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CHAPTER 1 

General Introduction 

 

1.1 Background and Study 

In recent years, large-scale floods have occurred one after another. Looking at the past three 

years, the East Japan Typhoon of 2011, the torrential rains of July 2020, and the heavy rains 

of August 2021 have caused flooding over a wide area, both internally and externally, and all 

of them have caused extensive damage (MLIT, 2020-1). In particular, the East Japan Typhoon 

of 2021 caused record-breaking rainfall over a wide area centering on Shizuoka Prefecture, 

the Kanto Koshin region, and the Tohoku region, due to the influence of well-developed rain 

clouds in the typhoon's main body and moist air around the typhoon. As a result, 14 levee 

breaches occurred on 7 rivers in 6 river systems administered by the national government and 

128 levee breaches occurred on 67 rivers in 20 river systems administered by prefectural 

governments, inundating approximately 35,000 hectares (MLIT, 2019).  

 

Figure 1.1 Damage to the Chikuma River caused by East Japan Typhoon in 2019. (i.e., from Google 

Earth). 

Figure 1.1 shows the damage caused by the Chikuma River. The levee overtopped the river 

and burst for 70 meters, causing inundation damage. Some of the houses were located in the 

Hokuriku Shinkansen rail yard. The amount of assets protected by levees has been increasing 
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with urbanization, and this year saw the highest amount of flood damage in history at 2.15 

trillion yen (e-tat, 2019). 

 

Figure 1.2 Trends in the number of short duration heavy rainfall events exceeding 50 mm in rainfall 

per hour. (i.e., from https://www.data.jma.go.jp/cpdinfo/extreme/extreme_p.html.) 

One of the reasons for the increase in flood damage is that the rainfall pattern in Japan is 

changing. Rainfall in Japan is becoming more localized, concentrated, and intense due to 

climate change, and the number of short duration heavy rainfall events exceeding 50 mm in 

duration and heavy rainfall events exceeding several hundred to one thousand mm in total has 

been increasing. The average number of annual rainfall events of 50 mm or more per hour for 

the 10-year period from 1976 to 1985 was 226, while the average number for the 10-year 

period from 2011 to 2020 was 334, indicating an increase of about 1.4 times (Figure 1.2). 

Under the climate change scenario RCP2.6, which assumes that the future temperature 

increase will be kept below 2°C, it is estimated that rainfall will be 1.1 times higher, river 

discharge will be 1.2 times higher, and flood frequency will be twice as frequent at the end of 

the 21st century compared to the end of the 20th century, and there are concerns that water-

related disasters will become more frequent and severe (MOEJ, 2014). 

Japan has a history of building an agricultural civilization based on rice cultivation around 

large rivers, and by extension, since the Meiji era, urbanization and industrialization have 

progressed and population and assets have been located on flood plains. Currently, about 1/2 
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of the population and 3/4 of the assets are located on flood plains protected by levees. 

Therefore, river levees are important social infrastructure facilities that protect human lives 

and assets in the country. Therefore, it is necessary to maintain and manage rivers (river 

channels and river management facilities) appropriately to ensure that river management 

facilities such as levees and sluice gates perform their required functions and prevent or 

mitigate flood damage caused by levee failures and river overflows. On the other hand, many 

river management facilities were constructed during the period of rapid economic growth, and 

in recent years, these facilities have been aging and will enter a period of renewal (MLIT, 

2012). However, in light of budget cuts due to the future financial situation and the future 

shortage of staff due to the declining birthrate and aging population, more efficient 

maintenance and management of river management facilities are required.  

The PDCA cycle (Figure 1.3) is based on the long-term repeated monitoring of river 

conditions through river inspections and river patrols, and the analysis and evaluation of 

findings from these processes, which are then reflected in the river maintenance management 

plan and its implementation (MLIT, 2011-1). 

River inspection and river patrol are two of the river maintenance and management services 

in Japan. The two are clearly distinguished, and river inspections are carried out twice a year 

for the purpose of understanding the condition of rivers in detail. On the other hand, river 

patrols, according to the example of river patrol regulations (MLIT, 2011-2), "patrol rivers 

regularly and systematically as part of river management under normal conditions, detect 

abnormalities and changes, and generally monitor the river", and play an important role in 

understanding the ever-changing conditions of rivers. It plays an important role in grasping 

the ever-changing state of the river. Currently, river patrols are conducted by human eyes on 

patrol by vehicle, and are basically conducted at least twice a week on large rivers managed 

by the government. The following are some of the issues with the current method.  
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Figure 1.3 Cycle type maintenance management image (i.e., PDCA). 

The method and frequency of patrols require a lot of time and effort to patrol long 

embankments. Lack of consistency in patrols due to qualitative judgments based on the 

experience of engineers. The risk of overlooking something is considered because only the 

visible area from the route that can be passed by vehicles, etc. can be checked. In addition to 

these issues, the recent shortage of engineers and the frequent occurrence of floods make it 

imperative to improve the efficiency and sophistication of riverine patrol operations. 

In the construction industry, the construction DX approach is being used to improve the 

sophistication and efficiency of operations (MLIT, 2020-2). DX (Digital Transformation) is 

a term used to distinguish it from conventional digitalization, and its goal is not simply to 

introduce digital technology, but to establish next-generation systems through the use of 

digital technology. The aim is not merely to introduce digital technology, but to establish a 

next-generation system through the use of digital technology. Efforts include i-construction, 

which introduces digital technology such as BIM/CIM, ICT, and IoT to improve productivity 

at construction sites, and the use of Artificial Intelligence (i.e., AI), big data management for 
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maintenance management, and drones to improve operational efficiency.   

In November 2016, the Ministry of Land, Infrastructure, Transport and Tourism launched the 

"Innovative River Technology Project" to promote technological development by utilizing 

superior cutting-edge technologies owned by companies and other organizations in order to 

solve issues in river administration (MLIT, 2018). So far, the project has developed 

technologies such as an all-weather drone, a low-cost water level gauge specialized for flood 

observation (crisis management type water level gauge), and a simple river monitoring 

camera, which have been implemented at river sites including small and medium-sized rivers. 

In 2019, as the fifth phase of the project, the advancement of river monitoring was raised as 

a proposition, and many efforts were made. This study was conducted as part of the fifth phase 

of the Innovative River Technology Project. 

As one of the cutting-edge technologies in the world wide, AI have been practical in the 

engineering-related research areas that can “pick up” (i.e., detect) or “separate” (i.e., segment) 

the objects from the scenes (Zhao et al. 2019). Considering of the riparian environmental 

management, the thought-out objects are mainly two types: natural (i.e., tree, bamboo, water 

area) and artificial ones (i.e., crack and waste pollution). In this research, the author mainly 

focuses on the solutions of detecting or segmenting the objects from the scenes, and the 

approach of applying these extracted targets into riparian management. 

Based on the previous experience of the riparian management derived from the MLIT in Japan, 

there are several factors of technologies need to be considered importantly: good cost-

performance (i.e., data collection speed per time unit), higher accuracy and easy-to-share. 

Thus the author developed the following topics to examining the possibility of matching the 

mentioned factors in the case of applying AI-assisted digital camera: 

Topic-1: Application of DeepLabV3+, Ortho-photography and LiDAR in Riparian Land 

Cover Classification (LCC, mainly natural-related targets) 
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Topic-2: Application of YOLO and Drone Camera in Riparian Area Monitoring (Crack & 

Waste Pollution) (mainly artificial-related targets) 

The study site in this research is located on the lower Asahi River, a Class I (state-controlled) 

river with 1810 km2 catchment in Japan, flowing through Okayama prefecture. The average 

river discharge at the Makiyama hydraulic station, which is at the 20 kilometer post (KP) 

upstream of the targeted domain, was 57.12 m3 s-1 during 1965–2005 (MLIT 2007). 

Throughout this research, the KP value means the longitudinal distance (kilometer, km) from 

the targeted river mouth. Additionally, the riverbed slope is approximately 1:600. The channel 

width is about 300 m in the targeted reach. More recently, widely diverse vegetation has been 

observable at the targeted site, which has raised severe concerns about effective flood control 

and ecosystem management measures. 

1.2 Research Objectives and Motivation 

Based on the mentioned content, the research objectives are mainly around the natural or 

artificial objects existing in the riparian environment. And from the management perspective, 

the author attempt to extract the necessary objects for analyzing, parameterizing or counting. 

Considering of the motivations for this research around the objectives, there are several tips 

that the author prefers to list: 

Motivation-1: Searching the approach/solution using AI technology to solve the practical 

riparian management tasks (i.e., derived from the factors shown in Figure 1.4). 

Motivation-2: Searching the approach/solution on the supplement of digital-camera data for 

solving the data lack tasks (i.e., derived from the issues shown in Figure 1.5). 

Motivation-3: Evaluating the possibility of the AI-related application on the riparian 

management (i.e., mainly derived from the projects shown in Figure 1.6). 



24 
 

 

Figure 1.4 Four basic factors for AI: Application Scenarios: Application scenarios are the basic 

framework for the industrialized implementation of AI, and researchers can match the 

corresponding resources according to the needs of the scenarios; Data: Data is the source 

of intelligence for AI. A large amount of high-quality data can be used to train models, 

such as deep learning models. Currently, data-driven AI can simulate human perception, 

but it still can't learn knowledge like humans; Algorithm: Algorithm is the fundamental 

way to realize AI. Algorithms such as deep learning are capable of handling complex 

tasks such as object recognition, semantic segmentation, and so on; Computing Power: 

Powerful computing power supports the operation of AI systems. Together, these four 

elements constitute the AI system, enabling it to play a practical value in different 

scenarios. 

 

Figure 1.5 Feature supplements of applying different data. 
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Figure 1.6 Flow chart of river patrolling. 

Based on the provided content, the research purposes are shown as follows: 

1. Management perspective purpose: This research aims to find several efficient approaches on 

the multiple riparian management tasks (i.e., infrastructure and natural environment 

monitoring). 

2. AI application perspective purpose: This research seeks to explore and develop AI-based 

solutions for practical riparian management challenges. 

3. Data supplementation purpose: This research attempts to find approaches to supplement 

digital camera data to address data scarcity issues in riparian studies. 
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1.3 Datasets Features 

In this research, the datasets were mostly collected by the air-platform like airplane or UAV 

(i.e., unmanned aerial vehicle), and there are common parts based on these responding 

platforms: If the Orth-photography are in consideration, the files were saved as .tiff (i.e., 3-

channel, RGB) format which include high quality color information; The other image-related 

datasets included the files which used .jpg (i.e., 3-channel, RGB) or .png (i.e., 4-channel, 

RGBA) format; Except of the .tiff, .jpg and .png, the author also used the LiDAR data (i.e., 

1-channel, n or l, which stands for point numbers in per unit and DSM-DTM, respectively) as 

the supplement for the color information. There were several UAV that have been applied in 

this research (i.e., Mavic 2 Pro, Phantom 4 Pro and Zenmuse from DJI) derived from different 

purposes. In this research, even there are several difference derived from parameters setting 

or hardware, except of the flight height, the author did not take any other parameters setting 

into considerations. 

1.4 Related Models 

1.5 DeepLabV3+ Model 

DeepLabv3+ (Chen et al. 2019) is a model which was built upon the previous DeepLab model 

versions (i.e., v1, v2, v3) derived from the researchers at Google AI. DeepLabv3+ aims to 

address the semantic segmentation tasks, which need to assign the class label to each pixel in 

the input image. DeepLabv3+ include several innovations, i.e., Encoder-Decoder Architecture, 

Atrous Convolution, Atrous Spatial Pyramid Pooling (ASPP), Encoder-Decoder Feature 

Fusion and Depthwise Separable Convolutions. Until now, DeepLabv3+ was evaluated on 

various benchmark datasets, i.e., PASCAL VOC, Cityscapes, and ADE20K. DeepLabv3+ 

achieved the state-of-the-art results when it was publicized. And this model has been already 

applied in various domains, including but not just autonomous driving, medical imaging, and 
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remote sensing 

1.6 YOLO series Model 

The introduction of YOLOv5 (Ultralytics, 2020), YOLOv7 (Wang, 2023), and recent 

YOLOv8 (Ultralytics, 2023) represent major developments in the YOLO (You Only Look 

Once) series of object-based detectors/segmentors in recent years. Compared to the Darknet 

implementation in the past time, YOLOv5 represented a transition to the PyTorch framework, 

offering improved ecosystem integration and deploy-ability. The automated anchor box 

learning was also added for adjusting to different datasets. To increase precision and speed, 

YOLOv7 suggested architectural changes such as the E-ELAN backbone, compound model 

scaling, re-parameterization planning, and auxiliary heads. While not intended for CPU-based 

mobile deployment, YOLOv7 beat earlier YOLO models across all of its variations on the 

MS COCO dataset, reaching high accuracy and speeds ranging from 5-160 FPS. YOLOv8, 

the recent version, demonstrated higher throughput with comparable parameter counts when 

it was published in January 2023. YOLOv8 appears to be focused on restricted edge device 

deployment with high inference speed based on testing. Future versions should see further 

architectural changes and performance improvements as this growing series pushes the limits 

of real-time object identification. 

1.6.1 Stable Diffusion Model 

Stable Diffusion (i.e. SD) is an artificial intelligence based image generation model (Stability 

AI, 2022; AUTOMATIC1111, 2024) which involves different components i.e. text encoder, 

image generator and diffusion process. In this diffusion process, SD requires gradually adding 

noise to the image for training a noise predictor. And this predictor not only predicts but also 

removes the noise from the noisy image. And the makers of SD use a compressed image 

“latent space” representation in SD instead of using the full pixel space in order to improve 
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the efficiency of the operation.SD also employs techniques such as classifier-free guidance, 

which utilizes the text prompts themselves to guide the diffusion process to the desired output. 

In addition to the above features, SD includes several additional features such as image-to-

image generation, inpainting, and depth-to-image generation 

1.6.2 Segment Anything Model 

The Segment Anything Model or SAM (Kirillov et al. 2023) from Meta's FAIR lab represents 

a substantial improvement in computer vision (i.e., segmentation tasks). SAM is able to use 

promptable segmentation tasks as a foundation model, and it also allows the users to separate 

objects with high accuracy utilizing user interfaces (i.e., text prompts, bounding boxes, or 

point clicks). The architecture of SAM includes an image encoder, a prompt encoder, and a 

mask decoder for producing the exact segmentation masks. And SAM was trained using the 

dataset called SA-1B, which includes 1 billion masks derived from 11 million pictures. One 

of SAM's key features is zero-shot, that SAM can segment the input images without any 

additional training. SAM have the flexibility in solving several practical tasks i.e., mask 

generation (Everything mode), text-to-mask conversion (prompt mode). SAM is also an 

innovation in a range of industries, including retail, medical imaging, agriculture, and others. 

As an open-source model, this model improves the annotation's accuracy and effectiveness in 

subsequent work. 
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My PhD research focused on the following specific goals.  

 To develop a novel methodology (i.e., LiDAR-assisted DeepLabV3+ Model) of applying 

the Airborne LiDAR Bathymetry (i.e., ALB) data on improving the Aerial Photography 

feature (i.e., the difference between bamboo and tree); 

 To understand the distribution of the riparian land cover in the study site with the 
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assistance of air-platformed Digital Camera and LiDAR using AI technology, which 

improve from the previous methodology with higher accuracy on land cover classification 

(i.e., LCC) task; 

 To apply the improved LCC mapping on the 2018 Asahi Flood Simulation and optimized 

the water level result for around 1m from the previous simulation results; 

 To apply the methodology derived from LiDAR-assisted DeepLabV3+ Model on the 

UAV-platformed Digital Camera and LiDAR or Green LiDAR System (i.e., GLS); 

 To develop a novel methodology of fusing Aerial Photography and LiDAR, that used high 

contrast color scale for well-performance on expand the data feature; 

 To discuss the possibility of the exchangeability of using the ALB and GLS to each other 

for the LCC tasks; 

 To apply the open source object detection/instance segmentation model on the UAV-based 

asphalt-paved cracks detection/segmentation tasks; 

 To develop a novel evaluation methodology of assessing the remote sensing-based crack 

detection/segmentation; 

 To edit a manual of how to apply the object detection/instance segmentation models ob 

the crack detection/segmentation tasks; 

 To apply the open source object detection model on the UAV-based waste pollution 

detection tasks; 

 To develop a novel methodology of creating the AI-based Generative Content (i.e.  

AIGC) for increasing the data amount; 

 To prove the possibility of applying the AIGC on the object detection task for the 

Augmentation on waste pollution detection task; 

 To prove that with the assistance of the AI-powered UAV technology the river patrolling 

tasks can be improved the effectively and efficiently. 
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CHAPTER 2 

Application of Digital Camera and AI in Riparian Land Cover 

Classification (LCC) 

 

2.1 Airborne-derived Orthophotograph aided with Airborne LiDAR on LCC 

2.1.1 Introduction 

In recent years, climate change has led to frequent extreme and record-breaking flooding 

events worldwide. For instance, in mid-July 2021, European floods not seen in decades 

ravaged Germany, Belgium, and the Netherlands, killing hundreds of people and inundating 

villages and towns. Furthermore, China has been at high risk from disastrous flooding in 2020 

(Wei et al., 2020). In fact, a flood struck Henan province of China in mid-July 2021. The 

severe rainfall constituted an average year's amount, but falling during just three days. It is 

noteworthy that, because of recent climate change, an extreme rainfall event struck western 

Japan, our study region, in early July 2018, causing flooding and sediment damage, 

inundating residential areas, and killing 81 people in Okayama prefecture (Yoshida et al., 

2021). Researchers today are constantly confronted by new challenges posed by 

unprecedented river floods in such an ever-changing global hydrological environment (Global 

Floods 2021). Although riverbed excavation and embankment upgrading can be effective 

flood mitigation methods to address river flood control issues, the river's flow capacity in the 

current state must be assessed appropriately before either of these engineering terrain 

modifications can be implemented efficiently. 
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The important hydraulic engineering task of assessing flood capacity is based primarily on 

cross-sectional area changes and flow resistance factors (Shih & Chen 2021). In recent 

studies (e.g., Dimitriadis et al., 2016), researchers demonstrated through benchmark 

simulations that the variability and uncertainty of flood propagation are primarily caused by 

channel geometry and roughness as compared to other factors such as inflow, longitudinal 

gradient, floodplain roughness, model structure, etc. On-site bed level surveys and land cover 

classification (LCC) mapping both play fundamental roles in quantifying such crucial 

parameters as attributable flow resistance. Especially for the case of vegetated streams, Green 

(2005) reported that total flow resistance is affected by Manning's roughness coefficients of 

the following factors: riverbed materials, surface irregularities, shape and size of the channel 

cross-section, obstructions, vegetation, channel meandering, and so on. In addition, Nikora 

et al. (2008) demonstrated that, in addition to stream dimensions, an excellent parameter for 

estimating hydraulic resistance is the spatial distribution of plant patches. However, regular 

field surveys of riparian vegetation properties are traditionally required for flood control 

exercises (Sun et al., 2010). In earlier cases, several river management projects were 

conducted, but strong emphasis was not placed on the spatial distribution of vegetation species 

and their height, although this task is now regarded as important in balanced river 

management (Nepf 2012). One practical approach for quantifying river channel and 

floodplain roughness is to use reference values related to flow resistance based on visual 

confirmation of aerial photographs, considering all factors affecting flow resistance (e.g. 

Chow 1959). However, this time-consuming, unrepeatable, and laborious method of actual 

measurement has been demonstrated to have limitations for large-scale use. Accordingly, 

accurate LCC mapping, including information of vegetation attributes, is necessary for 

balanced river management including measures such as flood risk and ecosystem 

management. 
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Over the years, remotely sensed technologies have proven to be effective for application to 

riparian vegetation attribute surveys, relying on the acquisition of stable digital surface model 

(DSM) and digital terrain model (DTM) data. For instance, Mason et al. (2003) used airborne 

laser scanning (ALS) to derive riparian vegetation heights for floodplain friction 

parameterization in hydrodynamic modelling. In addition, Straatsma and Baptist (2008) 

evaluated an ALS-based approach to derive hydrodynamically relevant surface features using 

multispectral data, demonstrating the importance of ALS for mapping vegetation height and 

for density attribution. Furthermore, Vetter et al. (2011) used dense ALS point cloud data to 

investigate the vertical vegetation structure for determining hydraulic roughness. More 

recently, airborne laser bathymetry (ALB) systems have been applied to acquire vegetation 

height and topo-bathymetric data (Yoshida et al., 2020), demonstrating superiority in 

collecting bed elevation data from submerged areas. Results show that ALB enables data 

collection on both land and underwater areas simultaneously. Although the ALB system has 

advantages for collecting underwater data, it also has shortcomings for collecting terrestrial 

data. For example, in dense vegetation, the near-infrared (NIR) laser used in ALB can 

penetrate the ground surface only ineffectively, resulting in a lack of laser points on the 

underlying structure (Tian et al., 2021). Because of this phenomenon, it is difficult for an 

unsupervised method using ALB data to distinguish between detailed species (e.g., woody 

vegetation and bamboo grove in our targeted vegetation). Furthermore, this method 

commonly depicts LCC mapping based on each specifically sized grid, such as the 2 m grid 

used in an earlier study (Yoshida et al. 2020), with no regard for the LCC of the surrounding 

grid. Such limitation produces a "salt and pepper" effect (Yu et al., 2006; Blaschke et al., 

2000) in LCC mapping, which strongly affects the accuracy of LCC prediction results. 

Furthermore, the existing method of manually setting thresholds (Do et al., 2019; Yoshida et 

al., 2020) for various parameters used in LCC (e.g., voxel-based points and vegetation height 
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considered in our current study as discussed hereinafter) has drawbacks because the criteria 

or proposed values might differ greatly with different remotely sensed datasets. Because of 

these issues, it is crucially important to establish an appropriate approach to improve the 

accuracy of LCC predictions using ALB data. 

