
A Study of Python Code Writing Problem and C++
Value Trace Problem for Programming Learning

Assistant Systems

September, 2024

Shune Lae Aung

Graduate School of
Natural Science and Technology

(Doctor’s Course)
Okayama University

Dissertation submitted to
Graduate School of Natural Science and Technology

of
Okayama University

for
partial fulfillment of the requirements

for the degree of
Doctor of Philosophy.

Written under the supervision of

Professor Nobuo Funabiki

and co-supervised by
Professor Satoshi Denno

and
Professor Yasuyuki Nogami

Okayama University, September 2024.

ToWhom ItMay Concern

We hereby certify that this is a typical copy of the original doctor thesis of
Shune Lae Aung

Signature of Seal of

the Supervisor

Graduate School of

Prof. Nobuo Funabiki Natural Science and Technology

Abstract

Nowadays, computer systems are used in any organization, infrastructure, and service around the
world. Then, computer programming is increasing its importance. Actually, computer program-
ming is one of the most important subjects for students in universities and professional schools. It
also develops the abilities of students in solving practical problems by breaking them down into
a series of logical steps, known as algorithms. Many universities and professional schools are
offering programming courses to cultivate programming engineers.

To assist self-studies of students, we have developed a web-based programming learning as-
sistant system (PLAS), and implemented the personal answer platform on Node.js that will be
distributed to students via Docker. PLAS offers various programming exercise problems at differ-
ent learning goals where any answer from a student is automatically marked in the system. The
common user interface has been implemented on a web browser, where the marking function was
implemented by JavaScript that runs on the web browser.

Python programming has gained widespread recognition for its versatility and effectiveness
across various domains, including application development, task automation, and data analysis.
However, the limited availability of Python programming courses in universities has created a
growing demand for self-learning platforms to support novice students in their journey to mastering
this language. To assist its self-study, we have studied the code writing problem (CWP) in PLAS
that requests writing a source code that will pass the given test code with unittest.

As the first contribution in this thesis, I implemented the web-based CWP answer platform for
Python programming on Node.js, by modifying the one for Java programming. Docker is adopted
to help distributing it to the students. The user interface at the client displays the CWP assignments
and accepts the answer code submissions. By running the test code on unittest at the server, the
correctness of the answer code is automatically verified where the result is shown in the interface.

To evaluate the effectiveness of this implementation, I prepared 24 CWP instances for basic
and advanced Python programming topics, and assigned them to 20 students in Japan and In-
donesia. The answer results of the students indicate that most of them successfully completed
the assignments, highlighting the platform’s efficacy in supporting novice Python programmers.
This emphasizes the significance of the platform in facilitating self-study and skill development in
Python programming.

C++ programming has been used in implementing numerous practical application systems
due to its high-speed execution capability and small-size codes. However, the limited availability
of C++ programming courses in universities has created a growing demand for self-learning plat-
forms to support novice students in studying this language. To assist its self-study, we have studied
the value trace problem (VTP) in PLAS that asks the value of a critical variable or output message
in the given source code.

As the second contribution in this thesis, I study the VTP for C++ programming in PLAS. C++
programming can be the first object-oriented programming language for undergraduate students to

i

start studying programming concepts and computer architecture. Since many students can struggle
in studying C++ programming due to the nature in the formal language, hands-on self-study tools
can be effective. In a VTP instance, actual values of important variable or standard output messages
in a given source code are questioned, where the correctness of each answer is checked through
string matching.

For evaluation, I generated 37 VTP instances for basic grammar concepts using source codes
in textbooks or websites for C++ programming, and asked 46 students from Myanmar, Japan and
Indonesia universities. The results suggest that most of the students are satisfactory, but some
students need cares at early programming study stage.

In future works, I will further enhance the implemented platform for PLAS with the more
variety of exercise problems, integrate interactive learning resources, and extend its functionality
to support other programming languages.

ii

Acknowledgements

It is my great pleasure to express my profound gratitude to those who have supported and en-
couraged me, making this dissertation possible. Although words may fall short in conveying my
deepest appreciation, I would like to extend my heartfelt thanks to those who have been a signifi-
cant blessing in my life.

Foremost, I owe my deepest gratitude to my supervisor, Professor Nobuo Funabiki, who has
supported me throughout my thesis with his patience, motivation, encouragement, enthusiasm, and
insightful suggestions. His countless valuable advice and unwavering support from the beginning
to the end enabled me to progress in this study and navigate daily life in Japan. Furthermore, he
provided precious ideas and thoughtful considerations on how to thrive academically and plan for
the future. His motivation and energy were instrumental in completing my research papers and
preparing for life’s challenges. He offered invaluable guidance on social aspects of life in Japan,
creating a warm and safe environment despite being far from my family. Needless to say, this
thesis would not have been possible without his guidance and active support.

I am deeply grateful to my co-supervisors, Professor Satoshi Denno and Professor Yasuyuki
Nogami, for their continuous support, guidance, thoughtful suggestions, and meticulous proof-
reading of this work. I also wish to express my sincere gratitude to Associate Professor Minoru
Kuribayashi for his valuable insights during my research and his great ideas for composing ex-
cellent presentations. I extend my thanks to all the course teachers during my Ph.D. study for
enlightening me with their wonderful knowledge and to Ms. Keiko Kawabata for her support with
necessary documents and requirements during my study.

I acknowledge the Ministry of Education, Culture, Sports, Science, and Technology of Japan
(MEXT) for financially supporting my Ph.D. study, and I am grateful to all my respected teachers
at the University of Yangon (UY) for imparting valuable knowledge.

I extend my heartfelt thanks to my friends, especially my Myanmar friends, and all the mem-
bers of FUNABIKI’s Lab who assisted me in this study and shared unforgettable experiences with
me. Your support during tough times and the thoughts and experiences shared with me are greatly
appreciated.

I am eternally grateful to my beloved family and my soulmates, who are essential to my exis-
tence. Without their support and encouragement, surviving life’s challenges would not have been
easy. They have always supported and motivated me not only in my study but throughout my life.
Your support and understanding have given me the strength, inspiration, and peace to share joyful
moments and overcome any difficulties. I am truly blessed to have you all.

Shune Lae Aung
Okayama, Japan
September 2024

iii

List of Publications

Journal Paper
1. Shune Lae Aung, Nem Khan Dim, Soe Mya Mya Aye, Nobuo Funabiki, and Htoo Htoo

Sandi Kyaw, “Investigation of Value Trace Problem for C++ Programming Self-study of
Novice Students”, International Journal of Information and Education Technology (IJIET),
vol. 12, no. 7, pp. 631-636, July 2022.

International Conference Papers

2. Shune Lae Aung, Nobuo Funabiki, San Hay Mar Shwe, Soe Thandar Aung, and Wen-
Chung Kao, “An implementation of code writing problem platform for Python programming
learning using Node.js,” 2022 IEEE 4th Global Conference on Consumer Electronics (GCCE
2022), pp. 854-855 (Osaka, Japan, 2022).

3. Shune Lae Aung, Nobuo Funabiki, San Hay Mar Shwe, Evianita Dewi Fajrianti, and Sritrusta
Sukaridhoto, “An application of code writing problem platform for Python programming
learning,” 2022 IEEE 11th Global Conference on Consumer Electronics (GCCE 2022), pp.
856-857 (Osaka, Japan, 2022).

iv

List of Figures

2.1 Original server platform for JPLAS. 4
2.2 Software architecture for JPLAS. 5
2.3 Operation flow for offline answering function. 9
2.4 NPLAS server platform. 11
2.5 NPLAS application directory structure using Express.js. 12
2.6 MVC model in NPLAS for Java. 14
2.7 Installation procedure of JPLAS platform using Docker. 15
2.8 Upload and download JPLAS image from Docker Hub. 16

3.1 Server platform. 18
3.2 PyPLAS application directory structure using Express.js. 19
3.3 Answer code validation process. 20
3.4 MVC model in PyPLAS on Node.js. 21
3.5 Problem answer interface. 22
3.6 Problem list interface. 22
3.7 Installation procedure of PyPLAS platform using Docker. 23
3.8 Upload and download of PyPLAS image from Docker Hub. 24

4.1 CWP answer interface. 27

5.1 VTP answer interface. 34
5.2 VTP answer interface with explanation in details. 35

v

List of Tables

2.1 Files for distribution. 9

3.1 Questions and results on CWP platform. 25

4.1 CWP instances and results. 29

5.1 VTP for basic grammar concepts . 36
5.2 Result for each student . 37
5.3 Correct answer rate distribution of students . 38
5.4 Submissions times distribution of students . 38
5.5 Result of each VTP instance . 39
5.6 Correct answer rate distribution of instances . 40
5.7 Grammar concepts of hard instances . 40

vi

Contents

Abstract i

Acknowledgements iii

List of Publications iv

List of Figures v

List of Tables vi

1 Introduction 1
1.1 Background . 1
1.2 Contributions . 2
1.3 Contents of This Dissertation . 3

2 Review of Programming Learning Assistant System 4
2.1 Overview of PLAS . 4

2.1.1 Server Platform . 4
2.1.2 Software Architecture . 5
2.1.3 Implemented Problem Types . 6

2.2 Code Writing Problem in JPLAS . 7
2.2.1 TDD Method . 7

2.2.1.1 JUnit . 7
2.2.2 Test Code . 7

2.2.2.1 Features in TDD Method . 8
2.3 Offline Answering Functions in JPLAS . 8

2.3.1 Operation Flow . 8
2.3.2 File Generation . 9
2.3.3 Cheating Prevention . 9

2.4 Review of PLAS using Node.js . 9
2.4.1 Open Source Software . 10

2.4.1.1 Node.js . 10
2.4.1.2 Express.js . 10
2.4.1.3 Embedded JavaScript (EJS) . 11
2.4.1.4 Docker . 11

2.4.2 Implementation of JPLAS platform using Node.js 11
2.4.2.1 Software Architecture . 11
2.4.2.2 Server Side Implementation . 12

vii

2.4.2.3 File for Connection between Server and Browser 12
2.4.2.4 MVC Model Software Architecture in NPLAS 13

2.4.3 Adoption of Docker for JPLAS . 15
2.4.3.1 JPLAS Docker Workflow . 15
2.4.3.2 Usage Procedure . 16

2.5 Summary . 16

3 Implementation of CWP Platform for Python Programming 17
3.1 Introduction . 17
3.2 Implementation of CWP Platform . 17

3.2.1 Software Architecture . 18
3.2.2 Server Side Implementation . 18
3.2.3 Connection between Server and Browser 18
3.2.4 Validation Process of Answer Source Code 19
3.2.5 MVC Model Software Architecture . 20
3.2.6 Problem Answer Interface . 21
3.2.7 Problem List Interface . 22

3.3 Docker for Answer Platform Distribution . 22
3.3.1 Dockerfile Creation . 23
3.3.2 Installation of Platform . 23

3.4 Evaluation . 24
3.5 Summary . 24

4 Software Testing in CWP Platform for Python Programming 26
4.1 Overview of CWP . 26
4.2 CWP answer interface . 26
4.3 Test Driven Development . 27

4.3.1 Unit Testing Framework . 27
4.4 Test Code . 27

4.4.1 Test Code Example . 28
4.5 Application Results . 29

4.5.1 CWP instances and solution results . 29
4.5.2 Discussions . 29

4.6 Summary . 30

5 Investigation of VTP for C++ Programming 31
5.1 Overview of VTP . 31
5.2 Generation of Value Trace Problem . 31

5.2.1 Generation Procedure of VTP . 32
5.2.2 Selection of C++ Source Code . 32
5.2.3 Generating Assignments . 33
5.2.4 Answer Interface for VTP . 33

5.3 Evaluation . 34
5.3.1 VTP Instances for Basic Grammar Concepts 35
5.3.2 Student Solution Results . 37

5.3.2.1 Individual Student Analysis . 37
5.3.2.2 Correct Answer Rate Distribution 38

viii

5.3.2.3 Submission Time Distribution 38
5.3.3 Individual VTP Instance Result . 38

5.3.3.1 Individual Instance Analysis 40
5.3.3.2 Correct Answer Rate Distribution 40
5.3.3.3 Analysis of Hard Instances . 40

5.4 Summary . 41

6 Related Works 42

7 Conclusion 45

References 47

ix

Chapter 1

Introduction

1.1 Background
Nowadays, computer systems are essential components in any organization, infrastructure, and
service around the world. Then, computer programming is a fundamental skill for developing
and maintaining these systems. Among the various programming languages, Python and C++ are
particularly suitable for beginners. Python is popular for its simplicity and versatility, and is widely
used in many fields such as web developments, data science, and machine learning, while C++ is
also well known for its reliability and portability, finding extensive use in various applications
ranging from web systems to embedded systems.

