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Abstract: In the detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
several methods have been employed, including the detection of viral ribonucleic acid (RNA), nucle-
ocapsid (N) proteins, spike proteins, and antibodies. RNA detection, primarily through polymerase
chain reaction tests, targets the viral genetic material, whereas antigen tests detect N and spike
proteins to identify active infections. In addition, antibody tests are performed to measure the im-
mune response, indicating previous exposure or vaccination. Here, we used the developed terahertz
chemical microscope (TCM) to detect different concentrations of N protein in solution by immobi-
lizing aptamers on a semiconductor substrate (sensing plate) and demonstrated that the terahertz
amplitude varies as the concentration of N proteins increases, exhibiting a highly linear relationship
with a coefficient of determination (R2 = 0.9881), indicating that a quantitative measurement of N
proteins is achieved. By optimizing the reaction conditions, we confirmed that the amplitude of the
terahertz wave was independent of the solution volume. Consequently, trace amounts (0.5 µL) of
the N protein were successfully detected, and the detection process only took 10 min. Therefore,
this study is expected to develop a rapid and sensitive method for the detection and observation of
the SARS-CoV-2 virus at a microdetection level. It is anticipated that this research will significantly
contribute to reducing the spread of novel infectious diseases in the future.

Keywords: terahertz chemical microscope; aptamers; N protein; microdetection

1. Introduction

The existing coronaviruses include human coronaviruses (HCoVs), namely HCoV-
229E, HCoV-OC43, HCoV-NL63, and HCoV-HKU1. They are widely prevalent in humans
as common cold pathogens. The three main coronaviruses identified since 2002 to date,
severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syn-
drome coronavirus (MERS-CoV), and SARS-CoV-2, have caused millions of deaths [1–8].
The most widely employed methods for confirming the diagnoses are polymerase chain
reaction (PCR) and antigen testing [9,10]. PCR testing involves collecting a saliva sample
or bipharyngeal swab of the patient, reverse transcribing the viral genomic ribonucleic
acid (RNA) to deoxyribonucleic acid (DNA), and amplifying it [11]. This test is highly
accurate; however, amplification is time-consuming and requires sample transfer. Thus, it
is unsuitable for rapid testing. Contrarily, antigen detection can be completed in 15–30 min;
however, it is not as accurate as PCR [12,13]. Therefore, both methods present limitations
in terms of practical applications. Recently, biosensors, such as colorimetric biosensors,
localized surface plasmon resonance, field-effect transistor-based biosensors, and surface-
enhanced Raman scattering, have been applied with biomarker detection [14–17]. And
terahertz metamaterials are also utilized for virus detection [18–21]. However, it generally
lost its sensitivity for aqueous samples. Thus, we propose the application of a developed
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biosensor to detect proteins contained in the SARS-CoV-2, enabling the early, rapid, and
highly sensitive detection of the virus. And since the sample does not directly interact with
terahertz waves, the influence of aqueous solvents can be minimized.

The SARS-CoV-2 virus particle comprises four structural proteins: spike (S), nucleo-
capsid (N), membrane (M), and envelope (E) proteins [22]. Among them, the N protein is
one of the most abundant structural proteins in virus-infected cells. Its molecular weight
is 50 kDa, and the diameter and length of its filamentous nucleus are in the range of
10–15 nm and approximately 100 nm, respectively [23,24]. Importantly, it participates in
RNA packaging and viral particle release. Compared with other structural proteins, N
proteins are evolutionarily conserved and can be used as diagnostic markers and drug
targets. Serodiagnostics shows that serum-specific antibodies against N proteins in SARS
patients exhibit higher sensitivity and longer duration than other structural proteins of
SARS-CoV [24–27]. Highly specific anti-N antibodies can be detected in the early stage of
infection. Thus, we selected the N protein as an antigen for detection in this study.

Aptamers are DNA or RNA molecules selected in vitro by the Systematic Evolution
of Ligands by Exponential Enrichment (SELEX) technology. They are functionally sim-
ilar to antibodies and can bind with a wide range of molecules with high affinity and
specificity [28,29]. Compared with antibodies, aptamers are widely used in basic research,
drug discovery, diagnostics, and therapeutics in medicine and pharmacy because of their
targeted binding ability, versatility, chemical stability, non-immunogenicity, ease of chemi-
cal synthesis, relatively small size, and low cost [30]. Thus, biotin-labeled aptamers that
specifically bind to the N protein of SARS-CoV-2 were used here.