More recently, a few fluvial researchers attempted to classify riparian vegetation with machine 

learning (ML) methods using only lidar point cloud (e.g. Fehérváry & Kiss 2020). For that 

approach, they used decision trees to identify each cell's land cover. Then they compared the 

results with a field survey of randomly selected cells. Although they identified LCCs with 

acceptable accuracy, the ML method used larger two-dimensional (2-D) cells (e.g. 15 m × 15 

m) to read the object's features, although each cell accommodated only one label for 

classification. In such a case, they might have a risk of missing out on other important land 

cover information. To overcome limitations of the earlier study, we intend to use a smaller 

square mesh of around 2 m in our current study. Furthermore, Carbonneau et al. (2020) 

attempted to assess LCC such as water, dry exposed sediment, green vegetation, senescent 

vegetation, and roads using red–green–blue (RGB) images from 11 rivers in different 

countries based on a modified model: "convolutional neural network-supervised 

classification." Their findings with higher identification accuracy might be beneficial for 

ecological conservation in fluvial environments. However, they did not test their results for 

flow-resistance parameterization attributable to riparian vegetation, which we are particularly 

addressing here for river flood flow simulation. In addition, the ML technique demonstrates 

its shortcomings in pixel-based image classification (i.e. LCC mapping), where complicated 

feature extraction is necessary (Dargan et al., 2019). Furthermore, manual feature extraction 

(e.g. data analysis, interpretation) is necessary for ML methods, whereas automatic feature 

extraction functions have been used widely for deep learning (DL) (a type of ML) models in 

recent years, particularly for models with encoder–decoder modules. For instance, the DL 
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image processing techniques of DeepLabv3+ (Chen et al., 2018) have demonstrated their 

benefits in overcoming challenges in semantic segmentation, while classic U-Net 

(Ronneberger et al., 2015) can also extract features from images using the familiar encoder-

decoder structure as DeepLabv3+. However, the DeepLabv3+ model can extract features 

more efficiently when assisted by the atrous spatial pyramid pooling module (Chen et al. 

2017). Therefore, for the first time, we used the DeepLabv3+ model (RGB) in conjunction 

with ALB-derived voxel-based laser points and vegetation height information to infer LCC 

mapping, demonstrating the novelty of our current study. 

In early July 2018, our targeted study site, the vegetated lower Asahi River, Okayama 

prefecture, Japan, details of which are described hereinafter, was struck by extreme flooding 

with discharge of approximately 4500 m3 s-1. Because of riparian vegetation such as heavy 

density of woody and bamboo groves, the studied river reached record water levels (Yoshida 

et al., 2021). Therefore, appropriate LCC mapping is necessary to estimate flow-resistance 

parameters attributable to riparian vegetation in flood modelling. In light of the issues 

described earlier, this study was conducted to examine a proposed DL-based methodology for 

LCC mapping in riparian areas considering ALB-derived voxel-based laser points and 

vegetation height. In the current study, ALB measurements include overland and underwater 

bed elevation surveys using near-infrared and green lasers. In addition, during the lidar 

campaigns, we captured aerial photographs and leveraged the RGB information to assess LCC 

using the current DL approach. Consequently, airborne surveys assist us in determining the 

flood flow capacity by providing bed elevation data and generating LCC mapping for use as 

inputs in numerical simulation. However, the new LCC mapping approach presented herein, 

is particularly expected to perform better than earlier unsupervised methods (clustering) at 

distinguishing the most dominant riparian vegetation species (i.e. woody vegetation and 

bamboo grove) in our targeted area. Finally, the proposed LCC reasonably estimated spatially 



37 
 

distributed hydrodynamic roughness in the 2018 Asahi River flood modelling. Overall, this 

study is expected to aid policymakers in developing a balanced scenario for both flood control 

and ecosystem management tasks while considering riparian LCC. 

2.1.2 Study site 

Figure 2.1a depicts our study site, which is located on the lower Asahi River, a Class I (state-

controlled) river in Japan, flowing through Okayama prefecture into the Seto Inland Sea. The 

catchment area of the targeted river is 1810 km2. The average river discharge at the Makiyama 

hydraulic station, which is at the 20 kilometer post (KP) upstream of the targeted domain, was 

57.12 m3 s-1 during 1965–2005 (MLIT 2007). Throughout this study, the KP value denotes 

the longitudinal distance (kilometer, km) from the targeted river mouth. Furthermore, the 

riverbed slope is approximately 1:600. The channel width is about 300 m in the targeted reach. 

The targeted domain was 13.2–17.4 KP, as shown in Figure 2.1a (right), for both the LCC 

and flood simulation cases. Furthermore, more recently, widely diverse vegetation has been 

visible at the targeted site, which has raised severe concerns about effective flood control and 

ecosystem management measures. Irrespective of those concerns, the riparian vegetation for 

the current LCC study is divisible into three types based on flow resistance: bamboo grove, 

herbaceous species (grass), and woody species (tree). Figure 2.1b represents the dense 

situation of riparian vegetation in our targeted river, which must be trimmed in a planned 

manner for flood control tasks, whereas riparian environment management, such as wildlife 

conservation, must be considered. 

2.1.3 Data collection and processing 

2.1.3.1 Data collection 

For this study, we conducted ALB (Leica Chiroptera II; Leica Corp.) surveys in March, July, 
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and November 2017 along a 6.2-km reach of the lower Asahi River (10.6–17.4 KP) controlled 

by the national government. As shown in Figure 2.1 (right), multiple flight operations were 

conducted in both leaf-off (March and November 2017) and leaf-on (July 2017) conditions to 

achieve overlapping coverage of the target area. The current system scanned the river channel 

for LCC using aircraft-mounted near-infrared and green lasers (Figure 2.2).  

 
(a) 

 

(b) 

Figure 2.1 Perspective of targeted research area: (a) location of the Asahi River in Japan with the 

kilometer post (KP) values representing the longitudinal distance (km) from the river 

mouth and (b) vegetation and birds’ species in the targeted research area. 
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Figure 2.2 Airborne laser bathymetry system using a NIR laser for overland surveys and a green 

pulsed laser for underwater surveys. 

 

Table 2.1 Specifications of the present ALB system and measurement conditions in the targeted river 

reach. 

Item 

Measurement date of 

ALB & Aerial photograph 

Mar. 2017 Jul. 2017 Nov. 2017 

Equipment 

specifications 

Laser wavelength 

range (nm) 

NIR* 1,064 1,064 1,064 

Green 515 515 515 

Measurement 

specifications 

Number of laser 

beams (s-1) 

NIR 148,000 148,000 148,000 

Green 35,000 35,000 35,000 

Ground altitude (m) 500 500 500 

Flight speed (km h-1) 220 220 111 

Density of 

measurement 

points (m-2) 

NIR 9.0 9.0 18.0 

Green 2.0 2.0 4.0 

Photograph 

specifications 

Resolution 

(cm pixel-1) 
10 10 10 

Water quality Turbidity** (degree***) 2.9 3.8 3.2 

*: Near-InfraRed;  **: Ministry of Land, Infrastructure, Transport and Tourism hydrological water 

quality database (Asahi River, Otoide Weir); ***: One degree of Japan Industrial Standard (JIS 

K0101) is the same as when 1 mg of standard substance (kaolin or formazine) is contained in 1 L of 

purified water. 
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The device commonly uses the green laser to detect underwater (bottom) surfaces because 

green light can penetrate the water column to some degree. By contrast, the near-infrared laser 

is used to detect terrain surfaces, including vegetation identification, because it is readily 

reflected by the air–water interface. The laser beam of this measurement device is specially 

processed, considering the refraction angle of the green laser at the air–water interface, so that 

the laser incident at the air–water interface has an elliptical footprint (Figure 2.2). Moreover, 

during each ALB measurement, a digital camera mounted directly beneath the aircraft took 

aerial photographs of the target river. Table 2.1 shows specifications of the equipment, 

measurement parameters, and river water quality at the time of measurements. Because the 

magnitude of turbidity in a river can strongly affect the amount of light incident into the water 

column, its value was confirmed before each ALB measurement. The water quality of the 

three target periods was reasonable for measuring the underwater terrain surface. 

2.1.3.2 Data processing 

 

Figure 2.3 Ortho-aerial photograph operation steps. 
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 Figure 2.4 Ortho-aerial photographs of the targeted area in (a) March, (b) July, and (c) November 

2017. 

 

 Figure 2.5 Voxel-based ALB data processing. 

To remove tilt and relief effects, the aerial photographs were converted to orthophotos, as 

shown in Figure 2.3. Herein, the aerial photographs' overlap and side-lap ratios were 

respectively greater than 60% and 30%. As shown in Figure 2.4, aerial photographs from 

13.2 KP to 17.4 KP captured during the targeted three periods were processed sequentially 

using the four steps depicted in Figure 2.3. Figure 2.5 shows the ALB data processing, 

beginning with establishment of a Cartesian grid in the target domain comprising three-

dimensional (3-D) voxels. Each voxel, which has 0.5 m side length, can only hold one laser 

point data point using a filter to maintain uniform laser point density. In other words, we kept 

only the highest one from the ALB measurement rather than all the points for each voxel 
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(Yoshida et al., 2017). For use as a parameter in subsequent 2-D flood simulations, a 

horizontal 2-D cell that can include all laser points in the processed 3-D voxel was created. 

The points in each 2-D cell are designated as voxel-based points (n). We identified the ground 

(riverbed or digital terrain model, DTM) after such processing by filtering the point cloud 

data near the lower part of the 2-D cell. Later, we calculated the vegetation height (l) by 

locating the highest point in each 2-D cell (digital surface model, DSM) after subtracting the 

DTM.  

Table 2.2 LCC using ALB data with unsupervised method named as ALB-based LCC method. 

LCC n l  

Bare ground 0 Under 30 cm 

Tree Over 13 points Over 30 cm 

Grass Between 5 and 12 points Over 30 cm 

Water 0 0 cm 

Bamboo* - - 

*: Bamboo is not distinguished for trees using the present ALB dataset (Yoshida et al., 2020) 

Finally, as a reference for comparison, we attempted to define the LCC using an unsupervised 

approach (Yoshida et al., 2020), as shown in Table 2.2, based on the ALB data manipulations 

described above. In addition, because several bridges cross the Asahi River in the target region, 

data from the surrounding riverbed were used to approximate the bed height at the pier. 

2.1.4 Processing of LCC mapping using DL method 

Mapping of the LCC using the DL method is divisible into two parts: data pre-processing and 

the processing using the modified DeepLabv3+ module. The true label (TL) and datasets were 

prepared in advance as input data for the following modules during the pre-processing stage. 

In addition, the modified DeepLabv3+ module part is divisible into two sections: the 
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conventional RGB-based method and the newly proposed RGBnl-based method. The RGB-

based process uses only ortho-aerial photographs to train the DeepLabv3+ module and predict 

the LCC. By contrast, the RGBnl-based approach achieves some improvement by using ortho-

aerial photographs, 2-D voxel-based points n, and vegetation height l to train and predict the 

DeepLabv3+ module. 

2.1.4.1 Pre-processing 

 

Figure 2.6 Earlier field observation photograph samples of the targeted area for five typical categories 

of LCC. 

Table 2.3 Previous field observation results for the targeted area. 

Items (labels) Objects 

A. Bamboo Moso bamboo, Japanese timber bamboo 

B. Tree 

Salix eriocarpa, Salix chaenomeloides, Ulmus parvifolia, 

Juglans mandshurica var, Aphananthe aspera, 

Quercus variabilis, Rhus javanica, Melia azedarach, 

Robinia pseudoacacia, Persica, Citrus, Diospyros kaki, etc. 

C. Grass 

Phragmites australis, Miscanthus sacchariflorus, 

Miscanthus sinensis, Phragmites japonica, 

Typha domingensis, Ambrosia trifida, Pleioblastus simonii, Eragrostis curvula, 

Rosa multiflora, Planted turf, etc. 

D. Bare ground Shoal, Road, Construction site, Agriculture ground 

E. Water Shallow water, Deep water 
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Figure 2.7 Sample of true label mapping in November 2017. 

In mapping the LCC pre-processing stage, we considered earlier field observation experience 

to obtain critical assistance in mapping the TL. As Figure 2.6 shows, earlier field observation 

photographs can provide information about the study target LCC characteristics such as 

texture and color difference. Consequently, based on earlier field observations of our target 

area presented in Table 2.3, we roughly categorized the objects in the study area with five 

labels: bamboo, tree, grass, bare ground, and water. Furthermore, we sought to produce a 

rough distinction between natural and artificial areas in true-label mapping. Therefore, aside 

from the five labels described above, we also considered the other two labels, such as "road" 

and "clutter" (i.e. all artificial objects except for roads), in the DL method's LCC mapping. 

Figure 2.7 presents an example of TL mapping based on orthophotos taken in November 

2017. 
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Furthermore, some high-density areas of bamboo combined with some trees were noted in the 

targeted region. In orthophotos, trees with leaf-on conditions are difficult to distinguish from 

bamboo. In such cases, orthophotos from different periods must be compared to differentiate 

those targeted species. In contrast, "grass" and "trees" are more accessible to differentiation 

because of shadows and color differences, which vary depending on the height difference 

between the two. It is noteworthy that, even in a leafless state, where "grass" or "bare ground" 

can be distinguished clearly under a "tree," the area is still labeled as a "tree" when the TL is 

drawn because regions that are too small during the deep learning process are not fully learned. 

For this study, we considered only mudflats and farmland as "bare ground," which can be 

difficult to define. In addition, orthophotos include sufficient information to identify "water," 

"roads," and "debris" (anthropogenic landscape components other than roads). Finally, it is 

noteworthy that our TL is based primarily on orthophotos. Therefore, we were unable to 

present information that existed but which was not represented in orthophotos (e.g. grass 

under a tree with leaves). Based on the standards above, we labeled the land cover with seven 

labels for three periods of orthophotos of the target area, ranging from 13.2 KP to 17.4 KP, as 

shown in Figure 2.8. 

 

Figure 2.8 True label mapping for the three targeted periods: (a) March, (b) July, and (c) November 

2017. 
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Figure 2.9 Spatial distribution of the dataset in the (a) training, (b) valid, and (c) test areas (March 

2017 dataset as example). 
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 Figure 2.10 Processing of mapping LCC with two DL methods. 

As an example, Figure 2.9 depicts a dataset from March 2017. Datasets (true labels, ortho-

aerial photographs, and ALB dataset) from March were divided into three parts: (a) 

approximately 80% of the dataset for training, (b) approximately 10% of the dataset for 

validation, and (c) the remaining 10% of the dataset for testing. Datasets for the other two 

periods (July and November 2017) were assigned similarly. For this study, the modified 

module chose spatial resolution ratio of 1:10 between the ortho-aerial photographs and the 

ALB datasets based on DeepLabv3+ model specifications and data resolution. Accordingly, 

we set the spatial resolution for the ortho-aerial photographs to 0.2 m pixel-1 and for the ALB 

data to 2 m pixel-1.  Figure 2.10 depicts workflows in which ortho-aerial photographs and 

ALB datasets are cut into small panels using the above scales for pre-processing. 
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2.1.4.2 Processing of LCC mapping using the modified DeepLabv3+ model 

The original DeepLabv3+ module extracts feature from ortho-aerial photographs using an 

"encoder–decoder" structure. The model's parameters are then optimized using TL. 

Subsequently, these parameters are saved as a "trained model." This training procedure 

determines the relations among input data, such as photographs, and the TL. Throughout this 

study, this processing was designated as the RGB-based LCC method. Later, this technique 

was upgraded by including an additional module with a "decoder" function using the ALB 

dataset. To combine with the RGB-based "trained model," the ALB dataset was expanded 

twice by factors of 2 and 5 in the additional module. Subsequently, we performed upsampling 

using an imaging technique called "nearest-neighbor interpolation." Then we chose n and l as 

input data for the additional module for the ALB dataset. The parameters were optimized with 

the same TL as the RGB-based LCC method. This processing method was designated for this 

study as the RGBnl-based LCC method. The upgraded method's goal is to incorporate ALB 

data into the model to improve the accuracy of the inference results.  Figure 2.10 depicts the 

workflows used for the processing of LCC mapping with the modified DeepLabv3+ module. 

The RGB-based method used for this processing is traced roughly as (a) training phase – 

[RGB image as input] → [DeepLabv3+ model] → [trained model], and (b) inference phase 

– [RGB image as input] → [trained model] → [LCC as output class 1]. By contrast, the 

RGBnl-based method image processing is represented as (a) training phase – [RGB image 

and ALB dataset as input] →  [upgraded model] →  [trained upgraded model], and (b) 

inference phase → [RGB image and ALB dataset as input] → [trained upgraded model] 

→  [LCC as output class 2]. Finally, Table 2.4 presents a summary of the all training 

environment parameters used for programming. 
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Table 2.4 Data training environment parameters and model setting of the DL methods. 

Developing Environment Model Setting 

OS GPU 
GPU 

memory 

GPU 

driver 
CUDA cuDNN Framework Epoch 

Batch  

size 

Ubuntu 

20.04 

GeForce 

RTX 

3090 

24GB 
Ver. 

460.39 

Ver. 

11.2 
8.04 

Tensorflow  

Ver.2.4.0 
400 8 

2.1.5 Application 

2.1.5.1 Comparisons of LCC mapping 

Table 2.5 Analysis conditions of the train, valid and test data in March, July and November 2017 using 

RGB- (Case 1) and RGBnl-based (Case 2, Case 3) methods. 

To compare ALB-based LCC mapping, designated as Case 0, to DL method-based LCC 

mapping, both the whole area and the test area must be evaluated. We herein set the datasets 

into three cases to assess the RGB-based and RGBnl-based results, as presented in Table 2.5. 

Case 1 employs RGB data, whereas Cases 2 and 3 use combined data, including RGB data 

 train data valid data test data   train data valid data test data 

Case 1-1 

Mar. 2017 RGB 

Mar. 2017 RGB  Case 2-1 

Mar. 2017 RGB 

Mar. 2017 RGB+ALB 

Case 1-2 Jul. 2017 RGB Case 2-2 Jul. 2017 RGB+ALB 

Case 1-3 Nov. 2017 RGB Case 2-3 Nov. 2017 RGB+ALB

Case 1-4 

Jul. 2017 RGB 

Mar. 2017 RGB Case 2-4 

Jul. 2017 RGB 

Mar. 2017 RGB+ALB 

Case 1-5 Jul. 2017 RGB Case 2-5 Jul. 2017 RGB+ALB 

Case 1-6 Nov. 2017 RGB Case 2-6 Nov. 2017 RGB+ALB

Case 1-7 

Nov. 2017 RGB 

Mar. 2017 RGB Case 2-7 

Nov. 2017 RGB 

Mar. 2017 RGB+ALB 

Case 1-8 Jul. 2017 RGB Case 2-8 Jul. 2017 RGB+ALB 

Case 1-9 Nov. 2017 RGB Case 2-9 Nov. 2017 RGB+ALB

 

Case 3-1 Mar. 2017 RGB+ALB 

Jul. 2017 RGB+ALB 

Nov. 2017 RGB+ALB 

Mar. 2017 RGB+ALB 

Case 3-2 Jul. 2017 RGB+ALB 

Case 3-3 Nov. 2017 RGB+ALB
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and the ALB dataset. The difference between Cases 2 and 3 is the input-to-output data ratio, 

with Case 3 having a larger input dataset. Especially, we aim at confirming two points: (a) 

whether or not more training data improve inference results, and (b) versatility in training and 

inferring data from different periods. Finally, the confusion matrix (CM) and some indexes 

were used to assess the relative performance of the RGB-based and RGBnl-based methods. 

2.1.5.2 Case 0: ALB-based method 

 

 

Figure 2.11 Comparison of ALB-based results and DL method results for the whole area in November 

2017: (a) Case 0 result, (b) Case 1-9 result, (c) Case 2-9 result, and (d) true label. 

 

 

Figure 2.12 Comparison of ALB-based result and DL methods results for the test area in November 

2017: (a) Case 0 result, (b) Case 1-9 result, (c) Case 2-9 result, and (d) true label. 

First, as presented in Figure 2.11, we visually compared the LCC mapping based on the ALB-

based method result, the DL method results, and the TL in November 2017. Because the ALB-
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based method can only segment five labels without "road" and "clutter," DL methods must 

also adhere to this rule, with "road" and "clutter" being treated as "bare ground." Based on 

Figure 2.12, we compared the ALB-based and DL method results obtained using the CM 

valuation index, as shown in Table 2.6. In the case of the comparison index, we chose overall 

accuracy (OA) and macro-F1 score as our targets. Correspondingly, Table 2.7 presents a 

sample of the CM valuation index. Finally, Tables 2.8, 2.9, and 2.10 present the CM results 

obtained using the ALB (Case 0), RGB (Case 1-9), and RGBnl-based (Case 2-9) methods. 

Table 2.6 CM (test area) of ALB- (Case 0), RGB- (Case 1-1) and RGBnl-based (Case 1-9) result. 

Confusion matrix valuation index 

Symbol Definition Formula 

Precision (X) 
The ratio of the pixels for correctly predicted 

as X to all the pixels predicted as X 
TP-X / PR-X 

Recall (X) 
The ratio of the pixels for correctly predicted 

as X to all the pixels true label as X 
TP-X / TL-X 

F1-score (X) 
F1-score is the weighted 

average of Precision and Recall 

2 * Precision (X) * Recall (X) / 

(Precision (X)  + Recall (X)) 

OA 
Overall accuracy value of 

the confusion matrix 
∑ TP-X / Amount of total pixels 

Macro-F1 Macro-F1 is the average of all F1-score ∑ F1-score (X)/amounts of labels 

1) X or Y includes 5 labels (B: Bamboo, T: Tree, G: Grass, BG: Bare Ground, W: Water);   

2)TP-X is the amount of the pixels where true label and prediction are all X;   

3)PR-X is the amount of the pixels where prediction is X;   

4)TL-X is the amount of the pixels where true label is X 
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Table 2.7 Sample of confusion matrix valuation indices. 

Sample of CM valuation index 

  B T G BG W Total  Recall (%) 

B TP-B E-B/T E-B/G E-B/BG E-B/W TL-B TP-B/TL-B 

T E-T/B TP-T E-T/G E-T/BG E-T/W TL-T TP-T/TL-T 

G E-G/B E-G/T TP-G E-G/BG E-G/W TL-G TP-G/TL-G 

BG E-BG/B E-BG/T E-BG/G TP-BG E-BG/W TL-BG TP-BG/TL-BG 

W E-W/B E-W/T E-W/G E-W/BG TP-W TL-W TP-W/TL-W 

Total PR-B PR-T PR-G PR-BG PR-W 
Total 

pixels 
 

Precision (%) TP-B/PR-B TP-B/PR-T TP-B/PR-G TP-B/PR-BG TP-B/PR-W   

OA, Macro-F1 

E-X / Y: Amount of the pixels where true label is X, prediction is Y. 

 

Table 2.8 Accuracy valuation for Case 0 LCC (2 m resolution test area ALB-based result). 