With the increasing reliance on computer systems, there is a corresponding surge in demand
for skilled programming engineers. To meet this demand, numerous universities and professional
schools offer programming courses for equipping students with the necessary skills and knowledge.
However, many universities struggle in offering comprehensive programming courses due to time
and staffing constraints. There is a pressing need for high-quality self-study tools and platforms
for programming education.

To address this gap, we developed a web-based Programming Learning Assistant System (PLAS)
and implemented a personal answer platform on Node.js that will be distributed to students via
Docker. PLAS offers various programming exercise problems to assist student self-studies, ad-
dressing different learning goals where student answers are automatically marked. These problems
include the Grammar-Concept Understanding Problem (GUP) [1], the Value Trace Problem (VTP)
[2], the Element Fill-in-Blank Problem (EFP) [3], Statement Fill-in-blank Problem (SFP) [4], the
Code Writing Problem (CWP) [5], the Code Amendment Problem (CAP) [6], the Code Completion
Problem (CCP) [7], the Mistake Correction Problem (MCP) [8]. These problems enable students
to engage actively in programming learning, allowing them to read, write and test source code.

The server platform of PLAS was originally implemented on Tomcat where the application
programs were made by Java and JSP [9]. Recently, it was newly implemented as a personal
answer platform on Node.js under the uniform design using JavaScript [10]. This implementation
allows JavaScript to be used for application programs on both the server and client sides, and it
will be distributed via Docker [11]. Node.js [12] serves as the web application server, allowing
JavaScript-based development for both server and client applications. The user interface of the
code writing problem platform is dynamically controlled using EJS, which simplifies complex
syntax structures [13].

Python is widely accepted as a versatile and user-friendly object-oriented programming lan-
guage, used extensively across industries and academia. Its simplified syntax and emphasis on

1

readability make it an excellent choice for beginners, facilitating a smoother learning curve [14].
Building upon this success of the PLAS platform, I extended the platform to incorporate CWP for
Python programming. The extended platform facilitates students in learning Python source code
writing from scratch. Students engage by reading the provided test code, writing their source code,
and subsequently testing, modifying, and resubmitting the code if errors occur.

On the other hand, C++ is also significantly important in programming education. Its widespread
use in practical applications contrasts with the limited availability of comprehensive courses in uni-
versities. To bridge this gap, we focus on the VTP within PLAS, for C++ programming learning.
Through solving VTP, students engage with critical variables and output messages, enhancing their
understanding through practical exercises and string matching evaluations.

1.2 Contributions
In this thesis, as the first contribution of the thesis, I implement the web based CWP platform for
Python programming learning on Node.js. The user interface of this platform is dynamically con-
trolled with EJS that can avoid the complex syntax structure. Docker is adopted to make students
easily install the platform software in their own PCs. The user interface at the client shows the
CWP assignments and accepts the answer code submissions from the students. Then, by running
the test code on unitest at the server, the correctness of each answer code is automatically verified
and is returned to the interface to be shown.

For evaluations, we prepared the usage manual and requested 20 students from Japan and
Indonesian universities to install and use the platform. Then, we collected their feedbacks by
10 questionnaires. Most students were satisfied with this platform, which confirms the validity.
However, two students found some difficulty in the installation.

In the second contribution, I explore the extension of the web based CWP platform to Python
programming learning. First, I collected source codes from websites and textbooks, covering basic
grammar concepts in Python programming. Then, I manually generated the corresponding test
codes to test the source codes so that the correctness of the answer source codes from a student can
be validated automatically at the answer platform.

For evaluations, we distributed the generated CWP instances to novice students in Japan and
Indonesia, who were asked to use the answer platform to solve them. The results showed that
the majority of the students successfully completed the code writing tasks, which confirmed the
usefulness and effectiveness of the proposal in supporting self-study for Python programming.
However, some students are still not familiar with the collection data types of list, dictionary,
and set, and feel difficult to handle the JSON data type. So, some students will need cares at
programming study.

In the third contribution, we study the VTP for C++ programming learning. C++ is important
for practical applications due to its speed and efficiency. However, limited university courses have
increased the need for self-learning tools. To help beginners, I study VTP for C++ programming,
which asks students to find the value of key variables or outputs in source code, emphasizing the
selection of source codes that cover basic grammar concepts to support novice learners.

For evaluations, we collected 37 source codes from websites and textbooks for basic grammar
concepts in C++ programming, and generated VTP instances manually, after analyzing important
variables and outputs messages in the codes. Then, to verify the effectiveness of the generated 37
VTP instances, we assigned 46 students from Myanmar, Japan and Indonesia universities. The
results show that among 46 students, 35 students solved all the questions correctly, and only two

2

students may have the difficulty in solving them. These students need cares from the teacher at this
early programming study stage.

In future works, I plan to further improve the PLAS platform by adding a wider range of ex-
ercise problems, incorporating interactive learning resources, and extending its support to include
additional programming languages. These enhancements will provide more comprehensive learn-
ing opportunities and better support for students’ self-study needs.

1.3 Contents of This Dissertation
The remaining part of this thesis is organized as follows: In Chapter 2, I review the overview of
Programming Learning Assistant System (PLAS). In Chapter 3, I present the implementation of the
CWP platform for the code writing problem (CWP). In Chapter 4, I present its application results.
In Chapter 5, I investigate the VTP for C++ programming. In Chapter 6, I review relevant works
in literature.

3

Chapter 2

Review of Programming Learning Assistant
System

2.1 Overview of PLAS
This chapter reviews the web-based Programming Learning Assistant System (PLAS), focusing on
server platform, software architecture, and the various problem types implemented in PLAS.

2.1.1 Server Platform
Originally, JPLAS was implemented using JSP with Java 1.6.2 as the web application on a server.
It uses Ubuntu-Linux 10.04 as the operating system running on VMware for portability. Tomcat
6.0.26 serves as the web application server to run JSP source codes, a scripting language that
embeds Java codes within HTML codes. Tomcat returns the dynamically generated web pages
to the client web browser. MySQL 5.0.27 is used for managing the data in JPLAS. Figure 2.1
illustrates the server platform of JPLAS.

Figure 2.1: Original server platform for JPLAS.

4

2.1.2 Software Architecture
The software architecture of JPLAS follows the MVC model as the common architecture of the
web application system. It basically uses Java for the Model (M), HTML/CSS/JavaScript for the
View (V), and JSP for the Control (C).

The Model (M) implements the logic functions of JPLAS using Java. For the independence
from the view and controller, any input/output to/from the model uses a string or its array that does
not contain HTML tags. Servlet is not used to avoid the possible redundancy that could happen
between Java codes and Servlet codes where the same function may be implemented. A design
pattern called Responsibility Chain is adopted to handle marking functions of the student answers,
and the specific functions for the database access are implemented such that the controller does not
handle them.

The View (V) implements the user interfaces of JPLAS by using a CSS framework to provide
integrated interfaces using Cascading Style Sheet (CSS) in the web standard. The user interface is
dynamically controlled with Ajax to reduce the number of JSP files.

The Control (C) in JPLAS is implemented by JSP. When it receives a request from the view, it
sends it to the program in the model and requests the corresponding process. When the program
in the model returns the processing results by strings, the control program changes the format for
HTML. The procedure is elaborated as follows:

1) to show the assignment list in the view, JSP in the control receives the list with strings in
the two dimensional array, changes them into the table format in HTML, and sends them to
JavaScript in the view,

2) to demonstrate the selected assignment in the view, JSP receives the details with strings,
changes them into the table in HTML, and sends it to JavaScript, and

3) to mark the answers from the student, JSP receives them from JavaScript in the view and
sends them to Java in the model. After completing the marking in the model, JSP receives
the marking results from Java, changes them into the table format in HTML, and sends it to
JavaScript in the view [15].

The overall software architecture in JPLAS can be seen in Figure 2.2.

Figure 2.2: Software architecture for JPLAS.

5

2.1.3 Implemented Problem Types
Currently, JPLAS has several types of exercise problems to support students at difference learning
levels. The problem types in JPLAS are as follows:

1) Grammar Concept Understanding Problem (GUP): This problem requires students to un-
derstand the important elements in a source code. An GUP instance consists of a source
code and a set of questions on grammar concepts or behaviors of the code. Each answer can
be a number, a word, or a short sentence, whose correctness is marked through string match-
ing with the correct one. The algorithm is implemented to automatically generate a GUP
instance from a given source code by 1) extracting the registered keywords in the source
code, 2) selecting the registered question corresponding to each extracted keyword, and 3)
detecting the data required in the correct answer from the code [1].

2) Value Trace Problem (VTP): This problem requires students to trace the actual values of
important variables in a code when it is executed. The correctness of the answers is also
marked by comparing them with their correct ones stored in the server [2].

3) Element Fill-in-blank Problem (EFP): This problem requires students to fill in the blank
elements in a given code. The correctness of the answers is marked by comparing them with
their original elements in the code that are stored in the server. The original elements are
expected to be the unique correct answers for the blanks [3]. To help a teacher to generate
a feasible element fill-in-blank problem, the blank element selection algorithm has been
proposed [16].

4) Statement Fill-in-blank Problem (SFP): This problem asks students to fill in the blank state-
ments in a code. The correctness of the code is marked by using the test code on JUnit that
is an open source software for the test-driven development (TDD) method. To help a teacher
select blank statements from a code, the program dependency graph (PDG) has been used
[4].

5) Code Writing Problem (CWP): This problem asks students to write a whole code from
scratch that satisfies the specifications described in the test code. The correctness of the
code of students is also marked by the test code [5].

6) Code Amendment Problem (CAP): In this problem type, a source code that has several miss-
ing or error elements, called a problem code, is shown to student. A student needs to identify
the locations of missing or error elements in the code, and to fill in them or correct them with
the correct elements. The correctness of any answer will be marked through string matching
of the whole statement with the corresponding original one in the code [6].

7) Code Completion Problem (CCP): In this problem, a source code with several missing ele-
ments is shown to the students without specifying their existences. Then, a student needs to
locate the missing elements in the code and fill in the correct ones there. The correctness of
the answer from a student is verified by applying string matching to each statement in the
answer to the corresponding original statement in the code. Only if the whole statement is
matched, the answer for the statement will become correct. Moreover, merely one incorrect
element will result in the incorrect answer [7].

6

2.2 Code Writing Problem in JPLAS
The code writing problem (CWP) in JPLAS is designed for students how to write source code from
scratch. This problem asks a student to write a whole source code that satisfies the specifications
given by the test code. The JPLAS function for this problem is implemented based on the test-
driven development (TDD) method using an open source framework JUnit [17]. When a student
submits their code, it is automatically tested on the server to ensure its correctness. To create a
new assignment in JPLAS, a teacher must prepare both the specifications and the test code.