With the development of semiconductor and laser technologies, terahertz waves
have recently attracted considerable attention in the biomedical field. It is challenging
to apply terahertz wave technology to liquid detection because of the strong absorption
property of terahertz waves in water [31–34]. Therefore, to overcome the difficulty of
detection in solution, we have developed a terahertz chemical microscope (TCM) using
an inductive plate as the detection element to detect biomolecules in solution [35–37].
Compared with PCR assays, TCM does not require pre-positioning due to amplification
and sample transportation, enables the measurement of small samples in a short time, and
prevents infection during transportation. Furthermore, since the assessment is performed
using the numerical value of the terahertz wave amplitude, quantitative assessments can be
performed without relying on the proficiency of the operator. The TCM is anticipated as a
new virus detection method that is simpler in terms of preprocessing than PCR testing and
more accurate than antigen detection. In addition, it is expected to significantly contribute
to reducing the spread of infectious diseases.

2. Experimental Setup of the Terahertz Chemical Microscope

The TCM uses terahertz waves to obtain information on a sample on a semiconductor
substrate called a sensing plate, which is a potential sensor [38,39]. Figure 1a shows the
device structure of the TCM, and Figure 1b shows the sensing plate (10 mm2), comprising
layers of silicon oxide (SiO2) films on a sapphire (Al2O3) substrate. The thickness of each
layer was a few nanometers of SiO2, 500 nm of Si, and 500 µm of Al2O3. A sensing plate is
a device that generates terahertz waves by irradiating a femtosecond laser. The generated
terahertz wave amplitude is dependent on the surface potential of the sensing plate. Thus,
chemical reactions, such as bonding and dissociation of samples, can be measured label-free
and at high resolution by measuring changes in the terahertz wave amplitude [40–42]. The
TCM uses a femtosecond laser (FemtoFiber ultra780, TOTOPICA Photonics AG, Munich,
Germany) as the laser light source. The average output power, repetition frequency of the
laser pulse, pulse width, and center wavelength were 500 mW, 80 MHz, 130 fs, and 780 nm,
respectively. Using a beam splitter (SCD-500, Spectrum Detector Inc., Lake Oswego, OR,
USA), the femtosecond laser was split into a pump beam for generating terahertz waves and
a detection beam for detecting terahertz waves. The pump light passes through a focusing
lens, irradiates the sapphire surface of the sensing plate, and generates terahertz waves
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proportional to the square root of the electricity on the surface of the plate. As shown in
Figure 1c, the probe light is focused by the focusing lens and irradiated to excite the carriers
on the detector. At this time, when the generated terahertz wave irradiates the detector,
the carriers excited by the probe light beam are accelerated to generate a transient current
proportional to the oscillating electric field of the terahertz wave. Considering that the
instantaneous current is extremely small, it is amplified by a current amplifier (DLPCA-200,
FEMTO® Messtechnik GmbH, Berlin, Germany) and fed into a lock-in amplifier (LI5640, NF
Circuit Design Block Co., NF Corporation, Yokohama, Japan). The lock-in amplifier obtains
the terahertz waveforms by feeding the reference signals from the chopper. Synchronized
detection was performed to obtain the terahertz wave field strength, which was analyzed
using a personal computer. In this experiment, the sensing plate was securely attached
to the measurement substrate, as illustrated in Figure 1d. The sensing plate could be
uniformly divided into 4 and 9 wells. Figure 1e presents a cross-section of the measurement
substrate. By changing the position of the laser irradiation on the sensing plate, the terahertz
wave amplitude at different positions on the sensing plate can be measured. This enables
the measurement of the response condition at any position on the sensing plate. The
measurement time to obtain the amplitude at one position is approximately 300 ms, which
is limited by the measurement bandwidth. However, due to the limitation of the mechanical
scanning of the laser, it generally takes 10 min for 10 mm2 mapping of the amplitude.
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Figure 1. (a) Optical system diagram of the TCM, where the femtosecond laser is divided by a beam
splitter into a pump wave that irradiates the sensing plate to generate terahertz waves and a probe
beam that penetrates the photoconductor antenna for detecting the generated waves. (b) Schematic
diagram of the sensing plate and terahertz waves radiated by the sensing plate. (c) Cross-section of
the sensing plate used as the terahertz wave generator. When a femtosecond laser is irradiated onto
the sensing plate from the sapphire film, the carriers in the silicon layer are excited and accelerated
by the electric field of the depletion layer at the interface between the silicon and silicon oxide,
generating an instantaneous current and a terahertz wave proportional to the time derivative of
the instantaneous current. (d) Photograph of the sensing plate fixed to the measurement substrate.
(e) Cross-section of the measurement substrate.
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3. Materials and Methods

