, and ensuring stability. Future research in
gene-editing, tissue engineering, and differentiation methods will be key to optimizing
these therapies for clinical use. With continued advancements, iPSC-derived pacemakers
could revolutionize arrhythmia treatment, providing a patient-specific, durable solution
that bridges the gap between current technologies and the body’s natural mechanisms.
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