2.2.1 TDD Method
The test-driven development (TDD) method is reviewed [18].

2.2.1.1 JUnit

JUnit assists the automatic unit testing of a Java source code or a class. Since JUnit has been
designed with the Java-user friendly style, including the use of the test code programming, is
rather simple for Java programmers. In JUnit, tests are performed by running methods whose
names start with whose name starts with “assert”. For instance, “assertEquals” method is used to
compare the execution result of the source code with its expected value.

2.2.2 Test Code
A test code should be written by using libraries in JUnit. The following Listing 2.1 shows MyMath
class source code that is used to introduce how to write a test code. MyMath class returns the
summation of two integer arguments.

Listing 2.1: Source code for MyMath class
1 p u b l i c c l a s s Math {
2 p u b l i c i n t p l u s (i n t a , i n t b) {
3 r e t u r n (a + b) ;
4 }

5 }

Then, the following Listing 2.2 shows test code tests plus method in MyMath class.

Listing 2.2: Test code for MyMath class
1 i m p o r t s t a t i c o rg . j u n i t . A s s e r t . * ;
2 i m p o r t o rg . j u n i t . T e s t ;
3 p u b l i c c l a s s MyMathTest {
4 @Test
5 p u b l i c vo id t e s t P l u s () {
6 MyMath ma = new MyMath () ;
7 i n t r e s u l t = ma . p l u s (1 , 4) ;
8 a s s e r t E q u a l s (5 , r e s u l t) ;
9 }

10 }

7

The test code imports JUnit packages containing required test methods at lines 1 and 2, and
declares MyMathTest at line 3. @Test at line 4 indicates that the succeeding method represents the
test method. Then, it describes the procedure for testing the output of plus method. This test is
performed as follows:

1) An instance ma for MyMath class is generated.

2) plus method for this instance ma.plus is called with given arguments.

3) The result result is compared with its expected value using assertEquals method.

2.2.2.1 Features in TDD Method

In the TDD method, the following features can be observed.

1) The test code represents the specifications of the source code, because it must describe every
function which will be tested in the source code.

2) The testing process of a source code is efficient because each function can be tested individ-
ually.

3) The refactoring process of a source code is simplified as the modified code can be tested
immediately.

2.3 Offline Answering Functions in JPLAS
In addition to the online platform, the offline answering function has been implemented to allow
students to answer the problems in JPLAS even if the students cannot access to the JPLAS server
when the Internet is unavailable. This feature is really handy when there’s no internet access. For
offline use, students can get the problems and submit their answers using a USB drive. Offline
JPLAS includes operation flow, file generation, and cheating prevention

2.3.1 Operation Flow
The operation flow of the offline answering function is as follows:

1) Problem instance download: a teacher accesses to the JPLAS server, selects the problem
instances for the assignment, and downloads the required files into the own PC on online.

2) Assignment distribution: a teacher distributes the assignment files to the students by using a
file server or USB memories.

3) Assignment answering: the students receive and install the files on their PCs, and answer the
problem instances in the assignment using Web browsers on offline, where the correctness
of each answer is verified instantly at the browsers using the JavaScript program.

4) Answering result submission: the students submit their final answering results to the teacher
by using a file server or USB memories.

5) Answering result upload: the teacher uploads the answering results from the students to the
JPLAS server to manage them.

8

2.3.2 File Generation
Table 2.1 shows the necessary files with their specifications for the offline answering function in
JPLAS. These files are designed for the problem view, the answer marking, and the answer storage.

2.3.3 Cheating Prevention
In Offline JPLAS, the correct answers need to be distributed to the students so that their answers
can be verified instantly on the browser. To prevent disclosing the correct answers, they will be
distributed after taking hash values using SHA256 [19]. In addition, to avoid generating the same
hash values for the same correct answers, the assignment ID and the problem ID are concatenated
with each correct answer before hashing. Then, the same correct answers for the different blanks
are converted to the different hash values, which ensures the independence between the blanks.

Figure 2.3: Operation flow for offline answering function.

Table 2.1: Files for distribution.

File name Outline
css CSS file for Web browser

index.html HTML file for Web browser
page.html HTML file for correct answers

jplas2015.js js file for reading the problem list
distinction.js js file for checking the correctness of answer

jquery.js js file for use of jQuery
sha256 js file for use of SHA256

storage.js js file for Web storage

2.4 Review of PLAS using Node.js
In this section, we provide an overview of the architecture and design principles of the Node.js-
based Programming Learning Assistant System (NPLAS). We discuss the features and functional-

9

ities offered by the platform, the utilization of Node.js for developing the web application system,
and the integration of Docker for easy distribution and deployment [10].

2.4.1 Open Source Software
We introduce the open-source software utilized for implementing the NPLAS system with com-
pleteness and readability.

2.4.1.1 Node.js

Node.js is an open-source server environment compatible with various PC platforms like Windows,
Linux, and macOS. It acts as an interpreter and runtime environment for executing JavaScript
source codes on the server. This versatility allows developers to use JavaScript for building both
desktop and server applications, streamlining the development process. Node.js adopts an event-
driven, non-blocking I/O model, making it lightweight, and efficient compared to threaded servers
like Apache.

In the context of web application servers, Node.js provides a built-in HTTP module for handling
data transfer over the HTTP protocol. It can create HTTP servers that listen to server ports and
respond to client requests. The HTTP module consists of two main components: the request
module for retrieving or sending data resources to/from the server and the response module for
serving data resources based on client requests. This capability enables Node.js to serve as a
bridge between clients and servers, facilitating efficient communication and resource delivery.

2.4.1.2 Express.js

Express.js is the minimal and flexible framework specifically for Node.js that can provide a robust
set of features for a web application development. A framework generally provides ready-made
components or solutions and may include supporting programs, compilers, code libraries, and APIs
that can be useful to develop applications and be customized to speed up it. Express.js provides
the following features:

• For routing, it enables developers to define request handlers using different HTTP verbs and
URL paths, facilitating efficient routing within the application.

• For template engine, it integrates with ”view” rendering engines, allowing developers to
generate dynamic responses by inserting data into templates.

• For HTTP server and template location, it simplifies the configuration of common web ap-
plication settings such as port connections and template locations, streamlining the develop-
ment process.

• For middleware, it provides extensive middleware support, enabling developers to add ad-
ditional request processing functions anywhere within the request handling pipeline. This
allows for the inspection and filtering of incoming HTTP requests, improving application
security and performance.

10

2.4.1.3 Embedded JavaScript (EJS)

The user interface is implemented using Embedded JavaScript (EJS), CSS, and Bootstrap files,
and is controlled by Node.js and Express programs. EJS is a template engine to help rendering
JavaScript codes on the client-side. Basically, EJS is used for embedding JavaScript codes inside
HTML codes. EJS is used on Node.js when it is working in Express framework.

2.4.1.4 Docker

Docker provides the flexibility and portability for running various software on different platforms.
Docker is a framework of simplify managing and deploying containers or applications. A Docker
container can be built from plain text files called a Dockerfile that describes human and machine
readable recipes for creating computing environments and interacting with data. The Docker con-
tainer can be run on anywhere as long as Docker is installed, and is built from the Docker image
to offer the software environment for running the target application, which may include the source
codes, the libraries, the middleware, and the parameters. Using Docker, the application can run on
any platform without considering the installed software there. Thus, the software version or source
code incompatibility problem can be easily solved on a PC.

2.4.2 Implementation of JPLAS platform using Node.js
We review the software architecture, server-side implementation, and the connection between the
server and the browser.

2.4.2.1 Software Architecture

NPLAS is a web application system designed to enable educators to furnish programming exercises
to numerous students while overseeing their learning activities on the server. In the server architec-
ture depicted in Figure 2.4, Node.js is employed as the web application server, complemented by
the Express.js framework. In realizing the MVC model-based application, Java is utilized for the
model (M), executing JUnit for testing answer source codes in code-writing problems. The view
(V) is constructed using EJS, CSS, JavaScript, while JavaScript is employed in the controller (C).
Notably, no database system is incorporated for data management.

Figure 2.4: NPLAS server platform.

11

2.4.2.2 Server Side Implementation

Basically, Node.js has a complex structure and is not easy to maintain. Therefore, Express is used
together in our implementation. Express.js follows the MVC structure as a programming design
pattern. To use Express, we have to install Node.js and the node package manager (npm) together
from the prepared binary packages for each operating system. Actually, when Node.js is installed,
npm is automatically installed. npm is the important tool for working with Node.js applications. It
provides the access to hundreds of thousands of reusable packages of JavaScript libraries that the
applications need for developments, testing, or productions, and may also be used to run tests and
tools used during the development process.

Other dependencies that are necessary to run the application, such as the frameworks and tem-
plate engines, are imported into the application environment using the npm package manager. After
installing Express.js, the directories for bin, node-modules, public, routes, and views are generated.
The details will be described in the next section, including how each directory is working and why
it is important to run the application well.

In Node/Express.js, each web application creates and runs its own web server. Express.js pro-
vides the methods to specify which function is called for a particular HTTP verb (GET, POST,
SET, etc.) and URL pattern ”route”, and to specify which template ”view” engine is used, where
template files are located, and which template is used to render a response.

2.4.2.3 File for Connection between Server and Browser

When a client navigates to the server name (URL) using the port such as localhost:8000 from
the browser, the implemented web application will perform the following procedures as shown in
Figure 2.5.

Figure 2.5: NPLAS application directory structure using Express.js.

• package.json: The application invokes the package.json file, which meticulously enumerates
all dependencies for the specific JavaScript “package”. This comprehensive listing encom-
passes 1) package’s name, 2) version, 3) description, 4) initial executable file, 5) production
dependencies, 6) development dependencies, and 7) compatible version of Node.js. The
package.json file contains all the necessary information for npm to fetch and execute the
application. By identifying the “start” key and the value “node ./bin/www” in the script tag,

12

it signifies that the Node.js project references the file named “www” within the bin folder.
This file gathers data for Express.js to utilize within the application.

• www file: The www file defines the entry point of the application and accommodates various
setup configurations. Within this application, three distinct scripts—namely, app, debug, and
http—are configured in this file.

• app.js: The app.js will declare the package that is required by the application globally and
will be the main root file of the whole application directory.

• index.js: The index.js file under the routes folder will route the application’s requests to its
appropriate controller and then, render the associated view.

• views: The views folder includes all the NPLAS user interface files that will be displayed to
the browser by using EJS.

• public: All the static files, such as the CSS, images, and JavaScript files, are set up under the
public folder.

• addon: The customized addon folder serves as the database, encompassing the test code
files, answer source code files, and validator files.

Here, the user.js route was a result of it being part of the default structure provided by Express.js
during the project initialization. It is noted that the current backend does not require the user route,
and the authentication and authorization features are not implemented. As this application focuses
on aspects of programming learning through the personal use, we have not implemented the user
management functionality at this stage. Details were not described on the user.js route.

2.4.2.4 MVC Model Software Architecture in NPLAS

The proposed software architecture for the NPLAS platform adheres to the MVC model, recognized
as the standard architecture for a web application system, as illustrated in Figure 2.6. Java is used
in the model, EJS/CSS/JavaScript are in the view, and JavaScript is in the controller.

13

Figure 2.6: MVC model in NPLAS for Java.

1) Model: The model reads the required data files in the predefined file system called ”addon”.
They include the test code files, the answer source files, and the validator files. The marking
function in JPLAS is different according to the problem type. For the code writing problem,
the marking function of testing the answer code runs in the background of the server. This
function is implemented by Java using Eclipse. It is exported as a jar file and is imported
in Node.js. This function automatically tests any answer source code submitted from the
browser by running the given test code on JUnit. The results including the JUnit log are
recorded in the file system and can be viewed by the student in the browser.

