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A B S T R A C T

A tertiary irrigation system is essential for efficient water management in large-scale irrigation scheme and re
quires regular evaluation to understand their effectiveness. The current water balance method for tertiary irri
gation system evaluation requires extensive data, making continuous monitoring over vast areas unfeasible. A 
better approach using geospatial data from the Google Earth Engine (GEE) is introduces to evaluate the efficiency 
of tertiary irrigation systems on a regional scale, aiding water management strategies. This study aims to (1) 
define the rice cultivation boundary for accurate data collection and (2) quantitatively evaluate irrigation system 
performance using specific indicators. Remote sensing evapotranspiration (RS-ET) and yield derived from 
Normalized Difference Vegetation Index (NDVI) were collected within rice cultivation boundary across 60 irri
gation blocks, including 14 blocks equipped with tertiary irrigation system in Region II of the Muda Irrigation 
Scheme. Three irrigation system performance indicators (equity, adequacy, and water productivity) were used as 
a key metric in over four rice-growing seasons to evaluate tertiary irrigation system. Results reveal that tertiary 
irrigation system performance varies with the current three-phase water management strategy. Equity perfor
mance was highest during the off-season, particularly in phase 1 (2–8 %). Adequacy was moderate across all 
phases and seasons (median: 0.6–0.67), while water productivity showed consistent strength in phases 1 and 3, 
with fluctuations in phase 2, across seasons. This study underscores the cost-effectiveness and efficiency of using 
geospatial data from space for continuous regional-scale monitoring, highlighting areas for improvement in the 
current water management strategy.

1. Introduction

A tertiary irrigation system is the most localized level of an irrigation 
network, responsible for delivering water directly from the secondary 
system to agricultural plots within an irrigation block. This system is 
crucial for efficient water distribution from available resources to indi
vidual farmers and their fields. Timely and sufficient water from tertiary 
irrigation system increases crop productivity through the likelihood of 
agricultural practices, thus contributes to high yields (Mohsen Aly et al., 
2013; Ragab et al., 2019; Seiro et al., 2016; Vandersypen et al., 2006). 
The significance of monitoring tertiary irrigation system for rice paddy 
is increasing, where sufficient water stands out as the primary factor 
influencing yield (Cai and Sharma, 2010), especially when governing 
bodies delegate field operations and management of tertiary canal to 

farmers (Mohsen Aly et al., 2013; Ragab et al., 2019). To fully under
stand the effectiveness of the tertiary irrigation system, continuous 
monitoring of its operation and regular evaluation of its performance are 
required. While past evaluations have focused on water delivery per
formance through discharge and water withdrawal from irrigation 
practices (Mohammadi et al., 2019; Mohsen Aly et al., 2013; Syed et al., 
2021), they primarily addressed the water supply aspect, overlooking 
field-level water requirements. This information gap can lead to water 
shortages and ineffective use of tertiary irrigation system (Mohsen Aly 
et al., 2013; Ragab et al., 2019; Vandersypen et al., 2006).

Although information on water supply and demand is necessary for a 
comprehensive evaluation of tertiary irrigation system, obtaining this 
information for continuous monitoring of a large-scale irrigation scheme 
is a challenge and requires alternatives approach. Large-scale irrigation 
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scheme covers extensive areas and involve significant uses of water re
sources. Assessing tertiary irrigation system within this context helps 
ensure identifying nonperforming water management strategy across 
the entire scheme based on efficient water distribution, and utilization. 
By evaluating the performance of tertiary irrigation system at this scale, 
it becomes possible to identify areas of inefficiency or wastage, leading 
to more effective water management strategies. To evaluate the per
formance of the tertiary irrigation system, a water balance method had 
been used by previous researchers (Kitamura, 1990; Ragab et al., 2019; 
Vandersypen et al., 2006; Yashima, 1987, 1982). Water balance study 
relies on various factors related to water supply and demand within 
irrigation blocks such as details of inflows and outflows, including 
changes in the soil content at the point where the information is 
measured, makes it representative only for the targeted irrigation blocks 
and temporarily during the evaluation period (Kitamura, 1990; Ragab 
et al., 2019; Vandersypen et al., 2006; Yashima, 1987, 1982). Evaluating 
the performance of individual irrigation block only at one point in time 
will not adequately capture the situation within a large-scale irrigation 
scheme. Previously, the water balance method was conducted to eval
uate the performance of the tertiary irrigation system in a relatively 
large-scale rice irrigation scheme (15,305 ha) in Tanjung Karang, 
Malaysia, which provided valuable insights into the comprehensive 
evaluation of water allocation for irrigation (Rowshon et al., 2014). But 
due to the resource-intensive requirements, the water balance model is 
not sustainable. In addition, the high cost of installing and maintaining 
measurement devices is a challenge when they are not readily available. 
For large-scale, multi-level irrigation systems, the limitations of the 
water balance method become even more apparent due to the large 
amount of information required and the large spatial areas that need to 
be covered for long-term monitoring. As a result, the approach may be 
less relevant and practicable in extended irrigation contexts, high
lighting the need for alternative approaches that address the challenges 
of large spatial catchments for continuous monitoring and regular 
evaluation.

Quantifying irrigation water needs for large-scale rice irrigation 
scheme, poses a significant challenge for sustainable agriculture moni
toring and other method need to explore. To reconstruct irrigation water 
withdrawal and irrigation water consumption data for large-scale area 
requires extensive modelling and input such as soil types, weather 
conditions and crop growth stages (Zhang et al., 2022). The limitations 
of conventional methods highlight the use of long-term geospatial sat
ellite raster data in efficiently evaluate tertiary irrigation system per
formance across large geographical areas. The evaluation of irrigation 
management practices of tertiary irrigation system has been conducted 
based on the consumed ratio, which is the ratio of water supply to water 
requirement that focus on determining the amount of irrigation water 
needs that have been satisfied (Ragab et al., 2019; Vandersypen et al., 
2006). Since secondary canals of irrigation blocks are consistently filled 
at designed supply quantities, determining water requirements from the 
rice paddy field is essential to evaluate water management of tertiary 
irrigation system based on good farming practices (Vandersypen et al., 
2006). In the estimation of irrigation water needs, evapotranspiration 
(ET) is a crucial component from crop water requirement and soil water 
balance (Jensen et al., 1990). ET represents the water loss from soil 
evaporation and plant transpiration. While recent advancements have 
improved ET estimation with gridded data for irrigation water man
agement, there is still a lack of consistency in soil and plant conditions 
across agricultural lands that requires further information that reflect 
the actual requirement of those information (Calera et al., 2017).

The emergence of datasets from remote sensing technology using 
optical-thermal satellites to measure evapotranspiration (RS-ET) has 
revolutionized to sustainable irrigation water management, providing a 
valuable tool to assess actual ET by soil and plant at a spatial scale 
represented by individual pixels (Bos et al., 2005; Calera et al., 2017). 
Satellite and airborne technologies enable broad, continuous, and 
near-real-time assessments across large geographic areas, particularly 

advantageous in regions with limited onsite data collection capabilities. 
However, the RS-ET that get input from satellite and processed through 
algorithm presents both strengths and weaknesses, influenced by 
various variables such as water input, soil properties, plant properties, 
sensible heat, etc. (Calera et al., 2017). Obtaining RS-ET can initiate 
difficulties due to the requirement for specialized knowledge in termi
nology, sensor types, data analysis, and multidisciplinary expertise 
(Jindo et al., 2021). Despite the ongoing debate on well-defined 
approach for acquiring RS-ET in irrigation system assessments, previ
ous studies have successfully evaluated irrigation system performance 
using RS-ET estimates derived from various models and algorithms 
(Karimi et al., 2019; Poudel et al., 2021; Roerink et al., 1997; Sawadogo 
et al., 2020). Based on this knowledge, RS-ET has emerged as a highly 
advantageous tool for measuring water consumption over extensive 
irrigated agricultural areas (Bastiaanssen et al., 1996; Bastiaanssen and 
Bos, 1999; Roerink et al., 1997) and has been proposed as a parameter in 
a new set of irrigation performance indicators (Bos et al., 2005; Roerink 
et al., 1997). Several indicators exist for irrigation system evaluation, 
and their selection depends on the boundary conditions, as well as the 
purpose of the evaluation (Bastiaanssen and Bos, 1999; Bos et al., 2005). 
While some studies suggest that ET combined with irrigation perfor
mance indicators holds potential for evaluating irrigation systems at 
main, secondary and tertiary level (Ahmad et al., 2009; Kharrou et al., 
2021; Roerink et al., 1997; Zwart and Leclert, 2010), a critical gap exists 
in understanding the applicability of RS-ET for assessing the perfor
mance of tertiary irrigation system within expansive irrigation scheme. 
This gap underscores the need for further investigation to clarify the 
method and effectiveness of remote sensing technology in tertiary irri
gation system performance evaluations.