Figure 2 shows the process of measuring the N protein. First, the sensing plates were
ultrasonically cleaned using acetone (99.5%, Sigma-Aldrich Japan G.K., Meguro-ku, Tokyo,
Japan) and ethanol (99.5%, Hayashi Pure Chemical Industries, Osaka, Japan) sequentially
for 2 min to remove surface oil. After the surface oil was removed and the plates were
sterilized, NaOH solution (1.0 mol/L, FUJIFILM Wako Pure Chemicals Corporation, Osaka-
shi, Osaka, Japan) diluted to 200 mM with Milli-Q water was added. The plates were
shaken on a Corning LSE orbital shaker (Cambridge Scientific Corp., Watertown, MA, USA)
at 45 rpm for 5 min to produce hydroxyl groups on the SiO2 surface. After removing the
NaOH solution from the wells, (3-aminopropyl) triethoxysilane (99%, Sigma-Aldrich, Saint
Louis, MI, USA) diluted to 2% with Milli-Q water was added to the well. The reaction was
shaken at 45 rpm for 30 min to facilitate the formation of amino groups on the SiO2 surface.
Next, 10 mM bis(sulfosuccinimidyl)suberate (BS3) prepared in phosphate-buffered saline
(PBS) (1X, Thermo Fisher Scientific, Waltham, MA, USA; pH = 7.4) was added for 1 h at
22 ◦C. It was left for 1 h to activate the amino groups on the SiO2 surface. After removing
the BS3 solution and washing the surface, avidin (affinity purified, Vector Laboratories,
Inc., Burlingame, CA, USA) diluted to 1 mg/mL in PBS was injected and left in a wet
box at 4 ◦C for 24 h to crosslink the amino groups. Afterward, the avidin solution was
removed and rinsed once with PBS, followed by the addition of ethanolamine-HCl (1.0 M,
G from E Healthcare, Chalfont St. Giles, UK). The mixture was left at room temperature for
15 min to prevent a nonspecific reaction of the excess amino groups on the silica surface.
After removing the ethanolamine-HCl from the wells and rinsing with PBS, biotin-labeled
aptamers (anti-SARS-CoV-2 N-protein aptamers, purity ≥ 95%, RayBiotech., Norcross, GA,
USA) diluted in PBS (100 µM, RayBiotech, Inc.) were added, and the wells were shaken
for 150 min at 45 rpm on the shaker. At this point, the aptamers were immobilized on the
sensing plate by the avidin–biotin binding reactions. After the reaction with the aptamers,
the solution was removed and rinsed once with PBS. Finally, N protein (1.58 mg/mL,
recombinant SARS-CoV-2 N protein, purity > 90%, RayBiotech) diluted with PBS was
added. The aptamers reacted with the N protein by shaking at 45 rpm for 40 min on
the shaker.
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Figure 2. Schematic of the experimental design on the sensing plate. (a–d) Modification of SiO2 film.
(e) Immobilization of aptamers by the avidin–biotin reaction; the reaction was measured using the
TCM on the sensing plate to obtain the terahertz amplitude before the N protein reaction. (f) Addition
of N protein for specific reactions with aptamers. (g) After removing the unreacted N protein, the
reaction was measured using the TCM to obtain the terahertz amplitude after the N protein reaction.
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4. Results
4.1. Optimization of Aptamer Concentration
4.1.1. Confirmation of Optimal Concentration Using the TCM

To obtain the optimal aptamer concentration for the reaction with the N protein, the
sensing plate was immobilized on a four-well reaction plate. After pretreating the sensing
plate, the avidin–biotin reaction was applied to immobilize the aptamers at concentrations
of 5, 50, and 500 µg/mL on the sensing plate. Afterward, the measurements were performed
using the TCM to obtain the terahertz wave amplitude distributions as pre-reaction data for
the N proteins. After the measurement, the N protein at a concentration of 100 ng/mL was
injected into each well to react with the aptamers. After the reaction, the TCM was used
to obtain terahertz wave amplitude distributions as post-reaction data for the N protein.
Thereafter, the amount of N protein that reacted with each concentration of aptamers was
detected by comparing the terahertz wave amplitude distributions of the N protein prior to
and after the reaction. Three different sensing plates were used in this experiment. Figure 3
shows an example of the obtained terahertz wave amplitude distribution. The horizontal
and vertical axes represent the measurement ranges, and the different colors indicate the
differences in the terahertz wave amplitude. The comparison showed that the terahertz
wave amplitude changed prior to and after the N protein reaction.
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Figure 3. (a) Distribution of terahertz amplitudes on the sensing plate after the immobilization of the
aptamers. (b) Distribution of terahertz amplitudes on the sensing plate after the N protein reaction.
(c) Terahertz wave amplitude changes on the sensing plate prior to and after the N protein reaction.
(d) The change in terahertz wave amplitude following the reaction of N protein at a concentration of
100 ng/mL with aptamers at concentrations of 5, 50, and 500 µg/mL, respectively.