A student submits the assignment answer code and receives the result of the testing function
to/from the Node.js server in the web browser. The folders to contain the necessary files to
run the testing function are prepared in the file system under the ”addon” folder. Then, the
JavaScript program in the web browser can detect these folders and read/write the files in
them. The testing function uses the files under these folders with the input parameters to test
the answer source code on JUnit.

For the other problem types in JPLAS, the marking function is implemented in the JavaScript
program that runs in the browser when the student solves the problems and submits their
answers on the browser. The marking function compares the answer with the predefined
correct answer. The answers and the marking results are saved on the browser’s local storage
temporarily with the unique key. Then, when the student downloads them to a text file to be
sent to the teacher, the JavaScript program saves the data in the local storage in a text file in
the output folder under the ”addon” directory of the application.

2) View: The view implements the user interface in JPLAS by using the EJS template engine to
render dynamic contents in the browser. The SkyBlue CSS framework is used for the style.
EJS is enabled to construct an HTML code along with JavaScript codes that are passed in
via the backend of the application. All the EJS files for the application are included in the
”views” directory. The application will call the file starting from the index file, which is the
home page of the application. It consists of the title, the menu, and the main body for each

14

problem type. As a feature of this architecture, the fixed parts of the interface are made by
EJS and CSS, while the changeable parts are made by JavaScript functions that are stored
in the public directory. The main body needs to be exchanged with the related EJS file
according to the route that the client requested. It can reduce the code size and simplify the
code architecture.

3) Controller: The controller in JPLAS is implemented by JavaScript. When a request is re-
ceived, the application works out what action is needed based on the URL pattern and the
associated information contained in POST data or GET data. It may read or write the infor-
mation from the file system, or perform the tasks required to satisfy the request.

Here, Express.js will transfer the data via the related route. For the data transfer, the ap-
propriate name is assigned in the route. Then, the application will return the response to
the web browser, by often dynamically creating an EJS page for the browser to render the
view related to the assigned name and to display it by inserting the retrieved data into the
placeholders in the EJS template. Node.js and Express.js are perfectly capable of running
a website with dynamic data. Besides, the structure has hierarchy structures or grouping
concepts that can be maintained by anyone who understands Node.js and Express.

2.4.3 Adoption of Docker for JPLAS
In this section, we present the adoption of Docker to help students to install the JPLAS platform
into their PCs.

2.4.3.1 JPLAS Docker Workflow

Figure 2.7 illustrates the procedure of adopting Docker for the installation of the JPLAS platform
in a PC.

Figure 2.7: Installation procedure of JPLAS platform using Docker.

A Docker container can be generated using a plain text file named Dockerfile, providing both
human-readable and machine-readable instructions for crafting computing environments and in-
teracting with data. The Docker container operates independently anywhere, provided Docker is
installed, and is constructed from the Docker image to provide the necessary software environment
for executing the target application. To facilitate easy distributions of the NPLAS Docker image to

15

students, it is stored in the Docker Hub [20] account using the Docker push command, as illustrated
in Figure 2.8.

Figure 2.8: Upload and download JPLAS image from Docker Hub.

2.4.3.2 Usage Procedure

To utilize the NPLAS platform, students are required to execute the following steps:

1. Download and install Docker corresponding to the student’s PC operating system. For Win-
dows OS, the installation of Windows Subsystem for Linux (WSL) is also necessary.

2. After initiating Docker on the PC, download the NPLAS Docker image from Docker Hub
using the Docker pull command.

3. Execute the Docker run command to operate the image on the PC. The specifics of this
command may vary based on the OS of the PC. Following the execution of this command,
the student should examine the “output” folder to store the answer files.

4. Access the NPLAS platform by opening the browser and entering localhost:8000 in the ad-
dress bar.

2.5 Summary
In this chapter, we reviewed PLAS projects, exploring its software architecture and core function-
alities. Additionally, we also reviewed the implementation of the PLAS platform using Node.js
and Docker.

16

Chapter 3

Implementation of CWP Platform for
Python Programming

This chapter presents the implementation of Code Writing Problem (CWP) platform for Python
Programming Learning Assistant System (PyPLAS).

3.1 Introduction
Previously, the platform for Java programming learning assistant system (JPLAS) as the self-
study tool for Java programming was implemented on Node.js under the uniform design using
JavaScript[10]. The programs on both the server and client sides can be made using JavaScript.

Python is commonly used in industries and academics due to rich libraries and short coding
features. Python has been widely involved in developing applications, task automation, data anal-
ysis, data visualizations, and machine learning. Thus, the cultivation of Python programming
engineers has been highly demanded from industries. However, many universities are not offer-
ing Python programming courses, due to time and teaching-staff limitations. Thus, high-quality
self-study tools are very important. To bridge this gap, I implement the CWP platform for Python
programming learning by extending the JPLAS platform [21].

In CWP of PyPLAS, each assignment or instance requests a student to write a source code
that will pass the given test code. The test code describes the specifications to be satisfied in the
assignment. The primary purpose of CWP is to assess and enhance the problem-solving and code
writing skills of a student based on the test-driven development (TDD) method.

3.2 Implementation of CWP Platform
In this section, I present the software architecture, server-side implementation, and the connection
between the server and the browser for the implementation of the CWP platform. For each CWP
instance, a pair of the source code and the test code needs to be prepared by the teacher. The
teacher should check the correctness of the source code by running the test code on unittest. The
user interface of this PyPLAS is dynamically controlled with EJS that can avoid the complex syntax
structure. Docker is adopted to make students easily install the platform in their own PCs. The
user interface at the client shows the CWP assignments and accepts the answer code submissions
from the students. Then, by running the test code on unitest at the server, the correctness of each
answer code is automatically verified and is returned to the interface to be shown.

17

3.2.1 Software Architecture
PyPLAS is a web application system designed to allow educators to provide programming exercises
to many students while managing their learning activities on the server. As illustrated in Figure 3.1,
the server architecture employs Node.js as the web application server, using the Express.js frame-
work. In implementing the MVC (Model-View-Controller) model, Python is used for the model
(M) component, with unittest used for testing the answer source codes in coding exercises. The
view (V) is built with EJS, CSS, and JavaScript, while JavaScript is used for the controller (C).
Notably, the system operates without incorporating a database for data management.

Figure 3.1: Server platform.

3.2.2 Server Side Implementation
Node.js is basically complex and challenging. To simplify the process, I use Express.js, which
adheres to the MVC design pattern. To get started with Express.js, I first install Node.js along with
the node package manager (npm) from the available binary packages for each operating system.
It’s important to note that installing Node.js also automatically installs npm. npm is a crucial
tool for working with Node.js applications as it provides access to a vast repository of reusable
JavaScript libraries necessary for development, testing, and production. Additionally, npm can be
used to run tests and other tools during the development process.

Other essential dependencies, such as frameworks and template engines, are imported into the
application environment using the npm package manager. After installing Express.js, the directory
structure is set up, creating directories for bin, node-modules, public, routes, and views. Each
directory has a specific role, which will be detailed in the next section to explain their importance
in ensuring the application runs smoothly.

In Node.js and Express.js setup, each web application creates and operates its own web server.
Express.js provides the methods to define which functions are called for specific HTTP verbs (GET,
POST, etc.) and URL patterns (“routes”). It also allows specifying which template (“view”) engine
to use, the location of template files, and the templates used to render responses.

3.2.3 Connection between Server and Browser
When a client navigates to the server name with URL using the port number, such as local-
host:8000, from the browser, the implemented web application at the server will perform the
following procedures as depicted in Figure 3.2.

18

Figure 3.2: PyPLAS application directory structure using Express.js.

• package.json: First, the application calls the package.json file. This file contains all the
dependencies and scripts needed by npm to fetch and run the application. The “start” script,
typically set to “node ./bin/www”, instructs the Node.js project to execute the “www” file
located in the bin folder, which sets up Express.js for the application.

• www: This file acts as the entry point of the application and allows for different setup
configurations. It includes three main scripts, app, debug, and http, where each serves the
specific initialization purpose.

• app.js: This is the main root file of the application directory, declaring all the globally
required packages and serving as the central hub for the application’s configuration.

• index.js: Located in the routes folder, this file directs incoming application requests to the
appropriate controllers and renders the corresponding views.

• views: This folder contains all the user interface files, which are rendered in the browser
using EJS.

• public: This folder contains all static assets, such as CSS, images, and JavaScript files, used
by the application.

• addon: This customized “addon” folder includes test code files, answer source code files,
and validator files necessary for the application’s functionality.

3.2.4 Validation Process of Answer Source Code
In CWP, the answer source code submitted from a student is validated by the unit testing using
the unittest library. Figure 3.3 illustrates this validation process in the answer platform. unittest
offers a range of features for effective unit testing of a Python source code, including test fixtures,
test cases, test suites, and test runners. Test fixtures provide fixed environments for running tests,
ensuring repeatability. Test cases define conditions to determine whether the source code under the
test works correctly. Test suites collect test cases for various specifications or behaviors of source
codes. Test runners set up test executions and provide outcomes to the user.

19

Figure 3.3: Answer code validation process.

3.2.5 MVC Model Software Architecture
The answer platform is implemented as a web application. Node.js is employed as the web ap-
plication server and is combined with the Express.js framework to facilitate web application de-
velopments. The EJS (Embedded JavaScript) template engine is employed for rendering dynamic
contents in the view. The file system of the operating system is utilized for efficient data manage-
ment within the platform. The unittest library is employed for testing the answer source codes.
The platform eliminates the need for clients to manually navigate the server name (URL) along
with the port, such as localhost:8000, when accessing the platform through the browser.

The software architecture of the answer platform follows the Model-View-Control (MVC) model
that has been widely recognized as the standard architecture for web applications. Figure 3.4 il-
lustrates the software architecture of the answer platform. The model is implemented by Python.
It reads the necessary data files from the predefined file system, including test code files, answer
source files, and validator files. Then, it automatically tests the submitted answer source code by
executing the provided test code on the unittest framework. The testing results along with the
unittest logs are stored in the file system and can be accessed by students through the browser.

20

Figure 3.4: MVC model in PyPLAS on Node.js.

1) Model: The model reads the required data files in the predefined file system called “addon”.
They include test code files and the answer source code files. Each source code file is verified
by running the corresponding test code on unittest. The results including the unittest log are
recorded in the result file, and can be viewed by the student at the browser. From the web
browser, a student can submit the assignment answer code and receive the testing results
to/from the server.

2) View: The view implements the user interface in PyPLAS using the EJS template engine to
render dynamic contents at the browser. All the EJS files for this application are included in
the “views” directory. The application will call the file starting from the index file, which is
the home page of the application. It consists of the title, the menu, and the main body for
each problem type. The main body needs to be exchanged with the related EJS file according
to the route that the client requested.

3) Controller: The controller in PyPLAS is implemented by JavaScript. When a request is
received from the browser, the application works out what action is needed from the URL
and the associated information contained in POST data or GET data. It may read or write
the information in the file system, or perform the tasks required to satisfy the request.

3.2.6 Problem Answer Interface
Figure 4.1 shows the problem answer interface of CWP platform. Students can write the source
code in the designated place, click “Submit” button to validate the code, see the validation result
in the black box, and use buttons to select the next and previous problems.

21

Figure 3.5: Problem answer interface.

3.2.7 Problem List Interface
Figure 3.6 shows the list of the problem instances to be solved in this category. The student can
easily see which instance is successfully finished or still trying or not solving.

Figure 3.6: Problem list interface.

3.3 Docker for Answer Platform Distribution
Docker provides the flexibility and portability for running various software on different platforms.
Docker is a framework of simplify managing and deploying containers or applications. A Docker
container can be built from plain text files called a Dockerfile that describes human and machine
readable instructions for creating computing environments and interacting with data. The Docker
container can be run on anywhere as long as Docker is installed, and is built from the Docker
image to offer the software environment for running the target application, which may include the
source codes, the libraries, the middleware, and the parameters. Using Docker, the application can

22

run on any platform without considering the installed software there. Thus, the software version
or source code incompatibility problem can be easily solved on a PC.