Cloud computing with Google Earth Engine (GEE) has revolutionized 
the way geospatial imagery is acquired and analyzed (Gorelick et al., 
2017). Despite the valuable insights gained from previous studies in 
agriculture, hydrology, and environmental monitoring using geospatial 
data within the GEE platform (Elnashar et al., 2021; Laipelt et al., 2021; 
Zhang et al., 2019), a significant research gap persists in the 
regional-scale evaluation of tertiary irrigation system. This gap high
lights the need for further investigation into how tertiary irrigation 
system in large-scale irrigation scheme are assessed using GEE. Never
theless, numerous studies have shown that geospatial raster data from 
GEE can effectively monitor large-scale irrigation through parallel 
analysis (Deines et al., 2019, 2017; Xie et al., 2019; Zurqani et al., 2021), 
allowing for the seamless data collection and analysis. This approach not 
only enables easy analysis of surface changes but also provides a 
promising way to address the research gap. The interdisciplinary be
tween water resources management, agriculture, and geospatial tech
nology positions our study at the forefront of addressing complex 
challenges in large-scale irrigated systems. Consequently, this study 
aims to develop and implement a methodology utilizing geospatial im
agery to assess tertiary irrigation system within the Muda Irrigation 
Scheme on a regional scale. The specific objectives include, (1) to 
determine rice cultivation boundary for precise data collection (2) to 
conduct a quantitative assessment of irrigation system performance 
using established irrigation performance indicators. This study aims to 
provide practical insights on using space data for regular evaluation of 
tertiary irrigation systems, enhancing efficient water management.

2. Material and methods

2.1. Description of study area and water management for rice cultivation 
practices

The Muda Irrigation Scheme, the largest rice granary in northern 
Peninsular Malaysia, supplies 45 % of the nation’s rice consumption 
over its 126,000 ha area, with 96,500 ha dedicated to lowland rice 
cultivation. The operation and management of Muda Irrigation Scheme 
is the responsibility of the Muda Agricultural Development Authority 
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(MADA). The Muda Irrigation Scheme has a tropical monsoon climate, 
with temperatures ranging from 21 to 32 ◦C. Annual rainfall falls be
tween 2032 and 2540 mm, and humidity levels in the lowlands vary 
from 70 % to 90 %, depending on weather conditions. For two growing 
seasons, rice cultivation in Muda Irrigation Scheme requires an annual 
irrigation water supply of 2400 mm (Rusli et al., 2022). The onset of rice 
planting during the main season (October–March) relies on monsoon 
rain, while the off-season (April–September) requires supplementary 
water sources. Planting dates are determined based on annual water 
forecasts and current environmental condition. Water sources for rice 
cultivation include rainfall (52 %), reservoirs (30 %), river flow (10 %), 
and recycled water (8 %) (Hanafiah et al., 2019; Rusli et al., 2022). Rice 
varieties in Muda Irrigation Scheme mature at 97–113 days, with a total 
growth period of four months (Fatchurrachman et al., 2022; Nazuri and 
Man, 2016; Rudiyanto et al., 2019). The land preparation for rice 
cultivation involves thorough plowing and soil saturation through 
flooding. Direct seeding is then carried out in flooded fields, each 
averaging around two hectares, situated within designated blocks 
ranging from 200 to 1000 ha, equipped with a secondary irrigation 
system. The Muda Irrigation Scheme utilizes a total of 172 irrigation 
blocks for rice cultivation. The topography of the area results in rice 
paddy fields with irregular shapes and dimensions, and within irrigation 
blocks, rice paddy fields are intermixed with other land uses.

This study focusing on Region II of the Muda Irrigation Scheme, the 
largest rice-growing region of the four regions. The authority dissemi
nates the rice-planting schedule for managing irrigation to secondary 
canals in three phases for every rice-growing season. This approach 
enables farmers to access water and engage in rice cultivation within the 
designated planting window based on the specific irrigation block in 
which they are located. Fig. 1 shows the location of the study area and 
the boundary of the rice-planting schedule for the irrigation blocks. A 

secondary canal was used for gravity-flow irrigation during the rice 
cultivation period in each irrigation block. Fig. 2a shows a schematic of 
an irrigation block with an average infrastructure density of 10 m ha− 1 

for rice paddy fields, relying on primary and secondary canals and water 
control structures, such as constant head orifice (CHO) offtake, irriga
tion end control (IEC), and drainage end control (DEC) for water man
agement. The main challenge arises from the low canal density (less than 
10 m ha− 1) within the irrigation block, which leads to longer durations 
of water distribution during the pre-saturation period through gravita
tional flow from the CHO offtake to the DEC (Fujii et al., 1993). This 
problem is particularly pronounced for rice paddy fields situated at a 
distance of 1− 2 kilometers from the secondary canal. Additionally, rice 
paddy fields located in lowland areas often have to wait for farmers in 
highland areas to open waterways to their plots (Baharudin and Arshad, 
2015). These issues can potentially result in delays in planting and 
harvesting during the two consecutive growing seasons annually. To 
enhance the irrigation distribution and support year-round rice double 
cropping, authority introduced the tertiary irrigation system as depicted 
in Fig. 2b. This system subdivides rice paddy fields within an irrigation 
block into smaller irrigation service areas (ISA) by constructing 
tertiary-level irrigation infrastructures, including canals, drains, and 
farm roads, by increasing the infrastructure density to 30 m ha− 1. A 
three-stage scheduling system was initiated with the tertiary irrigation 
system, making use of water control structures (such as the CHO-offtake, 
IEC, and DEC) located along the tertiary irrigation infrastructure. Each 
schedule provides a 10-day window for farmers to independently 
withdraw water from the tertiary canal, allowing their rice paddy fields 
to be inundated before the next schedule. This scheduling strategy aims 
to complete the irrigation distribution for the block within 30 days using 
the tertiary irrigation system, optimizing water supply, and enabling 
efficient rice cultivation scheduling. Moreover, the tertiary drain 

Fig. 1. The location of the study area and the boundaries of the rice-planting schedule by phase. The Region II of Muda Irrigation Scheme comprises 60 irrigation 
blocks, 14 of which are equipped with a tertiary irrigation system (shaded with diagonal line), while the remaining 46 are non-tertiary irrigation system.
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empowers farmers to maintain sufficient water levels in their rice paddy 
fields.

A previous study reported that existing systems or non-tertiary irri
gation system irrigation blocks take up to 40 days to complete the pre- 
saturation period, whereas tertiary irrigation system can deliver water 
within irrigation block in less than 30 days (Fujii et al., 1993). Theo
retically, with good farming practice, irrigation blocks with tertiary 
irrigation system should exhibit a better water distribution, thus 
improving the water consumption of rice plants in rice paddy fields 
according to schedule. However, due to financial constraints, tertiary 
irrigation system was selectively implemented in identified blocks fac
ing existing irrigation and drainage challenges. As a result, irrigation 
blocks with tertiary irrigation system are interspersed with existing 
system (Fig. 1). Future plans involve expanding the development of 
tertiary irrigation system in all irrigation blocks, ensuring comprehen
sive coverage, and enhancing irrigation efficiency. Presently, of the 60 
irrigation blocks in Region II, only 14 are equipped with a tertiary 
irrigation system built between 1980 and 2021. This number is 
increasing as the government aims to increase rice productivity and 
yield. Notably, the number of irrigation blocks with tertiary irrigation 
system was higher in phase 1 (6) than in phases 2 (5) and 3 (3). In terms 
of rice acreage, the tertiary irrigation system covers 37 % of the acreage 
of phase 1 (3547 ha), 18 % of the acreage of phase 2 (2848 ha) and 12 % 
of the acreage of phase 3 (899 ha).