Case 0 (2 m resolution test area ALB-based result) 

  B+T G BG W Total  Recall (%) 

B+T 2216 486 247 61 3010 73.62 

G 656 1998 1301 178 4133 48.34 

BG 81 276 793 79 1229 64.52 

W 16 46 315 5045 5422 93.05 

Total 2969 2806 2656 5363 13794  

Precision (%) 74.64 71.20 29.86 94.07   

OA = 0.73, Macro-F1 = 0.67 
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Table 2.9 Accuracy valuation for Case 0 LCC (2 m resolution test area ALB-based result). 

Case 1-9 (2 m resolution test area RGB-based result) 

  B T G BG W Total  Recall (%) 

B 998 12 0 214 5 1229 81.20 

T 16 1692 29 198 11 1946 86.95 

G 0 142 875 47 0 1064 82.24 

BG 113 153 46 3805 16 4133 92.06 

W 11 40 1 15 5355 5422 98.76 

Total 1138 2039 951 4279 5387 13794  

Precision (%) 87.70 82.98 92.01 88.92 99.41   

OA = 0.92, Macro-F1 = 0.89 

 

Table 2.10 Accuracy valuation for Case 2-9 LCC (2 m resolution test area RGBnl-based result). 

 

Case 2-9 (2 m resolution test area RGBnl-based result) 

  B T G BG W Total  Recall (%) 

B 925 7 0 294 3 1229 75.26 

T 20 1608 49 242 27 1946 82.63 

G 0 119 893 52 0 1064 83.93 

BG 133 123 40 3815 22 4133 92.31 

W 9 25 0 19 5369 5422 99.02 

Total 1087 1882 982 4422 5421 13794  

Precision (%) 85.10 85.44 90.94 86.27 99.04   

OA = 0.91, Macro-F1 = 0.88 
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Findings revealed that LCC mapping using DL methods can achieve higher accuracy than 

when using ALB-based methods, with DL methods improving by nearly 25% in terms of the 

OA and macro-F1 score. The CM shows that these three LCC results are generally diagonally 

dominant, and demonstrate that LCC can be achieved to some degree, even with only ALB 

point cloud data. However, using only n and l values, distinguishing between "bamboo" and 

"tree" is impossible when using the ALB-based approach. In addition, because of the ALB-

based LCC method's mapping rule for the targeted site (Yoshida et al., 2020), grasses less 

than 30 cm tall are regarded as bare ground. For that reason, distinguishing "grass" from "bare 

ground" might be difficult. Furthermore, because of the "salt and pepper effect," ALB-based 

method LCC mappings were not highly accurate in reproducing the corresponding TL 

mapping. 

2.1.5.3 Case 1: RGB-based method 

Case 1-1 to Case 1-9 from Figure 2.13 shows the confusion matrix relevant evaluation index 

(i.e. OA and macro F1-score) for the results obtained using the RGB-based method. The 

indexes are more prominent when the data from the same period are trained and inferred 

(Cases 1-1, 1-5, and 1-9). In contrast, when training and inferring data from different periods 

(Cases 1-2, 1-3, 1-4, 1-6, 1-7, and 1-8), the classification performance deteriorated, possibly 

because of differences in coloration between periods. For example, when training using 

March data and inferring on July data, the "tree" in March appears brown, with only branches, 

whereas "bamboo" seems green. In addition, the effects of solar radiation, water quality, and 

wind waves might affect the classification performance. Figure 2.14 presents some examples 

of misclassification: (a) while a "tree" in July has leaves and appears green, a "tree" in July is 

incorrectly classified as a "bamboo"; (b) this reason also applies to the case of November data; 

and (c) when training with July data and inferring March data, the "bare ground" in July data 

looks brown, and the "tree" and "grass" in March data are inferred as "bare ground" because 
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they are dead. 

 

 

 Figure 2.13 Relevant evaluation index of the confusion matrix. 
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Figure 2.14 Predicted label results for the specified area in targeted periods: (a) July, (b) November, 

and (c) March 2017. 

2.1.5.4 Case 2 and Case 3: RGBnl-based method 

Based on results in Case 2, compared to the RGB-based method, the RGBnl-based approach 

is less effective at improving accuracy (OA, macro F1-score). The findings imply that ALB 

data in use do not contribute as much to classification performance as RGB data when using 

an additional module. Finally, Case 3-1, Case 3-2, and Case 3-3 demonstrated results of 

inferring data from March, July, and November using a combination of data from the three 

targeted periods. Results show a slight decrease in accuracy when compared to Case 2-1, Case 

2-5, and Case 2-9, which were trained and inferred during the same period. Therefore, it is 

preferable to train and infer using data from the same period rather than combining data from 

different periods to improve the classification performance. For reference, Cases 2-1 / Case 

2-4 / Case 2-7, Case 2-2 / Case 2-5 / Case 2-8, and Case 2-3 / Case 2-6 / Case 2-9 showed 

training results and inferred data from the same or different periods for each of the three 
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periods. When comparing these results to Cases 3-1, 3-2, and 3-3, it is apparent that we can 

improve classification performance when we have data from multiple periods by limiting it 

to a specific period and by using only data from that period. The findings also imply that using 

all available data can reduce the risk of degrading classification performance if data for the 

detailed period cannot be specified. 

2.1.6 Application of inferred LCC results for 2018 Asahi River Flood Simulation 

To examine the applicability and efficacy of LCC predictions in estimating spatially 

distributed hydrodynamic roughness parameters (i.e. vegetation density values for different 

species), inferred LCC results based on the ALB-based and DL-based approaches were used 

for 2018 Asahi River flood modelling. The targeted flood records of observed water levels 

and the estimated discharge (based on a stage–discharge relation) at different hydraulic 

stations in the Asahi River were presented in an earlier report by Yoshida et al., (2021), 

revealing two peaks in the hydrograph observed during the flooding event, with peak 

discharge of 4,512 m3 s-1. According to the lower Asahi River flooding history, such flooding 

occurs approximately once every 40 years. For this study, we used a depth-averaged numerical 

approach with a steady-state flow condition for the peak flood simulation using a boundary-

fitted coordinate system (Yoshida et al., 2021). In the earlier study (Yoshida et al., 2021), 

researchers revealed that simulated findings were reasonably consistent with observation 

results when the roughness parameters attributable to distributed vegetation were derived 

from ALB data, resulting in no significant uncertainty in longitudinal water level predictions. 

The researchers also demonstrated that distinguishing between the dominant species (e.g., 

woody vegetation and bamboo grove) in the river studied herein was challenging using an 

unsupervised LCC method based on ALB datasets alone. Consequently, such a 

misclassification could significantly impact flow resistance parameterization estimation, 

affecting the spatial distribution of water levels and depth-averaged flow velocities. 
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Furthermore, because the previous study (Yoshida et al., 2021) demonstrated that no 

substantial deformation occurred during the targeted flooding, we did not consider transient 

changes in bed elevation in hydrodynamic modelling. The time increment in the current study 

was 0.05 s, and the computational mesh for the Asahi River was composed of 434 × 57 cells 

with average size of 10 m, representing 434 cross-sections and 57 nodes in each cross-section. 

The upstream boundary condition was determined using the estimated river discharge at 

Shimomaki Hydraulic Station (19 KP), whereas flood marks at the peak stage defined the 

downstream boundary condition at 13.2 KP. Based on earlier research by Maeno et al. (2005), 

Manning's roughness coefficient values were set as 0.028 and 0.026, respectively, for the main 

channel and floodplains. For this simulation, the drag forces for the targeted vegetation 

species were estimated using the term of 0.5ρ CDlminu2, where ρ stands for water density, 

  represents the vegetation density, CD is the drag coefficient, lmin= min{h, l}  denote the 

minimum value of vegetation height l and local flow depth h, and u expresses represents the 

local flow velocity. Additionally, we assigned the drag coefficient value of 1 (Yoshida et al. 

2021) for the current flood flow simulation. Table 2.11 presents the computational conditions 

used in the current 2-D flood flow simulation and the density values of the targeted vegetation 

species in this study. Furthermore, during the field survey, only herbaceous species were 

observed under bridges crossing the targeted Asahi River. The presence of such vegetation 

might have a negligible effect on flow resistance parameterization. Consequently, areas with 

bridges were treated as bare ground for this study. 
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Table 2.11 Parameters used in the flood simulation 2-D shallow water model 

Simulation mesh 

 

Mesh Number 
Longitudinal: 434 

Cross-sectional: 57 

Discrete Interval 

Time step Δt = 0.05 s 

Spatial interval Δx = Δy = 10 m 

Vegetation 

Vegetation  

Density 

λ (m-1) 

Tree (trunk) 0.013 (l > 5)a, 0.023 (0 < l ≤ 0)b 

Bamboo 0.286a 

Grass 0.031a 

Drag coefficient CD 1.0 

Manning roughness coefficient (m-1/3 s-1) 
Low water (main channel): 0.028,  

floodplain: 0.026 

River discharge (at peak stage) Q = 4251 (m3 s-1) 

Downstream water Level (at peak stage) Asahi River 13.2KP: H = 10.67 m 

a: Values proposed by Maeno et al. (2005). b: Values suggested by Shimizu et al. (2000). 

 

 

 Figure 2.15 Processing of transferring inferred LCC results for flood simulation. 
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2.1.6.1 Processing of inferred LCC results for flood simulation 

As shown in Figure 2.15, after the pre-processing of step A and inference of step B, we 

obtained the 0.2 m pixel-based mesh LCC mapping from 13.2 to 17.4 KP. Simultaneously, 

mesh transformation is necessary if the inferred results in a square mesh are to be used as 

flooding simulation parameters in a boundary-fitted mesh. In step C, the RGB-based and 

RGBnl-based methods inference can be transformed from a 0.2 m pixel-based mesh to a 2 m 

pixel-based mesh by considering the most frequently appearing labels. Then, using a 2 m 

simulation mesh that includes the LCC information (proceeding with steps D-1 and D-2), we 

transformed the information into 10 m simulation mesh via step E. Herein, for the flow 

resistance parameterization, Sim-a was created using all the simulation mesh LCC 

information (ALB-based method), whereas Sim-b and Sim-c were generated respectively 

using RGBnl-based results and true label. Subsequently, as shown in step F (Figure 2.15), the 

inferred LCC results were transferred as input data for the 2018 Asahi River flood simulation 

(Figure 2.16). 

 

 

Figure 2.16 Inferred LCC results for parameterization in flood simulation model: (a) Sim-a – ALB-

based, Case 0 result, (b) Sim-b – RGBnl-based, Case 2-9 result, and (c) Sim-c – true 

label. 
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2.1.6.2 Flood simulation using LCC inferences results 

 

Figure 2.17 Water level estimated from flood simulation results obtained using parameters of different 

LCC methods: (a) left-bank side and (b) right-bank side. HWL and TL stand for high 

water level and true label, respectively. 

Figure 2.17 presents a comparison of simulated and observed water levels along the Asahi 

River's left-bank and right-bank reaches during the peak stage of the 2018 flooding. As 

benchmarked points, the Figure 2.17 also includes flood marks at the peak stage, the high 
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water level (HWL), and the river embankment level along the targeted reaches. For the left-

bank case (Figure 2.17a), simulated water levels using both the ALB-based and DL-based 

parameters were reasonably consistent with the referenced flood marks and the water level 

estimates based on images from closed-circuit television (CCTV). In contrast, in terms of 

residual sum of squares (RSS) values (Table 2.12), the DL-based simulation reproduced flood 

marks that were markedly better than the ALB-based simulation for the right-bank case 

(Figure 2.17b), thereby implying that the DL results outperformed the ALB results. 

Furthermore, Figure 2.18 depicts the flow velocity and water depth results estimated from 

the current flood simulation using flow resistance parameters derived from the ALB-based 

and RGBnl-based LCC results. Those findings revealed that the simulated flow velocity and 

depth have differed considerably in both cases because of differences in land cover between 

the targeted ALB-based and RGBnl-based LCC results. For example, at location b (Figure 

2.18), the RGBnl-based water velocity varied markedly from the ALB-based results because 

the DL method correctly distinguished the dominant bamboo grove from woody species in 

the targeted area. Overall, the numerically simulated results have demonstrated the 

importance of high-accuracy LCC mapping in hydraulic engineering tasks. 

Table 2.12 RSS of the different LCC method results comparing with flood marks 

 RSS (m2) 

 ∑(hALB-hFM)2 ∑(hRGBnl-hFM)2 ∑(hTL-hFM)2 

Left-bank-side 1.58 1.77 1.73 

Right-bank-side 8.49 3.68 3.70 

 

RSS: Residual sum of squares; FM: Flood marks; 

hALB: Water level at flood mark using ALB-based result; 

hRGBnl: Water level at flood mark using RGBnl-based result; 

hTL: Water level at flood mark using True label; 

hFM: Field observation of water level at flood mark 
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Figure 2.18 Velocities and water levels inferred from flood simulation using parameters of ALB-

based and RGBnl-based results with LCC. 

2.1.7 Conclusions 

Results revealed that the DL methods outperformed the ALB-based method in terms of typical 

valuation indexes. In this study, three seasonal datasets with different leafy conditions (i.e. 

no–leaf and leaf–on) significantly influenced LCC results, demonstrating that use of the same 

period datasets for the different trained and test areas yielded higher accuracy. Currently used 

datasets with shorter time variations of around three months might limit our results because 

longer periods datasets supposedly provide better predictions using the DL approach. 

Furthermore, the depth-averaged flood simulation model showed that the water level inferred 

using the DL-based method much more closely approximated the observed water level than 

the conventionally used ALB-based approach did. In addition, the flow velocity and water 

depth inferred from the DL method results differed from those inferred from ALB-based LCC 
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results because of changes in the classification of the most dominant riparian vegetation 

species in the targeted region: trees and bamboo. In addition, although the RGBnl-based 

method includes ALB-derived voxel-based laser points and vegetation height information, the 

LCC mapping accuracy has not improved markedly over the RGB-based approach. Overall, 

these findings might compel us to revise our model for use in future studies, considering 

additional processed attributes from ALB datasets (i.e. reflection intensity from DTM and 

DSM) and using a few more inputs to the original DL model in addition to RGB. To conclude, 

the results of this study are expected to support reasonable engineering measures for flood 

control in vegetated rivers. Finally, based on our current findings, we recommend conducting 

comprehensive research investigating balanced riparian ecosystems conservation. 

Furthermore, because of higher cost in ALB data acquisition and recent advances in remote 

sensing technologies, we intend to use cost-effective unmanned aerial vehicle-borne lidar-

derived data (Islam et al., 2021) for future relevant research due to its convenience of more 

detailed point density and concurrently captured high spatial resolution aerial images. In 

addition, because sedimentation can change the LCC and roughness of rivers (Pinho et al., 

2020), it is recommended to identify such factors using RGB analysis and the well-proven 

ALB technique, which can aid in identifying potential uncertainty in hydrodynamic-

numerical modelling. 

2.2 UAV-derived Orthophotograph aided with UAV-borne LiDAR on LCC 

2.2.1 Introduction 

River environmental information includes crucially important data such as topographic 

bathymetry and vegetation attributes that are necessary to develop balanced river management 

measures, addressing issues such as flood control (Yoshida et al., 2021) and ecosystem 

management (Mandlburger et al., 2015). When confronted with environmental system 
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difficulties, informing the specific distribution of vegetation, including but not limited to 

location, quantity, and species, can help researchers in their assessments of environmental 

changes over time (Carbonneau et al., 2020). In recent years, researchers have become 

increasingly interested in changes in the numbers of original dominant species as a result of 

exotic species invasion (Mooney & Cleland, 2001). In this regard, field inspections have been 

conducted primarily of limited river sections, requiring personnel to enter the site to conduct 

measurements with a total station or a real-time dynamic global positioning system (Legleiter, 

2013). These ground-truth surveys are daunted by several limitations: they are expensive, 

time-consuming, and non-repeatable (Campbell-Palmer et al., 2020). Furthermore, field 

surveys might encounter extreme situations (e.g., flood-affected areas) that can endanger the 

investigators (Wei et al., 2020; Zzaman et al., 2021), or areas that are difficult to access for 

the researchers (e.g., densely vegetated areas), resulting in ineffective data collection (Anjum 

and Tanaka, 2020). In addition, when a larger study area must be observed, satellite 

observations are ideal, particularly when regular revisits are available, which can provide 

more surface information in different seasons (Rodriguez-Galiano & Chica-Rivas, 2014). 

However, spaceborne platforms have usually collected imagery with low temporal and spatial 

resolution. Although spaceborne platforms with high spatial resolution are very expensive, a 

few public datasets are available for free. Nevertheless, they cover only limited areas. Because 

of those shortcomings of satellite-based platforms, most researchers find it difficult to extract 

detailed features for accurate land cover mapping (Fisher et al., 2018). Furthermore, the 

public satellite data resolution ranges between 10 and 60 m (Chandler et al., 2021). However, 

such a coarse mesh size will be insufficient to achieve our targeted goals (i.e., flood control 

and ecosystem management) because, for instance, flow regimes and related vegetation 

dynamics (Sanjaya & Asaeda, 2017) will be difficult to predict near water edges and different 

hydraulic structures. 
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To overcome limitations imposed by traditional methods, digital surface models (DSMs) and 

digital terrain models (DTMs) have become indispensable tools for describing terrain 

conditions (i.e., using DSM minus DTM to infer the height of the land cover). These remotely 

sensed data are used in various fields, including not only flood simulation (Hou et al., 2021), 

but also hydrological models (e.g., Veeck et al., 2020; Xu et al., 2021). Light Detection and 

Ranging (LiDAR) technology generates high-resolution and accurate DSMs and DTMs by 

halving the time between the emitted pulse and detection of the reflected echo (Baltensweiler 

et al., 2017, Yan et al., 2015). Based on LiDAR technology characteristics, improved airborne 

LiDAR topo-bathymetry (ALB) (Wieser et al., 2016), which has been fully validated over 

the years, has been shown to elucidate the vegetation distribution in riverine areas. In addition 

to the technologies described earlier, a more cost-effective unmanned aerial vehicle (UAV)-

borne green LiDAR system (GLS) (Islam et al., 2020) has recently become available as a 

reliable tool for use in high-resolution surveys. The GLS can acquire both laser point clouds 

and high spatial resolution aerial photographs simultaneously, making GLS suitable for land 

cover classification (LCC) (Islam et al., 2022). Additionally, compared to ALB’s low-

resolution aerial photographs and less uniform point density (Mandlburger et al., 2015), 

UAV-borne GLS can produce more uniform and higher point cloud densities of about 100–

200 pts m-2. Furthermore, because of its UAV-integrated operation during the GLS campaign, 

its flight altitude can be varied depending on the target, thereby facilitating better acquisition 

of complicated land cover data. Although aircraft operated during ALB measurement can fly 

at higher altitudes with higher speed of approximately 220 km h-1 (Islam et al., 2020) and 

collect laser point clouds efficiently over larger reaches, the major shortcomings of aircraft 

are noteworthy: higher data acquisition costs, platform management difficulties, specialized 

personnel for operations, and weather and flight conditions. Consequently, in comparison to 

the more portable and cost-effective GLS, which acquires data at a shorter scale, ALB systems 
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are often challenging when they are expected to provide instantaneous and flexible 

measurements. However, despite these challenges in airborne platforms, a more recent study 

(Yoshida et al., 2020) used ALB-derived attributes in LCC mapping to parameterize flood 

modeling for vegetated river reaches, thereby revealing difficulties in distinguishing major 

species (e.g., woody vegetation and bamboo grove in our targeted vegetation). 

Several approaches to addressing LCC-related difficulties have been tested over the years, 

including decision tree algorithm (Yu et al., 2006; Gauci et al., 2018; Fehérváry et al., 2020), 

manual setting of thresholds (Do et al., 2019; Yoshida et al., 2020), and deep learning 

(Carbonneau et al., 2020; Pourmohammadi et al., 2020). The decision tree algorithm and 

threshold-setting approaches necessitate that researchers modify several parameters to adapt 

to region-related differences and that they discover data features on their own. The two 

methods described above demand considerable time to investigate data relations. In contrast, 

among the methods discussed here, the deep learning method, particularly with the atrous 

convolution module (Chen et al., 2017), has the most effective feature extraction for LCC. 

Therefore, it was chosen for this study. In an earlier deep learning-based study (Chen et al., 

2017), researchers used DeepLabv3+ model with the atrous convolution module to perform 

semantic segmentation, which has since become used widely in remote sensing-related 

research (Erfani et al., 2022; O'Neil et al., 2020). Furthermore, in a more recent study 

(Yoshida et al., 2022), fluvial researchers used the DeepLabv3+ model in conjunction with 

ALB-derived attributes for the first time to infer LCC mapping, demonstrating that hydraulic 

parameters derived from LCC results were used reasonably for flood simulation. They also 

revealed that recognition accuracy was high when training and validation sets were selected 

from the same location and period. However, when imagery data (aerial photographs) for deep 

learning in the validation set were chosen from the same location at different periods, similar 

recognition accuracy to that obtained in the case with the same location and period was not 
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achieved, thereby severely limiting the widely used LiDAR between targeted seasons. 

Given those findings, the current study was conducted as an attempt to use data from UAV-

borne photographs and GLS, because of their inherent benefits, to achieve higher-accuracy 

LCC (Islam et al., 2022). The difficulty of heterogeneous seasonal photographs being unable 

to predict one another is caused primarily by leaf-on or leaf-off situations and by sunlight-

angle-derived luminance difference of imagery data. Based on these considerations, this study 

was conducted to achieve mutual predictability among data from the same location in different 

periods. Especially, a coupling methodology of stable and reliable GLS-derived LiDAR data 

with UAV-based distinctive image features was proposed for this study: High Contrast 

Superimposed (HC-Si) method for combining input data for the existing RGB (3-channel)-

based DeepLabv3+ model. Furthermore, for complete comparison of the performance of our 

model, we examined an additional input channel for the existing 3-channel DeepLabv3+ 

model, i.e., 4-channel DeepLabv3+ model (i.e., RGBL; channel L represents GLS-derived 

height of land cover, l as described in detail hereinafter) for channel entry extension. For 

reference, the 3-channel-based model using input data derived solely from aerial photographs 

or LiDAR were also included in the comparison groups. Finally, the approaches proposed for 

this study are expected to be used in potential riverine studies to distinguish the most dominant 

riparian vegetation species accurately (i.e., woody vegetation and bamboo grove in our 

targeted area as described hereinafter), which can reasonably estimate spatially distributed 

hydrodynamic roughness in streamflow modeling and also can be useful in proper ecosystem 

management tasks. 
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2.2.2 Study site and methods 

2.2.2.1 Study site 

(a) 

 

(b) 

 

Figure 2.19 Perspective of Green LiDAR measurement area: (a) location of the Asahi River in Japan 

with kilo post (KP) values representing the longitudinal distance (km) from the river 

mouth, and (b) drone-captured photographs based on the marked positions in (a). 

