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Abstract 
Accurate prediction of tool life is crucial for reducing production costs and enhancing quality in the machining 
process. However, such predictions often rely on empirical knowledge, which may limit inexperienced engineers 
to reliably obtain accurate predictions. This study explores a method to predict the tool life of a cutting machine 
using servo motor current data collected during the initial stages of tool wear, which is a cost-effective approach. 
The LightGBM model was identified as suitable for predicting tool life from current data, given the challenges 
associated with predicting from the average variation of current values. By identifying and utilizing the top 50 
features from the current data for prediction, the accuracy of tool life prediction in the early wear stage improved.  
As this prediction method was developed based on current data obtained during the very early wear stage in 
experiments with square end-mills, it was tested on extrapolated data using different end-mill diameters. The 
findings revealed average accuracy rates of 71.2% and 69.4% when using maximum machining time and 
maximum removal volume as thresholds, respectively. 
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1. Introduction 

 
The increasing demand for reduced manufacturing costs, enhanced processing accuracy, and diminished 

environmental impacts has signified the importance of estimating tool wear and developing predictive methods for tool 
life in the cutting industry (Nouri et al., 2015; Azeem, 2007). Numerous studies have addressed this issue. For instance, 
a common approach involves performing a frequency analysis of cutting resistance and tool vibration acceleration data, 
collected via a dynamometer, to identify the key factors influencing tool wear progression to isolate the frequency 
components correlating with the extent of wear (Dimla and Lister, 2000; Mecheri et al., 2010). 

Additionally, several researchers have explored the application of machine learning techniques to cutting resistance 
values or vibration data gathered during processing to accurately estimate and predict tool wear (Krishnakumar et al., 
2018; Jie et al., 2014). For example, Xu et al. (2014) developed a tool wear prediction system using a back-propagation 
neural network (BPNN) based on cutting resistance data obtained during drilling. Similarly, Liu et al. (2020) developed 
a system for assessing tool degradation by applying a deep learning method known as long short-term memory (LSTM), 
which is adept at handling time series data, to vibration acceleration waveform data characterized by substantial non-
stationary and non-linear noise. 

Despite their high accuracy in tool life assessments, dynamometers present challenges such as chatter vibration, 
dimensional errors caused by the reduced machine tool rigidity, lack of overload protection, and high implementation 
costs (Li et al., 2005). Consequently, research has explored alternative methods such as using current values from servo 
motors, which are relatively inexpensive and do not require additional sensors. For instance, Li et al. (2000) estimated 
cutting resistance from servo motor current to monitor tool wear, and Salimi et al. (2012) predicted tool life by estimating 
current values from spindle and table feed servo motors. Nevertheless, prior studies have reported that current data are 
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significantly affected by noise from friction and viscous damping in the machine tool table, and filtering can result in the 
loss of high-frequency component features, rendering them unsuitable for estimating tool wear conditions (Rizal et al., 
2014). Consequently, various methods have been proposed employing machine learning techniques on current data to 
more effectively estimate tool wear. 

For instance, Ghosh et al. (2007) fused features extracted from signal data, such as cutting resistance, spindle 
vibration, and spindle current value, and applied them to a convolutional neural network (CNN) to develop a system for 
estimating the average flank wear on the cutting edge of a tool. Additionally, Nie et al. (2022) devised a method that 
utilized CNN and bidirectional LSTM (BiLSTM) to analyze current value data during processing to extract features 
indicative of tool wear. Recent research including that by Wang et al. (2021) has increasingly focused on predicting tool 
life using ensemble learning methods, which are machine learning techniques based on decision tree algorithms. Among 
these, the light gradient boosting machine (LightGBM) model has been validated as more accurate in prediction than 
other decision tree-based models such as the extreme gradient boosting (XGBoost) model and the random forest (RF) 
model (Mahmood, 2022). Li et al. (2020) reported that a system trained on LightGBM using vibration, current value, and 
cutting resistance data proved effective in predicting tool wear. 

Despite the variety of approaches to tool life prediction and estimation of tool wear based on current data, several 
issues persist: (1) Current value data from the entire processing period—from the onset to the end of the tool's life—are 
required for accurate tool life prediction. (2) Even if the stage at which tool life is reached is accurately predicted, the 
tool tip shape may no longer be maintained, likely affecting the characteristics of the cutting surface adversely. (3) Ideally, 
tool life prediction should use servo motor current value data from conditions where the tool tip has minimal wear ("very 
early wear stage"), but there is no established method to maintain prediction accuracy and generalization performance 
under these conditions. (4) No previous studies have visualized and quantified the correlation between the features in the 
database and their relationship with tool life prediction. In particular, specific examples have not been presented in the 
literature that address research focused on predicting the future cutting time and material removal volume leading up to 
tool end-of-life by using current data obtained during machining when the tool edge exhibits minimal wear (essentially 
in a near-new condition). 