2.2. Methodology

The performance of irrigation blocks with tertiary irrigation system 
and non-tertiary irrigation system within Region II was compared. In 
order to reduce the variability in rice cultivation practices resulting from 
the timing of water delivery to the secondary canal, the performance 
evaluation was conducted in monthly scale based on the rice-planting 
schedule provided by the authority (Table 1) over four rice-growing 
periods: main season 2019 (October 2018 to March 2019), off-season 
2019 (April 2019 to September 2019), main season 2020 (October 
2019 to March 2020), and off-season 2020 (April 2020 to September 
2020). The chosen periods cover a range of environmental conditions 
and cropping cycles. Fig. 3 illustrates the methodological framework 
used in this study. Data collection and pre-processing of geospatial im
agery was carried out using GEE platforms. The RS-ET served as the key 
metric parameter to assess the dynamics of water use within the irri
gation blocks with tertiary and non-tertiary irrigation system. Since the 
information of rice yield was not available at block level, the Normalized 

Difference Vegetation Index (NDVI) was used as an additional parameter 
to determine yield, downscaled from locality level. A ‘locality’ is 
established by the authority to manage agricultural administration of 
the irrigation blocks and acted as a farmer’s organization. These local
ities provide a wide range of services including human resource man
agement, farmer mechanization, agricultural infrastructure, farm 
produce supply, financing, development and extension services, post- 
harvest and food processing technology, agricultural cyber resource 
centers and marketing (MADA, 2023). The boundaries of the localities 
and irrigation blocks within their management are shown in Fig. 4. Both 
RS-ET and NDVI were spatially acquired, pre-processed and organized to 
present water consumption from RS-ET and yield for individual irriga
tion blocks. The acquired geospatial imagery were reviewed before 
being used in selected irrigation performance indicators. The details of 
each procedure are described below.

Fig. 2. Schematic facilities in an irrigation block with (a) non-tertiary irrigation system or existing system (b) tertiary irrigation system.

Table 1 
The date of rice-planting schedule over four rice-growing seasons. This infor
mation is used to determine the irrigation time for each block. Planting dates are 
determined based on annual water forecasts and current environmental condi
tions. The phase boundaries are shown in Fig. 1.

Main season 2019 
(October 2018 to March 2019)

Main season 2020 
(October 2019 to March 2020)

Phase 
1

Phase 
2

Phase 
3

Phase 
1

Phase 
2

Phase 
3

Planting 
start

Sep. 26 Oct. 6 Oct. 16 Sep. 25 Oct. 5 Oct. 15

Planting end Oct. 24 Nov. 3 Nov. 13 Oct. 30 Nov. 9 Nov. 19
Irrigation 
end

Jan. 22 Feb. 1 Feb. 11 Jan. 28 Feb. 6 Feb. 17

Off-season 2019 
(April 2019 to September 
2019)

Off-season 2020 
(April 2020 to September 
2020)

Phase 
1

Phase 
2

Phase 
3

Phase 
1

Phase 
2

Phase 
3

Planting 
start

Apr. 17 May 1 May 15 Mar. 18 Mar. 28 Apr. 7

Planting end May 14 May 28 Jun. 11 Apr. 18 Apr. 28 May 8
Irrigation 
end

Aug. 13 Aug. 27 Sep. 10 N/A N/A N/A

N/A: Not available
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2.2.1. Data collection and pre-processing of geospatial imagery at irrigation 
block level

Region II has diverse land use. Since rice is grown year-round in the 
lowland rice paddy fields, the final delineation excluded all features that 
are not part of the rice paddy fields within the irrigation blocks in the 
region. These include natural dense vegetation (such as forests, rubber 
trees and palm trees), isolated buildings and water bodies. The focus was 
collecting data from large-scale irrigated rice paddy fields at recent 
years, where the interaction between water uses and crop productivity is 
significant (Conrad et al., 2020). The delineation of rice cultivation 
areas using optical satellite imagery is a complex task due to the varying 
reflectance characteristics during the different growth stages of rice. 
Therefore, it is important to classify land use and land cover (LULC) 
during the rice maturation stage. LULC classification was performed 
using machine learning on the GEE platform based on the successful 
outcomes of previous studies (Chen et al., 2020; Fatchurrachman et al., 
2022; Shaharum et al., 2020).

The maturity stage of rice in January 2020 was identified as the 
target period for classification by machine learning with Sentinel-2. To 
improve the accuracy of machine learning classification in GEE, a series 
of image preprocessing improvements were performed for each pixel (10 
× 10 m) of Sentinel-2 image. These improvements include several 
important steps. First, cloud masking was performed by using a filter 

function to identify and remove pixels with a cloud probability greater 
than 10 % to ensure that data obscured by cloud cover was excluded 
from our analysis. Next, clustering was applied to the median values of 
the original bands of the Sentinel-2 images to facilitate the extraction of 
relevant features. Relevant features include (1) additional spectral band 
indices such as Normalized Difference Vegetation Index (NDVI), 
Normalized Difference Water Index (NDWI), Modified Normalized Dif
ference Water Index (MNDWI), and Normalized Difference Built-Up 
Index (NDBI) to characterize rice in paddy fields, open water areas, 
and urban areas (McFeeters, 1996; Xu, 2006; Zha et al., 2003); (2) 
topographic features (Franklin, 1995) to detect lowland areas; and (3) a 
normalized algorithm to reduce band value variations and fluctuations 
(Zhao et al., 2020). The categorization of each pixel was carried out 
using a random forest classifier, where the features were obtained from 
specified reference points (Rodriguez-Galiano et al., 2012; Shaharum 
et al., 2020; Shetty et al., 2021). Additionally, supplementary datasets 
including Google Street View were incorporated during the process of 
sampling reference points. The accuracy assessment was computed by 
confusion matrix as demonstrated in studies involved machine learning 
classification (Basheer et al., 2022; Feizizadeh et al., 2023). Validation 
of rice cultivation areas after machine learning classification process 
relied on knowledge of feature locations, visual inspection of recent 
composite images, and statistical records from relevant authorities. The 
final step was to convert the classified rice paddy field raster into a 
vector polygon (GEE, 2022). This polygon represents the rice cultivation 
areas within the study area and was used to collect the required 
parameters.

The first parameter collected was RS-ET, from three global RS-ET 
datasets within GEE: MODIS, TerraClimate, and FLDAS. The first data
set, MODIS-ET (Dataset: MODIS/061/MOD16A2GF), has a 0.5 km res
olution and offers eight-day cumulative actual ET water loss totals in 
mm. RS-ET from MODIS-ET was derived from the MOD16 ET al.gorithm 
using the Moderate Resolution Imaging Spectroradiometer (MODIS) 
satellite sensor. More detailed explanations of MOD16 ET can be found 
in Mu et al. (2007). RS-ET of MODIS-ET was organized on a monthly 
scale to represent the growth of rice plants in the target period. The 
MOD16 ET al.gorithm considers evaporation from the soil, wet canopy, 
and transpiration of the vegetation both during the day and at night. The 
updated MOD16 ET al.gorithm, which has evolved since the 2010 
dataset, was cross-validated with an eddy flux tower in the United States 
(Mu et al., 2011). Confirmation for the use of MODIS-ET in our study 
area was also based on the recent validation of seven global RS-ET 
values in Thailand (Sriwongsitanon et al., 2020). Sriwongsitanon et al. 
(2020) indicate that MODIS-ET showed the most promising results for 

Fig. 3. Methodological framework used in this study. Data collection and pre-processing of geospatial imagery was carried out using Google Earth Engine (GEE) 
platforms. Remote sensing-evapotranspiration (RS-ET) and yield derived from Normalized Difference Vegetation Index (NDVI) obtained at irrigation block level was 
used in performance evaluation through selected indicators.

Fig. 4. The boundaries of locality and irrigation blocks. The locality co
ordinates agricultural management and resource utilization for irrigation blocks 
within their boundary. The statistical rice yield used for this study was obtained 
at locality level.
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tropical environmental conditions similar to our study area compared to 
the other datasets. Potential evapotranspiration (PET) represents the 
maximum ET that can be achieved at a specific location and under 
specific environmental conditions. The RS-PET time series was similarly 
extracted from the MODIS-ET dataset in the GEE as a separate layer. 
Both the RS-ET and RS-PET parameters in MODIS-ET were calculated 
using the energy balance and Penman-Monteith algorithm and under
went gap filling from contaminated clouds and/or aerosols according to 
the latest version of the dataset’s user manual (Running et al., 2021). 
Given the insufficiency of high-resolution global RS-ET data, a com
parison was made between MODIS-ET monthly RS-ET and 
TerraClimate-ET (~4 km resolution) (Dataset: IDAHO_
EPSCOR/TERRACLIMATE) (Abatzoglou et al., 2018) as well as 
FLDAS-ET (~10 km resolution) (Dataset: NASA/FLDAS/
NOAH01/C/GL/M/V001) (McNally et al., 2017). Both datasets present 
actual ET as a monthly total water loss in millimeters, derived from 
different models using climate and meteorological data from remote 
sensing technology (Abatzoglou et al., 2018; McNally et al., 2017). The 
availability and applicability of the RS-ET obtained from GEE was 
assessed based on number of pixels, temporal pattern, and recorded 
value for four rice-growing periods on a monthly scale.