Figure 3d shows the relationship between the concentration of N protein aptamers
and the terahertz wave amplitude of the three sensing plates. These data were obtained by
calculating the average terahertz wave amplitude for each well based on the distribution of
terahertz wave amplitude prior to and after the N protein reaction and then differencing the
average values. The averages were calculated from the 2 mm2 black box area for each well.
The horizontal axis represents the aptamer concentration, and the vertical axis represents
the change in terahertz wave amplitude after the N protein reaction. Even at the same
aptamer concentration, the terahertz wave amplitude varied among the sensing plates
because of the different nature and sensitivity of each plate. Figure 3d shows a difference
in the change in terahertz wave amplitude between the aptamers at 5 µg/mL and those
at 50 and 500 µg/mL, suggesting that not all the 100 ng/mL N proteins reacted with the
5 µg/mL aptamers. No difference was observed in the terahertz wave amplitude changes
between the 50 and 500 µg/mL aptamers, suggesting that almost the same amount of N
proteins reacted with both aptamer concentrations. These results indicate that the aptamer
concentration of 50 µg/mL can detect 100 ng/mL N protein with the highest sensitivity.



Sensors 2024, 24, 7382 6 of 10

4.1.2. Aptamers Immobilization Confirmation via Atomic Force Microscopy

Atomic force microscopy (AFM) employs a minuscule probe to gather information
about the surface topography of a sample by detecting the interactions between the probe
and the atoms on the sample surface as the probe approaches. The interaction forces
include Van der Waals forces and repulsive forces, which vary as the probe interacts with
the sample surface. By accurately measuring these interaction forces, AFM can determine
the arithmetic mean roughness (Sa) of the sample surface. In this study, we examined
the surface of the sensing plate using AFM before and after the transfer of the aptamers.
The observation area of the AFM was set to 10 × 10 µm. Figure 4 illustrates the changes
in the surface of the sensing plate before and after aptamer immobilization. Figure 4,
the arithmetic roughness increased by 1.07 nm following aptamer immobilization. This
increment of roughness may be caused by the binding of small particles of aptamers on
the surface.
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4.2. N Protein Detection
4.2.1. Terahertz Amplitude Variation with Solution Concentration

Based on the aforementioned experiments, we concluded that the optimal aptamer
concentration was 50 µg/mL in the reaction with 100 ng/mL N protein. Under the same
reaction conditions, the different detection sensitivities of the three sensing plates led to
different amplitude changes in the terahertz wave. To solve this problem, we attempted
to apply a sensing plate divided into four regions and conducted four sets of experiments
under the same reaction conditions to verify the relationship between the change in the
terahertz wave amplitude and the N protein concentration. Figure 5a shows the obtained
terahertz wave amplitude distributions. The terahertz wave amplitude varied with the
N protein concentration. The N protein concentrations used in the experiments were 0
(reference value), 10, 20, and 50 ng/mL. The measurement range was 8.0 × 8.0 mm. The
terahertz wave amplitude varied with the N protein concentration (Figure 5a). The range
of the 2.0 × 2.0 mm black box (Figure 5) was used to calculate the average terahertz wave
amplitude at different concentrations for each well after the reaction. The terahertz wave
amplitude at each concentration differed from the reference to afford the actual value of the
terahertz wave amplitude change. Figure 5b shows the relationship between the N protein
concentration and the change in terahertz wave amplitude. The horizontal and vertical
axes represent the N protein concentration and terahertz wave amplitude, respectively.
The error bars represent the standard deviation of the terahertz wave amplitude after four
sets of measurements. Figure 5b shows the relationship between N protein concentration
and the change in terahertz wave amplitude. The horizontal axis represents the N protein
concentration, while the vertical axis indicates the terahertz wave amplitude. The error
bars denote the standard deviation of the terahertz wave amplitude based on four sets
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of measurements. The results demonstrate that the terahertz wave amplitude varies as
the concentration of N protein increases, exhibiting a highly linear relationship with a
coefficient of determination (R2 = 0.9503).
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Figure 5. (a) Imaging after aptamer interaction with N protein at different concentrations
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4.2.2. Terahertz Amplitude Variation with Solution Volume

