1	Original Article

2	Delayed Diagnostic Interval and Survival Outcomes in Pediatric Leukemia: A Single-
3	Center, Retrospective Study
4	
5	Kosuke Tamefusa ^{1,2} , Motoharu Ochi ² , Hisashi Ishida ² , Takahiro Shiwaku ² , Kiichiro
6	Kanamitsu ^{2,3} , Kaori Fujiwara ² , Yasuhisa Tatebe ⁴ , Naomi Matsumoto ⁵ , Kana Washio ² ,
7	Hirokazu Tsukahara ^{1,2}
8	¹ Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and
9	Pharmaceutical Sciences, Okayama, Japan
10	² Department of Pediatrics, Okayama University Hospital, Okayama, Japan
11	³ Department of Pediatrics, Okayama Medical Center Hospital, Okayama, Japan
12	⁴ Department of Pharmacy, Okayama University Hospital, Okayama, Japan
13	⁵ Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences,
14	Okayama University, Okayama, Japan
15	
16	*Corresponding author:
17	Kosuke Tamefusa, MD, Department of Pediatrics, Okayama University Graduate School of
18	Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-
19	8558, Japan

• •	т ·1	11 (110	1	
20	E-mail:	pbla6	1kh(<i>a</i>)s	s.okayam	a-u.ac.in
- ~		P = 1 - 1 -	J	,	

21 Tel: +81-86-235-7249; fax: +81-86-221-4745

22

- 23 Running title: Diagnostic interval in pediatric leukemia
- Abstract word count: 187
- 25 Manuscript word count: 3009
- 26 Number of references: 23
- 27 Number of figures: 2
- 28 Number of tables: 2
- 29 Number of supplemental figures: 5
- 30 Number of supplemental tables: 4
- 31

Abbreviations	
ALL	acute lymphoblastic leukemia
AML	acute myeloid leukemia
BCP-ALL	B-cell precursor acute lymphoblastic leukemia
CI	confidence interval
DI	diagnostic interval
EFS	event-free survival
IQR	interquartile range
NCI-SR	standard risk according to National Cancer Institute criteria
OS	overall survival
T-ALL/T-LL	T-cell acute lymphoblastic leukemia and lymphoblastic lymphoma

32

34	1. What is the new aspect of your work?
35	In this study, we focused on the diagnostic interval (DI), defined as the duration of time from
36	the onset of leukemic symptoms to diagnosis, and assessed whether a prolonged DI is
37	associated with survival of patients with pediatric leukemia.
38	
39	2. What is the central finding of your work?
40	The median DI was 20 days, and a prolonged DI (\geq 30 days) showed no association with the
41	survival of children with leukemia.
42	
43	3. What is (or could be) the specific clinical relevance of your work?
44	If a precise classification of leukemia biology is available for pediatric patients, a prolonged

45 DI may have little impact on the prognosis of these patients.

47 Objective:	
----------------------	--

48	This study primarily focused on the diagnostic interval (DI), defined as the duration from the
49	onset of leukemic symptoms to diagnosis. We investigated whether a prolonged DI is
50	associated with the outcomes of pediatric leukemia.
51	Methods:
52	We retrospectively collected data of children with newly diagnosed pediatric leukemia at
53	Okayama University Hospital from January 2007 to December 2022. Survival analyses were
54	conducted using Kaplan-Meier methods, and an unadjusted analysis to compare differences
55	in survival was performed using the log-rank test.
56	Results:
57	In total, 103 children with leukemia were included in the analysis. The median DI was 20
58	days (interquartile range, 9.5–33.5 days). A prolonged DI (≥30 days) demonstrated no
59	association with either 5-year event-free survival (70.1% for <30 days and 68.3% for ≥30
60	days, $P = 0.99$, log-rank test) or overall survival (84.7% for <30 days and 89.4% for ≥ 30
61	days, $P = 0.85$, log-rank test).

Conclusions:

63	A prolonged DI was not associated with the survival of children with leukemia. If a precise
64	classification of leukemia biology is provided for pediatric patients, a prolonged DI may have
65	little impact on the prognosis of these patients.
66	
67	Key words: Diagnostic interval, Leukemia, Pediatric, Survival

69 Introduction

The diagnostic interval (DI) in pediatric cancer is a matter of concern for physicians, and 70 several studies focusing on the DI have been reported.^{1–5} Knowledge of whether a prolonged 71 DI has a positive or negative impact on the outcome of pediatric cancer is of clinical 72 significance. If the association between a prolonged DI and the survival outcome has a non-73 negative impact, we would be able to provide valuable information to patients' guardians. A 74 prolonged DI can markedly heighten anxiety for both children and their parents, potentially 75 leading to a negative impact on their subsequent experience with cancer care. 76 Childhood leukemia is the most common pediatric cancer and the leading cause of disease-77 related death among children in developed countries.⁶⁻⁹ Although the survival of childhood 78 79 leukemia has improved during the past few decades, relapse and refractory disease remain significant challenges.⁶⁻⁸ A systematic review showed that the median time to diagnosis of 80 81 acute leukemia from the onset of symptoms was <3 weeks; this was shorter than the median time to diagnosis of other pediatric solid cancers, reflecting the rapid progression of 82 leukemia.⁵ However, a prolonged time to diagnosis of leukemia is unavoidable in some 83 patients because of the rarity of pediatric leukemia and the nonspecific initial symptoms of 84 the disease.¹⁰ In the abovementioned systematic review, the DI of pediatric leukemia was 85 shorter for lymphoid leukemia than for myeloid leukemia.⁵ Although the difference in the DI 86