3.3.1 Dockerfile Creation
Figure 3.7 illustrates the installation procedure of the answer platform on a PC using Docker. The
process involves creating a Dockerfile that outlines the necessary instructions for copying files and
installing the required software components. Once the Dockerfile is created, a Docker image is
built by executing the instructions in the file. This image includes all the dependencies including
the libraries needed for the platform, and is stored in either Docker Hub or a local registry. After
generating the Docker image, it can be run as a container using the Docker “run” command. This
container allows access to student answer results, which are stored in specific folders within the
container directory. This installation procedure using Docker streamlines the setup process and
provides a reliable and efficient environment for running the answer platform on a PC.

Figure 3.7: Installation procedure of PyPLAS platform using Docker.

3.3.2 Installation of Platform
To distribute the Docker image to students easily and correctly, it is stored in a Docker Hub account
using the “push” command. Docker Hub is the platform provided and managed by Docker for
sharing container images. Creating a Docker Hub account is a straightforward process, as it can be
easily done through the Docker Hub website. Once the Docker image is uploaded to the Docker
Hub account, students who have been granted the access to the account can download the image
using the ”pull” command as shown in Figure 3.8 . This allows them to seamlessly obtain the
Docker image from the Docker Hub and set up the answer platform for their use.

23

Figure 3.8: Upload and download of PyPLAS image from Docker Hub.

The Docker image for our environment is influenced by the “python:3.8-slim-buster” Docker
image. This image includes the Python runtime and a slim version of the Debian Linux operating
system. The choice of ”python:3.8-slim-buster” helps balance the need for essential components
and libraries for Python execution with a smaller overall image size, as it excludes nonessential
components.

The image offers compatibility with our software packages and libraries, providing a larger
package repository and robust security updates. By using this base image, I ensure that the neces-
sary Python environment is set up efficiently, supporting the execution of our applications within
the container. The image may take a few minutes to download initially. However, once down-
loaded, it allows for seamless execution of Python applications without the need for an Internet
connection, enabling users to work on their projects anytime and anywhere.

3.4 Evaluation
In this section, I evaluated the implemented CWP platform through the use by novice students. In
this evaluation, I prepared the usage manual and requested to students from Japan and Indonesian
universities to install and use the platform. Then, I collected their feedback by questionnaires.
Table 3.1 shows 10 questions and their replies, where 5 is best and 1 is the least. Most students
were satisfied with this platform, which confirms the validity.

However, some students found some difficulty in the installation. The manual should be im-
proved. Besides, some students mentioned that the use of integrated development environment
(IDE) such as VS code is more convenient to solve CWP than this platform, because the error mes-
sages and the solved test cases are easily seen there. It will be helpful to recommend students to
use IDE for solving CWP.

3.5 Summary
This section presented the implementation of the code writing problem (CWP) platform for Python
programming learning. Several software including Node.js, Express.js, EJS, Docker, and unittest
are used together. In the evaluation, 20 students installed and used the platform, where the ques-
tionnaire results confirmed the validity and the effectiveness. In future works, I will implement
helpful functions for programming learning in the platform, include other exercise problems for
Python programming, and extend the platform to other programming languages such as C, C++,
and JavaScript.

24

Table 3.1: Questions and results on CWP platform.

no. question # of students
1 2 3 4 5

1
Is it easy to solve the assignments
using the platform? 0 0 2 12 6

2
Do you think the platform is useful
for studying Python programming? 0 0 1 10 9

3 Are the instructions in the manual clear? 0 0 5 8 7

4
Is the installation process of
the platform easy? 0 0 2 9 9

5
Do you think the working status
for each problem is accurate? 0 0 1 10 9

6
Do you think the answers’ result
are clearly to know
after solving the problem?

0 0 2 11 7

7
Do you think programming study is improved
after solving the problem? 0 0 2 12 6

8 Are you satisfied with the platform? 0 0 3 9 8

9
Do you think this platform is better than
IDE? 0 0 5 8 7

10
How many rate do you want to give
the platform? 0 0 2 11 7

25

Chapter 4

Software Testing in CWP Platform for
Python Programming

In this chapter, I present the software testing mechanism for the Code Writing Problem (CWP) in
the Python Programming Learning Assistant System (PyPLAS) using its web-based answer plat-
form [22].

4.1 Overview of CWP
A CWP instance is intended for the student to write the source code that will pass all the tests
described in the given test code at running unitest [23]. Each test represents the specification in
the assignment that must be satisfied in the answer code. The test result is immediately returned
to the student. When all the tests are passed, the code is regarded as the correct one. Otherwise,
the student needs to modify and correct the code. Therefore, once the test codes are made by
the teacher, the student can continue writing the codes for the assignments by themselves until
reaching the correct ones. The assignments cover fundamental concepts and syntax of Python
programming, including control structures, data types, loops, and conditional statements [24].

4.2 CWP answer interface
Figure 4.1 shows the screenshot of the answer interface for a CWP assignment. When a student
accesses to this page, the test code on the right side is displayed. Then, the student needs to write
the source code on the left side while reading the test code and analyzing the required specifications
for the source code from the test code. After completing the source code, the student can submit
it by clicking the button, and the source code is tested by unittest. The test result will appear
automatically on the lower side of the page [21].

26

Figure 4.1: CWP answer interface.

4.3 Test Driven Development
CWP is implemented based on the test driven development (TDD) method. In TDD, the test code
should be written before or while the source code is implemented, so that it can verify whether the
current source code satisfies the required specifications during its development process. Modifica-
tions of the source code can be repeated until it passes every test in the test code.

4.3.1 Unit Testing Framework
unittest is a built-in unit testing framework in the Python programming platform to test given
source codes. It assists the automatic unit testing of a source code or a class by running a test code.
The test code needs to import the unittest module and create the class for testing by extending
the library class TestCase. Each test method in the test code compares the execution result of the
source code with its expected result. When they are equal, the test is passed. Otherwise, it is failed.

4.4 Test Code
In a CWP assignment, the test code plays the important role of checking whether the answer
source code from a student satisfies the required specifications given by the test code or not. The
test code needs to import the unittest library. The unittest library offers several assertion functions
for testing. By properly using them, a test code can verify various functions in a source code.
Some of the assertion functions are as follows:

• assertEqual() compares the produced output of the source code with the expected value.

• assertIn() checks whether a given value is presented within the output being tested.

• assertNotIn() checks whether a given value is not presented within the output being tested.

• assertIsInstance() checks whether a given object is the instance of the expected class.

27

4.4.1 Test Code Example
First, I present the test code for a source code in basic Python programming concepts. Listing 4.1
shows a test code to test the addition method in the Arithmetic Operators class that will return
the addition result of the two integer arguments. For reference, Listing 4.2 shows the source code
that will pass the test code.

Listing 4.1: Test code in example CWP
1 i m p o r t u n i t t e s t , sys , os
2 from A r i t h m e t i c O p e r a t i o n i m p o r t A r i t h m e t i c O p e r a t o r s
3 c l a s s T e s t A r i t h m e t i c O p e r a t i o n (u n i t t e s t . T e s t C a s e) :
4 d e f se tUp (s e l f) :
5 s e l f . a r i t h m e t i c o p e r a t o r s = A r i t h m e t i c O p e r a t o r s ()
6 d e f t e s t a d d i t i o n (s e l f) :
7 s e l f . x = 2
8 s e l f . y = 2
9 a c t u a l = s e l f . a r i t h m e t i c o p e r a t o r s . a d d i t i o n (s e l f . x , s e l f . y)

10 s e l f . a s s e r t E q u a l (a c t u a l , s e l f . x + s e l f . y)
11 i f n a m e == ’ m a i n ’ :
12 u n i t t e s t . main ()

Listing 4.2: Source code in example CWP
1 c l a s s A r i t h m e t i c O p e r a t o r s :
2 d e f a d d i t i o n (s e l f , x , y) :
3 r e t u r n x + y

The class/method names in the test code should be related to the corresponding names in the
source code so that their correspondences become clear:

• The class name in the test code is given by Test tested class name in the source code.

• The method name in the test code is given by the test tested method name in the source
code.

The test code imports the unittest library at lines 1 and 3. At line 4, an object of the ArithmeticOperators
class in the source code, named self.arithmetic operators, is generated. At line 9, the
addition method in the Arithmetic Operators class is executed with 2 and 2 for the two
arguments. Then, at line 10, the result is compared with the correct one 4 using the assertEqual
method. In general, a test code performs the following procedure [25]:

1. It generates an object of the target class to be tested in the source code.

2. It calls the method of the object to be tested with the test input data.

3. It compares the output result of the method with its expected value as the test output data
through the assertEqual method.

28

Table 4.1: CWP instances and results.

ID topic
of

test cases
avg. correct
answer rate

1 Arithmetic Operation 6 100%
2 Standard I/O 3 100%
3 Membership Operators 3 100%
4 Numeric Data Type 4 100%
5 If Else Condition 3 100%
6 Accessing String 4 100%
7 Concat String 2 100%
8 Tuple Usage 2 100%
9 Member Tuple 2 100%
10 List Data Type 3 92%
11 Dictionary Data Type 3 97%
12 Set Data Type 3 93%
13 Obj Creation 3 100%
14 Obj and Class 6 100%
15 Array Creation 2 100%
16 Array Accessing 4 100%
17 Array Removing 2 100%
18 Array Slicing 3 97%
19 Array Searching 2 100%
20 Array Updating 3 100%
21 JSON to String 1 95%
22 Updating JSON 1 95%
23 Various to JSON 9 96%
24 Dictionary to JSON 1 95%

4.5 Application Results
In this section, I generate 24 CWP instances for basic and advance grammar topics from text-
books [24] on the CWP platform, and assign them to 20 novice students from Japan and Indonesia
universities.

4.5.1 CWP instances and solution results
Table 5.2 shows the instance ID, the topic, the number of test cases (test methods), and the average
number of test cases that were passed by the student answer codes for each CWP instance.

4.5.2 Discussions
The solution results in Table 5.2 show that all the students solved the CWP instances correctly,
except for ID=10, 11, 12, 18, 21, 22, 23, 24. The results indicate that some students are still not

29

familiar with the collection data types of list, dictionary, and set, and feel difficult to handle the
JSON data type. In future works, we will improve the descriptions with the hints of the related
instances in the CWP platform.

4.6 Summary
In this chapter, I presented the software testing mechanism for the Code Writing Problem (CWP)
in the Python Programming Learning Assistant System (PyPLAS) using its web-based answer plat-
form onNode.js. 24 instances on basic and advance grammar topics were generated and distributed
to 20 students in Japan and Indonesia. The results confirmed that most of the students well solved
them whereas some students will need cares at programming study. In future works, I will improve
test codes with functions for assisting students to understand test codes and debug source codes,
and continue generating CWP instances for other concepts in Python programming.

30

Chapter 5

Investigation of VTP for C++ Programming

In this chapter, I present the Value Trace Problem (VTP) for C++ Programming in Program-
ming Learning Assistant System (PLAS). While CWP focuses on enhancing students’ coding and
problem-solving skills, VTP is designed to improve their understanding of program execution and
variable tracking. Both CWP and VTP are problem types of PLAS, each addressing different but
complementary aspects of programming education.