Therefore, this study aims to address these issues by inputting current value data from very early wear conditions to 
develop a system that predicts tool wear conditions with high accuracy at arbitrarily set cutting times and material removal 
volumes. We conduct cutting experiments using a square end-mill that is commonly employed in a broad range of 
applications and simulates the rough machining of mass-produced products. We employ the LightGBM model on 
experimentally obtained current value data. The effectiveness of the system is verified by evaluating the prediction 
accuracy using processing data (extrapolated data) for different tool diameters not included in the training set. 
Additionally, we quantify and discuss significant features inherent in the current value data for tool life prediction. 
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Fig. 1 A mixed matrix is used to calculate the correct response rate, true positive rate, and true negative rate. The correct 
response rate represents the percentage of accurately predicted data overall, while the true positive rate indicates 
the percentage of correctly predicted positive data, and the true negative rate shows the percentage of correctly 
predicted negative data. 
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2. Machine learning algorithm for tool life prediction 
2.1 Evaluation indicators for prediction accuracy 

 
In this study, we employed the accuracy rate, true positive rate, and true negative rate as evaluation metrics. Figure 

1 illustrates the confusion matrix utilized to calculate these metrics. In binary classification via machine learning, labels 
are categorized as either positive or negative. A true positive (TP) occurs when positive instances are correctly identified 
as positive. A false positive (FP) occurs when negative instances are incorrectly identified as positive. A true negative 
(TN) occurs when negative instances are correctly identified as negative. A false negative (FN) occurs when positive 
instances are incorrectly identified as negative.  

The confusion matrix, as depicted, categorizes these outcomes based on the actual and predicted labels. These values 
facilitate the computation of the accuracy rate (ACR), true positive rate (TPR), and true negative rate (TNR). Specifically, 
ACR represents the proportion of correct predictions across all data, TPR and TNR represent the proportion of positive 
and negative instances correctly identified as positive and negative, respectively. 
 
2.2 LightGBM model 

 
LightGBM is an ensemble learning method based on decision trees. High-precision decision tree-based ensemble 

learning methods, such as XGBoost and Random Forest (RF), have been established for some time. LightGBM 
incorporates techniques from these existing methods, as well as gradient-based one-side sampling and exclusive feature 
bundling, to enhance the new gradient boosting decision tree method (Ke et al., 2017). This method is prevalently used 
in machine learning competitions, including those on Kaggle.  

Decision tree methods such as LightGBM can quantitatively assess the contribution of features to a prediction through 
a metric known as "importance." The calculation of importance is demonstrated using the K-class classification decision 
tree depicted in Fig. 2. The calculation begins with determining the Gini impurity. The Gini impurity 𝐺ሺ𝑎ሻ at a specific 
node 𝑎 is defined as Eq. (1):  
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where 𝑝ሺ𝑖ሻ represents the frequency of class 𝑖 in node 𝑎, and 𝑁௔ and 𝑁௜ represent the number of data in node 𝑎 
and class 𝑖, respectively. The aforementioned equation expresses that the Gini impurity 𝐺ሺ𝑎ሻ is smaller when the data 
in node 𝑎 are biased toward a single label. Thus, the Gini impurity can be used to quantitatively evaluate the purity of 
a label in each node. Focusing on the parent node P and child nodes R and L constituting the K-class decision tree, the 
importance I(v) of a given feature v can be defined using Eq. (3) as follows: 
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where 𝐹ሺ𝑣ሻ represent the set of nodes divided by feature 𝑣. This equation indicates that the importance of a feature is 
a quantitative representation of how much the Gini impurity can be reduced when dividing from a parent node to a child 
node.The decision tree feature known as the "class classification method" is deemed appropriate for analytical purposes, 
and its capability to visualize feature importance is considered beneficial for enhancing accuracy through the 
interpretation of analytical results and examination of their relationship with processing phenomena. Implementing the 
LightGBM model demands the configuration of various analysis parameters, or hyperparameters, which are summarized 
in Table 1. For this analysis, the "binary" option was selected to classify whether the tool life under each cutting condition 
exceeds a predetermined threshold. 
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Table 1 Hyperparameters 

Calculations when using boosting methods gbdt 
Parameters for specifying a task binary

Learning rate 0.1 
Maximum number of leaves on the decision tree 50 

Number of data that can go into one leaf 10 
Maximum number of calculations 1000

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 The decision tree method transforms tabular data with one-to-one correspondence between explanatory variables 
(feature groups) and target variables into a tree structure. 

 
3. Prediction of tool wear conditions using current value data under very early wear stage conditions 
3.1 Overview of definition of very early wear stage conditions and tool wear prediction method 

 
In this study, "very early wear stage" are defined as scenarios where the flank wear width VB of the tool tip post-

processing is 0.01 mm or less. Therefore, when visually inspecting the wear width of the tool tip in the “very early wear 
stage,” it is nearly indistinguishable from the wear-free, new condition of the tool tip. Figure 3 illustrates a model diagram 
that delineates these conditions based on shifts in cutting distance and flank wear width VB. As assumed, the tool reaches 
its end of life at Llife [mm]. Section 3.2 details cutting experiments that indicate Llife/500 [mm] (cutting distance: ~100 
mm) as an average benchmark for the cutting distance section representing very early wear stage conditions. Figure 4 
provides an overview of the method used to predict tool wear conditions from servo motor current value data during the 
very early wear stage. This method is segmented into three major parts: (a) preprocessing, (b) prediction, and (c) 
improvement.  