87	is considered	d to be	affected by	leukemic	biology,	the differenc	e in the	e DI	according to

88 leukemic subtypes has not been well studied.

- 89 Whether a prolonged DI adversely affects the survival of patients with pediatric leukemia is
- 90 controversial. In Canadian studies, the time to diagnosis was not associated with the outcome
- 91 of children with acute lymphoblastic leukemia (ALL).^{3,11} By contrast, a Chinese study
- 92 showed that a longer time to diagnosis negatively affected the outcome of pediatric ALL.⁴
- 93 Furthermore, the definitions of the DI differed among these studies.
- 94 The present study was performed to describe the DI based on various clinical factors and

95 evaluate its association with the survival of children with leukemia.

96

97 Methods

98 Study design and population

We retrospectively collected data from the electronic medical records of patients diagnosed with pediatric leukemia at Okayama University Hospital, which is a tertiary care university hospital, from January 2007 to December 2022. The catchment area served by Okayama University Hospital mainly includes Okayama, Hiroshima, Hyogo, Kagawa, Ehime, Tottori, Kochi, Yamaguchi, and Shimane prefectures. The inclusion criterion was newly diagnosed leukemia in patients aged 0 to 18 years. Patients who initiated chemotherapy for leukemia before their diagnosis, patients who were transferred to our hospital after initiating

106	chemotherapy for leukemia, and patients with myeloid proliferations related to Down
107	syndrome were excluded. Patients with B-cell precursor ALL (BCP-ALL) were categorized
108	as standard risk according to the National Cancer Institute criteria (NCI-SR) if they had
109	neither an initial leukocyte count of $>50 \times 10^9$ /L nor an age of >10 years. ⁶ We also defined
110	patients with ETV6::RUNX1 or hyperdiploidy as having low-risk ALL. Most of the children
111	with BCP-ALL were treated according to either the Japan Association of Childhood
112	Leukemia Study (JACLS) ALL-02 protocol or the Japanese Pediatric Leukemia/Lymphoma
113	Study Group (JPLSG) ALL-B12 protocol. The predominant treatment protocol for children
114	with T-cell ALL and lymphoblastic lymphoma (T-ALL/T-LL) was either the JACLS-02 or
115	JPLSG ALL-T11 protocol. ^{12–14} Other subtypes, including acute myeloid leukemia (AML),
116	were primarily managed following contemporary Japanese protocols.
117	
118	Diagnostic interval
119	This study mainly focused on the DI, defined as the duration of time from the onset of
120	leukemic symptoms to the diagnosis of leukemia. To accurately gauge the DI, we categorized
121	the diagnostic process into the following five components with reference to previous reports
122	(Fig. 1) ^{$2,15$} : the patient interval (interval from the onset of leukemic symptoms to the patient's
123	first medical contact), physician interval (interval from the first medical contact to diagnosis
124	of leukemia), DI, treatment interval (interval from diagnosis of leukemia to initiation of

125	treatment), and total interval (interval from onset of leukemic symptoms to initiation of
126	treatment). The date of symptom onset was collected at the first admission through a
127	physician interview and recorded on the medical chart. We defined the date of diagnosis as
128	the date when a diagnostic bone marrow test was performed. The date of initiating treatment
129	was defined as the date when cancer-specific combination chemotherapy was initiated.
130	Initiation of supportive therapies such as hydration therapy, transfusion therapy, or
131	prophylactic antibiotic treatment was not defined as initiation of treatment for leukemia. All
132	intervals were measured in days.
133	
134	Study outcome
135	The aim of our study was to determine whether a prolonged DI is associated with patient
136	survival. The primary outcomes were 5-year event-free survival (EFS) and 5-year overall
137	survival (OS). EFS was defined as the duration of time from diagnosis to relapse, death, or
138	last medical contact without relapse. OS was defined as the duration of time from diagnosis
139	to death or last medical follow-up. Relapse was defined as clinical or hematological
140	
140	recurrence of leukemia. Non-relapse death was defined as death of any cause other than
140	recurrence of leukemia. Non-relapse death was defined as death of any cause other than relapse. Although death of relapse and non-relapse death were considered competing events,