The second parameter collected was NDVI. Since the block-level 
yields were unavailable, NDVI was used to estimate them by aggre
gating pixel yields within the blocks. Yield determination at the pixel 
level involved downscaling higher-level yield statistics using NDVI 
through linear regression (Cai and Sharma, 2010; Poudel et al., 2021; 
Shirsath et al., 2020). The NDVI was primarily used to detect the pres
ence of chlorophyll in plants, which is crucial for interpreting vegetation 
dynamics based on rice plant phenology (Zheng et al., 2016). The NDVI 
value is a unitless metric and reflects higher green vegetation intensity 
as it approaches 1. The NDVI used in this study was obtained from the 
Sentinel-2 satellite (10 m resolution) (Dataset: COPERNICUS/S2_SR). To 
determine the NDVI from Sentinel-2, the red (band 4) and near infrared 
(NIR) (band 8) reflectance measurements were used to capture the green 
reflectance. Each pixel in the Sentinel-2 images was subjected to a 
filtering process to ensure that the probability of clouds and shadows 
occurring was less than 5 %. In this study, the ratio of the one-pixel yield 
was downscaled from locality level and subsequently aggregated into 
block boundaries. The boundaries of irrigation blocks and their local
ities, as well as the yield statistics, were obtained from the authority and 
then imported into the GEE user assets for data management and veri
fication in obtaining the processed satellite data. The process of yield 
determination is shown in Eqs. (1)–(4), where F is the weighting factor 
and is the ratio of the one-pixel NDVI to the total value of NDVI over all 
pixels (n) in the locality based on the maximum NDVI values for each 
growing season. Y is the statistical yield in kilogram (kg) at locality level 
for each season and A is the area of one pixel of Sentinel-2 imagery 
(10 m × 10 m). However, the validation process of yield at block level 
was restricted by the availability of ground data. Since individual 
pixel-wise yield values were downscaled from high-quality statistical 
data and aggregated, these aggregated values were then compared to the 
officially reported figures (Cai and Sharma, 2010; Poudel et al., 2021; 
Shirsath et al., 2020) 

Yieldirrigation block =
∑

Yieldpixelwithin irrigation block, unit in kg
(1) 

Yieldpixel =
F × Ylocality

Apixel
(2) 

F =
NDVIpixel

NDVIlocality
, where (3) 

NDVIlocality =
∑i=n

i=1
NDVIpixel (4) 

Additional information such as monthly rainfall data was obtained 
from the Alor Star meteorological radar station (6.1248◦ N, 100.3678◦

E) to verify weather conditions during the study period. The station is 
located in the center of Region II of the Muda Irrigation Scheme pro
vided by the Malaysian Meteorological Department (MMD).

2.2.2. Performance indicators
The concept of irrigation system performance is broad and there is no 

single solution has been discovered to address it. Performance indicators 
provide a means to evaluate irrigation systems from various perspec
tives, allowing the measurement of their efficiency and sustainability 
(Elshaikh et al., 2018). Recent advances in satellite-measured parame
ters and established remote sensing-based performance indicators have 
provided valuable tools for irrigation system evaluation (Akhtar et al., 
2018; Poudel et al., 2021; Sawadogo et al., 2020; Usman et al., 2014). 
However, exploration of this approach for tertiary-level irrigation sys
tems located within a large-scale irrigation system has not yet been 
conducted. This study focused on the evaluation of tertiary and 
non-tertiary irrigation system irrigation blocks in large-scale areas. The 
evaluation was conducted separately according to the three-phase 
rice-planting schedule established by the authority (see Table 1 and 
the boundary shown in Fig. 1) to account for the variability of agricul
tural practices due to rice planting timing. Assuming that each phase is 
supplied with water at the same time, the utilization of the tertiary and 
non-tertiary irrigation systems should be comparable with respect to the 
monthly scale. Therefore, the water consumption and yield for the 
respective irrigation blocks were used in the irrigation performance 
indicators as explained below.

The first indicator is equity which measures distribution of fair 
amount within irrigation system. Sawadogo et al. (2020) employed an 
equity indicator to assess water consumption uniformity among three 
crop types: rice, maize, and sweet potatoes by determined the ET vari
ability for each crop through coefficient of variation (CV). Similarly, 
Roerink et al. (1997) evaluated the equity of two irrigation systems by 
analyzing CV of ET in each system. This study builds upon previous 
research by comparing the CV of RS-ET between tertiary and 
non-tertiary irrigation systems blocks that satisfied the water supply of 
farming management using equity indicator. The equity is calculated 
from Eqs. (5) and (6). A system with higher CV indicated greater vari
ability in water loss from RS-ET within the irrigation system, leading to 
less uniform water consumption across the irrigation block. According to 
Bastiaanssen et al. (1996), achieving good uniformity in crop water 
consumption is linked to equitable irrigation water distribution, char
acterized by a CV of less than 10 %. 

CV(%) =
SD
x

× 100% , where (5) 

SD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n
∑i=n

i=1
|xi − x

̄
|
2

√
√
√
√ (6) 

where SD = standard deviation
i = irrigation block
n = total number of irrigation block in the irrigation system
xi = RS-ET of irrigation block (mm)

x
̄ = average value of the RS-ET of all irrigation blocks within the 

irrigation system (mm)

The second indicator is adequacy which measures distribution of 
required amount within irrigation system. An adequacy indicator offers 
insights into the well-watered croplands. Relative evapotranspiration 
(RET) (unitless), calculated as the ratio of RS-ET to RS-PET, as shown in 
Eq. (7), can serve as an effective means of evaluating the adequacy of 
irrigation systems (Kharrou et al., 2013; Sawadogo et al., 2020). In this 
study, the RS-ET and RS-PET values obtained for each irrigation block 
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were used to calculate the RET and assess the adequacy of both tertiary 
and non-tertiary irrigation systems. An adequacy value of 0.75, as 
established by Roerink et al. (1997), is considered to be the accepted 
reference point for irrigation system performance. 

RET (unitless) =
RS − ETirrigation block

RS − PETirrigation block
(7) 

The third indicator is water productivity which assesses the yield on 
average water consumption. Water productivity indicator measures the 
efficiency of irrigation systems through crop water productivity (CWP) 
(unit: kg m− 3) (Blatchford et al., 2019; Poudel et al., 2021; Sawadogo 
et al., 2020). Alberto et al. (2011) employed this indicator in a case study 
comparing water productivity between two irrigation techniques: floo
ded and aerobic soil conditions. CWP is calculated by determining the 
ratio of crop yield for each irrigation block to the accumulated RS-ET 
from the start of the season (SOS) to the end of the season (EOS) in 
the irrigation block (Zwart and Bastiaanssen, 2004). The CV of CWP 
(unit: percentage (%)) was used for comparison; a low percentage in
dicates good water productivity by consistency from CV values, while a 
high percentage suggests the need for improved water management 
(Zwart and Bastiaanssen, 2007). 

CWP(kg m− 3) =
Yieldirrigation block

∑EOS

SOS
RS − ETirrigation block

(8) 

Water productivity of irrigation system (%) = CV of CWP               (9)

3. Results

3.1. Applicability of GEE to obtain geospatial data

3.1.1. Rice cultivation areas generated from machine learning
The machine learning classification was used to generate vector 

polygon of rice cultivation areas at regional scale from composite sat
ellite image at recent years. From this process, rice paddy fields 
accounted for the largest area at 77 % of whole region, followed by 
urban at 11 %, non-rice vegetation at 6 % (including forests, rubber 
trees, palm trees, and others) and water bodies at 6 %. The processes for 
extracting the boundaries for the rice paddy fields is illustrated in Fig. 5. 
The output of the classified pixels of the four different land use classes is 
shown in Fig. 5a, followed by the visual inspection of rice paddy fields 
vector polygon from high definition satellite image (Fig. 5b) and final 
extracted rice paddy fields within individual irrigation blocks (Fig. 5c). 
The accuracy assessment of this proses represented by a confusion ma
trix is shown in Table 2. Based on the results, final classified raster of the 
four distinct land uses in Region II had an overall accuracy of 83.4 % and 
a kappa coefficient of 0.78. The producer’s accuracy for rice paddy fields 
was 84.4 % indicating the process effectively classified 84.4 % of the 
particular land uses. However, the user’s accuracy was 78.4 %, sug
gesting a slightly lowered prediction accuracy for this particular land 
use. Nevertheless, despite the similar color characteristics of green 
vegetation between rice and non-rice in the optical raster data, the user’s 
accuracy for non-rice is higher at 95.2 % and the extraction processes 
(Figs. 5a–5c) clearly show the distinctness for both land use classes. 
Furthermore, the rice paddy fields areas that derived from the satellite 
imagery (31,486 ha), matched the most recent authority statistics at the 
regional scale (32,595 ha), with a relatively small difference of 3.5 %, 

Fig. 5. Boundary extraction process for rice cultivation areas in irrigation blocks derived from optical satellite imagery. (a) Classified pixels of four types of land use, 
(b) Visual inspection of rice paddy fields vector polygon with high definition satellite image, (c) Extracted rice paddy fields polygon in each irrigation block.
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ranging from 6 % to 24 % at the locality scale. The delineation of a 
target area for crop intensity allows a more comprehensive assessment 
of irrigation efficiency (Bos et al., 1994). Therefore, rice paddy fields 
boundary was extracted from the classified raster using masking func
tion was applied to create a vector polygon. This polygon was used to 
collect geospatial data.