 



70 
 

Figure 2.19 depicts our study site, which is located in a downstream area of the Asahi River, 

a first-class (state-controlled) river in Japan which flows through Okayama Prefecture into 

the Seto Inland Sea. During 1965–2005, the average river discharge at the Makiyama 

hydraulic station, which is located 20 KP upstream of the targeted domain, was 57.12 m3 s-1 

(MLIT 2007). For this study, the kilo post (KP) value represents the longitudinal distance 

(km, kilometers) from the target river mouth. The main target domain, known locally as the 

“Gion” area, is 14.6–15.8 KP (1.2 km long), as shown in Figure 2.19. Another test domain, 

known locally as the “Heidan” area, is 9.7–10.3 KP (0.6 km). The river section specifically 

examined herein has a mean bed slope of about 1:600, with about 300 m channel width. 

Moreover, extensive and diverse vegetation has been observed at the target site recently, 

raising concern among researchers about effective flood control and ecosystem management 

measures. During GLS campaigns, we recently observed a few river management tasks 

involving the cutting down of bamboo groves upstream of the study site (Figure 2.19). Based 

on the flood control aspects, the riparian vegetation at this study site was classified roughly 

into three types based on flow resistance characteristic (Yoshida et al., 2017), which include 

bamboo forests (bamboo), herbaceous species (grass), and woody species (tree). Along with 

riverine vegetation, this study added another four labels (i.e., water, bare ground, road, and 

clutter) to represent local surface environmental changes better. 

2.2.2.2 Data collection and processing 

For this study, we used GLS (TDOT Green; Amuse Oneself Inc.) along the targeted section 

of the lower Asahi River (Figure 2.19). Several flight operations were conducted under leaf-

off (March 2020, Gion) and leaf-on (October 2020 and April 2021, Gion; and October 2021, 

Heidan) conditions to achieve overlapping coverage of the target area. The GLS-device 

simply uses green lasers to scan the study area, which includes both the underwater and the 

terrain surfaces, as shown in Figure 2.20. Furthermore, for each GLS measurement, a digital 
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camera was mounted directly beneath the platform to take aerial photographs of the target 

river. Table 1 presents the equipment specifications, measurement parameters, and river water 

quality at the time of measurement. Because turbidity strongly influences the amount of light 

incident into the water column, the turbidity values were checked carefully before each GLS 

measurement. During the research periods, the water quality in the GLS-target area was 

suitable for measuring the underwater topographic surface, although we recorded a few 

missing data points because the current green laser's power was insufficient to penetrate 

deeper waters (Islam et al., 2022). 

 

 

 Figure 2.20 GLS using a green laser for overland and underwater surveys. 
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Table 2.13 Current Green LiDAR System (GLS) specifications and measurement conditions in the 

targeted river reach 

 Items Measurement date of 

GLS and Ortho-photo 

Mar. 

2020 

Oct. 

2020 

Apr. 

2021 

Equipment 

specification

s 

Laser wavelength range (nm) 532 532 532 

Measurement 

specification

s 

Number of laser beams (s-1) 60,000 60,000 60,000 

Ground altitude (m) 50 50 GND: 100 

WTR: 50 

Flight speed (km h-1) 9 9 GND: 14.4 

WTR: 9.0 

Density of measurement points (m-2) 100 100 GND: 50 

WTR: 100 

Photograph 

specification

s 

Resolution (cm pixel-1) 3 3 5 

Water quality Turbidity (FTU*: Surface level) 0.8 3.12 2.45 

Turbidity (NTU**: Intermediate 

level) 

- 3.7 2.6 

GND, Overland area; WTR, Underwater area; 

*, Formazin Turbidity Unit; **, Nephelometric Turbidity Unit 

 

 

 Figure 2.21 Voxel-based GLS data processing. 
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Both river topographic mapping and vegetation attribute measurements were taken using GLS 

at normal water levels. Data from GLS measurements were not recorded using the traditional 

waveform approach applied for ALB surveys. The current green LiDAR typically employs a 

reflected pulse recording technique, with a maximum of four echoes per laser pulse. However, 

because the use of effective recording intensity with four echoes per laser pulse for this study 

was not possible, we only recorded reflection intensity (int) values with a maximum of two 

echoes. In the case of GLS data processing, as shown in Figure 2.21, a Cartesian grid of cubic 

voxels with 0.25 m per side was initially developed to filter out noise in the laser point cloud. 

Following preprocessing, a horizontal two- dimensional (2-D) cell was developed with 1 m 

width, with the points in each 2-D cell designated as voxel-based points (n). The ground height 

is defined by filtering the point cloud near the bottom of the 2-D cell, known as DTM. In 

addition, the terrain surface was evaluated using the highest point in each 2-D cell: DSM. 

Finally, the height of land cover (l) was estimated using the DSM value minus the DTM value. 

 

 Figure 2.22 Preprocessing of imagery-based input data from drone images (aerial photographs) and 

LiDAR dataset (GLS). 
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Table 2.14 List of Input Imagery for the 3-channel-based and 4-channel-based model 

Type-based Source Elements Method Input Imagery for DL 

3-channel 

Aerial Photographs HR-DI ― LR-DI (RGB) 

LiDAR Data int HC GLS-I (int) 

 n HC GLS-I (n) 

 l HC GLS-I (l) 

 l Gray GLS-I (l)-Gray 

Aerial Photographs 

& 

LiDAR 

LR-DI (RGB) & GLS-I (int) HC-Si HC-Si-I (RGB, int) 

LR-DI (RGB) & GLS-I (n) HC-Si HC-Si-I (RGB, n) 

LR-DI (RGB) & GLS-I (l) HC-Si HC-Si-I (RGB, l) 

GLS-I (int) & GLS-I (n) HC-Si HC-Si-I (int, n) 

GLS-I (int) & GLS-I (l) HC-Si HC-Si-I (int, l) 

GLS-I (n) & GLS-I (l) HC-Si HC-Si-I (n, l) 

LR-DI (RGB) & GLS-I (l) Gray-Si Gray-Si-I (RGB, l) 

4-channel 

RGBA Format LR-DI (RGB) & GLS-I (l)(Gray) AC RGBL 

HR-DI, High-Resolution Drone Image; int, Intensity of GLS; n, Voxel-based points of GLS; l, Vegetation height 

of GLS; RGBL, 4-channel data including R-, G-, B-, l-based information in each single channel; HC, High-

Contrast Color bar-based method; Gray, Gray-Scale Color bar-based method; HC-Si, High-Contrast Color bar-

based Superimposed method, a kind of image fusion approach; Gray-Si, Gray-Scale Color bar-based 

Superimposed method; AC, Alpha Layer Change-based method; DL, Deep Learning 

Figure 2.22 depicts imagery input data of three types for this study: low-resolution drone 

images (LR-DI), images derived from GLS-based point cloud using a high-contrast color bar 

(GLS-I), and images created by superimposing the above images (HC-Si-I). The following 

sections describe processing of the input datasets of the three types (Table 2.14). 

In this case, we used typical input imagery of aerial photographs for deep learning. Because 
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the LiDAR data resolution was 1 m pixel-1 and because that of high-resolution drone images 

(HR-DI) was about 0.03 m pixel-1, size conversion was necessary to unify the size of the input 

imagery. Consequently, to achieve 1 m pixel-1 LR-DI (i.e., changed from 0.03 m pixel-1 HR-

DI), the interpolation-free method (i.e., a method that extracts only the color of pixels at fixed 

interval positions) was used to maintain the color of each pixel in the newly generated imagery 

as unchanged from the original imagery. 

Raw GLS data include laser point cloud coordinates, DSM, DTM, DSM minus DTM (l), 

voxel-based laser points (n), and intensity (int). The visualization software, CloudCompare 

(i.e., 3-D point cloud and mesh processing software with open source project), was used to 

convert the laser point cloud information, which includes only numerical values (i.e. csv files), 

into visual imagery. Furthermore, different visualization effects were achieved by changing 

the type of color scale or the distribution of the selected slider (i.e., the point to set specific 

color in the color scale). Because deep learning models have strong learning ability for data 

with more visible features, one challenge of this study was determining how to present the 

features of LiDAR data better using visualization software. Finally, after comparing the visual 

effects of various default color scales, the "high-contrast color scale" was chosen for this study. 

Furthermore, the selected color scale displayed the LiDAR data as imagery after dividing the 

GLS data (from min to max) into 256 steps. In addition, the "high contrast color scale" 

included six selected slides with different colors in the 0–50% section of the color scale (i.e., 

1%, 2%, 4%, 8%, 16%, and 32%). 

 

1%: R = 158, G = 158, B = 158 

2%: R = 0, G = 0, B = 127 

4%: R = 0, G = 255, B = 0 

8%: R = 0, G = 85, B = 0 

16%: R = 255, G = 255, B = 0 

32%: R = 148, G = 97, B = 97 
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Figure 2.23 Imagery-based input and HC-Si-I processing: LR-TL, low-resolution true label. 
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This color scale was helpful for distinguishing the laser point cloud better and for 

characterizing the data better by emphasizing even weakly distinguished image features. 

Because of the use of multiple split color bands, the "high-contrast color scale" provided 

better-distinguished data for the n and l in the first half of the value. However, this was the 

minor exception for int, which can be attributable to its non-uniform distributions. Following 

the selection, n, l and int were used as transformed data with the default color scale. Finally, 

the transformed imagery was designated as GLS-I (n), GLS-I (l), and GLS-I (int). 

Subsequently, the visualized images were rendered to files using zoom-free method. 

Consequently, the output imagery maintained the same resolution of 1 m pixel-1. In addition, 

another default color setting, grayscale, was used as a reference in this study for comparison 

with the 4-channel input RGBL in the following section with the same standard. Unlike the 

high-contrast color scale, which has a selected slide that is not distributed evenly across the 

entire color scale, grayscale has no selected slide: all the colors are distributed evenly across 

the entire color scale. 

Because data collected using a single LiDAR sensor remain insufficient, the amount of 

information for imagery was increased by incorporating data from another sensor, such as a 

digital camera. Accordingly, we used image fusion, which is effective in the discipline of 

remote sensing, to create a fused image that includes clearer, more accurate, and more 

comprehensive information than from any single image (Jiahuan et al., 2018). Image fusion 

of various dataset types was conducted using GIMP software using the gamma-corrected 

algorithm. Gamma correction has been used widely in remote sensing research for shallow 

removal (Yavari et al., 2020) and haze removal (Ju et al., 2018). The combined high-contrast 

color scale-based images were treated as High Contrast Superimposed Images (i.e., HC-Si-I). 

Actually, HC-Si-I is a two-by-two combination of four elements: LR-DI, GLS-I (i.e., 

reflection intensity (int), voxel-based laser points (n), and GLS-based (l)). Because of the 50% 
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transparency overlay layer, the order of the overlay and background layers need not be 

considered, as shown in Figure 2.23. Finally, HC-Si-I was created and processed using image 

processing software (i.e., GIMP) as the following. 

1. Reduce the transparency of the overlay layer to 50%. 

2. Maintain the original transparency of the background layer. 

3. Merge these two layers into a single image with gamma correction (default method of layer 

combination in GIMP). 

This operation combined features of the two layers to generate an image with new features, 

supplementing the information derived from single-type data. Equation (1) represents the 

blending layer calculation formulation (i.e., the HC-Si-I producing process). 

For comparison with the subsequent 4-channel model under the same data conditions, the 

high-contrast color scale in GLS-I (l) and HC-Si-I (RGB, l) used above were replaced with 

new grayscale-based input imageries: GLS-I (l)-Gray and Gray-Si-I (RGB, l) (Figure 2.23). 

Preparation of 4-channel imagery included three steps: disassembly, replacement, and 

synthesis. LR-DI (png format) was first disassembled into four grayscale images, one for each 

of the four channels, i.e., R, G, B, and A. In the second step, the original gray image of channel 

A was replaced by the gray image transformed from the GLS-derived l (i.e., channel L). The 

final step was to combine the original R-, G-, B-, and L-channel-based grayscale images into 

a single image (RGBL). 

We considered early field observation experience during the preprocessing stage of mapping 

the LCC to obtain support for mapping the high-resolution true label (HR-TL). Earlier field 

observation photographs, as shown earlier in Figure 2.19, provide crucially important 

information such as texture and color difference for identifying target area characteristics. 

Consequently, based on earlier field observations of land cover attributes of our targeted river 

(Yoshida et al., 2022) and flow-resistance characteristics (Green, 2005; Nepf, 2012), we 
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sketched classification of the natural objects in the study area with five labels: bamboo, tree, 

grass, bare ground, and water. Furthermore, in the HR-TL mapping, we attempted to produce 

a rough distinction between natural and artificial areas. Therefore, in addition to the five labels 

described above, we considered two additional labels in the HR-TL mapping: “roads” and 

“clutter” (i.e., all artificial objects except roads). Based on the earlier judgment standard 

(Yoshida et al., 2022), land cover of seven types for HR-DIs from three target periods were 

labeled (Figure 2.23). The 1 m pixel-1 LR-DI and low-resolution true label (LR-TL) were 

extracted from the HR-DI and HR-TL using an interpolation-free method. As an example of 

Figure 2.23, Figure 2.24 depicts a dataset for October 2020 campaign, including LR-DI, 

GLS-I (i.e., int, n, l), and LR-TL. 

 

Figure 2.24 Samples of the 3-channel imagery input (i.e., LR-DI, GLS-I (int), GLS-I (n), GLS-I (l), 

GLS-I-Gray, HC-Si-I (RGB, int), HC-Si-I (RGB, n), HC-Si-I (RGB, l), HC-Si-I (int, n), 

HC-Si-I (int, l), HC-Si-I (n, l), Gray-Si-I (RGB, l), LR-TL); (i.e., Bare Ground, BG; Tree, 

T; Bamboo, B; Grass, G; Water, W; Road, R; Clutter, C). 
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Figure 2.25 Processing of mapping LCC with 3-channel DeepLabv3+ model; GSD: Ground Sample 

Distance. 

2.2.3 Preprocessing Module of LCC mapping 

Chen et al. (2018) demonstrated that the DeepLabv3+ model's backbone (i.e. Xception) 

minimized the original input data size (width, height, and channels) as (299, 299, 3). After 

considering the overall size of the input imagery (1400, 600, 3), we settled on (320, 320, 3) 

as the uniform input data size. The preprocessing module's primary function is to convert the 

prepared input imagery into multiple (320, 320, 3) panels. As Figure 2.25 shows, the crop 

method (i.e., dividing the larger imagery into panels) employs a sliding (320, 320, 3) window 

with a (320, 320, 3) window-size stride, and saves the name of the imagery with the position 

of the most upper-left pixel. It is noteworthy that the 4-channel input format (RGBL) should 

be transformed as (320, 320, 4) from the 3-channel-based format (320, 320, 3). Following the 

inference, the operator can combine all the inferred panels with this position into a single 

image. 
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2.2.4 Models of producing LCC mapping 

2.2.4.1 RGB (3-channel)-based DeepLabv3+ model 

To extract features from the input RGB (3-channel)-based imagery (e.g., LR-DI, GLS-I, HC-

Si-I), the DeepLabv3+ model initially employs an “encoder–decoder” structure (Chen et al., 

2018). The encoder of this model is assisted by the atrous spatial pyramid pooling module 

(Chen et al., 2018) to capture multi-scale features via atrous convolution with different 

dilation rates (e.g., 6, 12, 18) and image-level feature pool. These multi-scale feature maps 

are then concatenated together, upsampled by a factor of 4, and then concatenated with high-

resolution feature maps extracted from the bottom of the encoder module. As a final point, 

category prediction is performed on this merged feature map. The predictions are then 

upsampled to produce the output. The model's parameters are then optimized using true label 

(TL). Subsequently, these parameters are saved as a “trained model (RGB)”. This training 

process determines the relation between the input data: input imagery and TL. The workflow 

for processing LCC mappings using the DeepLabv3+ model is depicted in Figure 2.25. The 

DeepLabv3+ processing is represented as (a) training phase: [Input imagery] → [DeepLabv3+ 

model] → [Trained model] and (b) inference phase: [Input imagery] → [trained model] → 

[LCC as output]. 
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Figure 2.26 Processing of mapping LCC with 4-channel DeepLabv3+ model (i.e., LiDAR cooperated 

RGB method, LiCR method). 

2.2.4.2 4-channel DeepLabv3+ model 

As shown in Figure 2.26, the transformed RGBL imagery is no longer compatible with the 

3-channel-based DeepLabv3+ model, which has only three channels. For adapting to this 

newly generated 4-channel imagery, modification of other parts of the DeepLabv3+ model is 

unnecessary, except for modification of the entrance by adjusting the number of channels in 

the input layer. 

2.2.5 Comparison of LCC mapping 

The input imageries for deep learning (Table 2.14) are divided into four comparison groups 
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(Table 2.15). In addition, the main analysis processing is divided into the following four 

groups. 

 

Table 2.15 Comparison conditions of the training and validation datasets in the three targeted periods 

 Input Imagery Periods Sites Models 

G
ro

u
p

 1
 

LR-DI (RGB) Mar. & Oct. 2020 (T & P) Gion 3-channel 

GLS-I (int) Mar. & Oct. 2020 (T & P) 

GLS-I (n) Mar. & Oct. 2020 (T & P) 

GLS-I (l) Mar. & Oct. 2020 (T & P) 

HC-Si-I (RGB, int) Mar. & Oct. 2020 (T & P) 

HC-Si-I (RGB, n) Mar. & Oct. 2020 (T & P) 

HC-Si-I (RGB, l) Mar. & Oct. 2020 (T & P) 

HC-Si-I (int, n) Mar. & Oct. 2020 (T & P) 

HC-Si-I (int, l) Mar. & Oct. 2020 (T & P) 

HC-Si-I (n, l) Mar. & Oct. 2020 (T & P) 

G
ro

u
p

 2
 GLS-I (l)-Gray Mar. & Oct. 2020 (T & P) Gion 3-channel 

Gray-Si-I (RGB, l) Mar. & Oct. 2020 (T & P) 

RGBL Mar. & Oct. 2020 (T & P) 4-channel 

G
ro

u
p

 3
 HC-Si-I (RGB, l)-

Apr 

Mar. or Oct. 2020 (T), Apr. 2021 

(P) 

Gion 3-channel 

HC-Si-I (RGB, l) Mar. & Oct. 2020 (T & P) 

G
ro

u
p

 

GLS-I (l) Mar. & Oct. 2020 (T), Oct. 2021 (P) Gion & 

Heidan 

3-channel 

HC-Si-I (RGB, l) Mar. & Oct. 2020 (T), Oct. 2021 (P)  

      T, Train; P, Predict; T & P, Mutual train and predict 

 

Group 1: Compare the DeepLabv3+ model's performance based on different input datasets 

and choose the best solution among them. The comparison indices include the average and 

absolute difference values of both overall accuracy (OA) and Macro-F1 for the two predicted 

results. Mutual results were based on the one solution-trained dataset and were then predicted 

with the other for the data (i.e., GLS-derived datasets in March and October 2020). 

Group 2: Based on the results of Group 1, compare methods using RGB and l as the best input 



84 
 

dataset in different models with three cases (GLS-I (l)-Gray for LiDAR-derived input data, 

Gray-Si-I for input data combination with 3-channel DeepLabv3+ model, and 4-channel 

DeepLabv3+ model for channel entry extension). This group was used to compare the 

difference in accuracy when using the same data (Gray-Si-I (RGB, l) and RGBL) with 

different input channels (3-channel and 4-channel) and different methods (Superimposed 

method and Alpha layer change). Furthermore, GLS-I (l)-Gray was compared to Gray-Si-I 

(RGB, l) and RGBL as a reference. 

Group 3: Results of the earlier two groups clarify that the HC-Si-I method has some 

advantages. Then again, the performance and stability of this method must be tested when 

inferred from new data. Therefore, we tried to test the data collected using GLS in April 2021. 

This group was trained with March and October 2020 datasets and was predicted with April 

2021 data. Results were compared to HC-Si-I (RGB, l) in the first group using the same 

processing rules as those used for Group 1. 

Group 4: After testing data from heterogeneous periods, another location was chosen to test 

the generalizability of HC-Si-I, especially for the LCC labels of water and bare ground. 

2.2.5.1 Group 1: Best combination of input data type for LCC mapping 

Data source-based comparison 

Depending on the quantity of information or data source, this group can be divided roughly 

into three main sections as presented below (Figure 2.27): 

Part 1: Only low-resolution UAV images (i.e., LR-DI (RGB)) 

Part 2: GLS-I using only single LiDAR-derived data (i.e., GLS-I (int), GLS-I (n), GLS-I (l)) 

Part 3: HC-Si-I that combines LR-DI and GLS-I (i.e., HC-Si-I (RGB, int), HC-Si-I (RGB, n), 

HC-Si-I (RGB, l)), or GLS-I and GLS-I superimposed into a new image (i.e., HC-Si-I (int, n), 

HC-Si-I (int, l), or HC-Si-I (n, l)) 

In terms of accuracy comparison, increasing the amount of information improves accuracy 
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(i.e., the mean value of Part 3 was improved compared to Part 1 (HC-Si-I) or the mean value 

of Part 2 (GLS-I)). 

Data-type-based comparison 

Furthermore, depending on the data types and their combination, the accuracies of LR-DI 

(RGB), GLS-I (int), HC-Si-I (RGB, int), HC-Si-I (RGB, n), and HC-Si-I (int, n) have some 

advantages over GLS-I (n) using n alone, but the cases with l have much higher accuracy (i.e., 

GLS-I (l), HC-Si-I (RGB, l), HC-Si-I (int, l), and HC-Si-I (n, l)). 

The following are reasons for these results: RGB, n, and int are the most vulnerable to 

seasonal environmental and insolation changes, leading to variations in land cover conditions. 

However, to minimize the effects of these changes, cases including l are expected to improve 

accuracy while maintaining stability. Figure 2.27 shows that the only four cases in Group 1 

with an average Macro-F1 score close to 0.7 were GLS-I (l), HC-Si-I (RGB, l), HC-Si-I (int, 

l), and HC-Si-I (n, l), all of which involved l. The highest average OA value among them was 

0.78 for HC-Si-I (RGB, l). All absolute difference values were less than 0.02. The results also 

indicated that GLS-I (l) can reflect LCC to some degree. 