145	We described patients' characteristics and then calculated each interval, providing the median
146	and interquartile range (IQR) across categories. The following categories were selected based
147	on previous research, clinical significance, and data availability: sex, age at diagnosis,
148	leukemic subtype, initial white blood cell count, initial platelet count, initial lactate
149	dehydrogenase level, NCI classification, low-risk features with ETV6::RUNX1 or
150	hyperdiploidy, intensive care unit admission, hematopoietic stem cell transplantation, relapse
151	or refractory disease, primary medical contact type, residence area, onset season, and period
152	of diagnostic year. The initial white blood cell count, platelet count, and lactate
153	dehydrogenase level were categorized using cutoffs of 5 \times 10 ⁴ /µL, 5 \times 10 ⁴ /µL, and 1000 U/L,
154	respectively. The first medical contact type was distinguished between pediatrician and non-
155	pediatrician. The residence area was grouped into Okayama prefecture and non-Okayama
156	prefecture. Onset seasons were categorized as spring (March-May), summer (June-August),
157	autumn (September-November), and winter (December-February). Probabilities of OS and
158	EFS were calculated using Kaplan–Meier estimators. ¹⁶ Differences in survival were
159	compared using the log-rank test. ¹⁷ We defined a DI of \geq 30 days as a prolonged DI based on
160	the IQR of our results. A sensitivity analysis was conducted by modifying the threshold from
161	\geq 30 days to \geq 20 days. We compared the differences in survival as categorized by a prolonged
162	physician interval, which excluded the patient interval from the DI. Additionally, we defined

163	a physician interval of >7 days as a prolonged physician interval. All statistical analyses were		
164	performed using EZR Version 1.55 (Saitama Medical Center, Jichi Medical University,		
165	Saitama, Japan), ¹⁸ a graphical user interface for R Version 4.1.2 (The R Foundation for		
166	Statistical Computing, Vienna, Austria). A P value of <0.05 was considered statistically		
167	significant for all analyses.		
168			
169	Ethics statement		
170	The patients or their parents gave opt-out consent in accordance with the Declaration of		
171	Helsinki. The study was approved by the institutional ethics committee of Okayama		
172	University (2203-034).		
173			
174	Results		
175	Patients' characteristics		
176	The patients' characteristics are shown in Table 1. From 2007 to 2022, 103 children (72 boys,		
177	31 girls) with leukemia were eligible for analysis. We divided our cohort into two groups of		
178	patients, those with ALL and those with non-lymphoid leukemia, with reference to previous		
179	studies. ⁵ We considered that the biological differences between ALL and non-lymphoid		
180	leukemia might contribute to variations in the diagnostic process. ALL comprised BCP-ALL,		
181	T-ALL/T-LL, Philadelphia chromosome-positive ALL, infant ALL, and Burkitt leukemia.		

182	Patients with non-lymphoid leukemia included those with AML, chronic myeloid leukemia,
183	and juvenile myelomonocytic leukemia. BCP-ALL was the most frequent subtype ($n = 64$,
184	62%), followed by AML (n = 13, 13%) and T-ALL/T-LL (n = 11, 11%). The clinical data for
185	each individual child are shown in Supplemental Table S1. Nine (9%) patients required
186	intensive care unit admission at the approximate time of initial treatment induction (the
187	detailed clinical information is summarized in Supplemental Table S2).
188	
189	Distribution of each interval
190	Table 2 shows the distribution of each interval by variables. The median DI was 20 days
191	(IQR: 9-35 days) in patients with ALL and 14 days (IQR: 10-27 days) in patients with non-
192	lymphoid leukemia (Supplemental Figure S1). Variables categorized by other factors such as
193	intensive care unit admission, hematopoietic stem cell transplantation, relapse or refractory
194	disease, first medical contact, residence area, onset season, and year of diagnosis are
195	summarized in Supplemental Table S3. We also assessed the relationship between symptoms
196	before diagnosis and each interval (Supplemental Table S4). Patients with bone or joint pain
197	tended to have a prolonged DI (median DI: 26.5 days).
198	We measured the DIs of patients with BCP-ALL and patients with a good prognosis because
199	we considered that patients with a good prognosis may have slower progression and a
200	prolonged DI. In this analysis, we defined a good prognosis as the presence of BCP-ALL

201	with NCI-SR or low-risk ALL (with ETV6::RUNX1 or hyperdiploidy). Patients with NCI-SR
202	and those with low-risk ALL tended to have a longer DI than the other patients with ALL.
203	The median DI was 25 days (IQR: 11.25–39.25 days) in children with low-risk ALL and 18
204	days (IQR: 9-31.5 days) in children in the other ALL groups.
205	
206	Survival analysis
207	We assessed the relationship between the DI and patient survival. The median follow-up time
208	among all patients was 2,366 days (IQR: 1171.5-3607 days). We observed 15 deaths (9 in
209	children with ALL and 6 in children with non-lymphoid leukemia). The 5-year EFS was
210	75.0% in patients with ALL and 40.0% in patients with non-lymphoid leukemia, while the 5-
211	year OS was 91.1% and 60.0%, respectively. Among patients with ALL, BCP-ALL had the
212	best outcome with a 5-year EFS of 81.9% and 5-year OS of 98.1%. We found that a
213	prolonged DI, which was defined as \geq 30 days, was associated with neither 5-year EFS
214	(70.1% for <30 days and 68.3% for \geq 30 days, $P = 0.99$, log-rank test) nor 5-year OS (84.7%)
215	for <30 days and 89.4% for \geq 30 days, $P = 0.85$, log-rank test) (Fig. 2A and B). This result
216	was consistent even when restricted to children with ALL. The 5-year EFS and OS rates were
217	not different between patients with ALL who had a prolonged DI and those with a standard
218	DI (Fig. 2C and D). The survival of children with leukemia showed no significant difference
219	when altering the threshold day for a prolonged DI from 30 to 20 days (Supplemental Figure