In the preprocessing part, tool wear under each cutting condition is labeled as either above or below a set threshold. 
If the tool wear indicates that the tool life has not been reached, it is labeled "OK" for continued use; otherwise, it is 
labeled "NG" for discontinuation. These labels will be consistently used throughout the study. Users set an arbitrary 
threshold for cutting time t [min] or removal volume V [mm3], and label whether the tool life exceeds this threshold 
during experiments under each cutting condition. Subsequently, the current value data, converted into feature data using 
the tsfresh library—a prominent feature extraction method provided by Python3—are linked with the aforementioned 
labels to create the training database. The tsfresh library facilitates the transformation of time series data into various 
statistical features, such as variance, standard deviation, skewness, and Fourier coefficients. This database is then 
employed to train the LightGBM model.  

A test database was constructed by converting the current value data obtained under the very early wear stage 
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conditions for each cutting scenario into feature data and establishing a correspondence with the previously mentioned 
labels. In this analysis, the current value feature data serves as the explanatory variable, whereas the objective variable 
is whether the tool life exceeds a specified threshold. This method employs a current value feature database, which is 
compiled from data gathered under various cutting conditions and tool diameters, to train the LightGBM model. The 
model predicts the tool wear state from data collected in the very early wear stage, where the tool exhibits minimal wear. 
The method assesses whether the predicted outcomes surpass a user-defined threshold, thus enabling the estimation of 
the end-mill's cutting time and material removal volume based on the current value data from the initial wear stage. The 
prediction results are evaluated using the metrics of ACR, TPR, and TNR. Additionally, the relationship between features 
is examined through the visualization of feature importance, and the findings are discussed in relation to the cutting 
mechanism and other factors. The results and discussions inform considerations for improving accuracy, which are 
subsequently integrated into the preprocessing phase for a second analysis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3 Model diagram defining the very early wear stage conditions based on the cutting distance and the flank wear 

width VB. 
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Fig. 4 At the very early stage of machining, tool life prediction from servo motor current data involves three main steps: 
(a) Pre-processing, (b) Prediction, and (c) Improvement. 

 
Table 2 Experimental conditions 

Machine tool YAMASAKI GIKEN: YZ-402-HR 
NC device FANUC: 31i-MODEL B 

Work material JIS S45C (HRC:27) 

Tool 

NEW CENTURY: 4NV-30D-8.0 
NEW CENTU-RY: 4NV-30D-10 
NEW CENTU-RY: 4NV-30D-12 

Number of flutes: 4 
Coating: AlCr 

Helix angel: 35[°], 37[°] 
Holder SCHUNK: BT40-20 

Coola-nt TAIYU: TPP-ZERO + highly alkaline water 
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Table 3 Cutting conditions 

(a) φ8 Square end-mill 
Condition 

No. 
Spindle speed 

𝑆[rpm] 
Table feed

𝐹[mm/min]
Radial depth of cut

𝑎𝑒[mm] 
Axial depth of cut 

𝑎𝑝[mm] 
1 3193 294 1.4 12 
2 3193 294 2.4 20 
3 3193 294 3.4 24 
4 3193 490 1.4 20 
5 3193 490 2.4 24 
6 3193 490 3.4 12 
7 3193 686 1.4 24 
8 3193 686 2.4 12 
9 3193 686 3.4 20 

10 5322 294 1.4 12 
11 5322 294 2.4 20 
12 5322 294 3.4 24 
13 5322 490 1.4 20 
14 5322 490 2.4 24 
15 5322 490 3.4 12 
16 5322 686 1.4 24 
17 5322 686 2.4 12 
18 5322 686 3.4 20 
19 7450 294 1.4 12 
20 7450 294 2.4 20 
21 7450 294 3.4 24 
22 7450 490 1.4 20 
23 7450 490 2.4 24 
24 7450 490 3.4 12 
25 7450 686 1.4 24 
26 7450 686 2.4 12 
27 7450 686 3.4 20 

 

(b)φ10 Square end-mill 
Condition 

No. 
Spindle speed 

𝑆 [rpm] 
Table feed 

𝐹 [mm/min]
Radial depth of cut

𝑎𝑒 [mm] 
Axial depth of cut 

𝑎𝑝 [mm] 
1 3765 488 2.4 20 
2 4706 610 3.0 25 
3 5647 732 3.6 30 
4 3765 610 3.6 18 
5 4706 488 2.4 18 
6 5647 732 3.0 18 
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(c) φ12 Square end-mill 
Condition 

No. 
Spindle speed 

𝑆 [rpm] 
Table feed 
𝐹 [mm/min]

Radial depth of cut
𝑎𝑒 [mm] 

Axial depth of cut 
𝑎𝑝 [mm] 