 

Figure 2.27 Group-1 (i.e. best imagery data type for DeepLabv3+ model-based LCC mapping) with 

typical comparative indices, including averaged and absolute values of overall 

accuracy (OA) and Macro-F1. 
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Figure 2.28 Label-based comparison of GLS-I (l) and HC-Si-I (RGB, l) in Group-1 with targeted 

seven labels. 

Comparison of the high-performance l-based method: GLS-I (l) and HC-Si-I (RGB, l) 

Label-based comparison results are classifiable into three parts for consideration (Figure 

2.28). 

(1) Vegetation parts (Grass, Bamboo, Tree) 

The accuracy of HC-Si-I (RGB, l) in classifying targeted vegetation (i.e., Grass, Bamboo, 

Tree) was not found to be significantly different from that of the GLS-I (l). The marginal 

variation is attributable to the fact that the local planar distribution information provided by 

GLS-I (l) was sufficient for the DeepLabv3+ model to learn its features (including but not 

limited to the undulations of vegetation-to-vegetation distribution, the position of vegetation 

communities, and the vegetation communities fixed at a certain value interval). 

(2) Vegetation-off homogeneous pattern part (Road, Water) 

Considering the disparity in data provided by GLS-I (l) and HC-Si-I (RGB, l), the color of 

the road and water remains largely unchanged (the water might change because of sunlight 

and water quality immediately after minor flooding). In terms of height (l), both values are 
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nearly identical (i.e., 0 m), resulting in difficulties in learning features locally. However, 

because of the fact that the study location remains unchanged, the extent and contours of the 

presence of road and water sections in GLS-I (l) were sufficient to extract features (i.e., the 

planar distribution from the general view). Therefore, if the test area is changed, then the 

possibility exists that the accuracy will be lowered, as described later for reference in the 

section 5.4. In contrast, when using HC-Si-I (RGB, l), accuracy is guaranteed because of the 

amount of information supplemented when compared to GLS-I (l). 

(3) Vegetation-off heterogeneous pattern part (Bare Ground, Clutter) 

Distinguishing between grass and bare ground labels solely on GLS-I (l) would be extremely 

difficult because both have similar heights. Moreover, the features distinguished in height are 

not noticeable. That fact might lead to less accuracy in LCC for these two labels. Furthermore, 

because clutter is an artifact, parts of it can be changed over time, resulting in a complete 

change in character (i.e., civil engineering constructions site). Moreover, the amount of data 

available was insufficient for the model to learn the features (less pixel amount of clutter). 

Tables 4–7 present the accuracy valuation indices (OA and Macro-F1) calculated using 

pixel-based confusion matrix in comparison to corresponding TL for the GLS-I (l) and HC-

Si-I (RGB, l) cases. Because the number of grass (G) labels is approximately three times that 

of bare ground (BG) labels, the accuracy of grass is higher, although their distinguishing 

features are nearly identical.  In Tables 4 and 5, the results demonstrated that GLS-I (l) 

misclassified from bare ground to water areas. Furthermore, the GLS-I (l)-derived labels were 

based on both the pattern's outline and color, with the bare ground label and the water label 

having similar colors in GLS-I (l). In contrast, whereas the water label had similar outlines in 

March and October 2020, the bare ground label's outline varied greatly because of river 

management tasks (Figure 2.19) and grass growth and decay. The water label had high 

accuracy under the condition of similar outlines (water level) in different seasons for the same 
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panel where features are learned (Figure 2.25). In contrast, because of large changes in the 

hetero-seasonal conditions, the bare ground label had low accuracy. However, as a result of 

combining LR-DI (RGB) and GLS-I (l) to increase features, HC-Si-I (RGB, l) was found to 

have significantly improved accuracy. The study revealed that when the HC-Si-I (RGB, l) 

approach was used, the recall of bare ground for the GLS-I (l) case using March 2020 l as the 

training dataset and October 2020 l as the validation dataset improved from 59.07% (Table 

2.16) to 75.81% (Table 2.18). Furthermore, in the case of October 2020 l as the training 

dataset and March 2020 l as the validation dataset, the recall of the bare ground was improved 

from 50.74% (Table 2.17) to 66.86% (Table 2.19). Moreover, with the exception of the bare 

ground and clutter parts, the recall of other labels was maintained with an absolute difference 

of less than 10% (Tables 2.16–2.19). 

 

Table 2.16 Confusion matrix of GLS-I (l) using March 2020 l as training dataset, October 2020 l as 

validation dataset (i.e., T03P10 GLS-I (l)). 

T03P10 GLS-I (l) 

 BG T B G W R C Total  RC (%) 

BG 25362 860 121 6361 9421 384 426 42935 59.07 

T 1482 74060 4267 11877 3030 96 589 95401 77.63 

B 407 4785 20512 3259 251 0 122 29336 69.92 

G 14279 6401 764 111294 3629 3758 1972 142097 78.32 

W 6587 1081 24 1895 64990 0 540 75117 86.52 

R 1590 10 0 3328 4 28204 332 33468 84.27 

C 1823 270 133 6977 976 1256 2142 13577 15.78 

Total 51530 87467 25821 144991 82301 33698 6123 431931  

PR (%) 49.22 84.67 79.44 76.76 78.97 83.70 34.98   

OA = 0.76, Macro-F1 = 0.68 

RC, Recall; PR, Precision; OA, Overall Accuracy; Macro-F1, Macro-averaged F1 score 
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Table 2.17 Confusion matrix of GLS-I (l) using October 2020 l as training dataset, March 2020 l as 

validation dataset (i.e., T10P03 GLS-I (l)). 

T10P03 GLS-I (l) 

 BG T B G W R C Total RC (%) 

BG 33075 2778 338 13606 13537 845 1001 65180 50.74 

T 842 61464 2342 6833 906 46 90 72523 84.75 

B 188 8142 22660 2259 65 0 26 33340 67.97 

G 5982 14356 2535 110491 1747 4678 3350 143139 77.19 

W 4365 3978 224 4007 86333 32 733 99672 86.62 

R 758 103 0 2202 2 29743 993 33801 87.99 

C 824 745 171 5582 1228 1116 4792 14458 33.14 

Total 46034 91566 28270 144980 103818 36460 10985 462113  

PR (%) 71.85 67.13 80.16 76.21 83.16 81.58 43.62   

OA = 0.75, Macro-F1 = 0.70 

 

Table 2.18 Confusion matrix of HC-Si-I (RGB, l) using March 2020 l as training dataset, October 

2020 l as validation dataset (i.e., T03P10 HC-Si-I (RGB, l)). 

T03P10 HC-Si-I (RGB, l) 

 BG T B G W R C Total RC (%) 

BG 33767 1175 140 6022 2403 535 500 44542 75.81 

T 1127 78859 5458 9109 2996 209 366 98124 80.37 

B 209 5531 20366 2915 226 0 119 29366 69.35 

G 15320 9000 1692 105951 3183 3691 4757 143594 73.79 

W 5028 1372 21 1410 65364 8 794 73997 88.33 

R 1193 50 2 2812 83 29397 454 33991 86.48 

C 2470 549 148 5526 799 1354 4807 15653 30.71 

Total 59114 96536 27827 133745 75054 35194 11797 439267  

PR (%) 57.12 81.69 73.19 79.22 87.09 83.53 40.75   

OA = 0.77, Macro-F1 = 0.72 

 

 

 

 



90 
 

Table 2.19 Confusion matrix of HC-Si-I (RGB, l) using October 2020 l as training dataset, March 

2020 l as validation dataset (i.e., T10P03 HC-Si-I (RGB, l)). 

T10P03 HC-Si-I (RGB, l) 

 BG T B G W R C Total RC (%) 

BG 43664 2251 398 10503 5943 1135 1410 65304 66.86 

T 1086 58507 3389 8647 872 22 121 72644 80.54 

B 202 5805 25263 2018 43 0 59 33390 75.66 

G 6404 12182 2686 109774 2132 7293 2753 143224 76.64 

W 2420 3613 341 4599 88338 14 647 99972 88.36 

R 541 84 0 1618 197 30901 887 34228 90.28 

C 1342 427 88 5485 1032 1286 4795 14455 33.17 

Total 55659 82869 32165 142644 98557 40651 10672 463217  

PR (%) 78.45 70.60 78.54 76.96 89.63 76.02 44.93   

OA = 0.78, Macro-F1 = 0.73 

 

2.2.5.2 Group 2: Model comparison (3-channel or 4-channel) with RGB and l 

Although GLS data are stable across seasons (Islam et al., 2022), digital photographs can 

provide more details and features than LiDAR, such as the difference between bamboo forest 

and trees during the lush vegetation period, the color difference between bare ground and 

water, and the feature difference between the grass and bare ground. In addition, when 

confronted with the difficulty of overcoming seasonal differences, simply using LiDAR or 

digital photographs as input might necessitate a large amount of data to be trained to find the 

relations between them, which is one limitation of this study. Consequently, with limited data, 

ascertaining how to characterize the data effectively and how to allow the model to learn its 

features have come to pose new challenges.  

Therefore, whether the model can learn the features more effectively by transforming 

LiDAR and digital imagery into 3-channel input data with new features or by directly feeding 
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the unprocessed 4-channel data is a topic that must be discussed. To validate the 4-channel 

part of the idea above, the DeepLabv3+ model's input layer must be changed from a 3-

channel-based format to a 4-channel-based format while retaining the DeepLabv3+ model's 

internal structure. According to Group 2 results (Figure 2.29), 3-channel-based Gray-Si-I 

(RGB, l) outperforms the 4-channel-based LiDAR cooperated RGB method (i.e., LiCR (RGB, 

l)) slightly in terms of both the average and absolute difference estimates, despite using the 

same amount of data.  

Based on this comparison group, it can also be inferred under the condition of the limited 

input dataset that the internal structure of the original model remains unchanged, that the input 

data can be processed more directly to be visualized more easily, and that much higher 

accuracy is attainable. In contrast, the input dataset for the 4-channel DeepLabv3+ model 

might be insufficient for training to extract features of the RGBL data. Furthermore, 

irrespective of the fact that the 3-channel Gray-Si-I (RGB, l) used more data than the 3-

channel GLS-I (l)-Gray, no significant improvement was found in the valuation indices 

(Figure 2.29), implying that simply collecting more data is unlikely to help the model learn 

features more effectively using the gray-scale color bar. 

 

Figure 2.29 Group-2 (i.e., comparison of 3-channel-based and 4-channel-based methods using RGB 

and l) with typical comparative indices. 
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2.2.5.3 Group 3: Seasonal change test of HS-Si-I (RGB, l) method 

 

Figure 2.30 Group-3 (i.e., test the HC-Si-I method with April 2021 dataset, comparing with the HC-

Si-I (RGB, l) result in Group-1) with typical comparative indices. 

 

From group 3 results, as shown in Figure 2.30, it is apparent that the HC-Si-I method 

maintains high performance and stability even after validation data were changed to data 

taken in April 2021. The fact that HC-Si-I (RGB, l)-April maintained comparable accuracy to 

that of HC-Si-I (RGB, l) was attributable to a shorter data collection interval between the 

valid and the training datasets (i.e., from March 2020 to April 2021; Table 3). Furthermore, 

despite a few upstream tree cutting areas and minor flooding between the targeted periods, no 

significant topographic changes were found during this interval. However, seasonal changes 

were found in foliage conditions with no significant change in GLS-based l estimations. 

Therefore, based on results of comparisons of the three groups described above, this method 

can achieve more accurate mutual prediction of GLS-based imagery input between different 

periods in the targeted area. 
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2.2.5.4 Group 4: Position change test of GLS-I (l) and HC-Si-I (RGB, l) method 

 

Figure 2.31 Group-4 (i.e., test the GLS-I (l) and HC-Si-I (RGB, l) method with Heidan October 2021 

dataset) with typical comparative indices of W-labels and BG-labels. 

As stated previously for Group 1 (Figure 2.28), the accuracy of bare ground and water labels 

differed greatly when only GLS-I (l) was used. The absolute difference was nearly negligible 

when compared to the HC-Si-I (RGB, l) method. Because of their nearly identical l values, 

the possibility exists of lowering GLS-I (l) accuracy, particularly in water areas with changing 

test sites. To verify whether the method used for this study is applicable to other study sites, 

the two best-performing cases in Group 1 were chosen for comparison: GLS-I (l) and HC-Si-

I (RGB, l). Using the same method as that shown in Figure 2.25, data from March and 

October 2020 measures from the Gion site were trained to predict data from October 2021 

measures from the Heidan site. Test site findings (Figure 2.31) revealed that the accuracy of 

the water label declined drastically when using GLS-I (l) in comparison to the result 

demonstrated earlier (Figure 2.28), as discussed in section 5.1. Furthermore, the HC-Si-I 

(RGB, l) approach maintained higher accuracy in both water and bare ground labels. 

Therefore, test results for the specific two labels indicate that HC-Si-I (RGB, l) is more 

generalizable than GLS-I (l). 
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2.2.6 Conclusion 

Based on the original DeepLabv3+ model for single camera drone images as input data in the 

LCC problem, the new 3-channel input dataset was proposed for this work by including 

LiDAR data transformed with default color scales (i.e., high-contrast color scale, gray scale) 

and data superimposing data of multiple types, i.e., RGB + LiDAR, LiDAR + LiDAR. The 

newly generated 3-channel input data were used to classify riverine land cover, which was 

divided into four groups for comparison. In Group 1, the LCC accuracy was improved by 

increasing the amount of source data, whereas cases using l data were beneficial in terms of 

both accuracy (average indices) and stability (absolute difference indices). The GLS-I (l) and 

HC-Si-I (RGB, l) approaches outperformed in all cases using l data. In addition, HC-Si-I 

(RGB, l) improved the accuracy of the bare ground and water labels, whereas GLS-I (l) cannot 

differentiate with high indices. In group 2, the 3-channel model with our input dataset 

outperforms the 4-channel approach with the gray scale color bar, despite using the same 

amount of data. Such a drop in performance, even after upgrading the channel, might be 

attributed to an insufficient training dataset, which should be considered in future studies with 

inclusion of more investigations. Furthermore, despite considering more data in the same 3-

channel-based model, no significant improvement was achieved in the average and absolute 

difference indices, implying that simply adding more information with simple gray scaling is 

unlikely to help the model learn features more effectively. Furthermore, the generalizability 

of HC-Si-I (RGB, l) was well demonstrated in both Group 3 and Group 4 using heterogeneous 

seasonal and site data. To conclude, when compared to the earlier study conducted by Yoshida 

et al. (2022) using RGB and ALB datasets for the same river and vegetation species targeted 

herein, our results obtained for different seasons (Macro-F1 was close to 0.70) showed 

improvement of about 15%, particularly in terms of Macro-F1 estimate differences. Although 

earlier flood simulation results based on the same seasonal-based LCC findings were 
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reasonable (Macro-F1 was close to 0.84), their hetero-seasonal results were insufficient 

(Macro-F1 was close to 0.55). Therefore, using only hetero-seasonal GLS-derived l, the 

current LCC findings demonstrated more accurate monitoring of riparian vegetation, 

particularly tree species, implying that the current LCC findings might be adequate for flow 

modeling purposes and proper ecosystem management tasks. 

2.3 Interchangeability of Cross-platform Orthophotograph applied on LCC 

2.3.1 Introduction 

River environmental information includes crucially important data such as topographic 

bathymetry and vegetation attributes that are necessary to develop balanced river management 

measures, addressing issues such as flood control (Yoshida et al., 2021) and ecosystem 

management (Mandlburger et al., 2015). At past time, to get these mentioned data, field 

surveys that require personnel to entry to the site are necessary.  These years, to overcome 

this limitation, digital surface models (DSMs) and digital terrain models (DTMs) have 

become indispensable tools for describing terrain conditions (i.e., using DSM minus DTM to 

infer the height of the land cover). Incidentally, Light Detection and Ranging (LiDAR) 

technology generates high-resolution and accurate DSMs and DTMs by halving the time 

between the emitted pulse and detection of the reflected echo (Yan et al., 2015). Based on 

LiDAR technology characteristics, airborne LiDAR bathymetry (ALB) and unmanned aerial 

vehicle (UAV)-borne green LiDAR system (GLS) have been already applied in the riverine 

environment measurements in Japan (Islam et al., 2020). In accordance with the mentioned 

measurements results (i.e., DSM minus DTM), how to classify the land cover using these 

results is becoming one of the tasks in the river engineering-related research.  

These years, several approaches for overcoming land cover classification (LCC) difficulties 

have been tested, including decision tree algorithm (Yu et al., 2006), manual setting of 



96 
 

thresholds (Do et al., 2019), and deep learning (Yoshida et al., 2022). Considering the time 

cost on discovering and extracting the feature of data, the deep learning method, particularly 

with the atrous convolution module has some advantage in effective feature finding. Therefore, 

DeepLabv3+ model with atrous convolution module was chosen for this study.  

Subsequently, with the help of the DeepLabv3+ model, the high accuracy of LCC 

producing has been well proven from past studies (Yoshida et al., 2022). These studies 

utilized ortho-photographs with LiDAR data to classify the land cover using DeepLabv3+ 

model with additional module for adding LiDAR dataset with photographs. It also revealed 

that, because of the similar feature, recognition accuracy of LCC is high (i.e., averaged overall 

accuracy is almost 90%) when training and validation sets were selected from the similar 

location and period. However, this mentioned study was based on the same platform (e.g., 

training ALB dataset, predicting ALB dataset). If the data collected by different platforms, the 

impacts on the LCC mapping results derived by this operation has not been demonstrated yet. 

Thus, one more step, to mutual-predict cross-platform LCC to verify the interchangeability 

(i.e., train ALB dataset, predict GLS dataset; train GLS dataset, predict ALB dataset) becomes 

the target in this study. Alternatively, instead of using additional module for accuracy 

improvement, this study tried to increase the feature by image fusion derived from imagery 

and LiDAR. And how to transform the LiDAR data into imagery in an expressive way is also 

required in this study.  

To observe the impact of cross-platform on LCC in this study as most as possible, the 

resolution and data styles (i.e., digital imagery, LiDAR) of ALB and GLS in mutual-prediction 

are chosen as same. On the other side, because of the data limitation, instead of totally same 

season, the similar season-related ALB and GLS dataset are selected. Eventually, the 

comparisons in this research obtained from cross-platform mutual-predictions can facilitate 

understanding of cross-platform data features, and determine a reasonable method to retain 
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the robustness using deep learning method with cross-platform data in LCC mapping 

producing. 

2.3.2 Study site and methods 

2.3.2.1 Study site 

Figure 2.32 depicts our study site. As a consequence of that, as shown in Figure 2.33 (a), (b), 

both of ALB and GLS measurement include overland and underwater area, and the land cover 

species all include the mentioned seven labels. 

 

Figure 2.32 Perspective of Airborne LiDAR Bathymetry and Green LiDAR measurement area: (a) 

location of the Asahi River in Japan with kilo post (KP) values representing the 

longitudinal distance (km) from the river mouth, (b) aerial-captured photographs based 

on the marked positions in (a), and (c) drone-captured photographs based on the marked 

positions in (b). 
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Figure 2.33 In (a) overland and (b) underwater surveys, Light Detection and Ranging (LiDAR) using 

a Near InfraRed (NIR) from (c) and green laser from (d), for ALB and GLS, respectively. 

2.3.2.2 Data collection 

For this study, we conducted ALB (Leica Chiroptera II; Leica Corp.) surveys in March and 

November 2017 along a 4.2 km reach of the lower Asahi River (13.2–17.4 KP) controlled by 

the national government. As shown in Figure 2.32 (b), multiple flight operations were 

conducted in leaf-off (i.e., March 2017) condition to achieve overlapping coverage of the 

target area. The current system scanned the river channel for LCC using aircraft-mounted 

Near InfraRed (NIR) and green lasers as presented in Figure 2.33 (a). The device commonly 

uses the green laser to detect underwater (bottom) surfaces because green light can penetrate 

the water column to some degree. Conversely, the NIR laser is used to detect terrain surfaces, 

including vegetation, because it is readily reflected by the air-water interface. In the case of 

ALB, only NIR was used to calculate DSM and DTM.  

Moreover, during each ALB measurement, a digital camera as shown in Figure 2.33 (c), 

mounted directly beneath the aircraft took aerial photographs of the target river. Among other 

things, to remove tilt and relief effects, the aerial photographs were converted to orthophotos. 

Herein, the aerial photograph over-lap and side-lap ratios were respectively greater than 60% 

and 30%.  
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Table 2.20 Specifications of the present GLS and ALB system and measurement conditions in the 

targeted river reach 

Items 

ALB GLS 

2017 2020 

Mar. Nov. Mar. Oct. 

Laser  

wavelength  

range (nm) 

Green 515 515 532 532 

NIR 1,064 1,064 - - 

Number of  

laser beams  

(103 s-1) 

Green 35 35 60 60 

NIR 148 148 - - 

Ground  

altitude (m) 

500 500 50 50 

Flight speed  

(km h
-1

) 

220 110 9 9 

Density of  

measurement 

points (m-2) 

Green 2 4 100 100 

NIR 9.0 9.0 - - 

Resolution of raw  

imagery (cm pixel
-1

) 

10 10 3 3 

Resolution of raw 

LiDAR (m pixel
-1

)* 

2 2 1 1 

FTU** - - 0.8 3.12 

NTU*** - - - 3.7 

Degree**** 2.9 3.2 - - 

*: Based on the LiDAR-I. 

**: Formazin Nephelometric Unit. 

***: Nephelometric Turbidity Unit. 

****: One degree of Japan Industrial Standard (JIS K0101) is the same as when 1 mg of 

standard substance (kaolin or formazine) is contained in 1 L of purified water. 

 

Table 2.20 shows specifications of the equipment, measurement parameters, and river 

water quality at the time of measurements. Because the magnitude of turbidity in a river can 

strongly affect the amount of light incident into the water column, its value was confirmed 

before each ALB measurement. The water quality of the three target periods was reasonable 
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for measuring the underwater terrain surface. 

Both river topo-bathymetry and vegetation attribute measurements (i.e., LiDAR data, drone 

imagery) were performed on March and October 2020 with a normal water level utilizing 

digital drone-mounted GLS, respectively, through several flight operations. Figure 2.33 (b) 

illustrates a typical view of GLS during overland and underwater measurements. Table 2.20 

shows specifications of the equipment in Figure 2.33 (d), measurement parameters, and river 

water quality at the time of measurements. 