3.1.2. Data acquisitions over target periods
The average RS-ET data obtained from MODIS, TerraClimate, and 

FLDAS datasets for Region II of the Muda Irrigation Scheme are shown in 
Table 3. Since ground ET measurement is difficult due to the high cost of 
equipment installation in large-scale areas, RS-ET datasets were verified 
by three assessment approaches.

The first assessment of RS-ET is based on the total pixels. MODIS-ET 
reports the highest count at 1276, while Terraclimate-ET records 24 and 
FLDAS-ET comes in at 5 with good coverage ranging from 96 % to 
100 %. Despite FLDAS-ET and TerraClimate-ET achieving a 100 % and 
96 % coverage rate respectively, their spatial resolution of 10 × 10 km 
and 4 × 4 km limits their ability to capture variations at the irrigation 
block level. Compared to MODIS-ET, a higher percentage of pixel counts 
(98 %) is achievable for the entire rice-growing area at a high spatial 
resolution of 0.5 × 0.5 km. This high resolution allows for precise 
agricultural water consumption representation from RS-ET at the irri
gation block level.

The second assessment was based on monthly temporal patterns. In 
traditional rice irrigation practices, standing water in rice paddy fields is 
usually drained when rice plants approach maturity to support root 
growth and grain retention (Thakur et al., 2018). Consequently, ET rates 
decrease when the field is no longer irrigated (Roerink et al., 1997). This 
information supported the identification of the critical irrigation period 
used in this study. The results showed that the irrigation period spanned 
four months from land preparation to rice plant maturation, which was 
consistent with the authority schedules and the total growth period of 
rice varieties in the Muda Irrigation Scheme. In particular, this pattern 
was consistent with MODIS-ET compared to TerraClimate-ET and 
FLDAS-ET in representing the rice plant growth and irrigation period for 
each growing season.

The third assessment was conducted based on the recorded RS-ET 
values. The recorded seasonal average values of MODIS-ET, TerraCli
mate-ET, and FLDAS-ET were 501, 640, and 740 mm respectively, with 
higher values in the off-season. These values are consistent with the 
common ET for rice, which ranges from 400–800 mm depending on 
environmental conditions (Zwart and Bastiaanssen, 2004). Previous 
studies reported cumulative ET values for the entire rice growing season 
in the Muda Irrigation Scheme estimated between March and 
September, which amounted to 840 mm (Cabangon et al., 2002), with 
an annual range of 1360–1490 mm (Tukimat et al., 2012). Notably, the 
ET values reported by Cabangon et al. (2002) and Tukimat et al. (2012)
were higher than the RS-ET values obtained in this study. Further 
investigation revealed that the annual rainfall values recorded during 
the target period tended to be higher (11–20 %) than those reported in 
previous studies. This is consistent with the findings of Tukimat et al. 
(2017), concluded that increased rainfall could reduce water loss 

through ET values for tropical rice fields.
Based on these assessments, particularly the first, MODIS-ET was 

identified as the most suitable choice for determining variation at block 
level, outperforming TerraClimate-ET and FLDAS-ET. RS-ET from 
MODIS was then arranged according to irrigation block.

The range distribution of from selected RS-ET dataset and yield of 60 
irrigation blocks are shown in Table 4. Yield varied from ±0.1 and ±0.3 
at the irrigation block level, scaled down from the locality level. The RS- 
ET at the irrigation block level showed a similar pattern to the average 
RS-ET at the regional level (Table 3). The approach demonstrates par
allel data collection at the regional and irrigation block levels across 
multiple rice-growing seasons through cloud computation. With this 
approach, we can analyze the performance indicators more efficiently.

3.2. Performance evaluation of tertiary irrigation system

The evaluation compares the performance of the tertiary and non- 
tertiary irrigation systems within Region II based on the rice-planting 
schedule for four consecutive rice-growing seasons. The performance 
of the irrigation system in terms of equity and adequacy indicators is 
shown in Fig. 6 and Fig. 7, respectively, which were conducted based on 
the irrigation period. Fig. 8 shows the performance of the irrigation 
system based on water productivity, which was carried out on a seasonal 
basis.

Bastiaanssen et al. (1996) identified a CV of less than 10 % as an 
indicator uniform water consumption from equitable distribution of 
irrigation water. As shown in Fig. 6, both the tertiary and non-tertiary 
irrigation systems generally showed satisfactory equity as they were 
below the threshold. However, the tertiary irrigation system showed a 
remarkable performance during the irrigation period in the off-season, 
by consistently falling below the acceptable threshold (2− 8 %) in all 
phases. Notably, the tertiary irrigation system in phase 1 consistently 
outperformed the others (3–10 %) across all growing seasons (Fig. 6a), 
followed by phase 2 (2–11 %) and phase 3 (2–13 %) (Fig. 6b and Fig. 6c, 
respectively).

In terms of adequacy, the performances of tertiary and non-tertiary 
irrigation systems were similar during the irrigation period, as shown 
in Fig. 7a− 7c. However, the tendency to reach an acceptable threshold 
(0.75) was higher in the third month of the irrigation period for all 
phases (0.63− 0.82), except for the tertiary irrigation system scheduled 
in phase 3 in the main season 2020 (0.43− 0.54). Throughout the study 
period, the tertiary irrigation system in phase 1 showed better adequacy 
performance (median: 0.67, maximum: 0.82) than phase 2 (median: 
0.64, maximum: 0.80) and phase 3 (median: 0.60, maximum: 0.64).

CWP focuses specifically on the evaluation of crop yield per unit of 
water consumed (Zwart and Bastiaanssen, 2004). In this study, CWP was 
determined at the irrigation block level based on downscaled crop yields 
and seasonal water losses through RS-ET in four consecutive growing 
seasons. Cabangon et al. (2002) reported that the CWP for direct seeding 
practice at relatively smaller scale (30− 54 ha) during off-season in the 
Muda Irrigation Scheme ranges from 0.48− 0.54 kg m− 3. However, with 
our approach, CWP values at the irrigation block scale tended to be 
higher (0.90− 1.45 kg m− 3) with an average of 1.16 kg m− 3. Over the 

Table 2 
Confusion matrix for the machine learning classification.

Reference data

Urban Water bodies Rice paddy fields Non-rice vegetation Total User’s Accuracy

Classified data Urban 66 8 2 0 76 80.5 %
Water bodies 7 66 8 1 82 83.5 %
Rice paddy fields 7 5 76 2 90 78.4 %
Non-rice vegetation 2 0 11 59 72 95.2 %
Total 82 79 97 62 320 ​ 
Producer’s accuracy 86.8 % 80.5 % 84.4 % 81.9 % ​ ​ 
Overall accuracy 83.4 % ​ ​ ​ ​ ​ 
Kappa 0.78 ​ ​ ​ ​ ​ 
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past 20 years, the higher CWP may be attributed to the increase in 
relatively high yields, which are 1–2 t ha− 1 higher than those previously 
reported (Cabangon et al., 2002). Notably, obtained CWP varied ac
cording to environmental conditions and were generally higher in the 
main season. The values were consistent with the global CWP range 
(0.4–1.6 kg m− 3) for rice reported by Zwart and Bastiaanssen (2004). 
The statistical distribution of CWP between the tertiary and non-tertiary 
irrigation systems is shown in Table 5.

In the evaluation of water productivity, a comparison of the CV of 
CWP between tertiary and non-tertiary irrigation systems is shown in 
Fig. 8. A low percentage in irrigation systems indicates favorable water 
productivity, while a high percentage indicates the potential for 
improved water management practices (Zwart and Bastiaanssen, 2007). 
Despite notable weather fluctuations during the main season rice 
growing period, tertiary irrigation system consistently had better per
formance than non-tertiary irrigation system, as evidenced by consis
tently lower percentage values. This trend is particularly pronounced in 
the main season of 2019, with the percentage difference in water pro
ductivity between tertiary and non-tertiary irrigation systems ranging 
from 0− 4 %. Overall, the tertiary irrigation system achieved robust 
water productivity across all phases (Fig. 8a− 8c). On closer examina
tion, the tertiary irrigation system shows moderate performance in the 
off-season 2019 and main season 2020 (both with a magnitude differ
ence ranging between 1− 3 %), and comparatively lower in the 
off-season 2020 (difference of magnitude ranging between 2− 4 %). A 
higher percentage difference in magnitude between irrigation systems 
indicates a significant discrepancy in the relative variability of water 
productivity. In contrast, smaller magnitudes indicate greater similarity 
in water productivity between the two systems. The variation of water 
productivity in all phases rice-planting schedule across rice-growing 
seasons highlights the need for periodic monitoring and regular 
evaluation.