5.1 Overview of VTP
The VTP for C++ programming is designed to provide students with opportunities to read and an-
alyze C++ code, emphasizing the importance of code reading for writing high-quality code. Each
VTP instance includes a C++ source code, a set of questions with answer forms, and the correct
answers. Students must determine the actual values of important variables or output messages
when the source code is executed, which are displayed on the standard output in the code. To
create a new VTP instance, corresponding standard output statements must be added to the source
code, with important variables and output messages manually selected. By carefully reading and
tracing the source code, learners can enhance their understanding of the corresponding study. The
correctness of the answers is marked by comparing them with the correct ones stored on the server.

The design goals of VTP are:

1. To present a variety of useful source codes for C++ programming study in complete form
for novice learners.

2. To provide references that describe essential C++ programming topics related to the VTP
instances, aiding novice learners.

3. To ensure that learners can correctly answer the questions by carefully reading and under-
standing the source codes.

4. To enable automatic marking of answers through string matching.

5.2 Generation of Value Trace Problem
In this section,the generation of new the value trace problem (VTP) for C++ programming is
presented.

31

5.2.1 Generation Procedure of VTP
To compose a VTP instance, a teacher needs to prepare a source code, a set of questions, the
answer forms (blanks), and the correct answers. To generate a new VTP instance, the procedures
are as follow:

1) Select a source code to be studied by the students from a website or a textbook.

2) Find the important variables and standard output messages in the source code, and make the
questions of asking the actual values or messages of them.

3) Insert the standard output statements into the source code to output them by compiling and
running it.

4) Collect the correct answers to the questions by running the code and observing the corre-
sponding standard outputs from the code.

5) Make the source code, the questions, and the correct answers into one text file.

6) Run the program in [26] with the text file in e), and generate the HTML/CSS/JavaScript files
for the offline answering function for this VTP instance.

7) Register the generated VTP instance in the assignment to students.

For the automatic execution of this procedure, we implemented the necessary programs in Java
and the script by Bash.

5.2.2 Selection of C++ Source Code
To clarify the VTP instance generation procedure, we explain the details by using the following
Listing 5.1 source code. This code is designed to aid learners in comprehending the concept of
one-dimensional arrays in C++ programming.

Listing 5.1: Source code example for VTP instance
1 # i n c l u d e < i o s t r e a m >
2 # i n c l u d e < s t r i n g >
3 u s i n g namespace s t d ;
4
5 i n t main () {
6 s t r i n g c a r s [4] = { ” Volvo ” , ”BMW” , ” Ford ” , ”Mazda ” } ;
7
8 f o r (i n t i = 0 ; i < 4 ; i ++) {
9 c o u t << i << ” : ” << c a r s [i] << ”\ n ” ;

10 }

11 r e t u r n 0 ;
12 }

32

Listing 5.2: Input file example for VTP instance
1 # i n c l u d e < i o s t r e a m >
2 # i n c l u d e < s t r i n g >
3 u s i n g namespace s t d ;
4
5 i n t main () {
6 s t r i n g c a r s [4] = { ” Volvo ” , ”BMW” , ” Ford ” , ”Mazda ” } ;
7
8 f o r (i n t i = 0 ; i < 4 ; i ++) {
9 c o u t << i << ” : ” << c a r s [i] << ”\ n ” ;

10 }

11 r e t u r n 0 ;
12 }

13
14 The o u t p u t s a r e :
15 1 : 2
16 3 : 4
17 5 : 6
18 7 : 8
19 0 , Volvo , 1 , BMW, 2 , Ford , 3 , and Mazda .

5.2.3 Generating Assignments
Once the source code is selected, the teacher needs to manually add the relevant standard output
statements in the source code, and must prepare the corresponding questions of asking the val-
ues/messages at the standard output along with their correct answers. Next, the teacher needs to
put together the source code, the questions, and the correct answers into a single text file as shown
in Listing 5.2. This file is then utilized as input to execute the program responsible for generating
the HTML/CSS/JavaScript files for the offline answering function.

5.2.4 Answer Interface for VTP
The answer interface for a VTP instance is accessible through a web browser, facilitating student
engagement with the exercises both online and offline. The answer marking is processed by run-
ning the JavaScript program on the browser. To avoid cheating, correct responses are encrypted
using SHA256.

Figure 5.1 illustrates the answer interface for an example VTP instance. This question asks
the values of important variables, i and cars[i]. Their correct answers are 0, Volvo, 1, BMW, 2,
Ford, 3, and Mazda. A student needs to read the source code carefully to understand it, fill in the
forms, and click the “Answer” button. Then, the form becomes white if the answer is correct, and
red otherwise as shown in Figure 5.2. The student can repeat the answering process until all the
answers become correct.

33

Figure 5.1: VTP answer interface.

5.3 Evaluation
In this section, we evaluate the generated 37 VTP instances for C++ programming through appli-
cations to 17 first-year or second-year undergraduate students in Yangon University, Myanmar, 13
graduate students in Okayama University, Japan, and 16 graduate students in Electronic Engineer-
ing Polytechnic Institute of Surabaya University, Indonesia based on student’s solution results and
VTP instance results.

34

Figure 5.2: VTP answer interface with explanation in details.

5.3.1 VTP Instances for Basic Grammar Concepts
As shown in Table 5.1, the 37 instances contain the total of 126 answer forms (blanks). I generated
these instances using source codes in websites [27]-[28] and textbook [29] for basic grammar
concepts in C++ programming. Table I shows the instance ID, the basic grammar concept, the
number of lines in the source code, the number of questions, and the number of answer forms
on each VTP instance. I asked the students to solve them using the offline answering function
for JPLAS at home. These students have studied basic grammar concepts for C++ programming.
The first-year students have studied the C++ programming for three months, the second students
have studied it for at least one year. The graduate students have studied it for several months at
undergraduate programs.

35

Table 5.1: VTP for basic grammar concepts

ID Topic
of
lines

of
questions

of
forms

1 Variable usage 10 3 3
2 Data type, size usage 12 6 6
3 Arithmetic operators 14 4 4
4 Relational operators 14 3 5
5 If statement 19 2 2
6 If else statement 19 2 2
7 Nested if statement 22 2 2
8 Switch statement 31 2 2
9 Default value in switch statement 18 2 2

10 Nested switch statement 20 4 4
11 For loop 11 1 1
12 While loop 12 5 5
13 Do while loop 14 5 5
14 Nested loop 13 1 18
15 One dimensional array 12 1 18
16 Finding average of a set of values 24 2 2
17 Two dimensional array 16 6 6
18 String copy function 13 2 2
19 String length function 9 1 1
20 Combining string and number 13 3 3
21 Pointer 11 2 2
22 Reverse case using array indexing 18 2 2
23 Function 14 2 2
24 Function with parameters 14 3 3
25 Function adding two numbers 13 1 1
26 Local variable 14 2 2
27 Global variable 16 2 2
28 Return value in function 11 1 1
29 Function with call by reference 19 2 4
30 Function overloading 25 3 4
31 Class and object 22 4 4
32 Method in class 20 1 2
33 Constructor 26 6 6
34 Encapsulation 29 1 1
35 Polymorphism 37 1 3
36 Inheritance 24 1 2
37 Exception handling 22 2 2

Average 17.6 2.5 3.4
Total 651 93 126

36

5.3.2 Student Solution Results
First, I analyze the performance of each student in solving the VTP instances. Table 5.2 shows the
student ID, the number of correctly solved answer forms, the total number of answer submission
times to mark the answers, the missing instance ID in solving, and the correct answer rate among
the 126 forms.

Table 5.2: Result for each student

Student ID
of correct

answers
of

submissions
of missing

instances
Correct

answer rate
1 126 81 0 100%
2 126 50 0 100%
3 126 37 0 100%
4 126 63 0 100%
5 120 61 0 91%
6 122 38 0 98%
7 126 37 0 100%
8 126 52 0 100%
9 126 54 0 100%
10 126 40 0 100%
11 126 50 0 100%
12 126 92 0 100%
13 126 59 0 100%
14 107 39 0 81%
15 109 42 0 85%
16 121 56 20 97%
17 121 43 18 96%
18 126 43 0 100%
19 126 37 0 100%
20 126 50 0 100%
21 126 55 0 100%
22 126 40 0 100%
23 125 53 0 99%
24 125 87 0 99%
25 126 53 0 100%
26 126 84 0 100%
27 116 65 0 92%
28 126 87 0 100%
29 122 55 0 97%
30 122 55 0 97%
31 126 96 0 100%
32 126 43 0 100%
33 126 74 0 100%
34 126 54 0 100%
35 126 58 0 100%
36 126 43 0 100%
37 126 62 0 100%
38 126 46 0 100%
39 126 72 0 100%
40 126 61 0 100%
41 126 48 0 100%
42 126 41 0 100%
43 126 88 0 100%
44 126 80 0 100%
45 126 78 0 100%
46 126 69 0 100%

average 124.3 58.1 0.8 98.5%
SD 4.1 16.8 3.9 0.00

5.3.2.1 Individual Student Analysis

Based on the result, most of the students solved all the instances correctly. Among them, three
students with ID=3, 7and 19 are excellent, because they solved every VTP instance with only one

37

Table 5.3: Correct answer rate distribution of students

Range of Correct Answer Rate # of Students
80% - 89% 2
90% - 99% 9

100% 35

Table 5.4: Submissions times distribution of students

Submission Time Range # of Students
0 – 37 3

38 – 74 34
75 - 111 9

submission. On the other hand, students with ID=5, 6, 14, 15, 16, 17, 23, 24, 27, 29 and 30 could
not solve some instances. Two students with ID=16 and ID=17 missed to solve one instance,
although they show the high answer rate 97% and 96%. They should be more careful in solving all
the instances. It will be necessary to improve the interface of the answering function to avoid it.
Two students with ID=14 and 15 show the lower correct rate than 90%. These students will need
a lot of efforts to improve the understanding of C++ programming.

The average number of submission times 58.1 indicates that a student submitted answers for
one instance two times on average. The standard deviation is 16.8, which suggests the large diver-
sity among the students. The average correct answer rate 98.5% indicates that a student correctly
solved 98.5% of the questions on average.

5.3.2.2 Correct Answer Rate Distribution

Table 5.3 shows the distribution of the correct answer rates of the students. This table indicates
that 35 students among 46 achieved the 100% rate, and 9 did over 90% correct rate. On the other
hand, two students did under 90% rate, who will need to take time for learning the fundamental
C++ programming.

5.3.2.3 Submission Time Distribution

Table 5.4 shows the distribution of the numbers of answer submission times by the students. Three
students with ID=3, ID =7 and ID=19 correctly solved each instance by submitting the answer only
one time for any VTP instance. They are excellent students who understand C++ programming
very well. Students with ID=1, ID=12, ID=24, ID=26, ID=28, ID=31, ID=43, ID=44 and ID=45
submitted the answers more than 75 times, which is the largest. However, ID=1, ID= 12, ID=26
and ID=28, ID=31, ID=43, ID=44 and ID=45 achieved the 100% correct rate respectively. It
means that these students were seriously solving the VTP instances by submitting answers many
times, and actually achieved the solutions. They may need more practices in C++ programming.

5.3.3 Individual VTP Instance Result
Next, I analyze the solving results of the individual VTP instances by the students. Table 5.5 shows
the instance ID, the number of students who did not attempt to solve, the total number of answer
submissions to mark the answers, and the average correct answer rate among the 46 students.