2.3.2.3 Data processing of imagery-based input 

 

Figure 2.34 Preprocessing of imagery-based input data from drone images (aerial photographs) and 

LiDAR dataset (ALB or GLS). 
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Figure 2.35 2 m pixel-1 Imagery-based input (LR-TL, LR-DI, LiDAR-I, Image Fusion), Image Fusion 

processing, True Label List and Data Types. 

Figure 2.34 depicts the processing of producing imagery input data for this study. It includes 

three types of data, i.e., LR-DI (low-resolution digital images derived from high-resolution 

digital images), LiDAR-I (images derived from LiDAR-based point cloud using a high-

contrast color bar), and Image Fusion (images created by superimposing the above images). 

In mapping the LCC pre-processing stage, we considered earlier field observation 

experience8) to obtain critical assistance in mapping the true label (TL). Earlier field 

observation photographs can provide information about the study target LCC characteristics 

such as texture and color difference. Figure 2.35 presents an example of ALB- and GLS-

based TL mapping (i.e., LR-TL). 

The resolution conversion operation is necessary to ensure a consistent resolution of these 

input imagery. Incidentally, in order to test the cross-platform interchangeability of several 
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data styles, the 2 m pixel-1 resolution was chosen as shown in Figure 2.35. The resolution 

transformation in this study is utilizing a non-interpolation approach (i.e., a method that 

extracts only the color of pixels at fixed intervals) to keep the color of each pixel in the new 

generated image the same as that of the original image. 

Raw GLS data includes laser point cloud coordinate, DSM minus DTM (l). To convert the l 

information in csv file into visual imagery, the visualization software, CloudCompare (i.e., 3-

D point cloud and mesh processing software with open source project) was exploited. What’s 

more, different visualization effects were achieved by changing the types of color scale or the 

distribution of the selected slider (i.e., the point to set specific color in the color scale).  

Briefly, after comparing the visual effects of various default color scales, the “high-contrast 

color scale” was chosen for this study. Furthermore, the selected color scale displayed the 

LiDAR data as imagery after dividing the GLS data (from min to max) into 256 steps. 

Moreover, the “high-contrast color scale” included six particular slides with different colors 

in the 0–50% segment of the color scale (i.e., 1%, 2%, 4%, 8%, 16%, and 32%). 

This color scale was supportive for differentiating the laser point cloud better and for 

characterizing the data better by emphasizing even weakly distinguished image features. 

Because of the use of multiple split color bands, the “high-contrast color scale” provided 

better-distinguished data for the l in the first half of the value. Subsequently, the visualized 

imagery was rendered to files using zoom-free method. Consequently, the output imagery 

maintained the same resolution of 1- (GLS) and 2- (ALB) m pixel-1. Eventually, transform the 

1- (GLS) to 2- (GLS) m pixel-1 to keep same resolution. 

Because data collection using a single LiDAR sensor remain insufficient, the amount of 

information for imagery was augmented by integrating data from another sensor, such as a 

digital camera. Accordingly, image fusion approach, which is effective in the discipline of 
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remote sensing, to create a fused image that includes clearer, more accurate, and more 

comprehensive information than from any single image. Actually, Image Fusion is a 

combination of two elements: LR-DI, LiDAR-I. Conclusively, Image Fusion was created and 

processed, as shown in Figure 2.35, using image processing software (i.e., GIMP) as the 

following steps: 1. Reduce the transparency of the overlay layer to 50%. 2. Maintain the 

original transparency of the background layer. 3. Merge these two layers into a single image 

with gamma correction (default method of layer combination in GIMP). 

 

 

Figure 2.36 Processing of mapping LCC with DeepLabv3+ model; Overall accuracy (OA) is an 

accuracy measure that indicates how many of the total pixels are classified correctly; 

The macro-averaged F1 score (Macro-F1) is computed by taking the arithmetic mean 

(i.e., unweighted mean) of all the per-class F1 scores. 

2.3.2.4 DeepLabv3+ Model 

In the previous research8), an approach of 3-channel DeepLabv3+ with an additional module 

to use LiDAR dataset as supplement was tried. And in this study, a 4-channel DeepLabv3+ 

model with modified input layer was also challenged for the higher accuracy. Nevertheless, 
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because of the data limitation, it is very difficult for the 4-channel DeepLabv3+ model to 

extract the feature. Therefore, in this research, we just force on the effect of changing the input 

types and resolution of cross-platform dataset, without changing the internal of DeepLabv3+ 

model. As presented in Figure 2.36, to extract features from the input RGB-based imagery 

(i.e., LR-DI, LiDAR-I, Image Fusion), the processing of training and inference is represented 

as following: 1. Trimming the raw data from cross-platform input dataset with preprocessing 

module to attain imagery-based input data (320 px × 320 px), then training the input data with 

DeepLabv3+ model to achieve trained model; 2. Predicting the imagery-based input data with 

trained model. To end with attaining the results (i.e., OA and Macro-F1 from mutual-

prediction, separately); 3. Comparing the averaged and absolute difference value for 

confirming interchangeability of cross-platform dataset. 

2.3.3 Results and discussion 

Three data types of 2 m pixel-1 input data were used to test the interchangeability as shown in 

Figure 2.36. The following four main comparison parameters, were utilized to quantify the 

interchangeability, i.e., Average (OA), Average (Macro-F1), Absolute Difference (OA) and 

Absolute Difference (Macro-F1), that were derived from 6 groups-based results in Table 2.21. 

Overall accuracy (OA) is an accuracy measure that indicates how many of the total pixels are 

classified correctly, subsequently, the macro-averaged F1 score (Macro-F1) is computed by 

taking the arithmetic mean (i.e., unweighted mean) of all the per-class F1 scores. Furthermore, 

lower Absolute Difference value means the stability of using cross-platform is much better. 

As shown in Figure 2.37, Image Fusion has improved in terms of the interchangeability rather 

than LR-DI and LiDAR-I. Training GLS Predicting ALB has much higher OA and Macro-F1 

value using three data styles, separately. The reason of this phenomenon is the data unbalance 

derived from lack of the water area in GLS as shown in Figure 2.38. And without considering 

the water area, as shown in Table 2.22, OA and Macro-F1 derived from cross-platform 
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become much similar rather than the results derived from Table 2.22. 

Table 2.21 Comparison of 2 m pixel-1 resolution cross-platform interchangeability using multiple 

method (LR-DI, LiDAR-I, Image Fusion). 

 

 

Figure 2.37 Comparison of data style-based averaged 2m pixel-1 resolution cross-platform 

interchangeability derived from Table 2; Left vertical axis: the reference of OA and 

Macro-F1 value; Right vertical axis: the reference of Absolute Difference value. 
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Figure 2.38 Water area that cannot be extracted with GLS only. 

Table 2.22 Results without considering the water area 

 

2.3.4 Conclusions 

This study used the cross-platform LiDAR and photograph to prove the interchangeability 

between the data derived from different platforms in the term of performing LCC. Compared 

with LR-DI and LiDAR-I, Image Fusion approach improved the performance of cross-

platform LCC. And all the approaches have the results of over 0.65 OA and around 0.6 Macro-

F1. To put it another way, to some content, cross-platform data can be used for inter-predicting 

each other. Noteworthy, digital imagery solely is not sufficient for producing TL mapping 

under multiple weather conditions because of the sensitive camera senor in the different 

weathers. Responsibly, at that moment, LiDAR becomes a considerable reference in assisting 

to recognize the targets. 
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CHAPTER 3 

Application of Deep Learning and Drone Camera in Riparian 

Area Monitoring (Riverbed Waste Detection) 

 

3.1 Garbage Detection in Riparian Area Monitoring 

3.1.1 Introduction 

In recent years, plastic litter pollution in the oceans has become a global environmental 

problem, and its impact on ecosystems is also becoming obvious (Thompson et al., 2004). 

More recently, the dumping of garbage in the river, one main resource of ocean garbage, has 

been a common occurrence and has gradually started to affect the normal flow of the river 

(MLIT, 2022), which has added a lot of work for the river patrol staff.  

Facing with these problems, river authorities instantly need a reasonable, better price-

performance method to help Japanese river patrol staff to investigate the situation of garbage 

in rivers. These years, drones and Artificial Intelligent (AI) technology have been widely used 

in the civil engineering research (Lu et al., 2012), specially for the case of work that is lacking 

of professional personnel. In this research, AI technology with drone showed its advantages 

in the riverine garbage-related detection. Apart from improving the recognition accuracy of 

riverine garbage detection, this research also can be an experimental reference for the 

researchers who determine to use the proved model- and drone-related parameters in the 

practical experiment. 

3.1.2 Study site and methods 

3.1.2.1 Study site 



116 
 

Figure 3.1 illustrates our study site, which is located downstream of the Asahi River, a first-

class river (state-controlled) in Japan that flows through Okayama Prefecture into the Seto 

Inland Sea. In this study, the KP value demonstrates the longitudinal distance (km) from the 

target river mouth. Future more, the slope of the river bed is about 1:600. the channel width 

of the target river section is about 300 m. 

 

Figure 3.1 Perspective of drone photographs collection area, the right bank area of the Asahi River, 

Okayama in Japan with kilo post (KP) values representing the longitudinal distance (km) 

from the river mouth. 

3.1.2.2 Specification of the devices 

Table 3.1 Specifications of the devices (drone and camera). 

 

 

For the photograph collection of the Asahi River, as shown in Table 3.1, a 

MATRICE600PRO drone manufactured by DJI was used as an aerial platform carrying a 

ZenmuseZ3 camera manufactured by the same company for continuous photography taking 
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in the study area. The original size of the captured images is 4000 pixels × 3648 pixels. In 

order to allow the detection model (i.e., ReinaNet) to be trained properly (the original images 

cannot be trained adequately), the original size images are cutted with a smaller uniform size 

of 900 pixels × 600 pixels. 

3.1.2.3 Drone-related parameters determination 

In order to be able to adjust the objects in the drone imagery simply by visual inspection, 

relatively small Ground sample distance (i.e., GSD, including 2-, 3-, 4- cm) as displayed in 

Table 3.2 was chosen as the relevant setting parameter for the drone imagery in this study. 

Notwithstanding, in order to obtain a larger amount of information per unit of time, in this 

study, besides the camera angle of 90° from the normal ortho-images, other three angles, i.e., 

45°, 60°, and 75°, were made an effort. 

Table 3.2 The drone-related parameters determined for the accuracy verification; Ground sample 

distance (GSD) is defined as the distance between the centers of two adjacent pixels 

measured on the ground. 

 

 

3.1.2.4 Objects of the garbage detection 

Considering the types of garbage that can be easily abandoned in the river environment, as 

presented in Figure 3.2, bicycle, PET, cardboard, plastic bag are chosen as the objects in this 

study. It is noteworthy that all these four types are placed on the floodplain and the 

background is grass. From the perspective of pixels in the drone imagery with same height, 

PET is smaller than the other three objects. In the object detection model, the small objects 
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are more difficult to be recognized, therefore this study desires to improve the recognition 

accuracy of PETs with the aid of the Public Dataset or self-made supplementary datasets (i.e., 

Random PET Dataset). 

 

Figure 3.2 Object-related samples from Original Dataset in the study site. 

3.1.2.5 Public and random PET dataset 

As showed in Figure 3.3, the Public Dataset (Wang et al., 2018) used a drone to maintain 

low altitude and to take the photographs of PETs with eight different outdoor backgrounds 

(i.e., sand, lawn, bush, land, step, mixture, ground and playground). On the contrary, due to 

the low flight altitude, the GSD of this Public Dataset differs significantly from that of the 

targeted dataset in this study. Therefore, in order to use imagery with the same GSD as test 

set, an image from the web was also collected, annotated and data-augmented in this study 

(i.e., Random PET Dataset). This Random PET Dataset is a set that plastic bottles with 

different sizes are seen in a ditch where floodwaters have receded following heavy rainfall in 

Xinxiang, Henan province, China July 25, 2021 (Song, 2021).  It should note that, instead 

of using manual labeling for this dataset, the annotations of Random PET Dataset are totally 

generated by predicting from a model that previously was trained with multiple garbage 

classification dataset. Continuely, to increase the amounts of annotations in this dataset, that 
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using data augmentations (i.e., Flip, Rotate and Shear) without changing the quality of 

imagery is necessary. 

 

Figure 3.3 Samples of Public and Random PET Dataset, (1) to (8) represents Public Dataset, include 

8 types of backgrounds (i.e., sand, lawn, bush, land, step, mixture, ground and 

playground) with 342 pixels × 342 pixels, (9) is part of Random PET Dataset with 1365 

pixels × 1365 pixels. 

3.1.2.6 Model for object detection 

RetinaNet (Sultana et al., 2020) is a two-stage detection model that solves this problem in 

two steps, first extracting regions of interest and then classifying them using the model, and 

although it achieves high detection accuracy, it requires a long learning time. YOLOv5 (Jiang 

et al., 2022) is the latest version of the YOLO series (a kind of one-stage detection model). 

One-stage detection model is object classification and bounding-box regression are done 

directly without using pre-generated region proposals (candidate object bounding-boxes). In 

this research, balance the speed and accuracy performance, YOLOv5l is chosen as the model. 
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Table 3.3 Analysis conditions of comparison groups. 

 

 

3.1.2.7 Comparison of models using multiple dataset and model-related parameters 

Broadly speaking, the comparison cases in this study can be divided into three groups (Table 

3.3): 1. PET annotations from Original Dataset only (i.e., Group-1); 2. PET annotations from 

Original Dataset mixed with additional datasets (i.e., Group-2); 3. Only non-Original PET 

annotations (i.e., Group-3). In Group-1, RetinaNet (i.e., Case-A) is a default model-related 

parameter reference for YOLOv5l (i.e., Case-B, Batch and Epochs are 4, 50, respectively), 

thus comparison of these two models with same model-related parameters is required. 

Subsequently, to inspect the changes of YOLOv5l with larger parameters (i.e., Case-C), 

enlarging Batch and Epochs from 4, 50 to 15, 500 (the values depended on the NVIDIA RTX 

3090 24GB GPU memory to try the largest one). Conseqeuntly, Group-2 can be divided into 

three parts: 1. Case-D and Case-E demonstrate the best performance of this research without 

considering the model-related parameters; 2. Case-F and Case-G use the same amount of PET 

annotations as Group-1 with mixed PET annotations (Original + Public); 3. Case-H and Case-
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I just change the PET annotation style (Original + Random PET) from Case-F and Case-G. 

Conclusively, all the model-related parameters in Group-3 use PET annotations without ones 

from Original Dataset as a reference. 

3.1.3 Results and discussion 

In AI tasks, Recall value is an indicator of the percentage of correctly detected objects, i.e., 

understanding the number of the missed objects. Due to the application to patrols, this indicator was 

adopted. 

3.1.3.1 Group-1 

First of all, as shown in Figure 3.4, from RetinaNet of Case-A, although plastic bag, bicycle 

and cardboard can achieve high recognition accuracy (almost close to 100%), the recognition 

of PET still has a big defect, only when the GSD is 2 cm, the Recall value of each angle is 

more than 50%. When cases in Case-A have GSD larger than 2cm, that are completely unable 

to improve the Recall value more than 20%. Compared to RetinaNet, YOLOv5l in Case-B 

not only can't recognize PET, nevertheless also can't recognize cardboard properly. This also 

proves that YOLOv5l does not perform as well as RetinaNet in the case of relatively small 

model-related parameters. After enlarging the model-related parameters in Case-C, the 

prediction performance of the YOLOv5l model is greatly improved. Recognizing PET with a 

Recall value of more than 50%, subsequently, the Recall value of cardboard is almost 100%, 

that both PET and cardboard performed much better than the small model-related parameter 

cases (i.e., Case-A and -B). 
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Figure 3.4 Results of Group-1. 
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Figure 3.5 Results of Group-2. 

3.1.3.2 Group-2 

As displayed in Figure 3.5, after changing the model-related parameter as presented in Case-

C, although Recall value of all four objects have been improved, Recall value of PET still 

lags far behind the other objects (i.e., bicycle, cardboard, plastic bag). In order to be able to 

improve the Recall value of PET, the dataset related to PET was increased to challenge the 

best performance of PET recognition in Case-D and Case-E, considering reasonable model-

related parameters. From the results of Case-D and Case-E, the addition of datasets greatly 

improved the recognition accuracy of PET, especially when the GSD is 2 cm and camera 

angle is 75°, both of Case-D and Case-E attained almost 100% Recall value. In contrast, when 
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GSD is 4 cm, the Recall value of Case-E with 45° and 60° have large advantage rather than 

Case-D with same angle. In consequence of that, the data augmentation of Case-E (i.e., Flip, 

Rotate and Shear) have some effort on improving the Recall value. From the general 

perspective of Case-D, the GSD of additional dataset has an effort on the Recall value, that 

the cases have similar resolution, i.e., Case-D attains relatively higher Recall value when GSD 

of test dataset is 2.0 cm. 

 

 
Figure 3.6 Sample of PET at real size and in different resolution. 
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Figure 3.7 Samples of PET that has similar size with plastic bag (left-side, PET in additional dataset; 

right-side, plastic bag in Original Dataset). 

 

After proving the ability of additional dataset on improving Recall value in Case-D and 

Case-E, successively, to observe the PET annotations-based Recall value change, the PET 

annotations in Case-F, Case-G, Case-H and Case-I were component with Original and Public 

(or Random PET) dataset as same annotations amounts as Group-1. Then, in Case-F and Case-

H, PETs have all failed to be identified. Oppositely, with same Batch, Epochs, annotations 

amount, the Recall values of cardboard in Case-F and Case-H have partly improved from 

Case-B with mixed PET data.  

Consecutively, Case-G and Case-I with the unchanged dataset from Case-F and Case-H, 

enlarge the model-related parameters, i.e., Batch and Epochs, from 4 and 50 to 15 and 500, 

individually. Obviously, larger model-related parameters increase the ability of YOLOv5l to 

identify the PET-associated objects. Nevertheless, correspond, because of increasing the 

amounts of PET annotations with smaller GSD (i.e., 0.43- and 0.15- cm from additional 

dataset as shown in Figure 3.6), simultaneously, on account of apparent outlook and similar 

size as performed in Figure 3.7 with alike camera angle (i.e., 75° for plastic bag and 90° for 

PET), plastic bag and PET with smaller GSD are too similar to be misclassified. As a 

consequence, the plastic bag from Case-F and Case-H all reduced the Recall value from 
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around 90% to less than 60%. 

In comparison of results from Group-1 and Group-2, as shown in Figure 3.8, the Recall 

value of each object can reach high values when the data are relatively sufficient and the 

model-related parameters are as large as possible, i.e., Case-D and Case-E. 

 

 

 
Figure 3.8 Comparison of results trained by YOLOv5l with same model-related parameters using 

Original Dataset (i.e., Case-B) and Original + Public Dataset (i.e., Case-E) at same 

locations (i.e., lacation-1 and -2), respectively. Case-E has improved the Recall value of 

PET and cardboard from Case-B in the black square. 

3.1.3.3 Group-3 

In Group-3 as presented in Figure 3.9, the PETs are almost definitely impossible to be 

recognized because of using only PET annotations from Public (or Random PET) dataset. 

Compared with the results in Case-D, training the dataset including data with the same 
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background as test dataset is the better choice for attaining higher Recall value. If the Original 

Dataset is not enough, additional dataset can support to improve the results (i.e., Group-2). 

Nevertheless, if using additional dataset only to train the model, the Recall value decrease 

immediately. Accordingly, how to combine and choose the ratio of the Original and additional 

dataset, has become an important subject in the future research. 

 

Figure 3.9 Results of Group-3. 
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3.1.4 Conclusion 

From the comparison of results in the Group-1, YOLOv5l has no advantage than RetinaNet 

using small model-related parameters. Alternatively, when the model-related parameters have 

been enlarged, the YOLOv5l showed its advantage in improving the Recall value. Compared 

the Group-1 with the Group-2, on condition that the objects (i.e., PET) are too small to identify, 

additional dataset with similar size objects can increase the robustness of the models. 

Considering the Group-3 results, provided that the backgrounds of train dataset are far from 

test dataset, the identification of the objects are difficult. 

3.2 AIGC-aided Garbage Detection in Riparian Area Monitoring 

3.2.1 Introduction 

Recently, waste pollution in water ecosystems has emerged as a global environmental problem. 

One of the primary factors contributing to its occurrence is the phenomenon of indiscriminate 

waste dumping. And monitoring waste pollution along riverbanks with a better cost-

performance way is an emergency need for the riparian management. In response to this issue, 

drones and artificial intelligence (AI) technologies, including You Only Look Once version 5 

(YOLOv5), have been employed for the study of waste pollution monitoring at riverbanks 

(Pan et al., 2022; Ultralytics). These technologies have provided valuable insights into the 

extent of waste pollution. Nonetheless, certain challenges remain, such as the scarcity of data 

required for training the YOLOv5 due to difficulties in collecting high-quality drone images 

featuring specific waste targets. In particular, as depicted in Figure 3.10 (left), the collection 

of Real World Dataset necessitates a significant amount of equipment, such as UAVs, and the 

placement of specific targets on the site, such as Bikes, Cardboards, PET Bottles, and Plastic 

Bags. Due to the limitations of only using the Real World Dataset for model training, the 

YOLOv5 in Figure 3.10 (right) can just focus on the features present in the limited dataset, 
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which may lead to misclassification of other targets that have been not included in the training 

(i.e., non-universal training). As shown in Figure 3.10 (top), one of the open-source image-

based generative AI models, Stable Diffusion model (AUTOMATIC1111), that uses deep 

learning (DL) text-to-image technology. It is designed to generate detailed images based on 

text descriptions (i.e., prompts) and can also be utilized for tasks like image to image (i.e., 

img2img) translation guided by prompts. 

 

Figure 3.10 Existing problems among the current datasets and YOLOv5. 

In this research, the Stable Diffusion Dataset was generated based on the features of the 

targets present in the Real World Dataset. It is important to note that the quality of the Stable 

Diffusion Dataset primarily depends on the well-performed and accurate prompts. And it 

cannot be stable-generated just based on the Real World Dataset directly using img2img 

function. These unstable outputs may have contributed to lead to the unreliable trained model. 

Although the aforementioned issues have existed in the practical application, there has been 

no comparison conducted to assess the trained YOLOv5 derived from the Real World Dataset 

and Stable Diffusion Dataset using a benchmark-based evaluation approach. In this research, 

the authors focus on the possibility of replacing or enhancing the Real World Dataset with the 

Stable Diffusion Dataset during the training of the YOLOv5 for the detection of real targets 
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in practical waste pollution detection. 