1 2353 377 2.2 18 
2 2353 377 3.6 30 
3 2353 377  5.0 36 
4 2353 629 2.2 30 
5 2353 629 3.6 36 
6 2353 629 5.0 18 
7 2353 881 2.2 36 
8 2353 881 3.6 18 
9 2353 881 5.0 30 
10 3921 377 2.2 18 
11 3921 377 3.6 30 
12 3921 377 5.0 36 
13 3921 629 2.2 30 
14 3921 629 3.6 36 
15 3921 629 5.0 18 
16 3921 881 2.2 36 
17 3921 881 3.6 18 
18 3921 881 5.0 30 
19 5489 377 2.2 18 
20 5489 377 3.6 30 
21 5489 377 5.0 36 
22 5489 629 2.2 30 
23 5489 629 3.6 36 
24 5489 629 5.0 18 
25 5489 881 2.2 36 
26 5489 881 3.6 18 
27 5489 881  5.0 30 

 
3.2 Experimental method for database acquisition 

 
Figure 5 provides an overview of the cutting experiment. The work materials for wear and measurement were 

secured on the machine tool table using a jig. Initially, the servo motor current values and resistance values for each table 
axis were measured when cutting the measurement material in the Y-axis direction for one pass, followed by capturing 
an image of the tool wear. Subsequently, the wear material was cut using a square end-mill over a distance of 10,000 mm. 
After this cutting phase, the measurement material was again cut for one pass (cutting distance: 100 mm), and various 
data were collected before another tool wear image was captured. Tool conditions were assessed based on the wear width 
𝑉஻ = 0.25 mm parallel to the flank. 

When 𝑉஻ ൏ 0.25 [mm], the tool was deemed acceptable for continued use, and labeled with “OK”. When 𝑉஻ ൒
 0.25 [mm], the tool was deemed unacceptable for continued use, and labeled with “NG”. This process was repeated for 
each 10,000 mm segment cut. The experimental conditions are listed in Table 2. The machine tool used was a triaxial 
orthogonal machining center (Yamasaki Giken YZ402HR), and the NC device was the 31i-MODEL B (FANUC). The 
work material was JIS S45C (HRC: 27). 

We utilized three different tool diameters (φ8, φ10, φ12) with a BT40 holder for a square end-mill (NEW 
CENTURY) in our experiments. These tools are well-established in the industry. The experiments were conducted using 
both down cutting and side-milling method as depicted in Fig. 6. The cutting parameters included spindle speed (𝑆), table 
feed (𝐹), radial depth of cut (𝑎𝑒), and axial depth of cut (𝑎𝑝), as detailed in Table 3. The cutting conditions for the φ8 
and φ12 square end-mills were established based on the standard conditions provided in the tool catalogs, which were (𝑆  
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= 5322 rpm, 𝐹 = 490 mm/min, 𝑎𝑒 = 2.4 mm, 𝑎𝑝 = 20 mm). These conditions were adjusted to three levels (original 
values and ±40%) according to an L27 orthogonal array with four factors at three levels. For the standard conditions, 
+40% was set assuming high-efficiency rough machining, and −40% as finishing machining. 

For the φ8 square end-mill, the third level of axial depth of cut (𝑎𝑝) would be 20 × 1.4 = 28 mm. However, owing 
to the tool overhang limitations, this value was adjusted to 24 mm. Figure 7 illustrates examples of tools categorized as 
acceptable (OK) or not acceptable (NG) in experiment 17 using a φ8 square end-mill, showing images at cutting distances 
of 20,000 mm (20 m) and 50,000 mm (50 m).  

Figure 8 presents the relationship between cutting distance, tool wear, cutting resistance, and the average amplitude 
of the table axis servo motor current until the tool life endpoint, using data from experiment 27 with a φ12 square end-
mill. The cutting resistance was calculated by taking a moving average of the values at each distance, with the maximum 
value serving as the representative evaluation metric. The sampling period was 0.0002 s, and the average number of 
moving average values was 10. Figure 8 reveals that tool flank wear consistently progresses with the increase in the 
cutting distance. With tool flank wear, the primary component of cutting resistance, particularly the principal force, Fx, 
increases, and a slight upward trend can be observed in the average amplitude of the current. This phenomenon indicates 
that the fluctuations in the average amplitude of the Y-axis servo motor current exhibit a trend similar to that of the 
fluctuating components of the principal force observed during machining. These trends were consistent across all tested 
cutting conditions.  

In all conditions, the flank wear width VB (average of four blades) at the tool tip after processing the work material for 
one pass (cutting distance: 100 mm) was below 0.01 mm, indicating very early wear stage conditions. Notably, the φ8 
square end-mill (experiment number 11) demonstrated a relatively longer cutting distance in terms of the flank wear 

Fig. 6 Cutting was accomplished through down-
cutting with side milling. 

Fig. 7 Figures below demonstrate an example of a tool that 
has been evaluated as either acceptable (OK) or not 
acceptable (NG). 

9

Fig. 5 Experimental setup displaying a jig that fixes the workpiece for wear and the workpiece for measurement on the 
machine tool table. 
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width until the tool life was reached compared to other conditions. For this specific case, considering potential biases in 
the training database, the usability limit of the tool was determined when the principal force component (Fx) of the cutting 
resistance approximately doubled from the very early stage where minimal flank wear was observed (Kakino et al., 2000). 
The instances where the tool chipped or broke prematurely were classified as “NG” at that stage.  