220	2). The physician interval, defined as the duration of time from the initial medical contact to
221	the diagnosis of leukemia, was not associated with either the 5-year EFS (76.0% for \leq 7 days
222	and 62.9% for >7 days, $P = 0.23$, log-rank test) or 5-year OS (87.5% for \leq 7 days and 84.8%
223	for >7 days, $P = 0.64$, log-rank test) when defining a prolonged physician interval as >7 days
224	(Supplemental Figure S3). Additionally, we compared a treatment interval of \leq 5 versus >5
225	days according to previous reports. ^{19,20} A prolonged treatment interval was not associated
226	with EFS in children with leukemia. The 5-year EFS was 72.7% at a treatment interval of \leq 5
227	days and 61.9% at a treatment interval of >5 days ($P = 0.18$, log-rank test) (Supplemental
228	Figure S4A). This result was also maintained in children with only ALL; the 5-year EFS was
229	75.3% at a treatment interval of \leq 5 days and 74.6% at a treatment interval of $>$ 5 days (<i>P</i> =
230	0.85, log-rank test) (Supplemental Figure S4B). We focused on children with low-risk ALL
231	(ETV6::RUNX1 or hyperdiploidy) and found that those with a standard DI had excellent 5-
232	year EFS compared with those with a prolonged DI (100% with a standard DI and 72.7%
233	with a prolonged DI, $P = 0.033$) (Supplemental Figure S5).
234	

Discussion

In this retrospective study, we measured the DI for a leukemia diagnosis and assessed the
impact of a prolonged DI on survival in children with leukemia. A prolonged DI was not
associated with poor survival in children with leukemia.

239	The intervals in our study are similar to those in previous studies on pediatric leukemia. ^{2,4,5} In
240	our study, the median patient, physician, diagnostic, treatment, and total intervals were 4, 7,
241	20, 3, and 25 days, respectively. The largest Canadian observational study on the DI in
242	childhood cancer reported that the median patient, physician, diagnostic, treatment, and total
243	intervals for leukemia were 8, 3, 19, 1, and 21 days, respectively. ² Although the patient
244	interval was shorter in our cohort, the DI and total interval in our study are similar to those
245	observed in the Canadian study. The patient interval was one of the longest time segments
246	and was responsible for the interval-determining step of the total interval in the Canadian
247	study. ² The shorter patient interval in Japan may reflect differences in the medical and
248	insurance systems between these two countries. In the largest systematic review, the median
249	time to diagnosis of acute leukemia was approximately 3 weeks and was consistent across
250	several studies. ⁵ However, our study showed that the DI was longer for lymphoid leukemia
251	than for myeloid leukemia (median DI of 20 days and 14 days, respectively), which is
252	different from the results of the systematic review. ⁵ This reversal in the results may be
253	partially explained by the fact that the DI for myeloid leukemia in our cohort was shorter than
254	the previously reported DI, although the limited number of patients in our cohort may have
255	been associated with this outcome.
256	Several studies regarding the DI in pediatric cancer, encompassing various malignancies,

showed that older age was associated with a prolonged DI.^{1,2,5} However, in our cohort, the

258	median DI was shorter in the older age group (20 days for patients aged <6 years and 17.5
259	days for patients aged \geq 6 years). This discrepancy might have arisen from the fact that our
260	study used an age threshold of \geq 6 years and included only patients with leukemia, whereas
261	several other studies included older patients and those with heterogeneous cancers, such as
262	sarcomas. Younger children tend to have low-risk ALL (ETV6::RUNX1 and
263	hyperdiploidy), ^{8,21,22} potentially explaining the different results in our cohort.
264	In this study, children who had BCP-ALL with NCI-SR or low-risk ALL (ETV6::RUNX1 or
265	hyperdiploidy) tended to have a prolonged DI. These trends may reflect biological
266	differences, including the fact that ALL with ETV6::RUNX1 and hyperdiploidy tends to
267	exhibit slower progression. ^{21,22} In adult cancers, aggressive tumors reportedly tend to have a
268	shorter symptomatic window, a phenomenon referred to as the "waiting time paradox." ^{1,2,5}
269	A prolonged DI was not associated with survival of pediatric leukemia in this study. Studies
270	on the association between a delayed diagnosis and survival in pediatric leukemia are
271	limited. ^{3–5,11} A recent Chinese retrospective study revealed a negative association of the DI
272	with survival. ⁴ In a Canadian cohort study, the DI was not associated with survival of
273	pediatric ALL. ¹¹ In several retrospective studies of adults with AML, the relationship
274	between the treatment interval and the prognosis was also analyzed, ^{19,23} and a recent study
275	suggested that delayed initiation of treatment does not have a negative effect on survival. ²⁰ In
276	our study, the treatment interval was not associated with EFS (Supplemental Figure S3). Our