In summary, the results indicate that the tertiary irrigation system 
largely met its primary objectives in terms of uniform water consump
tion, maintaining adequate water levels in the field, and optimizing 
yields per unit of water consumption, especially in phase 1. In particular, 
the tertiary irrigation system served a higher rice acreage in phase 1 
(37 % of 3547 ha), suggesting higher performance compared to phase 2 
and phase 3.

4. Discussion

4.1. Sustainability of tertiary irrigation system evaluation in large-scale 
irrigation scheme

A solution to provide continuous monitoring data and regular eval
uation for tertiary irrigation system in large-scale irrigation scheme was 
demonstrated in this study. Previous studies evaluating tertiary irriga
tion system in the study area had found a potential water savings of 22 % 
(Fujii et al., 1993) and a 20 % increase in the efficiency of irrigation 
supply to the field for agricultural activities during the off-season 
growing period (Kitamura, 1988). Although our approach did not pro
vide quantitative data on irrigation supply as shown by previous studies, 
our approach was able to capture the functionality of the tertiary irri
gation system from three irrigation performance indicators using 
average gridded water use. In line with Kitamura (1988), who empha
sizes the efficiency of irrigation supply in the off-season of rice-growing 
period, our study showed that this supply leads to uniform water con
sumption within the irrigation block during the same period. Compared 
to the non-tertiary irrigation system, the equity indicator shows that the 
tertiary irrigation system is consistently below the threshold (10 %), 
which in between 2− 8 % during the off-season (Fig. 6). The adequacy 
indicator did not show any significant performance of the tertiary irri
gation system and had relatively moderate performance (Fig. 7). 
Nevertheless, the monthly fluctuations of both equity and adequacy 
indicators highlight the need for regular evaluation of the tertiary Ta
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irrigation system in clarifying the distribution of irrigation and water 
consumption under different weather conditions since rainfall is the 
main source of rice cultivation in this area. Sudden weather changes 
were observed during main seasons, particularly in the year of 2020. The 
sharp drop in rainfall (Table 3) and the measures taken by the author
ities to support the water supply from other sources were observed 
during this particular rice growing season (Malaymail, 2020; Sekaran, 
2020). Although the rice growing season starts with high rainfall in the 
main season and water was efficiently distributed during the irrigation 
period (based on the equity and adequacy indicators), sudden weather 
changes towards the time of rice harvest affected the seasonal evalua
tion. Reduced water supply leads to drier soils. Even though no infor
mation on the amount of additional water to support rice plant growth 
provided in this study, there was evidence that sudden changes in 
weather affected seasonal RS-ET values for rice plants. In particular, 
MODIS-ET showed a sudden decrease, especially after the irrigation 
period in February and March (Table 3 and Table 4). This situation was 
of particular concern if the system did not distribute the additional water 
sources as expected. Therefore, continuous monitoring and regular 
evaluation are one of the solutions to identify parts of the system that are 

not effective and to take further countermeasures. For example, this 
study also evaluated the effectiveness of the tertiary irrigation system 
based on current water management strategy, which divides the culti
vation timing and water distribution into three phases, revealing 
noticeable operational variations between the tertiary irrigation system 
at different phases. In particular, the tertiary irrigation system serving in 
the rice-growing areas of phase 1 showed higher efficiency compared to 
the systems in the other phases (Fig. 6− Fig. 8). Given the observed 
variations in all indicators influenced by weather conditions, the results 
highlight the importance of conducting assessments in each 
rice-growing season to improve the overall efficiency of the tertiary 
irrigation system in large-scale irrigation scheme for the following 
seasons.

This study focused on gathering information and evaluating tertiary 
irrigation system across a wide area that can be used by authority to 
identify areas of good and poor performance of the tertiary irrigation 
system in the study regions. Previous evaluations of the tertiary irriga
tion system in the study region relied on the water balance method, 
which is crucial for monitoring resource sustainability and crop yield 
productivity in individual irrigation blocks (Fujii et al., 1993; Kitamura, 

Table 4 
The range distribution of yield and remote sensing-evapotranspiration (RS-ET) obtained for 60 irrigation blocks.

Main season 2019 (October 
2018 to March 2019)

Off-season 2019 (April 2019 
to September 2019)

Main season 2020 (October 
2019 to March 2020)

Off-season 2020 (April 2020 
to September 2020)

Yield per locality (t ha− 1) 5.3 ± 0.5 5.9 ± 0.3 6.1 ± 0.5 6.0 ± 0.6
Yield per irrigation block 
(t ha− 1)

5.3 ± 0.6 5.9 ± 0.6 6.1 ± 0.6 6.0 ± 0.8

Range RS-ET per irrigation block (mm) *Oct. :62− 83 Apr. :35− 45 *Oct. :52− 68 *Apr. :35− 69
*Nov. :81− 118 *May. :84− 92 *Nov. :75− 98 *May. :53− 65
*Dec. :72− 127 *Jun. :80− 101 *Dec. :64− 143 *Jun. :81− 111
*Jan. :75− 144 *Jul. :77− 133 *Jan. :70− 164 *Jul. :90− 139
Feb. :28− 94 *Aug. :80− 117 Feb. :42− 112 Aug. :83− 135
Mar. :36− 52 Sep. :85− 96 Mar. :30− 50 Sep. :82− 127

* Irrigation duration for rice cultivation based on the authority schedules (Table 1), rounded to the month with the most days

Fig. 6. Equity evaluation based on rice-planting schedule (a) Phase 1 (b) Phase 2 (c) Phase 3. The threshold of good irrigation system performance is indicated by the 
red dotted lines (Coefficient of variation of RS-ET less than 10 %).
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1988). However, assessment of the entire irrigation scheme is equally 
important for the improvement of water management strategy. With our 
method, recent rice cultivation areas were generated to provide seam
less data collection, and a prompt assessment can be conducted, 
enabling a quick understanding of the current situation. Over the past 30 
years, tertiary irrigation system evaluation of the Muda Irrigation 
Scheme has not been available because of the resource-intensive nature 
of direct measurements and water balance calculations at multiple 
levels. The GEE not only facilitates geospatial analysis for extracting rice 
fields in large-scale irrigation schemes (Fig. 5) but also enables access 
and spatiotemporal management geospatial data at the irrigation block 

scale (refer to Table 4). This capability allows for a rapid and 
cost-effective analysis. Users can conveniently download the final 
output of the processed data in a comma-separated value (CSV) file that 
is compatible with various software applications. Utilizing open-source 
remote sensing datasets for monitoring and evaluating irrigation system 
performance is essential, as it proves to be a cost-effective and efficient 
analysis method, especially when in-situ data are challenging to obtain 
(Zwart and Leclert, 2010). The applicability of our method to other re
gions worldwide depends on prerequisites such as availability on sta
tistical information of rice yield and rice area, rice-planting schedules, 
and tertiary irrigation system locations. These factors are crucial for 
verification and validation.

4.2. Uncertainty of the study

The use of machine learning may introduce biases and uncertainties 
in the evaluation results. Furthermore, in maximizing the potential of 
the GEE for parallel processing and analysis of geospatial data, the issue 
of data quality is a critical factor for robust monitoring and evaluation 
procedures. Common factors that affect data quality include irregular 
instrument visits, spatial scaling issues and cloud contamination (Weiss 
et al., 2020). Therefore, verification and validation of machine learning 
output with ground data are up most important. Besides, due to the 
limitation of global RS-ET datasets availability, this study only utilized 
three datasets. A reliance of RS-ET in this preliminary study is on 
MODIS-ET, which is known to provide global cumulative 8-day ET data 
at 0.5 km resolution. According to Sriwongsitanon et al. (2020), 
MODIS-ET would offer a promising application in the fields of hydrol
ogy, agronomy, and irrigation, especially in humid tropical climates. 
The selection of this dataset in this study, compared to TerraClimate-ET 
and FLDAS-ET, is assured that RS-ET can be collected at finer scale 
which is presented by the irrigation block level. The obtained values are 
also consistent with the existing literature, considering how difficult to 
measure actual ET in the field, especially to cover large-scale area. In 
addition, this dataset (MOD16A2GF) is not available in near real-time as 

Fig. 7. Adequacy evaluation based on rice-planting schedule (a) Phase 1 (b) Phase 2 (c) Phase 3. The threshold of good irrigation system performance is indicated by 
the red dotted lines (Ratio of RS-ET to the RS-PET more than 0.75).