In the aforementioned experiments, we preliminarily verified the relationship between
the N protein concentration and terahertz wave amplitude. Next, we attempted to detect
trace amounts of N proteins by further reducing the volume of the measurement solution
to improve the usefulness of the TCM for protein detection.

A sensing plate with nine wells was used for the experiment. First, the aptamers with
a concentration of 50 µg/mL were dropped into the nine wells in liquid amounts of 0.5,
1, and 2 µL (Figure 6a) for three samples in each group. The terahertz wave amplitude
distribution was obtained as pre-reaction data using the TCM measurements after the
reaction. After the assay, each well was reacted with the same liquid amount of the N
protein solution at a concentration of 1 ng/mL. After the reaction, the terahertz wave
amplitude distribution was measured using the TCM as the post-reaction data of 1 ng/mL
N protein. Afterward, the aforementioned experiment was repeated to obtain data after the
reaction of the N protein at concentrations of 10 and 100 ng/mL.

In this experiment, a single sensing plate was used. Figure 6a–d show the obtained
terahertz wave amplitude profiles. Figure 6a shows the distribution of terahertz wave
amplitude in the aptamer reaction antibody. Figure 6b–d show plots of the terahertz wave
amplitude distribution after the reactions of 1, 10, and 100 ng/mL N protein, respectively.
Figure 6a–d show that the terahertz wave amplitude changed prior to and after the N
protein reaction. Figure 6e shows the changes in terahertz wave amplitude between
different concentrations of N proteins and varying sample volumes. The results indicate the
sensitivity was independent of the sample volume. The plot was generated by calculating
the difference between the average terahertz wave amplitude in each 1 mm2 region of the
holes depicted in Figure 6b–d and the average terahertz wave amplitude in each 1 mm2

region of the holes shown in Figure 6a. The results show that variations in terahertz wave
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amplitude are independent of sample volume; therefore, the three sets of sample data were
analyzed using linear regression. The findings are shown in Figure 6f, where the terahertz
wave amplitude demonstrates a highly linear relationship with increasing concentrations
of N proteins, as evidenced by a coefficient of determination (R2 = 0.9881). This suggests
that a quantitative measurement of N protein concentration has been successfully achieved.
As shown in Figure 6, 0.5 pg of N protein was successfully detected by calculating the
product of the N protein concentration and the amount reflected.
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Figure 6. (a–d) Imaging after aptamer interaction with N protein at different concentrations
(0–100 ng/mL) via TCM. The area of the black squares (1.0 × 1.0 mm) was used to calculate the
average terahertz amplitude. The amplitude of the terahertz wave (color intensity) changed with a
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(e) The variations in terahertz wave amplitude across different concentrations of the N protein at
varying sample volumes. (f) A quantitative analysis of the interactions between aptamers and the N
protein. Error bars represent the standard deviation (n = 9).

5. Discussion

Here, we proposed and demonstrated the application of the TCM to detect trace
amounts of N protein derived from SARS-CoV-2 using aptamers. We successfully detected
0.5 pg of the N protein. To detect the N protein, we used the TCM to detect the aptamers
and optimize the aptamer concentration. Furthermore, we imaged the immobilization of
avidin and the aptamers by AFM and compared the root mean square values to verify the
immobilization status of the aptamers. Through aptamer detection, we easily discovered
evident differences in detection sensitivity between different sensing plates due to the
limitations of the manufacturing industry. Thus, in the subsequent detection, the differences
between the sensing plates were avoided by adjusting the detection scheme to save time
and cost, and the relationship between the terahertz wave amplitude change and N protein
concentration was confirmed. We confirmed that the amplitude of the terahertz wave was
independent of the liquid volume during the trace detection of the N protein. The results
indicated that the TCM can detect the binding state of proteins by detecting potential
changes on the sensing plates. Compared with conventional detection methods, this
method offers the advantages of low cost, rapid detection, and sensitivity. Therefore, the
proposed method can contribute to rapid detection and virus prevention.
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