277	results may indicate that a prolonged DI does not directly imply a delay in diagnosis but
278	instead reflects the biology of leukemia, including the feature of slower progression. Thus,
279	the diagnosis is still considered timely even if the DI is prolonged. Waiting for the results of
280	cytogenetic and genetic tests to stratify precise therapies may be appropriate.
281	In this retrospective study, we analyzed data from a single center; thus, the study has some
282	limitations. First, we relied on data from the patients' electronic medical records. Therefore,
283	we inevitably included some inaccuracy for each interval. However, our findings regarding
284	the DI are similar to those of previous studies. ^{1,2,4,5} Second, the definition of symptom onset
285	is a limitation of our study. The perceived timing of symptom onset depends on the children
286	or their parents, rendering the patient interval less robust. However, the patient interval was
287	shorter in our study, and we considered that the impact of measurement error was relatively
288	small. Furthermore, the patient interval is a matter of concern for guardians, making it a
289	clinically significant aspect of the diagnostic process. To address the limitation of the time-
290	zero problem, we conducted additional analyses comparing the survival of children with ALL
291	categorized by the physician interval. The physician interval was not associated with either
292	the 5-year EFS or 5-year OS when the threshold for a prolonged physician interval was set at
293	7 days. Third, our sample size was small because our study was performed at a single center.
294	Therefore, the analyses may have been underpowered, and differences in survival by the DI
295	may not have been detected. Finally, our cohort included heterogeneous subtypes of pediatric

296	leukemia treated using different chemotherapy protocols during different periods of time.		
297	However, we were unable to perform a stratified analysis because of the limited number of		
298	patients. Therefore, our results should be interpreted with caution, and a larger nationwide		
299	study is warranted.		
300			
301	Conclusions		
302	We retrospectively measured the DI of pediatric leukemia, and the median DI was 20 days. A		
303	prolonged DI (\geq 30 days) showed no association with the survival of children with leukemia.		
304	Our findings may suggest that a prolonged DI has a limited impact on the prognosis of		
305	children with leukemia.		
306			
307	Acknowledgments		
308	We thank Ellen Knapp, PhD, from Edanz (https://jp.edanz.com/ac) for editing a draft of this		
309	manuscript.		
310			
311	Conflict of Interest		
312	The authors declare no conflicts of interest.		
313			
314	Funding Information		

315	This work was supported by JSPS KAKENHI Grant Number JP23K14978 (Grant-in-Aid for
316	Early-Career Scientists)
317	
318	Authorship Contributions
319	All authors contributed to the study conception and design. K.T. wrote the manuscript. K.T.,
320	M.O., H.I., T.S., K.K., K.F., Y.T., and K.W. provided medical care for the patients. N.M.
321	conducted the statistical review from an expert standpoint. K.W. and H.T. revised the
322	manuscript for important intellectual content. All authors read and approved the final
323	manuscript.
324	
325	Data Availability Statement
326	The data that support the findings of this study are available from the corresponding author
327	upon reasonable request.

330	1	Dang-Tan T, Franco EL. Diagnosis delays in childhood cancer: a review. Cancer.
331		2007;110:703–713.
332	2	Dang-Tan T, Trottier H, Mery LS, et al. Delays in diagnosis and treatment among
333		children and adolescents with cancer in Canada. Pediatr Blood Cancer. 2008;51:468-
334		474.
335	3	Baker JM, To T, Beyene J, et al. Influence of length of time to diagnosis and treatment
336		on the survival of children with acute lymphoblastic leukemia: A population-based
337		study. Leuk Res. 2014;38:204–209.
338	4	Dai Q, Liu R, Wang Y, et al. Longer Time Intervals From Symptom Onset to
339		Diagnosis Affect the Overall Survival in Children With Acute Lymphoblastic
340		Leukemia. J Pediatr Hematol Oncol. 2022;44:285–292.
341	5	Brasme J-F, Morfouace M, Grill J, et al. Delays in diagnosis of paediatric cancers: a
342		systematic review and comparison with expert testimony in lawsuits. Lancet Oncol.
343		2012;13:e445–e459.
344	6	Hunger SP, Mullighan CG. Acute Lymphoblastic Leukemia in Children. N Engl J
345		Med. 2015;373:1541–1552.
346	7	Kato M, Manabe A. Treatment and biology of pediatric acute lymphoblastic leukemia.
347		Pediatr Int. 2018;60:4–12.