38

Table 5.5: Result of each VTP instance

Instance ID
of Unattempted

Students
of

Submissions
Average

Correct Rate
1 0 72 100%
2 0 122 99%
3 0 58 100%
4 0 96 100%
5 0 70 100%
6 0 51 100%
7 0 50 100%
8 0 55 100%
9 0 55 100%
10 0 66 100%
11 0 87 100%
12 0 55 100%
13 0 67 100%
14 0 65 100%
15 0 56 100%
16 0 113 98%
17 0 70 94%
18 1 103 99%
19 0 54 100%
20 1 72 99%
21 0 70 96%
22 0 86 100%
23 0 53 100%
24 0 71 100%
25 0 50 100%
26 0 51 100%
27 0 70 100%
28 0 54 100%
29 0 51 100%
30 0 50 100%
31 0 69 96%
32 0 82 94%
33 0 72 100%
34 0 53 96%
35 0 69 96%
36 0 215 88%
37 0 68 100%

Average 0.054 72 99%
SD 0.229 29.9 0.03

39

Table 5.6: Correct answer rate distribution of instances

Range of Correct Answer Rate # of Instances
80% – 90% 1
90% – 100% 36

Table 5.7: Grammar concepts of hard instances

Instance ID Topic
2 data type, size usage

16 finding average of set of values
17 two dimensional array
18 string copy function
20 combining string and number
21 pointer
31 class and object
32 method in class
34 encapsulation
35 polymorphism
36 inheritance

5.3.3.1 Individual Instance Analysis

Table 5.5 indicates that in general, the 37 VTP instances are relatively easy for them. The average
correct answer rate is 100% for any instance, except for the instances with ID=2, 16, 17, 18, 20,
21, 31, 32, 34, 35, and 36. These instances may be relatively difficult for them, where up to eleven
students made mistakes in them.

5.3.3.2 Correct Answer Rate Distribution

Table 5.6 shows the distribution of the correct answer rates of the VTP instances. 36 instances
among 37 achieved over the 90% correct rate. Thus, they are suitable for self-studies of novice
students. The one instance ID=36 achieved less than 90% correct rate. This instance may be
difficult for novice students. In future works, I will improve these instances so that more students
can try to solve and answer them correctly.

5.3.3.3 Analysis of Hard Instances

Table 5.7 shows the grammar concepts of the VTP instances where the average correct rate did
not reach 100%. They include data type, array, string, pointer, and object-oriented programming
specific concepts that are generally hard for novice students at studying C++ programming. The
teacher need to explain them in more comprehensible ways using illustrations or subsidiary tools.
Besides, we should implement hint functions to help students understand them, which will be in
future works.

40

5.4 Summary
In this chapter, I investigated the effectiveness of the value trace problem (VTP) for self-study of
C++ programming through code reading. I generated 37 VTP instances using simple source codes
for basic grammar concepts of C++ programming, and asked 46 students to solve them using the
offline answering function at home.

By analyzing their answer results, I could detect the understanding levels of the students in
C++ programming that prove the generated VTP instances are suitable for the novice students
and the hard concepts for them. The hard concepts include data type, array, string, pointer, and
object-oriented programming specific ones that are generally difficult topics for novice students at
studying C++ programming. The teacher should take time in explaining them in comprehensible
ways using illustrations or subsidiary tools. Besides, a hint function to encourage students’ under-
standing should be implemented at the answering function to VTP instances, which will be in our
future works.

In future studies, I will generate hard instances in addition to hint function to improve students’
understanding in their studies. Moreover, we will generate new VTPs using source codes for other
grammar concepts or programming topics such as libraries, data structure, and algorithms and
object-oriented instances, and will use them in C++ programming courses.

41

Chapter 6

Related Works

In this section, I introduce related works to this thesis.
In [30], Hwang et al. proposed the web-based programming assisted system for cooperation

(WPASC) designing learning activity for facilitating cooperative programming learning, and inves-
tigated cooperative programming learning behaviors of students and the relationships with learning
performances.

In [31], Quinson et al. presented the programmer’s learning machine (PLM) as an interactive
exerciser aimed at learning programming and algorithms. It targets students in (semi) autonomous
settings, using an integrated and graphical environment that provides a short feedback loop. This
generic platform also enables teachers to create specific programming micro-worlds that match
their teaching goals. PLM provides two main panels to provide information for students to solve
exercises.

In [32], Samy et al. developed the CPP tutor, an intelligent tutoring system designed to create
an interactive learning environment for students. This system aims to facilitate the learning of
C++ programming by providing personalized feedback and adaptive learning pathways. As a
result, students can grasp programming concepts more quickly and effectively than with traditional
teaching methods, enhancing their overall learning experience.

In [33], Ihantola et al. conducted a systematic literature review on automated assessments
of programming assignments. Their work encompasses a detailed analysis of the major features
and approaches from both pedagogical and technical perspectives. The review highlights vari-
ous methodologies for automated grading and discusses their effectiveness in improving student
learning outcomes, along with the technical challenges involved in implementing these systems.

In [34],, Jain et al. developed an educational tool for understanding algorithm, and building and
learning programming language. This tool provides an innovative and unified graphical user inter-
face for developments of multimedia objects, educational games, and applications. It also provides
an innovative method for code generations to enable students to learn the basics of programming
languages using drag-n-drop methods of image objects.

In [35], Zingaro et al. proposed a web-based tool that enables an instructor to use code writing
assignments in a classroom. It supports use cases and scenarios for classroom implementations.
Submitted codes are evaluated by the suite of tests designed to highlight common misconceptions,
so that the instructor receives real-time feedback as students submit code. The system also allows
the instructor to pull specific submissions into the editor and visualizer for use as in-class examples.

In [36], Pritchard et al. presented Computer Science Circles as a free programming website
for beginners of Python programming. It offers the auto-grader function based on the stdin/stdout
approach with randomizing test cases, code scramble exercises of correcting wrong ordered codes,

42

and hints.
In [37], Tosun et al. investigated impacts of the test-driven development on the effectiveness of

unit test cases compared to the incremental test-last development in industrial contexts. This study
reveals that TDD may have positive impacts on software development productivity. Moreover,
TDD is characterized by the higher ratio of active development time in the total development time
than the test-last development approach.

In [38], Aniche et al. conducted both open source and industry projects related assert instruc-
tions in unit tests with quality measures of codes being tested. This study observed that when a
production method has a unit test using the ”assert” instructions for more than one objects, it often
exhibits the higher cyclomatic complexity, the number of lines of a code, or the higher number of
method invocations. It means that developers should monitor the number of assert instructions in
the unit test as it may indicate drawbacks in the produced code.

In [39], Thirumalesh et al. used the TDD methodology in two different environments (Windows
and MSN divisions) at Microsoft. This study measured various contexts, products, and outcome
measures to compare and evaluate the efficacy of TDD. It also observed the significant increase in
quality of the code (greater than two times) for projects developed using TDD compared to similar
projects developed in the same organization in non-TDD fashions. Additionally, the unit test is
served as the auto documentation for the code when libraries and APIs are used as well as for the
code maintenance.

In [41], Garner presented learning resources and tools to help novices learn programming,
addressing the challenges of introductory software development. The author discusses tools such
as micro-worlds, video clips, flowchart interpreters, and program animators, framed within the four
phases of the software lifecycle: problem analysis, solution design, algorithm implementation, and
testing/revision.

In [42], Abu-Naser et al. presented an intelligent tutoring system for learning Java objects.
By bringing together recent developments of tutoring systems, cognitive science, and artificial
intelligence, they constructed an intelligent tutor system to help students learn Java programing.

In [43], Cai et al. studied performances of scientific applications with Python programming.
They investigated several techniques for improving computational efficiencies of serial Python
codes and discussed basic programming techniques for parallelizing serial scientific applications.

In [44], Bogdanchikov et al. suggested Python use for teaching programming to novice stu-
dents, because the programming language has neatly organized syntax and powerful tools to solve
any task. They gave some examples of program codes written in Java, C++, and Python, and made
comparisons between them. They also pointed advantages of Python.

In [45], Adawadkar described the main features of Python programming and listed out the
differences between Python and other programming language with helps of some codes. The
author discussed applications of Python programming and showed good examples.

In [46], the author presented online Python tutor so that the teachers and students can write
Python programs directly in the web browser (without installing any plugin), step forwards and
backwards through executions to view the run-time state of data structure, and share their program
visualizations on the web.

In [47], Helminen et al. introduced a program visualization and programming exercise tool for
Python by aiming to target students apparent fragile knowledge of elementary programming, which
manifests as difficulties in tracing and writing even simple programming. It provides an environ-
ment for visualizing the line-by-line execution of Python programs and for solving programming
exercises with support for immediate automatic feedback and an integrated visual debugger.

In [48], Robinson et al. introduced an automated approach for generating maintainable regres-

43

sion unit tests for programs. Unlike previous studies, this method focuses on libraries rather than
applications and aims to identify bugs rather than create maintainable regression test suites. The
study proposes techniques to enhance existing unit test generation systems, resulting in tests with
good coverage and readability for developers.

In [49], Elenbogen et al. presented a collection of interactive web exercises and development
environments aimed at aiding language acquisition in introductory C++ courses. These resources
are specifically crafted to support beginners in grasping fundamental programming concepts and
honing their coding skills through hands-on practice.

44

Chapter 7

Conclusion

In this thesis, as the first contribution, I implemented a web-based code writing problem (CWP)
platform for Python programming learning using Node.js by extending the platform for Java pro-
gramming. The user interface of this platform is dynamically controlled with EJS, simplifying
the syntax structure. To facilitate easy installation of the platform software on students’ personal
computers, Docker is employed. The client-side user interface displays the CWP assignments and
accepts code submissions from students. The submitted code is then tested on the server using
unittest, which automatically verifies the correctness of each answer. The results are promptly
returned and displayed on the user interface.

For evaluations, I prepared a usage manual and requested 20 students in universities in Japan
and Indonesia to install and use the platform. Feedback was collected from these students. The
majority expressed satisfactions with the platform, affirming its validity. However, two students
reported encountering difficulties during the installation process.

As the second contribution, I explored the software testing of the web-based CWP platform
for Python programming learning. Initially, I collected source codes from various websites and
textbooks, focusing on fundamental grammar concepts in Python programming. Subsequently,
I manually generated the corresponding test codes to verify the source codes, ensuring that the
correctness of the students’ answer source codes can be automatically validated on the answer
platform.

For evaluations, I distributed the generated CWP instances to novice students in Japan and
Indonesia, who were asked to use the answer platform to solve them. The results showed that
the majority of the students successfully completed the code writing tasks, which confirmed the
usefulness and effectiveness of the proposal in supporting self-study for Python programming.
However, some students are still not familiar with the collection data types of list, dictionary,
and set, and feel difficult to handle the JSON data type. So, some students will need cares at
programming study.

As the third contribution, I studied the VTP for C++ programming learning. C++ is important
for practical applications due to its speed and efficiency. However, limited university courses has
underscored the necessity for self-learning tools. To aid beginners, I investigate VTP for C++
programming, which prompts students to determine the value of key variables or outputs in source
code. This approach emphasizes the selection of source codes covering basic grammar concepts
to provide support for novice learners.

For evaluations, I collected 37 source codes from websites and textbooks for basic grammar
concepts in C++ programming, and generated VTP instances manually, after analyzing important
variables and outputs messages in the codes. Then, to verify the effectiveness of the generated

45

37 VTP instances, we assigned 46 students from Myanmar, Japan and Indonesia universities. The
results revealed that out of the 46 students, 35 successfully solved all the questions, while only two
encountered difficulties. These findings underscore the importance of providing additional support
and guidance to students facing challenges in their early stages of programming study.

In future works, I plan to further improve the PLAS platform by adding a wider range of ex-
ercise problems, incorporating interactive learning resources, and extending its support to include
additional programming languages. These enhancements will provide more comprehensive learn-
ing opportunities and better support for students’ self-study needs.

46

Bibliography

[1] S. T. Aung, N. Funabiki, Y. W. Syaifudin, H. H. S. Kyaw, S. L. Aung, N. K. Dim, and W.-C.
Kao, “A proposal of grammar-concept understanding problem in Java programming learning
assistant system,” J. Adv. Inf. Technol., vol. 12, no. 4, pp. 342-350, 2021.