Fig. 8. Water productivity evaluation based on rice-planting schedule (a) Phase 
1 (b) Phase 2 (c) Phase 3. A low percentage indicates good water productivity, 
while a high percentage suggests the need for improved water management for 
the irrigation system.
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the gap-filling process is required (Running et al., 2021). Properly pro
cessed cloud-free satellite imagery must be considered and a thorough 
investigation of the adequacy of the data is warranted. To generate the 
higher quality MOD16 ET, each contaminated pixel must be processed 
using the logic embedded in the MOD16 algorithm, and the final data
sets are not available until the end of the year, with detailed explana
tions available in their latest user guide.

4.3. Future works

The outcomes of this study will guide future assessments of tertiary 
irrigation systems using processed remote sensing data. As higher res
olution RS-ET datasets become available in GEE, the JavaScript code 
developed in this study will serve as a reference, simplifying the eval
uation of tertiary irrigation system, thus, promoting sustainable 
monitoring.

Combining satellite sources with different revisit times and inte
grating data from various sensors ensures more frequent and reliable 
monitoring. Water withdrawal by farmers significantly impacts water 
allocation, affecting rice crop growth and providing valuable insights 
into water resource management (Baharudin and Arshad, 2015; Zhang 
et al., 2022). More frequent evaluations than monthly are recommended 
to effectively capture local management practices utilizing tertiary 
irrigation system for water withdrawal. While water withdrawal can be 
measured quantitively at intake level, the effectiveness of remote 
sensing data from Synthetic Aperture Radar (SAR) in monitoring water 
management practices has been demonstrated in several studies when 
in-situ data unavailable (El Hajj et al., 2022; Shorachi et al., 2022; 
Veloso et al., 2017). Spatial-temporal information from SAR data pro
vides a valuable perspective in evaluating tertiary irrigation systems, 
such as assessing field plots’ adherence to rice-planting schedules (Zahir 
et al., 2024). However, the use of SAR for tertiary irrigation system 
evaluation at regional scales remained underexplored. The freely 
available, high resolution (10 m for spatial, 12 days for temporal) 
Sentinel-1 SAR data in the GEE, offers a comprehensive understanding of 
the performance and water productivity of the irrigation system.

5. Conclusions

The results of our approach provided sufficient information on 
effectiveness of tertiary irrigation system from a regional perspective. 
Considering the difficulties of regular evaluation through a resource- 
intensive water balance approach in large scale area, the tertiary irri
gation system blocks were evaluated using spatially collected RS-ET and 
downscaled yields from higher level statistics through NDVI. Based on 
the current water management strategies for the entire target period, the 
tertiary irrigation system in phase 1 shows remarkable performance in 
water distribution during the irrigation period. According to the equity 

indicator (threshold <10 %), the tertiary irrigation system has an 
excellent performance (2–8 %) in the off-season. However, throughout 
the target period, the equity phase 1 is between 3–10 %, followed by 
phase 2 (2–11 %) and phase 3 (2–13 %). For the adequacy indicator, the 
performance of tertiary irrigation system was relatively moderate 
throughout target period (threshold is > 0.75), with phase 1 performing 
better (median: 0.67, maximum: 0.82), followed by phase 2 (median: 
0.64, maximum: 0.80) and phase 3 (median: 0.60, maximum: 0.64). The 
water productivity indicator shows consistently good performance for 
the tertiary irrigation system in phase 1 and phase 3, while phase 2 
fluctuates each season. Regular evaluations are recommended to 
monitor the performance of the tertiary irrigation system. The approach 
ensured that the process of regular monitoring and evaluation of the 
tertiary irrigation system was streamlined within a large-scale irrigation 
scheme and served as a key informant for authorities and farmers to 
efficiently plan corrective actions such as improving agricultural prac
tices and water management strategies.
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Table 5 
The statistical distribution of crop water productivity (CWP) according to irrigation systems and scheduling phases.

CWP of main season 2019 (kg m− 3) CWP of main season 2020 (kg m− 3)

Phase 1 Phase 2 Phase 3 Phase 1 Phase 2 Phase 3

NTIS TIS NTIS TIS NTIS TIS NTIS TIS NTIS TIS NTIS TIS

Maximum 1.38 1.22 1.28 1.24 1.37 1.22 1.41 1.28 1.45 1.33 1.39 1.38
Minimum 1.03 1.07 1.02 1.04 0.97 1.02 1.11 1.12 1.21 1.17 1.15 1.25
Median 1.13 1.11 1.20 1.07 1.18 1.15 1.24 1.26 1.26 1.24 1.24 1.32

CWP of off-season 2019 (kg m− 3) CWP of off-season 2020 (kg m− 3)

Phase 1 Phase 2 Phase 3 Phase 1 Phase 2 Phase 3

NTIS TIS NTIS TIS NTIS TIS NTIS TIS NTIS TIS NTIS TIS

Maximum 1.25 1.17 1.25 1.22 1.44 1.21 1.13 1.11 1.35 1.23 1.31 1.21
Minimum 1.02 1.08 1.08 1.06 1.07 1.10 0.94 0.90 1.12 0.98 1.00 1.11
Median 1.13 1.15 1.13 1.12 1.21 1.15 1.07 0.99 1.18 1.15 1.15 1.21

Abbreviations: NTIS: non-tertiary irrigation system; TIS: tertiary irrigation system
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Spatiotemporal assessment of irrigation performance of the Kou Valley Irrigation 
Scheme in Burkina Faso using satellite remote sensing-derived indicators. ISPRS Int. 
J. Geoinf. 9, 484. https://doi.org/10.3390/ijgi9080484.

Seiro, I., Satoshi, O., Kazunari, T., 2016. Impacts of tertiary canal irrigation: impact 
evaluation of an infrastructure project. Institute of Developing Economies. Jpn. 
Extern. Trade Organ. (JETRO). https://doi.org/10.20561/00037585.

Sekaran, R., 2020. Kedah starts cloud seeding operations. 〈https://www.thestar.com. 
my/news/nation/2020/01/20/kedah-starts-cloud-seeding-operations〉 (accessed 25 
October.2022).

Shaharum, N.S.N., Shafri, H.Z.M., Ghani, W.A.W.A.K., Samsatli, S., Al-Habshi, M.M.A., 
Yusuf, B., 2020. Oil palm mapping over Peninsular Malaysia using Google Earth 
Engine and machine learning algorithms. Remote Sens. Appl. 17, 100287. https:// 
doi.org/10.1016/j.rsase.2020.100287.

Shetty, S., Gupta, P.K., Belgiu, M., Srivastav, S.K., 2021. Assessing the effect of training 
sampling design on the performance of machine learning classifiers for land cover 
mapping using multi-temporal remote sensing data and Google Earth Engine. 
Remote Sens 13, 1433. https://doi.org/10.3390/rs13081433.

Shirsath, P.B., Sehgal, V.K., Aggarwal, P.K., 2020. Downscaling regional crop yields to 
local scale using remote sensing. Agriculture 10, 58. https://doi.org/10.3390/ 
agriculture10030058.

Shorachi, M., Kumar, V., Steele-Dunne, S.C., 2022. Sentinel-1 SAR Backscatter Response 
to Agricultural Drought in The Netherlands. Remote Sens 14. https://doi.org/ 
10.3390/rs14102435.

Sriwongsitanon, N., Suwawong, T., Thianpopirug, S., Williams, J., Jia, L., 
Bastiaanssen, W., 2020. Validation of seven global remotely sensed ET products 
across Thailand using water balance measurements and land use classifications. 
J. Hydrol. Reg. Stud. 30, 100709. https://doi.org/10.1016/j.ejrh.2020.100709.

Syed, N.S.B., Shuqi, Z., Babar, M.M., Soothar, R.K., 2021. Analysis of Conveyance Losses 
from Tertiary Irrigation Network. Civ. Eng. J. 7, 1731–1740. https://doi.org/ 
10.28991/cej-2021-03091756.

Thakur, A.K., Mandal, K.G., Mohanty, R.K., Ambast, S.K., 2018. Rice root growth, 
photosynthesis, yield and water productivity improvements through modifying 
cultivation practices and water management. Agric. Water Manag. 206, 67–77. 
https://doi.org/10.1016/j.agwat.2018.04.027.