Figure 9 presents an overview of the control method for the machine tool table and the method for acquiring servo 
motor current data. The machine tool, depicted in Fig. 7, was driven by ball screws in three directions (x, y, z) and 
controlled by the torque from a servo motor. This servo motor was governed by CNC commands. The current values of 
the servo motor for each axis (x, y, z) during operation were recorded by connecting the CNC to a PC equipped with 
FUNUC: SERVO VIEWER software via Ethernet. 

Figure 10 illustrates the method for acquiring images of the tool. After processing, the tool was removed from the 
spindle and placed on a tool pre-setter (Kyoritsu Seiki: HP-6040V). The images were captured using a preset imaging 
program, focusing on the boundary wear area, tool tip (flank, rake), and tool top surface, as indicated in Fig. 10. The 
distance from the camera to the imaged areas was consistently 258 mm. This tool pre-setter facilitated visual inspection 
of wear in the micrometer range. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

 
Fig. 8 Measured cutting force, average amplitude of current value and tool wear evolution for the φ12 square end-mill 

condition (experiment No. 27), which was the subject of the test data. 
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Fig. 9 Schematic of the control method of a machine tool table and the method of acquiring servo motor current data. 
Machine tool used in this study is driven by a ball screw and controlled by applying torque with a servo motor. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 10 Figure below is a schematic of the tool photograph acquisition method. Right: images of boundary wear area, 

tool tip (flank and rake surfaces, boundary wear area), and Upper surface of the tool. 
 

3.3 Labeling of cutting conditions and threshold selection criteria 
 
Figure 11 illustrates the tool life judgment diagram, hereinafter referred to as tool life points. As illustrated, users can 

set arbitrary thresholds for cutting time (𝑡௧௛) and removal time (𝑉௧௛) to determine if the tool life under each cutting 
condition exceeds these thresholds. In this study, the threshold 𝑡௧௛ was established at four levels based on the mean, 
median, first quartile, and third quartile for the maximum cutting time (t). The threshold 𝑉௧௛  was determined by 
calculating the removal volume at threshold t for each cutting condition, averaging these volumes, and setting four 
thresholds based on these averages. 
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             (a) Divide a current data                         (b) Normalize a subsequence current data 
 

 
 
 
 
 
 
 
 
 
 
 
 

(c) Convert normalized data to feature data                      (d) Build a database 
 
Fig. 12 Data obtained during processing is divided into intervals of 1.0s, and each interval is normalized to have a 

maximum value of 1 and a minimum value of 1. Resulting data is processed using a package called tsfresh to 
extract features. This process creates a database consisting of n data points and m features. Database is associated 
with a tool life judgment (OK/NG) for each data acquisition. 

Data 
No.

Feature name Tool
label

1

2

Whether or not the threshold
is exceeded.

12

Fig. 11 Tool life judgment chart is a graph displaying the relationship between the tool life time, maximum machining 
time t and maximum removal volume V. Chart helps to determine if the tool life for a particular cutting condition 
exceeds a threshold value set by the user for the machining time and removal volume. 
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3.4 Data preprocessing and database construction for application of machine learning methods 
 
The preprocessing and database construction method for converting time-series current value data into feature data 

suitable for LightGBM is described here. Although the load meter value (current amplitude value) can be obtained from 
SERVO VIEWER, excessive load readings were observed during non-processing activities such as spindle rotation and 
stopping because of high detection sensitivity. Consequently, the data from these periods must be excluded, which 
prolongs the analysis time. Moreover, the spindle load meter value fluctuates significantly with variations in spindle 
speed, processing load, and tool diameter. These fluctuations, more pronounced than the progression of tool wear, 
complicate the construction of a versatile database. Therefore, the servo motor current values from the table motion axes, 
which exhibit lower detection sensitivity, were selected for the tool life prediction database. The data acquisition was 
performed for the x, y, and z table axes. However, the analysis verified that the y-axis servo motor current value was most 
significant for predicting tool life, leading to the exclusive use of y-axis current value data in the database. 

First, to conduct various analyses from the current value data during processing, the current value data during non-
processing were eliminated, and only the current value data during the processing were extracted. Figure 12 displays the 
method for converting the current value data from time series data to feature data. The current value data during 
processing were divided into 1.0 s sections, as depicted in Fig. 12(a). Additionally, the division widths were shifted every 
∆t [s], which enabled the extraction of multiple current value datasets with a length of 1.0 [sec]. The maximum cutting 
edge passing frequency in this experiment was 497 [Hz], so dividing the data every 1.0 [sec] can sufficiently include 
fluctuations in the current value data that occur when the tool interferes with the work material. Additionally, the division 
width shift amount ∆𝑡 [s] depends on whether the tool life judgment for the current value data is OK or NG. In case of 
OK, the value is ∆𝑡ை௄=0.25 [s], and based on the number of OK and NG labels 𝑁ை௄ and 𝑁ேீ, respectively, for that 
cutting condition, the value in case of NG is calculated as ∆𝑡ேீ ൌ ∆𝑡ை௄ሺ𝑁ேீ 𝑁ை௄⁄ ሻ. This method reduces the division 
width shift amount in the NG data, which results in the overall ratio of OK and NG division current value data being 
roughly equal. During predictions, biases between data labels can reduce prediction accuracy and hinder interpretation 
of feature importance, so this type of processing was conducted. Afterwards, as portrayed in Fig. 12(b), each division 
current value dataset was normalized such that the minimum and maximum values were 1 and 1, respectively. The 
normalization process enables us to reduce noise that results in irregular fluctuations in the bandwidth of the servo motor 
current value owing to factors such as the machine tool operation time and atmosphere of the work site. As portrayed in 
Fig. 12(c), each normalized division current value dataset was converted to feature data by applying tsfresh, which is 
available in Python3. These steps (a)–(c) to all the current value data obtained in the experiment are applied to create a 
database with a number of datasets 𝑛 and number of features 𝑚, as depicted in Fig. 12(d). Additionally, as displayed in 
the same figure, the tool wear state judgment OK or NG when each dataset is obtained is labeled in the database. 
 