348	8	Inaba H, Mullighan CG. Pediatric acute lymphoblastic leukemia. Haematologica.
349		2020;105:2524–2539.
350	9	Goldstick JE, Cunningham RM, Carter PM. Current Causes of Death in Children and
351		Adolescents in the United States. N Engl J Med. 2022;386:1955–1956.
352	10	Pizzo PA and PDG. Principles and Practice of Pediatric Oncology. Seventh. New
353		York: Lippincott Williams & Wilkins; 2015. 101–112 p.
354	11	Gupta S, Gibson P, Pole JD, et al. Predictors of diagnostic interval and associations
355		with outcome in acute lymphoblastic leukemia. Pediatr Blood Cancer. 2015;62:957-
356		963.
357	12	Takahashi Y, Ishida H, Imamura T, et al. JACLS ALL-02 SR protocol reduced-
358		intensity chemotherapy produces excellent outcomes in patients with low-risk
359		childhood acute lymphoblastic leukemia. Int J Hematol. 2022;115:890-897.
360	13	Koh K, Kato M, Saito AM, et al. Phase II/III study in children and adolescents with
361		newly diagnosed B-cell precursor acute lymphoblastic leukemia: Protocol for a
362		nationwide multicenter trial in Japan. Jpn J Clin Oncol. 2018;48:684-691.
363	14	Sato A, Hatta Y, Imai C, et al. Nelarabine, intensive L-asparaginase, and protracted
364		intrathecal therapy for newly diagnosed T-cell acute lymphoblastic leukaemia in
365		children and young adults (ALL-T11): a nationwide, multicenter, phase 2 trial

366		including randomisation in the very high-risk group. Lancet Haematol. 2023;10:e419-
367		432.
368	15	Weller D, Vedsted P, Rubin G, et al. The Aarhus statement: improving design and
369		reporting of studies on early cancer diagnosis. Br J Cancer. 2012;106:1262–1267.
370	16	Kaplan EL, Meier P. Nonparametric Estimation from Incomplete Observationsorg. J
371		Amer Statist Assoc. 1958;53:457-481.
372	17	Bland JM, Altman DG. The logrank test. BMJ. 2004;328:1073.
373	18	Kanda Y. Investigation of the freely available easy-to-use software "EZR" for medical
374		statistics. Bone Marrow Transplant. 2013;48:452–458.
375	19	Bertoli S, Bérard E, Huguet F, et al. Time from diagnosis to intensive chemotherapy
376		initiation does not adversely impact the outcome of patients with acute myeloid
377		leukemia. Blood. 2013;121:2618–2626.
378	20	Röllig C, Kramer M, Schliemann C, et al. Does time from diagnosis to treatment affect
379		the prognosis of patients with newly diagnosed acute myeloid leukemia? Blood.
380		2020;136:823–830.
381	21	Haas OA, Borkhardt A. Hyperdiploidy: the longest known, most prevalent, and most
382		enigmatic form of acute lymphoblastic leukemia in children. Leukemia. 2022;36:2769-
383		2783.

384	22	Jeha S, Choi J, Roberts KG, et al. Clinical significance of novel subtypes of acute
385		lymphoblastic leukemia in the context of minimal residual disease-directed therapy.
386		Blood Cancer Discov. 2021;2:326–337.
387	23	Sekeres MA, Elson P, Kalaycio ME, et al. Time from diagnosis to treatment initiation
388		predicts survival in younger, but not older, acute myeloid leukemia patients. Blood.
389		2009;113:28–36.

TABLE 1 Patients' characteristics

	ALL						non- lymphoid				
		BCP-ALL	T-ALL/LL	Ph-ALL	Infant-ALL*	Burkitt leukemia	ALL total	AML	CML	JMML	non- lymphoid total
Number of Patients		64	11	5	4	4	88	13	1	1	15
Sex(M/F)		42/22	10/1	5/0	2/2	3/1	62/26	8/5	1/0	1/0	10/5
Age (year)		5 [1 - 15]	9 [2 - 15]	5 [3 - 8]	0 [0 - 0]	8 [8 - 10]	5 [3 - 10]	7 [0 - 13]	8	0	7 [4.5 - 12]
Initial WBC count (×10 ⁹ /L)		8.86 [3.0175 - 25.3425]	151.170 [79.515 – 304.505]	86.870 [53.53 – 126.9]	427.800 [95.065 – 774.275]	9.180 [6.405 – 11.8125]	14.49 [4.8275 – 50.9875]	8.880 [5.36 – 31.55]	208.35	94.6	16.41 [5.715 - 50.915]
Initial Plt count (×10 ⁹ /L)		86 [44 – 178.3]	65 [49.5 – 139]	127 [48 – 162]	47.5 [40.5 – 59.5]	110.5 [44.5 - 174.5]	82.5 [44 – 175]	49 [15 – 77]	534	11	49 [14.5 – 81.5]
Initial LDH level		458.5 [313.25 - 893.5]	2,287 [1,115 – 3,025.5]	575 [330 – 1,295]	1,610 [1,371.75 – 2,219.25]	2,694 [2,489 – 3576.75]	580 [329.25 - 1590.75]	587 [411 – 822]	520	881	587 [415 – 851]
CNS disease	positive	1	2	2	1	1	7	1	0	0	1
CIVS disease	negative	63	9	3	3	3	81	12	1	1	14
ICU admission	Yes No	1 63	5 6	0 5	1 3	1 3	8 80	0 13	0	1 0	1 14
									1		
HSCT	Yes	9	2	5	2	2	20	8	0	0	8
	No	55	9	0	2	2	68	5	1	1	7
diagnosis	Yes	38	4	3	2	3	50	7	0	0	7
before 2015	No	26	7	2	2	1	38	6	1	1	8
alive	Yes	61	9	4	3	2	79	8	1	0	9
	No	3	2	1	1	2	9	5	0	1	6