Tukimat, N.N.A., Harun, S., Shahid, S., 2012. Comparison of different methods in 
estimating potential evapotranspiration at Muda Irrigation Scheme of Malaysia. 
J. Agr. Rural Dev. Trop. Subtrop 113, 77–85.

Tukimat, N.N.A., Harun, S., Shahid, S., 2017. Modeling Irrigation Water Demand in a 
Tropical Paddy Cultivated Area in the Context of Climate Change. J Water Resour. 
Plan. Manag. 143, 05017003. https://doi.org/10.1061/(ASCE)WR.1943- 
5452.0000753.

Usman, M., Liedl, R., Shahid, M.A., 2014. Managing irrigation water by yield and water 
productivity assessment of a rice-wheat system using remote sensing. J. Irrig. Drain. 
Eng. 140, 04014022. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000732.

Vandersypen, K., Bengaly, K., Keita, A.C.T., Sidibe, S., Raes, D., Jamin, J.Y., 2006. 
Irrigation performance at tertiary level in the rice schemes of the Office du Niger 
(Mali): adequate water delivery through over-supply. Agric. Water Manag. 83, 
144–152. https://doi.org/10.1016/j.agwat.2005.11.003.

Veloso, A., Mermoz, S., Bouvet, A., Le Toan, T., Planells, M., Dejoux, J.F., Ceschia, E., 
2017. Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2- 
like data for agricultural applications. Remote Sens. Environ. 199, 415–426. https:// 
doi.org/10.1016/j.rse.2017.07.015.

Weiss, M., Jacob, F., Duveiller, G., 2020. Remote sensing for agricultural applications: a 
meta-review. Remote Sens. Environ. 236, 111402. https://doi.org/10.1016/j. 
rse.2019.111402.

Xie, Y., Lark, T.J., Brown, J.F., Gibbs, H.K., 2019. Mapping irrigated cropland extent 
across the conterminous United States at 30m resolution using a semi-automatic 
training approach on Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 155, 
136–149. https://doi.org/10.1016/j.isprsjprs.2019.07.005.

Xu, H., 2006. Modification of normalised difference water index (NDWI) to enhance open 
water features in remotely sensed imagery. Int. J. Remote Sens. 27, 3025–3033. 
https://doi.org/10.1080/01431160600589179.

Yashima, S., 1982. Water balance in low and flat paddy land: A case study in the Muda 
Irrigation Project area, Malaysia. JARQ (Japan).

Yashima, S., 1987. Water balance for rice double cropping in the Muda area, Malaysia. 
Tropical agriculture research series 20, 130–138.

Zahir, A.M., Somura, H., Moroizumi, T., 2024. Efficient agricultural monitoring: a 
methodology for assessing individual farmer adherence to rice-planting schedule for 
tertiary irrigation system under the Muda Irrigation Scheme using Earth observation 
datasets. Hydrol. Res. Lett. 18, 14–21. https://doi.org/10.3178/hrl.18.14.

Zha, Y., Gao, J., Ni, S., 2003. Use of normalized difference built-up index in 
automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 24, 
583–594. https://doi.org/10.1080/01431160304987.

Zhang, L., Zheng, D., Zhang, K., Chen, H., Ge, Y., Li, X., 2022. Divergent trends in 
irrigation-water withdrawal and consumption over mainland China. Environ. Res. 
Lett. 17, 094001. https://doi.org/10.1088/1748-9326/ac8606.

Zhang, Y., Kong, D., Gan, R., Chiew, F.H.S., McVicar, T.R., Zhang, Q., Yang, Y., 2019. 
Coupled estimation of 500m and 8-day resolution global evapotranspiration and 
gross primary production in 2002–2017. Remote Sens. Environ. 222, 165–182. 
https://doi.org/10.1016/j.rse.2018.12.031.

Zhao, H., Yang, C., Guo, W., Zhang, L., Zhang, D., 2020. Automatic estimation of crop 
disease severity levels based on vegetation index normalization. Remote Sens 12, 
1930. https://doi.org/10.3390/rs12121930.

Zheng, H., Cheng, T., Yao, X., Deng, X., Tian, Y., Cao, W., Zhu, Y., 2016. Detection of rice 
phenology through time series analysis of ground-based spectral index data. Field 
Crops Res 198, 131–139. https://doi.org/10.1016/j.fcr.2016.08.027.

Zurqani, H.A., Allen, J.S., Post, C.J., Pellett, C.A., Walker, T.C., 2021. Mapping and 
quantifying agricultural irrigation in heterogeneous landscapes using Google Earth 
Engine. Remote Sens. Appl. 23, 100590. https://doi.org/10.1016/j. 
rsase.2021.100590.

Zwart, S.J., Bastiaanssen, W.G.M., 2004. Review of measured crop water productivity 
values for irrigated wheat, rice, cotton and maize. Agric. Water Manag. 69, 115–133. 
https://doi.org/10.1016/j.agwat.2004.04.007.

Zwart, S.J., Bastiaanssen, W.G.M., 2007. SEBAL for detecting spatial variation of water 
productivity and scope for improvement in eight irrigated wheat systems. Agric. 
Water Manag. 89, 287–296. https://doi.org/10.1016/j.agwat.2007.02.002.

Zwart, S.J., Leclert, L.M.C., 2010. A remote sensing-based irrigation performance 
assessment: a case study of the Office du Niger in Mali. Irrig. Sci. 28, 371–385. 
https://doi.org/10.1007/s00271-009-0199-3.

A.M. Zahir et al.                                                                                                                                                                                                                                Agricultural Water Management 306 (2024) 109175 

14 

https://doi.org/10.1061/(ASCE)IR.1943-4774.0000747
https://doi.org/10.1061/(ASCE)IR.1943-4774.0000747
https://doi.org/10.3390/rs11141666
https://doi.org/10.11113/mjfas.v18n4.2601
https://doi.org/10.3390/ijgi9080484
https://doi.org/10.20561/00037585
https://www.thestar.com.my/news/nation/2020/01/20/kedah-starts-cloud-seeding-operations
https://www.thestar.com.my/news/nation/2020/01/20/kedah-starts-cloud-seeding-operations
https://doi.org/10.1016/j.rsase.2020.100287
https://doi.org/10.1016/j.rsase.2020.100287
https://doi.org/10.3390/rs13081433
https://doi.org/10.3390/agriculture10030058
https://doi.org/10.3390/agriculture10030058
https://doi.org/10.3390/rs14102435
https://doi.org/10.3390/rs14102435
https://doi.org/10.1016/j.ejrh.2020.100709
https://doi.org/10.28991/cej-2021-03091756
https://doi.org/10.28991/cej-2021-03091756
https://doi.org/10.1016/j.agwat.2018.04.027
http://refhub.elsevier.com/S0378-3774(24)00511-0/sbref58
http://refhub.elsevier.com/S0378-3774(24)00511-0/sbref58
http://refhub.elsevier.com/S0378-3774(24)00511-0/sbref58
https://doi.org/10.1061/(ASCE)IR.1943-4774.0000732
https://doi.org/10.1016/j.agwat.2005.11.003
https://doi.org/10.1016/j.rse.2017.07.015
https://doi.org/10.1016/j.rse.2017.07.015
https://doi.org/10.1016/j.rse.2019.111402
https://doi.org/10.1016/j.rse.2019.111402
https://doi.org/10.1016/j.isprsjprs.2019.07.005
https://doi.org/10.1080/01431160600589179
https://doi.org/10.3178/hrl.18.14
https://doi.org/10.1080/01431160304987
https://doi.org/10.1088/1748-9326/ac8606
https://doi.org/10.1016/j.rse.2018.12.031
https://doi.org/10.3390/rs12121930
https://doi.org/10.1016/j.fcr.2016.08.027
https://doi.org/10.1016/j.rsase.2021.100590
https://doi.org/10.1016/j.rsase.2021.100590
https://doi.org/10.1016/j.agwat.2004.04.007
https://doi.org/10.1016/j.agwat.2007.02.002
https://doi.org/10.1007/s00271-009-0199-3

	Regional-scale evaluation of tertiary irrigation system in Muda Irrigation Scheme from space
	1 Introduction
	2 Material and methods
	2.1 Description of study area and water management for rice cultivation practices
	2.2 Methodology
	2.2.1 Data collection and pre-processing of geospatial imagery at irrigation block level
	2.2.2 Performance indicators


	3 Results
	3.1 Applicability of GEE to obtain geospatial data
	3.1.1 Rice cultivation areas generated from machine learning
	3.1.2 Data acquisitions over target periods

	3.2 Performance evaluation of tertiary irrigation system

	4 Discussion
	4.1 Sustainability of tertiary irrigation system evaluation in large-scale irrigation scheme
	4.2 Uncertainty of the study
	4.3 Future works

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	datalink7
	References