3.5 Current value feature extraction method that considers importance with regards to prediction 

 
The application of tsfresh enables the extraction of 1,376 features from each current value data point during 

processing (3,087 items), which were obtained under various cutting conditions for all tool diameters. Assuming that 
features are selected without duplication at each branch in the LightGBM model's decision tree, and considering that the 
tree has 50 leaves, the approximate number of possible feature combinations is 2ହ଴ ൈ 𝐶ହ଴ଵଷ଻଺ ≅ 1.28 ൈ 10ଵ଴଻. However, 
in practice, this number is lower because features that do not contribute to prediction are also included. Given this vast 
number of combinations, the original dataset is relatively small, potentially deteriorating the prediction accuracy and 
generalization performance. Therefore, the number of feature combination patterns need to be reduced by effectively 
extracting those features that are significant for predicting tool wear. 

Figure 13 provides an overview of the feature extraction method. Initially, the database was segmented into nine 
patterns between the training and test data. Subsequently, tool life prediction using LightGBM was conducted for each 
dataset to calculate the importance of the features. The sum of the importance values calculated for each pattern was then 
computed, and the top 50 features with the highest sums were extracted. This selection of 50 items corresponds to the 
number of leaves in the LightGBM model used in this analysis, which limits the maximum number of features utilized 
in the prediction to 50. The right side of Fig. 13 illustrates the detailed process of calculating the sum of importance: the 
importance 𝑖 of all features was calculated for each of the nine patterns, their sum 𝑖ௌ௎ெ was computed, the features 
were then sorted in descending order based on the sum of importance, and the top 50 features were extracted.  
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Fig. 13 Database segmented into two sets—training data and test data, each containing 9 patterns. Using LightGBM, tool 
life prediction is performed on both sets, and the significance of features is evaluated. Finally, the importance 
values of each feature for every pattern are summed up, and the top 50 features with the largest sum are extracted. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14 This process is demonstrated in step 1 of the figure, using the tool life determination chart as an example. 
Specifically, the figure presents the results obtained when the threshold is set to t = 39.7. 
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Figure 14 details the procedure for creating the nine data division patterns. As depicted in step 1, a threshold of 𝑡 = 39.7 
min, for instance, is used in the tool life judgment diagram to divide the tool life point before and after the threshold (top 
left of the figure). In step 2, the cutting conditions (experiment numbers) are categorized into negative (NG) and positive 
(OK) based on the threshold. The experiment numbers refer to the current feature value obtained under each cutting 
condition. The current feature value of each category was randomly divided into three groups: NG (A, B, C) and OK (D, 
E, F). Thereafter, in step 3, the current value feature data from each category were combined to create a total of nine 
patterns of current feature value data, including each data point whose tool life point is near the threshold. These nine 
data patterns were further divided into training and test data for calculating feature importance in Fig. 14, with each 
pattern randomly assigned according to an 80% training data and 20% test data ratio. 
 
4. Tool life prediction results and discussion using servo motor current value data under very early wear 
stage conditions 
4.1 Prediction of tool wear from very early wear stage data in φ12 and φ8 square end-mill experiments 

 
In this study, we initially predicted tool wear by analyzing the servo motor current data acquired during experiments 

with φ12 and φ8 square end-mills in the very early wear stage (cutting distance: 0–100 mm). As described in the 
experimental method Section 3.2, the work material for measurement was cut in a single pass (100 mm) while the tool 
was new at the beginning of each experiment. The prediction method assumes the use of servo motor current data from 
this stage, characterized by minimal tool wear. Therefore, the data from the first pass were utilized for analysis. The tool 
life judgment diagram for φ12 and φ8 square end-mills is illustrated in Fig. 15, where Fig. 11 distinguishes test data (red 
plots) and training data (blue plots). Figure 16 presents the data density in the horizontal and vertical axes of the tool life 
judgment diagram for the φ12 and φ8 square end-mill data, represented as histograms. A bubble chart in Fig. 16 indicates 
the number of data points per plot in the diagram, with plot size reflecting data quantity. The figure indicates that data 
density peaks at cutting times (t) and removal volumes (V) of 50–60 min and 19 × 105 mm3, respectively, where threshold 
values were also set. 

The selection of test data followed two criteria: 
① The data exhibit diverse cutting conditions, defined by the material removal rate (𝑀𝑅𝑅 [mm3/min]), expressed as 

the product of table feed (𝐹 [mm/min]), radial depth of cut (𝑎𝑒 [mm]), and axial depth of cut (𝑎𝑝 [mm]). This 
diversity aimed to include test data under varied experimental conditions.  