3.2.2 Study site and methods 

3.2.2.1 Study site 

 

Figure 3.11 Aerial-, ortho-photograph and on-site targets of the study sites from up to down side (i.e., 

the Mibu River, the Ara River and the Asahi River). Noteworthy, among the Ortho-

photograph in the Asahi River, only the Nov, 2021 consists the On-site targets. Except of 

the Nov, 2021, the other data in the Asahi River are prepared for the background change 

operation (i.e., Background Images). Aerial photographs are from Google Map; Ortho-

photographs are from original. 

Figure 3.11 (left) displayed the aerial photographs of the study sites, which are located in the 

Mibu River, the Ara River and the Asahi River, from up to down sides, individually. And 

these three state-controlled first-class rivers in Japan that flows through Nagota, Tokyo and 

Okayama Prefecture. To understand the detailed situations of these sites, thus in the Figure 

3.11 (middle), ortho-photograph samples are also performed in this work. The Figure 3.11 
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(right) showed the on-site targets in this research of individual location. And the targets are 

mainly around Bikes, Cardboards, PET Bottles, and Plastic Bags. 

3.2.2.2 Flow chart of research process 

 

Figure 3.12 Process of assessing the AIGC and Real World Dataset-based models with benchmark 

datasets (i.e., AIGC, AI Generated Content or Stable Diffusion Dataset; 4cls RMD, River 

Monitoring Dataset with 4 classes waste pollution; BC, Background Change). 

Generally, this research is separated into four main sections in the Figure 3.12, i.e., process of 

training AIGC-based Model (left), 4cls RMD-based Model (right), AIGC + 4cls RMD-BC-

based Model (down) and the evaluation criteria (middle).  

In the Figure 3.12 (left), AIGC-based Model is mainly derived from the Stable Diffusion 

Dataset that is generated by the txt-based prompts (i.e., txt2img). The first step of generating 

the images with features in need is to capture the images that are matching the requirements. 

Then applying the website with img2prompt function to extract the information of the images 

(i.e., CLIP Interrogator online version in this research). CLIP (Contrastive Language-Image 

Pre-training) is a neural network trained on a variety of (image, text) pairs, that can predict 
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the most relevant text snippet given an image (Radford et al., 2021). CLIP can be instructed 

in natural language to predict the most relevant text snippet, given an image, without directly 

optimizing for the task, similarly to the zero-shot capabilities of GPT-2 and 3.  Worth 

mentioning, these prompts derived from the CLIP Interrogator can just provide approximate 

information. For the AIGC with more detailed information, Prompt Engineering is necessary. 

In this research, after the comparison of several AIGC samples derived from the Prompt 

Engineering, the key words that can indicate the reasonable results have been confirmed (e.g. 

UAV, 8k, super detailed and high resolution). 

Based on the AIGC derived from the Stable Diffusion (i.e., txt2img function), the 

annotation Generations are also important for the model training. All the annotation 

generations for the AIGC are based on the public dataset-based garbage reorganization 

standard (Maharjan et al., 2022) with similar feature. After collecting the AIGC and 

corresponding annotation generations, the authors used the Roboflow (i.e., an online platform 

to pre-process the dataset) to preprocess the AIGC-based Dataset. 

 Continually in the Figure 3.12 (right), Real-World UAV-derived Images are separated into 

three parts (i.e., train/valid and test part). And 4cls RMD-based Trained Model is derived 

from the train/valid part in this dataset. Remarkably, annotation generations were mainly 

based on the practical situation of the on-site targets. 

   Shown in the Figure 3.12 (down), several targets were extracted from the Real-World 

UAV-derived Images, and combined the images without targets to generate the images with 

the Background Change. And the Bikes targets are not enough, the supplement of the Real 

World Dataset (i.e., Bikes) are necessary. After the generation of the annotations, the AIGC 

+ 4cls RMD-BC-based Model can be trained based on the dataset combination of the AIGC 

and 4cls RMD-BC-based Dataset. In general, as performed in the Figure 3.12 (middle), the 

mentioned trained models need to be evaluated by the following three datasets: UAV-BD 
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(Wang et al., 2018), UAV-PWD (Han et al., 2021) and 4cls RMD (test part) for the 

evaluation criteria, individually.  

 

 

Figure 3.13 Composition of the Real World Dataset. 

For understanding the sections in the Real World Dataset, the Figure 3.13 explained the 

relationship among each section in the dataset. Firstly, Real-World UAV-derived Images have 

two sections (i.e., 4cls RMD with train/valid/test parts, 4cls RMD-BC with background 

images and targets). Except of the mentioned images, there are also Targets (i.e., Bikes) 

existing for the supplements. 

3.2.2.3 Methods 

Mainly the Stable Diffusion consists of three main components: the variational autoencoder 

(VAE), U-Net, and an optional text encoder. The Stable-Diffusion-v1-5 checkpoint used in 

this research was initialized with the weights of the Stable-Diffusion-v1-2 checkpoint 

(Rombach et al., 2022) and subsequently fine-tuned on 595k steps at resolution 512px 

×512px on “laion-aesthetics v2 5+” (i.e., 600M image-text pairs with predicted aesthetics 

scores of 5 or higher in the LAION 5B dataset) and 10% dropping of the text-conditioning to 

improve classifier-free guidance sampling. 

The You Only Look Once (YOLO) version 5 model (i.e., YOLOv5), which is an open-

source software based on convolutional neural networks (CNNs) with optimal detection 
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accuracy and reasonable computational complexity. Based on the mentioned issues, YOLOv5 

was chosen as the model for object detection training model in this work. 

3.2.2.4 Datasets for training/validation 

 

Figure 3.14 Samples of the AI Generative Content (AIGC). 

 

Table 3.4 Components of the prompts in this work. 

 

Quality and quantity of the AIGC were mainly controlled by the model-related parameter 

setting in the Stable Diffusion web UI. The model-related parameters setting were mainly 

adjusted derived from the total computational time-consuming and VRAM (i.e., GPU 

memory). The generated samples are performed in the Figure 3.14 derived from the specified 

prompts. As performed in Table 3.4, the prompts used in this research include three main 
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components: subject, resolution, view angle, and area. 

 

Figure 3.15 Samples of 4cls RMD (i.e., River Monitoring Dataset). 

 

Figure 3.16 Process of generating 4cls RMD-BC (i.e., River Monitoring Dataset-Background 

Change). 

 
Figure 3.17 Samples of 4cls RMD-BC. 
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The images of the 4cls RMD were taken by multiple drones (i.e., Inspire2, Phantom4 Pro, 

Zenmuse X4s) with different sensors (i.e., Zenmuse X4s and Z3) on three riparian areas using 

multiple camera angles (i.e., 45°, 60°, 75°) and GSDs (i.e., 2-, 3-, 4- cm).  As performed in 

the Figure 3.15, the before-mentioned four garbage are all concluded in the sample images.   

As the supplement of the AIGC, the 4cls RMD-BC followed the steps in Figure 3.16. 

Extracting all the Plastic Bags and replacing the background using anther UAV-derived image 

without Plastic Bags. As a final point, cropping the background-changed images into pieces, 

and overturning the same operation on the other targets. Shown in the Figure 3.17, there are 

thirteen kinds of backgrounds have been collected for supplement. Worth mentioning, not 

only natural also artificial environment has been collected in the dataset. 

 

Table 3.5 Dataset-based composition of each case. 

 

(1) 

     
(2) 

As displayed in the Table 3.5 (1) & (2), three cases with specified image numbers have 

been considered in this research for confirming the effect of the AIGC in detecting the Real 

World Dataset. Case 1 and Case 2 consist the Stable Diffusion Dataset, and Case 3 is totally 

derived from Real World Dataset. 
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3.2.2.5 Model-related parameter setting 

Table 3.6 Model-related parameter setting. 

 

The details of the parameters setting derived from the Stable Diffusion and YOLOv5 have 

been performed in the Table 3.6. The Stable Diffusion is using the pre-trained model that was 

downloaded from the Hugging face (i.e., v1-5-pruned-emaonly.safetensors), is an American 

company that develops tools for building applications using machine learning.  

3.2.2.6 Evaluation method 

Table 3.7 Performance measurement TP, TN, FP, FN are the parameters used in the evaluation of 

Recall (R), Precision (P), F1. 
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As shown in the Table 3.7, the binary confusion matrix has four entries: the number of true 

positive (TP) and true negative (TN) samples, which are respectively those that are correctly 

detected as positive and negative, and the two error categories of false positive (FP) and false 

negative (FN) samples, which represent the number of negatives incorrectly detected as 

positives.  

(1) 𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁  

 

(2) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃  

 

 (3) 𝐹1 =
2 × 𝑅 × 𝑃

𝑅 + 𝑃 
  

 

(4) 𝑚𝐴𝑃 ூ௢௎ =
1

𝑁
෍ 𝐴𝑃௞಺೚ೆ 

ே

௞ୀଵ
௞∈(ଵ, ଶ…,ே)

 

 

𝐴𝑃௞಺೚ೆ: AP of class k under the IoU threshold. 

N: Number of all the classes (class is 1 in this study). 

When using the YOLOv5 to detect the garbage, it is important to choose evaluation 

measures for this object detection task. Here, as shown in the Equation 3.1 (1) & (2), both 

Precision and Recall should be considered as the measure that the model can accurately detect 

the garbage or not, Precision and Recall value depend on the factors from the Table 3.7 

basically. And Equation (3) performed the harmonic mean of Precision and Recall, that is 

main evaluation criteria in this research. 

The mean Average Precision (mAP) in Equation (4) provides an overall assessment of the 

YOLOv5's performance in detecting the garbage accurately and consistently derived from 

Precision and Recall. mAP50 and mAP50-95 are two variants of the mAP metric, where the 

numbers indicate the IoU threshold used for evaluating the model. The mAP50 uses an IoU 
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threshold of 0.5, while mAP50-95 uses a range of IoU thresholds from 0.5 to 0.95. 

3.2.2.7 Datasets for testing 

 

Figure 3.18 Samples of the images derived UAV-BD and UAV-PWD, mainly bottles and plastic 

waste pollution. 

Except for the 4cls RMD (test part), two public datasets have been prepared for testing. Figure 

3.18 performed the samples of the images derived from UAV-BD and UAV-PWD. UAV-BD 

has eight types of backgrounds to be selected to collect the images (i.e., Ground, Step, Bush, 

Land, Lawn, Mixture, Sand, and Playground). And UAV-PWD has just one type of 

background (i.e., water area) without the complex feature. Compared with the complicated 

color and textures of the backgrounds in UAV-BD, UAV-PWD is comparably much simpler 
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than UAV-BD. In other words, UAV-PWD has a simple background than UAV-PWD. Based 

on the results derived from these two test datasets, this work can measure the ability of the 

AIGC-based models to detect the targets both in simple and complex backgrounds. 

3.2.3 Results and discussion 

Table 3.8 Dataset-based composition of each case. 

 

Table 3.9 4cls RMD (test part)-derived class-based results using Case 2. 

 

This study is mainly discussing waste pollution detection using UAVs aided with deep 

learning algorithms. And the authors also explored the challenges of collecting and labeling 

training data for waste pollution detection models and introduce AIGC as a potential data 

source. The Stable Diffusion, a text-to-image model, is used to generate images based on 

specified prompts.  

The prompts are derived from the existing images, and the AIGC is automatically labeled 
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using a pre-trained object detection model. The generated dataset is then utilized to train 

object detection models for the detection of the waste pollution. In summary, this study 

compares the performance of the AIGC-based Dataset with Real World Datasets using 

benchmark datasets for evaluation. 

Performed the results of using 4cls RMD (test part) for testing in the Table 3.8, Case 3 

showed the dominant high accuracy (i.e., F1 value) than Case 1 and 2 derived from AIGC. 

And Case 2 has improved from Case 1 because of using the Real World Dataset with 

background change. As shown in Table 3.9, because of the limited additional targets-based 

colors/shapes (i.e., Bikes), Bikes have not been detected with comparably low F1 value using 

Case 2. On the other hand, the results in the Table 3.8 derived from UAV-PWD and UAV-

BD indicate that the AIGC-based Dataset (i.e., Case 1, 2) showed superior accuracy in 

detecting waste pollution on the simple backgrounds (i.e., water area) compared to the Case 

3. In the case of UAV-BD, even Case 2 has increased the data amount, Case 1 also 

outperformed both in Precision and Recall value. The increased background-change images 

in Case 2 have almost the same targets (i.e., cropped images including Bikes, Cardboards, 

Plastic Bags, PET Bottles), which reduced the F1 score of the trained model in detecting the 

targets with complex features (i.e., different colors, complicated shapes). Generally speaking, 

if the background of the test dataset is simple, more targets for training even similar could 

improve the F1 score. On the contrast side, the more complex features the targets of test 

datasets have, the more data with complex features need to be added to the training dataset. 

3.2.4 Conclusion 

In this study, to some content, using the AIGC can support (i.e., replacing or enhancing) the 

UAV-based Real World waste pollution detection tasks. Especially with the assistance of the 

Prompt Engineering, the images with specified targets can be generated with purposes. But 

there are also some limitations that cannot be solved yet. The pre-trained model for generating 
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annotations for the AIGC is just one dataset with specified features, and the generated 

annotations are totally derived from the features of this dataset. Alternatively, if the pre-

trained model changed, the generated annotations can also be an unstable factor for training 

a model derived from the AIGC. In the near future, the more detailed and accurate prompts 

that can increase the accuracy of detecting the targets in complex backgrounds are looking 

forward to being applied in practical riparian monitoring tasks. 

3.2.5 Future work 

 

Figure 3.19 Samples of the results derived 4cls RMD using Case 2. 

Figure 3.19 has misclassified the rocks, concrete blocks, and electric wires protectors as 

wastes. This phenomenon has indicated the limitations of the AIGC-based Dataset, that if the 

non-waste targets with waste-similar-outlines in the test datasets have not been trained in the 

model, it is difficult for the trained model to separate the wastes and non-waste-targets. Based 

on the mentioned issues, in the future works, dataset supplements of the images with waste-

similar-outlines are necessary.   

Table 3.10 1.5 cm GSD 4cls RMD-derived class-based results using Case 1. 

 

Considering the possibility of improving the F1 value derived from the AIGC using a lower 

GSD value, 1.5 cm GSD 4cls RMD with detailed information has been utilized for 

confirmation. As shown in Table 3.10, waste pollution samples in 1.5 cm GSD 4cls RMD 

with 90° camera angle have been inferred by Case 1. Except for the Bikes class, all the other 
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targets were detected with almost 1.0 F1 value using 0.45 IoU and 0.1 Confidence threshold. 

The reason of mis-detecting the Bikes is mainly based on the prompts. The results can be 

improved if prompts with more details are used. 

 

Figure 3.20 Samples of the results derived 1.5 cm GSD 4cls RMD using Case 1. 

As performed in Figure 3.20, although the Bike as a whole target has not been detected 

using the mentioned IoU and confidence threshold, the tire part has been seen with 0.3 

Confidence. Based on this information, the Bike class can be considered to be annotated part 

by part to increase the accuracy, and if the IoU value can be changed from the default value 

used in this study (i.e., 0.45) to a lower value, the accuracy can also be improved.  

 

 

Figure 3.21 Samples of the results derived UAV-PWD using Case 1. 
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Figure 3.22 Samples of the results derived UAV-BD using Case 1. 
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Table 3.13 UAV-BD-derived background-based results using Case 1. 

 

As shown in Figure 3.21, all the plastic wastes have been detected, on the other hand, 

Figure 3.22 performed several left-unnoticed wastes in the groups of 4_Land, 5_Step, 

6_Mixture, 7_Ground, individually. Respond, as displayed in the Table 3.11, F1 value of all 

the groups with left-unnoticed bottles are lower than 0.7. The wastes in all the natural or 

similar-natural background can be detected with comparatively high F1 value derived from 

the prompt in this study (i.e., riparian area). In the future, it is necessary to expand the scope 

of the prompts in the AIGC systematically for expanding the application. 
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CHAPTER 4 

Application of Deep Learning and Drone Camera in Riparian 

Area Monitoring (Riverbank Topped-paved Crack Detection)  

 

4.1 Introduction 

Riparian crack monitoring involves observing and recording changes in cracks. This practice 

is crucial in assessing the stability of riparian construction and identifying potential hazards 

to human safety and the environment. And considering the situations of the crack 

transformation process shown in the Figure 4.1, the phenomenon of grass grown in step d is 

the most remarkable features of the riparian area cracks. Thus to avoid the pothole generations 

in step e (not included in this study), earlier locating and mesh-based extracting the cracks in 

step b and d are also necessary. The crack survey is time-consuming and professional-

expertise in need. Until now, the vehicle-platformed AI-based asphalt paved road crack 

monitoring methods have been developed and applied in the practical road crack-based 

management (Asada et al., 2020; Emoto et al., 2023; Numata et al., 2023). Although the 

mentioned technology can support the administrators to improve maintance and management, 

there are also some of the top-surfaced asphalt paved road in the riparian area, that are too 

dangerous or difficult for the viechcle and personnel to entry, and there is also no general 

standard for the crack detection. Based on the mentioned limitation, the integration of drones 

with computer vision algorithms has seen an increase in its usage for infrastructure 

inspections in the field of civil engineering (Qiu et al., 2023; Zhu et al., 2022; Chun et al., 

2021). This study presents a method for crack detection in riparian road asphalt pavement 

using a drone equipped with a divided digital camera for custom data collection, the You Only 

Look Once version 7 (YOLOv7) object detection model (Wang et al., 2023) for data analysis, 
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and the public datasets for data supplement, individually. The YOLOv7 model, a state-of-the-

art object detection model, was trained in this study on the datasets of asphalt-paved or 

concrete cracks. The trained models were achieved to detect the cracks in new images of 

riparian road asphalt pavement, that were derived from the drone collection. Experimental 

results of the crack detection attended to show that the combination of the drone technology 

and the YOLOv7 model has the potential in enhancing the efficiency and accuracy of crack. 

 

 
 

Figure 4.1 Process of transferring the asphalt pavement from no crack to pothole. 

4.2 Study site and methods 

4.2.1 Study site 

Figure 4.2 illustrates the study site, which is located upstream of the Chikuma River, a state-

controlled first-class river in Japan that flows through Nigata and Nagano Prefecture into the 

Sea of Japan. In this site, the riparian asphalt pavements are suffering from the deformation 
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derived from the cracks in the road. To understand the detailed situation of this site, thus one 

of the asphalt-paved road section is selected as the study site of this work. 

 

Figure 4.2 The study site is located in the north of the Nagano Prefecture (i.e., Fig. 1-1), where a 

sample position in a yellow square with several crack species (i.e., Fig. 1-2) was selected 

for the model test, as shown in Fig. 1-3 derived from the drone dataset collection.  

4.2.2 Drone-related parameters determination 

In order to be able to assess the cracks in the images derived from the drones simply by visual 

inspection, a relatively small Ground Sample Distance (i.e., 2.5 cm GSD with around 100 m 

fight height) was chosen as the drone-related parameter in this study. Notwithstanding, as 

shown in Figure 4.3, the camera lens is settled vertically to the ground. The device was used 

to collect the custom train/valid dataset and images for accuracy assessment. 

 

Figure 4.3 UAV Platform used Zion QC730, and data collection used the camera Sony-a6000. 
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4.2.3 Objects of this work 

Considering the crack situations in the Figure 4.4 for accuracy assessment, there are several 

species of the cracks chosen as the objects in this study, including alligator, lateral and 

longitudinal cracks. In the object detection models, if the objects for inference that are too 

much different from the objects in training dataset, recognitions (i.e., location, classification) 

are always difficult. In this study, considering of the accuracy improvement on these objects, 

additional implements of the dataset are necessary. But the generation of the asphalt-paved 

crack dataset with annotations in several weather-, light-, and road-situation is time-

consuming. Thus instead of annotating the additional images, and solving the mentioned data-

lack problem using the published dataset is in consideration. And alternatively, individual-

crack-related method is not enough for assessing all the cracks, especially when facing with 

the complex crack species (i.e., alligator cracks), the individual-crack-related method has 

some limitation. Therefore, this study desires to improve the recognition accuracy on these 

complex cracks. Furthermore, recognizing the widths of the cracks using object detection 

approach also has some limitations, a method that can recognize the instance-based cracks is 

in the consideration after the crack detection. 
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Figure 4.4 Object-related samples from Original Dataset in the study site (i.e., sample-1 is alligator 

crack, sample-2, -3 are lateral cracks, sample-4 is a longitudinal crack). 

4.2.4 Crack datasets in this work 

The crack datasets in this work mainly comprise of two parts, custom- and public-one. As 

performed in upper part of the Figure 4.5, the custom one mainly comprised of the uniformed 

bounding box sizes, which include information on the location and size of the cracks in each 

image (i.e., the bounding box size-based crack dataset).  
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Figure 4.5 Samples of the images in custom and public datasets. 

The public dataset with several crack types, is called “Road Damage Dataset 2020” (Arya 

et al., 2021) or “RDD 2020” in the publication, annotations depend basically on the crack 

species (i.e., the crack species-based dataset in this research). And the dataset with instance 

cracks is derived from the “Top Transportation Datasets” project in the Roboflow Universe 

(Roboflow) for visualizing detected cracks on concretes using instance segmentation. 

The images in RDD 2020 were collected from various road or concrete types, such as 

highways, city roads, and rural roads in different weather (i.e., sunny, cloudy, and rainy as 

displayed in the middle part of the Figure 4.5). And capturing a range of crack species, such 

as linear cracks, alligator cracks. The annotations in the crack species-based dataset include 
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information on the location, size, and the species of the cracks in each image. 

The crack-specie-based classes provide a systematic and detailed representation of road 

damage and its potential impact on road safety. And the class names and identifications are 

mainly based on the road maintenance and repair guidebook 2013 design and subcommittee 

in Japan.  

Remarkably, the public dataset used a vehicle-platformed smartphone with a tilted camera 

angle to collect the dataset. And this dataset was collected in several countries, e.g. Japan, 

India. In this study, to keep the information between training and testing dataset as similar as 

possible, just the images taken from Japan are chosen as the additional supplement for the 

custom dataset. 

The images in the instance segmentation dataset as displayed in the underneath part of the 

Figure 4.5 are mainly derived from the concrete with more detailed position points rather 

than the bounding box positions. And the images were taken very close to the cracks, so the 

details can be observed clearly that are much easier for the model to learn the features. 