[2] K. K. Zaw, N. Funabiki, Y. W. Syaifudin, H. H. S. Kyaw, S. L. Aung, N. K. Dim, and W.-C.
Kao, “A proposal of value trace problem for algorithm code reading in Java programming
learning assistant system,” Inf. Eng. Express, vol. 1, no. 3, pp. 9-18, 2015.

[3] N. Funabiki, Tana, K. K. Zaw, N. Ishihara, and W.-C. Kao, “A graph-based blank element se-
lection algorithm for fill-in-blank problems in Java programming learning assistant system,”
IAENG Int. J. Comput. Sci. vol. 44, no. 2, pp. 247-260, 2017.

[4] N. Ishihara, N. Funabiki, and W.-C. Kao, “A proposal of statement fill-in-blank problem using
program dependence graph in Java programming learning assistant system,” Info. Engr. Exp.,
vol. 1, no. 3, pp. 19-28, Sept. 2015.

[5] N. Funabiki, Y. Matsushima, T. Nakanishi, N. Amano, “A Java programming learning assis-
tant system using test-driven development method,” IAENG Int. J. Comput. Sci., vol. 40, no.
1, pp. 38-46, 2013.

[6] H.H.S. Kyaw, N. Funabiki, and W.-C. Kao, “A proposal of code amendment problem in Java
programming learning assistant system,” Int. J. Inf. Educ. Technol., vol. 10, No. 10, pp. 751-
756, Oct. 2020.

[7] H. H. S. Kyaw, S. S. Wint, N. Funabiki, and W.-C. Kao, “A code completion problem in
Java programming learning assistant system,” IAENG Int. J. Comput. Sci., vol. 47, no. 3, pp.
350-359, 2020.

[8] Y. Jing, N. Funabiki, S. T. Aung, X. Lu, A. A. Puspitasari, H. H. S. Kyaw, and W.-C. Kao,
“A proposal of mistake correction problem for debugging study in C programming learning
assistant system,” Int. J. Inf. Educ. Technol., vol. 12, pp. 1158-1163. 2022.

[9] N. Ishihara, N. Funabiki, M. Kuribayashi, and W.-C. Kao, ”A software architecture for Java
programming learning assistant system,” Int. J. Comp. Soft. Eng., vol. 2, no.1, 2017.

[10] S. T. Aung, N. Funabiki, L. H. Aung, H. Htet, H. H. S. Kyaw, and S. Sugawara ”An imple-
mentation of Java programming learning assistant system platform using Node.js,” in Proc.
ICIET, pp 47-52, April 2022.

[11] R. McKendrick, Monitoring docker, first edition, Packt, 2015.

47

[12] D. Herron, Node.js web development - fifth edition, Packt, 2020.

[13] Express, https://expressjs.com/.

[14] Top Programming Languages 2023, https://spectrum.ieee.org/top-programming-languages-
2023/.

[15] N. Ishihara, N. Funabiki, M. Kuribayashi, and W.-C. Kao, “A software architecture for Java
programming learning assistant system,” J. Comp. Soft. Eng., vol. 2, no. 1, Sept. 2017.

[16] N. Funabiki, Tana, K. K. Zaw, N. Ishihara, andW.-C. Kao, “A graph-based blank element se-
lection algorithm for fill-in-blank problems in Java programming learning assistant system,”
IAENG Int. J. Comput. Sci. vol. 44, no. 2, pp. 247-260, 2017.

[17] JUnit, http://www.junit.org/.

[18] K. Beck, Test-driven development: by example, Addison-Wesley, 2002.

[19] SHA-256 Cryptographic Hash Algorithm, https://www.movable-
type.co.uk/scripts/sha256.html/.

[20] Docker Hub, https://hub.docker.com/signup/.

[21] S. L. Aung, N. Funabiki, S. H. M. Shwe, S. T. Aung, and W-C. Kao, “An implementation
of code writing problem platform for Python programming learning using Node.js,” in Proc.
GCCE, pp. 854-855, Oct. 2022.

[22] S. L. Aung, N. Funabiki, S. H. Shwe, E. D. Fajrianti, and S. Sukaridhoto, “An application
of code writing problem platform for Python programming learning,” in Proc. GCCE, pp.
856-857, Jan. 2022.

[23] Unit testing framework, https://docs.python.org/3/library/unittest.html/.

[24] John M. Zelle. Python Programming - An Introduction to Computer Science, 3rd ed.;
Franklin, Beedle & Associates, 2017.

[25] N. Funabiki, Y. Matsushima, T. Nakanishi, and N. Amano, “A Java programming learning
assistant system using test-driven development method,” IAENG Int. J. Comput. Sci., vol.
40, no. 1, pp. 38-46, 2013.

[26] N. Funabiki, H. Masaoka, N. Ishihara, I-W. Lai, and W.-C. Kao, “Offline answering function
for fill-in-blank problems in Java programming learning assistant system,” in Proc. ICCE-
TW, pp. 324-325, May 2016.

[27] C++ Programming, https://www.programiz.com/cpp-programming/.

[28] C++ Programming, https://beginnersbook.com/2017/08/c-plus-plus-tutorial-for-beginners/.

[29] H. Schildt, “C++ : A begineer’s guide, 2nd edition”, McGraw-Hill Education, 2003.

[30] W.-Y. Hwang, R. Shadiev, C.-Y. Wang b, and Z.-H. Huang, “A pilot study of cooperative pro-
gramming learning behavior and its relationship with students learning performance,” Com-
put. Edu. vol. 58, pp. 1267–1281, 2012.

48

[31] P. Brusilovsky and S. Sosnovsky, “Individualized exercises for self-assessment of program-
ming knowledge: an evaluation of QuizPACK,” J. Edu. Res. Comput., vol. 5, no. 6, 2005.

[32] S. S. A. Naser, “Developing an intelligent tutoring system for students learning to program
in C++,” Inform. Tech. J., vol. 7, no. 7, pp. 1055-1060, 2008.

[33] P. Ihantola, T. Ahoniemi, V. Karavirta, and O. Seppala, “Review of recent systems for auto-
matic assessment of programming assignments,” in Proc. Koli Call. Int. Conf. Comput. Edu.
Research, pp. 86-93, Oct. 2010.

[34] A. K. Jain, M. Singhal, and M. S. Gupta, “Educational tool for understanding algorithm
building and learning programming languages,” in Proc. World Cong. Eng. Comput. Sci., pp.
292-295, Oct. 2010.

[35] S. Zingaro, Y. Cherenkova, O. Karpova, and A. Petersen, “Facilitating code writing in PI
classes,” in Proc. ACM Tech. Symp. Comput. Sci. Educ., pp. 585-590, Mar. 2013.

[36] D. Pritchard and T. Vasiga, “CS Circles: An in-browser Python course for beginners,” in
Proc. ACM Tech. Symp. Comput. Sci. Educ., pp. 591-596, Mar. 2013.

[37] A. Tosun, M. Ahmed, B. Turhan, and N. Juristo, “On the effectiveness of unit tests in test-
driven development,” in Proc. Int. Conf. Softw. Syst. Process, pp. 113-122, May 2018.

[38] M.F. Aniche, G.A. Oliva, and M.A. Gerosa, “What do the asserts in a unit test tell us about
code quality? A study on open source and industrial projects,” in Proc. Eur. Conf. Softw.
Maint. Reeng., pp. 111-120, Mar. 2013.

[39] T. Bhat and N. Nagappan, “Evaluating the efficacy of test-driven development: Industrial
case studies,” in Proc. ACM/IEEE Int. Symp. Empir. Softw. Eng. (ISESE), pp. 356-363, Sep.
2006.

[40] S. S. Wint, N. Funabiki, and M. Kuribayashi, “Design and implementation of desktop-version
Java programming learning assistant system,” Proc. HISS, pp. 254-257, Nov. 2018

[41] S. S. Garner, “Learning resources and tools to aid novices learn programming,” in Proc. Int.
Conf. Informing Science, vol. 2, no. 2, June 2003.

[42] S. Abu-Naser, A. Ahmed, N. Al-Masri, A. Deeb, E. Moshtaha, and M. Abu-Lamdy, “An
intelligent tutoring system for learning Java objects,” Int. J. Art. Intell. Appli., vol. 2, no. 2,
pp. 68-77, April 2011.

[43] X. Cai and H. P. Langtangen, “On the performance of the Python programming language for
serial and parallel scientific computations,” Sci. Programm., vol. 13, no. 1, pp. 31-56, Jan.
2005.

[44] A. Bogdanchikov, M. Zhaparov, and R. Suliyev, “Python to learn programming,” J. Physics:
Conf. Series, vol. 432, 2013.

[45] K. Adawadkar, “Python programming - applications and future,” Sci. J. Impact Factor, pp
849–857, April 2017.

49

[46] P. J. Guo, “Online Python tutor: embeddable web-based program visualization for CS educa-
tion,” in Proc. ACM Tech. Symp. Comput. Sci. Edu., pp. 579-584, Mar. 2013.

[47] J. Helminen and L. Malmi “JYPE- a program visualization and programming exercise tool
for Python,” in Proc. Int. Symp. Soft. Visual., pp 153-162, Oct. 2010.

[48] B. Robinson, M. D. Ernst, J. H. Perkins, V. Augustine and N. Li, ”Scaling up automated test
generation: Automatically generating maintainable regression unit tests for programs,” 26th
IEEE/ACM Int. Conf. on Auto. SW Eng. (ASE 2011), pp. 23-32, 2011.

[49] B. S. Elenbogen, B. R. Maxim, and C. McDonald, “Yet, more web exercises for learning
C++,” in Proc. ACM SIGCSE Bulletin, vol. 32, no.1, pp. 290-294, May. 2000.

50

	Abstract
	Acknowledgements
	List of Publications
	List of Figures
	List of Tables
	Introduction
	Background
	Contributions
	Contents of This Dissertation

	Review of Programming Learning Assistant System
	Overview of PLAS
	Server Platform
	Software Architecture
	Implemented Problem Types

	Code Writing Problem in JPLAS
	TDD Method
	JUnit

	Test Code
	Features in TDD Method

	Offline Answering Functions in JPLAS
	Operation Flow
	File Generation
	Cheating Prevention

	Review of PLAS using Node.js
	Open Source Software
	Node.js
	Express.js
	Embedded JavaScript (EJS)
	Docker

	Implementation of JPLAS platform using Node.js
	Software Architecture
	Server Side Implementation
	File for Connection between Server and Browser
	MVC Model Software Architecture in NPLAS

	Adoption of Docker for JPLAS
	JPLAS Docker Workflow
	Usage Procedure

	Summary

	Implementation of CWP Platform for Python Programming
	Introduction
	Implementation of CWP Platform
	Software Architecture
	Server Side Implementation
	Connection between Server and Browser
	Validation Process of Answer Source Code
	MVC Model Software Architecture
	Problem Answer Interface
	Problem List Interface

	Docker for Answer Platform Distribution
	Dockerfile Creation
	Installation of Platform

	Evaluation
	Summary

	Software Testing in CWP Platform for Python Programming
	Overview of CWP
	CWP answer interface
	Test Driven Development
	Unit Testing Framework

	Test Code
	Test Code Example

	Application Results
	CWP instances and solution results
	Discussions

	Summary

	Investigation of VTP for C++ Programming
	Overview of VTP
	Generation of Value Trace Problem
	Generation Procedure of VTP
	Selection of C++ Source Code
	Generating Assignments
	Answer Interface for VTP

	Evaluation
	VTP Instances for Basic Grammar Concepts
	Student Solution Results
	Individual Student Analysis
	Correct Answer Rate Distribution
	Submission Time Distribution

	Individual VTP Instance Result
	Individual Instance Analysis
	Correct Answer Rate Distribution
	Analysis of Hard Instances

	Summary

	Related Works
	Conclusion
	References