② The cutting conditions are those where the tool life is reached near the maximum cutting time 20–80 min and 
maximum removal volume 10×105–30×105 mm3, where the data density is concentrated in the data density 
histogram shown in Fig. 16. 

These criteria were applied to select current value feature data from experiments 1, 8, and 27 of the φ12 square end-
mill data for testing, as depicted in Fig. 15. Additionally, thresholds for maximum cutting time (t) and maximum removal 
volume (V) were set at 27, 40, 50, and 66 min for t, and 14 × 105, 19 × 105, 24 × 105, and 29 × 105 mm3 for 𝑉. Thereafter, 
the system was validated in two patterns. In pattern (1), a database was created by extracting the top 50 feature items 
from the current value data during the very early wear stage for the φ12 and φ8 square end-mills, as described in Section 
3.4. This database was used to test the data from experiments 1, 8, and 27 of the φ12 square end-mill. In pattern (2), 
validation involved using φ10 experimental data (extrapolated data) not included in the training data as test data.  
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Fig. 15 Tool life evaluation for φ12 and φ8 square end-mills. Circle plots display the test data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 16 Histograms display the data density on the horizontal and vertical axes for the tool life diagram utilized in the 

analysis of the φ8 and φ12 data extension. 
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The database information is detailed in Table 4 (a), and the total number of data existing in the range lower or higher 
than a threshold when the threshold is set as the boundary is presented in in (b). The table exhibits information regarding 
the database created from the φ12 and φ8 square end-mill experimental data, as well as the database when the φ10 
experimental data are input as extrapolated data. 

Table 5 presents the results of predicting tool wear state under two analysis patterns described previously. As 
explained in section 2.1, TPR was defined as the percentage of correctly predicted cases where tool wear life exceeded 
the threshold, whereas TNR denotes the percentage of correctly predicted cases where tool wear life did not exceed the 
threshold. For pattern (1), using maximum cutting time 𝑡 as the threshold, the average ACR was 70.5%, TPR was 62.4%, 
and TNR was 64.6%. Specifically, for test data from cutting condition experiments 1 and 8 with a cutting time of 40 min 
or less (where tool life was not reached), the average TPR was 88.0%. For test data from experiments 8 and 27 with a 
cutting time of 50 minutes or longer (where tool life was reached), the average TNR was 90.95%. When the maximum 
removal volume 𝑉 was the threshold, the average ACR was 67.0%, TPR was 84.0%, and TNR was 44.8%. With a 
removal volume threshold of 29 × 105 mm3 (as depicted in Fig. 15), only experiment 27 had not reached tool life, whereas 
experiments 1 and 8 had reached tool life, with TPR and TNR of 75.6% and 81.6% respectively. These results confirm 
that tool wear prediction is feasible with this system, regardless of the selected threshold. The above results confirmed 
that the tool wear prediction could be conducted using this system regardless of which threshold was selected. 

 
Table 4 Database for tool life prediction 

(a) Database information 
 Pattern (1) Pattern (2) 

Data size 6483 6579 
Feature size 50 50 

Test data 
Data size 318 (5%) 96 (1%) 

Note 
φ12 condition 

No. 1,8,27 
φ10 data 
No. 1-6 

Training data 
Data size 6165 (95%) 6483 (99%) 

Note Others 
 

(b) Data Number (above threshold and subthreshold) 
 Above threshold Subthreshold 
Threshold Pattern (1) Pattern (2) Pattern (1) Pattern (2) 

 𝑡୲୦= 27[min] 5,724 5,730 741 774 
40[min] 5,034 5,022 1,449 1,482 

50[min] 3,747 3,702 2,736 2,802 
66[min] 2,895 2,754 3,588 3,750 

  𝑉୲୦=14×105[mm3] 3,573 3,492 2,910 3,012 
19×105[mm3] 2,670 2,589 3,813 3,915 
24×105[mm3] 1,761 1,680 4,722 4,824 
29×105[mm3] 864 774 5,619 5,730 

 
Figure 17 displays a graph of the most important features for predicting tool wear state across databases based on 

the results obtained from the φ12 end-mill experiment. The horizontal axis represents the importance value, and the 
vertical axis lists the feature names. The top features include wavelet coefficients (Cwt coefficients) and Fourier entropy. 
The graph also highlights a significant presence of Fourier coefficient features (FFT coefficients) among the top 10 
features. Cwt coefficients are related to the wavelet transform used in frequency analysis. In this study, feature extraction 
with tsfresh involved extracting four types of features (real part, imaginary part, absolute value, angle) from a single 
frequency value, with the absolute value being utilized as the feature value. 