Noteworthablely, the images for accuracy assessment are taken from 100 m height, that the 

features are different from the close distance, thus the resolution adjustments are necessary in 

the instance segmentation inference. 
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Figure 4.6 Object-related samples for the crack annotation: (a) raw image, (b) annotations derived 

from multi-uniform sizes, (c) annotations derived from crack species, (d) annotations 

derived from instance cracks with cloaser borders than bounding boxes, (e) and (f) 

performed the class names and road damage types of the cracks appeared in this study. 
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Based on the raw image in the Figure 4.6 (a), as shown in the Figure 4.6 (b), Multi-uniform 

size-based crack dataset is mainly derived from the bounding box size (i.e., 20-, 30-, 100-px), 

and 100 images were collected from a bird view using the UAV-platformed digital camera. 

These 100 images with the size of 6000px × 4000px collected by the mentioned drone were 

cropped into the same size, i.e., 600px × 600px each image. From the cropped images, 1564- 

and 224- images with the cracks are selected for training and validation, individually. Worth 

mentioning, the overlapped bounding boxes with different sizes are existed like the sample in 

the Figure 4.6 (b). 

On the contrast-side, as displayed in the Figure 4.6 (c), bounding box sizes of the species-

based dataset are totally derived from the actual sizes of each individual crack. The 4- crack 

species samples and class names shown in the Figure 4.6 (e) and (f) are the targets for 

annotating. 7744- and 880- images with the cracks are selected for training and validation, 

separately. In the Figure 4.6 (d), except of the bounding box position as same as the other 

ones in Figure 4.6 (b) and (c), instance segmentation annotations have tighter boundaries 

around objects and fewer missing detections overall, and provides more precise and detailed 

information. To put it differently, the annotations for the instance segmentation include the 

class label for each pixel in the image, rather than just for the object as a whole target, that 

has reduced the effect of the background on the accuracy as much as possible. 3717- and 200- 

images with the cracks are selected for training and validation, separately. 

4.2.5 Model 

YOLOv7 shown in the Figure 4.7, is a state-of-the-art object detection model that utilizes a 

single convolutional neural network to perform object detection and classification on an input 

image. This model leverages the latest advancements in computer vision and deep learning to 

deliver accurate and fast object detection results. YOLOv7 employs an anchor-based 

approach to object detection, utilizing anchor boxes to detect and classify objects within an 
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image.  

The model uses multiple parallel layers to process an input image in a hierarchical manner, 

allowing it to learn fine-grained features and perform object detection with high accuracy. 

Additionally, YOLOv7 utilizes techniques such as cross-stage partial connections and mosaic 

data augmentation to enhance its ability to generalize to new data and improve its accuracy 

on a variety of tasks. YOLOv7 released the instance segmentation module (i.e., YOLOv7-

seg), the data preparation and usage are derived from YOLOv5, and the algorithm is 

interlinked with the original YOLOv7 object detection weights. 

 
 

Figure 4.7 YOLOv7 network architecture. 

4.2.6 Model-related parameters setting 

As shown in the Table 4.1, YOLOv7 and YOLOv7-seg model training are basically related 

to following model parameter setting, i.e., batch size, epochs, learning rate, optimizer, and 

image size for input. Batch size refers to the number of images that are processed at once 

during training. A larger batch size can result in faster training, also require more memory on 

the Graphical Processing Unit (i.e., GPU). Epochs refer to the number of times the entire 

dataset is passed through the network during training. A larger number of epochs can improve 

the accuracy of the model.  
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Table 4.1 Parameter settings 

 

4.2.7 Model-based evaluation method 

Broadly speaking, the evaluation metric for object detection models are mainly based on 

Precision and Recall values. And how to identify the individual crack for a fair evaluation is 

comparably difficult, thus it is challenging and strict to prepare a test dataset with annotations 

for all the individual crack correctly with a uniformed size. So in this study, instead of the 

index for evaluating the crack one by one, the area with the crack detection are in 

consideration. The minimum unit for the evaluation of the area with cracks are one mesh, and 

the mesh size are 10- and 50-px.  

As shown in the Figure 4.8, the trained YOLOv7 models derived from the custom and 

public datasets predict the raw images in the test dataset, separately. And the inferred 

bounding-box parts of the results derived from the trained models (i.e., size-based and 

species-based results) are being selected without considering the species classes.  
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Figure 4.8 Flow chart of 10-px mesh-based crack number comparison for the YOLOv7 result. 
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Figure 4.9 YOLOv7-based results. (*: True Label) 
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Then the numbers of the meshes with cracks in the union area derived from the inference 

result are being used to compare with the true label. After the comparison shown in the Figure 

4.9, seven samples in the Figure 4.10 are selected for observing the miss-detected cracks 

using multi-uniform size model. After extracting the 10-px mesh-based crack numbers from 

the true label and results in the Figure 4.9 (a~g), a scatter plot in the Figure 4.11 performed 

the relationship between the crack-based numbers in true label and result. 

 

 
Figure 4.10 Cracks that cannot be detected in the multi-uniform size results. 
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Figure 4.11 Crack numbers derived from the 10-px mesh-based result (horizontal axis) and True Label 

(vertical axis). 

 

 

Figure 4.12 Flow chart of 10- and 50-px mesh-based crack number comparison for the YOLOv7-seg 

results. 
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Figure 4.13 Images after color dodging and YOLOv7-seg results. 

Figure 4.12 displayed the process of transferring the segmentation result derived from the 

YOLOv7-seg model to the 10- and 50-px mesh-based result. And in the Figure 4.13, more 

details for the results in the whole study site have been shown. Remarkably, comparing with 

the YOLOv7 model, YOLOv7-seg model need more details to be much tighter to the borders 

around the targets, that the image size enlargement is necessary. 

4.3 Results and discussion 

4.3.1 Multi-uniform size-based results (custom dataset, YOLOv7) 

The reason of choosing the uniform size bounding box for annotating the cracks is totally 

based on the randomness of the practical cracks in the asphalt pavement. For including all the 

sizes of the cracks, several uniform sizes are chosen basically on the same crack. The inferred 

bounding boxes are overlapped by each other, and some smaller ones (i.e., 20-, 30-px) are 

also included in the bigger one (i.e., 100-px). Noteworthy, some of the connections between 

the bigger ones without 100-px bounding box, as shown in the Figure 4.9 (b), the smaller 

ones have covered these blanks. But the Figure 4.10 also showed that some blanks part which 

need to be improved. 
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  From the result, there are some crack parts with specified features that cannot be recognized 

by the trained model. As shown in the Figure 4.9 (b~e), the cracked asphalt pavement has 

some familiar features that some grasses have grown in the blank space in the crack. Because 

of lacking the similar images with grass grown in the crack crevices for the training/validation 

dataset (i.e., with-grass images), the recognition of these cracks in the test dataset are also 

difficult until now. 

  Another point that needs to be mentioned that each of the Figure 4.9 (a~g) has the alligator 

crack in the image. But not all the alligator cracks are detected individually. That is because 

of lacking the images with alligator cracks in the training dataset. And it is an issue that need 

to be solved for improving the accuracy. 

4.3.2 Crack species-based results (public dataset, YOLOv7) 

For supplying the custom dataset that lack of robustness, RDD 2020 dataset has also been 

trained to infer the cracks in the study site. Several alligator and linear cracks were detected 

in Figure 4.9 (a~g). Comparing with the multi-uniform size-based results, the crack species-

based results can replenish the shortage of the with-grass and alligator crack detection ability. 

But because of the camera angle and SGD used in RDD 2020 dataset are too different from 

the images for testing, the confidence of the recognition targets is all less than 0.3. 

  In the Figure 4.9 (e), the tools on the grassland has been misclassified as the D40 (i.e., 

pothole). This phenomenon has performed that the usage of public dataset also has some 

limitations, especially when the inference images have too many differences from the images 

for training. 

  From the combination of the multi-uniform size-based and the crack species-based results, 

to some degree, the possibility of using the different GSD, camera angle dataset for the 

supplement has been proved. But to understand the accuracy of the results after supplement, 
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only inferred bounding boxes are not enough, especially when the true labels for the test 

dataset are not prepared with the reasonable standards. In this research, for the reasonable 

assessment, the extraction using mesh is necessary. 

4.3.3 10-px mesh-based crack numbers (YOLOv7) 

Based on the multi-uniform size (i.e., 20-, 30-, 100-px) derived from the custom dataset, 10-

px mesh is matching the need for assessing the crack detection accuracy and the annotation 

labor is also comparably reasonable. Because the crack detection is one of the yearly 

monitoring activities in the riparian area, roughly locating the crack and marking the 

distribution map are most considerable for the policy makers. Derived from the mentioned 

points, Figure 4.11 has showed the results that the crack species-based supplied results can 

detect and locate over 90% of the cracks (i.e., y = 0.983x in Figure 4.11). But the result is 

also very rough and without detailed size information. 

4.3.4 Instance-based results (YOLOv7-seg) 

Following the needs of more detailed crack information, the model using more comprehensive 

annotations has been trained using a public dataset. This public dataset is mainly derived from 

the images taken with the close distance to the targets, that included but not limited to concrete 

walls and asphalt pavement. Shown in the Figure 4.12, there are 10 steps for getting the 10- 

and 50-px mesh-based segmentation results on the crack targets.  

Cropping the 600px × 600px raw images used in the Figure 4.9 into 250px × 250px is the 

first step. And comparing with the object detection methods more details are in need, the 

image enlarging and color dodging are necessary for the inference. So the images in the step 

B have been enlarged 10 times from 250px × 250px to 2500px × 2500px in the step C. The 

trained YOLOv7-seg model inferred the enlarged images in the step D, and the inferred masks 

overlapped on the enlarged images for the visualization. Noteworthy, the inference results are 



166 
 

derived from the 0.0001 confidence value.  

After step C and D, the enlarged images were shrunk 10 times back to the original sizes, 

and the 10-px mesh-based TL and inference results were made in the step E (red color) and F 

(grey color). Area of overlapping the step E and F is called TP (i.e., true positive) using yellow 

color in the step G, that means the meshes have been correctly identified. For recognizing the 

larger mesh-based results, 50-px mesh-based TL, inference, and TP have been extracted in 

the step H, I and J, individually. 

In the Figure 4.13, an ortho-photograph after color dodging was showed in the step C, then 

following the flow chart shown in the Figure 4.12 from step D to J, the results in the study 

site are ready for the mesh-based extraction. 

Table 4.2 Crack numbers and evaluation criteria. derived from the 10- and 50-px mesh-based results 

in Figure 4.12 (Precision, Recall and F1). 

 

4.3.5 10- and 50-px mesh-based crack numbers (YOLOv7-seg) 

Focusing on the results in the Figure 4.13, crack numbers are extracted from 10- and 50-px 

mesh-based results. As performed in the Table 4.2, 10-px mesh-based Recall is over 0.75, 

that means just around one quarter of all the labelled cracks are not detected correctly in the 

0.25 m ground mesh. If the mesh size has been enlarged 5 times, the F1 score can be increased 
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from 0.64 to 0.88 in the 1.25 m ground mesh. For the yearly river monitoring, 1.25 m ground 

mesh is detailed enough in the road asphalt pavement assessment. Especially considering the 

long distance images collections and high quality image standard for the crack detection, until 

now, 0.025 m GSD is fitting for this riparian monitoring mission. 

    Derived from the 50-px cracked mesh distributions, the policy maker can also make the 

asphalt pavement renew plan without time-consume vehicle driving for the data collection, at 

the same time that the distribution mapping can also have a believable Recall (i.e., 0.95). 

4.3.6 Discussion 

From the above results, the abilities of solving the object detection and instance segmentation 

tasks using YOLOv7 and YOLOv7-seg algorithms have been well-proved individually. 

Located crack numbers using YOLOv7 in the 10-px mesh have been 90% correctly counted, 

that means unnoticed cracks are very less. Based on the detailed annotations, YOLOv7-seg 

algorithm in the 50-px mesh has supported to detect the mesh-based cracks with the 0.88 F1 

score. These two approaches have all proved that the cracks can be located and detected with 

a reasonable standard. But these methods also showed the limitation of the riparian crack 

monitoring, i.e., the quality of the training/validation dataset need to be comparable high both 

in the images and annotations, which take lots of time.  

   Generally speaking, the trained models in this research have proved with the comparable 

high assessment criteria, but also existing some limitations, like lacking of the robustness in 

weathers and crack species, the training/validation dataset are not enough, assessment 

standards for cracks are difficult for the large-scale area. Then this research also showed the 

possibility of using the YOLOv7 and YOLOv7-seg models to support the UAV-based riparian 

asphalt-paved crack monitoring. In the future work, if the UAV-based images can be taken 

by the camera with higher resolution zoom-in function, the current accuracy can be more 

improved. 
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4.4 Conclusion 

This study presented methods for crack detection and segmentation in riparian road asphalt 

pavement using a drone equipped with a divided digital camera for data collection, the 

YOLOv7 model for data analysis, and public datasets for data supplement. The combination 

of drone technology and the YOLOv7 model showed potential in enhancing the efficiency 

and accuracy of crack detection and segmentation. However, there were limitations in 

detecting and segmenting the certain cracks due to complex target shapes under the random 

contrast and brightness. 

Various crack datasets, including uniformed bounding box size-, species-, and instance-based, 

were used for training and validation. The YOLOv7 (YOLOv7-seg) model with its anchor-

based approach and advanced techniques, achieved reasonable crack detection and 

segmentation, with both around 0.9 F1 value derived from the mesh-based assess approach in 

the detected crack areas around. Noteworthy, the YOLOv7-seg model, which performed with 

segmentation result, required tighter boundaries of the cracks for accurate results. Overall, the 

study highlighted the potential of UAVs and computer vision algorithms for efficient and 

accurate crack detection in riparian road asphalt pavement. 

4.5 Future work 

The application of the YOLOv7-seg model in asphalt-paved crack segmentation has 

demonstrated that the close-distance dataset can be effectively used in remote sensing tasks. 

Typically, remote sensing tasks involve analyzing and interpreting data collected from a 

distance, such as satellite or aerial imagery. The close-distance dataset in this study has 

inspired the authors to consider it a valuable supplement to the crack feature in future work, 

mainly due to its relatively more straightforward obtainability. But the generations of the 

annotations also need a large amount of the human-labeling. Recently, as performed in Figure 
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4.14, a new AI model called Segment Anything Model (i.e., SAM) has empowered the 

generations of Instance Segmentation annotations, that can reduce the burden of the time-

consuming human-labeling for the researchers. SAM (Kirillov et al., 2023) is a prompt-able 

segmentation system with zero-shot generalization to unfamiliar objects and images, without 

the need for additional training.  

 

 

 

Figure 4.14 Instance Segmentation annotations can be generated by the AI-powered web browser-

based annotation tool “Smart Polygon” efficiently: (a) Raw Image; (b) Mask generated 

by Segment Anything Model (i.e., Everything function); (c) Annotations generated by a 

cloud-hosted Segment Anything model, that can apply the accurate polygon annotations 

with a fast speed in the Roboflow UI using just one-click (i.e., Smart Polygon function). 

   The limitations of the trained YOLOv7 model derived from the random brightness and 

contrast also need to be in consideration. To some degree, the technologies like data 

augmentation can improve the accuracy of detecting and segmenting the cracks under these 

random situations. But then it is difficult to adjust the thresholds or the possibility of the 

parameters without considering the weather conditions. If reasonable Parameters setting is 

necessary, considering the standard evaluation approach of the brightness and contrast value 

is an acceptable opinion. 
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CHAPTER 5 

Improvements and Suggestions on River Patrolling Methods 

 

6.1 Manual of River Patrolling Methods on AI and UAV 

Application of UAVs (Unmanned Aerial Vehicles) and AI for river patrol operations in Japan 

involves a multi-faceted approach.  

Until now, long-range drones, such as hybrid multi-copter models, are deployed to cover 

extensive river areas from a single launch point. These drones are equipped with all-weather 

capabilities to operate in various conditions, including rainy and strong-windy. Real-time data 

transmission systems using Wi-Fi, radio, LTE, 5G, or satellite communication allow remote 

operators to monitor the patrol processing.  

AI, particularly deep learning techniques, is employed to automate anomaly detection in the 

collected imagery. Object detection algorithms identify specific items like waste pollution or 

infrastructure damage (i.e., asphalt paved cracks on the top-surface in this research), while 

semantic segmentation analyzes land cover classification changes in the riparian area over 

time.  

In December 2022, Japan amended its aviation laws to promote drone utilization. The new 

regulations allow for "Level 4" flights, and to implement this system effectively, a 

comprehensive flight management system is crucial for planning, executing, and monitoring 

beyond visual line of sight (i.e., BVLOS) flights in populated areas., which are now permitted 

under Japan's updated aviation laws. This regulatory change is crucial for enabling more 

extensive and efficient river patrol operations using drones. Additionally, a robust data 

management system is necessary to handle the large volumes of data generated during patrols, 

including standardized file formats, naming conventions, and detailed metadata for efficient 
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searching and analysis. 

Manual of river patrolling methods identifies four key technical elements necessary for 

effective drone-based river patrols: Long-range Flight Capability, All-weather Operation, 

Communication and Data Transmission, Flight Management Systems. Drones must be able 

to cover the entire river area under management from a single launch point. This capability is 

essential for improving work efficiency in river patrols. River patrols are required in various 

weather conditions, including rain and strong winds after disasters. Drones need to be dust-

proof and waterproof to operate in these diverse conditions. Real-time transmission of drone-

captured imagery to remote operators is crucial. The document mentions the use of WiFi, 

radio, LTE, 5G, and satellite communication technologies. These systems are necessary for 

implementing Level 4 (BVLOS) flights. Key functions include drone registration and 

management, flight planning and approval, tracking and operation execution, monitoring and 

detection, and emergency response capabilities. 

The manual outlines the use of AI, particularly deep learning techniques, for automating 

anomaly detection in river patrols: Object Detection, which was used for identifying specific 

objects like garbage or cracks in river infrastructure. And the AI model outputs bounding 

boxes, object names, and confidence scores; Semantic Segmentation, was used for analyzing 

changes in riparian areas over time, such as sandbar formation or vegetation growth, and this 

AI model can classify each pixel in the image into predefined categories. 

Derived from the mentioned content, there are also several challenges that need to be solved, 

i.e., Lack of sufficient training data, especially for rare events or anomalies; Need for large 

amounts of labeled images across various patrol item categories. Considering of the 

challenges, data Augmentation is a reasonable solution to increase the amount of the dataset. 

Techniques like image flipping, rotation, and cropping are suggested to increase the amount 

of training data. And these methods can help compensate for the lack of real-world data for 
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certain patrol items. 

This manual also emphasizes the importance of efficient data management for drone-based 

river patrols: Data Formats, i.e., specifies file formats for different types of data (e.g., .jpg for 

drone images, .tif for orthophotos, .csv for flight logs); File Naming Conventions, providing 

a standardized naming system including river name, section, date, etc.; Metadata, which 

recommends creating detailed metadata for each data type to facilitate efficient searching and 

management. Metadata includes information like river name, coordinates, capture date, etc. 

6.2 Improvements and Suggestions on current River Patrolling Methods 

Enhance the feature/amount of data for AI 

 Implement the long-term metadata accumulation for the AI models. 

 Continuously improving AI models by expanding rare events. 

 Applying the public dataset to supply the current data lack 

 Applying the multimodal data (i.e., LiDAR) to supply the current feature lack. 

 Applying the AIGC dataset to match the specific data needs. 

Collaborate and share knowledge 

 Establish partnerships with other river management authorities to share best practices 

and data. 

 Collaborate with technology providers and research institutions to stay at the forefront 

of drone and AI advancements in river patrol applications. 

In conclusion, this research provides a comprehensive overview of how to solve the data 

feature/quantity lack in river patrolling. It outlines the current state of the technology, 

identifies challenges, and provides guidelines for implementation while also looking ahead to 

future developments in this rapidly evolving field. The integration of these technologies 

promises to significantly enhance the efficiency and effectiveness of river management and 

monitoring in Japan. 
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CHAPTER 6 

Concluding Remarks 

 

In conclusion, this research has pioneered several innovative methodologies that have 

significantly advanced the field of civil engineering, remote sensing and AI technology. The 

development and application of the LiDAR-assisted DeepLabV3+ Model have not only 

enhanced the features of aerial photography, but also improved the accuracy of land cover 

classification tasks. The successful implementation of this model in the 2018 Asahi Flood 

Simulation has optimized water level inference, demonstrating the practical impact of the 

method derived from this research. 

Furthermore, the novel fusion methodology of aerial photography and LiDAR, utilizing a 

high contrast color scale, has expanded data features and improved performance. The 

exploration of the exchangeability between ALB and GLS for LCC tasks has opened new 

avenues for research and application.  

The adaptation of open-source object detection and instance segmentation models for UAV-

based detection tasks has shown promising results in asphalt-paved cracks and waste 

pollution detection, leading to the development of a comprehensive manual for the 

application. 

The creation of AI-based Generative Content (AIGC) has increased data availability and 

proven its potential in augmenting object detection tasks, particularly in waste pollution 

detection. Lastly, the enhancement of river patrolling tasks through AI-powered UAV 

technology has set a new standard for efficiency and effectiveness in environmental 

monitoring. 

This research not only contributes to the academic community but also holds immense 

potential for real-world applications, paving the way for future innovations in the domain of 
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civil engineering, remote sensing and AI technology. 

In the future, the author is planning that the mentioned technologies can be widely applied in 

the practical tasks for making out the not-solved engineering problems. And the author also 

hope that the other researchers can also get inspirations from the works in this research. 

 

Future Works List: 

 More study sites (except the Aashi River) are need to use to prove the generalizability of 

the methods in this research; 

 LCC TL mapping should be made with a more efficient way, which reduce the work time 

and work load (e.g. using the pre-trained model to generate the rough LCC mapping); 

 Comparing the advantages and disadvantages of DL and RF approach on the LCC tasks; 

 More detailed parameter settings are necessary in the YOLO model training (i.e., batch 

size, epochs, Lr0, optimizer); 

 More Object Detection/Instance Segmentation models should be trained to be as the 

reference for YOLO; 

 An AIGC data bank/platform should be built for the accumulation of the Digital Twin in 

the near future. 

 The AI + UAV concept for the waste detection should be shared with the local community 

to increase the impact and the change of the practical application. 

 The resolution/GSD of the drone images for the detection should link the relationship with 

the resolution/GSD of the training dataset. 
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