Data are shown as n or median (interquartile range).

ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; BCP, B-cell precursor; CML, chronic myeloid leukemia; CNS, central nervous system; HSCT, hematopoietic stem cell transplantation; ICU, intensive care unit; JMML, juvenile myelomonocytic leukemia; LDH, lactate dehydrogenase; LL, lymphoblastic lymphoma; Ph, Philadelphia chromosome-positive; Plt, platelet; WBC, white blood cell.

*All infants with ALL had *KMT2A* rearrangement.

	umber of tients (%)	Patient interval	Physician interval	Diagnostic interval	Treatment interval	Total interval
erall	103 (100%)	4 [0-16]	7 [4 - 18]	20 [9.5 - 33.5]	3 [1-6]	25 [13 - 39]
L	88 (85%)	4 [0-17]	7 [4 – 18.25]	20 [9-35]	3 [1-6]	24 [12 - 38.5]
-lymphoid leukemia	15 (15%)	4 [1-10.5]	10 [3-13]	14 [10-27]	4 [3-7]	27 [16-37.5]
le	72 (70%)	4 [0.75 – 15]	7 [3.75 – 18]	19 [9-32]	3 [1-6.25]	22 [12 - 38]
male	31 (30%)	2[0-20.5]	8 [4.5 – 19]	22 [12.5 – 36]	4 [1-5]	26 [15-41]
e group						
5	51 (50%)	4 [1 – 17.5]	8 [4-18.5]	20 [12 - 36]	4 [1-6.5]	26 [15-42.5]
Ď	52 (50%)	3.5 [0-13.5]	6 [3 - 14.25]	17.5 [8.75 – 31.25]	3 [1-5.25]	22.5 [11.75 - 33.25]
ıkemia subtypes						
CP-ALL	64 (62%)	4 [0-16.75]	7.5 [4-20.5]	24 [9.75 - 36]	4 [2-6]	30 [13 – 41]
ALL/LL	11 (11%)	4 [1-13.5]	7 [3.5 – 9.5]	12 [8.5 – 16.5]	1 [0.5 - 1]	14 [9-19]
n-ALL	5 (4.9%)	2 [1-8]	18 [8-19]	19 [16-45]	2 [1-6]	25 [17-46]
fant-ALL	4 (3.9%)	16 [10.75 – 20]	4 [2.5 – 5.25]	20.5 [15.5 - 23.5]	1 [0.75 – 1]	21.5 [16.50 - 24.25]
ırkitt leukemia	4 (3.9%)	8 [2.25 – 14]	7.5 [2.25 – 17]	22.5 [12.75 - 29.75]	1.5 [1-3]	24 [15.75 - 30.75]
ML	13 (13%)	3 [1-8]	11 [4-13]	14 [10 - 28]	4 [3-7]	18 [15 – 33]
tial WBC count						
5×10 ⁴ /μL	76 (74%)	4 [0-15]	8 [4-20.5]	23.5 [10-35.25]	4 [3-6.25]	30 [14 – 41]
$10^{4}/\mu L$	27 (26%)	4 [1-18]	6 [3.5 – 10.5]	16 [8.5 – 22.5]	1 [1-3]	19 [9 – 27.5]
tial Plt count						
$5 \times 10^4 / \mu L$	65 (63%)	4 [0-17]	9 [5 - 19]	21 [12 - 36]	3 [1-6]	27 [15-41]
$5 \times 10^4 / \mu L$	38 (37%)	4.5 [1 – 13]	4.5 [3 – 12.75]	14 [7.25 – 31]	3 [2-6]	19.5 [11.25 – 37.5]
tial LDH level						
.000 U/L	69 (67%)	2 [0-15]	8 [4-20]	23 [10-35]	4 [3-6]	30 [15-41]
000 U/L	34 (33%)	7 [2.25 – 17]	5.5 [3-10.75]	15 [9-28]	1 [1-3]	17.5 [12 - 30.75]
I classification						
I-SR ALL	43	4 [0-15]	8 [4-22.5]	24 [10.5 - 41]	4 [3-6.5]	30 [14 - 44]
er-ALL	45	4 [1-17]	6 [3 – 12]	19 [9-29]	1 [1-4]	20 [9-33]
I classification I-SR ALL	43	4 [0 - 15]	8 [4 - 22.5]	24 [10.5 – 41]	4 [3 -	- 6.5]

Low-risk classification

low-risk ALL	30	3.5[0-26.5]	8 [4-19.75]	25 [11.25 - 39.25]	5 [3-6]	31 [15.25 – 43]
non low-risk ALL	58	4[1-14.5]	7 [3.25 – 17.25]	18 [9-31.5]	2 [1-5]	20 [12-33]

Data are shown as n, n (%), or median (interquartile range).

ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; BCP, B-cell precursor; LDH, lactate dehydrogenase; LBL, lymphoblastic lymphoma; Plt, platelet; WBC, white blood cell.

†Low risk represents genetic features with *ETV6::RUNX1* or hyperdiploidy.

1 Figure legends

2	Fig. 1 Conceptive illustration of each time point and interval from the onset of symptoms to
3	the initiation of treatment in this study. HCP, health care professionals
4	
5	Fig. 2 Comparison of EFS and OS between patients with a long DI and those with a standard
6	DI. We defined a long DI as \geq 30 days. (A) EFS of children with leukemia. (B) OS of children
7	with leukemia. (C) EFS of children only with ALL. (D) OS of children only with ALL. ALL,
8	acute lymphoblastic leukemia; DI, diagnostic interval; EFS, event-free survival; OS, overall
9	survival
10	
11	Supplemental Figure S1. Dot plots represent the distributions of the (A) patient interval, (B)
12	physician interval, (C) diagnostic interval, and (D) treatment interval in our cohort.
13	
14	Supplemental Figure S2. Comparison of EFS and OS between patients with a prolonged DI
15	and those with a standard DI. We defined a prolonged DI as \geq 20 days. (A) EFS of children
16	with leukemia. (B) OS of children with leukemia. (C) EFS of children only with ALL. (D)
16 17	with leukemia. (B) OS of children with leukemia. (C) EFS of children only with ALL. (D) OS of children only with ALL. ALL, acute lymphoblastic leukemia; DI, diagnostic interval;

20	Supplemental Figure S3. Comparison of EFS and OS between patients with a prolonged PI
21	and those with a standard PI. We defined a prolonged PI as >7 days. (A) EFS of children with
22	leukemia. (B) OS of children with leukemia. (C) EFS of children only with ALL. (D) OS of
23	children only with ALL. ALL, acute lymphoblastic leukemia; PI, physician interval; EFS,
24	event-free survival; OS, overall survival.
25	
26	Supplemental Figure S4. Comparison of EFS stratified by a TI of 0–5 days or longer. (A)
27	EFS of children with leukemia and (B) EFS of children with ALL. ALL, acute lymphoblastic
28	leukemia; EFS, event-free survival; TI, treatment interval.
29	
30	Supplemental Figure S5. (A) Comparison of EFS between low-risk patients with ALL and a
31	standard DI and those with a prolonged DI. (B) Comparison of EFS between non-low-risk
32	patients with ALL and a standard DI and those with a prolonged DI. We defined a prolonged
33	DI as ≥30 days. ALL, acute lymphoblastic leukemia; DI, diagnostic interval; EFS, event-free
34	survival.
35	
36	Supplemental Table S1. Summary of available clinical information of study cohort. HSCT,
37	hematopoietic stem cell transplantation; ICU, intensive care unit; LDH, lactate
38	dehydrogenase; Plt, platelet; WBC, white blood cell. *0, absence of symptom; 1, presence of

39	symptom. †0, spring (March-May); 1, summer (June-August); 2, autumn (September-
40	November); 3, winter (December-February). ‡0, inside Okayama prefecture; 1, outside
41	Okayama prefecture. ¶0, pediatrician; 1, non-pediatrician; 2, data unavailable. **0, Yes; 1,
42	No.
43	
44	Supplemental Table S2. Clinical details of patients who needed ICU admission around
45	treatment induction. ALL, acute lymphoblastic leukemia; BCP-ALL, B-cell precursor acute
46	lymphoblastic leukemia; CHDF, continuous hemodiafiltration; Cre, creatinine; F, female;
47	ICU, intensive care unit; JMML, juvenile myelomonocytic leukemia; K, potassium; LDH,
48	lactate dehydrogenase; M, male; P, phosphorus; T-ALL/T-LL, T-cell acute lymphoblastic
49	leukemia and lymphoblastic lymphoma; TLS, tumor lysis syndrome; UA, uric acid; WBC,
50	white blood cell.
51	
52	Supplemental Table S3. Intervals in days according to each variable. Data are shown as n, n
53	(%), or median (interquartile range). HSCT, hematopoietic stem cell transplantation; ICU,
54	intensive care unit.
55	
56	Supplemental Table S4. Relationships between symptoms and intervals. Data are shown as
57	n, n (%), or median (interquartile range).