The ratio value number to time series length, Lempel–Ziv complexity, and approximate entropy are quantitative 
measures that calculate the complexity of time series data. The Lempel–Ziv complexity utilizes the LZ700 data 
compression algorithm to express this complexity, while approximate entropy measures the reproducibility and 
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predictability of time series data. 
For a spindle speed of S = 5,322 rpm, the top 10 FFT coefficient features included frequencies at 88, 89, and 161 

Hz, which are approximately integer multiples of the base spindle speed of 88 Hz per second. During side cutting with 
an end-mill, the interaction between the tool cutting edge and the work material is intermittent. When the tool engages 
the work material, the machine tool increases power to the drive system to maintain the specified depth of cut. Thus, 
progressive tool wear alters the current value data when the dull tool cutting edge interacts with the work material at 
frequencies that are integer multiples of the spindle speed per second. 
Consequently, as tool wear increases, so does the complexity of the time series data. This increase in complexity is 
reflected in the high values calculated for the Fourier coefficient features corresponding to these frequencies, which are 
significant for predicting tool life. Additionally, the complexity measures such as the ratio value number to time series 
length, Lempel–Ziv complexity, and approximate entropy also exhibit high values, indicating increased data complexity. 
This trend is consistent across other spindle speeds, including φ8. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 5 Prediction results for tool life with threshold 

 (a) Prediction results when the threshold is time     (b) Prediction results when threshold is removal volume 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Threshold Result [%] Pattern (1) Pattern (2)

𝑡th[min] 

27 

ACR 73.3 68.4 

TPR 89.0 100 

TNR 33.3 13.0 

40 

ACR 75.2 67.6 

TPR 87.7 100 

TNR 43.3 10.6 

50 

ACR 72.6 55.2 

TPR 58.9 47.9 

TNR 83.6 58.0 

66 

ACR 61.0 93.5 

TPR 14.2 - 

TNR 98.3 93.5 

Threshold Result [%] Pattern (1) Pattern (2)

𝑉୲୦ ൈ 10ହ

[mm
3
] 

14

ACR 59.4 34.5 

TPR 100 81.3 

TNR 8.5 16.0 

19

ACR 55.7 71.7 

TPR 100 0 

TNR 0 100 

24

ACR 73.3 71.7 

TPR 60.5 0 

TNR 89.4 100 

29

ACR 79.9 100 

TPR 75.6 - 

TNR 81.6 100 

18

Fig. 17 Graph displays the top 10 most important features for tool life prediction for each database. 
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4.2 Evaluation of prediction accuracy for extrapolated data 
 

The tool wear prediction analysis previously described utilized current value data from the very early wear stage, 
employing experimental data that included the same tools in both the training and test datasets. In this section, we present 
the results of an analysis using experimental data obtained from tools that were not part of the training dataset, 
corresponding to pattern (2) as the test data. Specifically, the system was trained only on data from φ8 and φ12 square 
end-mills, while the φ10 square end-mill data, which were not included in the training, were used as extrapolated test 
data. As indicated in Table 4(a), the combined total of training and test data amounted to 6,579 entries. 

Additionally, when the threshold values were set at t = 66 [min] for time and V = 29 × 105 mm3 for volume, the TPR 
could not be defined because all tool life points in the test data dropped below these threshold values. From the results 
of Table 5, when the maximum cutting time t, was used as the threshold, the average ACR was 71.2%, the average TPR 
was 82.6%, and the average TNR was 43.8%. Conversely, when the maximum removal volume V, served as the threshold, 
the average ACR was 69.4%, average TPR was 27.1%, and average TNR was 79.0%. 

Examining the results from the cutting experiments, the average TPR for the test data (φ10 end-mill cutting 
experiments numbers 1, 2, 4, and 5) was 100.0% at a cutting time of 40 [min] or less, where tool life was not reached. 
The average TNR for the test data (φ10 end-mill cutting experiments numbers 1 and 4) was 75.75% at a cutting time of 
50 [min] or more, where tool life was reached. When the maximum removal volume threshold was set at 14 × 105 mm3, 
only cutting condition experiment number 6 in the test data had reached its tool life, resulting in a TPR of 81.3%. However, 
when the threshold was increased to 19 × 105 mm3 or 24 × 105 mm3, all test data except for cutting condition experiment 
number 4 had reached their tool life. At a threshold of 29 × 105 mm3, all test data reached their tool life, and from a 
threshold of 19 × 105 mm3 onwards, the TNR was 100.0%.  

These results confirm that a system capable of predicting tool life at various thresholds can be effectively constructed, 
even with the inclusion of extrapolated data. 
 
5. Conclusions 
 

In this study, we transformed current value data collected from a servo motor, utilized as a machine tool during 
cutting processes, and employed the machine learning algorithm LightGBM to develop a predictive model for tool life 
based on early-stage wear data. The key findings of this research are summarized as follows: 
 
(1) The Fourier coefficient feature corresponding to the spindle speed per second was identified as a critical factor 

among the features derived from the current values of the servo motor in the initial stages of wear for predicting tool 
life. 

(2) The study demonstrated that by using the “very early wear stage” current feature values as test data, the cutting 
processing time and the material removal volume up to the future end of tool life can be predicted with an average 
accuracy of 70.5%.  

(3) The generalization performance of the proposed system was assessed by testing it with extrapolated data featuring a 
different tool diameter, which was not included in the training dataset. The results indicated that the average accuracy 
rates were 71.2% when using the maximum cutting time (t) and 69.4% when using the maximum removal volume 
(V) as thresholds.  
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